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I think crime pays. The hours are good, you meet a lot of interesting people, you travel a

lot.

Woody Allen



For my family
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SUMMARY

Many real life processes that we would like to model have a self-exciting property, i.e.

the occurrence of one event causes a temporary spike in the probability of other events

occurring nearby in space and time. Examples of processes that have this property are

earthquakes, crime in a neighborhood, or emails within a company. In 1971, Alan Hawkes

first used what is now known as the Hawkes process to model such processes. Since then

much work has been done on estimating the parameters of a Hawkes process given a data

set and creating variants of the process for different applications.

In this thesis, we will be proposing a new variant of a Hawkes process, called a self-

limiting Hawkes process, that takes into account the effect of police activity on the under-

lying crime rate and an algorithm for estimating its parameters given a crime data set. We

show that the self-limiting Hawkes process fits real crime data just as well, if not better,

than the standard Hawkes model. We also show that the self-limiting Hawkes process fits

real financial data at least as well as the standard Hawkes model.

xiii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Many real-world stochastic systems appear to exhibit a self-exciting tendency, a phenomenon

whereby the occurrence of these stochastic events seems to cause an increase in the rate of

occurrence of subsequent events, at least locally in time and potentially in space. Some ex-

amples include earthquakes [1], financial markets [2, 3, 4, 5], and various forms of commu-

nication [6]. One common model used to describe these systems is the Hawkes process [7],

a linear model that is particularly amenable to fitting to potentially self-exciting datasets.

Another self-exciting system that has been modeled by the Hawkes process is urban

crime. Various criminological theories and studies [8, 9] note the existence of “repeat

victimization”, whereby criminals have a tendency to commit their crimes at or against

places or people who have previously been victimized. In [10], this basic phenomenon was

cast in the form of a Hawkes process to describe repeat victimization in burglary data; other

studies have followed [11].

But in the case of crime, there is another factor at play - the actions of police, one of

whose goals is to prevent crimes from occurring in the first place. Indeed, in [11], the

Hawkes process fit to up-to-date crime data was used in conjunction with police forces to

inform police patrols, with measurable success. However, there is a subtle issue involved

here that has not previously been addressed: given that past crime data was presumably

influenced in some way by the past actions of the police, but the Hawkes process model

does not explicitly capture this interaction, any estimates of the Hawkes process using past

crime data will also implicitly include prior police effects. Using these fits to inform future

police actions is therefore questionable, even if we have a good model for how police might
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influence true crime rates, as our estimates of the stochastic crime rates already include

in some unknown way the affect of police. This effect is compounded by the fact that

police actions themselves are typically influenced by those crimes that do occur, such that

a feedback loop exists in the crime-police system, which should alter the estimated Hawkes

process in some non-trivial way.

Within the point-process literature, there are models variously termed as self-correcting

[12]. These models differ from a standard self-exciting Hawkes process in that events are

typically modeled as decreasing the intensity of the process via multiplication by some

positive factor less than unity. A common feature of these models is an exogenous rate of

increase of the stochastic intensity over time, to offset the intensity decreases accompanying

the events themselves. While these models have the flavor of what we want to capture in

our crime example – a police-like effect limiting growth of the event rate – they don’t

explicitly capture the tension between self-excitation and self-correction that we believe

the crime-police system ought to exhibit.

For this reason, we introduce here what we refer to as a self-limiting Hawkes process.

The specific motivation is, as discussed, the crime-police system, but the model, and the

methods we show to estimate it from data, could be of potential interest in other domains

whereby control is often exercised or desired over the occurrence of self-exciting events.

In chapter 2, we review how to simulate and estimate the parameters of a standard

Hawkes process as well as a standard spatio-temporal Hawkes process. In chapter 3, we in-

troduce a self-limiting Hawkes process and a self-limiting spatio-temporal Hawkes process

as well as give algorithms for simulating and estimating the parameters of both models.

