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Abstract

Functional models have been extensively investigated in the context of several problem-
solving tasks such as device diagnosis and design. In this paper, we view problem solvers
themselves as devices, use functional models to represent how they work, and subsequently
employ these models for performance-driven reflective reasoning and learning. We rep-
resent the functioning of a problem solver as a structure-behavior-function model that
specifies how the knowledge and reasoning of the problem solver results in the achieve-
ment of its goals. We view performance-driven learning as the task of redesigning the
knowledge and reasoning of the problem solver. We use the structure-behavior-function
model of the problem solver to monitor its reasoning, reflectively assign blame when it
fails, and redesign its knowledge and reasoning. This paper describes an architecture for
reflective model-based reasoning that is capable of a broad range of learning tasks. It also
illustrates reflective model-based learning using examples from the Autognostic system, a
reflective path planner.
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1 Reasoning About Function: A Retrospective

AT has devoted a lot of effort in constructing theories of comprehension of “how the world
works”. The concepts most widely used in this pursuit have been causality and function. The
concept of causality has been essential for understanding the physical laws that govern the
natural environment, and the concept of function has been central to reasoning about designed
artifacts. Designed artifacts, such as physical devices, are teleological in nature: they have
been created in order to accomplish the purposes of their designers. They are subject to the
causality of physical laws just like the natural environment. Their creators designed them in
such a way that the causal interactions among their components result in the accomplishment
of their intended functions. Functional models and reasoning about functions exploit this
relation between function and causality to reason more economically about physical devices.
A functional model of a device explicitly represents the device function, and uses the device
function as an encapsulation mechanism for abstracting the complex internal causal processes
of the device. These models have been widely used for several tasks, such as diagnosis,
design, and prediction, and in several domains such as mechanical and electrical devices
[Sticklen & Chandrasekaran 1989, Umeda et al 1990, Abu-Hanna et al. 1991a, Franke 1991,
Gero, Lee and Tham 1991, Price & Hunt 1992, Kumar & Upadhyaya 1992, Forbus 1993].

But AI problem solvers are designed artifacts too! Although not physical, they are devices
with intended functions, structural elements, and complex internal processes. And, just like
physical devices, problem solvers can fail in delivering their intended functions which may
necessitate device diagnosis and redesign. This view of problem solvers as designed abstract
devices offers two benefits. First, it suggests that functional models may provide a scheme
for representing “how a problem solver works”. That is, they might provide a scheme for
representing and organizing knowledge of how the internal processes (methods, algorithms)
of the problem solver result in its intended functions (tasks, goals). Second, it suggests that
performance-driven learning may be viewed as a redesign task. When the performance of
the problem solver is suboptimal, then the learning goal is to modify the problem solver’s
knowledge and reasoning in such a way that it does not fail under similar situations in the
future. Thus, if a problem solver has a functional model of its own reasoning process, then,
when it fails, it can use it as a guide for reflecting upon its reasoning and for redesigning itself
appropriately.

In this paper, we discuss how reflection on its own reasoning and performance enables
a problem solver to learn from its failures. We describe how the knowledge and reasoning
can be represented in terms of a functional model, and how failure-driven reflective learning
can be viewed as a model-based redesign task. We outline a taxonomy of learning tasks
and sketch an architecture for reflective learning. We illustrate the process of learning using
examples from the Autognostic system, a reflective path planner. In particular, we show how
Autognostic can reorganize its world knowledge and modify its task structure by reflecting
on its own suboptimal performance.



2 Reflection and Performance Improvement

There is always room for improvement of problem solving performance. All intelligent agents,
natural or artificial, are bound to produce a suboptimal solution to some problem, or even
fail in solving a problem. These failures are opportunities for learning. One way that an
intelligent agent can improve its problem-solving performance is by reflecting upon these
instances of failed problem solving. The important affects of reflection to learning and
performance improvement have been established by a long line of psychological research
[Flavell 1971, Piaget 1971, Kluwe 1982, Baker & Brown 1984]. The main result of this re-
search is that reflection upon instances of failed problem solving enables the problem solver
to reformulate the course of its own “thinking” so that, under similar circumstances in the
future, it does not fail in a similar way.

The goal of our work is to develop a computational model of reflection as a self-adaptive
mechanism that enables improvement of problem-solving performance. To achieve this goal,
we need to address two interleaving issues:

1. a language for describing problem solving such that it can enable reflection, and

2. a process for reflection that uses the description of the problem solver to reason about
its performance and redesign it to achieve better performance.

2.1 A Language for Modeling Problem Solving

Previous Al research has suggested functional analysis as the appropriate level of describ-
ing intelligent behavior. Newell [Newell 1982], for example, made a distinction between
the level at which goals and knowledge are specified and lower levels at which goals and
knowledge are represented in symbolic structures. He advocated that knowledge should be
characterized functionally, in terms of what goals it helps to accomplish, and not struc-
turally, in terms of particular objects and their relations. Marr [Marr 1982] too empha-
sized the need to separate the computational theory embodied in an intelligent system
from its implementation. He advocated an analysis of information processing in terms
of tasks and subtasks, and the mechanisms for accomplishing the tasks. Chandrasekaran
[Chandrasekaran 1987] proposed that information-processing tasks fall into major classes
called generic tasks. All tasks that are instances of the same generic task can be solved
by the same methods. This led him to the use of task structures - task-method-subtask de-
composition - as a way of building AI systems and modeling cognition [Chandrasekaran 1989].
Some of Clancey’s [Clancey 1985], McDermott’s [McDermott 1988], Steels [Steels 1990], and
Wielinga and Breuker’s [Wielinga & Breuker 1986] work also shares this functional perspec-
tive.

