ON THE SECOND EIGENVALUE OF THE LAPLACE
OPERATOR PENALIZED BY CURVATURE

EVANS M. HARRELL II

ABSTRACT. Consider the operator —V?2 —g(x), where —V? is the (positive) Laplace-
Beltrami operator on a closed manifold of the topological type of the two-sphere
S? and g is a symmetric non-negative quadratic form in the principal curvatures.
Generalizing a well-known theorem of J. Hersch for the Laplace-Beltrami operator
alone, it is shown in this note that the second eigenvalue A; is uniquely maximized,
among manifolds of fixed area, by the true sphere.

Dimensionally, the Laplace operator —V? is comparable to the square of cur-
vature, both having dimensions (length)~=2. Thus one might expect to encounter
partial differential operators of the form —V? — ¢ in applications, where ¢ is a
quadratic expression in the principal curvatures.

This was recently the case when N. Alikakos and G. Fusco performed a stabil-
ity analysis of the interfacial surface separating two phases in one of the simpler
reaction-diffusion models, the Allen-Cahn system. It was already realized in the
first article about this model [5] that it exhibits interfaces moving according mean-
curvature, as a consequence of which the model has attractive geometric features;
for current state of mathematical knowledge of this see [9]. While simplified in
comparison to most realistic reaction-diffusion systems, Allen-Cahn is a reasonable
model at least for bistable alloys of iron and aluminum. Picture a bubble of material
of phase I in a background of phase II. It undergoes slow motions and deformations,
and if it is not at an external boundary, the surface 2 smooths out and eventually
becomes round. According to Alikakos and Fusco, instabilities of the surface are
associated with negative eigenvalues of an operator emerging from linearization at
Q of the form

(1) _v2 - ZK'?:

where x; are the principal curvatures at any given point of 2, and V2 is the Laplace-
Beltrami operator on 2. This can be thought of as a geometric Schrodinger operator
with a negative potential determined by curvature. It is evident that (1) is a highly
symmetric, reasonable object, and that the second eigenvalue is special because
it equals 0 when Q attains its target shape of a sphere. (While the analysis by
Alikakos and Fusco is not accessible in print at the time of this writing, the lower
dimensional analogy is worked out in the recent thesis of V. Stephanopoulos [12,
see Proposition 5.4 and Theorem 7.1; see also 2]. Related work and an entry point
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for the literature on Allen-Cahn and similar reaction-diffusion models can be found
in [1-3, 9].)

The conjecture was that for any other shape of Q the second eigenvalue of (1)
is strictly negative, and this is a special case of the theorem proved below. The
conjecture calls to mind the theorem of J. Hersch [8] for the Laplace operator
without the curvature penalty, whereby the unique such Q maximizing the second
eigenvalue is the sphere. For the Laplace operator plain and simple, the lowest
eigenvalue is trivial, so the second eigenvalue is often referred to as the “first.”
Unambiguously, the eigenvalues will be written here A9 < A; < ..., and the one
at issue is A;. Actually, Hersch’s problem was a bit more general, since he was
concerned with

2) —

and he also allowed arbitrary weights on Q. The variational principle he used as a
lower bound for (2) is not available for (1), because the latter is not positive or even
bounded from below a priori. Hersch’s technique is particular to two dimensions,
since it relies on the ability to map a generic Q conformally to S%, among other
special facts, and in more than two dimensions the conformal equivalence class is
not large enough to do this. Moreover, the natural extension of Hersch’s theorem to
higher dimensions has been shown to be false by H. Urakawa [14]. As for Hersch, the
operative definition of the topological type of the sphere used here will be conformal
equivalence, so the theorem of this article is likewise restricted to two dimensions.
More specifically, the following lemma from [8] will be needed:

Lemma. (J. Hersch). Let Q be a two-dimensional, closed, smooth Riemannian
manifold of the topological type of the sphere, and specify a bounded, positive,
measurable function p on Q. Then there exists a conformal transformation & :
Q — S? C R3, embedded in the standard way as the unit sphere, such that

(3) lLfﬂ@*@ﬂMﬁ:&

Here x = (z,y,2) is the position vector in R3, J is the Jacobian factor of the
transformation, and dS is the standard area element on S2. Thinking of p as a
mass distribution, the statement means that the center of mass is mapped to the
origin in R3.