In chapter 4, we compare the performance of the standard and the self-limiting Hawkes

models in both the temporal and spatio-temporal cases using simulated data. In chapter 5,

we compare the performance of the standard and the self-limiting Hawkes models in the

temporal case on real crime data from the city of Chicago. Finally, in chapter 6, we argue

that the self-limiting Hawkes model is a good fit to model some systems other than crime.

2



Here, we also use the standard and self-limiting Hawkes models to find the parameters of

and compare the two models’ performances on cryptocurrency data.

1.2 Background

The simplest point process that we might use to model the occurrence of random events

is the one-dimensional homogeneous Poisson process. In a one-dimensional homogeneous

Poisson process, the time differences between events are exponential random variables with

mean 1
λ

. More formally, we can define a Poisson process with intensity λ as {N(t) : t ≥

0}, where N(t) counts the number of events that have occurred in the interval [0, t], if

N(0) = 0, the interarrival times are independent, and

P{N(t) = n} =
(λt)n

n!
e−λt.

While the Poisson process has many useful properties and is easy to work with, it is

limited to modelling only events that are independent. For modelling systems such as urban

crime where there is believed to be a high degree of dependence amongst some events,

the Poisson process will not capture any of this dependence. For this reason, Hawkes

processes are often used to model systems such as these. A Hawkes process can be thought

of as an extension of a Poisson process that allows some dependence between events. In

particular, a Hawkes process allows individual events to temporarily increase the intensity

of the process.

Before we define a Hawkes process, we will first define the conditional intensity of a

point process as

λ(t) = lim
dt→0

E[N(t, t+ dt | Ht)]

dt
,

whereHt is the history of the process up until time t andN counts the number of points

in the interval [t, t + dt) given Ht. By allowing N to be dependent on the history of the

3



process up until t, we are able to capture the dependence between events in the types of

systems discussed above.

This leads us to the definition of a Hawkes process, which has conditional intensity

λ(t) = µ(t) +
∑
i:ti<t

g(t− ti), (1.1)

where µ is the background intensity of the process and g, called the self-exciting kernel,

is a function that describes the self-exciting property of the process [7].

The conditional probability given in Equation 1.1 could be easily modified to yield a

spatio-temporal Hawkes process on the interval [0, T ]× [0, L]× [0, L]:

λ(t, ~x) = µ(t, ~x) +
∑
i:ti<t

g(t− ti, ~x− ~xi). (1.2)

One way to conceptualize a Hawkes process over an interval of time [0, T ] is as a sum of

individual Poisson processes: λ0(t) = µ(t), λ1(t) = g(t− t1), . . . , λn(t) = g(t− tn). Each

Poisson process creates a generation of points upon which the following Poisson processes

are based. Intensity λ0 = µ(t) has no conditions, so it defines a Poisson process on the

whole interval [0, T ]. Events that arise from intensity λ0 are referred to as background

events. Intensities λi, i > 0 do not activate until t > ti, where ti is the ith point in the

overall process. So λi defines a Poisson process on the interval [ti, T ]. Events arising

from intensity λi, i > 0 are called daughter events, and the parent event of each of these

daughters is event ti.

For chapter 4, chapter 5, and chapter 6, we will only be considering Hawkes processes

where µ(t) = µ(t, ~x) = µ ∈ R+, g(t − ti) = kωe−ω(t−ti) in the temporal case, and

g(t − ti, ~x − ~xi) = kω
4s2
e−ω(t−ti)e

−(|x−xi|+|y−yi|)
s in the spatio-temporal case. In chapter 2

and chapter 3, we introduce methods for simulating Hawkes processes with both general

and exponential excited kernels, but all of our methods for estimating the parameters of the

processes require the kernels given above.
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CHAPTER 2

SIMULATION AND PARAMETER ESTIMATION OF A HAWKES PROCESS

In this chapter we introduce algorithms for simulating and estimating the parameters of

a Hawkes process. We include simulation algorithms because it is useful to be able to

generate instances of Hawkes processes with known parameters to verify that the parameter

estimation algorithms are working correctly. Additionally, an instance of a Hawkes process

with known parameters can be used to compare the performance of two different models.

This plays a role in chapter 4 where we compare the estimation performance of the standard

and self-limiting Hawkes models on hypothetical Hawkes datasets.

