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SUMMARY 
 
 
 

 This dissertation described the investigation of the synthesis and characterization 

of new perylene diimide (PDI)-based photonic and electronic materials. In the first part of 

this thesis, PDI-based polynorbornenes, including PDI-grafted homopolymers and block-

copolymers (BCPs) were designed, synthesized and characterized as alternative acceptors 

for fullerene derivatives in organic solar cells. It was found that the PDI pendants on the 

polymer side-chains affect π-π stacking with the neighboring PDIs, which has 

implications for the use of these materials for organic field-effect transistors (OFETs) and 

organic photovoltaic devices (OPVs). It should also be noted that the performance of 

solar cell based on the PDI-grafted polynorbornenes was poor, like most other solar cells 

using PDI acceptors. One of the major reasons could be the challenge in controlling the 

molecular alignment of the PDI-based materials, which leads to much lower electron 

mobilities in films compared to devices with fullerene-based acceptors. One of the PDI-

grafted BCPs showed much better OPV performance compared to the other BCPs and 

respective homepolymer blends, presumably due to favorable morphology. In the second 

part of this thesis, the photo-induced charge-separation in blends of poly-3-hexyl-

thiophene (P3HT) and various PDI derivatives have also been studied. Probing of long-

lived photo-generated PDI radical anions and P3HT polarons provided insight on these 

photo-induced processes, including the relationship between the yields of charge photo-

generation and energy difference between the first singlet excited state of P3HT and final 

charge-separated states. In the third part of this thesis, the use of photo-generated PDI 

radical-anion absorption was shown to be effective for optical limiting of nanosecond 
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laser pulses between 650 – 800 nm. In Chapter 5, an effective approach for two-photon 

absorption (2PA)-induced optical limiting using donor-PDI dyads through which donors 

and acceptors can be independently chosen to maximize optical suppression at particular 

wavelengths has been demonstrated. This finding could be extended to other 

donor/acceptor pairs for optical suppression in other spectrum region. In Chapter 6, 

conjugated polymers with PDI pendants and poly(carbazole-alt-2,7-fluorene) main-

chains were synthesized for optical limiting using the photo-generated PDI radical anion 

via PDI aggregate excitation and/or 2PA from the polymer backbones. It was also found 

that nitro-phenyl group or similar derivatives could be good candidates to incorporate 

into those donor-conjugated polymers, which have significant overlap between their 2PA 

band and respective polaron absorptions for 2PA-indced optical limiting.  
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CHAPTER 1 

INTRODUCTION OF PERYLENE DIIMIDES  

 

1.1 The use of perylene diimides as pigments in industry 

Perylene-3,4,9,10-tetracarboxylic acid diimide derivatives, also known as 

perylene diimides, or PDIs, are colorants that have been extensively studied as industrial 

dyes and pigments. Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), which is 

commonly considered as the parent compound of this class of dyes, was first described in 

1912.1 As shown in Figure 1.1, various perylene diimide dyes with different chemical and 

physical properties could be obtained via modification of the substituents on the imide 

(the R groups) or bay (the 1, 6, 7, 12 position on the core aromatic scaffold) positions. 

 

Figure 1.1. The chemical structures for PTCDA (left) and respective perylene diimides 

without bay-substitutions. 

 

 

A series of perylene diimides emerged (perylene dimethylimides, also named 

Pigment Red 179, was first reported in 1913), which were initially used exclusively for 

industrial purposes as pigments following the ground-breaking work of Harmon Colors in 

describing the conversion of vat dyes to pigments. As a group of high performance 
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pigments, perylene diimides exist in a wide range of colors from red to violet, and even 

shades of black.2 In addition, these molecules exhibit excellent migration stability in 

plastics, easy over-coating when used as paints, chemically inert, superior thermal 

stability, and excellent light and weather stability.1,3 

 

Figure 1.2. The chemical structures of three widely used PDI-based industry pigments. 

 

Several perylene diimide derivatives, such as Pigment Red 179, Pigment Red 178, 

and Pigment Red 149 (as shown in Figure 1.2), have thus found their way into industrial 

scale production and applications since 1950.1 Pigment Red 149 is a yellow shade red, 

while Pigment Red 178 and Pigment Red 179 are of blue shades because of different 

molecular packing of these pigments in the solid state.1,3 From an economic point of view, 

the use of PDI-based pigments in those disposable articles is somewhat limited, due to 

the relatively high cost of these materials as pigments.1 Today, PDI-based pigments are 

found predominately in fiber applications or in other high-grade industrial paints, where 
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their cost is outweighed by the high quality and/or durability of the colors, particularly in 

carpet fibers and automobile industry.1,3 

Yet, while perylene diimides are important industrial pigments, they also combine 

a strong absorption in the visible region with almost unity fluorescence quantum yields, 

high photochemical stability, and many other interesting chemical and physical properties. 

These properties allow perylene diimides to be used as outstanding materials for many 

other new applications.3-13 For example, perylene diimides feature a relatively low 

reduction potential (ca. -1.0 V and -1.2 V vs the ferrocene/ferrocenium (FeCp2
+/0) redox 

couple for the first and second half-wave reduction potentials, respectively), which 

enables their use as electron acceptors for organic electronics and other related research.3-

4,7-8,13-17 Up to this point in time, perylene monoimide and perylene diimide derivatives 

have been utilized in various electronic and optical applications, such as organic field-

effect transistors (OFETs),13-14,16,18-20 fluorescent solar collectors,21 electrophotographic 

devices,22 dye lasers,9-10 organic photovoltaic cells (OPVs),16,23-25 and optical power 

limiters (OPLs),26  because of their appealing physical, optical, and electronic properties. 

 In addition to application-directed research in fields such as OFETs and OPVs, 

functionalized perylene diimides have also been extensively studied in fundamental 

research on photo-induced energy- and electron-transfer processes because of their easily 

identifiable excited-state and anion absorption.3,5,27-31 Such research not only provides 

details for understanding complex energy- and electron-transfer reaction but also benefits 

many related research areas. In particular, researchers in the field of OPVs have benefited 

from studies of photo-induced charge-transfer involving PDI-based acceptors, which is a 

key step in the overall photovoltaic process. 32-34 
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Recently, research attention has increasingly focused on using perylene diimides 

as active semiconducting materials in the field of organic electronics. Perylene diimides 

are still one of the most promising electron-transport materials available to date with a 

low electron affinity (EA, ~ -3.9 eV for unmodified PDIs, closed to C60 and its 

derivatives), the potential for good molecular ordering in the solid state, and facile 

chemical functionalization as compared to fullerene-based acceptors.3,24,35 These features 

make PDI-type materials promising candidates for applications in n-channel OFETs.4 In 

addition, based on their unique combination of optical and redox properties and thermal- 

as well as photo-stability, PDI-based materials have also been widely investigated within 

fields such as optical limiting and OPVs.22,24,26  

The major research effort in this thesis focuses on utilizing the optical and 

electronic properties of functionalized perylene diimides for applications of OPVs and 

optical limiting via fine tuning of the molecular structures and properties. A review of the 

material syntheses, physical properties, and the various applications of perylene diimide 

derivatives are given in this chapter.  

1.2 Preparation of PDI derivatives 

1.2.1 Preparation of PDIs with substituents on the imide positions 

In both the research laboratory and the industrial setting, the primary starting 

material for synthesizing perylene diimide derivatives is PTCDA. The condensation 

reaction between PTCDA and an alkyl amine or an aniline results in the formation of 

respective perylene diimide derivatives in high yield.1,3 As shown in Scheme 1.1, the 

industrial scale synthesis of PTCDA starts from the oxidation of acenaphthene by air to 

give naphthalic anhydride, which is subsequently treated with ammonia to provide 1,8-
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naphthalene dicarboxylic acid imide. Perylene,3,4,9,10-tetracarboxylic diimde (PTCDI) 

is obtained by fusing 1,8-naphthalene dicarboxylic imide with caustic alkali, for instance 

in potassium hydride at 190 to 220 oC, followed by air oxidation of the molten reaction 

mixture. PTCDA is then synthesized by hydrolyses of the PTCDI solid with concentrated 

sulfuric acid at ~ 220 oC. In the dye and pigment industries, insoluble and symmetrical 

organic perylene diimides with high melting points can be easily obtained in high isolated 

yields from the reactions between PTCDA and various aliphatic amines or aromatic 

aniline.1 For example, most insoluble perylene diimide dyes, such as Pigment Red 179, 

Pigment Red 178, and Pigment Red 149, have yields over 90% in industrial scale 

synthesis via PTCDA and respective amines and aniline.1 

 

 

 

Scheme 1.1. The preparation of PDIs with various substituents on the imide positions. 
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Scheme 1.2. The preparation of PDIs with various substituents on the imide positions. 

 

Other than the need to prepare insoluble and high melting point PDI-based dyes 

for the pigment industry, most current research on perylene diimides is related to organic 

electronics, photo-induced processes, and supramolecular organization, which requires 

PDIs with reasonable solubility in common solvents.3 Consequently, synthetic methods in 

making highly soluble perylene diimides were developed, and there are currently two 

different strategies that have proved to be successful. The most common method of 

preparing symmetrical perylene diimides was first described by Langhals and coworkers 

in the 1990s. They improved the solubility of PDI dyes by incorporating solubilizing 

substituents, such as branching alkyl groups at the PDI imide positions.36 The other, 

synthetically more elaborate, strategy is to incorporate substituents, such as phenyl 

groups, at the “bay-positions” of the PDI aromatic cores (i.e. 1,6 position or 1,7 positions) 

to break the strong π–π interactions of these chromophores for better solubility in 
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common organic solvents.3,35 Water-soluble perylene diimides were also reported 

recently by incorporating water-soluble substituents, including Newkome-type 

carboxylates,37 phosphate surfactants,38 and other polar but uncharged moieties, such as 

polyglycerol dendrons39 and cyclodextrin,40 in the imide positions using the strategy 

similary to that described by Langhals. 

As shown in Scheme 1.2, there are several methods to obtain soluble perylene 

diimide dyes by attaching substituents to their imide positions. The most common 

procedure in synthesizing symmetrical PDI derivatives is the condensation reaction of 

PTCDA with aromatic aniline and aliphatic primary amines in high boiling point solvents 

such as imidazole or quinioline (boiling point > 160 oC) with ~ 10 to 30% molar ratio 

anhydrous Zn(OAc)2 as catalyst. The isolated yields of these reactions approach 95% for 

most cases, with relatively simple purification procedures.3,35-36 Another important 

method for symmetrical PDI synthesis is treating PTCDA (or more reactive PTCDA-type 

starting materials with aromatic core dibromo- or tetrachloro-substitutions) with reactive 

amines in hot alcohol (such as n-butanol), carboxylic acid (such as acetic acid and 

propionic acid), or mixtures of alcohol and water with isolated yields over 90%.35 

Compared to the first synthetic method, the latter is more suitable for preparing dibromo- 

or tetracholo-aromatic-bay-substituted PDIs, since there are fewer side reactions, such as 

nucleophilic substitution at the halogenated PTCDAs, which results in replacement of the 

halogen atoms.35 Furthermore, it has been found that perylene benzoimidazole derivatives 

can also be obtained via the similar condensation reaction between PTCDA and 

respective o-phenylenediamine derivatives in good to excellent isolated yields. Generally,  

a mixture of two regioisomers can be obtained in the synthesis of benzoimidazole 
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derivatives and the separation of  the isomers is challenging using common purification 

methods, such as column chromatography and recrystallization.35  

Asymmetrically substituted perylene diimides with different substituents on each 

imide position have also been reported recently. Attempts at one-pot formation of 

asymmetrically substituted perylene diimides by performing the reaction with either 

simultaneous or sequential addition of two different amines are usually unsuccessful 

because of the small differences in reactivity of the amines with PTCDA. Typically, only 

traces of the desired products are observed, with the dominant species being the 

respective symmetrical PDI-based materials.35 There are currently two general methods 

to synthesize PDI derivatives with different substituents on the imide positions via 

multistep organic synthesis.35 As shown in Scheme 1.3, the first synthetic method for 

asymmetrical substituted perylene diimides actually starts from preparing the respective 

symmetrical PDI dyes. Hydrolysis of symmetrical perylene diimides gives the respective 

perylene monoimide monoanhydride compounds in ~ 50% yield. Further imidization 

reaction of the perylene monoimide monoanhydride derivative with a second amine or 

aniline is used to introduce the other substituent in creating the desired asymmetrical 

perylene diimides. It is worth mentioning that it is challenging to synthesize a perylene 

monoanhydride monoimide compound directly from PTCDA with respective primary 

amine because it is hard to ensure that the condensation reaction occurs at only one site. 

Generally, symmetrical perylene diimides are always the dominant products even when 

only one equivalent or less of the primary amine is added to the reaction mixture. The 

synthesis of perylene imide benzimidazole was also reported using this method.41 

Another practical approach for asymmetrical PDI synthesis was first described by Tam-
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Chan and coworkers,42 wherein the target asymmetrical PDI dyes were prepared via the 

perylene monoanhydride salt from the hydrolysis of PTCDA, followed by further 

functionalization reactions such as imidizations, as shown in Scheme 1.3. In this thesis, 

the first synthetic method was chosen in preparing the symmetrical PDI-based dyes for 

further modification because of the higher yield and easier purifications.  

 

 

Scheme 1.3. The two methods for the preparation of asymmetrical PDIs with different 

substituents on each imide position.  

 

The perylene diimides obtained from the above synthetic approaches by 

incorporation of different substituents on each imide position usually exhibit 

indistinguishable absorption and emission properties from the respective symmetrical 
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perylene diimides, particularly in solution at low concentrations when the molecular 

aggregation is limited. This is because the nodes in the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) at the imide positions of 

perylene diimides reduce the electronic coupling between PDI aromatic cores and imide 

substituents to a minimum, as shown in Figure 1.3.3,35 It should be noted that the major 

electronic effect from the imide group will be only inductive in nature. As a result there is 

little change in the electronic properties of perylene diimides with various imide 

substituents (ca. < 0.1 eV change on PDI’s LUMO upon switching from phenyl to 

perfluorophenyl on the imide positions).20 It is beneficial to be able to control the 

solubility as well as the molecular packing in the solid state of the materials by 

incorporating different side-chains at the PDI imide positions without significantly 

changing their optical and electronic properties.3,35 

 

 

Figure 1.3. The frontier orbitals (HOMO and LUMO) of perylene diimides.
2-3
 Reprinted 

with permission from ref 2. Copyright 1994 American Chemical Society. 
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1.2.2 Preparation of PDIs with various substituents on the bay positions 

Another method for synthesizing highly soluble perylene diimides is to introduce 

functional groups in the “bay-region” of PDI aromatic cores. The chemistry of 

introducing substituents in the bay-position of perylene diimides was first developed by 

Seybold and coworkers at BASF in the late 1980s.3,43 According to this first report, four 

phenoxy groups were incorporated onto the tetrachloro-bay-substituted perylene diimide 

via nucleophilc substitution to replace chlorine atoms in the PDI bay positions (as shown 

in Scheme 1.4). Recently, the synthesis of tetrafluoro-bay-substituted perylene diimides 

were synthesized in reasonable yields from the respective tetrachloro-bay-substituted 

starting materials, as reported by Würthner and coworkers.44-45 However, the introduction 

of many other nucleophiles on the PDI’s aromatic scaffolds proved to be difficult and 

successful cases were rare. Although the procedure for four fold chlorination of PTCDA 

had already been known since 1985,46 only recently was it discovered that the 

bromination of PTCDA could afford dibromo-bay-substituted PTCDA, which could be 

further converted into dibromo-substituted perylene diimides.47 However, the crude 

product mixture obtained from the bromination reaction is more complicated than that of 

the chlorination of PTCDA, since one- and three-fold bromination products, as well as 

significant amounts (~ 10 – 20%) of a second dibromo-substituted regioisomer (1, 6-

dibromo-PDI), are formed. Furthermore, each dibromo-bay-substituted PDI regioisomer 

from the latter dibromo-PTCDAs cannot be easily purified from the product mixture and 

is only detectable using high field (> 400 MHz) proton NMR spectroscopy.3,48  

1.2.3 Preparation of PDIs with various substituents on theother positions 



12 

 

Recently, it was also discovered that facile, direct bromination of perylene 

diimides under controlled conditions is possible, although mono-,  di-, and tribrominated 

PDIs are also obtained, with two isomers of the dibrominated PDIs. Harsh reaction 

conditions, such as heating (ca. 60 oC), allows the bromination to go on to exclusively 

affording the bay-dibromo-substituted PDIs as the dominant products with good yields 

and shorter reaction time, but this does not yield a higher ratio of the 1,7 dibromo-

substituted isomer.49 Only very recently, it was reported that some isomerically pure 1,7-

dibromo-sustituted perylene diimides could be obtained after multiple recrystallizations 

with low isolated yields by Würthner and coworkers.3,48  

Replacement of the halogen atoms in aromatic cores via nucleophilic substitution 

on these dibromo-bay-substituted or tetrachloro-bay-substituted perylene diimides is 

relatively straightforward, and generally products can be isolated in relatively high yields. 

Currently, fluoride, cyanide, thiophenol, alcohol, phenol, and amine based nucleophiles 

have been coupled to the perylene diimide cores, leading to various PDI derivatives with 

interesting optical and electronic features (as shown in Scheme 1.4), because of the direct 

electronic coupling between the new substituents and the perylene diimide cores.3,19,36,50 

Moreover, transition-metal catalytic C-C coupling reactions, such as Suzuki coupling,51-52 

Stille coupling,16,53 and Sonogashira coupling,29,54 have been applied in preparing 

functionalized perylene diimides from the bay-dibromo-substituted perylene diimides. 

Isomers of some of these new developed dyes can be separated via column 

chromatography if bulky substituents, such as triphenylsilane acetylene, are 

incorporated.19 Furthermore, from the PDI-based acetylenic derivatives prepared through 

Sonogashira synthesis, corenene diimide derivatives, with extended conjugated scaffold 
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as compared to respective PDI dyes, can be synthesized via simple reactions, as described 

by Müllen and coworkers.54-55 

 

fluoride

 

Scheme 1.4. The preparation of PDIs with various substituents in the bay positions. 
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On the other hand, a synthetic procedure for 2,5,8,11-substituted perylene 

diimides has been unavailable until very recently. Ru-catalyzed C-H bond activation is 

effective for direct arylation56 or alkylation57 of perylene diimides at 2,5,8,11-positions, 

as illustrated in Scheme 1.5. Introduction of alkyl groups at PDI’s 2,5,8,11-positions 

significantly enhances their solid state emission as well as their solubility in organic 

solvents without causing any serious distortion of the PDI core.57 Both electron-rich and 

electron-deficient aryl groups can be incorporated in perylene diimides with satisfactory 

yields. The electronic nature of aryl substituents has a significant impact on their optical 

and electrochemical properties, because the HOMO and LUMO levels are substantially 

influenced by the aryl substituents at PID’s  2,5,8,11-positions.56 

 

Scheme 1.5. The preparation of PDIs with substitution on the 2,5,8,11-positions. 
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More recently, 1,2,5,6,7,8,11,12-octachloroperylene-3,4:9,10-tetracarboxylic 

diimide was obtained as an orange solid by chlorination of perylene-3,4:9,10-

tetracarboxylic diimide in chlorosulfonic acid at 80 oC in high yield. However, due to the 

limited solubility of this material, multiple recrystallizations in N-methylpyrrolidone 

(NMP) and acetic acid, followed by gradient sublimation, are required to ensure 

sufficient purity for OFET applications. 58 

The solubility of PDI derivatives strongly depends on the substituents on the 

imide positions and/or in the bay positions. It was found that perylene diimides with long 

di-swallowtails59 or ortho-substituted phenyl groups60 as the two N-terminal groups 

typically showed good solubility. The usual explanation for this observation is that the 

bulky substituents are forced out of the molecular plane of the chromophore, thereby 

hampering the face-to-face π–π stacking of the PDI molecules, thereby increasing the 

solubility of these molecules.3,59-60 Similarly, substituents on the aromatic bay-region 

could lead to a propeller-like twisting of the two naphthalene half units in PDI-based 

materials. This has also been found to be an efficient way to prevent the face-to-face π–π 

stacking and improve the solubility of PDI materials. In general, the incorporation of 

bulky groups on the bay positions could result in an increase of several orders-of-

magnitude in the solubility of the perylene diimides.61 For example, 1,(6)7-dibromo-

substituted N,N’-dioctyl-perylene 3,4,9,10-tetracarboxylic acid diimide shows reasonable 

solubility in common organic solvents while the non-bay-brominated analogue is 

insoluble in most organic solvents. It is worth noting that halogenated solvents such as 

chloroform, chlorobenzene, and dichloromethane seem to be good organic solvents for 

common PDI derivatives at room temperature. The ability to work with soluble PDI 
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materials allows for them to be used in the fabrication organic electronic devices by 

solution processing. 

1.3 Physical properties of PDIs 

PDI derivatives exhibit a combination of interesting absorption, emission, redox, 

and other physical properties, which has results in significant research on these materials 

for various applications, including OPVs and OFETs.3,24 A short review about some of 

these physical properties and the respective potential applications of perylene diimide 

derivatives is given as follows. Reviews about PDI-based materials can also be found in 

the literature.3,24,35  

1.3.1 Optical properties of PDIs 

Most PDI-based chromophores are red solids with high melting points and 

excellent photo- and thermal-stability. However, PDI-based pigments with orange, 

maroon, bluish black, and even black color are also known due to, in some cases very 

pronounced aggregation effects, leading to the observed variation in solid absorption 

spectra.1-3 In general, perylene diimides are considered as a group of excellent organic 

dyes with large absorption extinction coefficients at visible wavelengths (400 – 600 nm), 

almost unity fluorescence quantum yields, and long singlet-excited-state life-times 

(approximately 4 ns in common organic solvents).3,24,35  

Typical perylene diimide type absorption and emission spectra are shown in 

Figure 1.4, and the optical properties of some PDI dyes in common organic solvents are 

summarized in Table 1.1. Generally, perylene diimides are characterized by a 

vibronically structured band with strong absorption in the visible region between 400 to 

550 nm, and they exhibit a strong yellow-green fluorescence as a mirror image of the 
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absorption in common organic solvents.3 It has been reported that the electronic 

transitions for unsubstituted perylene diimides are predominantly HOMO to LUMO 

transitions.3 The absorbance of the (0,0) vibronic transition at ~ 527 nm and the (0,1) 

vibronic band at ~ 490 nm for free PDI molecules in solution shows the relationship as 

(0,0)/(0,1) > 1.6, though molecular aggregation of PDI dyes causes a significant decrease 

in this value.3,62 Similar phenomena are also observed in the emission spectra for 

perylene diimides in solution. Generally, a change of less than 5 nm in the absorption and 

emission maximum can be observed by changing the N-terminal groups (examples are 

shown in Table 1.1). In contrast, substituents on the aromatic core bay-positions show a 

much more obvious effect on the absorption and emission spectra of perylene diimides as 

expected, due to the stronger electronic coupling between the PDIs’ π-orbital and the 

substituents on the aromatic bay region. For example, two phenoxy substituents on the 

PDIs’ bay positions result in ~ 20 nm and 40 nm bathochromic shifts in the absorption 

and emission maximum (λabsm and λemm), respectively, compared to that of the 

unsubstituted PDI dyes and the color of the fluorescence changes to orange.3,63 More 

pronounced spectral changes occur upon substitution of the aromatic cores with electron 

donors such as pyrrolidino groups, which affords PDI derivatives with a dark-green color 

both in the solid sate and solution, due to the bathochromic shift over 150 nm. Only weak 

emission can be observed in the near infrared (NIR) region. Because such a large spectral 

shift is associated with the amino to PDI internal charge-transfer (ICT) character, some 

solvatochromism is observed for these PDI derivatives, and their fluorescence quantum 

yields (QY = 35%, in toluene) are largely decreased.3,19,64 In contrast, limited spectral 

changes and solvatochromism effect are observed if electron-withdrawing substituents 
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(like F, Cl, Br, and CN) are incorporated into perylene diimides in the bay position 

because inductive effect of such σ-acceptors in general will lower both the LUMO and 

HOMO levels in similar manner and there is no obvious ICT present in these 

systems.3,44,48,50 Usually, there are several nanometer red-shifts of the λabsm and λemm for 

these compounds because the σ-acceptors stabilized the LUMO slightly more than the 

HOMO, consequently narrowing the energy gap, probably due to be more pronounced 

electron coupling between the PDI LUMO to the attached acceptors. Moreover, limited 

change in the FQY was commonly observed for PDIs with electron-withdrawing 

substituents on the bay positions. 
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Figure 1.4. The UV-Vis absorption and emission spectra of a perylene diimide in toluene. 
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Table 1.1. The optical properties of some perylene diimide dyes. 

 

In addition, optical properties of PDI-based dyes are highly dependent upon 

concentration and environmental conditions, such as solvent polarity and temperature.3 

For example, aggregation between the aromatic scaffolds in higher concentration (> 10-4 

mol/L) solutions results in a large bathochromic shift and broader absorption, with a tail 

absorption that extends into the NIR for PDI derivatives.3 As shown in Figure 1.5, the 
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concentration-dependent (concentration range 10-7 to 10-5 mol/L) UV-Vis absorption of 

the perylene diimide dyes in a low-polarity solvent such as methylcyclohexane (MCH) 

revealed significant changes of the absorption spectra upon changing the concentration. 

The strong aggregation caused by π-π interactions led to an almost complete loss of fine 

structure in the absorption spectra.3,65 For better solvents, such as CHCl3, the dependence 

of PDI’s aggregation on concentration was not as pronounced; no obvious PDI-

aggregation is observed, as indicated by absorption spectroscopy, with concentrations up 

to 10-5 mol/L for most cases.3  

 

 

Figure 1.5. The concentration-dependent UV-Vis absorption of the perylene diimide in 

MCH.
3,65
 Reproduced by permission of the Royal Society of Chemistry. 

 

Similar observations were found for PDI’s emission spectra as a function of 

increasing concentration. The behavior of a perylene diimide in toluene is shown in 

Figure 1.6. More aggregate-type emission and decreased fluorescence quantum yields 



21 

 

were observed with increasing dye concentration in toluene (concentration range 10-6 to 

10-2 mol/L).3,63 The aggregation of PDI-based dyes have been widely studied and used for 

applications such as supramolecular organization.3 
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Figure 1.6. The concentration-dependent emission of the perylene diimide in toluene.
3,63
 

Reproduced by permission of the Royal Society of Chemistry. 

 

As mentioned earlier, functionalized perylene diimides are often used for 

fundamental photo-induced charge-transfer studies because of the easily indentified PDI 

radical anion(s) absorption spectra in the Vis-NIR region.66 The absorption from a 

perylene diimide and its respective chemically generated anions are shown in Figure 1.7. 

The value of the absorption coefficient for the PDI radical anion at 713 nm is ca. 1.0 × 

105 M-1cm-1
, while the dianion shows an absorption coefficient of ca. 1.0 × 10

5 M-1cm-1 

peaked at 546 nm. Substituents at the imide positions show limited effect on the anion 

absorption spectra while substituents at the bay region cause considerable change in the 
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shape and peak positions. These effects are similar to the substituents effects on the 

neutral PDI compounds.29,64 The distinct features of these absorptions make it easy to 

determine the rate of each electron-transfer reaction in functionalized PDIs. Photo-

induced intermolecular charge-transfer between PDI-based acceptors and other electron 

donors, such as polythiophenes, or intramolecular charge transferred within those PDI-

based donor-acceptor type materials have been extensively studied using transient 

absorption spectroscopy.3,6,19,27 This research provides not only insight into photo-

induced charge-transfer process of PDI-based materials, but also valuable information for 

other technological applications, such as OPVs and optical limiting, where the photo-

physical processes following photo-excitation play an important role. 

 

Figure 1.7. PDI anion(s) absorption in ethanol (1 × l0
-4
 mol/L tetramethylammonium 

hydroxide) obtained by controlled reduction with H2 in the presence of Pt. The 

concentration for neutral PDI was 5.4 pM.
66
 Reprinted with permission from ref 66. 

Copyright 1994 American Chemical Society. 
 

 

1.3.2 Redox properties of PDIs 

The electrochemical properties of perylene diimide derivatives have been widely 

investigated by different research groups, and some electrochemical data (referenced to 

Fe(Cp)2
+/0) for PDI-based materials is summarized in Table 1.2.3,50,64,67-68 
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Table 1.2. Redox properties of some PDI  dyes.
3,50,64,67-68

  

 

Perylene diimides without modification of their core bay-region are good electron 

acceptors, and they are quite easily reduced and rather difficult oxidized in solution. For 

most unsubstituted perylene diimides, two reversible reduction waves and one reversible 

oxidation wave (ca. -1.0 V and -1.2 V vs. Fe(Cp)2
+/0, respectively) can be observed if 
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appropriate organic solvents are chosen.3 Generally, perylene diimides exhibit a first 

reduction potential comparable to that of C60 and its derivatives, which makes them 

attractive acceptors for replacing fullerene derivatives in photovoltaic applications with 

their relatively lower cost in comparison to C60-based acceptors, as well as better light-

harvesting and ease of chemical modification.3,68 As was the case for their optical 

behavior, relatively small effects on the redox properties of perylene diimides in solution 

(in general less than 100 mV on the reduction and oxidation half-wave potential) are 

observed from variation of the substituents at the imide positions.3,20 However, the 

substituents in the core bay-area have pronounced effects on the redox potentials.3,8,14,52 

For example, perylene diimides with cyano or fluoro substituents in the bay positions are 

over 0.3 V more easily reduced and have a much higher oxidation potential than 

unmodified PDI-based compounds.3,50 This change in the redox properties is primarily 

due to the inductive effect from the electron withdrawing groups, which could stabilize 

the perylene diimides by lowering the energy of both the HOMOs and LUMOs to a 

similar extent. However, with electron donating pyrrolidino groups at the bay-positions, a 

quasi-reversible oxidation wave can be observed, and the reduction potential of the 

material becomes ~ 0.3 V more negative, due to the electron donating effect of the amino 

moities.3,64,67 PDI derivatives with conjugated substituents in the bay positions are 

generally somewhat more readily reduced compared to unsubstituted perylene diimides 

regardless of whether π-donor or π-acceptor groups are attached.29 This is probably due to 

the extension of conjugation as conjugated substituents are incorporated in their core bay-

positions.29 
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It appears that since the substituents at imide position show only limited effect on 

optical and redox properties of perylene diimides, various functional groups have been 

attached to the imide positions in order to tune the solubility and molecular packing in the 

solid state, while their PDI-based remains largely unaffected. On the other hand, efforts 

on preparing perylene diimides with various optical and electrical characteristics have 

been carried out by introducing functional groups at the bay-positions of perylene 

diimides.3,50,64,67,69-70 Currently, both approaches have been found to be effective in 

improving the device performance of PDI-based OFETs and OPVs.16,25,53,71 

1.3.3 Molecular packing of PDIs in the solid state. 

The molecular packing behavior of perylene diimides in the solid state has been 

extensively studied since the early 1980’s for the purpose of controlling the pigment 

colors for industrial applications.1-3 Perylene diimide crystal structures often reveal flat π-

systems with parallel orientation of the chromophores at an inter-plane distance of ~3.4 Å 

(as illustrated in Figure 1.8), which is quite similar to the layer-to-layer distance in 

graphite.3,18,72-73 Substituents at the imide position can significantly affect the stacking 

distance (the longitudinal and transverse offset between the neighboring perylene 

diimides in the solid states), which influences the intermolecular interactions of the π-

systems in the crystal lattice, results in perylene diimide powders of various colors, from 

red to dark.3,74 On the other hand, substituents at the bay-positions could cause distortion 

of the flat π–systems due to the steric strain; this is considered an effective way to prevent 

significant π–π stacking interactions for perylene diimides both in solution or the solid 

states.  

 



26 

 

  

Figure 1.8. The bond length (left,  in Å) and π-π stacking of Pigment Red 179 (right) in 
crystal.

3
 Reproduced by permission of the Royal Society of Chemistry. 

   

Another area of increasing interest focuses on the molecular packing behavior of 

PDI derivatives upon supramolecular organization in order to form functional molecular 

architectures.3,75-76 New materials with interesting optical and electrical properties have 

been demonstrated by leading scientists in the field, including Müllen, Würthner, and 

Meijer via control of the spatial organization of PDI dyes using molecular self-assembly 

techniques.2-3,75,77-80 Examples of metal-coordination-directed and hydrogen-bonding-

directed self-assembly in forming PDI-based nano- and meso-scopic supramolecular 

structures are shown in Figure 1.9.3,78,81-82 Currently, different kinds of appealing nano-

structures or larger objects have become accessible by functionalized perylene diimides 

using self-assembly techniques. The simplicity of such an approach for constructing 

various size architectures is attractive with less need for time-consuming, multi-step 

organic synthesis. However, since this thesis focuses on the applications of functional 

perylene diimides on organic electronics and optical power limiting, an in depth 

discussion of the supramolecular organization of PDI-based dyes will not be given here. 
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Figure 1.9. Metal-coordination-directed (left) and hydrogen-boding-directed (right) self-

assembly in forming perylene diimide based supramolecules.
3
 

 

1.3.4 Photo-induced electron transfer in perylene diimides 

PDI-based materials can engage in a variety of excited-state electron-transfer 

reactions, primarily as acceptors, as illustrated in Figure 1.10. Functionalized donor – 

acceptor  (D – A) type perylene diimide derivatives have attracted much research effort 

on their PICT processes, since their easily indentified radical-ion absorption spectra can 

be utilized to monitor the charge-transfer processes following photo-excitation.83 



28 

 

In general for D–A type molecules, the thermodynamics and kinetics of the 

electron-transfer reactions have been extensively studied and many of these features can 

be described by the Rehm-Weller equation,84 the change in Gibbs free energy during the 

charge separation, and by Marcus´ theory85-88 for the electron transfer rate.  

 

 

Figure 1.10. Photo-induced charge transfer between donor and acceptor (PDI) in forming 

D
+
–PDI

-
 : (a) electron transfer from excited donor to PDI; (b) electron transfer from donor 

to excited PDI.  The blue balls represent electrons.  

 

The Rehm-Weller equation (Eq 1.1) provides an estimated driving force (∆GCT) 

for the photo-induced charge-transfer process in molecular D–A systems, by summing 

terms describing the thermal-energy of an excited-state redox reaction and the Coulomb 

term accounting for finite distance between positive and negative charges. Ecoul (a 

positive value) is the Coulombic stabilization energy that is often neglected based on the 

assumption of the formation of solvent-separated free ions. E(0,0) is the energy of the 

relaxed first singlet excited state. E1/2
(D/D+•) is electrochemical half-wave potential 

corresponding to the oxidation process in the electron donor. E1/2
(A-•/A) is electrochemical 

half-wave potential corresponding to the reduction process in the electron acceptor. 

[E1/2
(D/D+•) – E

1/2
(A-•/A)] is related to the energy gap between the HOMO of the donor and 
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the LUMO of the acceptor. For any given D–A conjugate, electron transfer over longer 

distances is energetically less favored due to the decrease of Ecoul and the free energy for 

charge separation becomes more exergonic when the polarity (εs) of the solvent increases 

since Ecoul is more positive. 84 

 

∆GCT = e[E
1/2

(D/D+•) – E
1/2

(A-•/A)]– E(0,0) – Ecoul          Eq 1.1  
 

Marcus’ theory describes the kinetics of nonadiabatic electron-transfer reactions 

as shown in Eq 1.2 and Eq 1.3 and Figure 1.11, where kCT is the rate of electron-transfer 

in terms of the free-energy barrier ∆GCT for electron transfer, the reorganization energy λ, 

and the electronic coupling VDA between donor and acceptor in the excited state.
85-88 

kCS ∝ VDA
2 exp−[(∆GCT

 + λ )2 / (4 λkbT) ]               Eq 1.2 

                   ∆E = (∆GCT + λ)
2 / 4 λ                                   Eq 1.3 

 

Figure 1.11. Relationship between free energy (∆∆∆∆GCT) and unclear motion for diabatic 

exergonic electron transfer (Figure adapted from Dr. Jing Wang in the Marder group). 
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Marcus’ theory, in particular Equation 1.2, indicates that when the driving force 

for electron transfer increases, the activation energy barrier is lowered and, hence, the 

electron transfer rate rises until the reorganization energy (λ), which is the energy 

required for all structural adjustments needed for A and D to assume the configuration 

required for electron transfer, equals the change in free energy for charge separation 

(where, λ = –∆GCT). At this point the maximum electron-transfer rate is obtained. 

However, beyond this point, a further increase in the free energy change results in an 

increase in the activation energy and, hence, the electron-transfer reaction will become 

slower. The prediction implies that there are three regions for electron transfer: the 

‘normal’ region, where the change in free energy for electron transfer is less than the 

reorganization energy (–∆GCT < λ), the optimal region (–∆GCT = λ), and the ‘inverted’ 

region, where the change in free energy is larger (–∆GCT > λ). The distance and 

orientation of the donor and acceptor are of major importance for electron-transfer rate. 

The most important parameter to the kCS is the electronic coupling VDA, which decreases 

exponentially with increasing center to center distance for the D–A system in the 

electron-transfer reaction.85-88 

1.3.4.1 Photo-induced electron transfer in porphyrin-PDI systems. 

The porphyrin-PDI systems are the most well studied photo-induced charge-

transfer systems, having been extensively studied by Wasielewski and Lindsey in the 

1990s.27-28,67,79,89 Figure 1.12 shows the first donor-acceptor-donor (D – A – D) 

compound 1 containing a PDI and two porphyrin moieties reported by Wasielewski and 

coworkers in 1992.27  Photo-excitation of 1 at 585 nm (pumping porphyrin) results in the 
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formation of a D+–A––D charge-separated state with a rate of kCS,1 = 1.1 × 10
11

 s-1, which 

subsequently undergoes a charge recombination with a rate of kCR,1 = 9.1 × 10
9
 s-1 

according to the growth and decay of the PDI radical-anion absorption peaked at ca. 713 

nm observed via transient absorption spectroscopy. It is worth noting that further 

excitation of this molecule with much higher intensity irradiation at 580 nm could excite 

both porphyrin units in the D–A–D triad and result in the formation of a D+–A2––D+
 

doubly charge-separated state, with the appearance of PDI-based dianion absorption 

peaks at ca. 546 nm in transient absorption spectra. Much slower electron-transfer (kCS,2 

= 5.6 × 109 s-1 ) as well as charge-recombination rate (kCR,2 = 2.2 × 10
8 s-1 ) were found 

during the forming of D+–A2––D+ as compared to the formation of the D+–A––D species 

through photo-excitation of porphyrin.  

 

 

Figure 1.12. The chemical structure of porphyrins-perylene diimide-porphyrins.
27
 

 

Tetrakis(perylene diimide) substituted zinc tetraphenylporphyrin 2 (as shown in 

Figure 1.13) exhibits interesting optical properties with respect to its photo-induced 

charge-transfer processes, as these molecules can self-assemble into nanoparticles with 

an average of 12 close packed  molecules in each nanoparticle ((2)12).
79 The photo-

induced charge-transfer processes in these (2)12 occur in toluene with near unity 
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efficiency and a rate of kCS = 3.1 × 1011 s-1, while the separated charges recombine with 

kCR = 1.4 × 108 s-1. As compared with the model compound 3, faster (4 times) charge-

transfer as well as slower (1.4 times) charge-recombination were obtained in the 

nanoparticle (2)12. The transient absorption spectra of the reduced PDI species in (2)12 are 

substantially broadened and decreased in peak intensity as compared with those in the 

spectrum of 3 in the region of PDI radical anion absorption. It was suggested that this 

might be due to delocalization of the negative charge from PDI– onto the other PDI units 

in (2)12 that were within the van der Waals distances.79 It is worth noting that the 

formation of (PDI)n
–
 in stabilizing the charge-separated state could potentially be 

explored for other applications such as OPVs and optical power limiting.  

 

Figure.1.13. The chemical structures of tetrakis(perylene diimide) substituted zinc 

tetraphenylporphyrin (compound 2) and the model compound (3).
79
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1.3.4.2 Photo-induced electron transfer in other donor-PDI systems 

Photo-induced processes of donor-PDI systems other than porphyrin-PDI 

conjugates have also been well studied. As shown in Figure 1.14, it was found that photo-

excitation of a zinc phthalocyanine-PDI (4) dyad31 afforded the triplet excited state 

without fluorescence emission, whereas the addition of Mg2+ to the photo-excited 4 

resulted in formation of a very long-lived (up to 240 µs) charge-separated state (ZnPc+–

PDI–/Mg2+) in which the PDI radical anion is believed to form a complex with Mg2+ 

(ZnPc+–PDI–/Mg2+) in solution. The absorption band due to the ZnPc+–PDI–

/Mg2+complex (λmax = ca. 500 nm and 550 nm) is significantly shifted from that of PDI 

radical anion (λmax =  ca. 720 nm) due to the complex formation with Mg2+.31 The reason 

for forming ZnPc+–PDI–/Mg2+ is that this charge-transfer complex is lower in energy than 

the triplet state (ZnPc–3PDI*). The quantum yield of the charge-separated state (ZnPc+–

PDI–/Mg2+) was determined as 72%.31 However, photo-excitation of the close coupled 

phthalocyanine–PDI–phthalocyanine triad (5) through an ethylene spacer on the bay 

region of perylene diimide produces a charge-separated state with life-time at nanosecond 

timescale. There is no evidence for forming PDI triplet state (triplet-triplet (T-T) 

absorption spectrum of PDIs have λmax at ca. 500 nm
70) according to the transient 

absorption spectra in this case. Another type of donor-PDI compound (6) with strong 

electronic coupling between the triphenyl amine-based donor and the PDI moiety also 

indicates fast charge transfer (within 10 ps) as well as nanosecond lived charge-separated 

states following photo-excitation.29 Efficient photo-induced charge transfer also occurs in 

PDI-(Mg)oxochlorin (PDI-MgO, 7) with the yield of oxochlorin-to-PDI electron transfer 

in high overall yield (> 90%) in toluene or benzonitrile. The charge-separated state for 7 
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has a lifetime of > 1 ns in both toluene and benzonitrile. The pathway for generating PDI- 

-MgO+ from the excited PDI moiety involves both hole transfer and energy transfer to the 

oxochlorin, followed by electron transfer from the resulting MgO* to PDI, because 

energy of PDI- -MgO+ is well below that of MgO*. The yield of MgO-to-perylene 

electron-transfer rises to 70% in toluene and to 85% in more polar benzonitrile.90-91 

 

Figure 1.14. The chemical structures of several non-porphyrin donor-PDI derivatives for 
forming photo-induced charge-seperated states. 

 

In general, the photo-excitation of these donor-PDI systems generates relatively 

long-lived charge-separated states, with PDI radical anions and/or dianions showing 

strong absorption band peaks at ~720 nm and/or ~550 nm, respectively. Because perylene 

diimides without chemical modification at the aromatic bay positions exhibit high linear 
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transparency in the NIR range, these photo-generated ions could potentially be applied to 

optical limiting applications in the PDIs’ radical anion absorption spectroscopic range if 

appropriate molecular donors are chosen in building up the donor-PDI conjugates.92-94  

1.4 Application of PDI dyes in organic electronics (OFETs and OPVs) 

PDI-based materials, with small optical band-gaps (~2.2 eV),3,35 low-lying 

LUMO levels (ca. -3.9 eV),3,8,14 high electron mobilities (> 1 cm2V-1s-1),7-8,16 good 

molecular ordering in thin films,3,7,72-73 high molar absorption coefficients (~ 1 × 105 M-

1cm-1),3,35 and facile chemical functionalization at both imide and bay positions,3,35 show 

potential as promising electron-transport materials and/or organic acceptors in organic 

electronics, especially for OFET and OPV applications.3,24,95 

 

 

Figure 1.15. Schematic representations of two widely used OFET geometries: Top-contact 

OFET (left); bottom-contact OFET (right). 

 

OFETs are a type of thin-film transistors (TFTs) with organic semiconductors as 

the active layers, analogous to conventional silicon-based metal-oxide-semiconductor 

thin-film transistors (MOSTFTs).96 OFETs rely on an electric field to control the 
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conductivity of the charge-carrier channel. The most commonly used transistor device 

geometry for an OFET device (as shown in Figure 1.15) is the bottom gate with top-

contact drain and source electrodes, similar to the well-studied silicon-based MOSTFTs. 

These generally show higher performance over other device geometries because of their 

smaller contact resistance compared with bottom-contact MOSTFTs, which can have 

lower fabrication costs.4 It is believed that OFETs can offer a suitable low-cost building-

block for flexible and large-area electronic applications, such as organic-based displays, 

RF-ID tags, smart cards, and sensors in the near fututre.4,96-99 

 

 

 

Figure 1.16, Typical I-V curves of an OFET device: (a) output curve at different constant 

VG and (b) transfer curve at a constant VSD (Figure adapted from Dr. Xuan Zhang of the 

Marder’s group).
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In the device “off” state, without applied gate bias, there is only limited current 

flow between the source and drain electrodes in an OFET device when it is operated. In 

the “on” state, as voltage is applied to the gate electrode, electron or holes can be injected 

from source/drain electrodes and accumulate at the semiconductor-dielectric interface 

forming the active channel, which results in increasing source-drain current.4 The most 

critical characteristics of organic semiconductors in OFETs are the charge-carrier 

mobility (hole, electron, or both in so-called ambipolar devices) and the Ion/Ioff ratio. The 

current between the source and drain electrodes (ISD) under a given VG can be expressed 

in terms gate voltage (VG), current (ISD) and voltage (VSD) between the source and drain 

electrodes, threshold gate voltage (VT, voltage at which the current starts to rise), and 

capacitance density (capacitance per unit area) of the gate dielectric (C) as Equation 1.4. 

Here, W and L are the width and length of the devices. Equation 1.4 can also be 

simplified in the linear regime ( TGSD VVV −<< ) and saturated regime ( TGSD VVV −> ), 

as described in Equations 1.5 and 1.6, respectively. The Ion/Ioff is the ratio of the 

maximum IDS (“on” current) value to the minimum IDS (“off” current) value, obtained 

from transfer characteristics plotted on a logarithmic scale ( as Figure 1.16). The ratio 

characterizes the ability of the device to switch a signal from “on” to “off”.96 The Ion/Ioff 
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ratio can also be a useful indicator of purity, because high extrinsic doping levels in the 

semiconductor normally lead to high off current. A typical I-V response for an OFET 

device is shown in Figure 1.16a. Figure 1.16b shows the transfer characteristic in the 

saturated regime of a transistor, i.e., ISD vs. VG at a constant VSD. It is usually plotted as a 

logarithmic plot of ISD vs. VG and as a linear plot of the square root of ISD. Important 

parameters for an OFET device (Ion/Ioff, VT and µ) can be extracted from the transfer 

curve. Ion/Ioff can be obtained from the logarithmic plot according to Eq. 1.6; VT can be 

obtained by extrapolating the linear fit to zero; the field-effect mobility can be extracted 

from the slope of the linear plot. VT can be obtained by extrapolating the linear fit to zero. 

It is also worth noting that low values (ideally close to zero) of VT are highly desired for 

low power consumption in real device applications.4   

Organic semiconductors are, in principle, expected to show ambipolar transport 

characteristics with both hole and electron conductivities when employed as the active 

layer in an OFET. In practice, the majority OFETs reported to date show p-type 

characters. OFETs based on organic materials with low electron affinity (electron affinity 

defined as the energy change when an electron is added to the neutral species to form a 

negative ion), such as perylene diimides and C60 derivatives, show electron transport 

properties. OFETs using electron donors as the active materials, like polythiophenes, 

typically exhibit hole transport character. Only a limited number of materials can perform 

both processes simultaneously in OFETs. One of the reasons is the fact that in most 

organic semiconductors the HOMO-LUMO gap is sufficiently large that, at best, only 

one of the frontier orbitals (either HOMO or LUMO) is accessible for charge injection 

from a given electrode material, since charge preference is dependent on the injection 
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barrier from the organic materials to metal electrode, as shown in Figure 1.17. Another 

factor that promotes unbalanced transport is the selectivity of the trapping of injected 

carriers in the devices. In many cases, negative charge carriers (electrons) are more 

readily trapped than their positive counterpart (holes) in OFETs by the by hydroxyl 

groups at the semiconductor–dielectric (like SiO2) interface or other trapping sites.
4,101 As 

a result, most organic transistors show only hole transport characteristics and recent 

achievements in hole transport materials have fulfilled many of the requirements (µ > 0.1 

cm2V-1s-1 with Ion/Ioff  > 10
5) for diverse applications.4,95,97,102 On the other hand, the 

development of electron transport materials needed for complementary circuits continues 

to present challenges, such as low electron mobilities, instability in air, poor solubility for 

efficient film-casting and large energy barriers for electron injection.4,95,97,102 Research 

efforts on exploring new high-performance electron transport materials, as well as 

ambipolar materials, are essential for further development of organic electronics. 

 

Figure 1.17. The energy diagram of various charge carrier transport according to a given 

electrode material. The charge preference is dependent on the injection barrier from the 

organic materials to the respective metal electrode, and ambipolar materials exhibit a 

relatively small injection barrier from the metal electrode for both hole and electron. 

 

Photovoltaic science and technology is related to the processes of converting solar 

energy directly into electricity. Solar energy is expected to be one of the clean alternative 
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energy sources to fossil fuels in the near future.103 Organic photovoltaic systems, using 

organic semiconductors as the active materials (light-harvesting and charge-transport 

materials), are potentially a cost-effective and lightweight solar energy conversion 

platform as compared to their inorganic conterparts.32-34,104-105 In inorganic 

semiconducting materials, such as silicon, excitons (the coulomb-correlated electron-hole 

pairs with no net charge) are generally bound weakly (< 0.01 eV), so that ambient 

thermal energy (kT = ca. 0.025 eV) is sufficient to achieve the charge separation. 

However, the photo-generated excitons in organic semiconductors are typically strongly 

coulombically bound, with energies of hundreds of meV, i.e., much greater than thermal 

energy at ambient temperature, meaning efficient charge separation cannot be achieved in 

a single organic material. For the organic solar cells using the donor/acceptor 

heterojunction for charge dissociation, it is believed that a minimum energy difference 

of > 0.3 eV is required for the LUMO or the HOMO offset between the donor and 

acceptor materials to overcome such an “exciton-binding” energy for an efficient 

photovoltaic process in organic D/A interface.32-34,105-106 Organic solar cells may not 

compete with silicon-based solar cells in device performance, due to their limitations in 

light harvesting ability, charge carrier mobility, as well as the thermal- and photo-stability 

over silicon. However, large-area organic solar cells may be manufactured more cheaply 

with low energy cost using possible wet-processing methods, such as ink-jet printing or 

blade-coating. As shown in Figure 1.18, the process of converting solar energy into 

electricity using OPVs can be schematically described by the following several steps: 

absorption of a photon by the light-harvesting material, which leads to the formation of 

an exciton (the bound electron/hole pair); exciton diffusion from the bulk materials to the 



41 

 

D/A interface for charge dissociation; and free charge transport within the active layer to 

the respective electrodes for charge-carrier collection.32,105  Figure 1.19 shows the free 

charge formation in a D/A system via a (D+···A-) CT state. The initially formed bound CT 

state (D+···A-)hot can either undergo thermalisation (ktherm) to lower energy CT states or 

dissociation  (kdiss) into the free charge carriers D
+ + A- (charge-separated (CS) state), 

which can then contribute to the device current and make such photovoltaic processes 

much more complicated, as shown in Figure 1.18. Separated charge-carriers can 

recombine either by geminate (GR) or bimolecular (BR) recombination, and BR 

recombination is likely to proceed via reformation of interfacial CS states.30,107 The 

energy difference between the CS state and the first singlet state (S1), ∆GCS, as shown in 

Figure 1.19, is considered the driving force for charge-separation, which is essentially the 

free energy loss in the photovoltaic process. More detailed discussion about dependence 

of the yield of charge photo-generation on ∆GCS will be given in Chapter 4. 

 

Figure 1.18. Schematic of frontier molecular orbitals (HOMO and LUMO) at a D/A 

interface, showing steps in the photovoltaic process. Ionization potential (IP) and electron 

affinity (EA) are depicted for the donor and acceptor, respectively.
105
 Reproduced by 

permission of the Royal Society of Chemistry. 
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Figure 1.19. Energy state diagram for free charge formation in a donor/acceptor (D/A) 

system via a bound CT state following photo-excitation (Figure adapted from Dr Shoaee in 

Imperial College (London)). 

 

 A typical organic solar cell consists of a thin film(s) of organic semiconductor(s) 

sandwiched between two electrodes. Commonly used architectures of OPV devices are 

shown in Figure 1.20. There are two major architectures for single-cell-based OPVs: 

bilayer solar cells (in which donor and acceptor materials are sequentially stacked on top 

of each other as active layer) and bulk hetero-junction solar cells (BHJs, in which a blend 

of a donor and an acceptor material is the active layer). Bilayer solar cells are more 

closely analogous to conventional silicon-based solar cells. These devices benefit from 

the separated charge carriers transporting layers that ensure transport pathway to the 

correct electrode for each charge carrier type and give the separated charge carriers 

limited chance to recombine with their counterparts. One of the drawbacks for this device 

is that the limited exciton diffusion length (the lifetime of excitons is only on the order of 

ps – ns, resulting in maximum diffusion distances around 10 nm105,108) in organic 

semiconductors normally limits the thickness and light-harvesting ability of respective 
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devices for highly efficient solar cells.104,109 In contrast, one of the merits for BHJ solar 

cells is the large D/A interface area if the molecular mixing occurs on a scale length that 

allows most generated excitons to reach the D/A interface for charge dissociation before 

decay, for which the thickness and light-harvesting issues are less serious.33-34,110 

However, such blends exhibit significant structural disorder, relying on random phase 

separation of the components. In most cases, these molecular domains are too large 

(cause excitonic loss) or too small (leading to facile charge recombination) in size, which 

lowers the overall OPV device performance.105 Currently, more research effort on OPVs 

are directed towards the BHJ-type solar cells, since they potentially could provide cost-

effective devices through a wet-processing method. It has been proposed by Fréchet34 

that the ideal bulk-heterojunction solar cell should have an continuous composite of 

donor and acceptor materials with a mean domain size of the order of the exciton 

diffusion length (typically < ca. 10 nm105). Hence, the photo-generated excitons could 

diffuse efficiently to the D/A interface before decay, for efficient charge separation.33-34 

However, a number of variables, including choice of donor and acceptor, the donor-

acceptor weight ratio, and the solvent and post-treatment, can dramatically affect the 

morphology, making device optimization challenging. In addition, based on these two 

basic device structures, new solar cell device architectures, such as tandem solar cells111-

112 and inverted organic solar cells113-114 have also been investigated, which benefit the 

overall organic solar cell research either on more efficient energy conversion or facile 

device fabrication process. 
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Figure 1.20. Schematic illustration of an OPV device: bilayer solar cell (top), BHJ solar cell 

(middle), and ordered heterojunction cells (bottom) (This figure was adapted from Dr. 

Xuan Zhang in the Marder group). 

 

Currently, power conversion efficiencies (PCEs) of organic solar cells have so far 

been limited to approximately 8% with the Solarmer polymer blends in small area device 

(< 0.1 cm2),115-116 while PCEs have been demonstrated to exceed 20% for Si-based solar 

cells, 15% for thin film inorganic cells, and 11% for dye-sensitized solar cells.105 

However, further research attention on OPVs could potentially leads to increased PCEs 

comparable to other photovoltaic technologies. In the long term, OPV technologies might 

make a significant contribution to the photovoltaic conversion of solar energy, as long as 

there is a major investment in research into new, more efficient (> 10%), and long-lasting 

organic materials, as well as more reliable and cost effective large-area device fabrication 

methods.  

While from an economic perspective, the cost/watt is a critical metric for 

evaluating competing energy generating technologies, from a scientific perspective, the 

device power conversion efficiency, is the most important characteristic when evaluating 
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an organic solar cell.  The PCE  is defined according to Eq 1.7 and Eq 1.8, where VOC is 

the open circuit voltage (the voltage when the current equals zero), JSC is the short circuit 

current density (the current density under zero bias), Pout is the output power for the solar 

cell under irradiation, Pin is the incident light power density on the solar cells, and FF is 

the fill factor defined as the ratio of power density (Jmax × Vmax) at maximum output 

power divided by (VOC × JSC.). FF is directly affected by the values of the cells series and 

shunt resistances of the cells, as shown in Figure 1.21b. Increasing the shunt resistance 

(RP) and decreasing the series resistance (RS) could lead to larger FF and push the device 

Pout  towards its theoretical maximum. Jmax and Vmax are the current density and voltage at 

the maximum output power point (that is, the point at which the product of Jmax and Vmax 

reaches its maximum value), respectively. A typical current-voltage curve for an OPV 

cell is shown in Figure 1.21.34 In the dark, a typical diode-type J-V response with limited 

current flows in the reverse bias direction (V< 0) can be recorded. As the cell is 

illuminated, the J-V curve is ideally shifted down at all potentials because of the 

additional photocurrent, and power is generated in the devices. 
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Figure 1.21. (a) Typical J-V curves in an OPV device under dark (dotted line) and under 

illumination (solid line).
34
 (b) Equivalent circuit used to model solar cells, where Rs is the 

series resistances, RP is the shunt resistance.
32
 

 

Since the active layer(s) in an organic solar cell requires two components, an 

electron acceptor and an electron donor, efforts on developing both promising hole-

transport and electron-transport materials with good light-harvesting ability have been 

carried on over the years. For high performance BHJ type solar cells, semiconducting 

materials are required to have high charge-carrier mobility in the solid state, favorable 

energy-level matching for charge separation at the D/A interface, relatively low energy 

bandgap and high molar absorption coefficients for more efficient solar-light-harvesting, 

and reasonable solubility for wet processing.33-34 Exploration of hole-transport materials 

(donors) for OPV purposes has been more successful than research on electron-transport 

materials (acceptors). Important representatives of donor-type semiconducting polymers 

are (i) derivatives of phenylene vinylene backbones like poly[2-methoxy-5-(3,7-

dimethyloctyloxy)]-1,4-phenylenevinylene) (MDMOPPV), (ii) derivatives of 
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polythiophenes such as poly(3-hexylthiophene) (P3HT), and (iii) low bandgap conjugated 

polymers with alternating electron donor and acceptor moieties (D–A type polymer) such 

as poly(2,7-carbazole-alt-benzothiadiazole). Current state-of-the-art devices of this nature 

have active layers of blended conjugated polymers (typically P3HT) and fullerene 

derivatives, and they reach solar-light-to-electricity conversion efficiencies of ca. 5%117-

118 and, more recently, 6.7% in a tandem cell.112 D – A type polymer–fullerene-based 

solar cells, with the advantage of better light harvesting, show PCEs approaching 8% 

using the donor materials from Solarmer Energy Inc. in a blend with [6,6]-phenyl-

C71butyric acid methyl ester (PC71BM).115-116 On the other hand, progress on the 

development of acceptor materials for solar cell application is relatively limited. 