In our work, we have adopted Chandrasekaran’s task structures as the framework for
describing problem solving. A problem-solving task in this framework is specified by the in-
formation it takes as input and the information it produces as output. A task is accomplished
by a method which decomposes it into a set of simpler subtasks. For each task, there may
be several methods which can be potentially used to accomplish it. A method is specified



by the subtasks it sets up, the control it exercises over the processing of these subtasks, and
the knowledge it uses. The subtasks into which a method decomposes a task can, in turn,
be accomplished by other methods, or, if the appropriate knowledge is available, they may
be solved directly. The reasoning process of a problem solver is thus described in terms of a
recursive decomposition of its overall task into methods and subtasks.

We use the language of structure-behavior-function (SBF) models to describe the
task structure of a problem solver. SBF models [Goel 1989] are a generalization of the
Functional Representation language, originally developed for modeling physical devices
[Sembugamoorthy & Chandrasekaran 1986]. Adapating this language for modeling problem
solvers, we express tasks as transitions between information states. The annotations on the
state transitions act as indices to the methods that are applicable to them. Methods are ex-
pressed as partially ordered sequences of state transitions which specify in greater detail how
they accomplish the task for which they are applicable. Tasks which are not decomposable
by any methods index the program modules that accomplish them directly. The semantics of
the SBF models for reasoning task structures are shown in detail in Figure 1.

2.2 A Process Model for Reflection

The question then becomes how the comprehension of its problem solving in terms of a SBF
model enables a problem solver to improve its performance.

1. By specifying a “road map” for problem solving which allows the problem solver to
monitor the progress of its reasoning on a specific problem.

2. By specifying “correctness” criteria for the results of each of the problem solver’s sub-
tasks, so that, when it fails, the problem solver can assign blame for its failure to these
subtasks whose results are not consistent with their corresponding criteria.

3. By guiding the problem solver to consistently redesign its own problem solving and
thus improve its performance.

The problem solver can use the model of its reasoning to monitorits process on any specific
instance of solving a problem. As it solves a given problem, the problem solver records which
method it uses for its task, in which specific order it performs the resulting subtasks, which are
the methods invoked for their respective accomplishment and what are their corresponding
results. The model provides the problem solver with expectations regarding the information
states it goes through as it solves the problem. For example, each information state should
be related to the preceding one according to the semantics of the task carrying out the
transformation between them. As it monitors its reasoning on a particular problem, the
problem solver may realize that some of these expectations fail, and use that as an opportunity
for learning. Alternatively, the problem solver may complete its reasoning, produce a solution,
and learn from the world that another solution would have been preferable. This is yet another
opportunity for learning.



Tsk(task) :=

(info_stateinput, info_stateousput, {instance_of }, by_methods||structural_elem, under_conditions, semantic_rels)
where

info_statejnpus 1= {Info_Type}*, the input information of the task.

info_stateouipur 1= {Info_Type}*, the output information of the task.

instance_of := T'sk, a task that accomplishes a transformation equivalent to or more general than the
transformation of the current task.

by_methods := { M}, a list of methods potentially applicable to the task.

structural_elem the name of the program module which accomplishes the task i.e. whose functional
abstraction the task is. Only tasks which are not further decomposed by methods are associated with
structural elements; we call these tasks “leaf tasks”.

under_conditions := {p(info_state;npus)}*, a set of predicates on the input information of the task,
under which it is meaningful to accomplish the task.

semantic_rels := {p(info_state;npus, info_stateouipur)}*, a set of predicates that hold true between
the input and the output of the task, i.e. rules that define the transformation that the task imposes
on its inputs to produce its outputs.

M (method) :=

(applied_to, under _conditions, subtasks, control)
where
applied_to .= T'sk, the task to which the method is applicable.
under_conditions := {p(Info_Type)}* aset of predicates that need to be true in order for the method
to be applicable to the task. The types of information on which these predicates are aplied, are all
information types the values of which have been produced before the method selection.
subtasks := {T'sk}T a set of subtasks into which the method decomposes the task it is applied to.
control := {ctrl_op(subatsks(M))}* a set of control operators applied to the subtasks of the method.
Control operators define a partial order among these subtasks. They define precedence among tasks,
potentiall parallelism, and repetitions of tasks until a condition is met.

WO(worldobject) ==

(domain, attrs, id_test)
where
domain := the data structure with the legal values for the object; only the enumerated objects have
domains, and usually this is the case for the objects that directly refer to objects in the world, as
opposed to conceptual objects.
attrs := {(name,def,type)}*, the set of attributes characteristic of the world object. Each one of
them is specified in terms of a name, a definition of how evaluating its value given an instance of the
world object type, and its type which can be either another world object or a number.
rels := {(name,table)}*, the set of domain relations applicable to the world object. Each one of them
is specified in terms of a name, and an association table where the knowledge of the problem solver
regarding this relation resides.
1d_test := the definition of a function to evaluate identity in the domain of the world object.

Info_Type :=

(is_a, input to, produced_by, syntactic_type)
ts_a := WO a world object, of which this type of information is an instance.
input_to := {T'sk : Info_Type € info_stateinpu:(T'sk)}* a list of tasks consuming the information.
produced_by = {Tsk : Info Type € info_stateouipu:(Tsk)}* a set of tasks that can potentially
produce the information as output.
syntactic_type := {simple, multiple} specifying whether this information type consists of one or a set
of world objects. Eventually, this should be expanded to handle more complex information types, in
addition to elements and lists

Figure 1: The language of SBF models



Once a failure has occurred, the problem solver can use the record of its failed reasoning
process, and the model of its problem solving to assign blame for its failure to some element(s)
of its task structure and propose modifications which can potentially remedy the problem.
The task-structure view of problem solving gives rise to a taxonomy of learning tasks each
one corresponding to a different type of potential cause of failure that the problem solver can
identify. We will discuss this taxonomy in greater detail later.

After having decided on a learning task, the problem solver can redesign its task structure
according to the modifications that this task suggests. The modifications may be as simple
as integrating a new fact in the body of its knowledge about the world, or as complex as
introducing a new task in its task structure. In any case, the semantics of the SBF models
for problem-solving task structures can guide the problem solver in its modification process,
so that the result will be a valid task structure.