2.1 Simulating a Hawkes Process

One way to simulate a Hawkes process is by using what is known as the thinning method.

This method was first proposed as a way to simulate non-homogeneous point processes

[13], but has since been modified to simulate Hawkes processes [14]; it is especially useful

if the excited kernel is not exponential. (If the excited kernel is exponential, there are more

efficient simulation algorithms that we will discuss later in this section.) The algorithm is

described in Figure 2.1.

Input: λ(t) - The intensity function, T - the final simulation time
Output: A realization of the point process, {t1, . . . , tn}

1: Define M = max{λ(t) : t ∈ [0, T ]} and let N ∼ Pois(MT ).
2: Place N points uniformly at random in the interval [0, T ].
3: For i = 1, . . . , N , delete point ti with probability 1− λ(ti)

M
.

4: Return all the points that were not deleted.

Figure 2.1: Thinning Method for Simulating a Non-homogeneous Point Process

The intuition behind this algorithm is that, for an intensity function λ(t), we have M =

λ(t) + (M − λ(t)), where M = max{λ(t) : t ∈ [0, T ]}. If we simulate a process using M
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as the intensity, then each simulated event is attributable to either λ(t) or (M − λ(t)). The

probability that an event ti is attributable to λ(t) is λ(ti)
M

. Since we are only interested in the

events that are attributable to λ(t), we will keep each event with probability λ(ti)
M

. This is

equivalent to deleting each event with probability 1− λ(ti)
M

.

When applied to the Hawkes process, the thinning method first simulates background

events from intensity µ. These events constitute the first or background generation of the

process. Then, it simulates all of the direct offspring of the background events through

the various g kernels that the background events produced. These new events constitute

the second generation of the process. Then the offspring of these offspring are simulated

through the various g kernels that the offspring events produced. These new events con-

stitute the third generation of the process. This is repeated until the excited kernels of one

generation simulate no events in the following generation. The resulting Hawkes process

consists of the union of the generations. This method essentially relies on the fact noted

above that a Hawkes process can be thought of as a sum of many Poisson processes. We can

run the algorithm given in Figure 2.1 to simulate each of the component Poisson processes

and then take the union of all the generated points [14].

Though this method for simulating a Hawkes process is intuitive and can be imple-

mented relatively easily, there are more efficient methods of simulation available, espe-

cially when the excited kernel g is an exponential. One particular example is the method

of Dassios and Zhao [15]. This method assumes that µ(t) = µ ∈ R+ and the function

g(t − ti) = kωe−ω(t−ti) for t > ti, g(t − ti) = 0 for t ≤ ti. The algorithm is given in

Figure 2.2.

Rather than simulating the process layer-by-layer as is done when using the thinning

method, the method given by Dassios and Zhao starts at time t = 0 and jumps forward

by simulating the time interval ∆t until the next event occurs. Each such ∆t is found by

randomly generating two possible values: one from the background rate µ and one from

the full summation of the excited kernels, which is itself simply a decaying exponential.
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Input: T - The final simulation time; µ, k, ω - Hawkes parameters
Output: A realization of a Hawkes process, {t1, . . . , tn}

1: ts = − ln(U(0,1))
µ

2: g = k
3: times = ts
4: while ts < T do
5: tb = − ln(U(0,1))

µ

6: ζ = ln(U(0,1))
g

+ 1
7: if ζ > 0 then
8: td = − ln(ζ)

ω

9: else
10: td = tb
11: end if
12: ∆t = min(tb, td)
13: ts = ts+ ∆t
14: g = ge−ω∆t

15: g = g + k
16: times = [times, ts]
17: end while
18: times = times that are less than T

Figure 2.2: Hawkes Process Simulation Algorithm by Dassios and Zhao

The smaller of these two times is then chosen as ∆t, time is incremented by this value, and

the fully summed excited kernel is updated via exponential decay and an increase by k, and

the algorithm continues.

This algorithm will become especially useful once we introduce a self-limiting Hawkes

process in chapter 3.