Fullerenes, including their soluble derivatives, are still the only group of materials that 

show promising performance benchmarks (PCE > 5%), in spite of their relatively high 

cost and limited light-harvesting ability across the solar spectrum. Thus, while most 

current solar cells devices without fullerene derivatives have relatively poor performance, 

developing other electron-transport materials as alternative organic acceptors in order to 

compete with fullerene derivatives for high performance solar cells as well as lower cost 

and easy processing is highly desirable and could be beneficial in approaching the 10% 

PCE goal for organic solar cells.  

1.4.1 PDIs as electron-transport materials in OFETs  

With the low lying LUMOs and the possibility for highly ordered π-packing 

ability in the solid state, perylene diimides have been utilized as electron-transport 

materials for decades. There are various methods for testing the electron mobilities of 

PDI derivatives including time-of-flight (TOF),119-121 space-charge limited-current 
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(SCLC),122 and n-channel OFETs measurements.4 In TOF and SCLC experiment 

geometries, charge transport is typically measured perpendicular to the substrate. In 

OFET devices, charge carrier mobilities parallel to the substrate are measured. Charge-

carrier mobilities of the same material obtained from devices with different geometry and 

fabricating method could be significantly different due to the anisotropic nature of 

molecular packing and charge-carrier hopping in thin films from organic materials. 

PTCDA-based vacuum-deposited n-channel field-effect transistors were first 

fabricated by Ostrick and co-workers. The measured electron mobilities in bottom-

contact devices were found to be 10-4 cm2V-1s-1 when the devices were operated in 

vacuum.123 As shown in Figure 22, PDI-based transistors with electron mobilities of 10-5 

cm2V-1s-1 were first demonstrated by Horowitz and co-workers in 1996 using vacuum-

deposited 8 as the active material.124 Alkyl substituted perylene diimides (9 and 10 in 

Figure 1.22)125-126 were also investigated as electron-transport materials in OFETs. 

Malenfant and co-workers reported that bottom-contact devices using films from 

vacuum-deposited 9 (substrate temperature was kept at 50 oC) showed electron mobilities 

of 0.6 cm2V-1s-1 with Ion/Ioff  > 10
5 in vacuum. However, these devices need to be operated 

at very high voltage, and their threshold voltage was found to be around 75 V. An 

electron mobility of 2.1 cm2V-1s-1 with Ion/Ioff  = 4.2 × 10
5 was recently reported for 

devices based on 10 by Tatemichi and co-workers. It was claimed that the high electron 

mobilities could be ascribed to improvement of the crystallinity of 10 in films after 

thermal annealing at 140 oC.125 Recently, Oh and co-workers utilized the fluroalkyl-

substituted PDI 11 in vacuum-deposited OFETs. The electron mobilities of these devices 

were as high as 0.72 cm2V-1s-1 in vacuum and 0.51 cm2V-1s-1 in air by using 
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octadecyltrichlorosilane (OTS) treated SiO2 as the dielectric layer. There was no obvious 

change in Ion/Ioff (~10
6) for transistors measured in vacuum and air.17  

 

Figure 1.22. The chemical structures of the some PDI derivatives for OFET applications. 

 

N,N’-Perflurophenyl-substituted perylene diimide (14) and related compounds 

(12 and 13) developed by Chen and co-workers were demonstrated to be good, air-stable 

materials in n-channel OFETs. The electron mobilities of these devices based on 12, 13, 

and 14 were found to be 0.011, 0.026 and 0.042 cm2V-1s-1, respectively, for OFETs 

measured in ambient atmosphere. These values were reduced by only 5 to 25% as 

compared to the electron mobilities measured in vacuum. Since there are only limited 

difference in the LUMOs of these fluorinated-PDI-based materials as compared to their 

nonfluorinated counterparts, the improved air stability of the OFETs could be attributed 

to the better molecular packing of the fluorinated-PDIs in vacuum-deposited films, in 

which the fluorinated substituents could effectively prevent the penetration of oxygen and 

water.
20
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Figure 1.23. The chemical structures of the PDI derivatives with substitutions in the bay 

positions as electron-transport materials. 

 

Perylene diimides with substitutions in the aromatic bay position have also been 

studied as active materials in n-channel OFETs. Biscyano-substituted perylene diimides 

(15 and 16, in Figure 1.23) developed by Jones and co-workers exhibit considerably 

lower LUMOs and high solubility. The electron mobilities in top-contact devices were 

found to be 0.1 and 0.64 cm2V-1s-1 with Ion/Ioff = ~10
5
 for the vacuum-deposited films 

from 15 and 16, respectively, in ambient atmosphere. Top-contact devices fabricated 

from drop-cast films were also found to be air stable and exhibited mobilities of 10-3 to 

10-5 cm2V-1s-1.8,14 PDI-based materials 17 and 18, with bromo- or chloro-substitutions in 



51 

 

the bay positions, were investigated by the same group, recently. It was found that 

devices of these materials operated in ambient atmosphere showed similar performance 

as those operated in vacuum, although the electron mobilities (~10-4–10-5 cm2V-1s-1) were 

low because of the non planarity of PDI cores and consequently poor π – π stacking.4,127 

However, another tetrachloro-substituted perylene diimide (19) was found via pulse-

radiolysis time-resolved microwave conductivity technique (PR-TRMC) to have a 

charge-carrier mobility of 0.14 cm2V-1s-1,128 which indicates that these types of materials 

might still be good candidates for transistor applications, if the film morphology could be 

well controlled.129 Furthermore, in order to reduce the torsions from the substituents in 

the bay positions, materials with two or four smaller fluorine substituents of perylene 

diimides were developed. The electron mobilities of vacuum deposited films from 20 and 

21 were found to be 0.34 and 0.031 cm2V-1s-1 with Ion/Ioff >10
5 in ambient atmosphere. 

The higher mobility from the device containing 20 could be attributed to the less reduced 

torsion on the perylene diimide aromatic core.44-45 Recently, perylene diimides (22 and 23) 

with perfluoralkyl chains in the bay positions were developed by Li and co-workers, and 

23 showed electron mobilities up to 0.052 cm2V-1s-1 with Ion/Ioff  = 8 ×10
6 in ambient 

condition. It is worth mentioning that there was nearly no change of the mobility and 

Ion/Ioff compared to the data measured in vacuum for 23. The electron mobility of 22 was 

only 0.005 cm2V-1s-1 with Ion/Ioff  = 4 × 10
3
. However, the turn-on voltage for devices 

from 22 was 4.7 V, which was 10 times lower than those devices from 23.15  

Recently, research interest has focused on developing wet-processing perylene 

diimides with high electron mobility. Liquid-crystalline (LC) type material 26 was found 

to exhibit charge mobility of 0.1 cm2V-1s-1 in the liquid crystalline phase (ca. 220 oC), 
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and a charge-carrier mobility as high as 0.2 cm2V-1s-1 in the crystalline phase using PR-

TRMC.130 In 2005, room temperature LC material 24 was reported to exhibit electron 

mobilities as high as 1.3 cm2V-1s-1 under ambient atmosphere using the steady-state 

SCLC technique. This electron mobility is actually higher than that of amorphous silicon. 

However, the electron mobilities of the material measured via other techniques were low, 

as control of the PDI molecular alignment is challenging for 24 in thin films.7 Also, field-

effect transistors using highly ordered Langmuir – Blodgett (LB) films from compound 

25 were fabricated and studied by Wang and co-workers. Within the top-contact devices, 

the molecules kept face-face configuration in films, and the electron mobilities went up to 

0.05 cm2V-1s-1 with Ion/Ioff  > 10
3
.
131 Very recently, a PDI-based D–A type conjugated 

polymer 27 was investigated as an electron-transport material in OFETs. The spin-

coating films of the polymer were found to exhibit electron mobilities as high as 0.013 

cm2V-1s-1 with Ion/Ioff > 10
4 in top-contact OFETs under nitrogen. The electron mobility of 

this material is among the highest value reported in conjugated polymers to date.16 Side 

chain polymers (28 and 29) with PDI-pendants have also been investigated as electron 

transporting materials in OFET devices. Electron mobilities of 1.2 × 10-3 cm2V-1s-1 with 

Ion/Ioff > 10
4 were reported for polymer 28 when thermal-annealing at 210 oC for 60 

minutes was performed on the spin-casted films in bottom-contact OFETs. Similar device 

performance was achieved when the devices from 29 were measured at 360 K in a top-

contact device, which may be ascribed to the better intermolecular electron hopping upon 

thermal treatment.132-133  
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Figure 1.24. The chemical structures of solution-processable PDI materials.  

Over the years, great progress has been made in research on PDI-based materials 

for OFETs. However, the modest performance from transistors based on solution 

processable PDI materials actually limits their application in organic electronics. 

Research in order to further explore high performance wet-processable perylene diimides 

is highly desirable.  

1.4.2 PDIs as acceptors and photo-sensitizers in solar cell devices 

Recently, perylene diimide derivatives have been extensively studied as electron 

acceptors for OPV applications because of their relatively low cost as compared to many 

other organic acceptors, good thermal- and photo-chemical stability, low electron affinity, 
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and intense light absorption in visible range.24,35 Also, compared with the fullerene 

derivatives, PDI-based materials are more easily functionalized via chemical 

modification on the imide and/or bay positions to optimize the physical and chemical 

properties of the dyes.3,24  The first organic solar cells, which were reported by Tang in 

1986, in fact utilized a PDI derivative (PV) as the acceptor and Cu phthalocyanine (CuPc) 

as donor (as shown in Figure 1.25) in a p-n bilayer cell (ITO/CuPc/PV/Ag). The PCEs of 

the devices are approaching 1%.104 Since that time, phthalocyanine and PDI derivatives 

have been commonly used in thin-film organic solar cells with phthalocyanines 

performing as p-type, hole-transport materials and PDI derivatives working as the 

electron-transport acceptros. Recently, following Tang’s basic device structure, external 

PCEs of 2.4% have been demonstrated within a thin cell geometry where the incident 

photons make multiple passes through the light absorbing organic films to avoid exciton 

diffusion length/optical absorption length mismatch.134 In this devices,  the incorporating 

of an exciton-blocking layer (bathocuproine, also known as BCP)134 between the organic 

layers and the metal cathode is essential to prevents damage due to cathode 

evaporation135 and eliminates parasitic exciton quenching at the PDI/cathode interface.136 

Inverted bilayer organic solar cells with a structure consisting of an n-type insoluble PV 

layer with a spin-cast p-type-conjugated polymer, such as (poly(2-methoxy-5-(28-

ethylhexyloxy)-1,4-phenylenevinylene)(MEH-PPV) and (poly(phenylimino-1,4-

phenylene-1,2-ethenylene- 2,5-dihexyloxy-1,4-phenylene-1,2-ethenylene-1,4-phenylene) 

(PPAV-HH-PPV) on top of the acceptor layer show PCEs of ca. 0.4%.137 Further ITO 

and Au electrodes were modified with In and PEDOT:PSS, respectively, leading to a 

smoother contact faciling  electron transport and a utilization of the wide range of 
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absorption by exciton confinement. Thus, the photovoltaic properties of the solar cells 

produced by the combination of those methods have been remarkably improved and give 

cells with PCEs approaching 2%.137 Bilayer organic solar cells containing PDI-based 

acceptors and organic small molecular donors such as pentacene138 and rubrene139 can 

afford PCEs up to 2%. Some of these achievements are summarized in Table 1.3. 

 

Figure 1.25. The chemical structures of the PV, CuPc, pentacene, and rebrene.   

Table 1.3. p-n Heterojuntion solar cell performance containing PDI-based 

acceptors.
104,134,137-138,140-141 

Devices  Voc                   

(V) 

Jsc     

(mA/cm
2
) 

FF PCE          

(%) 

ITO/CuPc/PV/Ag 0.45 2.3 0.65 1.0 

ITO/DMP/CuPc/Ag 0.54 0.94 0.48 0.29 

ITO/DMP/ClAlPc/Ag 0.53 1.61 0.43 0.63 

ITO/DMP/ClAlPc/Ag 0.31 1.71 0.41 1.21 

ITO/CuPc/PV/BCP/Ag N.A. N.A. 0.54 2.4 

ITO/PEDOT/13/pentacene/BCP/Al 0.40 5.0 0.64 1.6 

ITO/PV/MEH-PPV/Au 0.56 2.4 0.29 0.40 

ITO/PV/PPAV-HH-PPV/Au 0.48 2.5 0.28 0.33 
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Figure 1.26. PDI-based materials for solution processable solar cells. 

Compared to the bilayer solar cells, limited progress has been achieved on PDI-

based BHJ solar cells, this is possibly due to the formation of micrometer-sized (or even 

larger) PDI-based aggregates in the blend films, leading to incomplete exciton 

dissociation.24 Solar cells comprised of blends of perylene diimides and P3HT exhibit low 

PCEs, (typically below 0.05%). Recently, by using asymmetric PDI derivatives (31), 

PCEs as high as 0.37% have been demonstrated using the P3HT:PDI blend, probably 

because fewer PDI aggregates formed. Device performance can be further enhanced in the 

presence of the compatibilizer (30) with optimized devices showing an efficiency of 

0.55% because smaller size PDI domains were formed in the active layer.71 Müllen and 

coworkers found that device efficiency could be largely improved under illumination with 
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solar light for PDI-based solar cells as P3HT was replaced with a poly(2,7-carbazaole)-

based donor (PCz, as shown in Figure 1.26).142 The best photovoltaic device exhibits high 

external quantum efficiency (EQE) of 16% at 490 nm, with PCEs over 0.6% under AM 

1.5 irradiation. This is one of the best reported PCE and EQE values for solar cells using 

polymer/PDI blends, though they are still much lower than those devices using 

polymer/PCBM blend. The morphology of PCz:32 blend films studied by SEM showed 

the formation of favorable phase separation, which is important in obtaining high 

efficiency.142 Using a blend of discotic liquid-crystal HBC-PhC12 (as shown in Figure 

1.26) with 32 produces thin-films with vertically segregated HBC-PhC12 and 32 domains, 

with large interfacial surface areas, resulting in solar cells with external quantum 

efficiencies greater than 34% near 490 nm, with PCE ca. 2%.23 Very recently, a blend of 

33 and a D–A type small molecular donor (BTD-TNP as shown in Figure 1.26) was 

shown to give overall device PCEs of 2.85%.143 The much higher JSC (6.6 mAcm-2) of 

these devices as compared to other PDI-based solar cells results from the contribution of 

exciton generation by both donor and acceptor components used in these BHJ solar cells, 

as well as the balanced charge transport in the devices (ca. 1.0 × 10-4 cm2V-1s-1 for electron 

and 4.6 × 10-4 cm2V-1s-1 for hole, which are comparable to the charge carrier mobilities for 

those high-efficiency BHJ solar cells based on P3HT:PCBM144 blend).143  

One recent promising approach for solar cell devices is to use self-organizing or 

supramolecular materials to control the thin-film nanomorphology of the photoactive 

layer.105 The self-assembly of a block-copolymer (BCP) in which block A contains an 

electron donor and block B contains an electron acceptor could undergo microphase 

separation, which could, in principle, produce a highly regular nanometer-scale structure 
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of idealized morphology spontaneously during film preparation.105 Thelakkat and 

coworkers reported the using of D–A diblock copolymers (as shown in Figure 1.27), 

carrying PDIs and triphenylamines as electron-transport and hole-transport moieties, 

respectively, to realize stable nanometer-scale microphase-separation in the active layers. 

These produced an increase in the device efficiencies by an order of magnitude compared 

with the blend films from the two homopolymers, and solar cells using these BCPs show 

PCEs of 0.3%.18,110,132,145 Periodic, nanometer-scale morphology was also successfully 

accomplished using the P3HT-block-PDI copolymers (30 and materials with similar 

structures) as the active layer in solar cells with PCEs over 0.5%.146-147 The state-of-the-art 

using this approach displays attractive properties, including phase-separation of donor and 

acceptor block components on length scales commensurate with exciton diffusion lengths, 

an ability to self-assemble into a range of different morphologies, and construction of an 

all-in-one molecule that can also include additional components for functional 

enhancement, such as dyes for expanding solar spectra absorption. However, the overall 

power conversion efficiencies of the devices with current diblock-copolymers are still far 

from satisfactory (η < 1%). So, further effort toward developing better D–A diblock or 

multiblock copolymers with matching D/A energy levels, high charge mobilities, and 

good solar spectrum coverage is of interest.  Furthermore, a more detailed understanding 

of the parameters controlling charge transfer and migration in these self-organizing block 

copolymer systems might facilitate the rational design and synthesis of new D–A type 

materials and morphology control required for high-performance OPV devices as a result.  
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Figure 1.27. PDI-based diblock copolymers for OPV applications. 

Recently, research on using PDI-donor-based conjugated polymers connected at 

the perylene 1,6(7)-bay positions for solar cell applications have also been carried on in 

different research groups.16,53,148-150 The introduction of electron donor moieties such as 

dithienothiophene (DTT),16,150 dithienopyrrole (DTP),53 bithiophene,151 oligo-phenylene 

vinylene,148 dithienosilole (DTS)152 and triphenyl amine type donor148 into the bay areas 

of perylene diimides (Figure 1.28) enhanced the solubility of polymers and dramatically 

quenched the fluorescence. Additionally, the electron mobilities of these kinds of 

polymers are approaching 0.1 cm2V-1s-1 in OFETs. Photovoltaic devices using these types 

of polymers in blends with appropriate polythiophene-based donor polymers or other D–

A type polymers exhibit PCE approaching 1.5%.16,25,152 One limitation these kinds of D–

A polymers for better solar energy conversion is that these materials contribute little for 

light-harvesting in solar cells. For example, an EQE wavelength plot of a photovoltaic 
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device based on a BHJ cells from DTT-PDI polymer/polythiophene blend is close to the 

absorption spectrum of the polythiophene itself, with little contribution from the lower 

energy absorptions of the PDI-based materials. This may because of the ultra fast photo-

induced intramolecular charge transfer and charge recombination in the DTT-PDI 

polymer, suggested by the transient absorption spectra, which shortens the DTT-PDI 

exciton life-time (several hundred picoseconds), reducing the number of excitons that 

diffuse to the D/A interface for charge dissociation.153 Further development for new PDI-

donor-based conjugated polymers or other kinds arylene diimide based D – A type 

conjugated polymers are centered around practical approaches for high performance 

electron-transport polymers for OPV and OFET applications. 

 

 

Figure 1.28. Conjugated PDI-based polymers with D-A connection on the PDI bay positions. 

 

Recently, PDI-based light-harvesting materials (as shown in Figure 1.29) were also 

used in dye-sensitized solar cells (DSSCs, also known as Grätzel cells)154 with varying 
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binding groups (like carboxylic acid or anhydride), as well as different bulk inorganic 

semiconductors.155-156 The best reported DSSCs utilizing PDI-based photosensitive dyes 

for device gave power conversion efficiencies over 2.5% with an impressive fill factor 

value (FF = 0.63).156 Since DSSCs follow a different mechanism from OPVs, in depth 

discussion on using PDI-based dyes for DSSC application will not be given here.  

 

Figure 1.29. Some PDI materials as photo-sensitizers for DSSCs. 

Ever since Tang’s demonstration of organic solar cells with PDI derivatives as the 

acceptor, research attentions have been focused on using PDI-based dyes as active 

materials in solar cells as well as in OFETs. Despite for the promising performance of 

those vacuum-deposited devices, devices fabricated via a wet-process exhibit limited 

performance. This had been speculated for the poor film morphology and low charge 

mobility, perhaps due to anisotropy in solution-process thin-films from these PDI-based 

semiconductors. Further research targeting perylene diimides solving these existing 

problems with improving solar cell performance could be valuable for both fundamental 

research and real OPV applications in the near future.  

1.5 Research goals and organization of the thesis 

1.5.1 Research goals and design strategies.  
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The aim of this thesis is to develop new PDI-based conjugated materials and 

understand their structure-property relationships to better meet the needs of applications 

in organic electronics and optical limiting. In the first part of this thesis, the development 

of functionalized perylene diimide is described primarily for OPV applications. In the 

first projects, the synthesis, properties, and solar cell performance of PDI-based 

homopolynorbornenes and diblock copolynorbornenes were investigated. Also, perylene 

diimide derivatives with various substituents were developed to improve their mixing 

with polythiophenes, and the solar cell performance of these blends was studied. In the 

second part of this thesis, perylene diimide radical anion absorption was utilized for one-

photon- or two-photon-induced optical limiting in the spectral range of the perylene 

diimide radical-anion absorption of new PDI-donor conjugates, such as molecular dyads 

and donor conjugated polymers with perylene diimide pendants. A variety of PDI-based 

conjugated materials (polymers and molecular dyads) have been synthesized, 

characterized, and investigated for electronic or optic applications.   

1.5.2 Organization of the thesis 

The remainder of the thesis contains the following four chapters. 

Chapter 2 describes research on various PDI-grafted polynorbornenes. It includes 

a short introduction to PDI-based organic solar cells, the design and synthesis of the 

target polymers, their physical properties, and applications for organic electronics. 

Chapter 3 concerns research on using PDI-based diblock-copolymers for organic 

solar cell applications. It contains an introduction to using block copolymers for 

electronic application, the design and synthesis of target perylene diimide 
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/oligothiophenes diblockcopolymers, studies of their physical properties, thin film 

morphologies, and solar cell performance. 

Chapter 4 is concerned with improving PDI-based solar cell performance by 

attaching functional groups to perylene diimide molecules. It includes a literature review 

on the promising photophysics of perylene diimide/polythiophene blend, the design and 

synthesis of the target molecules, and studies of the photophysics and solar cells in blend 

films with polythiophenes.  

Chapter 5 describes 2PA-induced optical limiting using photo-generated perylene 

diimide radical anions. It covers a short introduction to 2PA-induced optical limiting, the 

design and synthesis of the target dyads, and studies of the photophysics and optical 

limiting applications between 700 – 800 nm. 

Chapter 6 describes the optical limiting application on using perylene diimide –

donor, double-cable conjugated polymers. It contains an introduction to double-cable 

conjugated polymers and reverse saturable absorption (RSA) induced optical limiting, the 

design and synthesis of the target acceptor-grafted “double cable” conjugated polymers, 

research on the synthesis of the target acceptor-grafted double-cable conjugated polymers, 

research on their physical properties, the photophysics, and optical limiting applications.  

Chapter 7 summarizes the major findings from the research described in this 

thesis and suggests future directions that may lead to further improvement in OPV and 

optical limiting materials with PDI moieties.  

 

 

 



64 

 

1.6 Reference 

 (1) Herbst, W.; Hunger, K. Industrial Organic Pigments (Second Completely 
Revised Edition); Weinheim, 1997. 
 (2) Kazmaier, P. M.; Hoffmann, R. J. Am. Chem. Soc. 1994, 116, 9684-9691. 
 (3) Würthner, F. Chem. Commun. 2004, 1564-1579. 
 (4) Bao, Z.; Locklin, J. Organic Field-Effect Transistors; CRC Press, 2006. 
 (5) Serin, J. M.; Brousmiche, D. W.; Fréchet, J. M. J. Chem. Commun. 2002, 
2605-2607. 
 (6) Gronheid, R.; Hofkens, J.; Kohn, F.; Weil, T.; Reuther, E.; Müllen, K.; 
Schryver, F. C. D. J. Am. Chem. Soc. 2002, 124, 2418-2419. 
 (7) An, Z.; Yu, J.; Jones, S. C.; Barlow, S.; Yoo, S.; Domercq, B.; Prins, P.; 
Siebbeles, L. D. A.; Kippelen, B.; Marder, S. R. Adv. Mater. 2005, 17, 2580-2583. 
 (8) Jones, B. A.; Facchetti, A.; Wasielewsk, M. R.; Marks, T. J. J. Am. Chem. 
Soc. 2007, 129, 15259-15278. 
 (9) Sadrai, M.; Bird, G. R. Opt. Commun. 1984, 51, 62-64. 
 (10) Ford, W. E.; Kamat, P. V. J. Phys. Chem. 1987, 91, 6373-6380. 
 (11) Seybold, G.; Wagenblast, G. Dyes and Pigments 1989, 11, 303-317. 
 (12) Weil, T.; Wiesler, U. M.; Herrmann, A.; Bauer, R.; Hofkens, J.; Schryver, 
F. C. D.; Müllen, K. J. Am. Chem. Soc. 2001, 123, 8101-8108. 
 (13) Ahrens, M. J.; Fuller, M. J.; Wasielewski, M. R. Chem. Mater. 2003, 15, 
2684-2686. 
 (14) Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; 
Wasielewski, M. R. Angew. Chem. Int. Ed. 2004, 43, 6363-6366. 
 (15) Li, Y.; Tan, L.; Wang, Z.; Qian, H.; Shi, Y.; Hu, W. Org. Lett. 2008, 10, 
529-532. 
 (16) Zhan, X.; Tan, Z. A.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; 
Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246-7247. 
 (17) Oh, J. H.; Liu, S.; Bao, Z.; Schmidt, R.; Würthner, F. Appl. Phys. Lett. 
2007, 91, 212107. 
 (18) Lindner, S. M.; Kaufmann, N.; Thelakkat, M. Org. Electr. 2007, 8, 69-75. 
 (19) Jimnez, n. J.; Spnig, F.; Rodrguez-Morgade, M. S.; Ohkubo, K.; Fukuzumi, 
S.; Guldi, D. M.; Torres, T. Org. Lett. 2007, 9, 2481-2484. 
 (20) Chen, H. Z.; Ling, M. M.; Mo, X.; Shi, M. M.; Wang, M.; Bao, Z. Chem. 
Mater. 2007, 19, 816-824. 
 (21) Gvishi, R.; Reisfeld, R.; Burshtein, Z. Chem. Phys. Lett. 1993, 213, 338-
344. 
 (22) Law, K. Y. Chem. Rev. 1993, 93, 449-486. 
 (23) Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. 
H.; MacKenzie, J. D. Science 2001, 293, 1119-1122. 
 (24) Wang, H.; Peng, B.; Wei, W. Progress Chem. 2008, 20, 1751-1760. 
 (25) Tan, Z. A.; Zhou, E.; Zhan, X.; Wang, X.; Li, Y.; Barlow, S.; Marder, S. R. 
Appl. Phys. Lett. 2008, 93, 073309. 
 (26) Belfield, K. D. B., M. V.; Hernandez, F. E.; Przhonska, O. V. J. J. Phys. 
Chem. C 2008, 112, 5618-5622. 



65 

 

 (27) O'Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.; L.Gaines, G.; 
Wasielewski, M. R. Science 1992, 257, 63-65. 
 (28) Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, 
D.; Lindsey, J. S. J. Phys. Chem. B 2001, 105. 
 (29) An, Z. S.; Odom, S. A.; Kelley, R. F.; Huang, C.; Zhang, X.; Barlow, S.; 
Padilha, L. A.; Fu, J.; Webster, S.; Hagan, D. J.; Van Stryland, E. W.; Wasielewski, M. 
R.; Marder, S. R. J. Phys. Chem. A 2009, 113, 5585-5593. 
 (30) Shoaee, S. A., Z.; Zhang, X.; Barlow, S.; Marder, S. R.; Duffy, W.; 
Heeney, M.; McCulloch, I.; Durrant, J. R. Chem. Commun. 2009, 5445-5447. 
 (31) Fukuzumi, S.; Ohkubo, K.; Ortiz, J.; Gutierrez, A. M.; Fernandez-Lazaro, 
F.; Sastre-Santos, A. Chem. Commun., 2005, 3814-3816. 
 (32) Kippelen, B.; Brédas, J. L. Energy Environ. Sci. 2009, 2, 251-261. 
 (33) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324-
1338. 
 (34) Thompson, B. C.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58-77. 
 (35) Nagao, Y. Progress Org. Chem. 1997, 31, 43-49. 
 (36) Langhals, H. Heterocycles 1995, 40, 477-500. 
 (37) Huang, Y.; Yan, Y.; Smarsly, B. M.; Wei, Z.; Faul, C. F. J. J. Mater. 
Chem. 2009, 19. 
 (38) Backes, C.; Schmidt, C.; Hauke, F.; Böttcher, C.; Hirsch, A. J. Am. Chem. 
Soc. 2009, 131, 2172-2173. 
 (39) Heek, T.; Fasting, C.; Rest, C.; Zhang, X.; Würthner, F.; Haag, R. Chem. 
Commun. 2010, 46, 188-1886. 
 (40) Liu, Y.; Wang, K.-R.; Guo, D.-S.; Jiang, B.-P. Adv. Funct. Mater. 2009, 
19, 2230-2235. 
 (41) Wicklein, A.; Kohn, P.; Ghazaryan, L.; Thurn-Albrecht, T.; Thelakkat, M. 
Chem. Commun. 2010, 46, 2328-2230. 
 (42) Iverson, I. K.; Tam-Chang, S.-W. J. Am. Chem. Soc. 1999, 121, 5801-
5802. 
 (43) Seybold, G.; Wagenblast, G. Dyes and Pigments 1989, 11, 303-317. 
 (44) Schmidt, R.; Ling, M. M.; Oh, J. H.; Winkler, M.; Könemann, M.; Bao, Z.; 
Würthner, F. Adv. Mater. 2007, 3692-3695. 
 (45) Würthner, F.; Osswald, P.; Schmidt, R.; Kaiser, T. E.; Mansikkama, H.; 
Ko1nemann, M. Org. Lett. 2006, 8, 3765-3768. 
 (46) Iden, R.; Seybold, G. In Ger. Pat. Appl., 1985; Vol. DE 3434059 A1. 
 (47) Böhm, A.; Arms, H.; Henning, G.; Blaschka, P. In Ger. Pat. Appl., 1997; 
Vol. DE 19547209 A1. 
 (48) Würthner, F.; Stepanenko, V.; Chen, Z.; Saha-Moller, C. R.; Kocher, N.; 
Stalke, D. J. Org. Chem. 2004, 69, 7933-7939. 
 (49) Rajasingh, P.; Cohen, R.; Shirman, E.; Shimon, L. J. W.; Rybtchinsk, B. J. 
Org. Chem. 2007, 72, 5973-5979. 
 (50) Ahrens, M. J.; Fuller, M. J.; Wasielewski, M. R. Chem. Mater. 2003, 15, 
2684-2686. 
 (51) Qiu, W.; Chen, S.; Sun, X.; Liu, Y.; Zhu, D. Org. Lett. 2006, 8, 867-870. 



66 

 

 (52) Sivamurugan, V.; Kazlauskas, K.; Jursenas, S.; Gruodis, A.; Simokaitiene, 
J.; Grazulevicius, J. V.; Valiyaveettil, S. J. Phys. Chem. B 2010, 114, 1782-1789. 
 (53) Zhan, X.; Tan, Z. A.; Zhou, E.; Li, Y.; Misra, R.; Grant, A.; Domercq, B.; 
Zhang, X.-H.; An, Z.; Zhang, X.; Barlow, S.; Kippelen, B.; Marder, S. R. J. Mater. Chem. 
2009, 19, 5794-5803. 
 (54) Rohr, U.; Kohl, C.; Müllen, K.; Craats, A. v. d.; Warman, J. J. Mater. 
Chem. 2001, 11, 1789-1799. 
 (55) Rohr, U.; Schlichting, P.; Böhm, A.; Gross, M.; Meerholz, K.; Bräuchle, 
C.; Müllen, K. Angew. Chem. Int. Ed. 1998, 37, 1434-1437. 
 (56) Nakazono, S.; Easwaramoorthi, S.; Kim, D.; Shinokubo, H.; Osuka, A. 
Org. Lett. 2009, 11, 5426-5429. 
 (57) Nakazono, S.; Imazaki, Y.; Yoo, H.; Yang, J.; Sasamori, T.; Tokitoh, N.; 
Cedric, T.; Kageyama, H.; Kim, D.; Shinokubo, H.; Osuka, A. Chem. Eur. J. 2009, 15, 
7530-7533. 
 (58) Gsänger, M.; Oh, J. H.; Könemann, M.; Höffken, H. W.; Krause, A.-M.; 
Bao, Z.; Würthner, F. Angew. Chem. Int. Ed. 2010, 49, 740-743. 
 (59) Wescott, L. D.; Mattern, D. L. J. Org. Chem. 2003, 68, 10058-10066. 
 (60) Rademacher, A.; Märkle, S.; Langhals, H. Chem. Ber. 1982, 115, 2927-
2934. 
 (61) Würthner, F.; Sautter, A.; Schilling, J. J. Org. Chem. 2002, 67, 3037-3044. 
 (62) Gómez, R.; Veldman, D.; Blanco, R.; Seoane, C.; Segura, J. L.; Janssen, R. 
A. J. Macromolecules 2007, 40, 2760-2772. 
 (63) Würthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur. J. 2001, 
7, 2245-2253. 
 (64) Zhao, Y.; Wasielewski, M. R. Tetrahedron Lett. 1999, 40, 7047-7050. 
 (65) Würthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur. J. 2001, 
7, 2245-2253. 
 (66) Ford, W. E.; Hiratsuka, H.; Kamat, P. V. J. Phys. Chem. 1989, 93 6692-
6696. 
 (67) Lukas, A. S.; Zhao, Y.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B 
2002, 106, 1299-1306. 
 (68) Salbeck, J.; Kunkely, H.; Langhals, H.; Saalfrank, R. W.; Daub, J. Chimia 
1989, 43, 6-9. 
 (69) Langhals, H.; Karolinb, J.; Johansson, L. J. Chem. Soc., Faraday Trans. 
1998, 94, 2919-2922. 
 (70) Ford, W. E.; Kamat, P. V. J. Phys. Chem. 1987, 6373-6380, 6373-6380. 
 (71) Rajaram, S.; Armstrong, P. B.; Kim, B. J.; Férchet, J. M. J. Chem. Mater. 
2009, 21, 1775-1777. 
 (72) Hädicke, E.; Graser, F. Acta Crystallogr., Sect. C 1986, 42, 195-198. 
 (73) Hädicke, E.; Graser, F. Acta Crystallogr., Sect. C 1986, 42, 189-195. 
 (74) Zugenmaier, P.; Duff, J.; Bluhm, T. L. Cryst. Res. Technol 2000, 35, 
1095-1115. 
 (75) Sijibesma, R. P.; Meijer, E. W. Chem. Commun. 2003, 5-16. 
 (76) Wang, W.; Han, J. J.; Wang, L.-Q.; Li, L.-S.; Shaw, W. J.; Li, A. D. Q. 
Nano Lett. 2003, 3, 455-458. 



67 

 

 (77) You, C. C.; Würthner, F. J. Am. Chem. Soc. 2003, 125, 9716-9725. 
 (78) Würthner, F.; Thalacker, C.; Sautter, A. Adv. Mater. 1999, 11, 754-758. 
 (79) van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.; 
Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582-9590. 
 (80) Wang, W.; Wan, W.; Zhou, H. H.; Niu, S. Q.; Li, A. D. Q. J. Am. Chem. 
Soc. 2003, 125, 5245-5249. 
 (81) Dobrawa, R.; Kurth, D. G.; Würthner, F. Polymer Preprints 2004, 45, 
378-379. 
 (82) Dobrawa, R.; Würthner, F. Chem. Commun. 2002, 1878-1879. 
 (83) Neuteboom, E. E. Ph.D thesis 2004, Technische Universiteit Eindhoven. 
 (84) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 258-262. 
 (85) Marcus, R. A. J. Chem. Phys. 1956, 24, 966-978  
 (86) Marcus, R. A. Can. J. Chem. 1959, 37, 155-163. 
 (87) Marcus, R. A. Angew. Chem. Int. Ed. 1993, 32, 1111-1121. 
 (88) Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599-610  
 (89) Kelley, R. F.; Shin, W. S.; Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. 
R. J. Am. Chem. Soc. 2007, 129, 3173-3181. 
 (90) Muthukumaran, K.; Loewe, R. S.; Kirmaier, C.; Hindin, E.; Schwartz, J. 
K.; Sazanovich, I. V.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. 
B 2003, 107, 3431-3442. 
 (91) Kirmaier, C.; Hindin, E.; K., J.; Schwartz; Sazanovich, I. V.; Diers, J. R.; 
Muthukumaran, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. 
Chem. B 2003, 107, 3443-3454. 
 (92) Cha, M.; Sariciftci, N. S.; Heeger, A. J.; Hummelen, J. C.; Wudl, F. Appl. 
Phys. Lett. 1995, 67, 3850-3852. 
 (93) Spangler, C. W. J. Mater. Chem. 1999, 9, 2013-2020. 
 (94) Chi, S.-H.; Hales, J. M.; Cozzuol, M.; Ochoa, C.; Fitzpatrick, M.; Perry, J. 
W. Opt. Lett. 2009, 17, 22062-22072. 
 (95) Coropceanu, V.; Cornil, J.; Filho, D. A. d. S.; Olivier, Y.; Silbey, R.; 
Brédas, J.-L. Chem. Rev. 2007, 107, 926-952. 
 (96) Zhang, X.-H. Ph.D thesis 2009, Georgia Institute of Technology. 
 (97) Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. 
Chem. Rev. 2010, 110, 3-24. 
 (98) Gelinck, G. H.; Huitema, H. E. A.; Van Veenendaal, E.; Cantatore, E.; 
Schrijnemakers, L.; Van der Putten, J.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; 
Huisman, B. H.; Meijer, E. J.; Benito, E. M.; Touwslager, F. J.; Marsman, A. W.; Van 
Rens, B. J. E.; De Leeuw, D. M. Nat. Mater. 2004, 3, 106-110. 
 (99) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953-1010  
 (100) Zhang, X. Ph.D Thesis 2009, Georgia Institute of Technology. 
 (101) Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C.-W.; Ho, P. K.-H.; 
Sirringhaus, H.; Friend, R. H. Nature 2005, 34, 194-199. 
 (102) Anthony, J. E. Chem. Rev. 2006, 106, 5028-5048. 
 (103) Hovel, H. Semiconductors & Semimetals, Volume II, Solar Cells; 
Academic Press, N. Y., 1975. 
 (104) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185. 



68 

 

 (105) Darling, S. B. Energy Environ. Sci. 2009, 2, 1266-1273. 
 (106) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 
11, 15-26. 
 (107) Ohkita, H. C., S.; Astuti, Y.; Duffy, W.; Tierney, S.; Zhang, W.; Heeney, 
M.; McCulloch, I.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. J. Am. Chem. Soc. 2008, 
130, 3030-3042. 
 (108) Knupfer, M. Appl. Phys. A: Mater. Sci. Process. 2003, 77, 623-626. 
 (109) Heremans, P.; Cheyns, D.; Rand, B. P. Acc. Chem. Res. 2009, 42, 1740-
1747. 
 (110) Lindner, S. M.; Huttner, S.; Chiche, A.; Thelakkat, M.; G. Krausch, A. 
Angew. Chem., Int. Ed. 2006, 45, 3364-3368. 
 (111) Sista, S.; Hong, Z.; Park, M.-H.; Xu, Z.; Yang, Y. Adv. Mater. 2010, 22, 
77-80. 
 (112) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; 
Heeger, A. J. Science 2007, 317, 222-225. 
 (113) Waldauf, C.; Morana, M.; Denk, P.; Schilinsky, P.; Coakley, K.; Choulis, 
S. A.; Brabec, C. J. Appl. Phys. Lett. 2006, 89, 233517  
 (114) Haua, S. K.; Yip, H.-L.; Zou, J.; Jen, A. K.-Y. Org. Electr. 2009, 10, 
1401-1407. 
 (115) Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. P. 
J. Am. Chem. Soc. 2009, 131, 56-57. 
 (116) Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J. Am. 
Chem. Soc. 2009, 131, 7792-7799. 
 (117) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 
2005, 15, 1617-1622. 
 (118) Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 
083506. 
 (119) Haber, K. S.; Albercht, A. C. J. Phys. Chem. 1984, 88. 
 (120) Kepler, R. G. Phys. Rev. 1960, 119, 1226-1229. 
 (121) Leblanc, O. H. J. Chem. Phys. 1960, 33, 626-626. 
 (122) Lampert, M. A., Mark, P. Current injection in solids; Academic Press, 
New York, , 1970. 
 (123) Ostrick, J. R.; Dodabalapur, A.; Torsi, L.; Lovinger, A. J.; Kwock, E. W.; 
Miller, T. M.; Galvin, M.; Berggren, M.; Katz, H. E. J. Appl. Phys. 1997, 81, 6804-6808. 
 (124) Horowitz, G. K., F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; 
Garnier, F. Adv. Mater. 1996, 8, 242-244. 
 (125) Tatemichi, S.; Ichikawa, M.; Koyama, T.; Taniguchi, Y. Appl. Phys. Lett. 
2006, 89, 112108. 
 (126) Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosbar, L. L.; 
Graham, T. O.; Curioni, A.; Andreoni, W. Appl. Phys. Lett. 2002, 80, 2517-1519. 
 (127) Scholz, M.; Schmidt, R.; Krause, S.; Schöll, A.; Reinert, F.; Würthner, F. 
Appl. Phys. A: Mater. Sci. Process. 2009, 95, 285-290. 
 (128) Warman, J. M.; Haas, M. P. d.; Dicker, G.; Grozema, F. C.; Piris, J.; 
Debije, M. G. Chem. Mater. 2004, 16. 



69 

 

 (129) Chen, Z.; Debije, M. G.; Debaerdemaeker, T.; Osswald, P.; Wurthner, F. 
ChemPhysChem 2004, 5, 137-140. 
 (130) Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; Dijk, M. v.; Kimkes, P.; 
Koehorst, R. B. M.; Donker, H.; Schaafsma, T. J.; Picken, S. J.; Craats, A. M. v. d.; 
Warman, J. M.; Zuilhof, H.; Sudhlter, E. J. R. J. Am. Chem. Soc. 2000, 122, 11057-11066. 
 (131) Wang, Y.; Chen, Y.; Li, R.; Wang, S.; Su, W.; Ma, P.; Wasielewski, M. R.; 
Li, X.; Jiang, J. Langmuir 2007, 23, 5836-5842. 
 (132) Hüttner, S.; Sommer, M.; Thelakkat, M. Appl. Phys. Lett. 2008, 92, 
093302. 
 (133) Finlayson, C. E.; Friend, R. H.; Otten, M. B. J.; Schwartz, E.; Cornelissen, 
J. J. L. M.; Nolte, R. J. M.; Rowan, A. E.; Samorı, P.; Palermo, V.; Liscio, A.; Kalina 
Peneva; Müllen, K.; Beljonne, S. T. Adv. Funct. Mater. 2008, 18, 1-9. 
 (134) Peumans, P.; Bulovic, V.; Forrest, S. R. Appl. Phys. Lett. 2000, 19, 2650-
2652. 
 (135) Arbour, C.; Armstrong, N. R.; Brina, R.; Collins, G.; Danziger, J.; J.-P. 
Dodelet; Lee, P.; Nebesny, K. W.; Pankow, J.; Waite, S. Mol. Cryst. Liq. Cryst. 1990, 
183, 307-320. 
 (136) Hirose, Y.; Kahn, A.; Aristov, V.; Soukiassian, P.; Bulovic, V.; Forrest., S. 
R. Phys. Rev. B 1996, 54, 13748-13758. 
 (137) Nakamura, J.-I.; Yokoe, C.; Murataa, K. J. Appl. Phys. 2004, 96, 6878-
6884. 
 (138) Pandey, A. K.; Dabos-Seignon, S.; Nunzia, J.-M. Appl. Phys. Lett. 2006, 
89, 113506. 
 (139) Pandey, A. K.; Nunzi, J. M. Appl. Phys. Lett. 2007, 90, 263508. 
 (140) Hiramoto, M.; Fujiwara, H.; Yokoyama, M. J. Appl. Phys. 1992, 72, 3781-
3787. 
 (141) Whitlock, J. B.; Panayotatos, P.; Sharma, G. D.; Cox, M. D.; Sauers, R. R.; 
Bird, G. R. Opt. Eng. 1993, 32, 1921-1934. 
 (142) Li, J. L.; Dierschke, F.; Wu, J. S.; Grimsdale, A. C.; Müllen, K. J. Mater. 
Chem. 2006, 16, 96-100. 
 (143) Sharma, G. D.; P.Balraju; Mikroyannidis, J. A.; MinasM.Stylianakis Sol. 
Energy Mater. Sol. Cells 2009, 93, 2025-2028. 
 (144) Chirvase, D.; Chiguvare, Z.; Knipper, M.; Parisi, J.; Dyakonov, V.; 
Hummelen, J. C. Synth. Met. 2003, 138, 299-304. 
 (145) Sommer, M.; Lindner, S. M.; M, T. Adv. Funct. Mater. 2007, 17, 1493-
1500. 
 (146) Sommer, M.; Lang, A. S.; Thelakkat, M. Angew. Chem. Int. Ed. 2008, 47, 
7901-7904. 
 (147) Zhang, Q.; Cirpan, A.; Russell, T. P.; Emrick, T. Macromolecules 2009, 
42, 1079-1082. 
 (148) Liu, Y.; Yang, C.; Li, Y.; Li, Y.; Wang, S.; Zhuang, J.; Liu, H.; Wang, N.; 
He, X.; Li, Y.; Zhu, D. Macromolecules 2005, 38, 716-721. 
 (149) Liu, Y.; Wang, N.; Li, Y.; Liu, H.; Li, Y.; Xiao, J.; Xu, X.; Huang, C.; Cui, 
S.; Zhu, D. Macromolecules 2005, 38, 4880-4887. 



70 

 

 (150) Tan, Z. a.; Zhou, E.; Zhan, X.; Wang, X.; Li, Y.; Barlow, S.; Marder, S. R. 
Appl. Phys. Lett. 2008, 93, 073309. 
 (151) Chen, Z. H.; Zheng, Y.; Yan, H.; Facchetti, A. J. Am. Chem. Soc. 2009, 
131, 8-9. 
 (152) Hou, J.; Zhang, S.; Chen, T. L.; Yang, Y. Chem. Commun. 2008, 6034-
6036. 
 (153) Huang, J.; Wu, Y.; Fu, H.; Zhan, X.; Yao, J.; Barlow, S.; Marder, S. R. J. 
Phys. Chem. A 2009, 113, 5039-5046. 
 (154) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737-740. 
 (155) Tian, H.; Liu, P.-H.; Zhu, W.; Gao, E.; Wua, D.-J.; Cai, S. Chem. Commun. 
2000, 10, 2708-2715. 
 (156) Shibano, Y.; Umeyama, T.; Matano, Y.; Imahori, H. Org. Lett. 2007, 9, 
1971-1974. 
 

 

 

 



71 

 

CHAPTER 2 

PERYLENE DIIMIDE-BASED SIDE-CHAIN POLYNORBORNENES 
FOR ORGANIC ELECTRONIC APPLICATIONS  

 

2.1 Introduction 

 As discussed in Chapter 1, perylene diimides (also known as PDIs) are among the 

most promising electron acceptors for organic-based electronic devices to date because of 

their intrinsic chemical and physical properties, including relatively small electron 

affinity, high electron mobilities, and high molar absorption coefficients (ca. 1 × 105 M-

1cm-1) in the UV-Vis range.1-2 It is believed that the rigid, aromatic, fused-ring aromatic 

scaffold of the electron accepting PDI cores can enhance π-π intermolecular interactions, 

which leads to high electron mobilities in devices.3-4 Recently, field-effect electron 

mobilities as high as 2.1 cm2V-1s-1 with decent Ion/Ioff  (4.2 × 105) have been reported 

using PDI-based small molecules in vacuum-deposited organic field-effect transistors 

(OFETs). Recently, air stable vacuum-deposited n-channel OFETs with excellent 

performance have been demonstrated using aromatic-bay-modified PDIs.3-5 Furthermore, 

because of their relatively small optical band-gaps (ca. 2.0 eV) and high molar extinction 

coefficients, perylene diimides show strong absorption between 450 – 600 nm, which 

comprises a significant part of the solar spectrum. This is complimentary to the 

absorption spectra of widely used donors such as oligothiophenes (OTs), 

metallophthalocyanines (MPc), pentacene, and other materials. These properties are 

potentially advantageous for organic photovoltaics (OPVs), especially as compared to the 

most commonly used acceptor, phenyl-C61-butyric-acid-methyl ester (PCBM), making 
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perylene diimides potential acceptor candidates for organic solar cell applications, due to 

their high electron affinity, which is similar to that of PCBM (~ -3.9 eV). Vacuum-

deposited bilayer organic solar cells containing PDI-based acceptors and small molecule 

donors, such as pentacene,6 rubrene,7 and CuPc,8 can exhibit power conversion 

efficiencies (PCEs) up to 2%. More examples of the successful use and promising device 

performance of perylene diimides as electron-transport materials in OFETs and acceptors 

in OPVs have been described earlier, in Chapter 1. In contrast, solution-process organic 

electronic devices based on perylene diimides currently show relatively poor performance, 

with general electron mobilities smaller than 1 × 10-4 cm2V-1s-1 in OFETs and PCEs 

lower than 0.1% in blends with donor polymers such as poly-3-hexyl-thiophene (P3HT) 

in bulk heterojunction (BHJ) solar cells.9 The low electron mobilities of these OFETs 

have been attributed to poor PDI molecular alignment. However, poor phase-segregation 

and larger PDI-rich aggregates of up to tens of micrometers have been found in PDI-

based solution-processed solar cells.2,10 Recently, it was found that chemical modification 

of the imide and/or bay positions of perylene diimides could result in much better film 

morphology and considerably improve the performance of PDI-based electronic devices. 

This inspired further exploration of PDI-based small-molecule and polymeric materials 

with controlled film morphology.11-17 Among these candidates, PDI-based polymeric 

materials with considerable solubility have demonstrated their potential as high-

performance electron-transport materials for wet-processing OFETs and OPVs,14-16 

making further research efforts focusing on developing new, solution-process PDI-based 

polymers highly desirable.  
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 There are currently two major approaches to synthesize PDI-based polymers for 

organic electronic devices. The first one is incorporating the aromatic scaffold of 

perylene diimide into conjugated polymer chains via connection at the 1,(6)7-bay-

positions of PDI derivatives via palladium catalyzed polycondensation reactions such as a 

Suzuki coupling, Stille coupling, or Sonogashira coupling with aromatic diboron, ditin, 

and diacetylene reagents respectively. Donor–acceptor (D–A) type polymers with 

alternating PDI and electron donor moieties such as dithienothiophene,15 

dithienopyrrole,16,18 dithienosilole,13 oligothiophenes,19-20 and oligo(p-phenylene 

ethylene)21 have been extensively studied for applications in organic electronics. 

Generally, these types of materials show smaller optical band gap and dramatic 

fluorescence quenching due to intrachain donor-to-PDI electron transfer, as well as 

enhanced solubility due to the propeller-like twisting of the two naphthalene half units in 

PDI moieties as compared to the bay-unsubstituted perylene diimides. The electron 

mobilities of such polymers are higher than 0.01 cm2V-1s-1 in OFETs.15,19 Solution-

process solar cells based on the blends of such polymers with appropriate donor polymers 

have exhibited PCEs as high as 1.5%.13-15  

 A second, recent approach for practical device applications involves using 

polymers with a stable and electronically inert backbone and PDI pendants in the 

polymer side chains.2,22-25 This side-chain PDI-polymer approach has the potential to 

combine the desirable electronic and optical properties of the small-molecule perylene 

diimides, such as low lying LUMOs and good light-harvesting ability, with the 

mechanical strength and film-forming properties of the polymer main chain.26-27 

Currently, several PDI-grafted polymers have been reported bearing various main-chain 
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scaffolds such as polyisocyanodipeptides,22 polyacrylates,23-24 and polycarbazoles28 for 

applications in organic electronic devices. To date, the device performance of these side-

chain polymers has been generally much poorer compared to those main-chain PDI-based 

conjugated polymers described earlier. However, since diblock copolymers with PDI 

pendants in one polymer block offer the possibility of controlling and stabilizing 

nanometer-scale phase-segregation within the active layer and dramatically increasing the 

solar cell23 and OFET29 performance. Research on further exploring new side-chain PDI-

based polymers with various main-chain structures and side-chain pendants will be 

interesting and might increase the likelihood of achieving high performance, cost-

effective, OPV and OFET devices.22-25,29 

The polynorbornene backbone could be a good choice for developing such kinds 

of grafting functional polymers for electronic applications because of its flexibility, 

relative chemical inertness, high optical transparency at visible-NIR wavelengths, and 

ease of preparation via ring-opening metathesis polymerization (ROMP) from 

norbornene and various derivatives.30 More importantly, the “living” characteristic nature 

of ruthenium-complex-initiated ROMP, first described by Grubbs, allows the fine-tuning 

of the polymeric structures and molecular weight, which potentially could be used to 

build up D–A type block copolymers with desirable properties (also see Chapter 3). The 

high polymerization yields and good chemical stability of both the monomers and 

polymers for polynorbornenes over other system such as styrenes and acrylates are also 

potential advantages for practical applications.30 Furthermore, functionalized 

polynorbornenes can often be readily solution-processed and have been used as key 

components in optoelectronic devices.26-27,31-34 For example, Weck and coworkers 
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reported the synthesis of a series of norbornene-based copolymers with iridium- and/or 

platinum-complexes and their use in highly efficient electrophosphorescent light-emitting 

diodes.26,31-32 Recently, oligothiophene-based polynorbornenes were  developed and used 

in electronic devices by Ng and coworkers.33-34 

 Ruthenium-complex-based ROMP is a promising polymerization method for both 

laboratory and industrial scale synthesis.30 The driving force for such a polymerization is 

the relief of ring strain in cyclic olefins including norbornenes. Previous research shows 

that Grubbs initiators (or Grubbs catalysts, as they are usually described in olefin 

metathesis reactions) are tolerant to a wide range of functional groups on monomers and 

solvents, which makes these catalysts extraordinarily versatile in synthesis. The “first 

generation” Grubbs initiator is a relatively stable compound in air, and as such, it is not 

required to perform the polymerization under highly strict air- and water- free conditions. 

The “second-generation” Grubbs initiator shows much higher activity, but it is oxygen 

and water sensitive and thus should be handled under an inert atmosphere, such as a 

nitrogen glove-box or on schlenck line. Furthermore, the “first-generation” Grubbs 

initiator has been discovered to initiate ‘living” ROMP with a moderate polymerization 

rate for common norbornenes.30 Hence, the “first-generation” Grubbs initiator is used in 

growing the homo-polynorbornene chains with perylene diimide pendants in this chapter, 

as well as the D-A type diblock copolymers with grafted PDIs and oligothiophenes (OTs) 

in Chapter 3.  
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Figure 2.1. Grubbs initiators and the mechanism for ruthenium-based ROMP. 

 A simplified schematic of the ruthenium-complex-based ROMP mechanism is 

illustrated in Figure 2.1.  In the initiation step, the ruthenium-complex initiator attacks the 

double bond in the ring of monomer to generate a highly strained metalloacyclobutane 

intermediate. The ring then opens to initiate the polymerization with a new metal-carbene 

and a terminal double bond. Then, the chain grows with the insertion of the next 

monomers to produce linear polymer chains.30 As the driving force for the ROMP is the 

relief of ring strain and the initiation and chain propagation steps shown in Figure 2.1 are 

essentially irreversible for efficient polymerization. Hence, olefins such as cyclohexenes 

or benzene with little or no ring strain cannot be polymerized because there is no 

thermodynamic preference for polymers versus respective monomers. Strained cyclic 

olefins, such as norbornene, cyclopentene, and their derivatives, have sufficient ring 



77 

 

strain to make this process possible. Monomers based on norbornene derivatives are 

especially popular, as they can be readily synthesized from Diels-Alder reactions with 

cyclopentadiene. It is worth noting that only unsubstituted double bonds can be easily 

ring-opened using Grubbs initiators, and it is very difficult to metathesize or ROMP tri- 

and tetra-substituted olefins.  

 

 

 Figure 2.2.The chemical structures of the PDI-grafted polynorbornenes. 

 

In this chapter, the incorporation of various PDI derivatives onto the side-chains 

of polynorbornenes, as shown in Figure 2.2, is described, along with the investigation of 

these materials as electron-transport materials for organic electronic applications, 

including OFETs and OPVs. First of all, aromatic-bay-unmodified perylene diimides, 

C7PDI homopolymer (HP) and C11PDI HP, with different side-chains on the N-
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terminal were synthesized to investigate the effect of the choice of different end-swallow-

tails on device performance. Also, a polynorbornene bearing PDI pendants with electron-

donating amino moiety in the aromatic bay position was prepared. The attachment of the 

amino donor to the bay position is expected to red-shift the PDI absorption for better 

coverage of solar spectrum due to the possible amino to PDI internal charge-transfer (ICT) 

character in N-PDI HP.35 Furthermore, the investigation of these three homopolymers 

could also benefit the selection of the PDI building blocks for the PDI-OT-based diblock 

copolymers research described in Chapter 3.  