There is no guarantee that the modification will result in an improved problem solver.
However, it can be evaluated through subsequent problem solving. If the problem that trig-
gered the modification can now be solved and the appropriate solution produced, this is
strong evidence that indeed the modification was appropriate. If not, the problem solver
may try other modifications or it may try to evaluate why the modification did not bring the
expected results, assuming that it has a model of its reflection process. Reflection, after all,
is a reasoning task, and as such it can be modeled in terms of SBF models, just like any other
problem-solving task.

2.3 An Architecture for Reflective Learning

Figure 2 diagrammatically depicts the architecture we have developed for reflective learning.
In this architecture, the problem solver has both reasoning and meta-reasoning capabilities.
Figure 2 shows the different types of knowledge that the problem solver possesses, their or-
ganization, and their use. Tasks are depicted as solid-line, tilted boxes, knowledge is depicted
as dashed-line boxes, control flow is shown by double arrows, input and output information
flow is depicted by simple arrows, and access and use of knowledge by tasks is depicted by
double-headed arrows.

In the reasoning space, the problem solver has domain knowledge. It may have a world
model which contains knowledge about specific objects in the world and the relations between
them. It may also have a case memory which consists of experiences of solving particular
problems in the world. The problem solver uses these types of knowledge to reason about
the world and solve new problems in it. At the reasoning level the problem solver does not
have explicit knowledge about its problem-solving knowledge or reasoning, and thus it cannot
reason about it.

At the meta-reasoning level, however, the problem solver understands its own reasoning
in terms of a SBF model. The problem solver understands that it knows several methods that
can be used to achieve its task. Each one of these methods decomposes the overall problem-
solving task in different sets of subtasks, and uses different types of knowledge. One method
may use the world model and the other may use the case memory. The problem solver has
also explicit knowledge about the ontology on which its world model and case memory are
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based and their respective organizations. The problem solver uses the knowledge it has at the
meta-reasoning level to monitor its reasoning, assign blame to some element of its reasoning
process it when it fails, redesign it, and thus learn and improve its performance.

3 Router: A Case-Study Problem Solver

In our work, we use Router, [Goel et al. 1991], a path planning system, as a case-study
problem solver. Router’s task is to find a path from an initial location to a goal location in
a physical space. It knows two methods that can achieve this task: a model-based method,
and a case-based method. When Router is presented with a problem, it chooses one of them
based on a set of heuristic rules. These rules evaluate the applicability and utility of each one
of these methods on the particular problem at hand.

neichborhood. 7.1

el

covers(Z1 ZA) covers(Z1 ZB)

elighborbood.ZA. neighbhorhood.ZB

L

Figure 3: The Hierarchical Organization of Router’s World Model

Router’s world knowledge consists of a set of streets in the navigation space, the valid di-
rections along which they can be traversed, and the intersections between them. The streets
are grouped into neighborhoods and the neighborhoods are organized in a space-subspace
hierarchy. The higher-level neighborhoods contain knowledge of a few major streets, and
their intersections, and describe large spaces. The neighborhoods at the next level decom-
pose a high-level neighborhood into several subspaces. The lower-level neighborhoods cover
spaces smaller than the high-level neighborhood but contain knowledge of major and mi-
nor pathways that fall in their spaces. Figure 3 depicts the hierarchical organization of
Router’s world model. Each neighborhood is shown within a rectangular, dashed-line box.
The high-level neighborhood Z1, depicted on the top of the figure, is decomposed in a set of
sub-neighborhoods, two of which, ZA and ZB, are shown in the figure. The same intersection



can belong in more than one neighborhoods, because the same physical space is represented
at several levels of detail, thus intersection C belongs both in Zf and ZA, and intersection
D belongs in ZI1 and ZB. When Router uses the model-based method to find a path, it first
finds the neighborhoods of the initial and goal intersections. If the two intersections belong
in the same neighborhood, Router does a local search to find a path between them. Other-
wise, it connects the initial intersection to a major pathway that belongs in the neighborhood
immediately above the initial neighborhood. Then, it traverses the high level neighborhood
upto a point that belongs both in the high level and in the goal neighborhood, and finally it
connects this point to the goal intersection. For example, to connect the locations A and B
in neighborhoods ZA and ZB correspondingly, Router would find a path in ZA connecting A
to C, and then a path in Z7 connecting Cto D and finally a path in ZB connecting D to B.

The case-based method requires a memory of cases of path-planning problems. Each case
in the memory contains knowledge about an initial and a goal intersection, the neighborhoods
they belong to, and a path between them. When Router uses the case-based method to solve
a problem, it first finds a case in the memory that connects two intersections in the same
neighborhoods as the current initial and goal intersections. Then, it finds a path between
the current initial intersection and the retrieved path’s initial intersection. Similarly, it finds
a path between the retrieved path’s goal intersection and the current goal intersection, and
connects the resulting paths. Finally, it stores the new problem as a case in its memory for
future use.

Router was not developed specifically for the purposes of this work; thus, originally it
did not have a model of its own problem solving. On top of Router, we have developed
Autognostic which has a SBF model of Router’s reasoning and which is also capable of the
reflection process described above. Router and Autognostic together constitute a reflective
reasoner and learner.

3.1 The SBF Model of Router’s Path Planning

Figure 4 depicts a part of the SBF model of Router’s problem solving. The problem-solving
process is viewed as a sequence of transformations between information states. The SBF model
specifies the information transformations that occur as Router’s problem solving progresses.
Each information state is depicted as a rectangular box, and contains the information available
at the state. Each state transformation is depicted by a double arrow, and is annotated by
the description of the task which accomplishes the transformation. The task description is
shown below the double arrow of the corresponding transformation.