2.2 Simulating A Spatio-temporal Hawkes Process

Suppose we want to simulate a spatio-temporal Hawkes process on the interval [0, T ] ×

[0, L] × [0, L]. Further, suppose that the self-exciting kernel can be written as the product

of a function of time and a function of a spatial vector, i.e.

g(t− ti, ~x− ~xi) = f(t− ti)p(~x− ~xi),
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where p is the probability density function that describes the spatial distribution of

daughter events around their parents.

We can use the same thinning algorithm given in Figure 2.1 except when it comes time

to simulate a process with intensity g(t−ti, ~x− ~xi), we will use f(t−ti) [14]. We will then

assign a location to each newly created event according to the probability density function

p(~x− ~xi), where ~xi is the location of the parent of the events being generated.

If µ(t, ~x) = µ ∈ R+ and the function g(t − ti, ~x − ~xi) = g(t − ti, x − xi, y − yi) =

kωe−ω(t−ti)p(x−xi, y−yi) for t > ti, g(t−ti) = 0 for t ≤ ti, where p is a two-dimensional

probability density function, we can modify the method of Dassios and Zhou to more effi-

ciently simulate a spatio-temporal Hawkes process [15]. This modified algorithm is given

in Figure 2.3.

This method works similarly to the algorithm in Figure 2.2, the only difference being

that now we have to consider the locations of the events that are created. When the next ∆t

is determined, if the new event came from the background process, the location of the new

event is selected uniformly at random in the region [0, L] × [0, L] [13]. If the new event

came from the full summation of the excited kernels, then we first select a parent for this

event.

Note that in this version of the algorithm, g is a vector whose entries are the values of

the self-exciting kernels from all of the events that have occurred up until the new event.

We can think of this vector as recording the intensities due to each of the previous events at

time ts. Since each of these entries are non-negative, if we normalize g so that the entries

sum to one, we can use g as a probability distribution over the possible parents of the new

event. So, we select a parent for our new event according to this distribution.

Once a parent is chosen, the location of the new event is drawn randomly according to

the probability distribution function p, centered at the location of the parent.
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Input: T - The final simulation time; µ, k, ω - Hawkes parameters; p - a two-dimensional
probability distribution function

Output: A realization of a spatio-temporal Hawkes process, {(t1, x1, y1), . . . , (tn, xn, yn)}
1: ts = − ln(U(0,1))

µ

2: xs = U(0, L)
3: ys = U(0, L)
4: g = k
5: events = (ts, xs, ys)
6: while ts < T do
7: tb = − ln(U(0,1))

µ

8: ζ = ln(U(0,1))
sum(g)

+ 1

9: xs = U(0, L)
10: ys = U(0, L)
11: if ζ > 0 then
12: td = − ln(ζ)

ω

13: else
14: td = tb
15: end if
16: ∆t = min(tb, td)
17: ts = ts+ ∆t
18: g = ge−ω∆t

19: if td == ∆t then
20: parentX = x-value of location of parent chosen according to g
21: parentY = y-value of location of parent chosen according to g
22: xs and ys are chosen according to p(x− parentX, y − parentY )
23: end if
24: g = [g, k]
25: events = [events, (ts, xs, ys)]
26: end while
27: events = events where t < T and (x, y) ∈ [0, L]× [0, L]

Figure 2.3: Hawkes Process Simulation Algorithm by Dassios and Zhao Modified to In-
clude Spatial Component
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2.3 Estimating the Parameters of a Hawkes Process

Here we present a review of the Expectation-Maximization (E-M) method [16] to estimate

the parameters µ, k, and ω of a Hawkes process, with intensity λ, from data, where

λ(t) = µ+
∑
i:ti<t

kωe−ω(t−ti).

First, we need the likelihood function of the parameters given the data {t1, . . . , tn}.

This is given by

L = e−
∫ t1
0 λ(t)dtλ(t1)dt× e−

∫ t2
t1
λ(t)dtλ(t2)dt× · · · × e−

∫ tn
tn−1

λ(t)dt
λ(tn)dt

= e−
∫ T
0 λ(t)dtdtn

∏
i

λ(ti).
(2.1)

Each term e
−

∫ ti
ti−1

λ(t)dt
λ(ti)dt approximates the probability of no events in the interval

(ti−1, ti) followed by an event occurring in a small interval of width dt around ti.