2.2 Synthesis of the homopolymers 

 The syntheses of the two bay-unmodified-PDI-grafted homopolymers (C7PDI 

HP and C11PDI HP) with different N-terminal swallow-tail side-chains and respective 

monomers (C11PDI or C7PDI) are shown in Scheme 2.1. The synthesis route started 

from the imidization reaction of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) 

with respective primary amine bearing different swallow-tails, following the literature 

procedure, which offered respective perylene diimides with high isolated yields.36 The 

following hydrolysis of the symmetrical perylene diimides (C11C11PDI and C7C7PDI) 

gave the perylene monoimide monoanhydride compounds (A1 and A2) in ~ 50% 

yields.37 Further imidization reactions between A1 or A2 with large excess 3-

aminopropan-1-ol afforded compound B1 or B2, which had an alcohol group for further 

functionalization in good yields (between 75 to 90%). Dicyclohexylcarbodiimide/4-

(dimethylamino)pyridine (DCC/DMAP) assisted coupling reactions between the pure 

exo-isomer of bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and B1 or B2 at ambient 
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temperature were then applied to incorporate the norbornene moiety as a polymerizable 

group, yielding the PDI-grafted monomers (C11PDI or C7PDI) in isolated yields over 

80%. The N-terminal swallow-tails in the monomers affords good solubility and allows 

for ruthenium-complex-assisted ROMP in dichloromethane. It is also worth noting that 

these two PDI-based monomers are quite stable and no obvious change was observed in 

their proton NMR and UV-Vis absorption spectra with storage at ambient conditions for 

over two years.  

 The polymerizations of the two bay-unmodified-PDI-based monomers (C11PDI 

and C7PDI) were carried out using 0.5 mol/L monomor and 0.01 mol/L initiator in 

dichloromethane at ambient temperature under nitrogen atmosphere on a Schlenk line.26-

27,32 The “first-generation” Grubbs initiator was utilized in the polymer synthesis because 

of its “living” nature and easy control of polymerization, which will be more important 

for the synthesis of the block copolymers discussed in Chapter 3.38 Thin layer 

chromatography (TLC) is a suitable method to monitor the polymerization, since the 

polymers stay at the baseline while the respective monomers can move using chloroform 

as eluent for both cases. The red color and the strong yellow/yellow-orange color 

emission from the materials make this method quite sensitive. Ethyl vinyl ether was used 

to quench the polymerization by removing the attached ruthenium-based alkylidene from 

the polymer chains after TLC indicated that all the PDI-based monomer was 

consumed.30,32 These two homopolymers were purified using multiple precipitations by 

addition of the high concentration polymer solutions in good solvents, such as 

dichloromethane and chloroform, to poor solvents such as methanol. Subsequent Soxhlet 

extraction using methanol and acetone was used to further purify the polymers. The 
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isolated yields for the polymers were around 85% with relatively narrow molecular 

weight distributions. The value Mn = 18.5 kD and polydispersity (Mw/Mn) = 1.3 and Mn = 

18.0 kD and Mw/Mn = 1.3 were estimated according to GPC (toluene) results for C11PDI 

HP and C7PDI HP, respectively. These observed molecular weights are smaller than the 

ideal molecular weight (ca. 40 kD) assuming “living” ROMP occurs in our cases. This is 

presumably because the conformations of the PDI-grafted polymer-chains are different 

from the polystyrene standard for GPC analysis. It should be noted that different 

molecular weights for C11PDI HP were obtained using GPC with different solvents. For 

example, Mn for C11PDI HP was found to be 16.9, 18.5, and 66.5 kD, with similar 

Mw/Mn values obtained in tetrahydrofuran (THF), toluene, and chloroform based GPC 

respectively. Furthermore, a nearly linear relationship was found for Mn (based on GPC 

(THF)) versus the ratio of [monomer]/[initiator], for [monomer]/[initiator] ratios up to ~ 

70 : 1 for different C11PDI-based homopolymers. The small variations in the 

polydispersity (1.1 – 1.3), suggest that a well-controlled ROMP occurs during C11PDI 

HP synthesis. Because of the long swallow-tail side-chains on the N-terminal of the PDI 

pendants, these two PDI-based homopolymers are highly soluble (> 30 mg/mL) in 

common organic solvents, including toluene, dichloromethane, chloroform, and THF, 

which makes the preparation of high-quality thin films from C11PDI HP and C7PDI HP 

relatively straightforward.  
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Scheme 2.1.The synthetic scheme for the two PDI homopolymers. 

 As shown in Scheme 2.2, the synthesis of the N-PDI HP started from the mono-

bromination of the symmetrical perylene diimide39 via modification of a procedure 

described in the literature.40 The nucleophilic replacement of the bromine substituent on 

the PDI-bay position of compound C with 2-(piperazin-1-yl)ethanol in NMP solvent 
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afforded the corresponding unsymmetrical derivative D in a moderate yield (relatively 

low compared to that for similar reactions reported in the literature).35 Interestingly, 

based on UV-Vis absorption spectra of the reaction mixture, a longer reaction time (ca. 3 

hours instead of 1.5 hours) leads to lower yield of D and the formation of respective PDI 

without bay substituent. This phenomenon was described earlier in literature, and the 

mechanism for this conversion is still unclear.35 The DCC/DMAP-based coupling 

reaction was then utilized to synthesize the new monomers (N-PDI) at ambient 

temperature with a yield around 90%. Similar polymerizations were carried out on 

monomer N-PDI to give N-PDI HP with lower yield (60%) after multiple precipitations 

along with Soxhlet washing with hot methanol and acetone. It is worth noting that size-

exclusion chromatography (SEC) over cross-linked polystyrene beads is required to 

remove the very small amount of N-PDI monomer residue (< 5 % and which was not 

detectible in the 1H NMR spectrum) that was present after the Soxhlet extraction. This 

polymer has a much broader molecular weight distribution (Mw/Mn = 1.7) than those for 

the previous two bay-unmodified-PDI-based homopolymers with Mn = 19.6 kD, 

estimated form GPC (toluene). Similarly, this Mn is lower than the expected molecular 

weight (60 kD) presumably due to similar reason as that for C7PDI HP and C11PDI HP. 

N-PDI HP shows excellent solubility in common organic solvents, such as toluene (~ 40 

mg/mL), dichloromethane, chloroform, and THF, which makes it a potential candidate 

for wet-process electronics devices.  
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Scheme 2.2. The synthetic scheme for the N-PDI homopolymer. 

2.3 Optical properties of the PDIs 

 The UV-Vis absorption spectra of these three homopolymers and corresponding 

monomers in dilute chloroform solution (ca. 1 × 10-5 mol/L) are shown in Figure 2.3. The 

near superposition the absorption spectra of the C7PDI and C11PDI monomers can be 

attributed to their high degree of chemical similarity. The distinct four-peaked absorption 

spectral pattern with a vibrational progression of about 1400 cm-1 in the visible region 
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was observed for both monomers.41 Here, electronic transition that peaked at 490 nm is 

assigned to the (0,1) transition, and the one that peaked at 527 nm corresponds to the (0,0) 

transition.41 In dilute chloroform solution, the absorbance ratios from the two transitions 

((0,0)/(0,1)) are 1.66 for both monomers, which indicates free-PDI-type absorption in 

solution and limited molecular aggregation between the PDI units at this concentration 

(ca. 1 × 10-5 mol/L).41-42 The PDI-based peak extinction coefficients of the two PDI 

homopolymers are much lower than those for respective monomers at similar dye 

concentration. Also, the observed smaller (0,0)/(0,1) values, 0.89 and 0.91, respectively, 

for C7PDI HP and C11PDI HP, suggest much more aggregation of PDI units on the 

polymer side-chain even in dilute solution, as compared with the monomers, and there 

appears to be slightly more PDI-aggregation in C7PDI HP than the other polymer with 

the relatively smaller (0,0)/(0,1) value.42-43 Even more aggregate-PDI-type absorption 

was observed for these homopolymers in thin films (spin-coated on glass from 10 mg/mL 

toluene solution with rate of 1000 rpm for 1 minute) with smaller (0,0)/(0,1) values. 

Because of the electron-donating amino moiety attached at the PDI-bay position, both N-

PDI and N-PDI HP show ICT type absorption characteristics with significantly red-

shifted and broader absorptions, and without the fine vibronic structure in the UV-Vis 

spectra compared observed in the C7PDI- and C11PDI-based materials.35 Also, much 

lower peak extinction coefficients were observed relative to perylene diimides without 

aromatic bay substituent(s), which is similar to what has been observed in literature.35 

The broader absorption spectra of the N-PDI-based materials potentially could provide 

better solar spectrum coverage for OPV applications.2,44-45 However, the similarity of the 

absorption spectra between the N-PDI monomer and N-PDI HP suggests limited π-π 
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stacking of the repeat units on the N-PDI HP side chain. Such poor packing for N-PDI 

units might be attributed to the torsion caused by the bay substitutions, which force the 

twisting of the two naphthalene half units on N-PDI HP. Similar phenomena have been 

observed earlier for bay-tetrachloro-substituted or bay-dibromo-substituted PDIs.46-48 In 

addition, only limited differences in the absorption spectra were found between the thin-

film and solution of N-PDI HP, which suggests only a small degree of aggregation 

between the perylene units, even in the solid state. The optical band gaps for the 

monomers, C7PDI, C11PDI, and N-PDI, are 2.25, 2.25, and 1.76 eV, while those for 

homopolymers, C7PDI HP, C11PDI HP, and N-PDI HP, are 2.03, 2.03, and 1.66 eV, 

respectively. This was estimated from the onsets of the lower optical band in the solution 

absorption spectra according to Egap(optical) = 1240/lonset. The emission spectra of the 

C11PDI monomer and C11PDI HP at low concentration (~ 1 × 10-6 mol/L) are shown in 

Figure 2.5. The fluorescence peaks obtained for C11PDI monomer in both 

dichloromethane and toluene are mirror images of the respective absorption bands in the 

same solvents.1,41,49 On the other hand, the emission spectrum for  C11PDI HP loses the 

fine vibronic fine structure and exhibits a ca. 100 nm red-shift on the emission maximum, 

which  suggests aggregate-type PDIs on the homopolymer side-chain.49 This is consistent 

with the observation of the absorption spectra changing upon going from the C11PDI 

monomer to C11PDI HP. Similar emission behaviors were observed for C7PDI and 

C7PDI HP.  However, no detectable emission was observed for N-PDI and N-PDI HP 

in toluene solution.  
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Figure 2.3. The UV-Vis absorption spectra of the monomers: N-PDI (black), C7PDI (red), 
and C11PDI (blue) (left) and respective homopolymers: N-PDI HP (black), C7PDI HP (red), 
and C11PDI HP (blue) (right) in chloroform.  

 

 

Figure 2.4. The UV-Vis absorption of spin-casted films of N-PDI HP (black), C7 PDI HP (red), 
and C11 PDI HP (blue) on glass, using 10 mg/mL polymer solution in toluene at 1000 rpm for 
1 minute. 
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Figure 2.5. The emission spectra of C11PDI (red) and C11PDI HP (black) in CH2Cl2. In both 
cases, the sample was excited at 490 nm and the emission intensity has been normalized to the 
same absorbance at the excitation wavelength. 

 
2.4 Redox properties of the monomers 

 The redox properties of the homopolymers were estimated via cyclic voltammetry 

(CV) measurements of the respective monomers in anhydrous dichloromethane with 

ferrocene (FeCp2) as an internal reference (Figure 2.6). The half-wave potential (E1/2) 

values (defined as (Epa + Epc)/2, where Epa and Epc are peak oxidation and reduction 

potentials, respectively) of monomers C7PDI, C11PDI, and N-PDI, are -1.04, -1.03, and 

-1.14 V for the first reduction and -1.26, -1.24, and -1.37 V at the second reduction vs. 

FeCp2
+/0

 redox couple. The reductions for all three monomers were found to be reversible 

by cyclic voltammetry at scan rates of 50 mVs-1, exhibiting Ipa/Ipc (the ratio of the peak 

currents of the oxidative and reductive waves) values of ca. 1. The similarities in the 

electrochemical properties of the C11PDI and C7 PDI could be attributed to similarities 
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in their chemical structures. N-PDI is slightly less readily reduced compared with 

C11PDI and C7 PDI (~ 0.1 V), which is consistent with the earlier observations in the 

literature of a small change (ca. 0.3 V) in the reduction potential of 1,(6)7-bispyrrolidine-

substituted-PDI compared to PDI without the bay-substituent.35 However, the half-wave 

reduction potential indicates that it is still a sufficient electron acceptor for OPV cells 

involving blends with typical donor materials such as P3HT.9 An EC-type (reversible 

electron transfer followed by a rapid chemical decomposition) molecular oxidation peak 

was observed for N-PDI at E1/2
+/0 = ~ 0.64 V vs. FeCp2

+/0. An “electrochemical gap” of 

1.78 eV, estimated from the redox potentials for N-PDI, is close to its optical bandgap 

(1.76 eV) obtained from the absorption onset in chloroform. This may indicate that the 

energetic stabilization by strong solvation of ionic species in the CV measurements (at 

least in 0.1 M solutions of tetra-n-butylammonium hexafluorophosphate in dry 

dichloromethane) is similar to that of the “exciton-binding energy” of the exicted-state. 

No oxidation peaks were observed for C7PDI and C11PDI in dichloromethane. The first 

electrochemical half-wave reduction potentials E1/2
0/- were used to estimate the electron 

affinity (EA) with EA = -e (E1/2
0/- + 4.8 V) based on the ionization potential (IP) of 4.8 

eV for solid state ferrocene with respect to the vacuum level.50 Here, the EAs for C7PDI, 

C11PDI, and N-PDI are -3.8 eV, -3.8 eV, and -3.7 eV, respectively. Their IPs are 

estimated from the optical bandgaps and EA values to be 6.0, 6.0, and 5.4 eV respectively 

for C7PDI, C11PDI, and N-PDI, according to IP = - (EA – Egap). Here, the IP and EA 

values for these polymers, especially for the ones without PDI-bay-substituents, are 

comparable to those fullerene-based acceptors including PCBM, while their better light-
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harvesting ability in visible range over PCBM suggests their potential advantage as 

acceptors for solar cell applications.  
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Figure 2.6. The cyclic voltammograms of N-PDI (black), C7PDI (red), and C11PDI (blue) in 
CH2Cl2, 0.1 M [n-Bu4N][PF6], with scan rate = 50 mV s-1, with ferrocene as an internal 
reference. 
 
 
2.5 Powder XRD of the homopolymers   

X-ray diffraction (XRD) is a powerful technique for obtaining information on the 

molecular packing and crystallinity of organic/polymer materials in crystals, powders, or 

even thin-films. As previously shown in Figures 2.3, 2.4, and 2.5, the absorption and 

emission spectra of C11PDI and C7PDI in solution are significantly different from the 

respective homopolymers in dilute solution and solid states. This may be attributable to 



90 

 

the strong intermolecular interactions, such as π-π stacking, between the individual PDI 

pendants in the polymer side-chains. On the other hand, no obvious absorption change 

was observed for N-PDI-based materials from the monomer to the polymer, which 

indicated limited molecular π-π stacking for the perylene segments in the polymer chains. 

Powder XRD measurements on these homopolymers were carried out to further confirm 

the assumption. As shown in Figure 2.6,  in the diffraction angle, 2q, range of 15 – 20°, 

all three polymers show a broad peak correlated to a d-spacing of 4.7 Å, according to the 

Bragg equation nλ = 2dsinq. This could be assigned to the halo peak and is attributed to 

the characteristic of the amorphous phase probably due to the polynorbornene or alkyl 

chains stacking.29 Furthermore, for the C7PDI and C11PDI HP, a peak at ca 26° 

corresponding to a d-spacing of 3.45 Å was observed in the XRD spectra, which is rather 

close to the reported π-π stacking distances of PDI-based materials in small molecules or 

polymer side-chains.1,29 This agrees with the aggregate-type PDI UV-Vis absorption 

spectra of these two polymers. In contrast, there is no obvious peak correlated to π-π 

stacking d-spacing found in the powder XRD of N-PDI HP. The low degree of PDI-type 

aggregation in N-PDI HP is, therefore, perhaps attributable to the twisting of the PDI 

molecular plane caused by the substituent (the secondary amino group) in the bay 

position, which causes a propeller-like twisting of the two naphthalene half units in PDI, 

and prevents face-to-face π–π stacking, as discussed earlier.1,48 Attempts to obtain the 

XRD patterns for thin films on silicon wafers from these three homopolymers failed, 

presumably because of the low film quality on silicon substrates from either spin-coating 

or drop-casting from various solvents including chlorobenzene and toluene.  
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Figure 2.7. Power XRD of N-PDI HP (black), C7PDI HP (red), and C11PDI HP (blue) with a 
Cu Ka source (l = 1.5406 Å) in continuous scan mode with a step of 0.02o (Data were collected 
by Dr Soo Young Kim in the Marder group).  

 

2.6 Thermal properties of the homopolymers   

 As revealed in Figure 2.8, all three homopolymers exhibited good thermal 

stability, the decomposition temperatures (Td), defined as that at which 5% weight loss is 

observed are found to be ca. 380 oC, under nitrogen atmosphere, as determined by 

thermogravimetric analysis (TGA) heating from room temperature to 500 oC at a heating 

rate of 5 oC/min. The thermal behavior of these polymers was recorded through 

differential scanning calorimetry (DSC) analysis over the temperature range from -30 to 

300 oC under nitrogen atmosphere. The DSC trace of the second heating with a heating 

rate of 5 oC/min are shown in Figure 2.8 and reveal glass transition temperatures (Tg) of 

171, 159, and 76 oC, for C7PDI HP, C11PDI HP, and N-PDI HP, respectively. The 
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much lower Tg of N-PDI HP as compared to the other two homopolymers is consistent 

with the limited π-π stacking interaction of the PDI moieties on the N-PDI HP side-chain 

observed in their absorption spectra and powder XRD. The slightly lower Tg of C11PDI 

HP over C7PDI HP may be attributed to the longer N-terminal swallow-tail side-chain 

on the PDI pendants. There is a small melting transition at 223 oC in the DSC trace of 

C11PDI HP, which suggests a low degree of crystallinity presented for this polymer in 

the solid state. There is no obvious melting transition observed for C7PDI HP and N-

PDI HP in the DSC trace. The good thermal-stability as well as the relatively high Tg 

(>150 oC), are both positive aspects for using C7PDI HP and C11PDI HP in organic 

electronic devices, including OFETs and OPVs. 
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Figure 2.8. TGA traces (left) and DSC (right) traces for the second heating process of the N-
PDI HP (black), C7 PDI HP (red), and C11 PDI HP (blue) with a heating rate of 5 oC/min 
under N2. 
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Table 2.1. Summary of synthetic yield, molecular weight, the thermal properties (TGA and 
DSC), and EAs and IPs for the homopolymers. 

Polymer Yield    Mn Mw / Mn   Td (
oC)   Tg(

oC) EA (eV)a IP(eV) a 

C11PDI HP   85% 18.6 k      1.3      385      159 -3.8 6.0 

C7PDI HP   93% 18.1 k      1.3      386      171 -3.8 6.0 

N-PDI HP   57% 19.6 k      1.7      380     76 -3.7 5.4 

a : EA = -e (E1/2
0/- + 4.8 V) and IP = - (EA – Egap(optical)) 

2.7 OFET and solar cell device performance for the three homopolymers   

 OFET devices containing the PDI-based polymers as the solution-processed 

active layer were fabricated by Dr. Shree Tiwari in the Kippelen group using top-contact 

configuration (as shown in Figure 2.9), using calcium electrodes to investigate their field-

effect electron mobilities. Here, a hydroxyl-free gate dielectric material, 

bis(benzocyclobutene) derivative (BCB), was used to limit the number of electron-

trapping sites in the organic/dielectric interface.51 The device performances are 

summarized in Table 2.2 and the device characteristics were shown in Figure 2.10. The 

pristine C11PDI HP and C7PDI HP films showed electron mobilities of 7.8 × 10-6 and 

1.8 × 10-5 cm2V-1s-1, respectively; these electron mobilities were improved to 2.7 × 10-5 

and 4.9 × 10-5 cm2V-1s-1 by annealing the transistors at 200 °C for 1 hour in a nitrogen 

glove-box. The current on/off ratios of the devices are on the order of 102, and thermal 

annealing shows only small effects on the on/off ratios. A slight decrease in device 

performance was observed with further annealing at 250 oC for another hour for the 

devices. C7PDI HP shows slightly better electron-transport ability than C11PDI HP in 

OFETs, perhaps because of the shorter N-terminus swallow-tail substitution. Thermal 
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treatments of the homopolymer films above their glass transition temperatures help to 

improve the electron mobilities, probably due to better molecular ordering during the 

annealing process. No detectable field-effect electron mobility was observed from 

devices based on N-PDI HP in a similar device geometry with either pristine or annealed 

films. This may be attributed to the low aggregation of the perylene repeat units on the 

polymer chain, which is similar to the earlier observation of a decrease in electron 

mobility of tetraochloro-bay-substituted-PDI (ca. 1 × 10-5 cm2V-1s-1) compared with PDI 

without bay-substitutions  (> 10-2 cm2V-1s-1) in vacuum-deposited devices.52 

Table 2.2. Summaries of OFET device characteristics for the homopolymers (Data were 
collected by  Dr. Shree Tiwari in the Kippelen group). 

 

 

Figure 2.9. General OFET device structure for these homopolymers (Figure was adapted 
from Dr. Shree Tiwari in the Kippelen group). 
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Figure 2.10. OFET device characteristics for C11PDI HP after annealing at 200 oC (Figures 
were adapted from Dr. Shree Tiwari in the Kippelen group). 

 

 Bulk heterojunction organic photovoltaic devices were constructed using a 1:1 

weight ratio of P3HT:homopolymer blends by Mr. William Potscavage Jr. in the 

Kippelen group, and the device performances are summarized in Table 2.3. For the 

devices with average active layer thicknesses of ~ 100 nm, P3HT:C11PDI HP cells 

show better performance compared with the other two blend systems, with short-circuit 

current (JSC) and PCEs up to 1.8 ± 0.1 mA/cm2 and 0.38 ± 0.01%, respectively. 

Measurements of the incident photon-to-current efficiency (IPCE, Figure 2.13) show 

much higher energy conversion in the whole spectral range than the other two systems, 

and the IPCE is over ~ 10% between 500 – 600 nm for devices from P3HT:C11PDI 

HP blend. The much lower JSC and PCE for P3HT:N-PDI HP blend compared with the 

other two blends might be attributed to the low electron mobility originating from the 

low aggregation of the perylene repeat units of this material. The expansion of the 
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absorption spectrum for N-PDI HP does not benefit the PCE in devices here. Limited 

contribution from the lower energy absorptions of the N-PDI HP was observed 

according to IPCE wavelength plot and lower IPCE over the whole UV-Vis spectra 

range were obtained against the other two polymer blends. Despite the low VOC from 

P3HT:N-PDI HP (0.44 V), the VOC from devices based on P3HT:C11PDI HP and 

P3HT:C7PDI HP are similar to those of many other organic solar cells, the PCEs of 

these devices are primarily limited by the JSC and fill factor (FF). The low electron 

mobility of these materials might be a major reason for the small JSC, though other 

factors including film morphologies and charge photo-generation yields might also play 

import roles. Furthermore, the low electron mobilities of the PDI-based polymers could 

result in charge accumulation and inefficient charge collection, while the possible 

unbalanced charge carrier mobilities (P3HTs show hole mobility = ca. 10-3 to 10-4 

cm2V-1s-1 in P3HT:PCBM blend)45 could decrease the FF and overall PCEs of BHJ 

devices by promoting charge recombination.53-54 Annealing of the devices at 125 ºC for 

30 minutes was tested, but this thermal treatment led to a slight decrease in all of the 

performance parameters. The higher JSC and IPCE of devices from P3HT:C11PDI HP 

blend might be attributed to more favourable nanomorphology, considering the 

P3HT:homopolymer blend films showed similar UV-Vis absorption, and C7PDI HP 

showed slightly higher electron mobility over C11PDI HP in OFET devices. It is worth 

noting that 0.38% has been among the top reported PCEs for those P3HT:PDI BHJ 

devices to date,55-56 especially for those device with 1:1 donor to acceptor weight ratio, 

although it is still a quite low PCE value relative to BHJ solar cells with other acceptors, 

such as fullerene derivatives.  



97 

 

 

Figure 2.11. General solar cell structure for the homopolymer/P3HT blends (figure was 
adapted from William Potscavage Jr. in the Kippelen group). 

 

300 400 500 600 700 800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 C11PDI HP/P3HT (1:1) 
 C7PDI HP/P3HT (1:1)

~ 80nm film on PEDOT:PSS coating ITO 

A
bs

or
ba

nc
e 

Wavelength (nm)

 

Figure 2.12. The films absorption spectra of C11PDI HP/P3HT (black) and C7PDI HP/P3HT 
(red) on PEDOT : PSS-coated ITO. These films were prepared in a way similar to real solar 
cell fabrication.  
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Table 2.3. Summary of solar cell characteristics for the homopolymers (Data were collected 
by Mr. William Potscavage Jr. in the Kippelen group). 

Polymer   VOC (mV) JSC (mA/cm2)     FF PCE(%) 

P3HT: C11PDI HP (1 : 1) 603 ± 28 1.9 ± 0.1 0.31 ± 0.01    0.38 ± 0.01 

P3HT: C7PDI HP (1 : 1) 619 ± 3 0.85 ± 0.02 0.31 ± 0.01    0.20 ± 0.01 

P3HT: N-PDI HP (1 : 1) 441 ± 13 0.20 ± 0.01 0.32 ± 0.01    0.04 ± 0.01 
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Figure 2.13. The I-V characteristics of the solar cells for P3HT:C11PDI HP blend and IPCE 
curves for the HP/P3HT blends (Figures were adapted from Mr. William Potscavage Jr. in 
the Kippelen group). 

 

2.8 Morphology studies of the P3HT/PDI HP blends 

 Recently, Kelvin probe force microscopy57 (KPFM) has been extensively 

employed to characterize organic transistors58 and solar cells.59 KPFM is a contactless 

atomic force microscope (AFM) technique that measures the height variations on the 

sample surface while employing the electrostatic force between sample and tip to yield 

electric surface potential (SP) images. The SP images of a sample can, to a first 
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approximation, be considered the work function of the sample by taking into account the 

effects due to the surface polarizability as well as band bending.59 Hence, KPFM could 

potentially offer useful phase-segregation information about the D-A blend regarding the 

difference in work functions for the donor rich and acceptor rich domains.59 KPFM was 

applied to study the morphology of PDI HP/P3HT (1:1, weight ratio) blend films by Dr. 

Debin Wang in the Riedo group. As shown in the topography images of Figure 2.14, 

C11PDI HP/P3HT blend films (prepared under similar condition as for real devices) 

show much smoother surfaces (average roughness = 1.5 nm) over that from C7PDI 

HP/P3HT films (average roughness = 15 nm). A thin film morphology with isolated 

islands was obtain in the C7PDI HP/P3HT blend, probably due to the PDI-based 

aggregation, which was previously observed in other PDI/donor polymer blend films.60 

Regarding to the SP images, C11PDI HP/P3HT blend films show phase separation with 

domain sizes of 300 – 400 nm, while the domain size for the C7PDI HP/P3HT blend 

films is upwards of ~1 µm. The much smaller phase separation domain size for C11PDI 

HP/P3HT blend film could potentially lead to a larger D/A interface, which might 

consequently result in higher photo-current and PCEs in solar cell devices. This is 

consistent with the higher JSC and better solar cell performance found for the C11PDI 

HP/P3HT blend relative to the C7PDI HP/P3HT blend. Thermal annealing at 125 oC for 

30 minutes (of similar annealing conditions for the respective solar cells) under nitrogen 

did not result in obvious changes of the film morphology. It should be noted that the 

KPFM images shown here only provide information about lateral phase separation at the 

surface, and information about phase separation in the bulk of the film is unclear. A 
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transmission electron microscopy (TEM) image of the cross-section of the films might 

provide the bulk morphology information, although we do not have this expertise.   

 

 

Figure 2.14. The topography (left two) and surface potential (right two) images for 
P3HT:C11PDI HP (top two) and P3HT:C7PDI HP (bottom two) by KPFM. Here, major 
topographical hills lead to dark areas and thus low surface potential in the SP images, 
especially for P3HT:C7PDI HP blend (KPFM images were collected by Dr. Debin Wang in 
the Riedo group). 

 

2.9 Conclusions  

A series of PDI-grafted homopolynorbornenes have been synthesized, 

characterized and investigated as electron-transport materials in OFETs and acceptors in 
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BHJ-based solar cells. It was found that the PDI pendants tended to π-π aggregate with 

other nearby PDI units in C11PDI HP and C7PDI HP, even in dilute solution, with large 

changes in the absorption and emission spectra on going from the monomer to polymer. 

Such π-π stacking in polymer side-chains could be largely suppressed by the 

incorporation of functional groups in the bay positions. However, this resulted in poor 

OFET and OPV performance for N-PDI HP, despite the fact that it showed a broader and 

more red-shifted absorption spectrum relative to those of C11PDI HP and C7PDI HP. 

The OFETs based on C11PDI HP and C7PDI HP gave electron mobility of up to ca. 5 ´ 

10-5 cm2V-1s-1 after thermal annealing. In the solar cells made from the P3HT:PDI HP 

blends, devices based on C11PDI HP exhibited moderate performance with a PCE up to 

0.38 ± 0.01% without optimization. This value is among the highest reported PCEs for 

PDI/P3HT blends. The study of P3HT:PDI HP blends with KPSM indicates more 

favorable morphology from P3HT:C11PDI HP blends over P3HT:C7PDI HP blends, 

including a much smoother surface and possible small domain size. This may provide 

useful information for further design of donor–acceptor type diblock copolymers with 

PDI-based pendants. In summary, the current study indicates that C11PDI HP blended 

with P3HT shows better performance in solar cells than the other two polymers. C11PDI 

will be chosen as the building block in preparing the D–A type diblock copolymers 

shown in Chapter 3.  

2.10 Experimental section 

General: Most organic and inorganic chemicals in this chapter were obtained from 

Aldrich, Alfa Aesar, and TCI and used without further purification. 1-Undecyl-
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dodecylamine,61 8-aminopentadecane,61 and pure exo-isomer of bicyclo[2.2.1]hept-5-ene-

2-carboxylic acid62 were synthesized via literature procedures or from Solvay. The 1H 

and 13C NMR spectra were collected on a Bruker 400 MHz or a Bruker 500 MHz 

spectrometer. Mass spectra were measured on an Applied Biosystems 4700 Proteomics 

Analyzer using MALDI mode. Elemental analyses (for C, H, N elements in this Chapter) 

were carried out by Atlantic Microlab using a LECO 932 CHNS elemental analyzer. 

Solution (chloroform) and thin film UV-Vis absorption spectra were recorded on a Varian 

Cary 500 UV/Vis/near-IR spectrophotometer while solution (toluene) emission spectra 

were recorded with a Shimadzu FP-5301PC spectrofluorometer. Electrochemical 

measurements were carried out under nitrogen in deoxygenated 0.1 M solutions of tetra-

n-butylammonium hexafluorophosphate in dry dichloromethane using a computer-

controlled BAS 100B electrochemical analyzer, a glassy-carbon working electrode, a 

platinum-wire auxiliary electrode, and an Ag wire anodized with AgCl as a pseudo-

reference electrode. The cyclic voltammetry was performed using a scan rate of 50 mV/s. 

The potentials were referenced to FeCp2
+/0 redox couple by using ferrocene as an internal 

standard. TGA measurements were performed on an NETZSCH STA 449C analyzer 

under a nitrogen flow of 40 mL/min with a heating rate of 5 oC/min. DSC measurements 

were performed on a TA Instruments DSC Q200 analyzer under a nitrogen flow of 50 

mL/min with a heating rate of 5 oC/min. Powder XRD data was collected on a Scintag X1 

diffractometer with a Cu Kα source (l = 1.5406 Å) in a continuous scan mode with a step 

size of 0.02o.  

 KPFM was carried out with a two-pass lift mode procedure using a Veeco 

Multimode IV AFM by Dr. Debin Wang in the Riedo group. The surface topography is 
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obtained by generic tapping mode scan in the first pass and the surface potential is 

measured on the second pass. On the first pass (main scan), the cantilever was 

mechanically vibrated near its resonant frequency by a small piezoelectric oscillator. On 

the second pass (interleave scan), the tip ascends to a constant lift scan height (20 nm); 

the tapping mode excitation oscillator is turned off and an oscillating AC voltage is 

applied directly to the probe tip. A lock-in amplifier and a servo feedback unit were used 

to track the cantilever oscillation at the resonant frequency and record the contact 

potential. Nanoworld SCM-PIT probes were selected for EFM and KPFM operation. The 

mechanical properties (force constant k = 2.8 N/m and resonance frequency f = 75 kHz) 

and the special Pt/Ir5 coating of probes are optimized for electrostatic force application. 

The typical tip radius of curvature is less than 25 nm. 

 OFET devices were fabricated by Dr. Shree Tiwari in the Kippelen group on 

heavily doped n-type silicon substrates (resistivity < 0.005 Wcm, with wafer thickness of 

~ 500 µm from Silicon Quest Int., also serves as gate electrodes) with 200 nm thick 

thermally grown SiO2 as the gate dielectric, in top-contact configuration. Ti/Au (10 

nm/100 nm) metallization on the backside of the substrate was performed to enhance the 

gate electrical contact. Firstly, the substrates were cleaned by O2 plasma for three minutes, 

to ensure the film adhesion by increase the hydrophilicity of the SiO2 surface. The SiO2 

dielectric surface was then passivated with a thin buffer layer of bisbenzocyclobutene 

(BCB) (CycloteneTM, Dow Chemicals), to provide a high-quality hydroxyl-free interface. 

The BCB was dissolved in 1,3,5-trimethylbenzene (TMB) with a weight ratio of 1 : 20 

and spin-coated at 3000 rpm for 1 minute to provide a very thin, uniform layer (thickness 

was not measured, final capacitance density was measured). The samples were annealed 
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at 250 °C for 1 hour inside a nitrogen glove-box for thermal-cross-linking. The total 

capacitance density (COX) was measured using parallel-plate capacitors as 13.86 nF/cm2. 

A thin layer of organic materials was formed on the substrates by spin coating at 1000 

rpm for 60 seconds from a solution prepared in chlorobenzene (15 mg/mL). The devices 

were never exposed to ambient environment in the process. Calcium (ca. 150 nm) 

electrodes were deposited through a shadow mask to act as source and drain electrodes.  

 Solar cells were fabricated by Mr. William Potscavage Jr., in the Kippelen group, 

by blending one of the homopolymers with P3HT (Rieke Metals, 4002-E). Solutions of a 

PDI polymer and P3HT were made in chlorobenzene (1 : 1 weight ratio, 20 mg/mL) for 

each of the polymers. ITO-coated glasses (Colorado Concept Coatings LLC) with a sheet 

resistivity of ca. 15 Ω/sq. were used as the substrates for the solar cells. The substrates 

were cleaned in an ultrasonic bath of detergent water, rinsed with deionized water, and 

then cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol. 

Nitrogen was used to dry the substrates after each of the last three baths. A 300-nm-thick 

layer of SiOx was deposited on the cleaned ITOs by e-beam deposition (AXXIS, Kurt J. 

Lesker) to pattern the anode. Next, the substrates were ultrasonicated in isopropanol for 

15 minutes, blown dry with nitrogen, and air-plasma treated for 2 minutes. A hole-

conducting layer of PEDOT : PSS (poly(3,4-ethylenedioxythiophene) : 

poly(styrenesulfonate), CLEVIOS P VP AI 4083, H. C. Starck) was filtered through a 

0.45-µm-pore PVDF filter and spin coated on the substrates at 5000 rpm for 1 minute, 

and the substrates were annealed at 140 ºC for 10 minutes in ambient atmosphere. After 

loading into a nitrogen-filled glove box, films of the polymer mixtures were deposited on 

the substrates by spin coating for 1 minute at speeds of 1000 – 1500 rpm for the mixture. 
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All solutions were filtered through 0.2-µm-pore PTFE filters prior to spin coating. The 

substrates were then loaded into a vacuum thermal evaporation system (SPECTROS, 

Kurt J. Lesker) connected to the glove box, and ~200 nm of Al was deposited through a 

shadow mask at a rate of 1 – 3 Å/s and a base pressure of ~7 × 10-8 Torr to define the 

cathodes. The completed devices were transferred in a sealed container to another 

nitrogen-filled glove box for electrical measurements. Current-voltage characteristics 

were measured using a source meter (2400, Keithley) controlled by a LabVIEW program. 

When testing the solar cells under illumination, filtered light from a 175 W Xenon lamp 

(ASB-XE-175EX, CVI) was used as a broadband light source with an irradiance of ~ 72 

mW/cm2 to simulate sunlight. A monochromator and calibrated photodiode were used to 

measure IPCE.  

Solar cells were fabricated by Mr. William Potscavage Jr., in the Kippelen group, by 

blending one of the homopolymers with P3HT (Rieke Metals, 4002-E). Solutions of a 

PDI polymer and P3HT were made in chlorobenzene (1 : 1 weight ratio, 20 mg/mL) for 

each of the polymers. ITO-coated glasses (Colorado Concept Coatings LLC) with a sheet 

resistivity of ca. 15 Ω/sq. were used as the substrates for the solar cells. The substrates 

were cleaned in an ultrasonic bath of detergent water, rinsed with deionized water, and 

then cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol. 

Nitrogen was used to dry the substrates after each of the last three baths. A 300-nm-thick 

layer of SiOx was deposited on the cleaned ITOs by e-beam deposition (AXXIS, Kurt J. 

Lesker) to pattern the anode. Next, the substrates were ultrasonicated in isopropanol for 

15 minutes, blown dry with nitrogen, and air-plasma treated for 2 minutes. A hole-

conducting layer of PEDOT : PSS (poly(3,4-ethylenedioxythiophene) : 
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poly(styrenesulfonate), CLEVIOS P VP AI 4083, H. C. Starck) was filtered through a 

0.45-µm-pore PVDF filter and spin coated on the substrates at 5000 rpm for 1 minute, 

and the substrates were annealed at 140 ºC for 10 minutes in ambient atmosphere. After 

loading into a nitrogen-filled glove box, films of the polymer mixtures were deposited on 

the substrates by spin coating for 1 minute at speeds of 1000 – 1500 rpm for the mixture. 

All solutions were filtered through 0.2-µm-pore PTFE filters prior to spin coating. The 

substrates were then loaded into a vacuum thermal evaporation system (SPECTROS, 

Kurt J. Lesker) connected to the glove box, and ~200 nm of Al was deposited through a 

shadow mask at a rate of 1 – 3 Å/s and a base pressure of ~7 × 10-8 Torr to define the 

cathodes. The completed devices were transferred in a sealed container to another 

nitrogen-filled glove box for electrical measurements. Current-voltage characteristics 

were measured using a source meter (2400, Keithley) controlled by a LabVIEW program. 

When testing the solar cells under illumination, filtered light from a 175 W Xenon lamp 

(ASB-XE-175EX, CVI) was used as a broadband light source with an irradiance of ~ 72 

mW/cm2 to simulate sunlight. A monochromator and calibrated photodiode were used to 

measure IPCE.  

Solar cells were fabricated by Mr. William Potscavage Jr., in the Kippelen group, by 

blending one of the homopolymers with P3HT (Rieke Metals, 4002-E). Solutions of a 

PDI polymer and P3HT were made in chlorobenzene (1 : 1 weight ratio, 20 mg/mL) for 

each of the polymers. ITO-coated glasses (Colorado Concept Coatings LLC) with a sheet 

resistivity of ca. 15 Ω/sq. were used as the substrates for the solar cells. The substrates 

were cleaned in an ultrasonic bath of detergent water, rinsed with deionized water, and 

then cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol. 
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Nitrogen was used to dry the substrates after each of the last three baths. A 300-nm-thick 

layer of SiOx was deposited on the cleaned ITOs by e-beam deposition (AXXIS, Kurt J. 

Lesker) to pattern the anode. Next, the substrates were ultrasonicated in isopropanol for 

15 minutes, blown dry with nitrogen, and air-plasma treated for 2 minutes. A hole-

conducting layer of PEDOT : PSS (poly(3,4-ethylenedioxythiophene) : 

poly(styrenesulfonate), CLEVIOS P VP AI 4083, H. C. Starck) was filtered through a 

0.45-µm-pore PVDF filter and spin coated on the substrates at 5000 rpm for 1 minute, 

and the substrates were annealed at 140 ºC for 10 minutes in ambient atmosphere. After 

loading into a nitrogen-filled glove box, films of the polymer mixtures were deposited on 

the substrates by spin coating for 1 minute at speeds of 1000 – 1500 rpm for the mixture. 

All solutions were filtered through 0.2-µm-pore PTFE filters prior to spin coating. The 

substrates were then loaded into a vacuum thermal evaporation system (SPECTROS, 

Kurt J. Lesker) connected to the glove box, and ~200 nm of Al was deposited through a 

shadow mask at a rate of 1 – 3 Å/s and a base pressure of ~7 × 10-8 Torr to define the 

cathodes. The completed devices were transferred in a sealed container to another 

nitrogen-filled glove box for electrical measurements. Current-voltage characteristics 

were measured using a source meter (2400, Keithley) controlled by a LabVIEW program. 

When testing the solar cells under illumination, filtered light from a 175 W Xenon lamp 

(ASB-XE-175EX, CVI) was used as a broadband light source with an irradiance of ~ 72 

mW/cm2 to simulate sunlight. A monochromator and calibrated photodiode were used to 

measure IPCE.  

Solar cells were fabricated by Mr. William Potscavage Jr., in the Kippelen group, 

by blending one of the homopolymers with P3HT (Rieke Metals, 4002-E). Solutions of a 
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PDI polymer and P3HT were made in chlorobenzene (1 : 1 weight ratio, 20 mg/mL) for 

each of the polymers. ITO-coated glasses (Colorado Concept Coatings LLC) with a sheet 

resistivity of ca. 15 Ω/sq. were used as the substrates for the solar cells. The substrates 

were cleaned in an ultrasonic bath of detergent water, rinsed with deionized water, and 

then cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol. 

Nitrogen was used to dry the substrates after each of the last three baths. A 300-nm-thick 

layer of SiOx was deposited on the cleaned ITOs by e-beam deposition (AXXIS, Kurt J. 

Lesker) to pattern the anode. Next, the substrates were ultrasonicated in isopropanol for 

15 minutes, blown dry with nitrogen, and air-plasma treated for 2 minutes. A hole-

conducting layer of PEDOT : PSS (poly(3,4-ethylenedioxythiophene) : 

poly(styrenesulfonate), CLEVIOS P VP AI 4083, H. C. Starck) was filtered through a 

0.45-µm-pore PVDF filter and spin coated on the substrates at 5000 rpm for 1 minute, 

and the substrates were annealed at 140 ºC for 10 minutes in ambient atmosphere. After 

loading into a nitrogen-filled glove box, films of the polymer mixtures were deposited on 

the substrates by spin coating for 1 minute at speeds of 1000 – 1500 rpm for the mixture. 

All solutions were filtered through 0.2-µm-pore PTFE filters prior to spin coating. The 

substrates were then loaded into a vacuum thermal evaporation system (SPECTROS, 

Kurt J. Lesker) connected to the glove box, and ~200 nm of Al was deposited through a 

shadow mask at a rate of 1 – 3 Å/s and a base pressure of ~7 × 10-8 Torr to define the 

cathodes. The completed devices were transferred in a sealed container to another 

nitrogen-filled glove box for electrical measurements. Current-voltage characteristics 

were measured using a source meter (2400, Keithley) controlled by a LabVIEW program. 

When testing the solar cells under illumination, filtered light from a 175 W Xenon lamp 
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(ASB-XE-175EX, CVI) was used as a broadband light source with an irradiance of ~ 72 

mW/cm2 to simulate sunlight. A monochromator and calibrated photodiode were used to 

measure IPCE.  

N,N'-Bis(1-undecyl-dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide:63 A mixture 

of perylene-3,4,9,10-tetracarboxydianhydride (6.0 g, 15 mmol), 1-undecyl-dodecylamine 

(12 g, 35 mmol), zinc acetate (1.6 g, 8.7 mmol), and imidazole (70 g) were heated at 

180 °C for 5 h before it was allowed to cool to room temperature and treated with 2 N 

aqueous HCl (400 mL). The mixture was then extracted with chloroform (2 × 200 mL). 

The organic phase was washed with water (3 × 100 mL) and dried over MgSO4. The 

solvent was then removed under reduced pressure and the residue was purified by flash 

column chromatography on silica gel, using CHCl3 / hexane (1:1 and then 2:1) as eluent 

to give the desired product as a red solid (12 g, 77%). 1H NMR (500 MHz, CDCl3): d   

8.64 (m, 8H), 5.18 (m, 2H), 2.22 (m, 4H), 1.86 (m, 4H), 1.4–1.1 (m, 72H), 0.80 (t, J = 

6.6 Hz, 12H). The 1H NMR spectrum of this product is consistent with that reported in 

the literature.63  

N,N'-Bis(1-heptyloctyl) perylene-3,4,9,10-tetracarboxylic diimide:64 A mixture of 

perylene-3,4,9,10-tetracarboxydianhydride (6.6 g, 17 mmol), 8-aminopentadecane (10 g, 

43 mmol), zinc acetate (1.6 g, 8.7 mmol) and imidazole (70 g) were heated at 180 °C for 

5 h before it was allowed to cool to room temperature and treated with 2 N aqueous HCl 

(400 mL). The mixture was then extracted with chloroform (2× 200 mL). The organic 

phase was washed with water (3 × 100 mL) and dried over MgSO4. The solvent was then 

removed under reduced pressure and the residue was purified by flash column 
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chromatography on silica gel, using CHCl3 / hexane (1:1 and then 2:1) as eluent to give 

the desired product as a red solid (10 g, 73%). 1H NMR (500 MHz, CDCl3): d  8.59–8.63 

(m, 4H), 8.50–8.52 (d, J = 8.0 Hz, 4H), 5.18–5.23 (m, 2H), 2.22–2.29 (m, 4H), 1.88–1.92 

(m, 4H), 1.25–1.38 (m, 40H), 0.82 (t, J = 6.6 Hz, 12H). The 1H NMR spectrum of the 

product is consistent with that reported in the literature.64 

N-(1-Undecyl-dodecyl)-perylene-3,4-dicarboxylicmonoanhydride-9,10 

dicarboxylicmonoimide (A1):63 N,N'-Bis(1-undecyl-dodecyl)-perylene-3,4,9,10-

tetracarboxylic diimide (1.0 g, 1.0 mmol), potassium hydroxide (powder, 0.19 g, 3.4 

mmol) in tert-butanol (18 mL) were heated to 120 °C and maintained at this temperature 

for 50 min under nitrogen. After the solution was cooled to ca. 100˚C, it was treated with 

acetic acid (17 mL) and 2 N aqueous HCl (10 mL). The resultant mixture was stirred at 

room temperature overnight and then extracted with chloroform (100 mL). The organic 

layer was washed sequentially with water (2 × 20 mL), 0.5 N aqueous NaHCO3 (20 mL), 

and water (20 mL) in sequence. The mixture was dried over MgSO4, and the solvent was 

removed under reduced pressure. The residue was purified by flash chromatography on 

silica gel eluted with CHCl3. A1 was obtained as a red solid (0.33 g, 48%). 1H NMR (500 

MHz, CDCl3): d : 8.72–8.66 (m, 8H), 5.18 (m, 1H), 2.25 (m, 2H), 1.88 (m, 2H), 1.35–

1.29 (m, 36H), 0.82 (t, J = 6.3 Hz, 6H). Anal. Calcd for C47H55NO5:  : C, 79.07; H, 7.76; 

N, 1.96. Found: C, 78.86; H, 7.79; N, 1.94. The 1H NMR spectrum of which is consistent 

with that reported in the literature.63  

N-(1-Heptyloctyl))-perylene-3,4-dicarboxylicmonoanhydride-9,10 

dicarboxylicmonoimide (A2):64 N,N’-Bis(1-heptyloctyl) perylene-3,4,9,10-

tetracarboxylic diimide (3.2 g, 4.0 mmol), potassium hydroxide (0.55 g, 8.4 mmol) in 
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tert-butanol (90 mL) were heated to 120 °C and maintained at this temperature for 50 min 

under nitrogen. After the solution was cooled to ca. 80 °C, it was treated with acetic acid 

(72 mL) and 2 N aqueous HCl (50 mL). The resultant mixture was stirred at room 

temperature overnight and then extracted with chloroform (100 mL). The organic layer 

was washed with water (2 × 40 mL), 0.5 N aqueous NaHCO3 (40 mL), and water (2 × 40 

mL) in sequence. The mixture was dried over MgSO4 and filtered, and the solvent was 

removed under reduced pressure. The residue was purified by flash chromatography on 

silica gel eluted with CHCl3. A2 was obtained as a red solid (1.4 g, 59%). 1H NMR (500 

MHz, CDCl3): d  8.69–8.50 (m, 8H), 5.18 (m, 1H), 2.24 (m, 2H), 1.86 (m, 2H), 1.34–1.20 

(m, 20H), 0.81(t, J = 6.5 Hz, 6H). The 1H NMR spectrum is consistent with that reported 

in the literature.64  

Compound B1: Compound A1 (0.30 g, 0.42 mmol), 3-amino-propanol (0.30 g, 4.0 

mmol), anhydrous zinc acetate (0.080 mg, 0.43 mol), and imidazole (2.0 g) were heated 

under N2 at 180 °C for 3 h before the mixture was cooled down to around 130 °C and 

treated with 2 N aqueous HCl (50 mL). The resultant red precipitate was filtered and 

washed with 2 N aqueous HCl (10 mL), water (2 × 20 mL), and methanol (3 × 20 mL) in 

sequence. The red solid was then heated in methanol (30 mL) for 1 h at reflux and filtered 

when it was hot to provide pure B1 as a red solid (0.30 g, 92 %). 1H NMR (300 MHz, 

CDCl3): d  8.70–8.60 (m, 8H), 5.15 (m, 1H), 4.38 (t, J = 6.6 Hz, 2H), 3.62 (t, J = 5.4 Hz, 

2H),  2.23 (m, 2H), 2.00 (m, 2H), 1.84 (m, 2H),1.51–1.16 (m, 36H), 0.82 (t, J = 6.6 Hz, 

6H), (the alcohol proton was not observed). 13C{1H}NMR (125 MHz, CDCl3): d 164.4, 

163.8, 163.3, 134.8, 133.8, 131.6, 131.4, 130.8, 129.3, 129.2, 126.2, 126.0, 124.1, 123.3, 

123.1, 122.7, 122.5, 58.9, 54.8, 37.0, 32.3, 31.8, 30.9, 29.5, 29.4, 29.2, 26.9, 22.6, 14.0 
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(the observation of three carbonyl carbon resonances and two more aromatic carbon 

peaks is consistent with previous work on perylene diimides using similar swallow-tailed 

N-substituents and has been attributed to restricted rotation about the N—Calkyl bonds. 

Three alkyl carbons were not observed, presumably due to overlap).65 HRMS (FAB) 

calcd for C50H62N2O5: 770.4659 Found: 770.4662. Anal. Calcd for C50H62N2O5:  C, 77.89; 

H, 8.10; N, 3.63. Found: C, 77.91; H, 8.27; N, 3.71.  

Compound B2: Compound A2 (1.20 g, 2.00 mmol), 3-amino-propanol (1.50 g, 20.0 

mmol), anhydrous zinc acetate (0.500, 2.74 mmol), and imidazole (20 g) were heated 

under N2 at 180 oC for 3 h before the mixture was cooled down to around 130 oC and 

treated with 2 N aqueous HCl (50 mL). The resulted red precipitate was filtered and 

washed with 2 N aqueous HCl (40 mL), water (2 × 50 mL), and methanol (3 × 30 mL) in 

sequence. The resultant solid was then dissolved in 50 mL CHCl3 and passed through a 

short silica gel plug eluted with CHCl3 and then CHCl3 / methanol (10:1) to provide pure 

B1 as a red solid after solvent removal (0.92 g, 70%). 1H NMR (500 MHz, CDCl3): d  

8.70-8.62 (m, 8H), 5.18 (m, 1H), 4.39 (t, J = 6.0 Hz, 2H), 3.63 (m, 2H) 3.03 (t, J = 6.0 

Hz, 2H), 2.26 (m, 2H), 2.04 (m, 2H), 1.87 (m, 2H), 1.51-1.16 (m, 18H), 0.82 (t, J = 6.5 

Hz, 6H) (the alcohol proton was not observed). 13C{1H} NMR (125 MHz, CDCl3): d 

164.5, 164.0, 163.5, 134.9, 134.0, 131.8, 131.6, 131.0, 129.4, 129.3, 126.3, 126.2, 124.2, 

123.5, 123.2, 122.9, 122.6, 59.1, 54.9, 37.1, 32.4, 31.8, 31.0, 29.6, 29.3, 27.1, 22.7, 14.2.  

(the observation of three carbonyl carbon resonances and two more aromatic carbon 

peaks is consistent with previous work on perylene diimides using similar swallow-tailed 

N-substituents, and it has been attributed to restricted rotation about the N—Calkyl 
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bonds).65 HRMS (MALDI) calcd for C42H46N2O5: 658.34; Found: 658.35. Anal. Calcd 

for C42H46N2O5: C, 76.57; H, 7.04; N, 4.25.  Found: C, 76.30; H, 7.18; N, 4.16.  

C11PDI monomer: Compound B1 (0.45 g, 0.58 mmol) and exo-bicyclo[2.2.1]hept-5-

ene-2-carboxylic acid (0.15 g, 1.1 mmol) were dissolved in dichloromethane (10.0 mL) in 

a 25 mL round-bottomed flask under N2. Dicyclohexylcarbodiimide (186 mg, 0.9 mmol) 

and 4-(dimethylamino)pyridine (11 mg, 0.09 mmol) in methylene chloride (3.0 mL) were 

added in one portion. The reaction mixture was stirred overnight at room temperature 

under N2 before it was poured into a short silica gel plug and eluted with CHCl3. The 

solvent was then removed under reduced pressure and the residul was purified with silica 

gel column chromatography using CH2Cl2/ethyl acetate (50:1) as eluent. After the solvent 

was removed under reduced pressure, C11PDI monomer was obtained as a red solid. 

(0.38 g, 74 %).  1H NMR (500 MHz, CDCl3): d 8.66–8.57 (m, 8H), 6.08 (dd, J1 = 5.5 Hz, 

J2  = 3.0 Hz, 1H), 6.01 (dd, J1 = 5.5 Hz, J2 = 3.0 Hz, 1H), 5.16 (m, 1H), 4.34 (t, J = 7.0 

Hz, 2H), 4.24 ( td, J1 = 6.0 Hz, J2 = 2.0 Hz, 2H), 3.03 (s, 1H), 2.87 (s, 1H), 2.25–2.12 (m, 

5H), 1.93–1.89 (m, 1H), 1.86–1.82 (m, 2H), 1.34–1.17 (m, 39H), 0.83 (t, J = 7.0 Hz, 6H). 

13C{1H}  NMR (125 MHz, CDCl3):  d 176.2, 164.5, 163.4, 163.2, 138.5, 138.0, 135.7, 

134.6, 134.1, 131.7, 131.3, 131.0, 129.4, 129.2, 126.3, 126.2, 124.0, 123.3, 123.0, 122.9, 

122.8, 62.4, 54.8, 46.6, 46.4, 43.1, 41.6, 37.8, 32.3. 31.9, 30.3,  29.7, 29.6, 29.5, 29.3, 

27.4, 27.0, 22.6, 14.1 (the observation of four carbonyl carbon resonances and three more 

aromatic carbon peaks is consistent with previous work on perylene diimides using 

similar swallow-tailed N-substituents, and it has been attributed to restricted rotation 

about the N—Calkyl bonds. Three alkyl carbons were not observed, presumably due to 

overlap).65 HRMS (MALDI) calcd for C58H70N2O6: 890.5234; Found: 890.5109 
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(MALDI).  Anal. Calcd for C58H70N2O6: C, 78.17; H, 7.92; N, 3.40; Found: C, 78.32; H, 

7.99; N, 3.18. UV-visible absorption (chloroform) λmax(ε): 459 (1.59 × 104), 490 (4.32 × 

104), 527 (7.14 × 104) nm (M-1cm-1).  

C7PDI monomer: Compound B2 (0.85 g, 1.28 mmol) and exo-bicyclo[2.2.1]hept-5-ene-

2-carboxylic acid (0.60 g, 4.1 mmol) were dissolved in dichloromethane (30 mL) in a 50 

mL round-bottomed flask under N2. Dicyclohexylcarbodiimide (0.40 g, 1.9 mmol)) and 

4-(dimethylamino)pyridine (0.030 mg, 0.27 mmol) in dichloromethane (3.0 mL) were 

added in one portion. The reaction mixture was stirred overnight at room temperature 

under N2 before it was poured into a short silica gel plug and eluted with chloroform. The 

solvent was then removed under reduced pressure and the residul was purified with silica 

gel column chromatography using CH2Cl2/ethyl acetate (30:1) as eluent. After the solvent 

was removed under reduced pressure, C7PDI monomer was obtained as a red solid. 

(0.88 g, 88 %).1H NMR (500 MHz, CDCl3): d: 8.63–8.54 (m, 8H), 6.06 (m, 1H), 6.00 (m, 

1H), 5.17 (m, 1H), 4.33 (t, J = 7.0 Hz, 2H), 4.23 (t, J  = 6.0 Hz, 2H), 3.02 (s, 1H), 2.86 (s, 

1H), 2.21–2.12 (m, 5H), 1.93–1.82 (m, 3H), 1.52–1.17 (m, 23H), 0.81 (t, J = 7.0 Hz, 6H). 