Router’s task is route planning, i.e. to produce a path from an initial location to a
goal location. Thus its overall information transformation takes as input information state,
info-state-1, which contains the initial and goal locations, and the output information state,
info-state-5, contains the path between them. The SBF model describes the conditions
under which this task can be accomplished, i.e., when the initial and destination locations
are different. Moreover, the model specifies the semantic relations that this task imposes on
its output information state with respect to its input information state, i.e., that the initial
node of the produced path should be the same point as the initial location, and the final node



of the path should be the same point as the goal location. Finally, the model specifies that
the route-planning task can be accomplished by the route-planning method.

info-state-1 info-state-5

initial location
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goal location
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Figure 4: Fragment of Router’s SBF model, instantiated in the context of a specific problem,
explaining how the failed solution was produced

The route-planning method, shown in the first dashed-line box in Figure 4, decomposes
the task into a set of simpler subtasks. These tasks,i.e. elaboration, retrieval, search and
storage correspond to the four state transformations in this box. The elaboration subtask
transforms info-state-1 to info-state-2; at info-state-2 Router knows, in addition to
its input information, the initial-zone, and the goal-zone, i.e., the two neighborhoods
in which the initial and goal location belong. The SBF model makes explicit the relations
that the elaboration subtask imposes between its input and output information states: (i)
the initial location belongs in the initial zone, and (ii) the goal location belongs in the goal
zone. The model also specifies that the elaboration task is an instance of the generic task
hierarchical classification, which makes possible the transfer of problem-solving methods from
this generic task to its instance. The elaboration subtask is not decomposed by any method,
but is directly accomplished by the elaboration function.



The next information transformation is from info-state-2 to info-state-3 and it is
accomplished by the retrieval task. The retrieval task recalls from the planner’s memory
of previous planning experiences a path which connects locations spatially close to the initial
and goal locations of the current problem. The search subtask actually produces the desired
path, in transformation from info-state-3 to info-state-5, and subsequently the storage
subtask stores it in the memory for possible reuse in the future. The search task can be
solved by three different methods, the intrazonal, the model-based, and the memory-based
methods. However, Figure 4 depicts only the representation of the intrazonal search method.
The SBF model explicitly specifies that this method is applicable under the condition that
the initial and goal zones are identical.

The sequence of information transformations that explains how the intrazonal method
accomplishes the search task is shown in the dashed-line box in the bottom of the Figure 4. In
this sequence, info-state-3 is transformed into info-state-4 by the task initialization
of search; at this state, Router has set up its current location to the initial intersection, and
initialized its temporary path to contain only this intersection. The SBF model shows how
info-state-4 is repeatedly transformed by the increase-of-path subtask. This subtask
incrementally adds additional intersections to the temporary path. As defined by the semantic
relations of the increase-of-path subtask, all the nodes in the temporary path belong in
the initial zone. The task is repeated under the condition that the length of the temporary
path does not exceed N. If; at some point, the current location equals the goal location, then
info-state-4 becomes the final information state info-state-5 and Router outputs the
temporary path as the solution desired of it.

The SBF model of the problem solver’s reasoning captures the interdependencies between
the different tasks it can perform, its knowledge and its problem-solving methods. The model
represents the internal information states of the system and the conditions under which the
system transitions from one to another, in terms of method applicability and task conditions.
The model is non-deterministic; there may be several methods for any given task, the order of
the subtasks in a method is only partial and some tasks may sometimes be unnecessary. The
model also specifies the logical relations between the different information states, in terms of
task semantic relations.

4 A Taxonomy of Learning Tasks

The task-structure view of problem solving gives rise to a taxonomy of causes of failures,
and to a corresponding taxonomy of learning tasks. In this section, we discuss each one
of these causes of failure and the learning tasks they lead to, using specific examples from
Router’s reasoning. Figure 5 shows a part of Router’s world-model necessary for following
the examples. The small circles in the model are either initial or goal intersections for the
example problems we discuss.



4.1

Knowledge Errors

The failure of the problem solver to solve a problem may be due to errors in its internal
knowledge about the world. Its knowledge may be incorrect or incomplete. Or, alternatively,
its knowledge may be inappropriately organized so that although it has all the facts necessary
to produce the correct solution for a problem, it cannot access them appropriately to produce
the desired solution. Finally, the representation language it uses for describing the objects in
the world may be inappropriate, and thus it may not be able to even acquire all the relevant
information regarding a specific world object.
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Figure 5: Router’s world

Incomplete and Incorrect World Knowledge Router is presented with the problem of
going from 10th & hemphill to 10th & atlantic. It elaborates the problem and finds that both
intersections belong in neighborhood z1. The problem then is solved by a local search in this



neighborhood. Router produces the path (10th hemphill SouthEast ferst-1) (hemphill ferst-1 East
atlantic) (ferst-1 atlantic North 10th) .} Although the above path is correct, it is suboptimal. A
better path is provided as feedback to Autognostic: (hemphill 10th East hemphill) .

Router represents the street 10th in its model as having only one valid direction, West.
Because Router believes that 10th is a one-way street, it produces the above suboptimal path.
The feedback provides the information that Fastis also a valid direction for 10th. The error lies
in the incorrect representation of a world object in Router’s model. In this case Autognostic
has to update and correct Router’s world model. The updated world-model will represent
10th as a two way street.

Incorrect Knowledge Organization Router organizes its knowledge of neighborhoods
hierarchically. Each neighborhood at some level, is decomposed into several neighborhoods
at the lower, more detailed, level. Neighborhoods at the same level may overlap. Thus, two
intersections may both belong to more than one neighborhood and the problem of finding a
path between them may be solvable in more than one neighborhood. For example, in the
case of going from 10th & center to dalney & ferst-1, the problem can be solved both in za and
z1. If solved in zI the resulting path is (10th center East atlantic) (atlantic 10th South ferst-1)
(ferst-1 atlantic West dalney) ; if solved in za the path is (10th cenier Fast dalney) (10th dalney
South ferst-1) . The second path is preferable, since it is shorter and less expensive to produce.
2

Autognostic has to reorganize Router’s neighborhood hierarchy in such a way that (i)
not many conflicts of the above type occur, where a pair of intersections belong in more
than one neighborhood at the same time, and (ii) each pair of intersections belongs to that
neighborhood where the solution of the problem of finding a path between them is easiest.