To make this easier to work with, we will take the natural log of this equation. This is

valid since we will be maximizing L, and the maxima of ln(L) correspond to those of L.

We will denote ln(L) as L . Then we have the following log-likelihood function:

L = −
∫ T

0

λ(t)dt+ n ln(dt) +
∑
i

ln(λ(ti)). (2.2)

Since we will be maximizing L with respect to µ, k, and ω, we can drop any terms that

don’t contain these parameters (i.e., the term n ln(dt)). From now on, L will refer to the

log-likelihood function without the term n ln(dt).

Suppose we knew the true branching structure of the process: which events were back-

ground events and which were daughters, along with which event was the parent of each

daughter. Then we could rewrite L as

10



L =
∑
i∈B

ln(µ)−
∫ T

0

µdt+
∑
i∈D

ln
(
kωe−ω(ti−tp(i))

)
−
∫ T

0

∑
i:ti<t

kωe−ω(t−ti)dt,

where B and D are the sets of background and daughter events, respectively, and p(i)

is defined as the parent event of event ti. Here, the first two terms only depend on µ and

can be thought of as the log-likelihood of the background process of the Hawkes process.

Likewise, the last two terms only depend on k and ω and can be thought of as the log-

likelihood of the self-exciting part of the Hawkes process.

Though we generally don’t know the true branching structure of the process, we will

assume we can still generate a probabilistic branching structure P , where

Pij =


prob. that i is a background event , i = j

prob. that i is a daughter of j , j < i

. (2.3)

Taking the expectation of L with respect to P gives us what is called the complete data

log-likelihood [16]:

E[L ] =
∑
i

Pii ln(µ)−
∫ T

0

µdt+
∑
j<i

Pij ln
(
kωe−ω(ti−tj)

)
−
∫ T

0

∑
i:ti<t

kωe−ω(t−ti)dt,

which can be simplified to

E[L ] = ln(µ)
∑
i

Pii + ln(kω)
∑
j<i

Pij − ω
∑
j<i

Pi,j(ti − tj)− µT

− k
∑
i

(
1− e−ω(T−ti)

)
.

(2.4)

For more details on this simplification, see Appendix A.
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We can then maximize E[L ] with respect to µ, k, and ω by taking the respective partial

derivatives and setting them equal to 0. This gives us the following formulas:

µ =

∑
i

Pii

T
, (2.5)

k =

∑
j<i

Pij∑
i

(1− e−ω(T−ti))
, (2.6)

and

0 =
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)− kω
∑
i

[
(T − ti)e−ω(T−ti)

]
. (2.7)

We can then simultaneously solve these equations to get estimates for the parameters.

Of course, we must still specify Pij in order to use these formulas. But, since a Hawkes

Process can be thought of as a sum of Poisson processes, we have

Pij =


µ

λ(ti)
i = j

kωe−ω(ti−tj)

λ(ti)
j < i

. (2.8)

From here, we can see that we need µ, k, and ω to calculate Pij and Pij to calculate µ,

k, and ω. This leads us to the iterative Expectation-Maximization (E-M) method given in

Figure 2.4.

Input: µ, k, ω - An initial guess for these parameters, ε - The tolerance of convergence
Output: µ, k, ω - The estimated Hawkes parameters

1: For each event pair j ≤ i, calculate Pij using the current values of µ, k, and ω using
Equation 2.8. This is the Expectation step of the E-M algorithm.

2: Update our values of µ, k, and ω using these Pij by maximizing Equation 2.4. This is
the Maximization step of the E-M algorithm.

3: Repeat steps 2 and 3 until some measure of convergence, given the desired tolerance ε,
is achieved.