13C{1H} NMR: (125 MHz, CDCl3), d 176.1, 164.4, 163.3, 163.1, 138.0, 135.6, 134.5, 

134.0, 131.6, 131.2, 131.1, 130.9, 129.3, 129.1, 126.2, 126.1, 124.0, 123.2, 122.8, 122.7, 

62.3, 54.7, 46.5, 46.3, 43.0, 41.5, 37.7, 32.3. 31.7, 30.2,  29.4, 29.1, 27.3, 26.9, 22.5, 14.0 

(the observation of four carbonyl carbon resonances and three more aromatic carbon 

peaks is consistent with previous work on perylene diimides using similar swallow-tailed 

N-substituents, and it has been attributed to restricted rotation about the N—Calkyl bonds. 

Three alkyl carbons were not observed, presumably due to overlap).65 HRMS (MALDI) 

calcd for C50H54N2O6: 778.3981; Found: 778.3687. Anal. Calcd for C50H54N2O6,: C, 
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77.09; H, 6.99; N, 3.60, Found: C, 77.06; H, 7.14; N, 3.61. UV-visible absorption 

(chloroform) λmax(ε): 459 (1.59 × 104), 490 (4.32 × 104), 527 (7.14 × 104) nm (M-1cm-1).  

C11PDI HP: C11PDI monomer (700 mg, 0.77 mmol) was dissolved in anhydrours 

dichloromethane (15 mL) under N2, the “first generation” Grubbs initiator (12.6 mg, 

0.015 mmol) in 1 mL methylene chloride was then added in one portion. The reaction 

mixture was stirred for another 5 h until all the monomers were consumed (monitored 

with TLC), and then ethyl vinyl ether (0.2 mL) was added. The reaction mixture was 

stirred for another 5 h before it was added to methanol (200 mL) dropwise; the red 

precipitate was filtered, washed with methanol, and dried under vacumm. The resultant 

solid was then dissolved in 25 mL dichloromethane and added to 200 mL methanol 

dropwise. The precipitate was filtered, washed with methanol, and dried under vacumm. 

The red solid was then washed with hot methanol in a Soxhlet apparatus for 6 h, and then 

with hot acetone overnight. Finally, CHCl3 was used to extract the materials for 5 h. Most 

of the solvent was removed under vacuum and the residue was precipitated into 200 mL 

methanol dropwise. After filtration, C11PDI HP was achieved as a red solid (590 mg, 

85 %). GPC (toluene): Mn = 18.6 kD, Mw/Mn = 1.3.  1H NMR (500 MHz, CDCl3): d 8.5–

7.5 (m, 8nH), 5.6–5.0 (m, 3nH), 4.5–4.0 (sb, 4nH), 3.0–1.5 (m, 10nH), 1.34–1.17 (m, 

39nH), 0.83 (sb, 6nH). Anal. Calcd for (C58H70N2O6)n : C, 78.17; H, 7.91; N, 3.13; 

Found : C, 77.78; H, 7.92; N, 3.17. UV-visible absorption (chloroform) λmax(ε): 464 (1.42 

× 104), 492 (2.95 × 104), 529 (2.69 × 104) nm (M-1cm-1).  

C7PDI HP: C7PDI monomer (500 mg, 0.641 mmol) was dissolved in anhydrours 

methylene chloride (12 mL) under N2, the “first generation” Grubbs initiator (10.5 mg, 

0.0128 mmol) in 1 mL methylene chloride was then added in one portion. The reaction 
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mixture was kept stirred for another 5 hours until all the monomers were consumed 

(monitored with TLC), and ethyl vinyl ether (0.2 mL) was added. The reaction mixture 

was then stirred for another 5 hours before it was added to methanol (200 mL), dropwise, 

and the red precipitate was filtered, washed with methanol, and dried under vacumm. The 

resultant solid was then dissolved in 25 mL dichloromethane and added to 200 mL 

methanol, dropwise. The precipitate was filtered, washed with methanol, and dried under 

vacuum. The red solid was then washed with hot methanol in a Soxhlet apparatus for 6 

hours, and then with hot acetone overnight. Finally, chloroform was used to extract the 

materials for 5 hours. Most of the solvent was removed under vacuum, and the residue 

was precipitated into 200 mL methanol dropwise. C7PDI HP was achieved as a red solid 

via filtration (467 mg, 93%). GPC (toluene): Mn = 18.0 kD, Mw/Mn = 1.3.  1H NMR (500 

MHz, CDCl3): d 8.5–7.5 (m, 8nH), 5.6–5.0 (m, 3nH), 4.5–4.0 (sb, 4nH), 3.5–1.5 (m, 

10nH), 1.34–1.17 (m, 23nH), 0.83 (sb, 6nH). Anal. Calcd for (C58H70N2O6)n : C, 77.09; 

H,6.99; N, 3.60; Found : C, 77.65; H, 7.00; N, 3.56. UV-visible absorption (chloroform) 

λmax(ε): 464 (1.39 × 104), 493 (2.80 × 104), 529 (2.50 × 104) nm (M-1cm-1).  

N,N'-Bis(2-decyl-tetradecyl)-perylene-3,4:9,10-tetracarboxydimide: Perylene-

3,4,9,10-tetracarboxydianhydride (4.0 g, 10 mmol), 2-decyl-tetradecylamine (17.0 g, 48.0 

mmol) and imidazole (31 g) were combined in a round-bottomed flask with an air 

condenser, and the reaction flask was immersed in an oil bath at 160 ºC for 3 h after 

which the reaction flask was removed from the oil bath. After it was cooled to room 

temperature, 2 N HCl aqueous (400 mL) was added. The reaction mixture was extracted 

with CHCl3, dried over MgSO4, and filtered. The solvent was removed by rotary 

evaporation, and the residue was purified by column chromatography, eluted with CHCl3, 
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yielding the desired product as a red solid (10.4 g, 98%)  1H NMR (500 MHz, CDCl3) δ 

8.52 (d, J = 8.0 Hz, 4H), 8.38 (d, J = 8.0, 4H), 4.09 (d, J = 7.5 Hz, 4H), 1.97 (m, 2H), 

1.5–1.0 (m, 80H), 0.83 (m, 12H). 13C{1H} NMR (125 MHz, CDCl3) δ 163.5, 134.2, 

131.2, 129.2, 126.1, 123.2, 122.8, 44.7, 36.6, 31.9, 31.7, 30.1, 29.69, 29.66, 29.65, 29.4, 

26.5, 22.7, 14.1 (12 alkyl carbons missing, presumably due to overlap). HRMS (FAB) 

calcd for C72H106N2O4: 1062.8153. Found: 1062.8167. Anal. Calcd. for C72H114N2O4: C, 

80.69; H, 10.72; N, 2.61. Found: C, 81.33; H, 10.02; N, 2.68. 

(N,N'-Bis(2'-decyltetradecanyl)-1-bromo-perylene-3,4,9,10-tetracarboxylic diimide) 

(C): N,N'-Bis(2-decyl-tetradecyl)-perylene-3,4,9,10-tetracarboxydimide (6.0 g, 5.6 

mmol), potassium carbonate (4.0 g, 29 mmol) and chlorobenzene (80 mL) were mixed in 

a 200 mL round-bottomed flask equipped with a condenser. Bromine (4.8 mL, 93 mmol) 

in chlorobenzene (10 mL) was then added dropwise. The reaction mixture was heated to 

60 oC overnight. It was then cooled to room temperature and poured into saturated 

Na2S2O3 aqueous solution (500 mL). The mixture was then extracted with CHCl3 (2 × 

200 mL); the organic phase was washed with water (2 × 100 mL) and dried over Na2SO4. 

After the solvent was removed, the residue was purified using column chromatography 

on silica gel, with CHCl3 / hexane (1 : 1) as the eluent. After the solvent was removed 

under reduced pressure, compound C was obtained as a red solid (2.7 g, 42%). 1H NMR 

(500 MHz, CDCl3): d 9.62 (d, J = 8.0 Hz, 1H), 8.72 (s, 1H), 8.51 (m, 3H), 8.36 (m, 2H), 

4.09 (d, J = 7.0 Hz, 2H), 4.06 (d, J = 7.0 Hz, 2H), 1.95 (m, 2H), 1.5–1.1 (m, 80H), 0.82 

(m, 12H). 13C{1H} NMR (125 MHz, CDCl3): d 163.5, 163.2, 163.1, 162.3, 138.9, 133.5, 

133.1, 133.0, 130.8, 130.3, 128.5, 128.3, 127.9, 127.6, 126.6, 123.5, 123.4, 123.3, 122.92, 

122.7, 122.5, 120.9, 44.79, 44.72, 36.63, 36.58, 31.9, 31.7, 30.1, 30.0, 29.7, 29.6 (2 close 
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peaks), 29.6, 29.4, 26.5 (2 close peaks), 22.7, 14.1 (two aryl carbon peaks and 31 alkyl 

carbon peaks were not observed, presumably due to overlap). HRMS (MALDI) calcd for 

C72H105BrN2O (M+): 1140.728, found: 1140.734. Anal. Calcd for C72H105BrN2O: C, 

75.69; H, 9.26; N, 2.45. Found : C, 75.77; H, 9.26; N, 2.50. 

Compound D: N,N’-Bis(2'-decyltetradecanyl)-1-bromo-perylene-3,4,9,10-tetracarboxylic 

diimide (1.0 g 0.90 mmol) and 2-(piperazin-1-yl) ethanol (1.2 g, 9.3 mmol) were heated 

in N-methylpyrrolidone (30 mL) at 200 oC for 1.5 hours under nitrogen. The reaction 

mixture was cooled to room temperature and chloroform (200 mL) was added. The 

organic phase was then washed with water (6 × 100 mL) and dried over Na2SO4. The 

solvent was then removed under reduced pressure, and the residue was passed through a 

short silica gel plug with CHCl3 and then CHCl3 / methanol (10: 1) to collect the band of 

black color. The solvent was then removed under reduced pressure and the residue was 

dried under vacuum. The solid was then run through a short silica plug again to give 

nearly pure product. After the removal of the solvent, compound D was achieved as a 

black solid. (0.50 g, 47%). 1H NMR (400 MHz, CD2Cl2): d 9.87 (d, J = 8.7 Hz, 1H), 

8.67–8.52 (m, 6H), 4.14 (t, J = 6.4 Hz, 4H), 3.68 (sb, 2H), 3.50 (d, J = 8.4 Hz, 2H), 3.15 

(t, J = 11.2 Hz, 2H), 2.97 (d, J = 11.2 Hz, 2H), 2.71–2.66 (m, 4H), 2.57 (m, 1H), 1.99 (sb, 

2H), 1.31–1.90 (m, 80H), 0.85 (m, 12H). HRMS (MALDI) calcd for C78H118N4O5: 

1190.91, Found: 1191.94. (M+1) This compound was used for next step reaction without 

further purification.  

N-PDI monomer: Compound C (0.50 g, 42 mmol) and and exo-bicyclo[2.2.1]hept-5-

ene-2-carboxylic acid (0.30 g, 2.1 mmol) were dissolved in methylene chloride (10 mL) 

in a 50 mL round-bottomed flask under nitrogen. Dicyclohexylcarbodiimide (21 mg, 1.0 
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mmol) and 4-(dimethylamino)pyridine (15 mg, 0.14 mmol) in methylene chloride (2.0 

mL) were added in one portion. The reaction mixture was stirred overnight at room 

temperature under N2. It was poured to a short silica gel plug and eluted with CHCl3 and 

then CHCl3 / etheyl acetate (6 : 1) and the black band was collected. The solvent was then 

removed under reduced pressure to give N-PDI monomer as a black solid (0.51 g, 92 %). 

1H NMR (500 MHz, CDCl3): d 9.91 (d, J = 8.5 Hz, 1H), 8.64 (t, J = 8.0 Hz, 2H), 8.54–

8.49 (m, 4H), 6.14–6.12 (m, 1H), 6.11–6.09 (m, 1H), 4.31–4.24 (m, 2H), 4.14 (t, J = 8.0 

Hz, 4H), 3,46 (db, J = 8.5 Hz, 2H), 3.12 (tb, J = 10 Hz, 2H), 3.05 (s, 1H), 2.96–2.92 (m, 

4H), 2.77 (t, J = 5.5 Hz, 2H), 2.66–2.64 (mb, 2H), 2.26 (m, 1H) 2.01–1.91 (m, 4H), 1.39–

1.19 (m, 80H) 0.85–0.81 (m, 12H). 13C{1H} NMR (125 MHz, CD2Cl2): d 176.2, 164.1, 

163.9, 152.0, 138.4, 136.0, 135.8, 134.8, 134.2, 131.4, 131.0, 129.4, 129.2, 128.9, 127.3, 

124.9, 124.0, 123.21, 122.84, 122.0, 115.8, 108.4, 101.5, 99.1, 89.9, 88.3, 84.8, 83.6, 80.1, 

76.2, 73.7, 71.5, 69.9, 68.3, 61.8, 57.1, 51.7, 48.9, 47.0, 46.7, 44.9, 44.8, 43.5, 42.1, 39.3, 

37.0, 32.3, 32.1, 30.7, 30.4 (3 peaks), 30.1, 30.0, 29.7, 26.9, 23.0, 18.7, 14.2 (13 alkyl 

carbon peaks were not observed, presumably due to overlap). HRMS (MALDI) calcd for 

C86H126N4O6: 1310.97. Found: 1311.95 (M +1). Anal. Calcd for C86H126N4O6 : C, 78.73; 

H, 9.68;  N, 4.27; Found : C, 78.49; H, 9.75; N, 4.20. UV-visible absorption (chloroform) 

λmax(ε): 451 (1.20 × 104), 585 (1.87 × 104) nm (M-1cm-1).  

N-PDI homopolymer: C11PDI monomer (394 mg, 0.300 mmol) was dissolved in 

anhydrous dichloromethane (10.0 mL) under N2, and the “first-generation” Grubbs 

initiator (4.9 mg, 0.006 mmol) in dichloromethane (1 mL) was then added in one portion. 

The reaction mixture was kept stirred for another 5 h until all the monomers were 

consumed (monitored with TLC) and ethyl vinyl ether (0.2 mL) was added. The reaction 
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mixture was stirred for another 5 hours before it was added to methanol (150 mL), 

dropwise, and the black precipitate was filtered, washed with methanol, and dried under 

vacuum. The resultant solid was then dissolved in dichloromethane (5 mL) and added to 

methanol (200 mL) dropwise. The precipitate was filtered, washed with methanol, and 

dried under vacumm. The red solid was then washed with hot methanol in a Soxhlet set-

up for 6 h, and then with hot acetone overnight. Finally, CHCl3 was used to extract the 

materials for 5 h. Most of the solvent was removed under vacuum, and the residue was 

precipitated into methanol (200 mL) dropwise. After filtration, the black solid was 

dissolved in THF and size-exclusion chromatography column (S-X1 Biobeads, 1.2 meter 

long, ~ 6 cm in diameter) was used to purify the polymer with THF as eluent. The first 

black band was collected and the solvent was removed. The resultant solid was dissovled 

in CHCl3 (4 mL) and added to methanol (120 mL) dropwise, and the black solid was then 

filtered and dried under vacuum to give N-PDI HP as a black solid (221 mg, yield: 57%). 

GPC (toluene): Mn = 19.6 k, Mw/Mn = 1.7. 1H NMR (500 MHz, CDCl3): d  9.5 (sb, 1nH), 

8.5–7.0 (m, 6nH), 5.0 (sb, 2nH), 4.5–3.7 (m, 6nH), 3.2–1.5 (m, 18nH), 1.5–1.0 (m, 80nH), 

0.83 (sb, 12nH). Anal. Calcd for (C86H126N4O6)n: C, 78.73; H, 9.68; N, 4.27; Found: C, 

78.52; H, 9.83; N, 4.27. UV-visible absorption (chloroform) λmax(ε): 451 (1.16 × 104), 

572 (1.76 × 104) nm (M-1cm-1). 
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CHAPTER 3 

DIBLOCK COPOLYNORBORNRNES WITH PERYLENE DIIMIDE 
AND OLIGOTHIOPHENE SIDE-GROUPS FOR ORGANIC 

PHOTOVOLTAICS 

 

3.1 Introduction 

 As discussed in the previous chapters, thin-film organic solar cells have lower 

light to electricity conversion compared to their best inorganic counterparts.1-2  Excitonic 

loss is one of the issues that severely limits the power conversion efficiencies (PCEs) of 

organic solar cells.1 In the organic photovoltaic (OPV) process, only the excitons 

generated within a 10 nm distance (typical exciton diffusion length for organic 

semiconductors) of the donor/acceptor (D/A) interface could be efficiently dissociated 

into free charge carriers.1 Thus, it was proposed by Fréchet that the ideal bulk-

heterojunction (BHJ) solar cell should have an ordered and bicontinuous composite of 

donor and acceptor materials with favorable domain size, as shown in Figure 3.1.1 Ideally, 

the donor and acceptor components should phase-segregate during the film preparation 

into domains with suitable size (approximately 10 nm) and favorable morphology, 

resulting in less excitonic loss and effective charge transport through continuous 

pathways to respective electrodes.1-4 Furthermore, from a practical application standpoint, 

the active layers should be prepared via a cost-effective process and could ideally self-

assemble into the most favorable morphology with a minimal use of external treatments, 

as well as having long-term stability. Recently, solar cells with PCEs of approximately 

5% have been achieved by optimizing the thin-film morphologies of the poly(3-
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hexylthiophene)/[6,6]-phenyl C61-butyric acid methyl ester (P3HT/PCBM) blend via 

thermal or solvent annealing post-treatments on the active films in addition to many other 

processes.5-7 Similar optimizations have also been applied to other D/A blends, such as 

the poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylen-alt-(vinylene)](MDMO-

PPV)/PCBM blend, for better solar cell performance.1   

 

  

Figure 3.1. Schematic illustration of D/A BHJ solar cell, with a magnified area showing the 
bicontinuous morphology of the active layer.1 Figure reproduced according to ref 1 by 
permission of the Wiley-VCH Verlag GmbH & Co. KGaA. 
 
 
 Currently, it is clear that good film morphology is essential for realizing high 

performance organic solar cells, although the relationship between the film morphology 

and device performance is not yet fully understood. It is still quite challenging to obtain 

favorable morphologies for D/A blends. Generally, the active layer morphology depends 

on the interplay between a number of intrinsic and extrinsic variables, including: the 
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crystallinity and relative miscibility of the two materials, choice of donor and acceptor for 

energetic matching, the D/A blending weight ratio, selection of solvents and additives, 

and the post-treatments applied to the films. Any one of these factors could dramatically 

affect the thin-film morphology and thus the solar cell performances, which makes the 

optimization of BHJ cells using polymer blends challenging.1-2 At this time, most 

solution-processed BHJ solar cells that consist of D/A mixtures do not exhibit well 

defined morphologies because either such devices commonly rely on random phase-

separation of blending components, or the morphologies that developed through specific 

techniques, such as thermal annealing and lithography-based techniques, are not stable on 

sufficient timescales or are not cost effective for practical applications.1 Hence, 

thermodynamically stable nanostructure BHJs that can be obtained through a spontaneous 

self-assembly process with defined charge percolation pathways and suitable domain 

sizes are highly desirable for organic solar cells.1-2 

 A recent approach utilizing block copolymers (BCPs) as the active material(s) in 

solar cells is considered as a reliable method in obtaining such favorable nanostructures 

spontaneously during polymer film preparation.  Furthermore, promising results based on 

BCP-type materials for organic electronics have been demonstrated.2,8-11 BCPs are 

macromolecules comprised of two or more polymer blocks covalently bound to one 

another. Among this class of copolymers, diblock copolymers are the most common 

materials with polymeric block A and block B attached to the end of each other, as 

illustrated in Figure 3.2a.12-13 In general, the incompatibility between each polymer block 

in BCPs drives a phase separation in the solid state while the covalent bond between the 

polymer blocks in the macromolecular chain can prohibit the bulk phase-separation, 



127 

 

normally observed in simple polymer blends, and lead to micro-phase-segregation with 

domains in nanometer size regime.12 The most frequently observed diblock morphologies 

are body-centered cubic spheres, hexagonally packed cylinders, and lamellae, as shown 

in Figure 3.2c.2,13 Furthermore, other more complex geometries have also been reported 

depending on the block to block interaction and the ratio of block lengths using BCPs.2,13 

Hence, such a self-assembly process for BCPs containing an electron-donor block and an 

electron-acceptor block could, in principle, direct the desired morphologies and be 

applied in obtaining the micro-phase-segregation with donor and/or acceptor rich 

domains with favorable domain size.2 Dramatic OPV device performance improvements 

have been observed using such kind of BCPs as active materials, compared to devices 

with physical D/A blends of respective homopolymers, because of the spontaneous 

micro-phase-segregation in the BCP-based films.9   

 

 

Figure 3.2. (a) Schematic representation of a diblock copolymer; (b) lamellar phase 
morphology depicting arrangement of polymer chains; (c) partial list of phases formed by 
diblock copolymers in the bulk.2 Reproduced by permission of the Royal Society of 
Chemistry and Elsevier Limited. 
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There are three major categories of diblock copolymers used for OPVs currently: 

the rod–rod BCPs, rod–coil BCPs, and coil–coil BCPs (the names refer to the rigidity of 

the polymer backbones for each block).2 The rod–rod BCPs generally consist of varying 

length conjugated blocks with functional side groups attached, which present a number of 

challenges, especially for those D/A type rod–rod BCPs, in terms of synthesis and self-

assembly process. The rod–rod BCPs also show relatively limited potential for practical 

applications.14-16 However, a recent study of diblock copoly(3-alkylthiophene)s (Figure 

3.3) with PCBM blends showed that the crystalline-type diblock copoly(3-alkylthiophene) 

could substantially enhance the photovoltaic properties compared to the parent P3HT 

donor.17-18 Importantly, the synthesis for such diblock copoly(3-alkylthiophene)s is quite 

straighforward.17-18  On the other hand, rod–coil BCPs are more commonly used as active 

materials in organic electronics. Hazdiioannou and coworkers reported such kind of 

copolymers with a rigid poly(phenylenevinylene) (PPV) block and a flexible coil 

polystyrene block with grafted fullerenes, which demonstrated the potential of using rod–

coil BCPs to improve photovoltaic performance with self-assembled periodic nano-

structures.19-21 Another rod–coil material system recently studied by several groups is the 

BCP comprised of a conjugated P3HT block and a polyacrylates-based coli block with 

perylene diimide (PDI) pendants.11,22 These materials, which form highly crystalline 

domains in spin-casted films, favorable for both exciton dissociation and charge-carrier 

transport, exhibit PCEs approaching 0.6% in single-polymer devices.11 Polymers of this 

type could also serve as compatibilizers and considerably enhance the device performance 

of P3HT:PDI blend in BHJ cells.23 The PCE improvement could be attributed to the 

formation of smaller size PDI domains in the active layer with the compatibilizer as 
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compared to the simple polymer blends according to the morphology studies.23 It has also 

been reported that a copolynorbornene with a rigid P3HT-based block and coil PCBM 

block could be used to stabilize thin-film morphologies of the P3HT:PCBM blends against 

destructive thermal phase segregation, which may also be a feasible strategy to improve 

device stability.24 Research on using coil–coil BCPs with each block functionalized with 

particular side groups are attracting intense research attention for OPV applications due to 

relative ease of synthesis and facile self-assembly behavior relative to those containing rod 

polymer blocks.2 As shown in Figure 3.4, Thelakkat and coworkers demonstrated this 

approach using copolymers with various triphenylamines and PDI moieties as the donor 

and acceptor blocks, respectively, as active materials in solar cells.8-9,25 Periodic 

nanometer-scale morphologies were formed in these BCP films, and solar cells using 

these materials show PCEs of about 0.3%.8-9 It is worth noting that the PCEs of the BCP-

based devices are several times higher than those using simple polymer blends of the 

respective homopolymers as the active layer. It could be attributed to more favorable 

micro-phase-segregation formed by the BCPs over the polymer blends.9 Hence, although 

the absolute PCEs of the these devices based on the Thelakkat copolymers were still 

considerably lower than the best state-of-the-art OPV cells using fullerene-based acceptors, 

the studies provided a proof-of-principle clearly showing that the concept of 

nanostructured BHJ devices based on BCPs is potentially useful for OPV applications. 

Research on developing D/A block copolymers with matching D/A energy levels, high 

charge-carrier mobilities, balance hole and electron transport in films, and good solar 

spectrum coverage are essential and may increase the likelihood for high performance 

(PCEs > 10%), cost-effective OPV systems. 
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Figure 3.3. The chemical structures for the diblock copoly(3-alkylthiophene)s and P3HT. 
 
 
 

 

 

Figure 3.4. The chemical structures of the Thelakkat copolymers with PDI and 
triphenylamine moieties (left) and TEM images for the cross-section of the films in real 
devices from a diblock copolymer and respective homopolymer blends.9 Figure reproduced 
according to ref  9 by permission of the Wiley-VCH Verlag GmbH & Co. KGaA. 
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  This chapter discusses the studies of PDI and oligothiophenes (OTs) grafted coil–

coil diblock copolynorbornenes, adapted from the basic idea of the Thelakkat copolymers, 

that were designed and synthesized for OPV applications, as illustrated in Figure 3.5. Here, 

the PDI moiety was incorporated as the acceptor in the BCPs because of their potential 

advantages for OPV applications, including low-lying LUMO and high electron mobility 

(as described in the previous chapters). 26-31As discussed in Chapter 2, C11PDI HP was 

found to give better solar cell performance in the blends with P3HT as compared to the 

other two PDI-grafted polymers. Hence, C11PDI monomer was selected to build up the  

PDI-block in the BCPs. OT moieties were utilized in this BCPs study due to their 

relatively high hole mobilities and electron donating nature, according to the 

aforementioned studies, as well as their UV-Vis absorption, which complements that of 

PDIs in the visible range of the solar spectrum.32-34 Furthermore, the device open-circuit 

voltage (VOC) within organic solar cells can be influenced by the energy offset (Ig) 

between the HOMO of the donors and the LUMO of the acceptors and larger Ig could 

generally lead to higher VOC in organic solar cells.4,35-37 Hence, the relatively large Ig (> 

1.0 eV) in these PDI-OT BCPs could potentially result in high-VOC solar cells (> 0.8 V). 

Aside from the difference in conjugation length of the aromatic cores for the 5T and 6T 

building blocks, the linkage position on the 6T to the polymer is on the end rather than on 

the center as for the 5T derivative. Hence, different packing behavior of these BCPs in 

thin-films was expected, which could result in various film morphologies, charge-carrier 

mobilities, and device performance for the respective BCP-based solar cells. Ring-opening 

metathesis polymerizations (ROMP)38 were applied to synthesize the PDI and OT grafted 

polynorbornene-based BCPs since it has been demonstrated to be a powerful technique in 
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achieving “living” polymerization, as discussed in Chapter 2 with “first generation” 

Grubbs initiator.  This living polymerization technique is the key step in preparing coil–

coil BCPs in this chapter. Furthermore, functionalized polynorbornenes can often be 

readily solution-processed and have been successfully used as key components in light-

emitting diodes,39-41 as described in Chapter 2, suggesting the potential use of 

polynorbornenes in OPV devices. Moreover, by varying the donor/PDI ratios and 

copolymer architectures (random, block, or more complicated structures), material 

properties and film morphologies might be fine-tuned for high performance organic 

photovoltaic cells.   

 

Figure 3.5. Designed PDI-OT diblock copolymers and estimated energy diagrams of the PDI 
and OT monomers.  
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3.2 Polymerization kinetics of the C11PDI monomer 

   In order to obtain a diblock copolymer, the polymerization of the first polymeric 

block, at least, has to be “living”. The kinetics of the polymerization of the C11PDI 

monomer with the “first generation” Grubbs initiator in CDCl3 under similar condition as 

those used for bulk polymer synthesis was monitored using 1H NMR spectroscopy with 

particular focus on the integration of the characteristic aromatic proton in the monomer 

and polymer (as shown in Figure 3.6). An approximately first-order polymerization was 

observed according to the curves of –ln([M]/[M]0) versus time. It needs to be pointed out 

that there could be quite large error for the –ln([M]/[M]0) value at conversion below 10% 

and over 90% because of the difficulties in obtaining accurate 1H NMR integrations. 

Moreover, a nearly linear increase of the molecular weight, as well as small polydispersity 

(Mw/Mn) change (ca. 1.1 – 1.3), were obtained for C11PDI HP with different molecular 

weight as the [monomer]/[initiator] ratio increased from 10 to 70. These observations 

suggest the polymerization of C11PDI monomer might be controlled and could be utilized 

to prepare the PDI-based “macroinitiator” for the respective BCP synthesis using the “first 

generation” Grubbs initiator. This PDI-based “macroinitiator”, with a metal-carbene at the 

end of the macromolecular chain, could then initiate the polymerization of additional 

monomers, such as the OT grafted monomers, to build up the next block, and thus make 

the desired linear-D–A-BCPs. According to the monomer conversion versus time curves, 

shown in Figure 3.6, the polymerization of C11PDI monomer (0.5 mol/L in 

dichloromethane with 2% “first generation” Grubbs initiator) can be completed in 3 to 4 

hours at room temperature (> 95% conversion after 120 minutes) under nitrogen 
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atmosphere.  Subsequently, the electron rich monomer (5T or 6T monomer) could be 

added in for the donor-based polymer block synthesis.  

 

Figure 3.6. Kinetics of the polymerization of C11PDI monomer (left) and its molecular 
weight and polydispersity – [Monomer]/[Catalyst] relationship (right). 

 

3.3 Synthesis of the OT-based monomer and homopolymers 

  As shown in Scheme 3.1, the 5T monomer and 6T monomers were designed and 

synthesized for the electron donating block in BCPs, and their respective homopolymers 

(with theoretical degree of polymerization of 50) were also synthesized. The 5T and 6T 

monomers with ester linkers between the oligothiophene moieties and the norbornene-

based polymerizable groups were synthesized using straightforward synthetic routes. 

Compound A was synthesized via a Suzuki coupling reaction between 5'-hexyl-2,2'-

bithiophene-5-boronic acid pinacol ester and ethyl 2,5-dibromothiophene-3-acetate42-43 

with Pd(PPh3)4 as a catalyst. Here, because of the ester group in the starting materials and 
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compound A, water- and base-free Suzuki coupling reaction with cesium fluoride as a co-

catalyst and anhydrous dimethylacetamide as solvent were used to obtain the desired 

product.44 The ester group in compound A was then converted into an alcohol 

functionality using LiAlH4 as a reducing agent. The resulting product was then reacted 

with exe-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid45 in the presence of a mixture of 

dicyclohexylcarbodiimide (DCC)/p-dimethylaminopyridine (DMAP) to afford 5T 

monomer with a total yield of around 75% in two steps. The synthesis of 6T monomer 

started from the synthesis of the hexathiophene-based compound B via a Stille coupling 

reaction between 5-trimethylstannyl-2,2’-dithienyl46 and 5,5'-dibromo-4,4'-dihexyl-2,2'-

bithiophene47 with Pd(PPh3)4 as a catalyst. As shown in Scheme 3.2, the three step 

synthesis, including an iodination, a Sonogashira coupling, and a DCC/DMAP-assisted 

coupling, for the 6T monomer gave a relatively low yield (~ 18% for three steps). The 

crystallization process for the obtaining pure 6T monomer is quite slow (more than one 

month in ethanol at -20 oC). Obviously, it required much more effort to obtain pure 6T 

monomer relative to the 5T monomer. The low yield and tedious purification for 6T 

monomer limits the practical use for the respective homopolymer and/or copolymers in 

organic electronics. The chemical structure and purity of the monomers and intermediates 

were confirmed using NMR spectroscopy, mass spectroscopy, and elemental analysis. 

Both monomers are quite soluble in common organic solvents including toluene, 

dichloromethane, THF, and chloroform (> 20 mg/mL in dichloromethane). 



136 

 

 

 

Scheme 3.1. The synthesis of the 5T and 6T monomers.  

 

 

 Scheme 3.2. The synthesis of the 5T and 6T homopolymers.  
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  The polymerizations of the two OT-based monomers were carried out in 

dichloromethane using the same concentration (0.5 mol/L for each monomer and 0.01 

mol/L for the initiator) at ambient temperature under nitrogen atmosphere on a Schlenk 

line. These conditions are similar to those used for the ROMP of the PDI monomers 

described in Chapter 2.38 The expected degree of polymerization will be 50, assuming 

“living” polymerizations for these monomers. Thin layer chromatography (TLC) was 

used to monitor the polymerization since the OT-based homopolymers stay at the 

baseline while the two respective monomers move using chloroform as the eluent. Ethyl 

vinyl ether was applied to quench the polymerization by removing the attached 

ruthenium-based alkylidene from the polymer-chain ends when all of the monomers had 

been consumed according to TLC.38 These two OT-based homopolymers were purified 

using multiple precipitations by addition of the high concentration polymer solutions in 

good solvents, such as dichloromethane and chloroform, to poor solvents such as 

methanol or methanol/water mixture. Subsequent Soxhlet extraction using methanol and 

acetone was used to further purify the polymers. The isolated yields for the polymers 

were around 65% with broader molecular weight distributions than those of the PDI-

based HPs discussed in Chapter 2. The value of Mn = 23.6 kD, Mw/Mn = 1.4 and Mn = 

28.7 kD and Mw/Mn = 1.9 were estimated according to GPC (THF) results for 5T HP and 

6T HP, respectively. The reason for the quite broad Mw/Mn value of 6T HP is not clear. It 

should be noted that the large polydispersity of 6T HP suggested that the 6T monomer 

might not polymerize in a “living” manner, which could affect the synthesis of BCPs 

using 6T monomer. Furthermore, the observed molecular weights for 5T HP and 6T HP 

are lower than the ideal target molecular weights (35 – 40 kD), which is similar to that for 
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the PDI-based HPs and may presumably be attributed to the possible confirmation 

difference between the OT-based polymers and the polystyrene standard for GPC 

analysis. Both polymers show excellent solubility in common organic solvents, such as 

chloroform, toluene, chlorobenzene, and dichloromethane (> 100 mg/mL for both 5T HP 

and 6T HP in chlorobenzene).    
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Figure 3.7. The TGA traces (left) and DSC traces (right) for the OT-based homopolymers. 

  These two OT-based homopolymers exhibit good thermal stability with the 

decomposition temperatures (Td), defined as that at which 5% weight loss is observed to 

be around 395 oC under nitrogen flow according to thermogravimetric analysis (TGA) 

heating from room temperature to 500 °C with a heating rate of 5 °C/min. The thermal 

behavior of these polymers were examined by differential scanning calorimetry (DSC) 

analysis within the temperature range from -30 to 200 oC under nitrogen atmosphere. The 

DSC traces of the second heating with a heating rate of 5  oC/min are shown in Figure 3.7 

and reveal glass transition temperatures (Tg) of 38 and 51 oC, for 5T HP and 6T HP, 

respectively. There is also a weak melting transition for 5T HP at 58 oC immediately 

following its glass transition. 
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3.4 Absorption and redox properties of the OT-based materials 

  The UV-Vis absorption spectra of the two OT-based homopolymers and 

corresponding monomers in chloroform solution (ca. 5 × 10-6 mol/L according to 

respective OT concentration) are shown in Figure 3.8. Both polymers exhibit intense 

absorption in the range between 350 – 500 nm, while the 6T-based materials show 

slightly broader absorption and larger peak extinction coefficients. The optical band gap 

for 5T HP (2.45 eV according the absorption onset) is slightly larger than that for the 6T 

HP (2.29 eV) presumably due to the longer conjugation length for the 6T moieties in the 

polymer; a similar observation was made for the respective monomers. Only small 

absorption changes in absorption maxima and spectra shape were observed between the 

monomer and respective homopolymer, suggesting limited aggregation of the OT 

moieties on the polymer backbone for both homopolymers.  
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Scheme 3.8. The UV-Vis absorption spectra of the OT-based materials 
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  The assumption of a low-degree of π-π stacking between the OT moieties on 

polymer chains was further confirmed by the powder XRD measurements on these 

homopolymers. Both polymers show a broad peak, at a diffraction angle, 2q, of around 

20°, corresponding to a d-spacing of 4.7 Å, according to Bragg equation nλ = 2dsinq. 

This feature appears to be “halo” feature, typically for an amorphous material and could 

be assigned to polynorbornenes or alkyl chains stacking in these two homopolymers. 

Similar XRD data for PDI-based HPs were discussed earlier in Chapter 2. No obvious d-

spacing correlated to π-π stacking was observed for both OT-based polymers, consistent 

with the limited change for monomer and polymer absorption spectra. 
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Figure 3.9. Power XRD of 5T HP (black) and 6T HP (red) with a Cu Ka source (l = 1.5406 Å) 
in a continuous scan mode with a step of 0.02o(The data were collected by Dr. Doo Young 
Kim in the Marder group). 
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  The redox properties of the OT-based homopolymers were estimated via cyclic 

voltammetry (CV) measurements of the respective monomers in anhydrous 

dichloromethane with ferrocene (FeCp2) as an internal reference (Figure 3.10). The half-

wave potential (E1/2) values (defined as (Epa + Epc)/2, where Epa and Epc are peak oxidation 

and reduction potentials, respectively) of monomers 5T and 6T, are 0.38 and 0.35 V for 

the first oxidation versus FeCp2
+/0

 redox couple, respectively. The oxidation for these 

monomers were found to be reversible, exhibiting Ipa/Ipc (the ratio of the peak currents of 

the oxidative and reductive waves) values of ca. 1. which was similar to that for the 

FeCp2
+/0 redox couple. 5T is slightly less readily oxidized compared with 6T (~ 0.03 V), 

which could be attributed to the longer conjugation length in the 6T monomer. The 

ionization potentials (IPs)  for 5T and 6T were both estimated to be ca. 5.2 eV based on 

assuming an IP value of 4.8 eV for solid state ferrocene.48 The electron affinity (EA) 

values for 5T and 6T are estimated from the optical bandgaps and IP values to be -2.7 and 

-2.9 eV respectively according to EA = –(IP – Egap). The fairly large offset (1.4 eV) 

between the HOMO energy (-5.2 eV, defined as -IP) for OT materials and LUMO energy 

of C11PDI (-3.8 eV, estimated as EA) could potentially result in solar cells using PDI-

OT-based BCPs with large VOC. Furthermore, the large energy offsets between the 

LUMOs (ca. 1.1 eV) or HOMOs (ca. 0.8 eV) of the OT- and PDI-based materials 

suggests sufficient driving force for dissociation of both donor- and acceptor-based 

excitons at the D/A interface. It is worth mentioning that these values are somewhat too 

large according to what is believe to be the minimum requirement (0.3 – 0.5 eV) for 

effective exciton-dissociation and could therefore lead to undesirable thermal-energy loss 

during the overall photovoltaic process.1  
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Figure 3.10. The cyclic voltammetry curve of 5T (black) and 6T (red) in CH2Cl2, 0.1 M [n-
Bu4N][PF6], with scan rate = 50 mVs-1, with FeCp2

 as an internal reference. 
 
 
3.5 Device evaluation of the OT-based homopolymers 

  Bilayer solar cell devices using spin-casted 5T HP or 6T HP film as the donor 

layer, vacuum deposited C60 (45 nm) as the acceptor layer, and bathocuproine (BCP, 8 nm) 

on the top of the C60 layer were fabricated and characterized by Mr. William Potscavage 

Jr. in the Kippelen group. The film thickness of the donor layer played an important role 

in the solar cell performance, as summarized in Table 3.1. The devices with 20 nm thick 

5T HP film show PCE of ca. 0.19 % with JSC = 1.2 mA/cm2 while similar devices with 25 

nm thick 5T HP film show a dramatic decrease in overall PCEs and JSC. The relationship 

between the film thickness and PCEs of the 6T HP/C60 cells are similar to those 5T 

HP/C60 solar cells, though the device efficiencies of the 6T HP/C60 system were found to 

be 3 times as high as that of devices using 5T HP. Devices with maximum efficiency of 
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0.48% were obtained with 6T HP film of 10 – 15 nm thickness. These PCEs are 

comparable to unoptimized P3HT/C60-based bilayer cells.49 For devices with 5T/6T HPs, 

the major contribution of the device efficiency increase is from the enhancement of JSC. 

OFET devices based on the homopolymer films were also fabricated using the top-contact 

geometry via solution-process using gold-based source and drain electrodes by Dr. Shree 

Tiwari in the Kippelen group. However, no detectable hole mobilities were obtained for 

either homopolymers, which might be attributed to the poor π-π stacking between the OT 

moieties on the polymer side-chain (similar to N-PDI HP described earlier). 

Table 3.1. Summaries of the device performance from 5T HP or 6T HP/C60 bilayer cells 
(Data were collected  by Mr. William Potscavage Jr. in the Kippelen group). 

Devices   VOC (mV)   JSC(mA/cm2)          FF     PCEs (%) 

25 nm 5T HP 557 ± 12 0.30 ± 0.12 0.17 ± 0.00 0.03 ± 0.01 

15-20 nm 5T HP 593 ± 10 1.2 ± 0.1 0.17 ± 0.00 0.19 ± 0.01 

30-40 nm 6T HP 688 ± 18 1.13 ± 0.11 0.19 ± 0.01 0.18 ± 0.03 

20 nm 6T HP 703 ± 44 1.81 ± 0.10 0.23 ± 0.01 0.36 ± 0.03 

10-15 nm 6T HP 675 ± 9 2.30 ± 0.08 0.25 ± 0.01 0.48 ± 0.04 

 

3.6 Synthesis and optical properties of the block copolymers 

  As illustrated in scheme 3.3, the synthesis of the BCPs containing C11PDI and 

5T monomers were carried out in dichloromethane (C11PDI monomer concentration: 0.5 

mol/L and initiator concentration: 0.01 mol/L). This condition for making the PDI-based 

“macroinitiator” is similar to the synthesis for the PDI-based homopolymerization 

described in Chapter 2. The “first-generation” Grubbs initiator was utilized in the BCP 

synthesis because of its “living” nature and relatively simple handing requirement.38 
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After the consumption of C11PDI monomer (monitored using TLC as described earlier), 

the formed PDI-based “macroinitiator” was used to initiate the polymerization of the 5T 

monomer by adding a certain amount of 5T monomer into the reaction mixture. After the 

consumption of the 5T monomer (monitored using TLC), ethyl vinyl ether was used to 

quench the polymerization by removing the attached ruthenium-based alkylidene from 

the polymer-chain ends. These two homopolymers, with different 5T block length 

(theoretical degree of polymerization are 50 and 25 for the 5T monomer), were purified 

using multiple precipitations by addition of the high concentration polymer solutions in 

good solvents, such as dichloromethane and chloroform, to poor solvents such as 

methanol. Subsequent Soxhlet extraction using methanol and acetone was used to further 

purify the polymers. The isolated yields for the PDI-5T BCPs were over 85% with 

relatively broad molecular weight distributions over the PDI- and 5T-based 

homopolymers. A similar polymerization was carried out to obtain PDI-6T CPA with 

theoretical degree of polymerization of 50 for PDI-monomer and 50 for 6T-monomer in 

a yield of 82%, as shown in Scheme 3.4. The GPC results suggest that diblock 

copolymers, PDI-5T CPA, PDI-5T CPB, and PDI-6T CPA, are obtained with increased 

molecular weight and Mw/Mn compared to those of the PDI-based “macroinitiator”. The 

values of Mn = 15 kD and Mw/Mn = 1.3 were estimated according to GPC (THF) results 

for the PDI-based “macroinitiators”, while Mn = 30, 22, and 26 kD along with Mw/Mn = 

1.9, 1.7, and 1.7, respectively for PDI-5T CPA, PDI-5T CPB, and PDI-6T CPA were 

obtained from the same GPC. The molecular weights of the copolymers are smaller than 

the ideal molecular weight assuming the occurring of the “living” type ROMP in the BCP 

synthesis, probably due to similar reasons as for the homopolymers. It is worth noting 
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that the molecular weight increase in PDI-5T CPA and PDI-5T CPB has good 

correlation with the theoretical increase in 5T-based block length, suggesting a “living” 

polymerization of the second block during the BCP synthesis. The 1H NMR integration, 

the UV-Vis absorption in CHCl3 and films (Figure 3.12), and elemental analysis results 

suggest that the actual molar ratio of each monomer in the BCPs, PDI-5T CPA, PDI-5T 

CPB, and PDI-6T CPA, are good in agreement with that calculated from the 

corresponding feed ratio in the polymerization. Broad absorption spectra, from 300 – 600 

nm, with both OT and PDI characteristic bands were observed for all three copolymers in 

solution and as a film on glass. Furthermore, strong photoluminescence (PL) quenching 

(> 95 %) relative to C11PDI HP and 5T/6T HP controls was observed from the spin-

casted polymer films on ITO substrates (Figure 3.13), indicating that efficient electron 

transfer occurs in quenching the OT or PDI excitons. 

 

Figure 3.11. The chemical structures of the copolymers. 
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 Scheme 3.3. The synthetic scheme for the PDI-5T copolymers: PDI-5T CPA and PDI-5T 
CPB.  

 

 

Scheme 3.4. The synthetic scheme for the PDI-6T copolymer: PDI-6T CPA.  
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Figure 3.12. The UV-Vis absorption spectra of the copolymers in CHCl3 solution (left) and in 
films (right). The films were prepared via spin-coating using 5mg/mL toluene solution at a 
spin rate of 500 rpm for 1 minute on glass substrates.  
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Figure 3.13. Thin-film emission spectra of the copolymers and C11PDI HP and 5T / 6T HP 
controls on ITO substrates. All polymer films were excited at 450 nm (This figure was 
adapted from Dr. Safa Shoaee in the Durrant group).  
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3.7 Thermal properties of the copolymers   

 As revealed in Figure 3.14, all three PDI-OT BCPs exhibits good thermal 

stability, the decomposition temperatures (Td), defined as that at which 5% weight loss is 

observed are found to be ca. 385 oC, under nitrogen atmosphere, as determined by 

thermogravimetric analysis (TGA) heating from room temperature to 500 oC at a heating 

rate of 5 oC/. The Td of the copolymers is quite similar to that of C11PDI HP and around 

10 oC lower than the OT-based homopolymers, indicating that such thermal degradation 

probably occurs on the PDI-based block first during the TGA analysis. The thermal 

behaviors of these copolymers were recorded through differential scanning calorimetry 

(DSC) analysis within the temperature range from -30 to 300 oC under nitrogen 

atmosphere. The DSC traces of the second heating with a heating rate of 5 oC/min are 

shown in Figure 3.15. All three PDI-OT copolymers showed features similar to those of 

the corresponding homopolymers, C11PDI HP, 5T HP, and 6T HP, which further 

supports the formation of respective BCPs during synthesis. The thermal properties of 

these diblock copolymers are summarized in Table 3.2.  

Table 3.2. Summary of thermal properties of the copolymers. 
Polymer   Td (

oC)           Tm (oC)    Tg (
oC) 

 PDI-5T CPA 385 61, 213 44, 160 

      PDI-5T CPB 385 N.A. 42, 158 

       PDI-6T CPA 385 N.A. 51, 158 

        C11PDI HP 385 223 159 

     5T HP 395 58 38 

     6T HP 395 N.A. 51 
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Figure 3.14. TGA traces (left) and DSC traces (right) for the second heating process of PDI-
5T CPA (black), PDI-5T CPB (red), and PDI-6T CPA (green) with a heating rate of 5 oC/min 
under nitrogen atmosphere. 
  

3.8 Solar-cell performance for the block copolymers 

  Solar cells were constructed by Mr. William Potscavage Jr. in the Kippelen group 

using a ITO/PEDOT:PSS/polymer(s)/Al configuration to evaluate the solar cell 

performance the copolymers and respective material blends; the respective device 

performances are summarized in Table 3.3. All of the solar cells shown here gave limited 

performance and the PCEs of these devices are primarily limited by the JSC and fill factor 

(FF). The low charge mobility of the copolymers might be a major reason for the small 

JSC since the respective homopolymers have low mobility in OFET devices (C11PDI HP 

showed electron mobilities of ~ 10-5 cm2V-1s-1 and 5T HP and 6T HP exhibited no hole 

mobilities in OFETs). Of course, other factors including the poor  light-harvesting ability 

and morphologies of the films might play import roles in the limited photo current as 
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well.1 Furthermore, unbalanced charge transport in PDI-5T and PDI-6T copolymers 

could result in charge accumulation and inefficient charge collection resulting in a 

decreased FF and overall PCE by promoting the possibility of charge recombination.1 

The VOC of the devices from PDI-5T CPA and PDI-5T CPB is up to 0.8 V which can be 

attributed to the relatively larger Ig (ca. 1.4 eV). The large VOC of solar cells from the 

three BCPs could be considered as an advantage for OPV applications although these 

polymers do not harvest much light beyond 550 nm and exhibit quite poor device 

performance. It should be pointed out that the solar cell devices from PDI-5T CPA had 

PCEs three times higher than those from PDI-5T CPB and the blend film from C11PDI 

HP and 5T HP (PCEs = 0.15% for PDI-5T CPA) because of their much larger JSC, 

respectively. Measurements of the incident photon-to-current efficiency (IPCE) show 

much higher energy conversion in the whole spectra range than the other two systems and 

the maximum IPCE is over ~ 7% between 300 – 600 nm for devices from PDI-5T CPA, 

as shown in Figure 3.16. The higher IPCE for devices from PDI-5T CPA might be 

attributed to more favorable micro-phase-separation in the films as compared to PDI-5T 

CPB and homopolymer blends as the chemical composite of the materials are similar. 

The similar shape of IPCE curves (Figure 3.15), with respective BCP film absorption 

spectra (Figure 3.13), suggests both donor- and acceptor-based excitons could contribute 

to the photo current. In PDI-5T CPB, the shorter 5T block might limit its ability to form 

favorable micro-phase separation in films as seen with PDI-5T CPA. A possible reason 

for low PCEs of PDI-5T CPB may be relatively unbalanced charge-transport ability due 

to the lower ratio of 5T moieties. Solar cells for PDI-6T CPA gave PCEs of 0.04% with 

VOC  =  512 mV and JSC = 0.17 mAcm-2, the PCEs of which are similar to those from PDI-
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5T CPB and homopolymer blends from C11PDI HP and 5T HP. The transient 

absorption, performed in the Durrant group in Imperial College (London), of the 

copolymer films exhibited micro- to millisecond long-lived PDI anion absorption at 720 

nm after photo-excitation at 466 nm, as illustrated in Figure 3.16. The oxygen-

independent decay dynamics are consistent with the assignment to ion rather than triplet 

absorption. Here, the magnitude of the PDI anion absorption50-52 at 720 nm at a time 

delay of 1 µs (corresponding to the time delay used in previous studies of D/A blend 

films and approximating to the typical timescale for charge collection in such D/A blend 

devices).53-54 These ΔOD signal intensities at 1 ms are also summarized in Table 3.3. Here, 

a greater than two-fold increase for ΔOD at 1 ms related to the yielding of free charge was 

observed for PDI-5T CPA film relative to films from PDI-5T CPB and PDI-6T CPA. It 

should be noted that there is a good correlation between the PCEs and JSC with ΔOD at 1 

ms (related to the yield of charge photo-generation). According to the transient absorption 

decay of the copolymer films, larger ΔOD leads to devices with higher PCEs. 

Furthermore, the values of ΔOD at 1 ms from PDI-5T CPA films are more than 5 times 

smaller than in P3HT/PDI blends reported in the literature or the system shown in 

Chapter 4.53 This suggests that a key performance limitation of these solar cells is the low 

yield of charge photo-generation. However, given the low yields of charge photo-

generation, the JSC in the devices from PDI-5T CPA is reasonable compared to 

P3HT/PDI blends shown in literature and Chapter 4, suggesting that the percolation 

pathway, perhaps due to more favorable micro-phase-segregation in films, might be 

presented for facilitating charge collection. 
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Figure 3.15. IPCE curves of solar cells from the PDI-5T copolymers (A and B) and the 
blends of C11PDI HP and 5T HP (1:1 and 2:1 weight ratio) (Figure was adapted from Mr. 
William Potscavage Jr. in the Kippelen group). 

 

 
Figure 3.16. Transient absorption decay of the copolymer films after photoexcitation (similar 
films as the active layers in solar cells) under nitrogen (excited at 466 nm, probed at 720 nm.) 
(Figure was adapted from Dr. Safa Shoaee in the Durrant group). 
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Table 3.3. Summary of solar cell characteristics for the copolymers or homopolymer blends 
in device geometry of ITO/PEDOT:PSS/polymer(s)/Al (Data were collected by Mr. William 
Potscavage Jr. in the Kippelen group). 

Copolymers or polymer 
blends 

  VOC (mV) JSC (mA/cm2)     FF PCE(%) µΔOD (1 µs) 

PDI-5T CPA 862 ± 12 0.42 ± 0.02 0.30 ± 0.00 0.15 ± 0.01 50 

PDI-5T CPB 800 ± 51 0.16 ± 0.02 0.26 ± 0.00 0.05 ± 0.01 20 

C11PDI HP/5T HP = 1 : 1 
(weight ratio) 

723 ± 223 0.17 ± 0.01 0.31 ± 0.02 0.05 ± 0.02 N.A. 

C11PDI HP/5T HP = 2 : 1 
(weight ratio) 

770 ± 22 0.14 ± 0.01 0.32 ± 0.01 0.05 ± 0.01 N.A. 

PDI-6T CPA 512 ± 15 0.20 ± 0.04 0.28 ± 0.01 0.04 ± 0.01 14 

 
 

3.9 Morphology study of the copolymers 

 Transmission electron microscopy (TEM) was performed, by Dr. Safa Shoaee in 

the Durrant group at Imperial College (London), to study the phase-segregation of the 

copolymer films. For these experiments, RuO4 was used to stain the sample to provide 

better contrast for different domains. The darker regions of the images correspond to the 

regions of PDI-rich domain stained with RuO4, as claimed in the earlier research.9,22 Here, 

since the PEDOT:PSS layer is water soluble, thin composite films of the copolymers on 

top of the PEDOT:PSS layer were removed from their PEDOT:PSS coated ITO substrates 

onto the surface of water and transferred to a 300 mesh TEM carbon coated copper grids 

and stained with RuO4.
9,25 However, according to the TEM images shown in Figure 3.17, 

no obvious nanometer-scale phase-segregation was observed in these samples. However, 

since RuO4 can stain only the surface of the copolymer films, the TEM images shown here 
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do not give information about the phase separation in the bulk, which might give totally 

different morphologies as that on the surface. Further TEM analysis on the film cross-

section might be necessary for better understanding of the phase segregation in the bulk 

films and its relationship to the overall device performance.  

   

 

Figure 3.17. TEM images for PDI-5T CPA and PDI-5T CPB (These images were adapted 
from Dr. Safa Shoaee in the Durrant group). 

 
3.10 Conclusions 

  A series of PDI-OT-based diblock copolynorbornenes have been synthesized, 

characterized, and investigated as active materials in organic solar cells. It was observed 

in solution and in films that the block copolymers show broad absorption spectra, from 

300 to 600 nm, with both OT and PDI characteristic bands. Strong PL quenching (> 

95 %) compared to C11PDI HP and 5T/6T HP of the spin-casting polymer films 

suggests efficient electron transfer occurs in quenching the excited states of OT or PDI. 

In solar cells, PDI-5T CPA (PCE = 0.15%, and JSC = 0.42 mA/cm2) show much higher 
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PCEs and JSC over the other two copolymers and the respective C11PDI HP/5T HP 

blend. There is good correlation between the PCEs and JSC of the solar cells from these 

copolymers with the yield of charge photo-generation according to the copolymer film 

transient absorption decay (larger yield of charge photo-generation is related to devices 

with higher PCEs). Furthermore, the relatively low yields of charge photo-generation 

might be the key reason for the poor device performance from these polymers. No 

obvious micro-phase-segregation was observed on the surface of the copolymer films via 

TEM techniques. 

3.11 Experimental section 

General: Most organic and inorganic chemicals in this chapter were obtained from 

Aldrich, Alfa Aesar, and TCI and used without further purification. The pure exo-isomer 

of bicyclo [2.2.1]hept-5-ene-2-carboxylic acid were synthesized via literature procedures 

or from Solvay. The 1H and 13C NMR spectra were collected on a Bruker 400 MHz or a 

Bruker 500 MHz spectrometer. Mass spectra were measured on an Applied Biosystems 

4700 Proteomics Analyzer using MALDI mode. Elemental analyses (for C, H, N, S 

elements in this Chapter) were carried out by Atlantic Microlab using a LECO 932 

CHNS elemental analyzer. Solution (chloroform) and thin film UV-Vis absorption 

spectra were recorded on a Varian Cary 500 UV/Vis/near-IR spectrophotometer while 

solution (toluene) emission spectra were recorded with a Shimadzu FP-5301PC 

spectrofluorometer. Electrochemical measurements were carried out under nitrogen in 

deoxygenated 0.1 M solutions of tetra-n-butylammonium hexafluorophosphate in dry 

dichloromethane using a computer-controlled BAS 100B electrochemical analyzer, a 
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glassy-carbon working electrode, a platinum-wire auxiliary electrode, and an Ag wire 

anodized with AgCl as a pseudo-reference electrode at a scan rate of 50 mV/s. The 

potentials were referenced to FeCp2
+/0 redox couple by using ferrocene as an internal 

standard. TGA measurements were performed on an NETZSCH STA 449C analyzer 

under a nitrogen flow of 40 mL/min with a heating rate of 5 oC/min. DSC measurements 

were performed on a TA Instruments DSC Q200 analyzer under a nitrogen flow of 50 

mL/min with a heating rate of 5 oC/min. Powder XRD data was collected on a Scintag X1 

diffractometer with a Cu Kα source (l = 1.5406 Å) in a continuous scan mode with a step 

size of 0.02o. 