In this example, Autognostic should decrease the detail of information that the neighbor-
hood 21 contains, in order to make the problem solvable only in ze. This could be achieved
by removing the intersection 10th & center from neighborhood z1.

Incorrect Knowledge Representation Router describes each intersection with
two attributes the mnames of the two streets that meet at the intersection,
(street_name_1 street_name_2). It describes each street with four attributes the neigh-
borhood in which the street belongs, its name, the directions along which traversal of the
street is allowed, and the set of streets with which it intersects, ordered along the first of
its valid directions (neighborhood street_name direction {street_name}*). Router is pre-

LA path is a sequence of path-segments, where the ending intersection of a path-segment is the beginning
intersection of the next. A path-segment is a quadruple where the first, second and fourth elements are names
of streets, and the third element is the relative direction between the beginning and ending intersection of
the segment. The path-segment begins at the intersection of the first and second streets and ends at the
intersection of the second and fourth streets. The segment lies on the second street. For instance, the segment
(tech-parkway ponders South marietta) lies on ponders, begins at tech-parkway & ponders, and ends at
ponders & marietta. ponders & marietia is South of tech-parkway & ponders.

2Shorter here refers to the length of the path, where cost of production refers to the amount of steps that
the local search took to produce the path. The two need not correlate.



sented with the problem of going from 10th & norihside to mcmillan & turner. Router returns
the path (northside 10th East curran) (10th curran South 6th-1) (curran 6th-1 East memaillan) (6th-1
memillan Norith turner) . Although the above path is correct, it is suboptimal. A better path
is provided as feedback to Autognostic, i.e., (northside 10th East hemphill) (10th memillan South
turner).

Router’s concept of intersection is that an intersection is a location where two streets
meet, and thus, at each intersection it has only two choices on which direction to go. Thus,
Router misses the opportunity of going 10th mcmillan South turner when at 10th & hemphill.
Because in each path, the ending intersection of one path-segment is the same as the beginning
intersection of the next path-segment, the feedback provides the information that 710th &
hemphill and 10th & mcmillan are the same intersection, and thus mcmillan is a street that
passes through 10th & hemphill. In this case the representation of intersection in Router’s
world-model is incorrect.

Autognostic has to modify Router’s representation of
intersections from (street_name_1 street_-name_2) to a representation that does not limit
the number of streets that meet at the intersection to two. Essentially Autognostic has to
generalize its concept of intersection. This change in Router’s representation of intersections,
implies changes to its world-model to reflect the fact that 10th, memillan, and hemphill meet
at the same point.

4.2 Method Errors

A task can be potentially achieved by several different methods. For each problem, the
problem solver has to select an applicable method. Each method decomposes the task into a
set of subtasks. Fach method contains knowledge of the subtasks that need to be achieved
for the overall task to be achieved, and a partial ordering among these subtasks. Often,
the failure of the problem solver may be due to the choice of the particular method for the
problem at hand, or potentially to its incorrect understanding of what subtasks the method
decomposes the overall task into, and in what order these subtasks should be accomplished.

Erroneous Choice of Method Router is presented with the problem of going from 10th
& atlantic to ponders & marietta. The best case Router knows for this problem is a case that
connects atlantic & fersi-1 and ponders & north through the path (atlantic ferst-1 West hemphill)
(hemphill fersi-1 West ferst-2) (ferst-1 fersi-2 West ponders) (fersi-2 ponders South north) . This
case matches the current problem on the neighborhoods of the initial and goal intersections.
Router chooses the memory-based method over the model-based method only when the best
available case matches the current problem on at least one intersection. Thus, for the current
problem, Router chooses the model-based method. It produces the path (10th atlantic South
ferst-1) (atlantic ferst-1 West hemphill) (hemphill ferst-1 West ferst-2) (ferst-1 ferst-2 South ponders)
(ferst-2 ponders South north) (north ponders South marietta) .

This path produced by Router contains the path that the case-memory presented as a ball
park solution to the problem. Using the model-based method, Router produced the same path
that it would have produced using the case-based method. Feedback informs Autognostic that



the cost of solving the two problems of going from 10th & atlantic to atlantic & fersi-1 and from
north & ponders to ponders & marietta is less than the cost of solving the problem of going from
10th & atlantic to ponders & marietta.

In this example, Autognostic has to change the heuristic rules Router uses for choosing
among methods. These rules take into account the efficiency of each method in each one of
the different classes of problems it is applicable to, the quality of the output they produce,
the knowledge they need to be applicable, and the specific problem instance that is to be
solved. As more and more problems get solved, the heuristic rules may be refined, as the
problem solver’s understanding of the applicability and efficiency of the methods improves.

Incorrect or Incomplete set of subtasks Router is presented with the problem of going
from atlantic & ferst-1 to ferst-2 & ponders. The best-case it has available in its memory for
this problem is a case connecting atlantic & ferst-1 with ponders & north through the path
(atlantic ferst-1 West hemphill) (hemphill ferst-1 West ferst-2) (ferst-1 ferst-2 West ponders) (ferst-2
ponders South north) . Because the old case matches the new case in the initial intersection,
Router chooses the case-based method to solve the problem. For this problem, since the
initial intersections match, Router has simply to find a path between the old and the new
goal intersections, and compose it with the old path. The resulting path is (atlantic ferst-1
West hemphill) (hemphill ferst-1 West ferst-2) (ferst-1 ferst-2 West ponders) (ferst-2 ponders South
north) (north ponders North ferst-2) . The path is suboptimal because it traverses the same
street ponders twice in two different directions.

This error occurs because the overall path is a composition of independently derived paths.
Although neither the paths in the case-memory nor the paths that the model-based method
produces are redundant, their composition may be redundant. This error can be found only
after the overall path is produced and before it is stored in memory. Essentially, Autognostic
needs to learn that another subtask, i.e. evaluation in terms of redundancy, should be added
to the set of subtasks into which Router’s case-based method decomposes the task of finding
a path.