Figure 2.4: E-M Algorithm for Estimating Hawkes Process Parameters
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2.4 Estimating the Parameters of a Spatio-temporal Hawkes Process

Here we present a review of a variant of the above Expectation-Maximization (E-M)

method [16] to estimate the parameters µ, k, ω, and s of a spatio-temporal Hawkes process,

with intensity λ, from data, where

λ(t, x, y) = µ+
kω

4s2

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s .

Estimating the parameters of a spatio-temporal Hawkes process follows a very similar

procedure. Just like before, we need the likelihood function of the data {(t1, x1, y1), . . . ,

(tn, xn, yn)}. We use a version of Equation 2.1 that is modified to include a spatial compo-

nent. This is given by

L = e−
∫ t1
0

∫ L
0

∫ L
0 λ(t,x,y)dxdydtλ(t1, x1, y1)dtdxdy

× e−
∫ t2
t1

∫ L
0

∫ L
0 λ(t,x,y)dxdydtλ(t2, x2, y2)dtdxdy × · · ·

× e−
∫ tn
tn−1

∫ L
0

∫ L
0 λ(t,x,y)dxdydt

λ(tn, xn, yn)dtdxdy

= e−
∫ T
0

∫ L
0

∫ L
0 λ(t,x,y)dxdydt(dtdxdy)n

∏
i

λ(ti, xi, yi).

This time, each term e−
∫ t2
t1

∫ L
0

∫ L
0 λ(t,x,y)dxdydtλ(t2, x2, y2)dtdxdy approximates the prob-

ability of no events in the interval (ti−1, ti) anywhere in space followed by an event occur-

ring in a small interval of width dt around ti with a location in a small dx × dy rectangle

around (xi, yi).

Again, we will take the natural log of this equation to give the following log-likelihood

function:

L = −
∫ T

0

∫ L

0

∫ L

0

λ(t, x, y)dxdydt+ n ln(dtdxdy) +
∑
i

ln(λ(ti, xi, yi)). (2.9)
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Dropping any terms that don’t contain µ, k, or ω and then taking the expectation of L

with respect to P as defined in Equation 2.3, gives us the complete data log-likelihood of

the spatio-temporal Hawkes process [16]:

E[L ] = ln (µ)
∑
i

Pii + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|)−
∫ T

0

∫ L

0

∫ L

0

λ(t, x, y)dxdydt,

which can be simplified to

E[L ] = ln (µ)
∑
i

Pii + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|)− µTL2

+
k

4

∑
i

(
2− e

−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

) (
e−ω(T−ti) − 1

)
.

(2.10)

For more details on this simplification, see Appendix A.

Note that in this case, P is given by

Pij =


µ

λ(ti,xi,yi)
i = j

kωe−ω(ti−tj)p(xi−xj ,yi−yj)
λ(ti,xi,yi)

j < i

. (2.11)

To maximize E[L ] with respect to µ, k, ω, and s, we can once again take the respective

partial derivatives and set them equal to 0. This gives us the following formulas:

µ =

∑
i

Pii

TL2
,
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k =

−4
∑
j<i

Pij∑
i

(
2− e

−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

)
(e−ω(T−ti) − 1)

,

0 =
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

+
kω

4

∑
i

(
2− e

−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

)
(ti − T )e−ω(T−ti),

and

0 =
−2

s

∑
j<i

Pij +
1

s2

∑
j<i

Pij(|xi − xj|+ |yi − yj|)

+
k

4

∑
i

(
e−ω(T−ti) − 1

) (−2yi
s2

e
−yi
s − 2xi

s2
e
−xi
s +

2(yi − L)

s2
e
−(L−yi)

s

+
2(xi − L)

s2
e
−(L−xi)

s +
xi − yi + L

s2
e
−(xi−yi+L)

s +
yi − xi + L

s2
e
−(yi−xi+L)

s

+
xi + yi
s2

e
−(xi+yi)

s +
2L− xi − yi

s2
e
−(2L−xi−yi)

s

)
.