 BHJ solar cells were fabricated by Mr. William Postcavage Jr. in the Kippelen 

group using the BCPs or the blend of C11PDI HP and 5T HP. Solution of a block 

copolymer or polymer blend was made in chlorobenzene (20 mg/mL). ITO-coated 

glasses (Colorado Concept Coatings LLC) with a sheet resistivity of ~ 15 Ω/sq were used 

as the substrates for the solar cells. The substrates were cleaned in an ultrasonic bath with 

detergent water, rinsed with deionized water, and then cleaned in sequential ultrasonic 

baths with deionized water, acetone, and isopropanol. Nitrogen was used to dry the 

substrates after each of the last three baths. A 300-nm-thick layer of SiOx was deposited 

on the cleaned ITOs by e-beam deposition (AXXIS, Kurt J. Lesker) to pattern the anode. 

Next, the substrates were ultrasonicated in isopropanol for 15 minutes, blown dry with 

nitrogen, and air-plasma treated for 2 minutes. A hole-conducting layer of PEDOT : PSS 

(CLEVIOS P VP AI 4083, H. C. Starck) was filtered through a 0.45-µm-pore PVDF 

filter and spin coated on the substrates at 5000 rpm for 1 minute, and the substrates were 

annealed at 140 ºC for 10 minutes in ambient atmosphere. After loading into a nitrogen-
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filled glove box, films of the polymer mixtures were deposited on the substrates by spin 

coating for 1 minute at speeds of 1000 – 1500 rpm for the mixture. All solutions were 

filtered through 0.2-µm-pore PTFE filters prior to spin coating. The substrates were then 

loaded into a vacuum thermal evaporation system (SPECTROS, Kurt J. Lesker) 

connected to the glove box, and  ca. 200 nm of Al was deposited through a shadow mask 

at a rate of 1 – 3 Å/s and a base pressure of  ca. 7 × 10-8 Torr to define the cathodes. The 

completed devices were transferred in a sealed container to another nitrogen-filled glove 

box for electrical measurements. Current-voltage characteristics were measured using a 

source meter (2400, Keithley) controlled by a LabVIEW program. When testing the solar 

cells under illumination, filtered light from a 175 W Xenon lamp (ASB-XE-175EX, CVI) 

was used as a broadband light source with an irradiance of ~ 72 mW/cm2 to simulate 

sunlight. A monochromator and calibrated photodiode were used to measure IPCE.  

Bilayer Solar cells were fabricated by Mr. William Postcavage Jr. in the Kippelen group 

by spin coating a layer of OT HP as the donor and depositing C60 as the acceptor on top. 

First, a 15 mg/mL solution of OT HP in chlorobenzene was made and stirred for several 

hours in a nitrogen-filled glove box. ITO-coated glass (Colorado Concept Coatings LLC) 

with a sheet resistivity of ca. 15 Ω/sq. was used as the substrates for the solar cells. The 

substrates were cleaned in an ultrasonic bath of detergent water, rinsed with deionized 

water, and then cleaned in sequential ultrasonic baths of deionized water, acetone, and 

isopropanol. Nitrogen was used to dry the substrates after each of the last three baths. A 

300-nm-thick layer of SiOx was deposited on the cleaned ITO by e-beam deposition 

(AXXIS, Kurt J. Lesker) to pattern the anode. Next, the substrates were ultrasonicated in 

isopropanol for 10 minutes, blown dry with nitrogen, and air-plasma treated for 3 min. A 
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hole-conducting layer of PEDOT : PSS was filtered through 0.45-µm-pore PVDF filters 

and spin coated on several of the substrates at 5,000 rpm for 1 min, and the PEDOT-

coated substrates were annealed at 140 ºC for 10 min in atmosphere. After loading into a 

nitrogen-filled glove box, films of OT HP were deposited on the substrates with and 

without PEDOT : PSS by spin coating for 1 min at 1,000, 2,000, 4,000, and 8,000 rpm. 

The solution was filtered through 0.2-µm-pore PTFE filters prior to spin coating. The 

substrates were then loaded into a vacuum thermal evaporation system (SPECTROS, 

Kurt J. Lesker) connected to the glove box, and 45 nm of C60, 8 nm of bathocuproine, and 

200 nm of Al were deposited on top of the polymer films through shadow masks at a base 

pressure of ca. 3 × 10-8 Torr. The C60 (Alfa Aesar) and bathocuproine (TCI America) 

were purified with zone sublimation prior to use. The completed devices were transferred 

in a sealed container to another nitrogen-filled glove box for electrical measurements in 

similar way as described earlier.  

 Transient absorption decays were measured by Dr. Safa Shoaee in the Durant 

group in Imperial College (London) by exciting the sample films, under nitrogen 

atmosphere, with a dye laser (Photon Technology International Inc., GL-301). The 

excitation wavelength used was 466 nm for all blends, with pump intensities of ca. 30 

mJcm-2 and a repetition frequency of 4 Hz. A 100 W quartz halogen lamp (Bentham, IL 1) 

with a stabilized power supply (Bentham, 605) was used as a probe light source, with a 

typical probe wavelength of 720 nm. The probe light passing through the sample film 

was detected with a silicon photodiode (Hamamatsu Photonics, S1722-01). Signal from 

the photodiode was pre-amplified and sent to the main amplification system with an 

electronic band-pass filter (Costronics Electronics). The amplified signal was collected 
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with a digital oscilloscope (Tektronics, TDS220), which was synchronized with a trigger 

signal of the pump laser pulse from a photodiode (Thorlabs Inc., DET210). To reduce 

stray light, scattered light and sample emission, two monochromators and appropriate 

optical cut-off filters were placed before and after the sample. 

Compound A: 5'-Hexyl-2,2'-bithiophene-5-boronic acid pinacol ester (1.2 g, 3.2 mmol), 

ethyl 2,5-dibromothiophene-3-acetate (0.42 g, 1.3 mmol), Pd(PPh3)4 (30 mg, 26 µmol), 

and CsF (0.61g, 6 mmol) were refluxed in anhydrous dimethylacetamide (15 mL) under 

nitrogen overnight in a two-neck round-bottomed flask. After the reaction was cooled to 

room temperature, most of the solvent was removed by vacuum distillation. The residue 

was dissolved in toluene (100 mL) and washed with water (3 × 20 mL). The organic phase 

was dried over MgSO4 and the solvent was removed under vacuum. The residue was 

passed through a short silica gel plug eluted with hexane, toluene/hexane (4 : 1), and then 

toluene to give compound A as yellow solid after the solvent was removed under vacuum 

(0.81 g, 51%). 1H NMR (500 MHz, CD2Cl2):d 7.11–7.09 (m, 4H), 7.03-7.01 (m, 3H), 6.72 

(s, 2H), 4.21 (q, J = 7.0 Hz, 2H), 3.76 (s, 2H), 2.82 (t, J = 7.5 Hz, 4H), 1.70 (q, J = 7.0 Hz, 

4H), 1.39–1.27 (m, 16H); 13C{1H} NMR (125 MHz, CD2Cl2): d 170.9, 146.6, 146.5, 138.9, 

137.6, 135.0, 135.6, 134.4, 133.3, 132.2, 131.7, 127.7, 127.1, 125.4, 124.9, 124.0, 123.9, 

61.5, 35.4, 32.0, 30.5, 30.1, 29.1, 23.0, 14.4, 14.2.(Four aromatic and one alkyl carbon 

resonances were not observed, presumably due to overlap): HRMS(EI) Calcd for 

C36H42O2S5: 666.1788. Found: 666.1753. Anal. Calcd for C36H42O2S5: C, 64.82; H, 6.35; S, 

24.04. Found: C, 64.56; H, 6.39; S, 23.96.  



160 

 

5T Monomer: Compound A (0.80 g, 1.2 mmol) in THF (20 mL) was added dropwise to 

the mixture of lithium aluminum hydride (0.38 g, 10 mmol) and THF (10 mL) at 0 oC . 

The mixture was warmed up to room temperature slowly and kept stirring at room 

temperature for another 2 h. Water (2 mL) was added dropwise and the resultant white 

precipitate was removed by filtration. The solvent of the filtrate was removed and the 

residue was dissolved in chloroform (50 mL) and washed with water (3 × 20 mL). The 

organic phase was dried over Na2SO4 and the solvent was removed under vacuum to give 

a yellow solid (0.71 g). This yellow solid was used for reaction without further 

purification. The yellow solid (0.71 g) and exo-bicyclo[2.2.1]hept-5-ene-2-carboxylic 

acid (0.44 g, 3.2 mmol) were charged to a two-neck round-bottomed flask and dissovled 

in dichloromethane (25 mL) under nitrogen. A mixture of dicyclohexylcarbodiimide 

(0.27 g, 1.4 mmol) and 4-(dimethylamino)pyridine (22 mg, 0.18 mmol) in 

dichloromethane (5 mL) was then added in the flask in one portion. The mixture was 

stirred overnight under nitrogen at room teperature before it was passed through a short 

silica gel pad eluted with chloroform. The solvent was then removed under vacuum to 

give the 5T Monomer as a yellow solid (0.60 g, 71%). 1H NMR (500 MHz, CD2Cl2): d 

7.08 (m, 4H), 7.03 (m, 3H), 6.72 (s, 2H), 6.12–6.09 (m, 2H), 4.37 (m, 2H), 3.14 (t, J = 

6.0 Hz, 2H), 2.99 (s, 1H), 2.88 (s, 1H), 2.81 (m, 4H), 2.21 (m, 1H), 1.89 (m, 1H), 1.71 (m, 

4H), 1.51 (m, 16H), 0.90 (m, 6H). 13C{1H} NMR (125 MHz, CD2Cl2): d  176.3, 146.1, 

137.2, 136.1, 135.9, 135.2, 133.7, 131.5, 127.3, 126.8, 125.4, 124.7, 124.0, 123.6, 64.1, 

47.0, 46.7, 43.5, 42.1, 31.9, 30.7, 30.5, 29.1, 23.0, 14.2 (9 aromatic carbons and 7 alkyl 

resonances were not observed, presumably due to overlap). HRMS(EI) Calcd for 
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C42H48O2S5: 744.2258. Found: 744.2242. Anal. Calcd for C42H48O2S5: C, 67.70; H, 6.49; 

S, 21.52. Found: C, 67.67; H, 6.63; S, 21.32. 

5T HP: 5T monomer (225 mg, 0.301 mmol) was dissolved in dichloromethane (10 mL) 

under nitrogen, and then the “first generation” Grubbs intiator (4.0 mg, 0.0060 mmol) in 

dichloromethane (1 mL) was added in one portion. The mixture was then kept stirred for 

another 5 h. Then, ethyl vinyl ether (0.2 mL) was added in one portion and the mixture 

was stirred for another 4 h at room temperature. The mixture was added to methanol (200 

mL) dropwise and the resultant yellow precipitate was filtered, washed with methaol (50 

mL) and hexane (50 mL) in a sequence,  and dried under vacuum. The resultant yellow 

solid was then washed with hot methanol for 6 h and hot acetone overnight in a Soxhlet 

apparatus and then chloroform to extract the polymer for 5 h. Most of the solvent was 

removed under vacuum and the residue was precipitated into methanol/Water = 10 :1 

(200 mL). 5T HP was obtained as a yellow solid after filtration (136 mg, 65%). GPC 

(THF): Mn = 23.6 kD, Mw/Mn =1.4.  1H NMR (500 MHz, CD2Cl2): d 7.02 (sb, 7nH), 6.74 

(sb, 2nH), 5.10 (mb, 2nH), 4.42 (sb, 2nH), 3.1–2.3 (m, 9nH), 1.9–1.3 (m, 20nH), 0.85 (sb, 

6nH). Anal. Calcd for (C42H48O2S5)n: C, 67.70; H, 6.49; S, 21.52. Found: C, 67.52; H, 

6.41; S, 21.24. 

Compound B: 5-Trimethylstannyl-2,2’-dithienyl (2.2 g, 60 mmol), 5,5'-dibromo-4,4'-

dihexyl-2,2'-bithiophene (1.20 g, 25 mmol), Pd(PPh3)4 (20 mg, 0.017 mmol) were 

refluxed in toluene (30 mL) under nitrogen overnight in a two-neck round-bottomed flask 

with condenser. After the reaction was cooled to room temperature, the reaction mixture 

was washed with water (3 × 20 mL) and dried over MgSO4. The solvent was then 
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removed under vacuum and the residue was recrystallized in heptane twice to give 

compound B as an orange solid (1.0 g, 63%).  1H NMR (500 MHz, CD2Cl2): d 7.28 (d, J 

= 1.0 Hz, 2H), 7.27 (d, J = 1.0 Hz, 2H), 7.22 (d, J = 1.0 Hz, 2H), 7.16–7.04 (m, 6H), 

2.79 (t, J = 7.5 Hz, 4H), 1.70 (pentet, J = 7.5 Hz, 4H), 1.44–1.41 (m, 4H), 1.35–1.32 (m, 

8H), 0.90 (t, J = 7.0 Hz, 6H). 13C{1H} NMR (125 MHz, CD2Cl2): d 141.2, 137.4, 137.3, 

135.2, 135.1, 129.8, 128.4, 127.1, 126.8, 125.0, 124.4, 124.1, 32.0, 30.8, 29.8, 29.6, 23.0, 

14.2. HRMS (FAB) Calcd for C36H38S6: 662.129. Found: 662.128. Anal. Calcd for 

C36H38S6: C, 65.21; H, 5.78;  Found: C, 65.16; H, 5.74.  

6T monomer: Compound B (1.32 g 2.00 mmol) was dissolved in anhydrous THF (30 

mL) under nitrogen and the mixture was cooled to -78 oC followed by the addition of 0.2 

mL TMEDA. After the mixture was stirred for 10 min at this temperature, n-butyl lithium 

in hexane (2.3 mol/L, 0.89 mL, 2.0 mmol) was added through syringe slowly. The 

reaction mixture was kept stirring at -78 oC for 1 h before it was warmed to room 

temperature slowly. After the mixture was stirred at room temperature for 30 min, it was 

cooled down to -78 oC and iodine (0.504 g, 2.00 mmol) in THF (5 mL) was added in one 

portion. The mixture was warmed up to room temperature and kept stirring overnight. 

The solvent was then removed under vacuum and the residue was passed through a short 

silica gel plug with hexane as the eluent. The solvent was removed under vacuum and the 

residue together with CuI (5 mg, 0.03 mmol), PdCl2(PPh3)2 (20 mg, 0.030 mmol), were 

charged to a two-neck round-bottomed flask. The reaction system was evacuated/refilled 

with nitrogen three times and triethylamine (5 mL), toluene (20 mL), and 4-pentyn-1-ol 

(1 mL) were added via syringe. The mixture was then stirred at 80 oC overnight under 
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nitrogen before it was cooled to room temperature, washed with water, and dried over 

MgSO4. After the solvent was removed under vacuum, the residue was purified on a 

silica gel column with hexane/ethyl acetate (3 : 1). A yellow oil was obtained when the 

solvent was removed, which was dissolved in dichloromethane (10 mL) with exo-

bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (0.30 g, 2.2  mmol) under nitrogen. Then, a 

mixture of dicyclohexylcarbodiimide (0.20 g, 0.97 mmol) and 4-(dimethylamino)pyridine 

(15 mg, 0.12 mmol) in dichloromethane (3 mL) was added in one portion and the mixture 

was stirred overnight at room temperature. The reaction mixture was passed through a 

short silica gel plug eluented with chloroform. After the solvent was removed, the 

residure was refluxed in 15 mL ethanol for 30 minutes and stored for one month at -20 oC. 

6T monomer was achieved as an orange solid after filtration (0.31 g, 18%). 1H NMR 

(500 MHz, CD2Cl2):d 7.32 (dd, J1 = 4.0 Hz, J2 = 1.0 Hz, 1H), 7.27 (dd, J1 = 3.5 Hz, J2 = 

1.0 Hz 1H), 7.21 (d, J = 4.0 Hz, 1H), 7.19 (d, J = 4.0 Hz, 1H), 7.11-6.16 (m, 7H), 4.26 (t, 

J = 6.5 Hz, 2H), 3.08 (s, 1H), 2.95 (s, 1H), 2.83–2.80 (m, 4H) 2.63 (t, J = 7.0 Hz, 2H),  

2.29-2.27 (m, 1H), 2.00–1.94 (m, 3H), 1.75–1.69 (m, 4H), 1.54–1.25 (m, 17H), 0.95 (t, J 

= 7.0 Hz, 6H). 13C{1H} NMR (125 MHz, CD2Cl2): d 176.3, 141.3, 141.2, 138.4, 137.6, 

137.4, 137.3, 136.7, 136.1, 135.7, 135.2 (2 peaks) 135.0, 132.6, 129.8, 129.6, 128.3, 

127.1 (2 close peaks), 126.7, 125.1, 124.8, 124.4, 124.1, 123.6, 123.1, 94.9, 74.3, 63.4, 

47.0, 46.7, 43.5, 42.1, 32.0, 30.8 (2 peaks) 30.7, 30.1, 29.9, 29.8, 29.6, 28.1, 23.0, 17.0, 

14.2. (One aromatic carbone and three alkyl carbons were not observed, presumably due 

to overlap). HRMS (FAB) Calcd for C49H52O2S6: 864.2291. Found: 864.2278. Anal. 

Calcd for C49H52O2S6: C, 68.01; H, 6.06; S, 22.23, Found : C, 68.03; H, 6.03; S, 22.41. 
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6T homopolymer: 6T monomer (240 mg, 0.277 mmol)  was dissolved in 

dichloromethane (10 mL) under nitrogen, and the “first generation” Grubbs intiator (4.5 

mg, 0.0055 mmol) in dichloromethane (2 mL) was added. The mixture was then kept 

stirring for 5 h. Then, ethyl vinyl ether (0.2 mL) was added in one portion and the 

mixture was stirred for another 4 h at room temperature. It was added to methanol (125 

mL) dropwise and the yellow precipitate was filtered, washed with methanol (50 mL) and 

dried under vacuum after filtration. The resultant yellow solid was then washed with hot 

methanol for 4 h and hot acetone overnight in a Soxhlet apparatus, then with chloroform 

to extract the polymer for 5h.  Most of the solvent was removed under vacuum and the 

residue was precipitated in to methanol (200 mL). 6T HP was obtained as an orange solid 

after filtration (151 mg, 63 %). GPC (THF) : Mn = 28.7 kD, Mw/Mn =1.9. 1H NMR (500 

MHz, CD2Cl2): d 7.2–6.9 (mb, 11nH), 5.5–5.0 (m, 2nH), 4.14 (sb, 2nH), 2.6–2.5 (m, 

5nH), 1.9–1.6 (m, 3nH), 1.6–1.3 (m, 23nH), 0.87 (sb, 6nH). Anal. Calcd for 

(C49H52O2S6)n: C, 68.01; H, 6.06; S, 22.23. Found: C, 67.81; H, 6.12; S, 22.13.  

PDI-5T CPA: C11PDI monomer (330 mg, 0.371 mmol) was dissolved in anhydrous  

dichloromethane (9.0 mL) under N2, the “first generation” Grubbs initiator (6.1 mg, 

0.0075 mmol) in dichloromethane (1.0 mL) was then added in one portion. The reaction 

mixture was kept stirring for 6 h until all C11PDI monomers had been consumed 

(monitored by TLC) and 5T monomer (276 mg, 0.371 mmol) in dichloromethane (5.0 

mL)  was then added and the mixture was stirred ovenight at room temperature before the 

addition of ethyl vinyl ether (0.2 mL). It was kept stirring for another 5 h and added to 

methanol (200 mL) dropwise. The red precipitate was filtered, washed with methanol, 

and dried under vacumm. The resultant solid was then dissolved in chloroform (10 mL)  
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and precipitated out in methanol (200 mL) again. The red solid was then washed with hot 

methanol for 6 h and hot acetone overnight in a Soxhlet apparatus. Finally, CHCl3 was 

used to extract the materials for 5 h in a Soxhlet apparatus. Most solvent was removed 

under vacuum and the residue was precipitated into methanol (200 mL) dropwise. After 

filtration, PDI-5T CPA was achieved as a red solid (0.54 g, 82%). GPC (THF): Mn = 

30.6 k, Mw/Mn = 1.96.  1H NMR (500 MHz, CDCl3): d 8.5–6.5 (m, 17nH), 5.7–5.0 (m, 

5nH), 4.5–4.0 (mb, 6nH), 3.5–1.0 (m, 78nH), 0.85 (sb, 12nH). Anal. Calcd for 

(C100H118N2O8S5)n: C, 73.40; H, 7.27; N, 1.70; Found : C, 72.75; H, 7.45; N, 1.71.  

PDI-5T CPB: C11PDI monomer (400 mg, 0.449 mmol) was dissolved in anhydrous  

dichloromethane (9.0 mL) under N2, the “first generation” Grubbs initiator (7.3mg, 

0.0090 mmol) in dichloromethane (1.0 mL) was added in one portion. The reaction 

mixture was kept stirring for 6 h until all C11PDI monomers had been consumed 

(monitored by TLC) and 5T monomer (166 mg, 0.224 mmol) in dichloromethane (4.0 

mL)  was then added and the mixture was stirred ovenight at room temperature before the 

addition of ethyl vinyl ether (0.2 mL). It was kept stirring for another 5 h before it was 

added to methanol (200 mL) dropwise; the red precipitate was filtered, washed with 

methanol, and dried under vacumm. The resultant solid was then dissolved in chloroform 

(10 mL) and precipitated out from methanol (200 mL) again. The red solid was then 

washed with hot methanol for 6 h and hot acetone overnight in a Soxhlet apparatus for 6 

h. Finally, CHCl3 was used to extract the materials for 5 h in a Soxhlet apparatus. Most 

solvent was removed under vacuum and the residue was precipitated into methanol (200 

mL) dropwise. After filtration, PDI-5T CPB was achieved as a red solid (0.50 g, 89%). 

GPC (THF): Mn = 21.5 k, Mw/Mn =1.67.  1H NMR (500 MHz, CDCl3): d 8.5–6.5 (m, 



166 

 

25nH), 5.6–5.0 (m, 8nH), 4.5–4.0 (mb, 10nH), 3.5–1.0 (m, 127nH), 0.85 (sb, 18nH). 

Anal. Calcd for [(C42H48O2S5)n ·(C58H70N2O6)2n]: C, 75.08; H, 7.50; N, 2.22; Found: C, 

75.33; H, 7.55; N, 2.23.  

PDI-6T CPA: C11PDI monomer (330 mg, 0.371 mmol) was dissolved in anhydrous  

dichloromethane (12.0 mL) under N2, the “first generation” Grubbs initiator (6.1 mg, 

0.0075 mmol) in dichloromethane (1.0 mL) was added in one portion. The reaction 

mixture was kept stirring for 6 h until all C11PDI monomers had been consumed 

(monitored by TLC) and 6T monomer (320 mg, 0.371 mmol) in dichloromethane (5.0 

mL)  was then added and the mixture was stirred ovenight at room temperature before the 

addition of ethyl vinyl ether (0.2 mL). It was kept stirring for another 5 h before it was 

added to methanol (200 mL) dropwise; the red precipitate was filtered, washed with 

methanol, and dried under vacumm. The resultant solid was then dissolved in chloroform 

(10 mL) and precipitated out from methanol (200 mL) again. The red solid was then 

washed with hot methanol for 8 h and hot acetone overnight in a Soxhlet apparatus. 

Finally, CHCl3 was used to extract the materials for 5 h in a Soxhlet apparatus. Most 

solvent was removed under vacuum and the residue was precipitated into methanol (200 

mL) dropwise. After filtration, PDI-6T CPA was achieved as a red solid (0.52 g, 80%). 

GPC (THF): Mn = 26.0 kD, Mw/Mn =1.69. 1H NMR (500 MHz, CDCl3): d 8.2–6.8 (m, 

19nH), 5.7–5.0 (m, 5nH), 4.5–4.0 (mb, 6nH), 3.5–1.0 (m, 80nH), 0.86 (sb, 12nH). Anal. 

Calcd for (C107H122N2O8S6)n: C, 73.16; H, 7.00; N, 1.59; S, 10.95; Found: C, 73.18; H, 

6.92; N, 1.80; S, 10.66.  
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CHAPTER 4 

PERYLENE DIIMIDE-BASED ACCEPTORS WITH VARIOUS 
ELECTRON AFFINITIES AND MISCIBILITY WITH P3HT AND 

THEIR INFLUENCE ON THE YIELDS OF CHARGE PHOTO-
GENERATION IN DONOR/ACCEPTO BLENDS 

 
 

4.1 Introduction 

 Organic donor/acceptor (D/A) blends have been drawing an increasing amount of 

attention for solar cell applications,1-3 and the state-of-the-art solar cells using D/A blend as 

the active materials in bulk-heterojunction (BHJ) cells have power conversion efficiencies 

(PCEs) approaching 8%.4-5 Organic photovoltaic (OPV) processes are based on photo-

induced charge separation at the D/A interface following photo-excitation of the light-

harvesting materials, as illustrated in Figure 4.1. The efficiency of such a charge-separation 

process is determined by the population of excitons that reach the D/A interface to generate 

charge-transfer (CT) states after photo-excitation. The yields of charge-transfer state 

generation is denoted ηDISS(EX), and the yields of charge dissociation of these CT states is 

denoted as ηDISS(CT). The combination of  ηDISS(EX) and ηDISS(CT) are crucial factor affecting the 

charge photo-generation yield, and thus the photocurrent and overall PCEs of the solar 

cells.6-7 The yields of the charge photo-generation (the sum of ηDISS(EX) and ηDISS(CT)) in 

organic D/A blend films have been reported to depend on a range of variables, one of which 

is the free-energy difference driving charge-separation6-7 (DGCS, which can be estimated 

from the difference between electron affinity of the acceptor (EAA), ionization potential of 

the donor (IPD), and the lowest singlet state of light-harvesting material (Es), according to 

DGCS = Es – (IPD + EAA)). Such a free-energy difference, DGCS, is essentially the thermal-

energy loss in the photovoltaic process associated with photo-generated charges.6-7 It was 
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previously found that the yield of charge photo-generation for a series of polythiophenes (as 

shown in Figure 4.2), including poly-3-hexylthiophenes (P3HT), blended with phenyl-C61-

butyric acid methyl ester (PCBM), is highly dependent on DGCS,
1,7 which might be related to 

the relative energy of the CT state and the triplet states in such blends. If the CT state is 

lower in energy than the triplet-states (as in the case of P3HT and PCBM with large DGCS) 

the CT state can lead to free charge carriers. However, if the CT state is higher in energy 

than the available triplet states, intersystem crossing could occur from the CT state and lead 

to the generation of triplet-states rather than free charges.1,8-9 According to transient 

absorption measurements of photo-generated free charges (DOD measured at a time delay of 

1 ms after excitation), a relatively large DGCS (0.9 eV) was required to drive efficient charge-

separation in the blend films of polythiophene/PCBM and thus to achieve efficient solar 

cells, as illustrated in Figure 4.3.  
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Figure 4.1. The energy level diagram of a donor/acceptor interface showing a simplified 
viewpoint of photo-excitation of an electron into the donor LUMO (with efficiency hABS), 
followed by exciton dissociation via electron-transfer into the acceptor LUMO (hDISS(EX)) and 
migration of the separated charges away from the interface. It also illustrates the potential for 
electron transfer initially to generate a coulombically bound CT state that also requires 
dissociation (hDISS(CT)) before free charge carriers can be collected (This figure was adapted 
from Dr. Safa Shoaee in the Durrant group). 
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Figure 4.2. The chemical structures of PCBM, PDI2 and various polythiophenes with different 
IP and Es for the study of efficiency of charge photo-generation process and GCS relationship. 
 
 
 Perylene diimides (also known as PDIs) are attractive electron acceptors for studies 

of charge photo-generation in D/A blends because of their well-defined and intense radical 

anion absorption, together with their electron-accepting nature. Detailed examples regarding 

the successful use of PDI-based acceptors in OPVs and their respective device performances 

have been described earlier in Chapters 1 through 3. Recently, a comparison study of charge 

photo-generation between polythiophene:PCBM blends and the respective 

polythiophene:PDI2 blends was reported.6 It was observed that for equivalent values of 

DGCS, the polythiophene:PDI2 films could offer higher charge-generation efficiency, and 
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that their yields of dissociated charges (as estimated from transient absorption spectra at 1 

µs at 910 nm) showed much less dependence upon ΔGCS compared with the 

polythiophene:PCBM blends, as shown in Figure 4.3. Hence, even with their limited solar 

cell performance compared to polythiophene:PCBM based solar cells, which may be due to 

unfavorable phase-separation and poor charge carrier collection, the higher yields of charge 

photo-generation in polythiophene:PDI2 system inspire further research using PDIs as 

alternative acceptors to PCBM for D/A-based BHJ cells. As shown in Figure 4.4, this thesis 

aims to explore the synthesis of a series of PDI derivatives (PDIx, X = A to F) with different 

substituents on imide- and/or bay-positions and various EA. The photo-physical studies in 

these P3HT:PDIx (X = A to F)  blends could show the role of PDI-based acceptors on 

charge photo-generation in D/A blend films. 

 

 

Figure 4.3. The transient absorption signal measured at 1 ms of various polythiophene: PDI2 

(blue) or polythiophene: PCBM (red) (1:1 weight ratio) blend films plotted against -DGCS, 
estimated as ES – (IPD – EAA).  The transient signal has been corrected for variation in the 
absorbance at the excitation wavelength (500 nm) and PL quenching. lprobe = 700 nm at 50 
mJcm-2 (This figure was adapted from Dr. Safa Shoaee in the Durrant group). 
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Figure 4.4. The chemical structures of PDIX (X = A to F) derivatives. 
 

4.2 Synthesis and redox properties of PDIX (X = A to F) derivatives  

Synthesis of PDIX (X = A to F) derivatives are illustrated in Scheme 4.1. Here, 

PDIA,10 PDIB,11 PDIC,12 PDIF,13 and, PDI2
14 were synthesized as described in the literature. 

PDID, which has a similar chemical structure to that of PDIC, was prepared following a 

modification of the procedure described for PDIC.15 PDIE was synthesized in a moderate 

yield via direct bromination from PDIA. It should be noted that monobromo- and dibromo-

substituted and unsubstituted PDIs are normally obtained in this bromination reaction, 

making the purification of PDIE tedious. The relative EAs of this PDIX (X = A to F) 

derivatives were estimated using cyclic voltammetry. The potentials determined from the 
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cyclic voltammograms shown in Figure 4.5 were referenced to the ferrocenium/ferrocene 

(FeCp2
+/0) redox couple by using ferrocene as an internal standard. The first electrochemical 

half-wave reduction potentials E1/2
0/- were used to estimate the solid-state EA for the PDIs 

according to EA = -e(E1/2
0/- + 4.8 V) based on the solid-state IP value of 4.8 eV for 

ferrocene.16 In all cases, reversible reduction waves for the first and second reduction were 

observed. The estimated EAs of the PDI acceptors are listed in Table 4.1, and they vary by 

140 meV. This estimation of EAs assumes that solid-state polarization energies and 

solvation effects are constant for all PDIX (X = A to F) in dichloromethane solution, which 

could be reasonable because of their structural similarities.  
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Figure 4.5. The cyclic voltammograms of PDIX (X = A to F) in CH2Cl2, 0.1 M [n-Bu4N][PF6], 
with a scan rate = 50 mVs-1 for each material.  FeCp2 was used as an internal reference. 
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Scheme 4.1. The synthetic scheme for the PDIX (X = A to F) materials. 

 
4.3 Optical properties of P3HT:PDIX (X = A to F) blends 

 All these PDIX (X = A to F) materials showed typical PDI-type UV-Vis absorption 

in solution with PDIC and PDID exhibiting ~ 20 nm red-shift of λmax compared with the 

other PDI materials, probably due to the extended conjugation from the two incorporated 

ethynyl groups in the PDI-bay positions.15 Furthermore, this series of PDI derivatives were 

all found to blend readily with P3HT in common organic solvents, such as chloroform and 
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chlorobenzene, resulting in high, optical quality films obtained by spin-coating a 

P3HT:PDIX (X = A to F)  mixture (1:1 weight ratio) from chloroform solutions. The UV-Vis 

absorption spectra and photoluminescence (PL) spectra of these pristine spin-cast films, 

measured by Dr. Shaoee in the Durrant group, are quite similar to each other, as shown in 

Figure 4.6. Typical UV-Vis absorption spectra, from P3HT and PDID, of the pristine 

materials and blend films are presented in Figure 4.7. It is apparent that the PDI absorption 

spectra overlap significantly with that of P3HT in films, implying that photo-excitation of 

the P3HT:PDIX (X = A to F) blends could, in principle, generate both P3HT and PDIX 

singlet excitons. Thin-film PL spectra were collected to evaluate the efficiency of exciton 

quenching for all P3HT:PDIX (X = A to F) blends. The absorption and emission spectra 

indicate that the singlet exciton of P3HT has a smaller bandgap than that of PDI. Consistent 

with this observation, the PDI-type emission was very strongly quenched (> 99%) for all 

P3HT:PDIX blend films relative to that of pristine films from PDI-based materials, 

suggesting possible rapid energy-transfer from PDIX to P3HT with the formation of PDI-

based excitons and polarons following the photo-excitation of P3HT:PDIX blends. Hence, 

charge photo-generation more likely occurs via electron-transfer from P3HT singlet excitons 

to PDI acceptors. Weak residual P3HT emission was observed in these blend films, 

corresponding to 70 – 92 % photoluminescence quenching (PLQ) compared to the pristine 

P3HT films (determined by integration over the emission band with normalization for 

absorbance variations of the blend films and P3HT film), as detailed in Table 4.1. 
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Figure 4.6. The absorption and photoluminescence spectra measured for the following pristine 
P3HT film and blend films of PDIX:P3HT (X = A to F, 1:1 weight ratio) spin-cast from 
chloroform solution at 1000 rpm for 1 minute. The PL spectra were measured using 500 nm 
excitation and adjusted to the same absorbance at the excitation wavelength (These figures 
were adapted from Dr. Safa Shoaee in the Durrant group). 
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Figure 4.7. The absorption and photoluminescence spectra measured for the following pristine 
and blend films: PDID, P3HT, and (1:1) P3HT:PDID. The PL spectra were measured using 500 
nm excitation, and the intensities were normalized according to the absorbance (This figure 
was adapted from Dr. Safa Shoaee in the Durrant group). 
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Table 4.1. Properties of the P3HT:PDIx blends (Some data were collected by Dr. Safa Shoaee 
in the Durrant group). 

Blend 
(P3HT:PDIx) 

E1/2
0/- 

(V) 
EAA

a 
(eV) 

ΔGCS
b  

(eV) 
ΔODc PLQd (%) ΔOD/PLQ 

PDIA -1.09 -3.71 0.72 4.2 ´ 10-4 0.86 4.8 ´ 10-4 
PDIB -1.09 -3.71 0.72 5.1 ´ 10-4 0.92 4.7 ´ 10-4 
PDIC -1.06 -3.74 0.75 3.7 ´ 10-4 0.70 5.3 ´ 10-4 
PDID -1.05 -3.75 0.76 5.0 ´ 10-4 0.90 5.6 ´ 10-4 
PDIE -1.02 -3.78 0.79 5.1 ´ 10-4 0.83 6.2 ´ 10-4 
PDIF -0.96 -3.84 0.84 3.1 ´ 10-4 0.88 4.5 ´ 10-4 

       PDI2     -1.10 -3.7014 0.70 2.9 ´ 10-4  0.70 4.1 ´ 10-4 
a. Estimated electron affinities evaluated by cyclic voltammetry from the E1/2 value.  b. ΔGCS estimated as ES - 
(IP - EA), where IP is the ionisation potential of the polymer evaluated by an ambient ultraviolet photoelectron 
spectroscopy technique (4.8 eV for P3HT) and ES, the singlet exciton energy of the donor, measured from 
intercept of the normalized absorption and emission spectra. c. DOD evaluated from the amplitude of the 
transient absorbance at 1 µs decay following photo-excitation (λprobe = 700 nm), after correction for ground-
state absorbance at the excitation wavelength. d. Steady-state PL quenching of the blend film relative to the 
corresponding pristine polymer film. 
 
4.4 Transient absorption of P3HT:PDIX (X= A to F) blends 

Dr. Shaoee in the Durrant group used the transient absorption to monitor the yields 

of long-lived, dissociated charges on the microsecond timescale in each P3HT:PDIX blend 

film. Power law (ΔOD α t-α) absorption transients (with 0.38 < α < 0.50) were observed for 

all these P3HT:PDIX films. The transient absorption spectra of these investigated blends 

exhibited a well-defined absorption maximum at approximately 700 nm that corresponds to 

PDI radical anions,11,17-18 as well as a weaker, broad absorption between 900 and 1000 nm 

assigned to P3HT polarons.19-22 The pristine P3HT and PDI films gave negligible transient 

signals on the same timescales, indicating the transient absorption in the blend films is due 

to the interaction of the two components. Furthermore, oxygen-independent decays of the 

transient absorption of all P3HT:PDIX (X = A to F) films suggest that these long-lived 

transient absorption should be assigned to the ion pair absorption rather than possible triplet-

state absorption, since triplet state generally could be quenched with O2. These DOD signal 

intensities at 700 nm at a time delay of 1 ms, corresponding to the free PDI-based radical 
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anion absorption, are summarized in Table 4.1 (normalized for variations (< ± 35%) in the 

density of absorbed photons due to variations in film optical density at the excitation 

wavelength). It is worth noting that an increase in the DOD greater than two-fold (at 1 ms at 

700 nm) for P3HT:PDID relative to P3HT:PDI2 was observed, consistent with the greater PL 

quenching for P3HT:PDID blend film (as shown in Table 4.1). The increase in yield of long-

lived ion-pairs could therefore be partially assigned to more efficient dissociation of initially 

generated excitons at the D/A interface. Here, ΔOD/PLQ was used as a direct indicator, 

taking into account the small variations in PLQ observed between the blend films to account 

for changes in the efficiency of charge photo-generation, as described in literature.6-7,23 

Moreover, Figure 4.9 shows a plot of the correlation between the yield of photo-generated 

charges (estimated from ΔOD/PLQ) and the energetic driving force for charge separation 

DGCS = ES – (IPD + EAA). Estimates were performed using P3HT singlet energies for ES, 

and a remarkably good correlation is observed between DGCS
 and DOD/PLQ, with the 

exception of PDIF, wherein the polaron yield is observed to show a linear dependence with 

DGCS, increasing by ~ 40% for each 0.1 eV increase in DGCS. The variation in DGCS between 

different blend films results solely from variations in the EAs of the PDIs, as both ES and 

IPD correspond to P3HT, which is invariant for this study. It is apparent that P3HT:PDIF 

blend film shows a low polaron yield considering its relatively large DGCS, which might be 

attributed to serious distortion of the planarity of the PDI due to the bulky 1,7-dibromo-

substituents, causing possible changes in PDI-anion absorption coefficient as well as a lower 

electron mobility and film morphology in blends.24-25 It should be noted that such a linear 

correlation is based on a relatively small variation (140 meV) of the DGCS compared to some 
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previously studied systems, and it might not be applicable to other systems. Moreover, there 

is no obvious dependence using the ES of PDIs in estimating the DGCS. 

 

 

Figure 4.8. The transient absorption decay (left) for P3HT:PDIX (X = A –F and 2) in a N2 
environment, probed at 700 nm, with lexc = 520 nm at 50 mJcm-2.  Spectrum of P3HT:PDID at 1 
ms under N2 using lexc = 520 nm at 50 mJcm-2 (right) (These figures were adapted from Dr. Safa 
Shoaee in the Durrant group). 
    

 
Figure 4.9. The transient absorbance signal measured at 1 ms of various P3HT:PDIX (1:1 
weight ratio) blend films with P3HT plotted against -DGCS, estimated as ES – (IPD – EAA). The 
transient signal has been corrected for variation in optical absorbance at the excitation 
wavelength (500 nm) and PL quenching. lprb = 700 nm at 50 mJcm-2 (This figure was adapted 
from Dr. Safa Shoaee in the Durrant group). 
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4.5 Morphology study and solar cells of P3HT:PDID blends 

 The morphology of these blended films was studied using atomic force microscopy 

(AFM, Figure 4.10) and transmission electron microscopy (TEM, Figure 4.11). As shown in 

Figure 4.10, the P3HT:PDID blends (on PEDOT/PSS coated ITO, ~ 70 nm in thickness, 1:1 

weight ratio, spin-cast from 20 mg/mL chlorobenzene solution) have very smooth surfaces 

(average roughness = 2.5 nm). In contrast, the P3HT:PDI2 blend films show phase-

segregation on the scale of a few hundreds of nanometres, leading to some features that rise 

500 – 600 nm out of the plane of the film (average roughness is 100 nm).6 These large 

features were assigned to the PDI aggregates, as described earlier in literature.6 The much 

smoother morphology of P3HT:PDID indicates that PDID could disperse within the P3HT 

phase much better than PDI2, which could be advantageous for solar cell applications. 

Similar morphology was obtained for other P3HT:PDIx films, with  average roughnesses of  

several nanometers, consistent with the observation of efficient PDI PLQ and reasonably 

efficient P3HT PLQ. The TEM data for P3HT:PDID films show clear evidence for the 

crystallinity of small PDI domains, consistent with the absorption spectra and the well-

established tendency of PDIs to p-p stack. The lattice spacing of PDID crystallites was 

determined from these TEM images to be 0.6 nm, which is typically observed for PDI 

crystallites. The morphology of P3HT:PDID blend is consistent with that observed by 

Friend’s group, where the polymer:PDI blends they studied showed small features on the 

order of tens of nanometres and some evidence of perylene aggregation in one case of 

P3HT:PDI blend.  
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Figure 4.10. The AFM images of P3HT:PDID (1:1weight ratio) blends. The films were prepared 
via spin-casting from 20 mg/mL chlorobenzene solution on PEDOT:PSS coated ITO with a 
spin rate of 700 rpm for 1 minute (This figure was adapted from Dr. Debin Wang in the Riedo 
group). 

 

 
Figure 4.11. The TEM micrographs of P3HT:PDID (left) film (expanded region, centre: 
crystallisation of PDID lattice) and P3HT:PDI2 (right).6 (This figure was adapted from Dr. Safa 
Shoaee in the Durrant group). 
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 BHJ OPV devices were constructed and characterized by Dr. Cheun in the Kippelen 

group using P3HT:PDID and P3HT:PDI2 (1:1 weight ratio of P3HT and PDI acceptor) 

blends with an average active layer thickness of ~ 70 nm. The P3HT:PDID blend solar cell 

shows a PCE of ~ 0.001% with a short-circuit current (JSC) of 0.040 mA/cm2 and an open-

circuit voltage (VOC) of 0.055 V. All parameters are higher than that observed for devices 

based on the P3HT:PDI2 blend with PCEs << 0.001%.6 The poorer device performance of 

the cells based on P3HT:PDI2 blend could be attributed to the significant phase-separation 

and subsequent formation of large PDI2 aggregates. It should be noted that post-annealing of 

the pristine P3HT:PDID blend at 175 °C for 15 minutes could result in solar cells with much 

better performance (PCE = 0.013%, VOC = 0.34 V and JSC = 0.13 mA/cm2) and much higher 

yields of charge photo-generation, according to transient absorption at 1µs (~ two folds). 

However, according to differential scanning calorimetry (DSC) analysis of PDID and 

P3HT:PDID blend (1:1 weight ratio), there are exothermic processes occurring upon heating 

at ca. 140 oC under nitrogen, as shown in Figure 4.12. Since PDID does not exhibit obvious 

weight lost until ca.  300 oC according to its thermogravimetric analysis (TGA) trace under 

nitrogen, such an exothermic process might be attributed to thermal-cross-linking, probably 

on the triple bond in PDID. This observation indicates that the OPV performance increasing 

upon thermal-annealing might also be attributed to the chemical process, resulting in the 

formation of new materials in the active layers. Furthermore, there was no dramatic 

improvement in the overall device PCEs for solar cells with various P3HT:PDID blend ratios 

(from 1: 1 to 1:4 D/A weight ratio), and all these devices exhibit PCEs lower than 0.002%.  
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Figure 4.12. The DSC traces for PDID and P3HT:PDID (sample prepared from 1:1 weight ratio 
blend in CHCl3 solution) under nitrogen. 
 

4.6 Synthesis of new PDIX (X= G to I) materials 

   Although the yield of charge photo-generation as well as the respective solar cell 

performance for P3HT:PDID blends are much higher than that of the P3HT:PDI2 blends, the 

overall PCEs of this system are still considerably smaller than the best state-of-the-art solar 

cells using fullerene-based acceptors.4-5,26-28 To better understand the role of the miscibility 

between P3HT and PDI for the overall solar cell performance, new PDI materials, PDIX (X 

=G to I), with incorporated oligo-3-hexyl-thiophenes on imide positions were synthesized, as 

shown in Figure 4.13 and Scheme 4.2. The similar PDI-core structure of these new PDI-

based materials relative to PDID could ensure them similar electrical and optical properties as 

well as the promising photo-physics in the blend with P3HT as PDID. The chemical 

similarity of oligo-3-hexyl-thiophene moieties to P3HT potentially could help to increase the 
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miscibility of these new PDIs with P3HT in films, which might lead to better solar-cell 

performance. 
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Figure 4.13. The chemical structures of PDI materials with oligo-3-hexyl-thiophene moieties. 
 
 
  As shown in Scheme 4.2, the three new PDI materials, PDIX (X = G to I), were 

synthesized in a straightforward fashion. Compound B was synthesized through a 

condensation reaction29 between (3-hexylthiophen-2-yl)methanamine and 1,7-

dibromoperylene-3,4,9,10-tetracarboxylic acid dianhydride29 in a good yield via a literature 

procedure.11,29-30 Sonogashira coupling between B and pent-1-yne afforded PDIG in an 

excellent yield using Pd(PPh3)2Cl2 as a catalyst.17,31 Mercury(II)-mediated iodination of 

PDIG afforded compound C in an excellent yield with the iodine group on the 2-position on 

each 3-hexylthiophene ring; The commonly used NBS-based bromination was avoided due 

to the possibility of side-reaction on the CH2 group at the PDI imide positions. It is worth 

noting only the 2-position on 3-hexylthiophene ring could be iodinated using such a 

mercury (II) catalyzed reaction.32 PDIH and PDII were then synthesized via Suzuki 

coupling33 between compound C and 2-(3-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane32 or 2-(3',4-dihexyl-2,2'-bithiophen-5-yl)-4,4,5,5-tetramethyl-1,3,2-
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dioxaborolane32 with ca. 60% yields using Pd(PPh3)4 as a catalyst.  It should be pointed out 

that PDIH and PDII tended to stick on silica gel or alumina column for unknown reasons, 

which made their purification challenging using normal chromatography techniques. Size-

exclusion chromatography with cross-linked polystyrene beads was used to obtain PDIH and 

PDII with satisfactory purity. Furthermore, it was found that Stille coupling34 is not suitable 

for preparing PDIH and PDII using compound C and respective tin reagents, since less than 

10% yields were obtained for both compounds. All three new PDI materials exhibit 

excellent solubility in common organic solvents, including toluene, chloroform, and 

chlorobenzene, because of the attached oligothiophene moieties.  

 

Scheme 4.2. The synthetic scheme for the three new PDI materials. 
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4.7 Optical and electrochemical properties of new PDIX (X= G to I) 

 The UV-Vis absorption spectra of PDIX (X = G to I) and PDID were shown in Figure 

4.14 (ca. 1 × 10-5 mol/L in CHCl3). The PDI characteristic absorption band of PDIX (X = G 

to I and D) are similar in shape as well as the peak absorption coefficient between 400 – 600 

nm as PDID. There is a 2 nm red-shift for the lowest-energy band along with a slight 

increase of the peak molar absorption coefficient as each 3-hexylthiophene unit is added. 

The obvious absorption difference, especially for PDIG and PDII, on the high energy portion 

(between 200 – 400 nm) can be attributed to the absorption of the oligo-3-hexylthiophenes 

on the PDI side-chains.  
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Scheme 4.14. The UV-Vis absorption spectra of PDIX (X = G to I) and PDID in dilute 
chloroform solution with concentration of ca. 1 × 10-5 mol/L.  
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 These three new PDI derivatives were all found to blend readily with P3HT, 

resulting in high quality optical films of P3HT:PDIX (X = G to I) blends (1:1 weight ratio) 

via spin-coating from chlorobenzene solutions. The thin-film UV-Vis absorption spectra of 

P3HT:PDIX (X = G to I, and D) on glass are shown in Figure 4.15. Similar to the solution 

spectra, the thin-film absorption spectra of the blends are quite similar in shape because of 

the similar PDI core structures and the use of the same donor polymer, P3HT. The exception 

is the P3HT:PDII blend. The high energy band, with maximum at ca. 380 nm, in the thin 

film of the P3HT:PDII blend can be attributed to the absorption from the oligo-3-

hexylthiophenes, which was also observed in the solution absorption spectrum of PDII.  
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Scheme 4.15. The thin-film UV-Vis absorption of P3HT:PDIX (X = G to I, and D, 1:1 weight 
ratio, 5 mg/mL) on glass, spin-casted from chlorobenzene solution with a rate of  1000 rpm for 
1 minute. 
 

 As shown in Figure 4.16 and Table 4.2, the redox properties of PDIX (X = G to I) 

and PDID were investigated using cyclic voltammetry (CV) in anhydrous dichloromethane, 
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using FeCp2 as an internal reference. For reduction, the half-wave potential (E1/2
0/- and E1/2

-

/2-) values of PDIX (X = G to I) and PDID, are ca. -1.1 V for the first reduction and ca. -1.2 V 

for the second reduction vs. FeCp2
+/0 redox couple, respectively. Here, PDIX (X = G to I) are 

more readily reduced than PDID, based on their less negative E1/2
0/-, probably due to the 

inductive effect from the oligo-3-hexylthiophene moieties. Moreover, these PDI derivatives 

become slightly more readily reduced in dichloromethane with additional 3-hexylthiophene 

units. The EC type (reverse electron transfer followed by rapid chemical decomposition) 

molecular oxidation peak observed for PDIH and PDII, with E1/2
+/0 = 0.73 and 0.50 V, 

respectively, can be attributed to the oxidation of oligo-3-hexylthiophene moieties on the 

PDI imide positions.  
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Figure 4.16. The cyclic voltammograms of PDID (blue), PDIG (green), PDIH (red), and PDII 

(black) in CH2Cl2 (0.1 M [n-Bu4N][PF6]), with scan rate = 50 mV s-1 for each material using 
FeCp2

 as an internal reference. 
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Table 4.2. Summary of the redox properties of PDIX (X = G – I and D) in CH2Cl2 vs. FeCp2
+/0 

   E1/2
-/-- (V)    E1/2

-/0 (V)          E1/2
+/0 (V) 

PDID -1.22  -1.05  N.A.  

PDIG -1.18  -1.01  N.A.  

PDIH -1.16  -1.01  0.73 

PDII -1.16  -1.00  0.50  
 
4.8 Transient absorption of the P3HT:PDIX (X= G to I) blends 

 Transient absorption spectroscopy was employed to monitor the long-lived, 

dissociated charges on the microsecond timescale in these P3HT:PDIX blend films (X = G to 

I) By Dr. Safa Shoaee in the Durrant group. The transient absorption spectra of these 

P3HT:PDIX (X = G to I) films, similar to those of previous P3HT:PDI blend films, exhibited 

well-defined absorption maxima at approximately 700 nm that can be assigned to PDI 

radical anions11,17-18 as well as a weaker, broad absorption between 900 and 1000 nm 

assigned to P3HT cation.19-22 The transient absorption decay were shown in Figure 4.17. It 

is worth noting that there was an obvious increase in DOD (at 1 ms at 700 nm) for 

P3HT:PDIX (X = G to I) relative to P3HT:PDID, although the decay of the absorption is 

faster compared to that of the P3HT:PDID films. The increase in long-lived polarons (at 1 ms) 

may, therefore, be due to more efficient dissociation of initially generated excitons on the 

D/A interface, which might because of the better mixing of these new PDI materials with 

oligo-3-hexylthiophene moieties, although the increase in free energy of charge separation 

resulting from lower EA might also contribute to the increase in yields of charge photo-

generation. However, no linear correlation between the charge photo-generation and ΔGCS 

were observed for these series materials with PDID.  
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Figure 4.17. The transient absorption decay for P3HT:PDIx (X = G to I, and D) in N2 
environment,  monitored at 700 nm, with lexc = 520 nm at 50 mJcm-2 (This figure was adapted 
from Dr. Safa Shoaee in the Durrant group). 
 

4.9 Morphology study and solar cells of P3HT:PDIX (X = G to I and D) blends 

 AFM topography images of these blend films, taken by Dr. Debin Wang in the 

Reido group, are shown in Figure 4.15. The AFM images show no obvious differences 

between the films. The average film-surface roughness for P3HT:PDIX blends (X = G to I 

and D) are 1.0, 1.2, 1.7, and 2.5 nm, respectively. The smaller surface roughness of the 

P3HT:PDIG blends compared with P3HT:PDID might be attributed to better mixing for PDIG 

with P3HT than PDID because of the chemical similarities between the 3-hexylthiophene 

moieties in PDIG with P3HT. The surface in the P3HT:PDIG blend is quite similar to the 

homopolymer films from P3HT prepared in a similar manner. However, as the number of 3-

hexyl-thiophene repeat unit increases in these PDI materials, from PDIG to PDIH and PDII, 

the average surface roughness observed in the AFM images also increases. The reason for 

this is still unclear.  
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Figure 4.18. The AFM (topography) images of P3HT:PDIX (X = G to I, and D, 1:1 weight ratio) 
on ITO substrates. The films were prepared via spin-casting from 20 mg/mL chlorobenzene 
solution on PEDOT:PSS coated ITOs at the rate of 1000 rpm for 1 minute. (These images were 
adapted from Dr. Debin Wang in the Riedo group) 
  

 BHJ solar cell devices were constructed by Dr. Hyeunseok Cheun in the Kippelen 

group using P3HT:PDIx (X = G to I, 1:1 weight ratio) blends, and the device performances 

are summarized in Table 4.3. Here, all the devices showed very low performance with PCEs 

less than 0.1%. One of the reasons for low device performance might be low electron 

mobilities of the PDI-based materials (electron mobility is in the order of 10-5 to 10-6 cm2V-

1s-1 for these materials in OFETs measured by Dr. Shree P. Tiwari in the Kippelen group), 
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which could result in charge accumulation and inefficient charge collection, with possible 

unbalanced charge carrier mobilities. For the devices with average active layer thickness of 

ca. 70 nm, P3HT:PDIG cells show better performance as compared with the other two blend 

systems and P3HT:PDID, with short-circuit current (JSC) and PCEs of 0.35 ± 0.08 mA/cm2 

and 0.028 ± 0.006 %, respectively. The large increase (more than 20 times) of JSC and PCEs 

for devices from P3HT:PDIG over P3HT:PDID might be attributable to the better mixing of 

the donor and acceptor materials, which is consistent with the AFM surface average 

roughness measurement of the smoother P3HT:PDIG blends. Although the devices from 

P3HT:PDIH and P3HT:PDII are both better than that from P3HT:PDID, the improvement is 

much smaller. The reason for this observation is still unclear.  

Table 4.3. Summary of the solar cell performance of P3HT:PDIX (X = G to I and D) 
Devices   VOC (mV)   JSC(mA/cm2)          FF     PCEs (%) 

P3HT:PDID 55 ± 3  0.040 ± 0.004  0.27 ± 0.01  0.001  

P3HT:PDIG 253 ± 6  0.35 ± 0.08  0.29 ± 0.01  0.028 ± 0.006  

P3HT:PDIH 117 ± 5  0.08 ± 0.01  0.30 ± 0.01 0.003  

P3HT:PDII 143 ± 12  0.08 ± 0.02  0.32 ± 0.01  0.004  

 

4.10 Conclusions 

 A series of PDI-based acceptors PDIX (X = A to F) with different electron affinities 

have been synthesized, and the films of these materials blended with P3HT (in 1:1 weight 

ratio) were characterized with transient absorption spectroscopy, which was used to monitor 

the long-lived free PDI radical anion. The observations in this chapter provide further 

evidence that a key factor determining the efficiency of charge photo-generation at organic 
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D/A blend films is the free energy difference, referred to herein as DGCS. Generally, a larger 

DGCS for this series of blends results in a higher yield of charge photo-generation. A good 

linear correlation between DGCS and the yield of charge photo-generation was observed for 

PDIX (X = A to E, with EA of  ~ 140 meV range), where the photo-generated charge yield 

was observed to show a linear dependence on DGCS, increasing by ~ 40% for a 0.1 eV 

increase in DGCS. Furthermore, an increase in yields of the charge photo-generation was 

observed using blends of P3HT: PDIX (X = G to I), where this series of PDIX has lower EA 

as well as attached oligo-3-hexyl-thiophene moieties as compared to PDID. However, no 

obvious correlation was observed between DGCS and the yield of charge photo-generation 

for these films. An approximate 20-fold increase in PCEs was observed for solar cells using 

P3HT:PDIG over P3HT: PDID, presumably due to better mixing between P3HT and PDIG 

because of the incorporated 3-hexyl-thiophenes. However, no significant improvement of 

PCEs was obtained for solar cells with PDIH and PDII, which have more oligo-3-

hexylthiophene moieties, as compared to those using PDID; the reason for this is still unclear.  