Incorrect ordering of the subtasks The model-based method decomposes the search
task into (i) finding a neighborhood which covers both the neighborhoods of the initial and
goal intersections (ii) finding the common intersections between the initial neighborhood and
the common neighborhood, common-initial-ints, (iii) finding the common intersections be-
tween the goal neighborhood and the common neighborhood, common-dest-ints, (iv) finding
a path between the initial intersection and int1, an intersection in the common-initial-ints,
(v) finding a path between int1, and an intersection in the common-dest-ints, int2, (vi)
finding a path between int2 and the goal intersection, and (vii) compose the paths that tasks
(iv) (v) and (vi) produced. If the initial selection of int1 and int2 leads to the failure of any
of the tasks (iv) (v) and (vi) to produce a path, new intersections int1 and int2 must be
chosen.

The higher the level of a neighborhood, the less detailed it is. The less detailed a neigh-
borhood, the fewer pathways it knows of and the more difficult it is to find a path between



two intersections. As a result, the local search in a neighborhood is more likely to fail the
higher the level of the neighborhood. Thus task (v) is more likely to fail than the other two
local search tasks (iv) and (vi). The ordering (v), (iv) and (vi) is preferable then, because
when task (v) fails Router can search for another pair of intersections int1 and int2 to con-
nect the two lower-level neighborhoods, without investing resources in connecting the initial
intersection with int1. Autognostic needs to notice the bad performance of Router, iden-
tify the cause of it to be a problem in the interactions among the subtasks that the method
decomposes the search task into, and then reconfigure the task structure appropriately.

4.3 Task Errors

Another kind of potential cause of failure is the incorrect problem solver’s understanding of
the information transformation accomplished by a task. For example, the problem solver may
not know all the input information that is necessary for the accomplishment of a task, or it
may not know that an existing task can easily produce, in addition to its current output,
some other information, of finally it may not have a correct understanding of the semantic
relations between the input and the output of a task.

Incorrect Task Input When Router uses the model-based method for the search
task, one of the subtasks it has to accomplish, is to find the common intersec-
tions between the high-level neighborhood and the two lower-level ones. The task of
identification-of-common-intersections, a subtask of the model-based method for the
search task, takes as input the two neighborhoods and produces as output a set of common
intersections which can be used as connecting points between the two. Depending on the
specific problem at hand a different intersection from the set may be more appropriate to be
used as a connecting point.

For example, to connect 5th & fowler with holly & 10th Router has to select an intersection
common between zc and 21 and an intersection common between 21 and zb. If it chooses as
int1 atlantic & ferst-1 then it will produce the path (fowler 5th West atlantic) (5th atlantic North
ferst-1) (ferst-1 atlantic North 10th) (atlantic 10th East holly) . However there is a better path
(5th fowler North 8th-3) (8th-3 fowler North 10th) (fowler 10th West holly) which could have been
produced if Router had chosen as int1 fowler & 8th-3.

The problem is that Router ignores the actual initial and destination intersections in
deciding on common intersections between the neighborhoods. In this case, Router has to
learn that the subtask of identification-of-common-intersections should take as input
the initial and goal intersections, in addition to the neighborhoods, and it should prefer these
common intersections which lie on the same street with one or both these two locations.

Incorrect Task Output Router’s task is path planning, i.e. it produces a path between
two given locations. Let us consider a situation where Router is required to interact with a
scheduler, which needs to assign delivery tasks to different agents. The scheduler needs to
provide each agent with a route for its delivery task, and it, also, needs an estimate of the



time to traverse the route in question, in order to predict when this agent will be available
again for a new assignment. In this situation, in order to accommodate the scheduler needs,
Router could “redefine” its path planning task in order to include in its output another type
of information, i.e. the time to traverse the produced path. Such a modification also implies
modification of the problem-solving methods that accomplish the path planning task, in order
to include a task which will produce the additional output information.

Incorrect Task Semantics Router is presented with the problem of going from 5th &
ferst-0 to atlantic & 5th. It produces the path (fersi-0 5th West plum) (plum 5th West atlantic) .
Although the above path is correct, it is suboptimal because it traverses the path segment
(5th ferst-0 West atlantic) in two steps, where it can traverse it in one, thereby reducing the
cost of producing the requested path.

The task of searching for a path locally in a neighborhood gets decomposed into a repetitive
execution of the task of finding a path segment from Router’s current location to a new
location, increase-of-path. This task takes as input the current-location, and produces
as output the path segment that is traversed, and the new current-intersection. The current-
intersection of the output needs to be immediately next to the current-intersection of the
input. Thus when presented with the problem of going from 5th & fersi-0 to atlantic & 5th,
Router has to perform the task twice to connect the two intersections. This is an error in the
semantics of a task.

In this case Autognostic has to modify the semantics of the increase-of-path subtask.
In our example, the task should produce as output current-intersection any intersection that
lies on the same street as the input current-intersection, not just the one immediately next
to it. The change in the task semantics may imply changes to the task decompositions by
the different methods applicable to it, or, if the task is directly achieved by a programming
module - as in this case -, reprogramming of that module.

5 Using the SBF Model of Problem-Solving for Learning:
An Example

In this section we will describe in detail Router’s reasoning for a specific problem. In this
problem, feedback from the world informs Router that its solution to the problem is not
optimal. Thus Autognostic reflects on Router’s reasoning using the SBF model of its problem
solving as a guide, identifies the cause of the failure and proposes two alternative adaptations
to Router’s task structure. We discuss both adaptations and show how they improve Router’s
planning performance.

5.1 Monitoring the Problem Solving Process

Router is presented with the problem of connecting 10th & center with dalney & fersi-1. Au-
tognostic monitors Router’s planning process and generates its trace. The trace is a partial
instantiation of the SBF model of Router’s problem solving. The model is non-deterministic,



in that several methods are possibly applicable to the search task, and the subtasks that
each of these methods sets up are only partially ordered. However, when solving a specific
problem, Router decides on one specific method (each time it has a choice), and executes the
subtasks in some order. Thus only a part of the model will be instantiated, the part which
explains the subtasks actually executed during the process of solving the specific problem. In
this case, the trace is the instantiation of the part of the SBF model depicted in Figure 4,
where each one of the different types of information is instantiated with the specific values
produced during the particular planning session.