Recall for later purposes that the restrictions of the Cartesian coordinate func-
tions (z,y, z) to the unit sphere are the spherical harmonics, which are the eigen-
functions of —V? associated with its (multiple) second eigenvalue [10]. Follow-
ing Hersch’s notation, let X,Y, Z denote the functions on Q obtained by mapping
(z,y, 2) back to Q with ®~1. Thus

(4) X 4+v242% =1,

and (3) implies that X, Y, and Z are orthogonal to p on the Hilbert space L%(f2)
(endowed with the measure dS arising from the metric on Q).
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Theorem. Let x1,2(p) denote the principal curvatures at the point p € §Q, a closed
manifold of the topological type of S?. Let q(£,n) be a nonnegative quadratic
polynomial in €,n, such that q(n,€) = q(€,n), and let Ag < A; < ... denote the
eigenvalues of

_v2 - q("“'la K’2)

as an operator on L%(Q). Then

(5) A < 47r(2 - Q(llaé? + ‘Z(O: 0)) . q(O, 0)‘

Equality is attained if and only if Q = rS? (sphere of radius r).

A plausibility argument for the theorem is to recall Hersch’s theorem and observe
that the quadratic form ¢ is minimized on average by the sphere. The obstacle to a
rigorous argument along these lines is that since A; is not the lowest eigenvalue, it is
characterized by a min-max principle, and one must cope with the orthogonalization
to the ground-state eigenfunction ug for Ag. For a general Q this ug is not accessible.

Proof. Without loss of generality, subtract a constant from g so that ¢(0,0) = 0.
Inequality (5) then becomes

4m(2 — q(1,1))
(6) A< —

Note that equality is attained if Q = rS2. Inequality (6) will follow if a function ¢
can be exhibited, which is orthogonal to ug, and for which the Rayleigh quotient
for this operator,

_ JalVCI?dS — [, a(x1, k3)[C]2dS
Y Me= Jal¢Pds

is less than the stated bound. As constructed, the functions X, Y, and Z are
suitable candidates for the Rayleigh quotient for A; if p is identified with ug, which
is always positive [7, Theorem 4.2.1; 11].

Next, recall that the Dirichlet integral in the numerator of (7) is conformally
invariant, i.e.,

87

(8) /|VX|2dS:/ Va[2d$ = 2T
Q S2

(because z is an eigenfunction for —V? on S? with eigenvalue 2). With (8) and
setting ¢ = X in (7), for example:

8?" — fn g(k1, k2)X2dS
J, X?dS

R(X) =

and similarly for R(y) and R(z).
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Now, it is an elementary fact that if ¢; are positive numbers and for each j,

then

g
,\,Q"

Ly
,\,O

(multiply by ¢; and sum). Thus, with (4),

87 — fn qdS

Inin(Rx,Ry,Rz) S f 1dS
Q

A simple calculation (writing g(&,n) = aén+b(£? +n?) and completing the square)
shows that

(9) q(&,m) > q(1,1)én,
with equality only for £ = n. Hence:

87 — fg q(1, 1)k, k2dS _ 47(2 —q(1,1))
12| 12|

min(RX, Ry, Rz) S

by the GauB-Bonnet theorem, establishing (6). Because equality in (9) requires
& = n, equality in (6) requires k; = k3 a.e., and by a theorem of Liebmann [13, p.
122] this characterizes Q2 as the sphere rSZ. QED

As remarked above, a simple extension to more than two dimensions is unlikely,
but related theorems probably apply to a) surfaces of higher genus as in [15], b)
surfaces with boundaries which are predetermined, and c) one dimension. These
cases all occur physically and are under investigation [4]. An interface may meet
the predetermined edge of a piece of alloy, producing case b) for example; while
the one-dimensional situation of a curve describes an interface in a thin sheet of
metal. Curiously, even the one-dimensional analogue is more complicated than this
two-dimensional theorem, due to the lack of conformal invariance of the Dirichlet
integral.
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