4.11 Experimental section 

General: Most organic and inorganic chemicals used for the synthesis in this chapter were 

obtained from Aldrich and Alfa Aesar. Palladium-based catalysts were purchased from 

Strem Chemicals and used without further purification. PDIA,10 PDIB,11 PDIC,12 PDIF,13 and, 

PDI2
14 were synthesized as described in the literature. 1H and 13C NMR spectra were 

collected on Bruker 400 or 500 MHz spectrometers using tetramethylsilane (TMS; δ = 0 

ppm) as an internal standard. Mass spectra were measured on an Applied Biosystems 4700 

Proteomics Analyzer using MALDI mode. Elemental analyses were carried out by Atlantic 

Microlabs using a LECO 932 CHNS elemental analyzer. Solution and thin film UV-Vis 
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absorption spectra were recorded on a Varian Cary 500 UV/Vis/near-IR spectrophotometer. 

Electrochemical measurements were carried out under nitrogen in deoxygenated 0.1 M 

solutions of tetra-n-butylammonium hexafluorophosphate in dry dichloromethane using a 

computer-controlled BAS 100B electrochemical analyzer, a glassy-carbon working 

electrode, a platinum-wire auxiliary electrode, and an Ag wire anodized with AgCl as a 

pseudo-reference electrode. Cyclic voltammetry was performed at a scan rate of 50 mV/s. 

The potentials were referenced to the FeCp2
+/0 redox couple by using ferrocene as an 

internal standard.  

 Transient absorption decays were measured by Dr. Safa Shaoee in the Durrant group 

at Imperial College (London) by exciting the sample film, under nitrogen atmosphere, with 

a dye laser (Photon Technology International Inc., GL-301). The excitation wavelength used 

was 500 nm for all blends, with pump intensities of ~ 30 mJcm-2 and a repetition frequency 

of 4 Hz. A 100 W quartz halogen lamp (Bentham, IL 1) with a stabilized power supply 

(Bentham, 605) was used as a probe light source, with a typical probe wavelength of 700 nm. 

The probe light passing through the sample film was detected with a silicon photodiode 

(Hamamatsu Photonics, S1722-01). Signal from the photodiode was pre-amplified and sent 

to the main amplification system with an electronic band-pass filter (Costronics Electronics). 

The amplified signal was collected with a digital oscilloscope (Tektronics, TDS220), which 

was synchronized with a trigger signal of the pump laser pulse from a photodiode (Thorlabs 

Inc., DET210). To reduce stray light, scattered light and sample emission, two 

monochromators and appropriate optical cut-off filters were placed before and after the 

sample. The TEM examination was also done by Dr. Safa Shaoee in the Durrant group at 

Imperial College (London). Solutions were spun onto PEDOT:PSS(10 nm)-coated ITO 
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substrates, retrieved on carbon-coated copper grids after the films were floated on water. 

The sample film thickness was controlled by solution concentration, typically around 30 nm. 

The samples were then stained with RuO4 vapor.  

AFM was carried out with a two-pass lift mode procedure using a Veeco Multimode 

IV AFM by Dr. Debin Wang in the Riedo group. The film was prepared in a way similar to 

making the active layer of the solar cell devices described later. The surface topography is 

obtained by a generic tapping mode scan in the first pass. On the first pass (main scan), the 

cantilever was mechanically vibrated near its resonant frequency by a small piezoelectric 

oscillator. Nanoworld SCM-PIT probes were selected for the operation. The mechanical 

properties (force constant k = 2.8 N/m and resonance frequency f = 75 kHz) and the special 

Pt/Ir-coated probes are optimized for electrostatic force application. The typical tip radius of 

curvature is less than 25 nm.  

 BHJ solar cells were fabricated by Dr. Hyeunseok Cheun in the Kippelen group. 

Solutions of P3HT:PDIX (X= G to I and D, 1: 1 weight ratio) were made in chlorobenzene 

(20 mg/mL) for each blend. ITO-coated glasses (Colorado Concept Coatings LLC) with a 

sheet resistivity of ca. 15 Ω/sq were used as the substrates for solar cells. The substrates 

were cleaned in an ultrasonic bath of detergent water, rinsed with deionized water, and then 

cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol. 

Nitrogen was used to dry the substrates after each of the last three baths. A 300-nm-thick 

layer of SiOx was deposited on the cleaned ITOs by e-beam deposition (AXXIS, Kurt J. 

Lesker) to pattern the anode. Next, the substrates were ultrasonicated in isopropanol for 15 

min, blown dry with nitrogen, and air-plasma treated for 2 min. A hole-conducting layer of 

PEDOT : PSS (CLEVIOS P VP AI 4083, H. C. Starck) was filtered through a 0.45-µm-pore 



199 
 

PVDF filter and spin coated on the substrates at 5000 rpm for 1 min, and the substrates were 

annealed at 140 ºC for 15 min in ambient atmosphere. After loading into a nitrogen-filled 

glove box, films of the blends were deposited on the substrates by spin coating for 1 min at 

speed of 700 rpm for the mixture. All solutions were filtered through 0.2-µm-pore PTFE 

filters prior to spin coating. The substrates were then loaded into a vacuum thermal 

evaporation system (SPECTROS, Kurt J. Lesker) connected to the glove box, and ~ 200 nm 

of Al was deposited through a shadow mask at a rate of 1 – 3 Ås-1 and a base pressure of ~ 7 

× 10-8 Torr to define the cathodes. The completed devices were transferred in a sealed 

container to another nitrogen-filled glove box for electrical measurements. Current-voltage 

characteristics were measured using a source meter (2400, Keithley) controlled by a 

LabVIEW program. When testing the solar cells under illumination, filtered light from a 

175 W Xenon lamp (ASB-XE-175EX, CVI) was used as a broadband light source with an 

irradiance of ~ 90 mW/cm2 to simulate sunlight.  

PDID: N,N'-Bis(octyl)-1,(6)7-dibromo-3,4,9,10-perylene diimide(mixture of isomer)35 (0.50 

g, 0.65 mmol), CuI (10 mg, 0.052 mmol), and Pd(PPh3)2Cl2 (38 mg, 0.052 mmol) were 

charged to a two-neck round-bottomed flask equipped with a condenser. After evacuating 

and refilling nitrogen three times, pent-1-yne (0.14 g, 2.8 mmol), toluene (10.0 mL), and 

triethylamine (3.0 mL) were added by syringe. The mixture was then heated at 80 °C under 

nitrogen for 12 h. After the mixture was cooled to room temperature, it was passed through 

a short silica gel plug and eluted with CHCl3. After the solvent was removed under reduced 

pressure, the resultant solid was refluxed in 50 mL CHCl3/MeOH (1 : 4) for 2 h. After the 

mixture was cooled to room temperature, PDID was collected by filtration as a red solid 

(0.38 g, 74%). 1H NMR (500 MHz, CDCl3): d 10.0 (m, 2H), 8.67 (s, 1.66H), 8.62 (s, 0.36H), 
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8.59 (d, J = 8.5 Hz, 0.39H), 8.54 (d, J = 8.5 Hz, 1.75H), 4.13 (t, J = 7.5 Hz, 4H), 4.04 (t, J = 

7.0 Hz, 4H), 1.82–1.71 (m, 8H), 1.49–1.23 (m, 18H), 1.17 (t, J = 7.0 Hz, 6H), 0.88 (t, J = 

7.0 Hz, 6H) (1,6-, and 1,7- Isomers are present according to the aromatic proton resonance 

in 1H NMR because the starting material is the mixture of 1,6- and 1,7- isomers35). 13C{1H} 

NMR (125 MHz, CDCl3): d 163.1, 162.9, 162.6, 162.4, 137.7, 133.4, 133.2, 133.1, 132.9, 

130.0, 126.8, 122.7, 122.4, 121.5, 121.2, 121.1, 120.5, 101.8, 101.7, 82.5, 40.6, 31.8, 29.4, 

29.3, 28.0, 27.2, 22.7, 22.3, 21.8, 14.1, 13.9 (The observation of four carbonyl carbon 

resonances and one more aromatic carbons could be attributed to the presence of the two 

isomers35). HRMS (FAB) Calcd for C50H54N2O4 (M
+) 746.4083. Found: 747.4200 (M + H). 

Anal. Calcd for C50H54N2O4: C, 80.40; H, 7.29; N, 3.75. Found : C, 80.14; H, 7.29; N, 3.77. 

3-Hexylthiophen-2-yl-methanamine (compound A): 3-Hexylthiophene-2-carbonitrile36 (3.0 

g, 16 mmol) in THF (10 mL) was added to lithium aluminum hydride (2.0 g, 50 mmol) in 

THF (70 mL) at 0 oC under nitrogen atmosphere by syringe. The mixture was then heated to 

reflux for 12 h. After the reaction mixture was cooled to 0 oC, water (10 mL) was added to 

the mixture under nitrogen atmosphere by syringe. The white precipitate was removed via 

filtration and washed with THF (3 × 20 mL). The solvent of filtrate was then removed and 

the resultant residue was dissolved in hexane (300 mL), washed with water (3 × 100 mL), 

and dried over anhydrous Na2SO4. After the solvent was removed under vacuum, (3-

hexylthiophen-2-yl)methanamine was obtained as a colorless oil (2.8 g, 92%). 1H NMR 

(300 MHz, CDCl3): d  7.10 (d, J = 5.1 Hz, 1H), 6.84 (d, J = 5.0 Hz, 1H), 3.96 (s, 2H), 2.56 

(t, J = 7.5 Hz, 2H), 1.58 (m, 2H) , 1.4–1.2 (m, 6H), 0.84 (t, J = 7.0 Hz, 3H) (The amine 

proton does not show up in the 1H NMR). 13C NMR: (75 MHz, CDCl3), d 140.2, 137.9, 

129.0, 122.2, 39.1, 31.6, 30.8, 29.0, 28.1, 22.5, 14.0. HRMS (EI) Calcd for C11H19NS: 
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197.12382. Found: 197.12309; Anal. Calcd for C11H19NS: C, 66.95; H, 9.70; N, 7.10. Found: 

C, 66.55 ; H, 9.71; N, 7.04. 

PDIE：PDIA
10 (6.0 g, 5.6 mmol), K2CO3 (4.0 g, 29 mmol) and chlorobenzene (80 mL) were 

mixed in a 200 mL round-bottomed flask equipped with condenser. Bromine (4.8 mL, 93 

mmol) in chlorobenzene (10 mL) was added dropwise. The reaction mixture was then 

heated to 60 oC and kept overnight before it was cooled to room temperature and poured 

into saturated Na2S2O3 solution (500 mL). The mixture was extracted with CHCl3 (2 × 200 

mL) and the organic phase was washed with water (2 × 100 mL) and dried over Na2SO4. 

After the solvent was removed, the residue was purified using column chromatography on 

silica gel, with CHCl3 / hexane (1 : 1) as the eluent. After the solvent was removed under 

reduced pressure, PDIE was obtained as a red solid (2.7 g, 42%). 1H NMR (500 MHz, 

CDCl3): d 9.62 (d, J = 8.0 Hz, 1H), 8.72 (s, 1H), 8.51 (m, 3H), 8.36 (m, 2H), 4.09 (d, J = 7.0 

Hz, 2H), 4.06 (d, J = 7.0 Hz, 2H), 1.95 (m, 2H), 1.5–1.1 (m, 80H), 0.82 (m, 12H). 13C{1H} 

NMR (125 MHz, CDCl3): d 163.5, 163.2, 163.1, 162.3, 138.9, 133.5, 133.1, 133.0, 130.8, 

130.3, 128.5, 128.3, 127.9, 127.6, 126.6, 123.5, 123.4, 123.3, 122.92, 122.7, 122.5, 120.9, 

44.79, 44.72, 36.63, 36.58, 31.9, 31.7, 30.1, 30.0, 29.7, 29.6 (2 close peaks), 29.6, 29.4, 26.5 

(2 close peaks), 22.7, 14.1 (Two aromatic carbon peaks and 31 alkyl carbon peaks were not 

observed, presumably due to overlap). HRMS (MALDI) Calcd for C72H105BrN2O (M+): 

1140.728. Found: 1140.734. Anal. Calcd for C72H105BrN2O: C, 75.69; H, 9.26; N, 2.45. 

Found : C, 75.77; H, 9.26; N, 2.50. 

Compound B: 1,(6)7-Dibromoperylene-3,4,9,10-tetracarboxylic acid dianhydride (1.50 g, 2.6 

mmol) in nBuOH/H2O (1:1, 100 mL) was sonicated for 10 min. (3-hexylthiophen-2-

yl)methanamine (1.6 g, 8.0 mmol) was added and the reaction mixture was stirred at 80 °C 
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for 17 h under nitrogen. Concentrated HCl (10 mL) was added and the mixture was stirred at 

room temperature for 30 min. The mixture was extracted with chloroform (2 × 100 mL), 

washed with water (2 × 100 mL), and dried over anhydrous Na2SO4. The solvent was 

removed and the residue was purified by column chromatography over silica gel eluted with 

CHCl3/hexane (2 : 1) to give B as a red solid (2.5 g, 90%). 1H NMR (400 MHz, CDCl3 for 

1,7-dibromo isomer only): d  9.42 (d, J = 8.0 Hz, 2H), 8.91 (s, 2H), 8.68 (d, J = 8.0 Hz, 2H), 

7.12 (d, J = 5.2 Hz, 2H), 6.81 (d, J = 5.2 Hz, 2H), 5.50 (s, 4H), 2.91 (t, J = 8.0 Hz, 4H), 1.61 

(m, 4H), 1.4–1.3 (m, 12H), 0.84 (t, J = 6.8 Hz, 6H). 13C NMR: (100 MHz, CDCl3), d 163.0, 

162.6, 162.1, 161.8, 142.0, 141.9, 138.3, 138.2, 133.3, 133.1, 132.9, 132.5, 131.8, 131.5, 

130.2, 130.1, 129.2, 128.5, 128.4, 128.1, 126.9, 124.5, 123.2, 123.0, 122.6, 122.3, 121.7, 

120.8, 36.7, 31.8, 31.3, 29.3, 28.4, 22.7, 14.1. (The observation of four carbonyl carbon 

resonances is consistent with previous work on perylene diimides using swallow-tailed N-

substituents, and it has been attributed to restricted rotation about the N—C—thiophene 

bonds.37 Eight more aromatic resonances than observed in the pure 1,7-isomer might be due 

to the presence of 1,6-, and 1,7-isomers and/or restricted rotation about the N—C—thiophene 

bonds.) HRMS (FAB) Calcd for C46H40Br2N2O4S2: 906.080. Found: 906.081. Anal. Calcd 

for C46H40Br2N2O4S2: C, 60.80; H, 4.44; N, 3.08. Found: C, 60.56; H, 4.35; N, 3.10. 

PDIG: Pent-1-yne (0.28 g, 5.6 mmol) was added to a deoxygenated mixture of B (1.86 g, 

2.00 mmol), copper(I) iodide (0.030 g, 0.15 mmol), and Pd(PPh3)2Cl2 (0.12 g, 0.15 mmol) in 

toluene (30 mL) and triethylamine (8.0 mL) under nitrogen in a 50 mL 2-neck round-

bottomed flask. The reaction mixture was stirred overnight under nitrogen before the solvent 

was removed by rotary evaporation. The residue was then purified using column 

chromatography on silica gel, eluted with hexane/dichloromethane (1:4). After the solvent 
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was removed under vacuum, PDIG was obtained as a red solid (1.68 g, 95%). 1H NMR (500 

MHz, CDCl3 for 1,7-isomer only): d  9.98 (d, J = 8.0 Hz, 2H), 8.68 (s, 2H), 8.53 (d, J = 7.5 

Hz, 2H), 7.11 (d, J = 5.0 Hz, 2H), 6.81 (d, J = 5.0 Hz, 2H), 5.53 (s, 4H), 2.92 (t, J = 7.5 Hz, 

4H), 2.61 (t, J = 7.5 Hz, 4H), 1.80 (sextet, J = 6.0 Hz, 4H) , 1.64 (pentet, J = 7.5 Hz, 4H) 1.4-

1.3 (m, 12H), 1.15 (t, J = 6.5 Hz, 6H), 0.90 (t, J = 6.5 Hz, 6H). 13C NMR: (100 MHz, 

CDCl3), d 163.2, 163.0, 162.7, 162.5, 141.9, 141.8, 138.2, 134.1, 134.0, 133.8, 133.7, 132.1, 

130.4, 130.3, 128.4, 127.3, 127.1, 126.8, 126.5, 124.4, 122.8, 122.6, 121.6, 121.4, 121.0, 

101.6, 101.4, 82.4, 82.3, 36.6, 31.8, 31.3, 29.3, 28.4, 22.7, 22.2, 21.8, 14.1, 13.9.(The 

observation of four carbonyl carbon resonances is consistent with previous work on perylene 

diimides using swallow-tailed N-substituents and it has been attributed to restricted rotation 

about the N—C—thiophene bonds.37 Eight more aromatic resonances than observed in the 

pure 1,7-isomer might be due to the presence of 1,6-, and 1,7-isomers and/or restricted 

rotation about the N—C—thiophene bonds.) HRMS (FAB) Calcd for C56H54N2O4S2: 

882.3525; Found: 882.3595. Anal. Calcd for C56H54N2O4S2:  C, 76.16; H, 6.16; N, 3.17. 

Found: C, 75.96; H, 6.24; N. 3.16.   

Compound C: PDIG (1.50 g, 1.61 mmol) was dissolved in CHCl3 (60 mL) and the solution 

was cooled to 0 oC. Hg(CH3COO)2 (1.13 g, 3.54 mmol) was then added in one portion and 

the mixture was then warmed up to room temperature slowly and kept stirring overnight. 

Iodine (0.90 g, 3.54 mmol) was added to the mixture in one portion after it was cooled down 

to 0 oC. The mixture was warmed up to room temperature and stirred for 1 h before it was 

passed through a short silica gel plug and eluted with CHCl3. After the solvent was removed 

by rotary evaporation, C was obtained as a red solid (1.71 g, 93%). 1H NMR (500 MHz, 

CDCl3 for 1,7-dibromo isomer only): d  10.10 (d, J = 8.5 Hz, 2H), 8.77 (s, 2H), 8.64 (d, J = 
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8.5 Hz, 2H), 6.95 (s, 2H), 5.45 (s, 4H), 2.89 (t, J = 7.0 Hz, 4H), 2.62 (m, 4H), 1.80 (sextet, J 

= 7.0 Hz, 4H) , 1.64 (m, 4H), 1.4-1.3 (m, 12H), 1.15 (t, J = 6.5 Hz, 6H), 0.90 (t, J = 7.0 Hz, 

6H). 13C NMR: (125 MHz, CDCl3), d 163.0, 162.9, 162.7, 162.5, 143.9, 138.3, 138.1,134.2, 

133.7, 130.3, 127.3, 127.1, 126.9, 122.5, 121.5, 121.1, 101.8, 101.5,6, 82.3, 73.2, 36.4, 31.8, 

31.2, 29.7, 29.2, 28.1, 22.7, 21.8, 14.1, 13.9. (The observation of four carbonyl carbon 

resonances is consistent with previous work on perylene diimides using swallow-tailed N-

substituents and has been attributed to restricted rotation about the N—C—thiophene 

bonds.37 Two aromatic carbon resonances are missing, presumably due to overlap) HRMS 

(MALDI) Calcd for C56H52I2N2O4S2: 1134.15. Found: 1134.17. Anal. Calcd for 

C56H52I2N2O4S2: C, 59.26; H, 4.62; N, 2.47. Found: C, 59.40; H, 4.67; N, 2.59.  

PDIH: 2-(3-Hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane38 (0.34 g, 1.2 mmol) 

was added to a deoxygenated mixture of C (0.36 g, 0.3 mmol), and Pd(PPh3)4 (0.046 g, 0.040 

mmol) in toluene (15 mL) and 2M aqueous K2CO3 (10 mL) under nitrogen in a 2-neck 

round-bottomed flask with a reflux condenser attached.  The reaction mixture was then 

heated to 95 °C for 2 h. Toluene (50 mL) was added to the mixture and the resultant mixture 

was washed with water (2 × 20 mL). The organic phase was dried with anhydrous MgSO4. 

After filtration and solvent removal by rotary evaporation, the residue was purified using 

flash column chromatography on silica gel and eluted with hexane/dichloromethane (1:1). 

The resultant red solid was further purified using size-exclusion chromatography (1.2 meter 

long, 5 cm in diameter, with SX1 polystyrene beads) and eluted with fresh-distilled THF to 

give PDIH as a red solid (0.218 g, 60%). 1H NMR (400 MHz, CDCl3 for 1,7-isomer only): d  

10.03 (d, J = 8.4 Hz, 2H), 8.73 (s, 2H), 8.58 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 5.2 Hz, 2H), 

6.85 (d, J = 5.2 Hz, 2H), 6.79 (s, 2H), 5.50 (s, 4H), 2.93 (t, J = 7.6 Hz, 4H), 2.69 (t, J = 7.6 
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Hz, 4H), 2.62 (t, J = 7.2 Hz, 4H), 1.80 (sextet, J = 7.2 Hz, 4H) , 1.65 (m, 4H), 1.4-1.2 (m, 

28H), 1.17 (t, J = 7.6 Hz, 6H), 0.91 (t, J = 6.8 Hz, 6H), 0.81 (t, J = 6.8 Hz, 6H). 13C NMR: 

(100 MHz, CDCl3), d 163.2, 163.0, 162.8, 162.6, 142.3, 139.4, 138.3, 135.1, 134.2, 134.0, 

133.8, 132.2, 132.0, 130.8, 130.4, 129.8, 127.4, 127.2, 127.1, 127.0, 123.4, 122.8, 122.6, 

121.7, 121.0, 101.5, 82.3, 36.7, 31.8, 31.6, 31.2, 30.6, 29.3, 29.1(2 close peaks) 28.5, 22.7, 

22.6, 22.3 21.8, 14.1, 14.0, 13.9. (The observation of four carbonyl carbon resonances is 

consistent with previous work on perylene diimides using swallow-tailed N-substituents and 

it has been attributed to restricted rotation about the N—C—thiophene bonds.37 Three more 

aromatic resonances than observed in the pure 1,7-isomer might be due to the presence of 

1,6-, and 1,7-isomers and/or restricted rotation about the N—C—thiophene bonds.). HRMS 

(MALDI) Calcd for C76H82N2O4S4: 1214.5157. Found: 1214.5084. Anal. Calcd for 

C76H82N2O4S4: C, 75.08; H, 6.80; N, 2.30. Found: C, 75.23; H, 7.03; N, 2.38.  

PDII: 2-(3',4-dihexyl-2,2'-bithiophen-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane32 (0.42 g, 

0.90 mmol) was added to a deoxygenated mixture of C (0.36 g, 0.30 mmol), and Pd(PPh3)4 

(0.046 g, 0.040 mmol) in toluene (15 mL) and 2M aqueous K2CO3 (10 mL) under nitrogen in 

a 2-neck round-bottomed flask with  a reflux condenser attached.  The reaction mixture was 

then heated to 90 °C for 2 h. Toluene (50 mL) was added to the mixture and the resultant 

mixture was washed with water (2 × 100 mL). The organic phase was dried with anhydrous 

MgSO4. After the solid was removed via filtration and the solvent removal by rotary 

evaporation, the residue was purified using flash column chromatography on silica gel, eluted 

with chloroform and size-exclusion chromatography (1.2 meter long, 5 cm in diameter, with 

SX1 polystyrene beads) eluted with fresh-distilled THF to give PDIH as a red solid (0.26 g, 

56%). 1H NMR (400 MHz, CDCl3 for 1,7-dibromo isomer only): d  10.05 (d, J = 8.4 Hz, 2H), 
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8.73 (s, 2H), 8.58 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 5.2 Hz, 2H), 6.86 (d, J = 5.2 Hz, 2H), 6.84 

(s, 2H), 6.82 (s, 2H), 5.51 (s, 4H), 2.93 (t, J = 7.6 Hz, 4H), 2.71 (m, 8H), 2.62 (t, J = 6.8 Hz, 

4H), 1.82 (sextet, J = 7.2 Hz, 4H) , 1.6-1.2 (m, 48H), 1.17 (t, J = 7.6 Hz, 6H), 0.92 (t, J = 7.2 

Hz, 6H), 0.84 (m, 12H). 13C NMR: (100 MHz, CDCl3), d 163.2, 163.0, 162.8, 162.6, 142.4, 

139.5, 139.4, 138.3, 134.8, 133.9 (2peaks), 132.2, 130.6, 130.4, 130.0, 128.5, 127.4, 127.2, 

127.0, 123.4, 122.6, 121.7, 121.0, 101.5, 82.3, 36.7, 31.8, 31.6 (2peaks), 31.2, 30.6, 30.5, 

29.3, 29.2 (3 peaks), 28.5, 22.7, 22.6, 22.2, 21.8, 14.1, 140.0, 13.9 (The observation of four 

carbonyl carbon resonances is consistent with previous work on perylene diimides using 

swallow-tailed N-substituents and has been attributed to restricted rotation about the N—C—

thiophene bonds.37 Three more aromatic resonances than observed in the pure 1,7-isomer 

might due to the presence of 1,6-, and 1,7-isomers and/or restricted rotation about the N—

C—thiophene bonds.). HRMS (MALDI) Calcd for C96H110N2O4S6: 1546.679. Found: 

1546.765. Anal. Calcd for C96H110N2O4S6: C, 74.47; H, 7.16; N, 1.81. Found: C, 74.49; H, 

7.29; N, 1.91.  
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CHAPTER 5 

PHOTO-INDUCED CHARGE TRANSFER AND OPTICAL 
LIMITING IN DYADS COMPOSED OF TWO-PHOTON 

ABSORBING DONORS AND A PERYLENE DIIMIDE ACCEPTOR 

 

5.1 Introduction 

Optical limiters are devices designed to have high transmittance for low intensity 

inputs, such as ambient light, while at the same time exhibiting dramatically reduced 

transmittance on an ultrafast (nanosecond or shorter) timescale when exposed to high 

intensity irradiation (i.e. laser beams).1-2 Since the development of the first laser in the 

1960’s, effective optical limiters have been built and tested to protect optical sensors 

against laser-induced damage. Organic conjugated materials, with delocalized π-electrons 

in the molecular backbone, are considered to be promising and offer many advantages for 

optical liming, such as fast response-time, high damage thresholds, ease of processing, 

and facile structural modifications, allowing applications at a wide range of 

wavelengths.1,3 Over the decades, the use of organic conjugated materials relying on 

various mechanisms, including reverse saturable absorption (RSA, which will be 

explained in more detail in Chapter 6)4-8 and two-photon absorption (2PA, which will be 

explained in more detail below), 9-11 have been proven to be successful for laser pulse 

suppression and the use of organic conjugated materials for optical limiting is growing 

rapidly.  

Two-photon absorption, which was first analyzed theoretically in the 1930s by 

Göppert-Mayer12 and was first demonstrated experimentally in 1961 soon after the 
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invention of the laser13 is a nonlinear optical process in which the simultaneous 

absorption of two photons of identical or different frequencies to excite a molecule from 

its ground state (S0) to an excited state.3,14-15 2PA is considered as an effective way of 

accessing a given excited state by using photons of half the energy (or twice the 

wavelength) of the corresponding one-photon-induced electronic transition, thus enabling 

a wide range of new applications including photodynamic therapy, 3D-

photopolymerization, microfabrication and lithography.3  

In the case of a centrosymmetric chromphore, the 2PA process is often dominated 

by the interaction of the ground state with just two excited states. The three “essential” 

states in such a model have alternating symmetry: both the ground state (S0) and the final 

state (Sn) wave-functions, respectively, are gerade (symmetric with respect to the center 

of inversion), whereas the lowest excited state (S1) is often ungerade (antisymmetric with 

respect to the center of inversion).3 These states could be labeled as 1Ag, 1B1u, and 2Ag 

for centrosymmetric molecules as illustrated in Figure 5.1. For one-photon absorption 

(1PA), electronic transitions are electric-dipole-allowed for both 1Ag to 1B1u and 1B1u to 

2Ag according to selection rules.3 In the case of 2PA, the optical frequency is out of 

resonance with both these one-photon transitions and it creates a nonstationary state that 

is a superposition (or mixture) of 1Ag and 1Bu.  Such a “virtual state” is illustrated in 

Figure 5.1 and only exists while the molecule experiences the field of the first photon  

winthin a short time-scale (approximately 5 fs).16 The transient presence of 1Bu with 

ungerade parity in this superposition allows the second photon at same optical frequency 

to induce an electric-dipole transition to the final gerade state, 2Ag. The 1Ag to 2Ag 

transition is, therefore, allowed in 2PA, but forbidden in 1PA.3 Hence, 1PA and 2PA 
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might access different excited states (Figure 5.1) from the ground state.3,14,17 However, 

according to Kasha’s rule,18 which states that fluorescence and other photo-physical 

processes almost always occur from the lowest excited state of a molecule because 

molecules in higher excited states could quickly reach the lowest excited state via internal 

conversion. This is the reason why two-photon-excitation of a molecule could afford 

similar following processes as one-photon-excitation of the same molecule, regardless of 

whether the 2PA excitation of the molecule directly accesses the same excited state as its 

1PA. For example, 2PA-induced emission from organic dyes should give similar spectra 

and fluorescent quantum yields via 1PA excitation. Similarly, 2PA-induced charge-

transfer in molecular dyads could give similar charge-transfer and recombination rates as 

well as the photo-induced charge-transfer efficiency as 1PA, although the photo 

excitation wavelengths and mechanism are different.  

 

Figure 5.1. The Jablonski diagram for two-photon and one-photon absorption and the 1PA, 
2PA, and emission spectra of an example 2PA dye.14,19 
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One of the essential differences between 2PA compared with 1PA is that 2PA is 

typically several orders of magnitude weaker than linear absorption under ambient light 

intensity and only becomes significant when high intensity irradiation (typically 1020–30 

photon cm-2 s-1) is applied.14 The 2PA probability has a quadratic dependency on the 

intensity of the incident irradiation (2PA µ I2) since two photons are absorbed 

simultaneously while the probability of 1PA depends linearly on the intensity of the 

incident irradiation (1PA µ I) according to Beer-Lambert Law.3,14 This indicates that 2PA 

is intensity-dependent absorption and would appear to be an ideal mechanism for optical 

power limiting. For example, 2PA could offer the advantage of high transmission at low 

incident light intensity for fundamental optical frequencies while the linear transmission 

for a material composed of RSA process is necessarily significantly less than unity (< 

90%).1,9 However, the 2PA cross-sections of current organic materials (< 100000 GM, 

Göppert-Mayer, where 1 GM = 10-50 cm4 s photon-1 molecule-1) are generally not 

sufficiently large enough to form effective optical limiters purely by 2PA alone. A more 

practical strategy is to use the combination of 2PA and subsequent excited-state 

absorption (ESA) for optical suppression. A small amount of 2PA can generate a 

population of excited states, which then could absorb much more light through 1PA by 

cycling between ESA and the respective internal conversion.20-24 Hence, these materials 

would potentially exhibit high linear transmission at low intensity light to preserve the 

detection function of the sensors, while strongly attenuating energetic laser pulses using 

the ESA absorption following their 2PA excitation of the nanosecond or shorter 

timescales laser pulse. For this process to be effective, the ESA band should have 

considerable spectral overlap with the 2PA band of the chromophore as well as a 
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sufficient excited-state lifetime for these states to play an important role in the further 

light suppression. However, it is rather difficult to independently tune the energies of 

molecular 2PA and ESA bands of the same molecule for maximum overlap and to 

optimize the overall nonlinear absorption process. Generally, the 2PA and ESA 

absorption bands of a 2PA chromophore are fixed by the chemical structures. Moreover, 

both the strength and wavelengths of the ESA are not easily tuned using common 

methods. One possible method has been demonstrated by Belfield and coworkers 

utilizing the energy-transfer between 2PA dyes and a perylene diimide. In this case, the 

long-lived PDI excited state and the respective ESA at the two-photon excitation 

wavelength optimize the light suppression at 640 nm.25 Another effective approach to 

circumvent this limitation is to exploit the photo-induced charge-transfer states between a 

2PA chromophore and an electron acceptor or donor to form strongly absorbing radical 

ion pairs.26-28 For example, thick films of a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-

phenylene-vinylene] (MEH-PPV): phenyl-C61-butyric-acid-methyl ester (PCBM) blend 

have been proven to be an effective system for optical limiting in the NIR (700 – 900 nm) 

range using charger-transfer complexes from MEH-PPV:PCBM blend following the two-

photon excitation of MEH-PPV donor and electron transfer from MEH-PPV exciton to 

PCBM LUMO.27  

The spectroscopic overlap between the ion absorption band and the 2PA band of 

the chromophores are expected to significantly enhance the nonlinear absorption for 

optical suppression at the ion absorption wavelengths. For example, if the 2PA occurs in 

the electron donor, then the acceptor could be independently tuned to achieve effective 

spectral overlap between the absorption of its radical anion and the 2PA band of the 
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donor. Potentially, both the radical cation and anion bands could have spectral overlap 

with the 2PA band and are used for optical limiting at particular wavelengths. In addition 

to favorable spectroscopic overlap between the 2PA and radical ion bands, requirements 

for intense ion absorption and large 2PA cross section, rapid photo-induced electron-

transfer, and relatively slow charge-recombination rate are essential for such optical 

limiting system to respond effectively against laser pulses.26  

Furthermore, the 2PA generated radical ion pairs could be similar to those from 

1PA process at different photo-excitation wavelengths in lifetime as well as other 

properties, including absorption coefficient. A proposed state-energy diagram for 2PA-

induced electron transfer is shown in Figure 5.2. Two-photon excitation could promote an 

electron from the ground state (S0) of a 2PA chromophore into an excited state (Sn) 

followed by the internal conversion that allows a fast relaxation back to the first excited 

state (S1), according to the Kasha’s rule described earlier. The efficiency of 2PA-induced 

electron transfer, similar to the corresponding 1PA process, is determined by the rate 

constant for electron transfer (ket), which competes with the rate constants for radiative 

and non-radiative decay of S1 state, while the lifetime of the charge-separated state 

depends on back-electron-transfer process with rate constant of kbet. Here, because of the 

spectroscopic overlap between the radical ion absorption and the chromophore 2PA band, 

the following 1PA of the charge-separated state is expected to enhance the non-linear 

absorption for optimizing the light suppression. Furthermore, sufficient population of the 

charge-separated state, which is related to the 2PA cross section and the lifetime of these 

states, is necessary for effective optical limiting according to the mechanism,  



215 

 

 

Figure 5.2. The Jablonski diagram for 2PA-induced charge transfer. 

Perylene-3,4,9,10-tetracarboxylic acid diimides (also known as perylene diimides 

or PDI) have been widely used as acceptors in studies of photo-induced electron-transfer 

processes in molecular dyads and triads because of their electron-accepting nature and 

easily identified radical anion absorption spectra, which exhibit a unique absorption with 

peaks at ca. 700, 800, and 1000 nm.29-30 The characteristic absorption in the visible to 

NIR range for long-lived photo-generated PDI radical-anions or dianions has been 

demonstrated in many donor-PDI systems using transient absorption techniques.29,31-37 

The photo-generated PDI radical anions are well suited for optical limiting because of 

their strong absorption in a spectral region (600 – 1000 nm) where neutral PDI molecules 

exhibit negligible ground-state absorption. Moreover, the relatively long lifetimes, 

typically from hundreds of picoseconds to tens of nanoseconds, observed for the photo-

generated radical ion pairs for donor-PDI systems29,31-37 are suitable for optical limiting 

of long-duration pulses (e.g., on the nanosecond timescale). 
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 Figure 5.3. 2PA cross-sections of some D-π-D type quadrupolar chromophores.3,38-39 

 

Many donor-π-donor (D-π-D) type quadrupolar chromophores have been shown 

to exhibit fairly large 2PA cross sections.3,14 Such D-π-D materials, especially for those 

with terminal triaryl-amine type donor and stilbene type π-spacer, typically exhibit strong 

2PA with cross-sections over one thousand GM between 600  and 1000 nm (as illustrated 

in Figure 5.3) as well as high fluorescence quantum yields and strong electron donating 

properties (both in the ground state and particularly in the excited-state).14 There are 

considerable spectroscopic overlaps between the 2PA band of many of these electron 

donating D-π-D chromophores and the radical-anion absorption of the perylene diimides. 

Hence, molecular dyads consisting of D-π-D 2PA chromophores and PDI-based 

acceptors potentially could show enhanced optical-limiting response relative to that of the 

isolated 2PA chromophores using PDI radical anion absorption generated by the electron 

transfer to PDI following the two-photon excitation of donor moieties. The formation of 
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relatively long-lived charge-separated states following rapid electron transfer is another 

key requirement for effective optical limiting for such systems, which could be tuned by 

utilizing different spacers between the donor and PDI to control the electron-transfer and 

back-electron-transfer rate.  

 
 

Figure 5.4. The chemical structures of the phenylene-linked (1) and hexylene-linked (2) 
dyads and the respective model compounds. 

 

In this chapter, two different molecular donor-spacer-acceptor type molecular 

dyads were synthesized (as shown in Figure 5.4) for 2PA-induced optical limiting (as 

illustrated in Figure 5.5) in the wavelength range corresponding to the PDI radical anion 

absorption (700 – 800 nm). The dyads consist of a PDI moiety linked to a D-π-D 2PA 

chromophore. The donor chromophore, by analogy with similar 2PA chromophores, is 

expected to have a strong 2PA band in the 600 – 900 nm range.40-41 Linking the donor 

and acceptor through the imide position of the PDI minimizes the ground-state electronic 

coupling between the donor and PDI, because both the HOMO and LUMO of the PDI 
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has a node on each imide nitrogen.29 The donor and acceptor chromophores are linked 

with two different spacers, which are expected to affect the photo-induced charge-transfer 

and recombination rate in the dyads due to variations in donor-acceptor distance and 

molecular conformations. For dyad 1, the 2PA donor is rigidly bound at a fixed distance 

from the PDI acceptor by a single phenylene group, whereas for dyad 2, a longer, more 

flexible n-hexylene linker was employed.  

 

Figure 5.5. Mechanism for 2PA-induced charge transfer and optical limiting in the dyads. 
 

5.2 Synthesis and thermal properties of the dyads and model compounds 

 Transition metal-catalyzed cross-coupling reactions have been widely used in 

synthesizing organic conjugated materials. The palladium-catalyzed C-C coupling 

between aryl halides or vinyl halides and activated alkenes in the presence of a base is 

referred as the Heck Reaction, first described by Heck and coworkers in the early 

1970s.42-43 Because of the outstanding trans selectivity from the Heck Reaction,43-44 it 

was employed in this chapter to afford the dyads and model compound since trans 

stillbene-based 2PA dyes could give higher 2PA cross-sections in general.45 
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 As shown in Scheme 5.1 and 5.2, the synthetic strategy involved the preparation 

of Compound A and Compound B as well as the Heck coupling reaction42-43 of these 

compounds for the respective dyad syntheses. 2,7-Dibromo-9H-carbazole46 and 1,6-

dibromohexane were used as the starting materials to prepare 2,7-dibromo-9-(6'-

bromohexyl)-carbazole, which was further converted into 2-[6-(2,7-dibromo-9H-

carbazol-9-yl)hexyl]isoindoline-1,3-dione in a high yield via an SN2 reaction using 

potassium 1,3-dioxoisoindolin-2-ide as the nucleophile in DMF. 6-(2',7'-Dibromo-

carbazol-9'-yl)hexan-1-amine was then obtained after the hyrogenation of 2-[6-(2,7-

dibromo-9H-carbazol-9-yl)hexyl]isoindoline-1,3-dione with hydrazine upon heating in 

ethanol. This was used for further synthesis without additional purification, because of its 

limited solubility in common organic solvents. Compound A and Compound B were 

synthesized through the condensation reaction between (4-(2',7'-dibromo-carbazol-9'-

yl)aniline46 or 6-(2,7-dibromo-9H-carbazol-9-yl)hexan-1-amine) and N-(1-undecyl-

dodecyl)-perylene-3,4-dicarboxylicmonoanhydride-9,10-dicarboxylicmonoimide47 at 180 

oC in molten imidazole using anhydrous zinc(II) acetate as a catalyst.29 The yields of 

these reactions were around 80%, and the purification of the products was 

straightforward. The formation of the dyads via the Heck coupling reaction was carried 

out using 4-n-butyl-N-(4-butylphenyl)-N-(4-vinylphenyl)aniline48 and Compound A or 

Compound B, and the yields were between 40 – 60%. The reference compounds, Donor 

model and PDI model (N,N’-di-undecyl-dodecyl-perylene-3,4,9,10-

tetracarboxyldiimide),47 with similar chemical structures to the donor and PDI moieties in 

the dyads, were prepared for comparison. 1H and 13C NMR spectra, together with mass 

spectroscopy and elemental analysis, were used to confirm the chemical structures and 



220 

 

purity of the compounds. Since the Heck coupling reactions are known to give 

predominantly E products, the major isomers formed for the dyads and Donor model are 

expected to be the E,E isomers, as shown in Figure 5.4 and Scheme 5.2.43 Moreover, the 

13C NMR spectra show no evidence of more than one isomer for both dyads and Donor 

model, suggesting that E,Z and Z,Z isomers are only present in negligible quantities 

(undetectable using NMR techniques, i.e. < 5%) if at all. Because of the long alkyl 

substituents, both the dyads and the Donor model show excellent solubility in common 

organic solvents such as toluene, dichloromethane, chloroform, and THF (> 30 mg/mL in 

toluene and chloroform).  
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Scheme 5.1. The synthetic scheme for the dibromo compounds. 
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Scheme 5.2. The synthetic scheme for the dyads and donor model compound. 

 As shown in Figure 5.6 and Table 5.1, the dyads and respective model compounds 

exhibit good thermal stability, with the decomposition temperatures (Td), defined as that 

at which 5% weight loss is observed, in excess of 380 oC under nitrogen, according to 

thermogravimetric analysis (TGA) from room temperature to 500 oC. The Donor model 

has Td at around 426 oC while that for PDI model is 384 oC. Td for the dyads is slightly 

higher than 400 oC. The thermal behavior of these materials was recorded using 



222 

 

differential scanning calorimetry (DSC) in the temperature range from -20 to 300 oC 

under nitrogen atmosphere with a heating rate of 5 oC/min. The DSC trace for the second 

heating cycle revealed glass-transition temperatures (Tg) of 119, 85, 51, and 40 oC, for 

Dyad 1, Dyad 2, PDI model, and Donor model, respectively. The lower Tg of Dyad 2 

over Dyad 1 might be attributed to the more flexible linker between the donor moiety and 

PDI pendant. The first Tg for Donor model at 40 oC could be assigned to the side-chain 

Tg. There is also a small transition for Donor model at ca. 220 oC, which might be the 

glass transition for the aromatic scaffold, as the rigid chemical structure and possible π-π 

stacking would lead to a higher Tg. In addition, there is a melting transition at 84 oC in the 

DSC trace of PDI model, while the absence of such a melting transition in the dyads 

suggests them to be amorphous materials. The good thermal stability and relatively high 

Tg for the dyads could be advantageous for some practical applications. 
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Figure 5.6. The TGA traces (left) for Dyad 1 (black), Dyad 2 (red), PDI model (green) and 
Donor model compound (blue) under N2 flow with a 5K/min heating rate for each material. 
DSC (right) curves for Dyad 1 (black), Dyad 2 (red), PDI model (green) and Donor model 
(blue) with heating rate of 5 K/min under N2 flow in the second cycle. 
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5.3 Optical properties of the dyads and model compounds 

 The UV-Vis absorption spectra of the dyads and the model compounds in dilute 

toluene solution (ca. 1×10-5 mol/L) are shown in Figure 5.7. The UV-Vis absorption 

spectra of the dyads are essentially superpositions of the characteristic absorption bands 

of both Donor model (λmax = 416 nm) and PDI model (λmax = 528 nm) model 

compounds. This is consistent with the expectation of limited ground-state electronic 

coupling between the donor moiety and PDI pendant, at least in dilute toluene solution. 

The absorbance ratio of the (0,0) and (0,1) transitions ((0,0)/(0,1)) of the PDI moieties in 

the dyads is ca. 1.66 in dilute solution. This indicates free-PDI-type absorption in 

solution and limited molecular aggregation among the PDI units is present in these dyads 

as well as the PDI model.49 The emission spectra of these compounds are shown in 

Figure 5.8. The dyads and Donor model were excited at 390 nm, to minimize 

adventitious emission from the weak, ground-state PDI absorption (5% of that for Donor 

model in absorbance at 390 nm), while PDI model was excited at 490 nm. Both dyad 

compounds show much lower fluorescence quantum yields (0.4 ± 0.1% and 4 ± 1% for 

Dyad 1 and Dyad 2, respectively), than the PDI model (83 ± 5%) and Donor model (89 

± 5%) in toluene. Strong fluorescence quenching in the dyads suggests the possibility of 

the efficient electron transfer from the donor moiety and acceptor pendant following the 

donor excitation. Furthermore, both dyads show dual emission upon excitation at 390 nm 

(i.e., primary of the donor moiety) with also the PDI-based emission bands being 

observed, which suggests energy transfer from the excited donor to PDI, as well as the 

direct excitation of PDI at this wavelength. Excitation spectra of the dyads obtained at the 

PDI emission wavelength of 579 nm (Figure 5.9) yield a spectrum that matches the 
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shapes of both the donor and acceptor absorption in the dyads, indicating that the PDI 

emission observed when exciting the dyads at 390 nm originates from energy transfer.  

When the donor parts of the excitation spectra are normalized to that of the absorption 

spectra, the signal from the acceptor is stronger, because the energy transfer from the 

donor is not 100% efficient, and there is presumably some difference in electron-transfer 

efficiency between Dyad 1 and Dyad 2.  From the emission spectra, it is clear that Dyad 2 

exhibits much more efficient energy-transfer than Dyad 2. The linear optical properties of 

the dyads and model compounds are also summarized in Table 5.1. 
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Figure 5.7. The UV-Vis absorption spectra of the dyads and model compound: Dyad 1 
(black), Dyad 2 (red), PDI model (green) and donor model (blue) in toluene with 
concentration of ca. 1 × 10-5 mol/L. 
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Figure 5.8. The emission spectra of the dyads and model compounds: Dyad 1 (black), Dyad 
2 (red), PDI model (green) and donor model (blue) in toluene with concentration of ca. 
1×10-6 mol/L. The Donor model and dyads are excited at 390 nm while the PDI model is 
excited at 490 nm. 

 
Figure 5.9. The excitation spectra (blue) of 2 µM Dyad 1 (left) and Dyad 2 (right) in toluene 
with a fixed emission wavelength at 579 nm, overlaid with their respective absorption 
spectra (black) show that the dual emission observed for both dyads in the emission spectra 
is a result of energy transfer (Excitation spectra were collected by Dr. Matthew Sartin in the 
Perry group). 
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Table 5.1, Summary of the linear optical properties for dyads and models in solution and 
thermal properties. 
 

Materials λabs/nm             
(in CHCl3) 

λem/nm                 
(in toluene) 

ηem                                  

(in toluene) 
Td /oC  Tg /

oC 

Dyad A 528, 492, 419 450, 537, 580 
(Excited at 390 nm) 

0.4 ± 0.1% 404 119 

Dyad B 527, 490, 420 451, 535, 576, 620 
(Excited at 390 nm) 

4 ± 1% 402 86 

PDI model 526, 490, 458 535, 577, 620 
(Excited at 490 nm) 

83 ± 5% N/A N/A 

Donor 
model 

419 456, 484 
(Excited at 390 nm) 

89 ± 5% 426 40, 243 

 

 

To demonstrate the photo-induced generation of radical ions, transient absorption 

spectra of the photo-excited dyads are compared with the ground-state absorption spectra 

of chemically generated radical ions of the model compounds and the dyads. The radical 

anion of PDI model was generated in THF solution by reduction with cobaltocene (E1/2
+/0 

= -1.33 V in CH2Cl2 vs. FeCp2
+/0),37,50 and the radical cation of Donor model was 

obtained in dichloromethane after oxidation with tris(p-bromophenyl)aminium 

hexachloroantimonate (E1/2
+/0 = +0.70 V in CH2Cl2 vs. FeCp2

+/0).37,50-51 During the 

preparation of the radical cation or anion, a large excess of PDI model and Donor model 

compounds were used to ensure the generation of only mono-ions. As shown in Figure 

5.10, the absorption spectrum of the PDI model radical anion is similar to the spectra of 

other PDI radical anions with similar chemical structures in literature, with peaks at 698, 

798, and 958 nm.30,32,34,37 The oxidation of Donor model leads to intense absorption 

bands in the visible to NIR region, with peaks at 630 and 1680 nm (ca. 16000 and 5900 

cm-1, respectively). The rather intense (εmax = ca. 2.2 × 104 M-1cm-1) absorption band 
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peaked at ca. 5900 cm-1 within the NIR region could be ascribed to the inter-valence 

charge-transfer (IVCT) absorptions previously observed for other strongly coupled 

bis(diarylamino) mixed-valence cations, while the higher energy band peaked at 16000 

cm-1 with εmax = ca. 4 × 104 M-1cm-1 is presumably related to  the localized triarylamine 

type radical-cation absorption.51-52 The observed width of the IVCT absorption band 

( ]obs[2/1n  = ca. 4000 cm-1) is in good agreement with the width expected from Hush 

theory for class-II compounds ( ]Hush[2/1n  = ca. 3660 cm-1 according to Eq 5.1)53 given 

in cm-1 and maxn here is also in cm-1, suggesting the radical cation of Donor model is 

belonging class-II type IVCT system. In the framework of the Hush model, the electronic 

coupling N-N distance, between nitrogen redox centers, may be derived from Eq 5.2,53 

where R was estimated to be around 22.1 Å for the intramolecular terminal N-N distance 

using approximation of B3LYP/6-31G* in Gaussian 03 program suite. Here, was found 

to be ca. 670 cm-1 and quite close to the electron coupling in a similar class-II IVCT 

system with phenylene instead of carbazole-base bridge.52 It is worth noting the transition 

seen in the radical cation of Donor model at ca. 8900 cm-1 could be attributed to a 

highest bridge-based orbital to the terminal donor radical cation (B → D+), which was 

also observed previously in other IVCT systems.52,54 As more than one equivalent 

oxidation reagent, tris(p-bromophenyl)aminium hexachloroantimonate, was added (as 

shown in Figure 5.11), the absorption peaked at 1680 nm (around 5900 cm-1) started to 

decrease in intensity and a new absorption peaked at 1300 nm (~ 7700 cm-1) began to 

grow, which could be ascribed to the forming of the Donor model dications. Here, it 

should be noted that the formed Donor model dications exhibited a very similar higher 
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energy band, peaked at ~ 620 nm (16100 cm-1), as that for the respective radical cations. 

It further supports that the argument that the higher energy band peaked at 630 nm 

(16000 cm-1) for the radical cation of Donor model is from the localized triarylamine 

type cations, which is expected to be similar to the localized triarylamine type cation in 

the dication of Donor model. 

                                        max2/1 2310]Hush[ nn ´=                                   Eq 5.1 

                            RV /)(1006.2 2/1
2/1maxmax

2 nne D´´´´= -                     Eq 5.2 
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Figure 5.10. The radical-ion absorption of the model compounds: cation of Donor model in 
dichloromethane (black) and PDI model anion in THF (red). Both spectra were taken under 
nitrogen atmosphere. The inserted plot is the absorption spectrum of cation of Donor model 
plot in energy form. A large excess PDI or Donor model was used to ensure the generation of 
mono ion only. 
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Figure 5.11. The neutral Donor model absorption spectrum (black) and the absorption 
spectra of Donor model with various amount (tris(p-bromophenyl)aminium 
hexachloroantimonatemixture) in CH2Cl2. 

 

 Similar spectra were obtained when the dyads were oxidized with various 

equivalents of oxidant reagent (tris(p-bromophenyl)aminium hexachloroantimonate), as 

illustrated in Figure 5.12. The PDI characteristic absorption bands remained almost 

unchanged for both dyads as the more oxidant reagent was added. When the dyads were 

reduced with cobaltocene in anhydrous THF, PDI radical anion type absorption was 

observed alongside the Donor model characteristic absorption band (Figure 5.13). The 

similarities of the radical anion and cation absorption spectra of the dyads to those of the 

PDI model or Donor model, respectively, suggests limited ground-state electronic 

coupling between the perylene diimide and donor moieties in the dyads. 
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Figure 5.12. The neutral Dyad 1 (left) and Dyad 2 (right) absorption (black) and the 
absorption of dyads with different amounts of oxidation reagent (tris(p-
bromophenyl)aminium hexachloroantimonatemixture) in dichloromethane. 
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Figure 5.13. The radical-anion absorption spectra of the Dyad 1 (black) and Dyad 2 (red) via 
chemical reduction using cobaltocene in THF. The radical anions were generated in a 
nitrogen-flow glove-box and the absorption spectra were taken under nitrogen atmosphere.  
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Figure 5.14. The 2PA spectra of Dyad 1 (black), Dyad 2 (red), Donor model (blue), and PDI 
model (green) prepared at 100 µM in toluene. The difference between the dyad spectra and 
the 2PA spectrum of the donor and acceptor could result from overestimation of the 
quantum yield of the dyads, due to direct excitation of the acceptor in the one-photon 
fluorescence spectra. Additionally, the uncertainty in the dyad cross-section is ~ 40%, due 
to the large uncertainty in dyad quantum yields. The uncertainty in the model compound-
cross-section is ~ 15% (2PA spectra were collected by Dr. Nisan Siegel in the Perry group). 

 

 As shown in Figure 5.14, the 2PA spectrum of the Donor model has a maximum 

of ca. 750 nm with a 2PA cross-section around 700 GM. The spectrum of the Donor 

model resembles those of previously reported compounds similar in chemical structure 

with dihydrophenanthrene bridge instead of carbazole bridge.41 The PDI model 2PA 

spectrum shows a weak absorption with a maximum 2PA cross-section of 100 GM near 

680 nm, which is also consistent with previously reported 2PA data for PDIs and PDI-

like species.55 The dyad 2PA spectra resemble those of the model compounds in shape 

and 2PA cross-sections. The difference between the dyad spectra and the 2PA spectra of 
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the model compounds could result from the overestimation of the fluorescence quantum 

yield of the dyads, due to possible direct excitation of the PDI moieties at 390 nm, in the 

one-photon induced fluorescence spectra. Additionally, the uncertainty in the dyad 2PA 

cross-section is ~ 40% because of the large uncertainty in dyad emission quantum yields. 

Regardless of these issues, the data indicate considerable spectroscopic overlap of the 

donor 2PA band with both the PDI model radical-anion and donor model radical-cation 

absorptions between 600 – 800 nm. This suggests that the photo-generation of both 

radical ions following the 2PA excitation could enhance the strength of the nonlinear 

absorption to realize further optical suppression. 

5.4 Redox properties of the dyads and model compounds 

 As shown in Figure 5.15 and table 5.2, the electrochemical properties of the dyads 

and model compounds were investigated using cyclic voltammetry (CV) in anhydrous 

dichloromethane, using ferrocene (FeCp2) as an internal reference. The half-wave 

reduction potential (E1/2
0/- and E1/2

-/2-) values (defined as (Epa + Epc)/2, where Epa and Epc 

are peak oxidation and reduction potentials, respectively) of Dyad 1, Dyad 2, and PDI 

model, are around ca. -1.1 V for the first reduction and ca. -1.2 V for the second 

reduction vs. FeCp2
+/0 redox couple, respectively. These peaks correspond to the 

reduction of the PDI moieties and similar to the reported data for PDIs and PDI-like 

species.29 In the oxidation, two close overlapping redox processes were observed for 

Dyad 1, Dyad 2, and Donor model all at ca. 0.27 V, which could be assigned to the two 

close oxidation process of the donor moieties. These observations, together with the UV-

Vis absorption spectra of the dyads, suggest limited ground-state electronic coupling 

between chromophores within the dyads. According to these electrochemistry data, there 
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should be a sufficiently large LUMO offset (ca. 1.4 eV) between the PDI moiety and 

donor moiety in the dyads to promote efficient charge transfer in the dyads following 

photo-excitation of the donor. This is consistent with the strong fluorescence quenching 

observed in the dyads. 56-57 

 
Figure 5.15. The cyclic voltammograms of Dyad 1 (black), Dyad 2 (red), PDI model 
(green) and donor model (blue), in CH2Cl2 (0.1 M [n-Bu4N][PF6]), with a scan rate = 
50 mV s-1 for each material, using FeCp2

 as an internal reference. 
 
Table 5.2. Electrochemical half-wave potentials (V) for dyads and model compounds vs. 
FeCp2

+/0in CH2Cl2 (0.1 M [nBu4N][PF6]) with a scan rate of 50 mV s-1 for each material. 

Materials E1/2
2+/+ E1/2

+/0 E1/2
0/- E1/2

-/2-  

Dyad 1 +0.27a –1.04 –1.23 

Dyad 2 +0.27a –1.08 –1.25 

PDI model -- –1.08 –1.27 

Donor model +0.27a -- -– 

a : Two closely overlapping redox processes. 
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5.5 Transient absorption  

 Femtosecond (fs) transient absorption spectroscopy was performed by Dr. 

Matthew Sartin in the Perry group on solutions of the dyads in order to verify the photo-

generation of radical ion-pairs and determine their lifetimes. The transient absorption 

spectra of Dyad 1 and Dyad 2, shown in Figure 5.15, were generated by pumping 

primarily the donor moiety at 390 nm. The transient spectra shortly after the photo-

excitation (ca. approximately < 3 ps) show the excited-state absorption spectrum for the 

donor with some contribution of the acceptor assigned according to the transient data for 

the model compounds (Figure 5.15 a), presumably due to energy transfer. The spectra at 

later time intervals show the growth of absorption bands with peaks at 630 and 710 nm, 

as well as ground-state bleaching for both the donor and perylene diimide. The photo-

induced absorption band positions match well with the electronic absorption band of the 

donor radical cation (ca. 625 nm in dichloromethane) and the PDI radical anion (ca. 700 

nm in THF). Furthermore, photo-excitation of the donor also leads to a rapid depletion of 

the PDI ground-state, which is consistent with electron-transfer quenching of the donor 

excited state. Much stronger radical-ion absorption is apparent in the fs transient 

absorption spectra of Dyad 1 than in Dyad 2, indicating more efficient charge transfer in 

Dyad 1 after photo-excitation. This is consistent with the lower fluorescence quantum 

yield and less efficient energy transfer observed for Dyad 1 than Dyad 2. 
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                                 (c) 
Figure 5.16. The fs-pulse transient absorption spectra for (a) Donor model (blue) and PDI 
model (green) in toluene with excitation at absorption maximum; (b) 34 µM Dyad 1; and (c) 
37 µM Dyad 2 in toluene, at various time after photo-excitation at 390 nm with 2.7 µJ/pulse 
with OD of the dyads at ~ 0.35 in a 2 mm cuvette under nitrogen atmosphere (The spectra 
were collected by Dr. Matthew Sartin in the Perry group). 
 