Router uses its route-planning method to solve the task, and sets up its corresponding
subtasks. The elaboration subtask produces as output 21 as the value of the initial-zone
and the 21 as the value of the goal-zone. The next task is retrieval, which returns no
path similar enough to the current problem from Router’s memory. When the search task
is performed, the intrazonal method is chosen, because its applicability test, i.e., equality
of the initial and goal zones is true, for the current values of these types of information, 21 =
z1. Thus the intrazonal method is applied to the search task which is decomposed into the
initialization-of-search and the increase-of-path subtasks. The repeated execution
of the latter produces the path (center 10th East atlantic) (10th atlantic South ferst-1) (atlantic
ferst-1 east dalney) which is returned as the output of the overall route-planning task.

5.2 Assigning Blame for Producing a Suboptimal Solution

The path that Router produced is correct. However it is suboptimal, because it is too long
compared to the path (center 10th East dalney) (10th dalney South ferst-1) which is presented
to Router as feedback from the world.

Autognostic uses the feedback, the trace of Router’s reasoning on the specific problem, and
the SBF model of Router’s problem solving, to identify the cause of its failure. This model-
based blame-assignment process is a heuristic search through the task structure of Router’s
problem solving, guided by the feedback and the problem-solving trace. In this example, the
feedback contains the information that, during its planning process, Router produced a sub-
optimal value for its output information, path. Moreover, the feedback specifies the desired
value for this output information. The blame-assignment process regresses this optimal value
and its properties back through the SBF model and identifies modifications to the problem
solver’s knowledge, or task-structure that could result in the production of desired value.

The specifics of the blame-assignment process is shown in Figure 6. From the SBF model
of Router’s path planning, Autognostic identifies the subtask increase-of-path which should
have produced the correct path (feedback-path). Based on the semantic relations that this
subtask imposes on its input and output, as specified by the model, it infers the sequence
of intermediate information states that could have led to the production of that path. This
process, in our example, concludes that the desired value of the path could potentially be
produced if the elaboration task had produced as values for the initial-zone and goal-zone
za and za correspondingly. The process also evaluates that these values could are consistent
with the semantic relations of the elaboration subtask, as are the values actually produced,
i.e. zI and z1. At this point, Autognostic knows that the elaboration task can potentially



ASSIGN-BLAME-SUBOPTIMAL-VALUE(path,
actual value (center 10th East atlantic)
(10th atlantic South ferst-1)
(atlantic ferst-1 east dalney)
feedback value (center 10th East dalney)
(10th dalney South ferst-1))
PRODUCED(path) = { increase of path }
SEMANTIC-RELATIONS(increase of path):
ForAll n IN nodes(path) belongs-in(n initial-zone)
Semantic-Relations hold TRUE for actual values of path and initial-zone
Semantic-Relations DO NOT hold TRUE for feedbcak value of path and actual value of initial-zone
INFERRING ALTERNATIVE VALUE FOR initial-zone
ForAll n IN nodes(feedback path) belongs-in(n za) = feedback-value(initial-zone) = za

ASSIGN-BLAME-SUBOPTIMAL-VALUE(initial-zone,
actual value 21
feedback value za )
PRODUCED(initial-zone) = {elaboration }
SEMANTIC-RELATIONS(elaboration):
belongs-in(initial-intersection initial-zone)
Semantic-Relations hold TRUE for actual values of initial-zone and initial-intersection
Semantic-Relations hold TRUE for feedbcak value of initial-zone and actual value of initial-intersection

—> elaboration can produce either za or z1I for value of initial-zone

Figure 6: Blame Assignment using the SBF model of Router’s Path-Planning process



produce either za or z1 as values for the initial and goal zones, because the domain relation
belongs-in(intersection zone) is not one-to-one.

In situations where “a leal task can produce alternative values” Autognostic has two
possible modifications actions to choose from: (i) modification to domain relation, in order to
refine the domain relation which allows multiple mappings so that it allows only the preferred
mappings, and (ii) insertion of selection task, in order to enable the problem solver, when
multiple mappings are possible, to select the preferred one. We will illustrate how each of
these modifications affect Router’s problem solving.

5.3 Redesigning the Problem Solver

Modification to Domain Relation The motivation behind modifying the domain relation
belongs-in is that it allows mappings, and in the problem currently being solved one of these
mappings was chosen and an inappropriate path was produced, where there was an alternative
mapping which could have led to the preferred path. Thus, if the relation is modified to allow
only the mapping that is consistent with the preferred path, the preferred path might have
been produced.

In the specific example, the modification is instantiated as exclusion of the intersection
10th & center from the set of belongs-in(?X z1).

When a domain relation is modified, the consequences of this modification are also prop-
agated to other domain relations which are interrelated with it. As we mentioned above, in
Router streets are described as (neighborhood street_name direction {street — name}™)
tuples. Thus the exclusion of 10th & center from belongs-in(?X z1) also means that center street
is removed from the set of streets intersecting with 10th street in zone z1.

Insertion of a Selection Task The motivation behind inserting a selection task after
the elaboration task in Router’s task structure is to enable Router to reason about the two
possible values for initial-zone and select the most appropriate one.

The SBF model of the problem solver’s reasoning, as shown in Figure 1, explicitly specifies
the ontology of the problem solver’s domain. For each type of information that its tasks
consume and produce, the SBF model specifies what type of world object it is. Moreover,
for each type of world object, among other things, the model specifies the domain relations
which are applicable to it. Autognostic uses this knowledge, along with the specific values
(actual and preferred) of the information type to be selected, to discover a relation which can
be used to differentiate between these values. If there is such a relation, then Autognostic
can use it as a semantic relation for the new task to be inserted in the task structure.