Instead of numerically solving ∂E[L ]
∂ω

= 0 and ∂E[L ]
∂s

= 0, which can be computationally

expensive, we rewrote these equations in the form ω = f1(k, ω, s) and s = f2(k, ω, s) and

then evaluate these two functions at the last iteration’s approximation for k, ω, and s to

update these parameters. Rewriting ∂E[L ]
∂ω

= 0 and ∂E[L ]
∂s

= 0 in this way gives

ω =

∑
j<i

Pij∑
j<i

Pij(ti − tj)− k
4

∑
i

(
2− e

−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

)
(ti − T )e−ω(T−ti)

,

s =

∑
j<i Pij(|xi − xj|+ |yi − yj|) + k

4

∑
i hi(ω, s)

2
∑

j<i Pij
,
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where

hi(ω, s) =
(
e−ω(T−ti) − 1

) (
− 2yie

−yi
s − 2xie

−xi
s + 2(yi − L)e

−(L−yi)
s

+ 2(xi − L)e
−(L−xi)

s + (xi − yi + L)e
−(xi−yi+L)

s + (yi − xi + L)e
−(yi−xi+L)

s

+ (xi + yi)e
−(xi+yi)

s + (2L− xi − yi)e
−(2L−xi−yi)

s

)
.

In practice, updating ω and s in this way resulted in the same estimated values of the

parameters.

We can now use an E-M algorithm similar to the one given in Figure 2.4 to estimate the

parameters of the process [16].

16



CHAPTER 3

A SELF-LIMITING HAWKES PROCESS

We now turn to the development of our model for a self-limiting Hawkes process. Recall

that the overall goal is to model a stochastic process with two competing properties: 1) the

process should have self-excitation, for which a Hawkes process can serve as a baseline,

and 2) the model should incorporate a mechanism by which the intensity of the process can

also be reduced by the occurrence of events, to represent potentially exogenous influences

such as police activity. To capture this second, self-limiting effect, we introduce two new

parameters, α and β, and define N(α, t), which counts the number of events that occurred

through the process on interval [t−α, t). Then our model of a self-limiting Hawkes process

intensity is

λ(t) =

(
µ+

∑
i:ti<t

g(t− ti)

)
e−βN(α,t). (3.1)

Parameter β therefore represents the strength of self-limiting, with greater values de-

creasing the intensity more than smaller values, and α represents a time-window over which

any given event can contribute to self-limiting of the overall process. If the process is being

used to model criminal events, then we can think of α as the memory of the police and β as

the increase in police deterrent activity for each additional crime that occurs in the interval

[t− α, t).

We also introduce a self-limiting spatio-temporal Hawkes process. Our model for the

intensity of this process is

λ(t, x, y) =

(
µ+

∑
i:ti<t

g(t− ti)p(x− xi, y − yi)

)
q(t, x, y, α, β), (3.2)

where
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q(t, x, y, α, β) =


e
−βN(α,t)
|box(t)| if (x, y) ∈ box(t)

1 else

and box(t) is a box centered on the mean location of the events in the interval [t−α, t).

Its width is twice the standard deviation in the x component of the locations of the events

in the interval [t − α, t). Its height is twice the standard deviation in the y component of

the locations of the events in the interval [t − α, t). Just like in the intensity function of

the standard spatio-temporal Hawkes process, p is a two-dimensional probability density

function.

Here, we can think of the parameters α and β just as we did for the (temporal) self-

limiting Hawkes process: β represents the strength of self-limiting and α represents a time-

window over which any given event can contribute to self-limiting of the overall process.

Note that the self-limiting at time t only occurs inside of box(t); outside of box(t), the pro-

cess behaves exactly like a standard spatio-temporal Hawkes process with no self-limiting

component.

3.1 Simulating a Self-limiting Hawkes Process

Equation 3.1 can be interpreted in the following mechanistic way, which aids in simulating.

In the absence of self-limiting, the process would behave as a standard Hawkes process, and

would generate some sequence of hypothetical events. However, the self-limiting effect is

such that each event ti that does in fact occur via the process causes every subsequent hypo-

thetical event within the period (ti, ti+α] to be probabilistically “blocked” from occurring,

with probability p = 1− e−β . If we assume that multiple overlapping blockings of a single

hypothetical event are probabilistically independent, then the probability of a hypothetical

event at time tj not being blocked is e−βN(α,tj). Hence, the intensity of Equation 3.1 tells

us that events occur only when the underlying Hawkes process would hypothetically cause

them to occur, and only if they are not probabilistically blocked by some of the prior events
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that did in fact occur (weren’t blocked themselves).