 The rise-time of the transient absorption corresponding to the radical ions is 3 ps 

for Dyad 1, indicates a fast electron transfer following the photo-excitation. The faster 

rise time of ~ 300 fs of the absorption band peaked at ca. 700 nm for Dyad 2 probably 
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contains a certain amount of ESA absorption of PDI due to significant energy transfer, 

since the fluorescence data indicate strong energy transfer and significantly reduced the 

quenching of overall fluorescence compared to Dyad 1. Moreover, the shape of the 

transient absorption spectra of Dyad 2 are significantly broader than that of Dyad 1, 

especially for spectra in short decay time (ca. < 100 ps). This could indicate a 

contribution from the PDI excited-state absorption from energy transfer (fs transient 

absorption of the models are shown in Figure 5.16a), which occurs in the similar 

wavelength region (peaked at ca. 680 nm according to Figure 5.16a) as the radical ion 

spectra. Nanosecond transient absorption of Dyad 1 indicates a charge-separated lifetime 

of 13 ns (Figure 5.17). The charge-separated life-time for Dyad 2 is 600 ps according to 

the fs transient absorption spectra. The much faster charge-transfer and recombination 

rate of Dyad 2 in toluene is likely due to the flexibility of the hexylene linker, which 

allows conformational sampling of shorter donor-acceptor distance. 
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Figure 5.17. The Nanosecond pulse transient absorption decay following excitation at 355 
nm (OD = 0.11) of 2 µM Dyad 1 in toluene using 900 µJ/pulse. The initial 10 ns “bleach” is 
due to scattered laser light. The red lines are fit lines (The data were collected by Dr. 
Matthew Sartin in the Perry group). 
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5.6 Optical limiting   

 Optical limiting measurements were performed using nanosecond (ns) laser 

pulses (6 ns) at 700, 750, and 800 nm (Figure 5.18 and Table 5.3) by Dr. Matthew Sartin 

in the Perry group. The results indicate significantly stronger non-linear optical 

suppression for dyads 1 and 2, as compared with Donor model, with the response of 1 

being somewhat stronger than for 2 at all three wavelengths. The limiting threshold (I at 

T = T0/2, where T0 is the linear transmission) of Dyad 1 (7.2 J/cm2) is an order of 

magnitude lower than that of Donor model (72.4 J/cm2) and just approximately half of 

that for Dyad 2 (14.6 J/cm2) at 700 nm. A similar trend was observed at the other 

wavelengths (750 nm and 800 nm). The optical limiting response of the Donor model is 

attributed to 2PA, plus some contribution of ESA, particularly at longer wavelengths. The 

stronger limiting for the dyads is consistent with long-lived 2PA-induced charge-

separated species leading to further absorption of incident light by intense absorption 

from the resultant radical ions. It should be noted that a small, linear absorption between 

700 to 800 nm is observable in 2 mM solutions of the dyads, which lowers the linear 

transparency of the optical limiting samples for the dyads. The concentration-dependent 

growth of this band implies that it indicates an intermolecular charge-transfer-complex 

most likely due to the molecular aggregation at high concentration in solution (as shown 

in Figure 5.19). Excitation of the concentrated dyads (2 mM in toluene) by directly 

pumping this band at 680 nm resulted in similar charge-separated states as those from 

higher energy (390 nm) pumping with rapid charge recombination (< 40 ps). This 

observation suggests that such ground-state absorption of the charge-transfer-complexes 
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might have a deleterious contribution on generating long-lived ions for further optical 

suppression using nanosecond laser pulses.  

 

Figure 5.18. The nanosecond OL of 2 mM solutions of Dyad 1 (black), Dyad 2 (green), and 
Donor model (red) in toluene at various pump wavelengths focused in an f/5 geometry onto 
the middle of a 1 cm pathlength cell: 700 nm (left), 750 nm (center), and 800 nm (right) (The 
data were collected by Dr. Matthew Sartin in the Perry group). 
 
 
Table 5.3. Summary of the optical limiting performance of the materials lines (The data 
were collected by Dr. Matthew Sartin in the Perry group). 
Materials Limiting threshold 

(I at T = T0/2) J/cm2 

Figure of Merit 

(FOM = T0/TF) 

 700 nm 750 nm 800 nm 700 nm 750 nm 800 nm 

Dyad 1 7.2 25.2 53.6 17.2 4.3 3.5 

Dyad 2 14.6 56.3 94.9 5.4 2.9 2.2 

Donor model 72.4 112 N.A. 2.8 2.1 1.7 

 

 The stronger optical limiting for Dyad 1 vs. 2 is consistent with the reduced 

photo-generated radical-ion population in Dyad 2 observed in the fluorescence and 

transient absorption measurements. The Figures of Merit (FOM = To/TF, where To is the 

linear transmission, and TF is the high fluence transmission) for optical limiting of Dyad 1 
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in toluene are 17.2, 4.2, and 3.5 using 700 nm, 750 nm, and 800 nm excitation, 

respectively. These FOMs compare favorably with FOM obtained from porphyrin-

viologen dyads (2.4 at 600 nm) that used one-photon-induced charge-separated state to 

provide the optical limiting.58 While higher FOM have recently been reported for a MEH-

PPV/fullerene blend-based charge-separated systems,27 solutions of the present dyads 

facilitate simple infiltration of microcapillary waveguides,59 which can lead to 

dramatically increased interaction length, thereby enhancing the optical limiting (FOM > 

37 for Dyad 1 and ~ 17 for Dyad 2 at 750 nm). 
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Figure 5.19. Concentration dependence of peak absorption coefficients at 700, 750, and 800 
nm for the Dyads and PDI model. 
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5.7 Conclusions  

 Two donor-PDI dyads with 2PA D-π-D type donor have been synthesized and 

characterized. Long-lived charge-separated states were demonstrated via transient 

absorption spectra in the donor-PDI dyads after the photo-excitation on donor moieties in 

the dyads. The donor–acceptor linker strongly affects the rate of charge transfer and 

recombination. Dyad 1, with its rigid, phenylene linker, exhibits lower charge transfer 

and recombination rates than Dyad 2, which has a hexylene linker. Furthermore, the 

stronger fluorescence quenching observed for Dyad 1 indicates more efficient charge 

photo-generation. In both cases, the strong overlap of the corresponding perylene diimide 

radical-anion absorption with the 2PA band of the attached D-π-D donor leads to strong 

enhancement of the optical limiting by the dyads over that of the 2PA chromophore itself.  

This work also illustrates an approach through which donors and acceptors can be 

independently chosen to maximize optical limiting for a particular spectral range. 

Moreover, the ability to vary the timescale for recombination by altering the linker 

groups may allow further optimization of the optical suppression.  

5.8 Experimental section 

General. Most organic and inorganic chemicals were obtained from Aldrich and Alfa 

Aesar. Palladium-based catalysts were purchased from Strem Chemicals and used 

without further purification. The 1H and 13C NMR spectra were collected on a Bruker 400 

MHz or Bruker 500 MHz spectrometer using tetramethylsilane (TMS; δ = 0 ppm) as an 

internal standard. Mass spectra were measured on a VG Instruments 70-SE using the 

electron impact (EI) mode or on an Applied Biosystems 4700 Proteomics Analyzer using 
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MALDI mode. Elemental analyses were carried out by Atlantic Microlabs using a LECO 

932 CHNS elemental analyzer. Solution UV-Vis absorption spectra were recorded on a 

Varian Cary 5E spectrophotometer. Solution emission and excitation spectra were 

measured using Fluorolog-2 from Spex (Edison, NJ). Electrochemical measurements 

were carried out under nitrogen in deoxygenated 0.1 M solutions of tetra-n-

butylammonium hexafluorophosphate in dry CH2Cl2 using a computer-controlled BAS 

100B electrochemical analyzer, a glassy-carbon working electrode, a platinum-wire 

auxiliary electrode, and Ag wire anodized with AgCl as a pseudo-reference electrode. 

Potentials were referenced to the ferrocenium/ferrocene (FeCp2
+/0) couple by using 

ferrocene as an internal standard. TGA measurements were performed on an NETZSCH 

STA 449C analyzer under a nitrogen flow of 40 mL/min with a heating rate of 5 oC /min. 

DSC measurements were performed on a TA Instruments DSC Q200 analyzer under a 

nitrogen flow of 50 mL/min with a heating and cooling rate of 5 oC/min. 

Generation of radical ions. The radical anion of the PDI model compound was 

generated in anhydrous THF solution by reduction with cobaltocene in a nitrogen 

atmosphere glove box. The radical cation of the donor model compound was generated 

in anhydrous dichloromethane by oxidation with tris(p-bromophenyl)aminium 

hexachloroantimonate. The absorption spectra of the radical ions were recorded a Varian 

Cary 5E UV-Vis-NIR spectrophotometer using 1.0 cm pathlength cells. 

Two-photon absorption spectroscopy: Two-photon absorption (2PA) spectra were 

determined using the reference-based two-photon excited fluorescence (2PEF) method by 

Dr. Nisan Sigel in the Perry group. 14,60 The source of excitation light was a nanosecond 

pulsed optical parametric oscillator (Quanta-Ray MOPO 730) pumped by a Q-switched 
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Nd:YAG laser (Quanta-Ray PRO250). The 2PEF method determines the 2PA spectra of 

unknowns by measuring the fluorescence emitted by the unknowns under two-photon 

excitation conditions and comparing it to the fluorescence emitted by a known reference 

compound under the same conditions. The 2PEF measurements of the model compounds 

were made in toluene (Sigma-Aldrich spectroscopic grade) solution at chromophore 

concentrations of 80–110 µM. The data reported here comprise several collections of 

over 200 pulses at each wavelength. 1,4-Bis(2-methylstyryl)benzene (Sigma-Aldrich, 

99%) in cyclohexane (Sigma-Aldrich, spectroscopic grade) and fluorescein61 (Acros, 

laser grade) in aqueous NaOH solution (pH 11) were used as references  for 630 – 680 

nm and 690 – 1040 nm, respectively. The 2PA cross-section values of 1,4-bis(2-

methylstyryl)benzene reported by Kennedy62 were reduced in scale by a factor of 10, as 

described by Fisher. The uncertainties in the measured cross sections are approximately 

±15% for the model compounds and approximately ± 40% for the dyads. 

Femtosecond transient absorption measurements: The femtosecond transient 

absorption spectra were collected by Dr. Matthew M. Sartin in the Perry group. The 

excitation source for femtosecond transient absorption measurements was generated by 

an optical parametric amplifier (TOPAS, Newport) pumped by a Ti:Sapphire 

regenerative amplifier (Spitfire, Newport), operating at 1 kHz repetition rate.  The 800 

nm Spitfire output could be varied by the TOPAS over 465 – 2900 nm. For wavelengths 

below 465 nm, the TOPAS output was frequency doubled using a BBO crystal. 

Approximately 5% of the 800 nm Spitfire output was used to generate the white-light 

continuum probe beam (420–950 nm) in a sapphire plate.  The laser pulse width in this 

spectral region was 120 fs. Transient data were collected using a commercially available 
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Helios spectrometer (Ultrafast Systems, Sarasota, FL). The width of the instrument 

response function was 200 fs, and the maximum time delay was 3.2 ns.  At each temporal 

delay, the signal was averaged for 1 s. The pump beam was chopped at 500 Hz to 

alternate between signal and reference data. A correction factor for the chirp of the white 

light was generated using the ultrafast response of toluene.  All samples were prepared in 

2 mm cuvettes and deaerated with N2. The pump wavelengths were 390 nm for Dyad 1 

(34 µM, OD = 0.35), Dyad 2 (34 µM, OD = 0.36), and Donor model (30 µM, OD = 0.32) 

and 530 nm for PDI model compound (29 µM, OD = 0.39). The pump energy for all 

samples was ~3.3 µJ/pulse.   

Nanosecond transient absorption measurements: The nanosecond transient absorption 

spectra were collected by Dr. Matthew M. Sartin in the Perry group. The excitation 

source for transient absorbance experiments was an optical parametric oscillator 

(Newport Spectra-Physics, Irvine, CA) pumped by the third harmonic of a Nd:YAG laser 

(Newport Spectra-Physics) with a pulse width of 6 ns. A 2 µM sample of Dyad 1 in a 

deaerated, 1 cm cuvette was pumped at 528 nm (OD = 0.33), using ~2 mJ/cm2. The probe 

beam was generated using a 240W tungsten-halogen lamp (Oriel 69931 Radiometric 

Power Supply, Newport Oriel, Irvine, CA). The pump and probe overlapped at an angle 

of ~5˚ in the sample. The white light was focused into an Acton SpectraPro 2150i 

monochrometer (Princeton Instruments, Trenton, NJ) and the transmitted light was 

collected by a HCA-S-200M-Si photodiode (Femto, Berlin, Germany).  The transient 

signal was digitized using a Tektronix digital oscilloscope (Model 3034B, 300 MHz, 2.5 

Gigasamples/sec). The response time of the system was limited by the laser pulse width. 
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Nanosecond Optical-Limiting Measurements: The nanosecond transient optical 

limiting measurements were performed by Dr. Matthew M. Sartin in the Perry group. The 

excitation source for optical-limiting (OL) measurements is the same as that for 

nanosecond transient absorption. A mechanical shutter reduced the pulse repetition rate to 

1 Hz to minimize damage to the sample. The dyads were prepared as deaerated, 2 mM 

solutions in 1 cm cuvettes, with transmittance > 0.9 at the excitation wavelength of 750 

nm. The laser was focused into the center of the cuvette using f/5 geometry, and the 

transmitted light was detected by a New Focus photoreceiver (San Jose, California), 

sampled using a Stanford Research Systems boxcar averager (Sunnyvale, CA), and 

recorded using an analog to digital converter and computer. A beam splitter placed before 

the sample redirected part of each pulse to a reference photoreceiver to normalize for 

fluctuations in the input energy of each pulse. 

2,7-Dibromo-9-(6-bromohexyl)-9H-carbazole: 2,7-Dibromo-9H-carbazole46 (1.62 g, 

5.00 mmol) and KOH (0.28 g, 5.0 mmol) were stirred in anhydrous DMF (20 mL) at 0 °C. 

Then 1,6-dibromohexane (2.5 g, 10 mmol) was added in one portion, and the resultant 

mixture was stirred overnight at room temperature. The mixture was poured into water 

(300 mL), and ethyl acetate (200 mL) was used to extract the product. The organic phase 

was washed with water (6 × 100 mL) and dried over Na2SO4. After the solvent was 

removed, the residue was recrystallized from hexane (100 mL) to afford a white solid 

(1.94 g, 79%). 1H NMR (500 MHz, CDCl3): d 7.88 (d, J = 8.5 Hz, 2H), 7.50 (s, 2H), 7.33 

(dd, J1 = 8.5 Hz, J2 =1.0 Hz, 2H), 4.20 (t, J = 7.0 Hz, 2H), 3.38 (t, J = 6.5 Hz, 2H), 1.88 

(m, 4H), 1.51 (m, 2H), 1.47 (m, 2H). 13C{1H} NMR (125 MHz, CD2Cl2): d 141.3, 122.6, 

121.5, 121.3, 119.7, 111.9, 43.2, 33.6, 32.5, 28.6, 27.9, 26.4. HRMS (EI) calcd. for 
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C18H18Br3N (M+): 484.8989, found: 484.8979. Anal. Calcd. for C18H18Br3N: C, 44.30; H, 

3.72; N, 2.87. Found: C, 44.26; H, 3.67; N, 2.93.  

2-[6-(2,7-Dibromo-9H-carbazol-9-yl)hexyl]isoindoline-1,3-dione: 2,7-Dibromo-9-(6-

bromohexyl)-9H-carbazole (1.60 g, 3.30 mmol) was dissolved in anhydrous DMF (10 mL) 

and cooled to 0 °C. Potassium 1,3-dioxoisoindolin-2-ide (1.3 g, 7.0 mmol) was then added 

in one portion. The resultant mixture was stirred overnight at room temperature and then 

poured into water (200 mL). The white solid was collected by filtration and purified by 

column chromatography on silica gel, eluted with CH2Cl2 / hexane (1:2) to give a white 

solid (1.64 g, 90%). 1H NMR (500 MHz, CDCl3): d 7.85 (d, J = 8.0 Hz, 2H), 7.83 (m, 2H), 

7.69 (m, 2H), 7.48 (d, J = 1.5 Hz, 2H), 7.31 (dd, J1 = 8.0 Hz, J2 =1.5 Hz, 2H), 4.19 (t, J = 

7.5 Hz, 2H), 3.68 (t, J = 7.0 Hz, 2H), 1.84 (m, 2H), 1.66 (m, 2H), 1.42 (m, 4H). 13C{1H} 

NMR (125 MHz, CD2Cl2): d 168.4, 141.3, 133.9, 132.1, 123.2, 122.5, 121.5, 121.3, 119.7, 

111.9, 43.2, 37.7, 28.7, 28.4, 26.7, 26.6. HRMS (EI) calcd. for C26H22Br2N2O2 (M+): 

552.0048, found: 552.0023. Anal. Calcd. for C26H22Br2N2O2:  C, 56.34; H, 4.00; N, 5.05. 

Found: C, 56.37; H, 4.09; N, 5.05.  

6-(2,7-Dibromo-9H-carbazol-9-yl)hexan-1-amine: 2-[6-(2,7-Dibromo-9H-carbazol-9-

yl)hexyl]isoindoline-1,3-dione (1.67 g, 3.00 mmol) and hydrazine monohydrate (2.2 mL) 

were heated in refluxing ethanol (60 mL) for 4 h. After the reaction mixture was cooled to 

–10 °C, the white solid was filtered and washed with cold methanol to give a white solid 

(1.24 g, 99%) which was used in the synthesis of compound B without further purification, 

due to the poor solubility. 
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Compound A: N-(1-Undecyl-dodecyl)-perylene-3,4-dicarboxyanhydride-9,10-

dicarboximide2 (0.356 g, 0.50 mmol), 4-(2,7-dibromo-9H-carbazol-9-yl)aniline46 (0.413 

mg, 1.00 mmol), anhydrous zinc (II) acetate (80 mg, 0.44 mmol), and imidazole (3.0 g) 

were heated under N2 at 180 °C overnight. The reaction mixture was then allowed to be 

cooled to ca. 130 °C and poured into 4N aqueous HCl (160 mL). The red precipitate was 

collected by filtration and washed with 2N aqueous HCl (3 × 10 mL), water (3 × 10 mL), 

and methanol (2 × 10 mL) in a subsequence. The solid was then dissolved in CHCl3 (5 mL) 

and a minimum amount of silica gel was added to absorb the liquid. After the solvent was 

removed under reduced pressure, the dried silica gel was added to the top of a hexane-

packed silica gel column, and the column was eluted with CHCl3 to give a red solid (0.53 

g, 89 %). 1H NMR (500 MHz, CDCl3): d 8.78 (d, J = 8.0 Hz,  2H), 8.72–8.662 (m, 6H), 

7.95 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 1.0 Hz, 2H),  7.65 (d, J = 

8.5 Hz, 2H), 7.42 (dd, J1 = 8.5 Hz, J2 =1.0 Hz, 2H),  5.18 (m, 1H), 2.26 (m, 2H), 1.86 (m, 

2H), 1.29–1.21 (m, 36H), 0.83 (t, J = 6.5 Hz, 6H). 13C{1H} NMR (125 MHz, CDCl3): d 

165.0, 164.1, 163.9, 141.8, 137.2, 135.8, 134.9, 134.6, 134.5, 132.4, 132.3, 131.6, 131.2, 

130.2, 129.9, 128.9, 128.0, 127.0, 126.7, 124.6, 124.4, 123.9, 123.8, 123.6, 123.5, 123.3, 

122.3, 122.0, 121.8, 120.6, 116.4, 113.6, 113.5, 55.3, 32.8, 32.3, 30.2, 30.1 (3 peaks) 30.0, 

29.8, 27.5, 23.2, 14.7 (the observation of three carbonyl carbon resonances is consistent 

with previous work on perylene bis(dicarboxyimide)s using similar swallow-tailed N-

substituents and it has been attributed to restricted rotation of the N—Calkyl bonds.3 Two 

aromatic carbon peaks and one alkyl carbon were not observed, presumably due to 

overlap). HRMS (MALDI) calcd. for C65H65Br2N3O4 (M
+): 1109.33, found: 1109.35. Anal. 

Calcd. for C65H65Br2N3O4: C, 70.20; H, 5.89; N, 3.78. Found: C, 69.99; H, 5.92; N, 3.81 
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Compound B: N-(1-Undecyl-dodecyl)-perylene-3,4-dicarboxyanhydride-9,10-

dicarboximide2 (0.713 g, 1.00 mmol), 6-(2,7-dibromo-9H-carbazol-9-yl)hexan-1-amine 

(0.500 g, 1.2 mmol), anhydrous zinc (II) acetate (200 mg, 1.10 mmol), and imidazole 

(10.0 g) were heated under N2 at 180 °C overnight. The reaction mixture was allowed to 

cool to ca. 130 °C and poured into 4 N aqueous HCl (160 mL). The red precipitate was 

collected by filtration and washed with water (3 × 30 mL) and then with methanol (3 × 30 

mL). The solid was then dissolved in CHCl3 (10 mL) and a minimum amount of silica gel 

was added to absorb the liquid. After the solvent was removed under reduced pressure, the 

dried silica gel was added to the top of a hexane-packed silica gel column and eluted with 

CHCl3 / hexane (3:2 and then 2:1, and finally CHCl3 / ethyl acetate (20:1). After the 

solvent was removed, Compound B was obtained as a red solid (0.81 g, 72%). 1H NMR 

(500 MHz, CDCl3): d 8.65–8.56 (m, 8H), 7,83 (d, J = 8.0 Hz, 2H), 7.49 (s, 2H), 7.29 (d, J 

= 8.0 Hz, 2H), 5.16 (m, 1H), 4.19 (m, 4H), 4.16 (t, J = 7.5 Hz, 2H), 2.25 (m, 2H), 1.85 (m, 

4H), 1.74 (m, 2H), 1.47 (m, 4H), 1.30 – 1.17 (m, 34H) 0.83 (t, J = 6.0 Hz, 6H). 13C{1H} 

NMR (125 MHz, CD2Cl2): d 164.6, 163.4 (2 close peaks), 141.3, 134.7, 134.3, 131.8, 

131.4, 131.1, 129.5, 129.3, 126.4, 126.3, 124.0, 123.1, 122.9, 122.5, 121.4, 121.2, 119.7, 

111.9, 55.0, 43.3, 40.3, 32.4, 31.9, 29.6 (3 peaks), 29.5, 28.6. 27.8, 27.0, 26.9, 26.7, 25.0, 

22.6, 14.1. (the observation of three carbonyl carbon resonances is consistent with 

previous work on perylene bis(dicarboxyimide)s using similar swallow-tailed N-

substituents and it has been attributed to restricted rotation of the N—Calkyl bonds.3 One 

alkyl carbon resonance was not observed, presumably due to overlap). HRMS (MALDI) 

calcd. for C65H73Br2N3O4 (M+): 1117.402, found: 1117.379. Anal. Calcd. for 

C65H73Br2N3O4: C, 69.70; H, 6.57; N, 3.75. Found: C, 69.86; H, 6.49; N, 3.67.  
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Dyad 1: Compound A (0.33 g, 0.30 mmol), N,N-di(4-n-butylphenyl)-4-vinylaniline (0.77 

g, 2.0 mmol), tri-o-tolylphosphine (60 mg, 0.20 mmol), and palladium(II) acetate (22 mg, 

0.010 mmol) were charged to a two-neck round-bottomed flask equipped with a condenser. 

After evacuating and refilling the flask with nitrogen three times, DMF (9.0 mL) and 

triethylamine (3.0 mL) were added by syringe. The resultant mixture was then heated 

under N2 at 100 °C for 24 h. After the mixture was allowed to cool to room temperature, it 

was poured into methanol (100 mL) and the resultant solid was collected by filtration. The 

solid was then dissolved in toluene and purified using column chromatography on silica 

gel, with toluene / hexane (3:1) as the eluent. After the solvent was removed under 

reduced pressure, the resultant solid was heated in refluxing ethanol for 2 h; Dyad 1, as a 

red solid, was collected by filtration while the solution was hot (298 mg, 58%). 1H NMR 

(500 MHz, CDCl3): d 8.70–8.62 (m, 8H), 8.09 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.5 Hz, 

2H), 7.69 (d, J = 8.0 Hz, 2H), 7.64 (s, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.5 Hz, 

4H), 7.17 (s, 4H), 7.11 (d, J = 8.5 Hz, 8H), 7.02 (d, J = 8.5 Hz, 8H), 6.98 (d, J = 8.5 Hz, 

2H), 5.18 (m, 1H), 2.92 (t, J = 7.5 Hz, 8H), 2.26 (m, 2H), 1.86 (m, 2H), 4.39 (t, J = 6.0 Hz, 

2H), 3.63 (m, 2H) 3.03 (t, J = 6.0 Hz, 2H), 2.26 (m, 2H), 2.04 (m, 2H), 1.87 (m, 2H), 1.63 

(quintet, J = 7.5 Hz, 8H), 1.41–1.2 (m,  34H), 0.96 (t, J = 7.5 Hz, 12H), 0.84 (t, J = 7.5 Hz, 

6H). 13C{1H} NMR (125 MHz, CDCl3): d 163.9, 163.0, 162.8, 147.0, 144.5, 141.0, 137.3, 

137.0, 135.4, 134.7, 133.5, 133.2, 131.3, 130.1, 129.8, 129.2, 128.9, 128.5, 137.3, 127.2, 

126.5, 126.1, 125.8, 123.9, 122.8, 122.5,122.4, 122.1, 121.9, 119.6, 118.2, 107.1, 54.2, 

34.4, 33.0, 31.7, 31.2, 28.9 (4 closely spaced peaks), 28.6, 26.3, 22.0, 21.8, 13.4, 13.3.( the 

observation of three carbonyl carbon resonances is consistent with previous work on 

perylene bis(dicarboxyimide)s using similar swallow-tailed N-substituents and it has been 
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attributed to restricted rotation of the N—Calkyl bonds.3 Two aromatic carbon and one 

alkyl carbon resonance were not observed, presumably due to overlap). HRMS (MALDI) 

calcd. for C121H129N5O4 (M+): 1717.005, found: 1715.998 ((M-1)+). Anal. Calcd. for 

C121H129N5O4: C, 84.62; H, 7.57; N, 4.08; Found: C, 84.53; H, 7.65; N, 4.12. 

Dyad 2: Compound B (0.33 g, 0.30 mmol), N,N-di(4-n-butylphenyl)-4-vinylaniline (0.77 

g, 2.0 mmol), tri-o-tolylphosphine (60 mg, 0.20 mmol), and palladium (II) acetate(22 mg, 

0.010 mmol) were charged to a two-neck, round-bottomed flask equipped with a 

condenser. After evacuating and refilling the flask with nitrogen three times, DMF (9 mL) 

and triethylamine (3 mL) were added by syringe. The mixture was then heated under N2 at 

100 °C for 24 h. After the mixture was allowed to cool to room temperature, the solvent 

was removed under reduced pressure and the residue was purified by column 

chromatography on silica gel, eluted with CHCl3 / hexane (1:1 and then 4:3). After the 

solvent was removed under reduced pressure, the resulting solid was refluxed in ethanol 

for 2 h; Dyad 2, as a red solid, was collected by filtration while the solution was hot (210 

mg, 41%). 1H NMR (500 MHz, CD2Cl2): d 8.6–8.4 (m, 8H), 7.94 (d, J = 8.0 Hz, 2H),7.49 

(s, 2H), 7.42 (d, J = 9.0 Hz, 4H),7.37 (d, J = 8.0 Hz, 2H), 7.19 (s, 4H), 7.08 (d, J = 7.0 Hz, 

8H), 7.0–6.7 (m, 12H), 5.2–5.1 (m, 1H), 4.35 (t, J = 7.0 Hz, 2H), 4.16 (t, J = 7.0 Hz, 2H) 

2.58 (t, J = 7.5 Hz, 8H), 2.3–2.2 (m, 2H) , 1.95–1.94 (m, 2H), 1.87–1.83 (m, 2H), 1.77–

1.73 (m, 2H), 1.60 (quintet, J = 8.0 Hz, 8H), 1.4–1.2 (m, 48H), 0.95 (t, J = 7.5 Hz, 12H), 

0.84 (t, J = 7.0 Hz, 6H). 13C{1H} NMR (125 MHz, CDCl3): d 164.6, 163.5, 163.4, 147.6, 

145.2, 141.4, 137.7, 137.6, 135.4, 134.6, 134.4, 131.8, 131.4, 131.1, 130.9, 129.5, 128.3, 

129.1, 128.9, 127.7, 127.6, 127.2, 126.4, 126.3, 124.6, 123.9, 123.1, 122.9, 122.5, 122.2, 

120.2, 117.5, 106.5, 54.8, 43.0, 40.3, 35.0, 33.7, 32.3, 31.9, 29.6, 29.5, 29.3, 28.8, 27.7, 
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27.0, 26.9, 26.7, 22.7, 22.4, 14.1, 14.0. (The observation of three carbonyl carbon 

resonances, along with three additional aromatic resonances, can be attributed to restricted 

rotation of the N—Calkyl bonds.3 Two alkyl carbon resonances were not observed, 

presumably due to overlap). HRMS (MALDI) calcd. for C121H137N5O4 (M+): 1724.067, 

found: 1724.075. Anal. Calcd. for C121H137N5O4: C, 84.22; H, 7.95; N, 4.09. Found: C, 

84.02; H, 8.08; N, 4.05. 

Donor model: 2,7-Dibromo-9-n-hexyl-9H-carbazole63 (0.41 g, 1.0 mmol), N,N-di(4-n-

butylphenyl)-4-vinylaniline5 (1.0, 2.6 mmol), tri-o-tolylphosphine (60 mg, 0.20 mmol), 

and palladium (II) acetate (22 mg, 0.010 mmol) were charged to a two-neck round-

bottomed flask equipped with a condenser. After evacuating and refilling the flask with 

nitrogen three times, DMF (12 mL) and triethylamine (4 mL) were added by syringe. The 

mixture was then heated under N2 at 100 °C for 12 h. After the mixture was allowed to 

cool to room temperature, the solvent was removed under reduced pressure and the 

residue was purified by column chromatography on silica gel, using CHCl3 / hexane (1:20 

and then 1:5) as eluents to give Donor model as a yellow solid (0.44 g, 44%). 1H NMR 

(500 MHz, CD2Cl2): d 8.00 (d, J = 8.0 Hz, 2H), 7.38 (s, 2H), 7.43–7.40 (m, 6H), 7.19 (s, 

4H), 7.11 (d, J = 8.0 Hz, 8H), 7.02–6.99 (m, 12H), 4.35 (t, J = 7.0 Hz, 2H), 2.59 (t, J = 7.5 

Hz, 8H), 1.93 (quintet, J = 7 .5 Hz, 2H), 1.61 (quintet, J = 6.5 Hz, 8H), 1.4–1.2 (m, 14H), 

0.95 (t, J = 7.0 Hz, 12H), 0.89 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (125 MHz, CD2Cl2): d 

148.2, 145.6, 142.0, 138.4, 135.9, 131.2, 129.6, 127.9, 127.8, 127.5, 125.1, 122.6, 122.5, 

120.6, 118.0, 106.8, 43.4, 35.4, 34.1, 32.0, 29.3, 27.3, 22.9, 22.8, 14.2, 14.1.(Two 

aromatic carbon resonances were not observed, presumably due to overlap). HRMS 
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(MALDI) calcd. for C74H83N3 (M+): 1013.659, found: 1013.665. Anal. Calcd. for 

C74H83N3: C, 87.61; H, 8.25; N, 4.14. Found: C, 87.35; H, 8.18; N, 4.11. 

PDI model: (N,N’-Bis(1-undecyl-dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide): A 

mixture of perylene-3,4,9,10-tetracarboxydianhydride (6.0 g, 15 mmol), 1-undecyl-

dodecylamine (12 g, 35 mmol), anhydrous zinc (II) acetate (1.6 g, 8.7 mmol) and 

imidazole (70 g) were heated at 180 °C for 5 hours before it was allowed to cool to room 

temperature and treated with 2 N aqueous HCl solution (400 mL). The mixture was then 

extracted with chloroform (2 × 200 mL). The organic phase was washed with water (3 × 

100 mL) and dried over MgSO4. The solvent was then removed under reduced pressure 

and the residue was purified by flash chromatography on silica gel, using CHCl3 / hexane 

(1:1 and then 2:1) as eluent to give PDI model as a red solid (12 g, 77%). 1H NMR (500 

MHz, CDCl3): d   8.64 (m, 8H), 5.18 (m, 2H), 2.22 (m, 4H), 1.86 (m, 4H), 1.4–1.1 (m, 

72H). 0.80 (t, J = 6.6 Hz, 12H). The 1H NMR spectrum of this product is consistent with 

that reported in the literature.34 
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CHAPTER 6 

PHOTO-INDUCED ELECTRON TRANSFER AND OPTICAL 
LIMITING IN POLY(CARBAZOLE-ALT-FLUORENE)S BEARING 

PERYLENE DIIMIDES AS PENDANT ACCEPTOR 

 

6.1 Introduction 

 
As discussed in Chapter 5, the design of effective optical power limiters for use in 

various wavelength regions has attracted significant research interest due to their 

potential applications in protecting optical sensors, including human eyes.1-2 One of the 

key challenges for effective optical limiting is the development of systems that maintain 

high transparency under low-intensity irradiation, but that can also instantaneously 

attenuate an incident laser pulse whose pulse length may vary from femto- to micro-

seconds. This requires effective optical limiters in which different absorption 

mechanisms are involved at different intensities of irradiation and that can provide pulse 

attenuation over very short to moderate time scales.1-3 Materials that exhibit reverse 

saturable absorption (RSA) are currently of interest for optical limiting of highly 

energetic laser beams. RSA can occur under conditions of intense irradiation when the 

excited states of the materials, typically the lowest singlet-state (S1) and / or triplet-state 

(T1), have absorption cross section (σe) considerably in excess of the corresponding 

ground-state absorption cross section (σg) at the same wavelength. The effectiveness of 

molecules exhibiting RSA for optical limiting is determined mainly by the ratio of 

excited-state to ground-state absorption cross sections, σe/σg, which is a function of 

wavelength, and the populations of the states that evolve in time during the pulse.1,4 In 



256 

 

general, for a system with sufficient linear absorption and excited-state life-time, the 

larger of the σe/σg, the better the potential optical limiting response at the certain 

wavelengths. Fullerene derivatives,5-6 heavy-atom-substituted phthalocyanines (Pc),7-10 

and oligo- and/or poly-metallayne-based compounds11-13 are among the most promising 

RSA-based materials for optical limiting because they exhibit wide wavelength windows 

of relatively high linear transparency combined with strong excited-state absorption 

(normally that of T1) in the 450 – 600 nm region, while the strongly absorbing triplet 

states are formed in high yield via intersystem crossing after photoexcitation.7 However, 

the use of these particular materials outside of the 450 – 600 nm region into the near-

infrared (NIR) region is limited by relatively small ratios of excited-state to ground-state 

absorption cross sections or by formation of insufficient populations of the relevant 

excited states due to limited linear absorption in the NIR. 

sS sT

sg

FST

tT

sS >> sg and/or sT >> sg

 

Figure 6.1. The Jablonski diagram (left) for RSA-based optical limiting processes through 
either singlet- or triplet-excited-state absorption. Electronic absorption (right) of bis[tri-(n-
hexyl)siloxy]SnPc: ground-state absorption (solid line) and triplet state absorption (data 
points linked by line).4  
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Another approach for extending RSA-type optical limiting into the NIR that has 

recently been investigated utilizes species that exhibit strong radical-ion absorptions from 

following photoinduced electron transfer within or between molecules.14-17 Blends of 

polythiophene and fullerene derivatives were among the earliest effective optical limiters 

relying on this mechanism; the strong optical suppression observed was attributed to the 

photo-generated polythiophene polaron absorption at ca. 750 nm arising from excited-

state electron transfer between polythiophene and C60.
15 Similar phenomena have been 

utilized in other polymer blends16 and in molecular dyads to achieve good optical 

suppression in NIR range.14,17 In principle, donor-acceptor (D-A) type “double-cable” 

conjugated polymers,18-22 in which electron-accepting moieties are covalently linked to 

an electron-donating conjugated polymer backbone appear to be promising candidate for 

optical limiting at certain wavelengths since the occurrence of rapid charge separation 

and long-lived charge-separated states in such kinds of polymers has been demonstrated 

in previous solar-energy-conversion research.18-21 Moreover, because of their 

homogeneous molecular distribution and constant distance between the donor and 

acceptor building blocks (in contrast to simple donor / acceptor material blends), 

“double-cable” polymers of this type could help overcome the phase-separation issues 

commonly encountered for physical blends and maximize the donor-acceptor interaction 

in the solid state. This could potentially result in higher-quality films due to better control 

of film morphology, as well as achievement of a larger population electron-transfer states 

to absorb strongly following the photoexcitation. 

As described in earlier chapters, perylene-3,4,9,10-tetracarboxylic acid diimides 

(also known as perylene diimides or PDIs) are a group of promising acceptors 
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extensively used for organic optical and electronic applications.23-24 An interesting 

property of PDI-based materials is the tendency of these coplanar dyes to aggregate with 

neighboring molecules in solution or solid state due to strong π – π stacking interactions; 

these aggregates could extend the low-energy absorption edge of PDI materials beyond 

600 nm.23 On the other hand, the existence of long-lived charge-separated states has been 

proven in many donor-PDI systems and PDI radical anions are strongly absorbing in the 

visible to NIR range (ca. 600 to 1000 nm).25-31 Hence, spectroscopic overlap is likely 

between the weak ground-state absorption in the low-energy tail of the absorption of PDI 

aggregates and the fairly strong absorption from the PDI radical anions that can be 

formed following the photo-excitation, suggesting the possibility of RSA-type optical 

limiting using the photo-generated vis-NIR radical-anion absorption if appropriate donor 

moieties are incorporated that lead to high populations of long-lived photo-induced 

charge-separated states. In contrast, carbazole-containing conjugated polymers or 

oligomers are typically considered as electron donors with hole-transporting character, 

relatively high-energy HOMOs, and stable radical cations (which are often described as 

polarons in the context of conjugated polymers). Since the last decade, carbazole-based 

conjugated materials have been extensively studied for organic electronic applications, 

resulting in high-performance devices.32-34 Recently, efficient photo-induced electron-

transfer processes has been demonstrated in the PDI/polycarbazole blends or PDI-grafted 

D–A “double-cable” polycarbazole copolymers, as shown in Figure 6.2, and promising 

devices have been achieved using these materials as active layers in solution-processed 

solar cells.20-22,35 However, there are no reports on using photo-generated radical-ion 

absorption in PDI/donor polymer blends or PDI-based D–A “double-cable” polymers for 
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optical-limiting applications, partly due to the challenge of obtaining long-lived charge-

separated states (> 1 ns) and sufficient ground-state absorption or two-photon absorption 

(2PA) in the same spectral range as that in which the photo-generated ion pair absorbs . 

 

Figure 6.2. Two published PDI-based “double-cable” polycarbazole copolymers.20-21 

 

In this chapter, the syntheses of two new poly(carbazole-alt-2,7-fluorene)s (PCFs), 

bearing PDIs on the side chains as pendant acceptors are reported. The investigation of 

their photophysics, other physical properties, and optical-limiting behaviors are also 

described. As shown in Figure 6.3, the PDI moieties are covalently bound to the electron-

donating poly(2,7-carbazole-alt-2,7-fluorene) and poly(3,6-carbazole-alt-2,7-fluorene) 

polymeric backbones in the D–A type “double-cable” Polymer 1 and Polymer 2, 

respectively. The polymeric architecture is expected to enhance π-π stacking interaction22 

between the PDI moieties to provide sufficient ground-state absorption from aggregated 

PDIs ((PDI)n) at wavelengths at which the PDI radical anion absorbs strongly to permit 

optical limiting via one-photon-induced electron-transfer. In addition, the expected 2PA 
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bands of the PCF backbones might also contribute to the optical suppression, as 

illustrated in Figure 6.4. A phenylene linker was chosen to covalently bind the PDI 

moieties on the polymer side-chain according to previous observations of a long-lived 

charge-separated state in a PDI-phenylene-donor dyad, as described in Chapter 5. Both 

PDI-grafted poly(2,7-carbazole-alt-2,7-fluorene) and poly(3,6-carbazole-alt-2,7-fluorene) 

were synthesized to investigate effects of the donor polymer on the optical-limiting 

performance of these materials. As shown in Figure 6.3, model compounds were also 

synthesized for comparison purposes. 

 

    
Figure 6.3. The chemical structures of PDI grafted polymers and the model compounds. 
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Figure 6.4. The mechanism for optical-limiting response for PDI-grafted PCFs. 
 

At the end of this chapter, a poly(2,7-carbazole-alt-2,7-fluorene) substituted with 

a 4-nitrophenyl acceptor (Polymer-NO2, as shown in Figure 6.5) is also described: this 

polymer can perform optical limiting using the photo-generated radical-cation and / or 

triplet-state absorption in the visible to NIR range. Compared to the PDI grafted polymers, 

Polymer-NO2 has the advantage of high linear transparency in the visible because of the 

weak absorption of 4-nitrophenyl acceptors relative to that of PDI moieties between 400 

and 700 nm. 

 

N

C8H17 C8H17

NO2

N

C8H17
C8H17

C8H17

C8H17

n

m

m = n

 

Figure 6.5. The chemical structure of 4-nitrophenyl grafted polymer. 
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6.2 Syntheses of the PDI-grafted monomers and polymers  

Carbazole- and fluorene-containing conjugated polymers such as 

poly(carbazole)s,35-36 poly(2,7-fluorene)s,37 and poly(3,6-carbazole-alt-2,7-fluorene)s38  

has been extensively synthesized for organic electronics applications and methods 

developed in this work were utilized in our synthesis of the PDI-grafted PCFs. Two new 

monomers containing dibromo-carbazole and PDI moieties with phenylene linkers were 

designed, and the desired PDI-grafted polymers were prepared following general Suzuki 

polymerization procedures.37-38 Scheme 6.1 outlines the synthesis of the new monomers 

and respective copolymers. N-(1-Undecyl-dodecyl)-perylene-3,4-dicarboxyanhydride-

9,10-dicarboximide,39 4-(2,7-dibromo-9H-carbazol-9-yl)aniline,40 4-(3,6-dibromo-9H-

carbazol-9-yl)aniline,40 2,7-dibromo-9-dodecyl-9H-carbazole,36 3,6-dibromo-9-dodecyl-

9H-carbazole,41 and the respective starting materials were prepared as described in the 

literature. Monomer 1 was readily accessible through a condensation reaction between N-

(1-undecyl-dodecyl)-perylene-3,4-dicarboxyanhydride-9,10-dicarboximide and 4-(2,7-

dibromo-9H-carbazol-9-yl)aniline in molten imidazole at 180 oC catalyzed by anhydrous 

zinc acetate. Monomer 2 was prepared by the same method using 4-(3,6-dibromo-9H-

carbazol-9-yl)aniline instead of 4-(2,7-dibromo-9H-carbazol-9-yl)aniline as the starting 

material. The yields for these condensation reactions are in the range of 85 – 100%, and 

silica-gel column chromatography was used to purify the products. The incorporation of 

long swallow-tail chains in the PDI N-terminus provides the PDI-grafted monomers with 

excellent solubility for use in polymerizations. The chemical structures and the purity of 

these monomers were confirmed by 1H and 13C NMR spectra, mass spectroscopy, and 

elemental analysis. High-molecular-weight alternating poly(carbazole-alt-2,7-fluorene)s 
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with grafted PDI pendants were then obtained through palladium-catalyzed Suzuki 

coupling between 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) and the 

appropriate PDI-grafted dibromo-carbazole monomers using Pd(PPh3)4 (1 mol% to the 

monomer) as the source of catalyst.38,42 Polymer 1 and Polymer 2 were found to have 

number-average molecular weights (Mn) of 15.4 and 18.1 kD, with polydispersities 

(Mw/Mn) of 3.7 and 1.9, respectively, as determined by gel-permeation chromatography 

(GPC), using polystyrene as a standard in toluene. Both PDI-grafted polymers show good 

solubility in toluene, dichloromethane, chloroform, and, tetrahydrofuran (THF), which 

allows optical-limiting measurements to be performed in high-concentration solutions 

and gives the potential for fabricating high-quality films for solid-state measurements. 

The much lower yield in the synthesis of Polymer 2 might be attributable to the high 

content of low molecular weight materials formed during the Suzuki polycondensations, 

which were removed in the subsequent purification through Soxhlet extraction with 

methanol and acetone. It is worth noting that it was found that Ni(COD)2-catalyzed 

Yamamoto polycondensations of Monomers 1 and 2 only lead to oligomers, with only 2 

or 3 repeat units, rather than high-molecular-weight polymers (>10 kD), despite similar 

polymerization conditions being  reported by Müllen and coworkers to afford high-

molecular-weight poly(N-alkyl-2,7-carbazole)s.35 The model polymers were synthesized 

through similar procedures and were found to have higher molecular weights and larger 

polydispersities; values of Mn = 61.1 kD and Mw/Mn = 4.0 and Mn = 24.5 kD and Mw/Mn 

= 3.6 were estimated according to GPC (toluene) for Polymer 1 model and Polymer 2 

model respectively. These model polymers, especially Polymer 2 model, also show high 

solubility in common organic solvents like toluene, chlorobenzene, THF, and chloroform 
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(> 10 mg/mL) at ambient temperature. However, Polymer 1 model shows limited 

solubility in CH2Cl2 (< 1 mg/mL).  

6.3 Thermal properties of the materials 

 As revealed in Figure 6.6, all the polymers exhibited good thermal stability, with 

the decomposition temperatures (Td), defined as that at which 5% weight loss is observed, 

in excess of 385 oC under nitrogen, according to thermogravimetric analysis (TGA). The 

incorporation of the PDI moieties causes values of Td to decrease by ca. 20 °C relative to 

those for the respective model polymers; this may be due to either degradation of the PDI 

aromatic core or of the swallow-tail side chain. The thermal behavior of these polymers 

was also investigated by differential scanning calorimetry (DSC) analysis from –25 to 

300 oC under nitrogen atmosphere. This analysis revealed that the glass-transition 

temperatures (Tg) for Polymer 1, Polymer 2, Polymer 1 model, and, Polymer 2 model 

were 277, 210, 160, and 95 oC, respectively. Grafting the PDI moieties onto the polymer 

backbone leads to increases in Tg of over 110 °C relative to the model polymers; this may 

be attributable to strong π–π interactions between the side-chain PDI segments in the 

solid state. Polymer 1 model melts at around 280 oC under nitrogen, while no obvious 

melting transition was observed for the other three polymers. The good thermal stability 

and high glass-transition temperatures are attractive attributes from the point of view of 

using these polymers as active materials in organic optical and electronic devices. Table 

6.1 summarizes the polydispersities and thermal properties, as well as the isolated yields 

and molecular-weight data, for the polymers.  
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Scheme 6.1. The synthetic schemes for the PDI-grafted monomers and respective polymers 
and the model materials. 
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Figure 6.6. The TGA traces (left) and DSC traces (right) of the polymer in nitrogen 
atmosphere. 
 

 
Table 6.1. Polymerization results and thermal properties of the polymers 

Polymer   Yield    Mn Mw / Mn   Td (
oC)  Tg (

oC) Tm(oC) 

Polymer 1 84% 15.4 k       3.68      388   277  N.A. 

Polymer 2 26% 18.1 k      1.91      390    210  N.A. 

Polymer 1 model 80% 61.1 k      4.00      409   160  ~280 

Polymer 2 model 68% 24.5 k      3.55      412  95   N.A. 

 

6.4 Linear absorption and emission properties in solution 

 As shown in Figure 6.7, the solution UV-Vis absorption spectra of Polymer 1 and 

Polymer 2 in toluene are essentially superpositions of the characteristic absorption bands 

of the polymer models and of aggregated PDIs (ca. 10-5 mol/L based on PDI  

concentration).23,43 The absorption maximum of the polymer models show a slight red 

shift relative to the corresponding bands from the analogous PDI-grafted polymers, which 

may be ascribed to the possible torsion in the PDI-grafted polymer chains due to the PDI 

pendant, which reduces the effective conjugation length in the polymer backbone. In the 
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polymers with PDI pendants, the ratio of the intensity of the (0,0) vibronic sub-band of 

the PDI absorption to the (0,1) sub-band was found to be significantly smaller than the 

value of 1.66, typical for non-aggregated PDIs (1.23 for Polymer 2 and 1.13 for Polymer 

1), which indicates substantial aggregation of the PDI side-chains, even in dilute toluene 

solution (ca. 10-5 mol/L based on polymer repeat unit concentration).22-23,43 In 

concentrated toluene solution (~ 10-3 mol/L based on polymer repeat unit concentration), 

Polymer 1 and 2 exhibit increased absorption between 600 and 800 nm, as illustrated in 

Figure 6.8. The molar absorption coefficients for Polymer 1 and 2 are ca. 250 and 560 M-

1cm-1 at 700 nm and 650 nm, respectively in toluene, calculated based on the 

concentration of PDI repeat units, compared with < 20 M-1cm-1 for the PDI model in the 

same spectral region at similar concentration. This enhanced absorption in NIR range 

might originate from PDI aggregate absorption on the single polymer side-chain due to 

the higher local PDI concentration than that were seen in free PDIs. The weak absorption 

band seen for concentrated solutions of Polymer 2 at ~ 920 nm might be attributed to 

absorption from an intra- or intermolecular ground-state charge-transfer complex 

between the PCF backbone and PDI moieties. It is worth noting that the molar extinction 

coefficients in the NIR range for Polymer 1 and 2 are not significantly dependent on the 

PDI concentration; this might indicate saturated aggregation in the investigated 

concentration range for the PDI moieties on the polymer side-chains.  

 The emission spectra of the PDI grafted polymers and the model compounds in 

toluene are shown in Figure 6.9. Dual emission consisting of both PDI aggregate and 

donor polymer emission was observed with much lower fluorescent quantum yields 

(0.5% and 0.7% for Polymer 1 and Polymer 2, respectively, excited at 375 nm) being 
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observed for the PDI grafted polymers than for the PDI model (83%, excited at 490 nm), 

or the polymer models (65% and 56% for Polymer 1 and Polymer 2, respectively). The 

extensive fluorescence quenching suggests the possibility of efficient electron transfer 

occurring from the donor polymer backbones to PDI moieties following donor excitation. 

Furthermore, clear aggregated PDI type emission (peak at ca. 680 nm) was observed in 

the emission spectra for the PDI grafted polymers, consistent with the aggregated type 

PDI UV-Vis absorption spectra of these two PDI-grafted polymers. The excitation 

spectra (with a constant emission wavelength at 620 nm) of Polymer 1 and 2 are shown in 

Figure 6.10; the excitation spectra consist of the characteristic bands of the donor 

polymer backbone and PDI aggregates, which indicate that energy transfer from the 

donor polymer backbone to the PDI/aggregated-PDI (or PDI aggregate) side groups 

could be the reason for the dual emission observed following donor-polymer-based 

photo-excitation at 375 nm. 
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Figure 6.7. The linear absorption spectra of the polymers in diluted toluene solution.  
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Figure 6.8. A) The absorption spectra of the PDI-grafted polymers in highly concentrated 
toluene solutions. The band peaked at 920 nm for polymer 2 is tentatively attributed to 
ground-state intermolecular or intramolecular charge-transfer complexes; B) molar 
absorptivity of the PDI-grafted polymers in highly concentrated toluene solution at 
different wavelengths.  
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Figure 6.9. The emission spectra of the PDI grafted polymers and respective model 
compounds. Polymer 1 and 2 as well as the respective model polymer were excited at 375 
nm. The PDI model emission spectrum was collected using excitation at 490 nm. 
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Figure 6.10. The excitation spectra (blue) of Polymer 1 (black) and (b) Polymer 2 (red) in 
toluene with a fixed emission wavelength at 620 nm. 
 
 
 Polarons were generated in the model polymers in dichloromethane by addition of 

an excess of Polymer 1 and 2 models to a dilute solution of tris(4-bromophenyl)aminium 

hexachloroantimonate.44 The radical anion of the PDI model was prepared in THF via 

chemical reduction with cobaltocene.45 The resulting radical-ion absorption spectra are 

shown in Figure 6.11. The absorption maximum of the polaron from Polymer 1 model in 

the UV-Vis range is at around 560 nm; this shows a ca. 50 nm red shift compared with 

the polaron generated from the Polymer 2 model, presumably because of the cross-

conjugation in Polymer 2 model backbone. The polarons of Polymer 1 and 2 models also 

exhibit intense, but broad, absorption bands in the NIR region. These are quite similar in 

terms of energy and molar absorption extinction coefficient to intervalence charge-

transfer (IVCT) absorptions previously observed for bis(diarylamino) cations and to the 

absorptions of polycarbazole-based polarons.44,46-47 
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Figure 6.11. The polaron absorption of the model polymers, Polymer 1 model (red) and 
Polymer 2 model (black), in CH2Cl2 and the PDI model radical-anion absorption (blue) in 
THF. 
 
6.5 Redox properties  

 The electrochemical behavior of the polymers was investigated by cyclic 

voltammetry (CV). The measurement was performed under nitrogen, in a solution of 

tetrabutylammonium hexafluorophosphate (0.10 M) in anhydrous acetonitrile, with a 

scan rate of 50 mV/s using polymer films drop-cast onto a platinum working electrode 

from 2 mg/mL polymer solutions in chloroform. Here, oxidative and reductive scans 

were carried out separately for the polymer film samples. The results are summarized in 

Table 6.2, and the cyclic voltammograms of the polymers and PDI model are shown in 

Figure 6.12. The electrochemical oxidation and reduction onsets (Eox
onset and Ered

onset vs. 

ferrocenium/ferrocene (FeCp2
+/0)) were also used to estimate the IP and EA values 

according to IP =(Eox
onset + 4.8) eV, EA = –(Ered

onset + 4.8) eV based on assumption of a 
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solid state IP value of 4.8 eV for ferrocene.48 The estimated values of the IP in these 

polymers are found to be ca. 5.2 to 5.4 eV, which are similar to a literature value for 

poly(carbazole-alt-fluorene).38 The estimated values of the EA for Polymer 1 and 

Polymer 2 are both of ca. –3.8 eV, which are similar to that of the PDI model (for which 

a CV measurement was performed using a dichloromethane solution). The similarity of 

the IP and EA values estimated for the PDI grafted polymers to those for the model 

compounds also suggests weak ground-state electron-coupling between the PDI pendants 

and donor polymer backbones. The large EA offset (> 1.0 eV) and IP offset (> 0.7 eV) 

between the PDI model and respective polymer model reveal sufficient driving force for 

electron transfer in these PDI grafted polymers from either the donor polymer exciton or 

PDI exciton.49-50 
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Figure 6.12. The cyclic voltammograms of polymer films drop-cast from ~ 2 mg/mL CHCl3 
solution onto a Pt working electrode in acetonitrile with 0.1 M tetra-n-butylammonium 
hexafluorophosphate, except for PDI model, for which the CV was performed in solution. 
Potential was scanned at a rate of 50 mV/s.    
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Table 6.2. Summary of the optical and electrochemical behaviors of the polymers 
Polymer λ max

abs  

(nm) 
Eg

 (optical)  
(eV) 

Eox
onset  

(V) 
Ered

onset 
(V) 

EA 
(eV) 

IP 
(eV) 

Polymer 1 381, 491, 528       2.1      0.44 -1.04 -3.8       5.2 

Polymer 2 340, 491, 527      2.1      0.55     -1.06      -3.8       5.4 

Polymer 1  model  386      2.9     0.40      N.A.       -2.3a       5.2 

Polymer 2 model  349      3.1     0.54      N.A.       -2.8a       5.3 

PDI model 459,490, 527     2.2       N.A.       -1.01b      -3.8         6.0c 

IP =  (Eox
onset + 4.8) eV and EA= -(Ered

onset + 4.8) eV , Eox
onset and Ered

onset are respective to FeCp2
+/0. a : EA = 

Eg
 (optical) - IP; b: based on E1/2

0/- obtained from solution measurement in CH2Cl2; c: IP = - (EA - Eg
 

(optical)) 
 
6.6 Transient absorption of the polymers 

 The transient absorption spectra of Polymers 1 and 2 in toluene, generated by 

pumping the PDI moiety at 530 nm or the donor polymer backbone at 350 nm with 

femtosecond laser pulses, are shown in Figure 6.13. The transient absorption spectra of 

Polymer 1 after pumping the PDI pendants showed the growth of absorption bands with 

peaks at 580 and 710 nm, while only a transient absorption peaked at ca. 710 nm was 

observed for Polymer 2. The band at 710 nm for both polymers can be assigned to the 

PDI excited-state absorption which begins within a short period after the photo-excitation 

(< 5 ps) of the PDI pendants and/or the PDI radical anion absorption formed afterwards. 