In our example, Autognostic knows that one domain relation applicable to zones is
the covers relation. Given the actual and the alternative values for the initial-zone,
z1 and ze correspondingly, Autognostic notices that covers(zl za). It then hypoth-
esizes that this can be used as a differentiating criterion between possible alterna-
tive values for the initial-zone. Thus it inserts in the set of subtasks of the
route-planning method, after elaboration, the selection-after-elaboration sub-
task, with input initial-zone, output selected-initial-zone, and semantic relation



covers(initial-zone selected-initial-zone). The new task has as a goal, given a spe-
cific path-planning problem, to reason about the possible values of the initial-zone in the
context of this problem and select the one which is covered by the rest of them, that is the
most specific one.

In more general terms, a newly inserted task in the problem solver’s task structure has
as a goal to reason about the possible values of some type of information in the context of
a specific problem and select the most appropriate one for the given problem. Thus, the
selection-task insertion implies the discovery of a characteristic property of the information
type to be selected which will enable the problem solver to discriminate among the possible
values of this information, and select the most appropriate one for the given problem.

In order for the problem solving task structure to be consistent after this modification,
Autognostic needs to perform some more modifications in addition to the insertion of the
selection-after-elaboration task: (i) change the syntactic type of the initial-zone
from a simple zone element to a list of elements, (ii) change (reprogram) the function
elaboration-func to actually return appropriately a list of values instead of a single one, and
(iii) modify the elements of the task structure which originally were after the elaboration
task to use instead of the information type initial-zone the selected-initial-zone. Au-
tognostic can autonomously perform modifications (1) and (iii) but not (ii), which is currently
performed by a human programmer, at the suggestion of Autognostic.

5.4 Evaluating the modified Problem Solver

After Router’s process is modified, Autognostic evaluates the appropriateness of the revision
by presenting Router with the problem that led to failure before. As Router solves the same
problem once again Autognostic goes back again to its monitoring task. In our example,
for both the modifications, Router produces the desired path this time, so any one of these
modification can be evaluated as successful. Had Router failed, once again, to deliver the
desired path, Autognostic would have another learning opportunity, and it would repeat its
blame-assignment-and-learning task.

6 Discussion

Reflective reasoning has received much attention in Al [Davis 1977, Davis 1980,
Mitchell et al. 1989, Kuokka 1990, Freed et al. 1992, Ram & Cox 1992]. The focus of this
paper, however, is the use of functional models in reflection. Hence, here we only compare
our work to other research which has investigated the uses of functional models of abstract
devices [Allemang 1990, Weintraub 1991, Johnson 1993].

Allemang has used the Functional Representation framework to model computer pro-
grams, and has shown how such models can be used for program verification. Weintraub has
used the Functional Representation framework to model the operation of a diagnostic system,
and has shown how such a model can be used for assigning blame when the knowledge-based
system produces an incorrect diagnosis. Autognostic too uses the SBF model for blame



assignment but its process for assigning blame is different from Weintraub’s. In his work,
the information-state transitions associated with each task of the knowledge-based system
are annotated by associative rules which indicate the likely sources of error. Moreover, the
knowledge-based system being diagnosed has a deterministic task structure, i.e. each task
is accomplished by a single method. In contrast, Autognostic admits the applicability of
multiple methods for accomplishing the same task. It uses the derivational trace of problem
solving in conjunction with the SBF model to identify the sources of error.

In Johnson’s work, the functional model of a student’s potential problem-solving behavior
is used by a tutoring system to provide help. She monitors the student’s actions, uses the
functional model to form hypotheses about the method being used by the student, and thus
provides context sensitive help. Autognostic’s monitoring of Router’s behavior is similar to
the tutor’s monitoring of the student.

Autognostic takes the idea of modeling problem solvers a step further: it is able to redesign
the problem solver after identifying the causes of its failure. Its SBF model provides the
vocabulary for indexing repair plans that correspond to different types of failure causes. In
addition, the semantics of the model enable the modification of the planner in a manner that
maintains the consistency of problem solving.

In this paper, we showed how Autognostic reorganizes Router’s model of the world, and
how it modifies its task structure. We have already tested the model reorganization capabili-
ties of Autognostic. We completely removed the original hierarchical organization of Router’s
world model, and let Autognostic induce a neighborhood hierarchy. The efficiency of the
planner and the quality of its solutions with the new model were comparable to the original
one. In future work, we plan to investigate other kinds of modifications, such as reorganiza-
tion of existing tasks in the problem solver’s task structure, modification of method selection
criteria, and knowledge acquisition.

7 Conclusions

In this paper, we described how a problem solver’s knowledge and reasoning can be modeled
in the language of structure-behavior-function models within the framework of task-method-
subtask structures. The language of SBF models describes the problem solving process as a
non-deterministic sequence of transformations to which the input of the problem solver’s task
is subjected in order to produce the output of the task.

We also described a process model for reflective reasoning. We showed how the reflective
process uses the SBF model of the problem solver’s reasoning for three tasks:

¢ In monitoring, the SBF model of the problem solver provides a language for interpret-
ing the problem solver’s reasoning steps, and makes explicit their logical relations.

¢ In blame assignment, the SBF model of the problem solver with the trace of the
reasoning on a specific problem, enables Autognostic to localize the cause of the failure
to some element of the problem solver’s task structure. Moreover, the language of SBF
models provides an vocabulary for indexing redesign methods.



¢ In redesign, the task-structure framework for problem solving gives rise to a taxonomy
of learning tasks, i.e. modifications to the problem solver’s reasoning that can help
improve its performance. Moreover, the semantics of the language of SBF models enable
the modification of the problem solver in a manner that maintains the consistency of
problem solving.

We showed how Autognostic’s functional models of Router’s knowledge and reasoning
enable it to reorganize Router’s world knowledge and modify its task structure by inserting
new tasks. Although we described the functional models and the reflective processes in the
context of a particular problem solver, a planner called Router, neither the models nor the
processes are particular to Router or to path planning.
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