The transient absorption band peaked at ca. 580 nm for Polymer 1 could be attributed to 

the polaron absorption from the oxidized poly(2,7-carbazole-alt-2,7-fluorene), which 

matches well with the cation absorption of the Polymer 1 model in the visible range. The 

fast rise (< 0.3 ps) of this peak following PDI photo-excitation indicates rapid electron-

transfer following the photo-excitation, which is consistent with the strong fluorescence 

quenching of these PDI-grafted polymers, as compared with that of the model 

compounds. A similar case was expected in Polymer 2, since strong fluorescence 

quenching and a long-lived transient absorption band at 710 nm were also observed. 
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However, no obvious polaron absorption at ca. 500 nm from the oxidized poly(3,6-

carbazole-alt-2,7-fluorene) backbone was observed, perhaps because the polaron 

absorption is obscured by the strong ground-state bleach of the PDI pendants in the 

transient absorption spectra.  
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Figure 6.13. The femtosecond transient absorption of Polymer 1 (top left) and Polymer 2 
(top right) in toluene excited at 530 nm. Transient absorption of Polymer 1 (bottom left) 
and Polymer 2 (bottom right) in toluene following excitation at 350 nm.  All samples were 
prepared at ~30 µM (in PDI units) in toluene in a 2 mm cuvette to yield an OD near 0.3 at 
the excitation wavelength (Transient absorption spectra were collected by Dr. Matthew M. 
Sartin in the Perry group). 
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Pumping primarily on the donor polymer backbone at 350 nm, with femtosecond 

laser pulses, yields similar transient absorption spectra as PDI pumping. However, the 

excited-state absorptions from both donor polymer backbones, which were further 

confirmed by the transient absorption spectra of the donor polymer models as shown in 

Figure 6.14, were recorded immediately after photo-excitation at the polymer backbones 

(0.3 ps). The rapid growth of the 580 nm and 710 nm absorption (< 1.5 ps) for Polymer 1 

indicates rapid electron transfer between the donor-polymer excitons and the PDI 

pendants, while fast energy transfer from the donor polymer backbone to the PDI 

pendants could possibly also take place. The transient absorption  spectra obtained from 

donor pumping on Polymer 2 is similar to that of Polymer 1, despite the observation of 

no donor polymer polaron absorption in the transient absorption spectra of Polymer 2, 

presumably due to the spectroscopic overlap between the polaron absorption, peaked at 

ca. 500 nm, and the PDI ground-state bleaching.  
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Figure 6.14. The femtosecond laser pulse transient absorption of Polymer 1 model (left) and 
Polymer 2 model (right) in toluene excited at 350 nm with OD of ca. 0.3. (Transient 
absorption spectra were collected by Dr. Matthew M. Sartin in the Perry group). 
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Figure 6.15. The nanosecond transient absorption decay of Polymer 1 model (left, probe at 
NIR) and Polymer 2 model (right, probe at 715 nm) in toluene excited at 355 nm with OD of 
ca. 0.2. (Transient absorption spectra were collected by Dr. Matthew M. Sartin in the Perry 
group). 
 
 

Hence, either donor pumping or acceptor pumping on Polymer 1 and 2 could 

similarly result in short-lived excited-states followed by fast electron transfer to yield 

relatively long-lived charge-separated states. Nanosecond laser pulse transient absorption 

spectroscopy was used to analyze the lifetime of the charge-separated states in the 

polymers. The charge-separated state of Polymer 1 exhibits a lifetime of 130 ns, while 

that for Polymer 2 is ca. 70 µs, as shown in Figure 6.15. However, the relatively weak 

signal of the ion absorption in this nanosecond transient absorption indicates relatively 

low yields of photo-induced charge-transfer states on the nanosecond time scale, 

especially for Polymer 2, for which no significant signal correlated to the polymer cation 

absorption was observed in the NIR. It is also worth noting that direct pumping of the 

PDI aggregates at 680 nm in highly concentrated polymer solution (4 mg/mL) also results 

in long-lived charge-separated states and a strong transient absorption band between 600 

– 800 nm, which indicates possible optical limiting application at these wavelengths 
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using these PDI grafted polymers between 600 – 800 nm since PDI aggregates on the 

polymer side-chain show fairly strong absorption in this range.   

The results of the transient absorption measurements in solution can be 

summarized in a Jablonski diagram (Figure 6.16). After photo-excitation of the donor 

polymer backbone (PCF), the excited state is largely quenched by energy and electron 

transfer from the PCF excited-states to PDI or (PDI)n leading to low fluorescence 

quantum yields. The new generated PDI or (PDI)n based excitons are quenched 

predominantly via electron-transfer by accepting an electron from PCF. If PDI or (PDI)n 

is photo-excited directly, these PDI-based excited-states could be quenched in the same 

way, i.e., by electron-transfer from PCF, forming PDI radical anion and donor polymer 

polaron (or by other radiative and nonradiative decay mechanisms). Furthermore, the 

relatively long-lasting transient-states (> 1 ns) and broad and fairly strong ESA (from ca. 

450 – 800 nm) for both the model polymers indicated their potential use for optical 

limiting in their whole 2PA band.   

 
 
Figure 6.16. Proposed energy level diagram showing the lowest excited singlet states of PFP 
and non-aggregated PDI, of the aggregates (PDI)n, and that of the charge-transfer state. 
The arrows show the processes that might occur upon photo-excitation of PCF or PDI. 
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6.7 Non-linear absorption and optical limiting 

 The optical limiting behavior of Polymers 1 and 2 upon photo-excitation with a 

680 nm laser pulse (6 ns pulse width) are shown in Figure 6.17, along with those of the 

blend of [polymer model]/[PDI model] (3.5 mmol/L : 3.5 mmol/L in toluene) solution in 

a 2 mm cuvette. Polymer 1 and 2 samples were prepared at high concentration (2.5 

mmol/L for Polymer 1 and 3.1 mmol/L for Polymer 2 in toluene, based on the repeat unit 

concentration) to ensure a linear transmittance of the sample at around 70%, so the linear 

absorption of the PDI aggregates could contribute to one-photon-induced optical limiting. 

Both-PDI grafted polymers yielded noticeable optical limiting starting at lower fluence as 

compared to the blend samples, even when the model blend systems have higher material 

concentration. The optical-limiting phenomena of the model compounds blends at high 

fluence could be attributed to the 2PA of the model polymers. This is further supported 

by the 2PA spectra of the two model polymers in toluene using two-photon excited 

fluorescence (2PEF) method.51-52 The 2PA spectra of both model polymers are shown in 

Figure 6.18, with 2PA cross sections (based on polymer repeating units) of 350 and 50 

GM for Polymer 1 and Polymer 2 models, respectively, at 680 nm. The much larger 2PA 

cross section for Polymer 1 model is presumably responsible for its stronger optical-

limiting response at 680 nm.  Additionally, the short-lived excited-state absorptions of the 

polymer models may contribute to optical limiting as there are considerable overlap 

between the 2PA bands and excited-state absorption bands. The optical-limiting behavior 

of the PDI-grafted polymers may be due to one-photon-induced charge separation of the 

aggregated PDI/ground-state charge-transfer complexes at low fluence, with additional 

contribution from the 2PA of the donor polymer backbone at high fluence. The figures-
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of-merit (FOM = To/TF, where To is the linear transmission, and TF is the high fluence 

transmission) for optical limiting in toluene are 5.8, 3.3, 2.7 and 1.8 for Polymer 1, 

Polymer 2, Polymer 1 model/PDI and Polymer 2 model/PDI, respectively, at 680 nm. 

The stronger and faster limiting response for the PDI grafted polymers relative to the 

perspective model polymer/PDI blends is due to the contribution from subsequent photo-

generated PDI-radical-ions absorption. The larger FOM for Polymer 1 over Polymer 2 is 

in agreement with the fact that Polymer 1 model shows much larger 2PA cross-section 

relative to that for Polymer 2 model at 680 nm, which leads to higher PDI-radical-ion 

populations via two-photon excitation at 680 nm, presumably due to greater importance 

of 2PA-induced electron transfer at higher fluence. 
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Figure 6.17. Optical limiting of 680 nm, 6 ns pulses focused in f/5 geometry onto samples of 
Polymer 1 and 2 in toluene, and the respective polymer model compounds mixed with PDI 
model in toluene, in a nitrogen-purged 2 mm cell (Optical limiting behavior was measured 
by Dr. Matthew M. Sartin in the Perry group). 
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Figure 6.18. The 2PA spectra of the Polymer models, Polymer 1 model (red) and Polymer 2 
model (black) in 100 µM solution in toluene (2PA spectra were collected by Dr. Nisan Siegel 
in the Perry group). 
 

6.8 D–A type PCF with 4-nitrophenyl acceptor for optical limiting 

  It is worth noting that the 2PA band of Polymer 1 model shows significant 

overlap with its radical-cation absorption band, suggesting its potential use for 2PA-

induced optical limiting in the range of 500 – 600 nm, if acceptor(s) with limited ground-

state absorption in this region, instead of PDI moieties, are grafted on the polymer side 

chain. Hence, a new polymer with 4-nitrophenyl pendants was synthesized followed 

general Suzuki polymerization procedures.38 Here, the 4-nitrophenyl group was 

incorporated into the first carbazole-based monomer as the pendant acceptor while a 

second carbazole-based monomer with long-branching alkyl chain was used in the 

polymerization to improve the polymer solubility, as shown in scheme 6.2. A high 

molecular weight (Mn = 45 kD, Mw/Mn = 1.9, estimated using GPC (THF))  poly(2,7-
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carbazole-alt-2,7-fluorene) with 4-nitrophenyl pendants (Polymer-NO2) was obtained 

through palladium-catalyzed Suzuki coupling polymerization38 with the presence of 1 

mol% Pd(PPh3)4. The 1H NMR spectrum and elemental analysis indicate that the actual 

molar ratio of each monomer (22 mol% for the 4-phenylnitro substituted carbazole 

monomer) in the polymer is in good agreement with that expected from corresponding 

feed ratio used in the polymerization. The good solubility of this polymer (> 20 mg/mL 

in toluene) make possible further characterization, including optical limiting in high 

concentration solution, and facilitates thin-film preparation via processes such as drop-

casting and spin-casting.  

 

 

Scheme 6.2. The synthetic scheme for a new polymer with 4-nitrophenyl pendants. 

 

The UV-Vis absorption of Polymer-NO2 is similar to that of Polymer 1 model in 

the UV-Vis range and no obvious absorption between 500 – 650 nm was observed in 

dilute toluene solution (< 0.1 mg/mL). Furthermore, no obvious PCF-type emission is 

observed following donor pumping at 370 nm in the new nitro-phenyl substituted D – A 
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type polymer, which suggests efficient electron transfer quenching of the PCF excited 

states following the excitation. Because of the analogous polymer backbones, similar 

2PA properties as well as electrochemical properties are expected for Polymer-NO2 and 

Polymer 1 model. Polymer-NO2 is also thermally quite stable with decomposition (5% 

weight loss, TGA under nitrogen) temperatures (Td) in excess of ca. 350 oC, which is 

around 50 oC lower than the model polymer. However, no obvious glass transition was 

observed using DSC (heating rate of 5 oC/min) within the temperature range from -30 to 

300 oC under nitrogen. 
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Figure 6.19. The linear absorption of Polymer-NO2 in dilute toluene solution.  

 

 Femtosecond-pulse transient absorption spectroscopy on Polymer-NO2 solution 

was performed to investigate the role of electron transfer in the quenching process after 
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the photo-excitation. The transient absorption spectra, generated by pumping the donor 

polymer backbone at 355 nm, are shown in Figure 6.20. The spectra show feature 

attributed to the donor polymer backbone excited-state absorption right after photo-

excitation (at 0.3 ps) and the subsequent growth of polymer radical-cation absorption 

bands peaked at 550 nm (rise within several picoseconds), suggesting rapid electron 

transfer occurs in the polymer excited state. During the decay of the polymer radical-

cation, the growth of an unexpected transient absorption peaked at ca. 770 nm was 

observed. This band was attributed to a triplet-state absorption since nanosecond-pulse 

transient absorption spectra indicate that the lifetime of this new transient state is over 

200 µs and that this species is sensitive to oxygen. This broad transient band could 

potentially expand the optical liming range of Polymer-NO2 over its whole 2PA band.  
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Figure 6.20. The femtosecond transient absorption spectra of Polymer-NO2 (left) and 
Nanosecond transient absorption decay at 770 nm of Polymer-NO2 (right) in toluene excited 
at 355 nm (Transient absorption spectra were collected by Dr. Matthew M. Sartin in the 
Perry group). 
 

 The optical limiting behaviors of Polymer 1 model and Polymer-NO2 (solution of 

~ 13 mg/mL in toluene) upon excitation with 680, 630, 580, and 532 nm lasers (6 ns 
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pulse width) are shown in Figure 6.21. Here, slightly better optical limiting response at 

680 nm (FOM = 4.4 and 5.9, respectively for Polymer 1 model and Polymer-NO2) and 

630 nm (FOM = 5.5 and 6.3, respectively for Polymer 1 model and Polymer-NO2) were 

obtained for Polymer-NO2. The similar performance of optical limiting for Polymer-

NO2 and Polymer 1 model may be due to a larger excited-state absorption cross-section 

for the Polymer 1 model system in the spectroscopic range, despite the fact that the 

transient species life time for Polymer-NO2 at 680 nm and 630 nm are several orders of 

magnitude longer than that for Polymer 1 model. At shorter wavelengths, e.g. ca. 580 nm, 

Polymer-NO2 give a much stronger optical limiting response in comparison to Polymers 

1 model and the FOM for Polymer-NO2 is found to be 8.2 while that for Polymers 1 

model is ~ 2.6. The much larger FOM at 580 nm for Polymer-NO2 is attributable to the 

further absorption from the photo-generated radical-cations. The nanosecond optical-

limiting response of both the polymers become weaker at still shorter wavelengths such 

as 532 nm (the FOMs for both polymers are around 2.3) probably due to the smaller 2PA 

cross-section as well as weaker subsequent ESA. As compared the model polymer, 

Polymer-NO2 shows lower linear transparency at all wavelengths examined at similar 

concentration probably due to possible ground-state charge transfer as the polymer 

concentration increases (~ 13 mg/mL in toluene for the samples for optical limiting 

measurement).  
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Figure 6.21. Optical limiting for 6 ns pulses focused in an f/5 geometry onto samples of 
Polymer-NO2 (red) and Polymer 1 model (black) of 13 mg/mL in toluene in a N2 purged, 2 
mm cell. (Optical limiting behavior was measured by Dr. Matthew M. Sartin in the Perry 
group). 

 

6.9 Conclusions 

 We have prepared two new D–A “double-cable” conjugated polymers with 

poly(carbazole-alt-2,7-fluorene)s as the electron-donating polymer backbone and 

electron-deficient PDI moieties incorporated into the side chains as pendant acceptors. 

Efficient photo-induced charge transfer in these copolymers was confirmed by the strong 

fluorescence quenching and the transient absorption spectra. Long-lived charge separated 

states with strong absorption between 600 – 800 nm were observed following the 
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excitation of either PDI or donor polymer. Furthermore, the PDI-grafted copolymers 

exhibited strong enhancement of the nonlinear optical absorption compared with blends 

of the model compounds at 680 nm. This is attributed to the combination of one-photon 

absorption from the aggregated PDI and 2PA contribution from the polymer backbone. 

Due the observation of significant overlap between the 2PA band and radical-cation 

absorption bands of Polymer 1 model, a new nitrophenyl substituted poly(carbazole-alt-

2,7-fluorene) was synthesized for optical liming in the polymer radical cation absorption 

range. When the nitro-phenyl group are incorporated to the poly(2,7-carbazole-alt-2,7-

fluorene)s, photo-induced charge transfer occurs to form long-lived polymer cations, with 

strong absorption at ca. 580 nm that results in better optical limiting responses than that 

of the model polymer itself at these wavelengths. Furthermore, because of the formation 

of a long-lived triplet-state at Polymer-NO2 from its charge-separated-state, broad ESA 

is obtained for Polymer-NO2 covering the whole UV-Vis range, which gives similar or 

slightly better optical limiting response for Polymer-NO2 solution in comparison to that 

for Polymer 1 model at other wavelengths investigated. 

6.10 Experimental section 

General: Most organic and inorganic chemicals were obtained from Aldrich and Alfa 

Aesar. Palladium-based catalysts were purchased from Strem Chemicals and used 

without further purification.  1H and 13C NMR spectra were collected on Bruker 400 or 

500 MHz spectrometers using tetramethylsilane (TMS; δ = 0 ppm) as an internal standard. 

Mass spectra were measured on an Applied Biosystems 4700 Proteomics Analyzer using 

MALDI mode. Elemental analyses were carried out by Atlantic Microlabs using a LECO 

932 CHNS elemental analyzer. Solution UV-Vis absorption spectra were recorded on a 
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UV3101PC (Shimadzu, Kyoto, Japan) absorbance spectrophotometer. The solution 

emission spectra and excitation spectra were taken using a Shimadzu FP-5301PC 

spectrofluorometer in toluene. For electrochemical measurements, the polymer films 

were drop-cast onto a platinum disk working electrode from a 2 mg/mL polymer solution 

in chloroform. A platinum wire served as the auxiliary electrode, and an Ag wire 

anodized with AgCl served as a pseudo-reference electrode. The experiments were 

performed deoxygenated 0.1 M solutions of tetra-n-butylammonium hexafluorophosphate 

in dry acetonitrile at a scan rate of 50 mV s-1, using a computer-controlled BAS 100B 

electrochemical analyzer. Potentials were referenced to the ferrocenium/ferrocene 

(FeCp2
+/0) couple by using ferrocene as an internal standard. Thermogravimetric analysis 

measurements were performed on an NETZSCH STA 449C analyzer under 40 mL/min 

N2 flow with a heating rate of 5K/min. Differential scanning calorimetry measurements 

were performed on a TA Instruments DSC Q200 analyzer under 50 mL/min N2 flow with 

heating rate of 5K/min. 

Generation of Radical Ions: The radical anion of the PDI model compound was 

generated in anhydrous THF solution by reduction with cobaltocene in a nitrogen 

atmosphere glove box. The radical cation of the polymer model compounds was 

generated in anhydrous dichloromethane after oxidation with tris(p-

bromophenyl)aminium hexachloroantimonate. The spectra of the radical ions were 

recorded a Varian Cary 5E UV-Vis-NIR spectrophotometer using 1 cm pathlength cells. 

Two-Photon Absorption Spectroscopy: Two-photon absorption (2PA) spectra were 

obtained using the reference-based two-photon-excited fluorescence (2PEF) method by 

Dr. Nisan Sigel in the Perry group.52-53 The excitation source was an optical parametric 
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oscillator (Quanta-Ray MOPO 730) pumped by 6 ns pulses from the third harmonic of a 

Q-switched Nd:YAG laser (Quanta-Ray PRO250).  The 2PEF method determines the 

2PA spectra of unknowns by measuring the fluorescence emitted by the unknowns under 

two-photon excitation conditions and comparing it to the fluorescence emitted by a 

known reference compound under the same conditions. The 2PEF measurements of the 

model compounds were made in toluene (Sigma-Aldrich spectroscopic grade) solution at 

chromophore concentrations of 80 – 110 µM. The data shown here comprise several 

collections of over 200 pulses at each wavelength. 1,4-bis(2-methylstyryl)benzene51,54 

(Sigma-Aldrich, 99%) in cyclohexane (Sigma-Aldrich, spectroscopic grade) and 

fluorescein52 (Acros, laser grade) in aqueous NaOH solution (pH 11) were used as 

references for 630 – 680 nm and 690 – 1040 nm, respectively. The 2PA cross-section 

values of 1,4-bis(2-methylstyryl)benzene reported by Kennedy54 were reduced in scale by 

a factor of 10, as described by Fisher.51 The uncertainties in the measured cross sections 

are approximately ± 15%. 

Femtosecond transient absorption measurements: The femtosecond transient 

absorption spectra were collected by Dr. Matthew M. Sartin in the Perry group. The 

excitation source for femtosecond transient absorption measurements was generated by 

an optical parametric amplifier (TOPAS, Newport) pumped by a Ti:Sapphire 

regenerative amplifier (Spitfire, Newport), operating at 1 kHz repetition rate.  The 800 

nm Spitfire output could be varied by the TOPAS over 465-2900 nm. Approximately 5% 

of the 800 nm Spitfire output was used to generate the white light continuum probe beam 

(420 – 950 nm) in a sapphire plate. Transient data were collected using a commercially 

available Helios spectrometer (Ultrafast Systems, Sarasota, FL). The time resolution for 
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this system was 7 fs, and the maximum time delay was 3.2 ns. At each temporal delay, 

the signal was averaged for 1 s. The pump beam was chopped at 500 Hz to alternate 

between signal and reference data. A correction factor for the chirp of the white light was 

generated using the ultrafast response of toluene.  All samples were prepared in 2 mm 

cuvettes and deaerated with N2. The pump wavelengths were 530 nm for the PDI-grafted 

polymers. The pump energy for all samples was ~ 3.3 µJ/pulse. 

Nanosecond transient absorption measurements: The nanosecond transient absorption 

spectra were collected by Dr. Matthew M. Sartin in the Perry group. The excitation 

source for transient absorbance experiments was the same as for the 2PEF experiments. 

Polymer 1 was prepared at 6 µM in toluene in a deaerated, 1 cm cuvette, with an OD = 

0.2.  The probe beam was generated using a 240W tungsten-halogen lamp (Oriel 69931 

Radiometric Power Supply, Newport Oriel, Irvine, CA). The pump and probe overlapped 

at an angle of ~5˚ in the sample. The white light was focused into an Acton SpectraPro 

2150i monochrometer (Princeton Instruments, Trenton, NJ) and the transmitted light was 

collected by a HCA-S-200M-IN photodiode (Femto, Berlin, Germany).  The transient 

signal was digitized using a Tektronix digital oscilloscope (Model 3034B, 300 MHz, 2.5 

Gigasamples/sec). The response time of the system was limited by the laser pulse width.   

Nanosecond optical limiting measurements: The nanosecond optical-limiting was 

measured by Dr. Matthew M. Sartin in the Perry group. The excitation source for optical 

limiting measurements was the same as for the ns TA measurements.  A mechanical 

shutter reduced the pulse repetition rate to 1 Hz to minimize damage to the sample. The 

samples were prepared as deaerated solutions in 2 mm cuvettes, with T ca. 0.7 at the 

excitation wavelength of 680 nm. The laser was focused into the center of the cuvette 
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using an f/5 geometry, and the transmitted light was detected by a New Focus 

photoreceiver (San Jose, California), sampled using a Stanford Research Systems boxcar 

average (Sunnyvale, CA), and recorded on a 300 MHz Tektronix oscilloscope 

(Richardson, Texas). A beam splitter placed before the sample redirected part of each 

pulse to a reference photoreceiver to determine fluctuations in the input energy of each 

pulse.  

Synthesis  

Monomer 1: N-(1-Undecyl-dodecyl)-perylene-3,4-dicarboxyanhydride-9,10-

dicarboximide39 (0.356 g, 0.50 mmol), 4-(2,7-dibromo-9H-carbazol-9-yl)aniline40 (0.413 

mg, 0.99 mmol), anhydrous zinc acetate (80 mg, 0.44 mmol), and imidazole (3.0 g) were 

heated under N2 at 180 °C overnight. The reaction mixture was then allowed to cool to ca. 

130 °C before being poured into a 4 N aqueous HCl solution (200 mL). The red 

precipitate was filtered and washed sequentially with 2 N aqueous HCl (3 × 10 mL), 

water (3 × 10 mL), and MeOH (3 × 10 mL). The solid was then dissolved in CHCl3 (5 

mL), and a minimum amount of silica gel was added to absorb the liquid. After the 

solvent was removed under reduced pressure, the dried silica gel was added to the top of 

a hexane-packed silica gel column, and the column was eluted with CHCl3 to give 

Monomer 1 as a red solid (0.53 g, 89 %). 1H NMR (500 MHz, CDCl3): d 8.78 (d, J = 8.0 

Hz,  2H), 8.72- 8.66 (m, 6H), 7.95 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.68 (d, 

J = 1.0 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.42 (dd, J = 8.5, 1.0 Hz, 2H),  5.18 (m, 1H), 

2.26 (m, 2H), 1.86 (m, 2H), 1.29-1.21 (m, 36H), 0.83 (t, J = 6.5 Hz, 6H). 13C {1H} NMR 

(125 MHz, CDCl3): d 165.0, 164.1, 163.9, 141.8, 137.2, 135.8, 134.9, 134.6, 134.5, 132.4, 

132.3, 131.6, 131.2, 130.2, 129.9, 128.9, 128.0, 127.0, 126.7, 124.6, 124.4, 123.9, 123.8, 
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123.6, 123.5, 123.3, 122.3, 122.0, 121.8, 120.6, 116.4, 113.6, 113.5, 55.3, 32.8, 32.3, 30.2, 

30.1 (3 peaks), 30.0, 29.8, 27.5, 23.2, 14.7 (The observation of three carbonyl carbon 

resonances is consistent with previous work on perylene bis(dicarboxyimide)s using 

similar, swallow-tailed N-substituents, in which this has been attributed to restricted 

rotation about the N—Calkyl bonds. Two aromatic carbon peaks and one alkyl carbon 

were not observed, presumably due to overlap). HRMS (MALDI) calcd for 

C65H65Br2N3O4 (M
+): 1109.33, found: 1109.35. Anal. Calcd for C65H65Br2N3O4: C, 70.20; 

H, 5.89; N, 3.78. Found: C, 69.99; H, 5.92; N, 3.81.  for C65H65Br2N3O4: C, 70.20; H, 

5.89; N, 3.78.  

Monomer 2: N-(1-Undecyl-dodecyl)-perylene-3,4-dicarboxyanhydride-9,10-

dicarboximide39 (0.356 g, 0.50 mmol), 4-(3,6-dibromo-9H-carbazol-9-yl)aniline40 (0.450 

mg, 1.08 mmol), anhydrous zinc acetate (80 mg, 0.44 mmol), and imidazole (3.5 g) were 

heated under N2 at 180 °C overnight. The reaction mixture was then allowed to cool to ca. 

130 °C and poured into 4 N aqueous HCl (160 mL). The red precipitate was filtered and 

washed sequentially with 2 N aqueous HCl (3 × 10 mL), water (3 × 10 mL), and MeOH 

(2 × 10 mL). The solid was then dissolved in CHCl3 (5 mL) and a minimum amount of 

silica gel was added to absorb the liquid. After the solvent was removed under reduced 

pressure, the dried silica gel was added to the top of a hexane-packed silica gel column, 

and the column was eluted with CHCl3 to give Monomer 2 as a red solid (0.58 g, 97 %). 

1H NMR (500 MHz, CDCl3): d 8.76 (d, J = 8.0 Hz,  2H), 8.71- 8.66 (m, 6H), 8.17 (d, J = 

2.0 Hz, 2H), 7.72 (d, J = 6.5 Hz, 2H), 7.61 (d, J = 6.5 Hz, 2H), 7.53 (dd, J1 = 9.0 Hz, J2 

= 2.0 Hz, 2H), 7.42 (dd, J = 9.0 Hz, 2H), 5.20 (m, 1H), 2.27 (m, 2H), 1.86 (m, 2H), 1.29-

1.21 (m, 36H), 0.84 (t, J = 7.0 Hz, 6H). 13C {1H} NMR (125 MHz, CDCl3): d 164.7, 
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163.7, 163.6, 139.8, 137.2, 135.3, 135.0, 134.1, 134.0, 131.8, 131.2, 129.9, 129.7, 129.6, 

127.5, 126.6, 126.3, 124.6, 124.4, 123.8, 123.7, 1231.5, 123.4, 123.1, 113.6, 112.1, 32.7, 

32.4, 30.1(3 close peaks), 29.8, 27.5, 23.2, 14.4 (The observation of three carbonyl 

carbon resonances and one more aromatic carbon peaks is consistent with previous work 

on perylene bis(dicarboxyimide)s using similar swallow-tailed N-substituents and has 

been attributed to restricted rotation about the N—Calkyl bonds. Three alkyl carbons were 

not observed, presumably due to overlap). HRMS (MALDI) calcd for C65H65Br2N3O4 

(M+): 1109.33, found: 1110.36 (M + 1). Anal. Calcd for C65H65Br2N3O4: C, 70.20; H, 

5.89; N, 3.78. Found: C, 70.30; H, 6.03; N, 3.76.  

Polymer 1: 2,2'-(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) (0.2336 g, 

0.4183 mmol), Monomer 1 (0.4652 g, 0.4182 mmol), Aliquat 336 (40 mg), and 

Pd(PPh3)4 (4.8 mg, 0.0040 mmol) were charged to a 25 mL two-neck round-bottomed 

flask with a condenser. The system was then evacuated and refilled with N2 4 times. 

Toluene (5.0 mL) and 2 N aqueous K2CO3 (3.0 mL) were added before the mixture was 

heated to 90 oC and kept at that temperature for 3 d. Then, 2,2'-(9,9-dioctyl-9H-fluorene-

2,7-diyl)bis(1,3,2-dioxaborinane) (100 mg, 0.17 mmol) in  toluene (1.0 mL) was added, 

and the mixture was stirred for another 12 h. Iodobenzene (0.3 mL) was then added to 

end cap the polymer, and the mixture was kept stirring for another 12 h. After the mixture 

was cooled to room temperature, it was added dropwise to 125 mL MeOH. The resultant 

solid was filtered and washed with water and MeOH before drying under vacuum. The 

solid was washed sequentially with hot MeOH and hot acetone using a Soxhlet apparatus. 

The residue was then extracted with CHCl3 in a Soxhlet apparatus. Most of the solvent 

was then removed, and the residue was passed through a short silica plug, eluting with 
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CHCl3/Et3N (100 : 1). The solvent was then removed, and the residue was dissolved in 5 

mL CHCl3. and added dropwise to 100 mL MeOH. The resulting solid was filtered and 

washed with water and MeOH before drying under vacuum. The precipitation was 

repeated, and the resulting solid was then filtered and dried under vacuum to give 

Polymer 1 as a red solid (0.45 g, 83%). GPC (Toluene): Mn = 15.4 kD, Mw/Mn =3.68. 1H 

NMR (500 MHz, CDCl3): d  9.0- 7.0 (m,b, 24nH), 5.18 (sb, 1nH), 2.5-0.1 (m, 80nH). 

Anal. Calcd for polymer (C94H105N3O4)n: C, 84.07; H, 8.03; N, 3.13;  Found : C, 83.38; H, 

7.80; N, 3.09.  

Polymer 2 : 2,2'-(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) (0.2337 g, 

0.4185 mmol), Monomer 2 (0.4653 g, 0.4185 mmol), Aliquat 336 (40 mg), and 

Pd(PPh3)4 (4.8 mg, 0.0040 mmol) were charged to a 25 mL two-neck round-bottomed 

flask with a condenser. The system was then evacuated and refilled with nitrogen 4 times. 

Toluene (5.0 mL) and 2 N aqueous K2CO3 (3.0 mL) were added before the mixture was 

heated to 90 oC and kept at that temperature for 3 d. Then 2,2'-(9,9-dioctyl-9H-fluorene-

2,7-diyl)bis(1,3,2-dioxaborinane) (100 mg, 0.17 mmol) in toluene (1.0 mL) was added 

and the mixture was stirred for another 12 h. Iodobenzene (0.5 mL) was then added to 

end cap the polymer and the mixture was kept stirring for another 12 h. After the mixture 

was cooled to room temperature, it was added dropwise to 125 mL MeOH. The resulting 

solid was filtered and washed with water and MeOH before drying under vacuum. The 

solid was washed sequentially with hot MeOH and hot acetone hot acetone using a 

Soxhlet apparatus. The residue was then extracted with CHCl3 in a Soxhlet apparatus. 

Most of the solvent was then removed, and the residual was run through a short silica 

plug, eluting with CHCl3/Et3N (100 : 1). The solvent was then removed, and the residue 
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was dissolved in CHCl3 (5mL) and added dropwise to 100 mL MeOH. The resulting solid 

was filtered and washed with water and MeOH before drying under vacuum. The 

precipitation was repeated, and the resulting solid was then filtered and dried under 

vacuum to give Polymer 2 as a red solid (0.14 g, 25%) GPC (Toluene): Mn = 18.3 kD, 

Mw/Mn =1.91. 1H NMR (500 MHz, CDCl3): d  9.0-7.5 (m,b, 24nH), 5.18 (sb, 1nH), 2.3 - 

1.0 ( m, 68nH), 1.0 - 0.1 (m, 12nH). Anal. Calcd for polymer (C94H105N3O4)n: C, 84.07; H, 

8.03; N, 3.13;  Found : C, 84.09; H, 7.98; N, 2.90. 

2,7-Dibromo-9-dodecyl-9H-carbazole:36  A mixture of 2,7-dibromo-9H-carbazole40 (7.8 

g g, 24 mmol), 1-bromododecane (12.5 g, 50 mmol), and NaOH (2.0 g, 50 mmol) in 

DMF (anhydrous, 50 mL) was stirred overnight under N2. After the reaction, the mixture 

was poured into water (200 mL). Ethyl acetate (2 × 100 mL) was used to extract the 

product. The ethyl acetate solution was washed with water (2 × 100 mL) and saturated 

aqueous NaCl (200 mL), dried with MgSO4, and evaporated to dryness in vacuo. The 

residue was recrystallized in 100 mL ethanol to give 2,7-dibromo-9-dodecyl-9H-

carbazole as colorless needle crystals (9.9 g, 84%). 1H NMR (400 MHz, CDCl3): d 7.83 

(d, J = 7.6 Hz, 2H), 7.49 (d, J = 2.0 Hz, 2H), 7.31 (dd, , J1 = 7.6 Hz, J1 = 2.0 Hz, 2H), 

4.13 (t, J = 7.2 Hz, 2H), 1.81 (quintet, J = 7.2 Hz, 2H), 1.18-1.40 (m, 18H), 0.88 (t, , J = 

7.2 Hz, 3H). The 1H NMR spectrum of this compound is consistent with that reported in 

the literature. 

3,6-Dibromo-9-dodecyl-9H-carbazole:41  A mixture of 3,6-dibromo-9H-carbazole (7.8 

g, 24 mmol), 1-bromododecane (12.5 g, 50 mmol), and NaOH (2.0 g, 50 mmol) in DMF 

(anhydrous, 50 mL) was stirred overnight under N2. After the reaction, the mixture was 

poured into water (200 mL). Ethyl acetate (2 × 100 mL) was used to extract the product. 
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The ethyl acetate solution was washed with water (2 × 100mL) and saturated aqueous 

NaCl (200 mL), dried with MgSO4, and evaporated to dryness in vacuo. The residue was 

recrystallized from ethanol (100 mL) to give 3,6-dibromo-9-dodecyl-9H-carbazole as 

colorless needle crystals (10.1 g, 85%). 1H NMR (400 MHz, CDCl3): d 8.08 (d, J = 2.0 

Hz, 2H), 7.52 (d, J = 2.0 Hz, 2H), 7.31 (d , J = 8.8 Hz, 2H), 4.18 (t, J = 7.2 Hz, 2H), 1.80 

(quintet, J = 7.2 Hz, 2H), 1.18-1.44 (m, 18H), 0.86 (t, , J = 7.2 Hz, 3H). The 1H NMR 

spectrum of this compound is consistent with that reported in the literature. 

Polymer 1  model: 2,2'-(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) 

(0.4648 g, 0.8324 mmol), 2,7-dibromo-9-dodecyl-9H-carbazole (0.4104 g, 0.8324 mmol), 

Aliquat 336 (40 mg), and Pd(PPh3)4 (9.5 mg, 0.0080 mmol) were charged to a 25 mL, 

two-neck, round-bottomed flask with a condenser. The system was then evacuated and 

refilled with N2 4 times. Toluene (8.0 mL) and 2 N aqueous K2CO3 (4.0 mL) were added 

before the mixture was heated to 90 oC and kept for 3 d. Then 2,2'-(9,9-dioctyl-9H-

fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) (100 mg, 0.17 mmol) in  toluene (1.0 mL) was 

added, and the mixture was kept stirring for another 12 h. Iodobenzene (0.3 mL) was then 

added to end cap the polymer, and the reaction was kept stirring for another 6 h. After the 

mixture was cooled to room temperature, it was added dropwise to 125 mL MeOH. The 

formed solid was filtered and washed with water and MeOH before drying under vacuum. 

The solid was washed sequentially with hot MeOH and hot acetone using a Soxhlet 

apparatus. The residue was then extracted with CHCl3 using a Soxhlet apparatus. Most of 

the solvent was then removed, and the residual was run through a short silica plug, 

eluting with CHCl3 and then with THF. The solvent was then removed under reduced 

pressure; the residue was then dissolved in 20 mL CHCl3, and the solution was added 
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dropwise to 200 mL MeOH. The resulting solid was filtered and washed with water and 

MeOH before drying under vacuum. Polymer 1 model was then obtained as a pale yellow 

solid (0.41 g, 80%).  GPC (Toluene):  Mn = 61.1 kD, Mw/Mn = 4.00. 1H NMR (500 MHz, 

CDCl3) d  8.32 (sb, 2nH), 8.0-7.6 (mb, 10nH) , 4.50 (sb, 2nH), 2.18 (sb, 4nH), 1.90 (sb, 

2H), 1.6 -1.0 (mb, 42 nH), 0.9 -0.3 (mb, 9nH). Anal. Calcd for polymer (C53H71N)n: C, 

88.15; H, 9.91; N, 1.94; Found : C, 88.00; H, 10.02; N, 1.87. 

Polymer 2 model: 2,2'-(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) 

(0.4650 g, 0.8327 mmol), 2,7-dibromo-9-dodecyl-9H-carbazole (0.4106 g, 0.8324 mmol), 

Aliquat 336 (40 mg), and Pd(PPh3)4 (9.5 mg, 0.0080 mmol) were charged to a 25 mL 

two-neck round-bottomed flask with condenser. The system was then evacuated and 

refilled with N2 4 times. Toluene (8.0 mL) and 2 N K2CO3 aqueous solution (4.0 mL) 

were added before the mixture was heated to 90 oC and kept at this temperature for 3 d. 

Then, 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) (100 mg, 0.17 

mmol) in  toluene (1.0 mL) was added, and the mixture was kept stirring for another 12 h. 

Iodobenzene (0.3 mL) was then added to end cap the polymer, and the mixture was kept 

stirring for another 12 h. After the mixture was cooled to room temperature, it was added 

dropwise to 125 mL MeOH. The formed solid was filtered and washed with water and 

MeOH before drying under vacuum. The solid was washed sequentially with hot MeOH 

and hot acetone using a Soxhlet apparatus. The residue was then extracted with CHCl3 in 

a Soxhlet apparatus. Most of the solvent was then removed, and the residue was run 

through a short silica plug, eluting with CHCl3 and then with THF. The solvent was 

removed, and the residue was dissolved in 10 mL CHCl3 before precipitating in 125 mL 

MeOH. The resulting solid was filtered and washed with water and MeOH before drying 



297 

 

under vacuum. The precipitation was repeated, and the resulting solid was then filtered 

and dried to give Polymer 2 model as a while solid (0.34 g, 68%). GPC (Toluene): Mn = 

24.6 kD, Mw/Mn = 3.55. 1H NMR (500 MHz, CDCl3): d  8.53 (s, 2nH), 7.8-7.6 (mb, 8nH), 

7.56 (sb, 2nH) 4.39 (sb, 2nH), 2.17 (sb, 4nH), 1.94 (sb, 2nH), 1.58 (sb, 2nH) 1.4 -1.0 (mb, 

40 nH), 0.9 -0.2 (mb, 9nH). Anal. Calcd for polymer (C53H71N)n: C, 88.15; H, 9.91; N, 

1.94; Found : C, 87.94; H, 9.99; N, 1.90. 

2,7-Dibromo-9-(4-nitrophenyl)-9H-carbazole:40 A mixture of 2,7-dibromocabazole40 

(5.00 g, 15.3 mmol),  K2CO3 (10.56 g, 76.52 mmol) and DMF (50 mL) was stirred under 

nitrogen for 20 min before the addition of 4-fluoronitrobenzene (9.9 g, 70 mmol).  The 

reaction mixture was stirred overnight at room temperature and then poured into water 

(500 mL). The yellow solid was collected by filtration. The crude material was 

recrystallized from benzene to afford the product as a light yellow solid (5.9 g, 86%). 1H 

NMR (400 MHz, CDCl3): d 8.56 (d, J = 8.9 Hz, 2H), 7.99 (d, J = 8.3 Hz, 2H), 7.77 (d, J 

=9.0 Hz, 2H), 7.60 (d, J = 1.5 Hz, 2H), 7.50 (dd, J1 = 8.3 Hz, J2 =1.6 Hz, 2H). The 1H 

NMR spectrum of this compound is consistent with that reported in the literature.40 

2,7-dibromo-9-(heptadecan-9-yl)-9H-carbazole:32 To the mixture of powdered 

potassium hydroxide (5.71 g, 102 mmol) and 2,7-dibromo-9H-carbazole (6.67 g, 20.4 

mmol) in a three-neck round-bottomed flask, a solution of heptadecan-9-yl-4-

methylbenzenesulfonate (10.9 g, 26.6 mmol) in dimethyl sulfoxide (32 mL) was added at 

room temperature. The reaction was stirred overnight at room temperature under nitrogen. 

It was then separated with water and hexane using a separatory funnel. The product in the 

hexane layer was washed twice with water and dried over Na2SO4. The solvent was then 

removed under reduced pressure and purified by silica gel column chromatography, 
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eluting with hexanes. 2,7-Dibromo-9-(heptadecan-9-yl)-9H-carbazole was then obtained 

as a white solid (6.2 g, 93%). 1H NMR (CDCl3, 300 MHz): d 7.91 (br, 2H), 7.65 (br, 1H), 

7.55 (br, 1H), 7.30 (d, J = 5.3 Hz, 2H), 4.40 (m, 1H), 2.19 (m, 2H), 1.90 (m, 2H), 1.17 (m, 

22H), 0.95 (m, 2H), 0.87 (t, J = 6.0 Hz, 6H) The 1H NMR spectrum of this compound is 

consistent with that reported in the literature.32 

Polymer-NO2: 2,2'-(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) (0.4648 g, 

0.8324 mmol), 2,7-dibromo-9-(heptadecan-9-yl)-9H-carbazole (0.2344 g, 0.4161 mmol), 

2,7-dibromo-9-(4-nitrophenyl)-9H-carbazole (0.1860 g, 0.4166 mmol), Aliquat 336 (40 

mg), and Pd(PPh3)4 (9.6 mg, 0.0081 mmol) were charged to a 25 mL two-neck round-

bottomed flask with a condenser. The system was then evacuated and refilled with 

nitrogen 4 times. Toluene (15.0 mL) and 2 N aqueous K2CO3 (10.0 mL) were added 

before the mixture was heated to 90 oC and kept at that temperature for 2 d. Then 2,2'-

(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) (100 mg, 0.17 mmol) in  

toluene (1.0 mL) was added, and the mixture was kept stirring for another 2 h. 

Iodobenzene (0.3 mL) was then added to end cap the polymer, and the reaction was kept 

stirring for another 3 h. After the mixture was cooled to room temperature, it was added 

dropwise to 125 mL MeOH. The formed solid was filtered and washed with water and 

MeOH before drying under vacuum. The solid was washed sequentially with hot MeOH 

and hot acetone using a Soxhlet apparatus. The residue was then extracted with CHCl3 

with a Soxhlet apparatus. Solvent was then removed under reduced pressure; the residue 

was dissolved in 20 mL CHCl3, and added dropwise to 200 mL MeOH. The resulting 

solid was filtered and washed with water and MeOH before drying under vacuum. 

Polymer-NO2 was then obtained as a pale yellow solid (0.37 g, 54%).  GPC (THF): Mn = 
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45 kD, Mw/Mn = 1.9. 1H NMR (CDCl3, 500 MHz): d 8.57 (sb, 2nH), 8.2 – 7.5 (mb, 26nH), 

4.72 (sb, nH), 2.4 – 2.0 (mb, 12nH), 1.90 (sb, 72nH), 0.8 (mb, 18 nH). Anal. Calcd for 

polymer (C105H131N3O2)n: C, 85.96; H, 9.00; N, 2.86; Found : C, 85.94; H, 9.02; N, 2.84. 
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CHAPTER 7 

CONCLUSIONS AND OUTLOOK 

 

7.1 Conclusions and outlook 

 This dissertation described the investigation of the synthesis and characterization 

of new perylene diimide (PDI)-based photonic and electronic materials. Chapter 1 

provided a general introduction to PDI-based materials and their applications in organic 

electronics. In Chapter 2, the main goal was to develop solution-processable PDIs for 

organic electronic devices, particularly for organic field-effect transistors (OFETs) and 

organic photovoltaics (OPVs). Chapter 3 described the use of diblock copolymers with 

oligothiophene donors and PDI pendants for OPV applications. Chapter 4 was concerned 

with PDI-based acceptors in which EA and miscibility with P3HT are varied through the 

substituents to influence the yields of charge photo-generation in organic donor/acceptor 

blends. Chapter 5 and 6 discussed photo-induced process in new D–A type PDIs and their 

application to optical limiting using photo-generated ion-pairs.  

 The first scientific part of this thesis, including Chapters 2 and 3, was concerned 

with developing PDI-based polymers as alternative acceptors for fullerene derivatives in 

organic solar cells. In Chapter 2, a series of PDI-grafted homopolynorbornenes had been 

synthesized, characterized, and investigated as solution-processable electron-transport 

materials in OFETs and acceptors in solar cells. ROMP was found to be an effective 

method for synthesizing the PDI-grafted polymers with high molecular-weight and 

sufficient solubility for solution-process devices. For the PDI-grafted homopolymers, 
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UV-Vis absorption and X-ray evidence suggested that the PDI pendants on the side-chain 

of C11PDI HP and C7PDI HP tended to π-π stack with nearby PDI moieties. Organic 

solar cells using P3HT/C11PDI HP blend showed PCEs of up to 0.38 ± 0.01% without 

optimization. These are among the best reported PCEs for PDI/P3HT blends. The poorer 

photovoltaic performance based on blends of P3HT/C7PDI HP, which had shorter N-

terminal side-chain compared to C11PDI HP, might be attributed to poor miscibility 

with P3HT. This was further confirmed by Kelvin probe force microscopy (KPFM), in 

which large domains (larger than 1 µm) corresponding to PDI aggregates were observed. 

The π-π stacking of PDI moieties on polymer side-chains could be largely suppressed by 

incorporation of functional groups at the bay position of N-PDI HP, which led to much 

poorer OPV performance, despite the fact that N-PDI HP showed a broader and more 

red-shifted absorption spectrum, with an EA similar to that of normal PDI materials 

Future research for such PDI-based polymers could include studies of:  

1) The side-chain effect in improving the miscibility of PDI-based polymers with 

donor polymers in physical blends using various alkyls or other types of 

substituents, like oligothiophenes, on the imide positions. The increased 

miscibility of these PDI-based materials may provide opportunities for improving 

thin-film nano-morphology for better OPVs. 

2) Improving the light-harvesting ability of the PDI/donor blends. Another reason 

for the poor PCEs and short-circuit current for PDI-based devices is relatively 

poor light-harvesting. In general, spin-cast films of PDI/donor (1:1 weight ratio) 

based solar cells show absorbance lower than 0.4 at the absorption maximum, 
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while that for PCBM/P3HT prepared in similar conditions could be over 1.0. 

Different solvent systems, together with various additives, should be tried for 

optimization.  

3) PDI-based homopolymers with bay-substituents of limited steric hindrance could 

be of interest for organic electronic applications. The PDI electronic properties 

could be modified for a specific purpose, while the π-π interaction between 

neighboring PDI moieties can still facilitate charge transport.  

4)  Using these polymers for other possible applications. For example, the blend of 

PDI HP/MEH PPV potentially could be used for 2PA-induced optical limiting 

between 700 – 900 nm using the 2PA of MEH-PPV, the radical anion absorption 

of PDI, and the polaron absorption of MEH-PPV in this range.  

  Chapter 3 extended the study of the PDI-based polymers by incorporating 

oligothiophenes (OTs) and the C11PDI as pendants into a diblock copolynorbornene 

framework for OPVs. These PDI-OT copolymers exhibit broad absorption spectra from 

300 to 600 nm, with both characteristic OT and PDI bands. Moreover, strong PL 

quenching (> 95 %) of the copolymer films compared to films of pure C11PDI HP or 

5T/6T HP suggests that efficient electron transfer occurs following photoexcitation. 

Among the copolymers, PDI-5T CPA showed much higher PCEs and JSC (PCE = 0.15%, 

and JSC = 0.42 mA/cm2) than the other two copolymers and respective homopolymer 

blends, which is consistent with the greater yield of charge photo-generation determined 

from the transient absorption decays. Furthermore, the lower yield of charge photo-

generation (5 to 10 times lower than typical P3HT/PDI blend) might be a key reason for 
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the poor device performance. These observations suggest that thin-films from PDI-5T 

CPA might exhibit more favourable micro-phase-segregation, although no obvious 

surface morphology differences were observed in the TEM images.   

Future research for such PDI-OT-based diblock polymers could include studies of:  

1) The bulk-morphology of these thin-films, such as the TEM images of film-cross-

sections, which might be valuable for providing better understanding of the 

relationship between the morphology and device performance.  

2) The use of such diblock copolymers as compatibilizers for donor/acceptor blends 

in solar cells may be worth trying, as the presence of these OT/PDI BCP might 

help to direct and stabilize the thin-film morphology in order to achieve phase-

segregation with an appropriate length scale.   

3) New diblock copolymers with PDI and two-photon absorption (2PA) donor 

pendants are of interest for optical limiting application if the donors show 2PA 

band overlap with PDI radical anion absorption between 700 – 1000 nm. The 

aggregation of PDIs on the polymer side-chains, in principle, could stabilize the 

PDI radical anion after the 2PA-induced electron transfer, resulting in a low 

charge-recombination rate. 1-2 

  It should also be noted that the solar cell performance based on the PDI-grafted 

polynorbornenes in Chapters 2 and 3 are relatively low, like most solar cells using PDI 

acceptors. One of the major reasons for the poor performance could be the challenge in 

controlling the molecular alignment of the PDI-based materials, which leads to much 
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lower electron mobility in films compared to devices with fullerene-based acceptors. This 

is an important issue to be addressed before any big breakthrough PDI-based solution-

processed solar cells can be constructed. “3D-PDI” type materials, as shown in Figure 7.1, 

could a candidate for taking advantage of the three-dimensional charge transport 

observed in fullerene-type acceptors. Such “3D-PDI” materials might show fewer 

molecular alignment issues as normal PDIs do because of the possible isotropy-charge-

transport abilities of such 3-D materials.  

 

Figure 7.1. Some possible “3D-PDI” type materials. 

 Chapter 4 reported on studies of the efficiency of charge photo-generation in the 

blend of P3HT and a series PDI-based acceptors PDIX (X = A to F) with various electron 

affinities. It was further confirmed that DGCS (the free energy difference between the first 

singlet excited state and final charge-separated states) is a key factor in determining the 

efficiency of charge photo-generation at organic D/A blend films. Typically, in our 

research, blends with larger DGCS gave higher yields of charge photo-generation, and a 

clear correlation between DGCS and the yield of charge photo-generation was observed for 

P3HT:PDIX (X = A to E, with EA of  ca. 140 meV), where the photo-generated charge 

yield was observed to increase by ca. 40% for every 0.1 eV increase in DGCS. Further 

increases in charge photo-generation yields were observed when using blends of 
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P3HT:PDIX (X = G to I), where this series of PDI materials with oligo-3-hexyl-thiophene 

moieties at the imide position have lower EA. An increase in PCEs of a factor of ca. 20 

was observed for solar cells using P3HT:PDIG over P3HT:PDID, probably due to better 

mixing between P3HT and PDIG, because of the structural similarities between the 

incorporated 3-hexyl-thiophenes. However, no significant improvement in PCEs was 

obtained for solar cells with PDIH and PDII, which have more oligo-3-hexylthiophenes 

moieties, as compared to those using PDID. Although large improvements in solar cell 

PCEs have been obtained, the overall performance for the devices in this chapter still fall 

far below the state-of-the-art values for OPVs in general. The poor device performances, 

despite the promising photo-physics, are similar to those PDI materials described in 

earlier chapters, presumably for similar reasons. Although an almost linear dependence of 

the yield of charge photo-generation on DGCS was observed for P3HT:PDIX (X = A to E) 

blends, such observation is limited to a small range of PDI EA (ca. 140 meV).  

Future research could include studies of:  

1) The photo-physics of blends of P3HT:PDI using other PDIs such as PDI-CN2 and 

PDI-amine2, as shown in Figure 7.2,3-5 with lower and higher EA respectively, to 

extend the correlation range.  

2) Single-carrier time-of-flight (TOF) measurements based on analysis of such blend 

films could provide the relationship between the yield of charge photo-generation 

and respective charge carriers mobility in the blends. This study might give us a 

direct reason for the poor performance of solar cells with such promising 

photophysics.  
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3) The photophysics of the blend films of the P3HT and PDI-grafted polymers are 

worth studying, and this could give insight into the relationship between the 

morphology-photophysics and the device performance, since the electronic 

properties of C11PDI HP and C7PDI HP are similar.  

 

Figure 7.2, Other PDI-based materials whose blend photophysics should be investigated. 

 The last part of this thesis, including Chapters 5 and 6, explored the photo-

induced electron transfer of PDI-donor systems and the use of the photo-generated PDI 

radical-anion absorption in realizing optical power limiting in the NIR (600 – 800 nm). In 

Chapter 5, an effective approach for 2PA-induced optical limiting through which donors 

and acceptors can be independently chosen to maximize optical suppression for a 

particular wavelength has been demonstrated. In this chapter, PDI-based dyads with a D-

π-D type two-photon dye were synthesized and characterized. Long-lived charge-

separated states in the dyads were demonstrated according to their transient absorption 

spectra via photo-excitation of the donor moieties. Furthermore, the D–PDI linkers can 

strongly affect the charge-transfer and recombination rates. Dyad 1, with its rigid, 
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phenylene linker, exhibits a lower charge separation and recombination rate than Dyad 2, 

which has a hexylene linker. In both cases, significant overlap of the corresponding PDI 

radical-anion absorption with the 2PA band of the attached D-π-D donor leads to strong 

enhancement of optical suppression of the dyads with respect to the 2PA chromophore.  

 In Chapter 6,  D–A “double-cable” conjugated polymers with poly(carbazole-alt-

2,7-fluorene)s as the electron-donating polymer backbones and electron-deficient PDI 

moieties incorporated into the side chains as pendant acceptors were investigated as 

optical limiters. Efficient photo-induced charge-transfer in these polymers was confirmed 

by transient absorption spectra, and long-lived charge-separated states with strong PDI 

anion absorption between 600 – 800 nm were observed via either donor or acceptor 

pumping. Because the PDI radical anion can be generated via PDI aggregate excitation 

and/or 2PA from the polymer backbone, these copolymers show strong enhancement of 

the nonlinear optical absorption compared with blends of the model materials at 680 nm. 

Moreover, Polymer-NO2, in which 4-nitrophenyl groups were incorporated in poly(2,7-

carbazole-alt-2,7-fluorene) as acceptors, showed stronger optical liming compared with 

poly(2,7-carbazole-alt-2,7-fluorene) itself, using photo-generated polaron absorption at 

580 nm. Furthermore, Polymer-NO2 also exhibit slightly better optical limiting response 

than poly(2,7-carbazole-alt-2,7-fluorene) at wavelengths other than 580 nm because of 

the broad long-lived triplet state absorption following charge-transfer after photo-

excitation.  

Future research could include studies of:  

1) Further efforts on varying the timescale for recombination by using other linker 

groups in the donor-PDI dyads. For example, the using of linkers such as 
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biphenylene or fluorenylene might lead to longer charge-separated life-times 

because of the longer donor-acceptor distance. Such compounds could in used in 

optical limiters for long pulses if the electronic coupling between the donor and 

PDI moieties is strong enough to drive efficient and fast charge separation.   

2) Donor chromophores with larger 2PA cross section between 600 – 800 nm, like 

squaraine dyes, could be incorporated to PDIs for better 2PA-induced charge-

separation-type optical limiting in the PDI radical-anion absorbing region, as 

stronger 2PA could, in principle, generate more PDI radical anions. A similar 

concept could be applied to the polymer system by using donor polymers, like 

MEH-PPV, with larger 2PA cross sections between 600 – 800 nm.  

3) Optical limiting could be extended to other wavelengths using the dyad approach 

with other D/A systems. Acceptors other than PDIs or donors, in principle, could 

be used for optical limiting at other wavelengths using this approach so long as (a) 

the ions exhibit much stronger absorption compared to the ground state absorption 

at the wavelength of photo-generation, and (b) the photo-generated ion pair has 

sufficient population and life-time.   

4) The nitro-phenyl group or similar derivatives seems to be good candidates for 

incorporation into donor-conjugated polymers, which show significant overlap 

between their 2PA band and respective polaron absorptions for 2PA-indced 

charge-separation-based OL at particular wavelengths.  

 In conclusion, this thesis provided insightful research into charge-transfer 

processes in PDI materials or donor:PDI blends and their use in OPVs and optical 

limiting. From what has been observed, although PDI might not be a promising acceptor 
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for OPV applications, the studies on donor:PDI systems could offer better understanding 

of overall photovoltaic process, which might guide research in other D/A system and lead 

to better solar cells. Moreover, the use of photo-generated PDI anion absorption for 

optical limiting was demonstrated and found to give good optical suppression for laser 

pulses between 650 – 800 nm. Further optimization of these D/A systems is expected to 

improve the optical limiting performance. Similar research, in principle, could be 

extended to lasers at other wavelengths, using other photo-generated ion pair absorption.  
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