Using this interpretation, one could create a straightforward Poisson-thinning type al-

gorithm to simulate the self-limiting Hawkes process. Specifically, first simulate the un-

derlying Hawkes process by itself, without any self-limiting effect, being sure to retain the

true branching structure of the process. Then, starting with the first event and working se-

quentially, retain each event with probability e−βN(α,tj), where tj is the time of the event. If

an event ti is retained, continue to the next event. If event ti is not retained, remove it from

the list of event times and also remove all subsequent events that are descendants (either

directly or indirectly) of ti in the branching process, then proceed to the next event.

While the above process is straightforward to describe, it is not very computationally

efficient. Hence, we also provide a more efficient algorithm, which is a modified version

of the algorithm of Dassios and Zhao [15], and which incorporates the preventative action

right into the generation of the Hawkes process. Just as is the case in the standard algorithm

of Dassios and Zhao, this algorithm does have the drawback of only being valid for the

exponential excited kernel g(t− ti) = kωe−ω(t−ti). Therefore, we will use this choice of g

for our self-limiting Hawkes process.

To modify this method to account for the self-limiting aspect, we simply add a step

where each event to be added is only added with probability e−βN(α,tj), where tj is the time

of the potential new event. If tj is added, the algorithm continues just as in the Dassios

and Zhao method. If tj is not added, time is incremented by ∆t and the exponential decay

of the excited kernel is updated, but the excited kernel is not incremented as one normally

would. This gives the algorithm in Figure 3.1.

In Figure 3.1, each U(0, 1) is a uniform random variable on [0, 1] and B(1, p) is a

Bernoulli random variable with probability of success p.

We note here that, unlike a standard Hawkes process, our self-limiting process can still

remain bounded even if k > 1. In a standard Hawkes process, k > 1 means that each

event on average gives rise to more than one daughter event, generally causing the intensity
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Input: T - The final simulation time; µ, k, ω - Hawkes parameters; α, β - Self-limiting
parameters

Output: A realization of a self-limiting Hawkes process, {t1, . . . , tn}
1: ts = − ln(U(0,1))

µ

2: g = k
3: times = ts
4: while ts < T do
5: tb = − ln(U(0,1))

µ

6: ζ = ln(U(0,1))
g

+ 1
7: if ζ > 0 then
8: td = − ln(ζ)

ω

9: else
10: td = tb
11: end if
12: ∆t = min(tb, td)
13: ts = ts+ ∆t
14: g = ge−ω∆t

15: p = e−βN(α,ts)

16: if B(1, p) == 1 then
17: g = g + k
18: times = [times, ts]
19: end if
20: end while
21: times = times that are less than T

Figure 3.1: Self-limiting Hawkes Process Simulation Algorithm

to grow exponentially in time. However, the self-limiting process avoids this through the

e−βN(α,t) term. If k > 1 starts to cause λ to grow very large, then the number of events

N will also grow, and the exponential dampening will force the value of λ back down. In

Figure 3.2, we illustrate two realizations of a self-limiting Hawkes process, one of which

has k > 1.
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Figure 3.2: Examples of simulated data from a self-limiting Hawkes model and the inten-
sity function λ(t). For the subfigure on the left, the parameters were µ = 0.15, k = 0.6,
ω = 1, α = 5, and β = 0.3. For the subfigure on the right, the parameters were µ = 0.5,
k = 1.5, ω = 0.5, α = 10, and β = 0.1.

3.2 Simulating a Self-limiting Spatio-temporal Hawkes Process

Simulating a self-limiting spatio-temporal Hawkes process can be done a mechanistic way

similar to what was described at the beginning of the previous section. In the absence of

self-limiting, the process would behave as a standard spatio-temporal Hawkes process, and

would generate some sequence of hypothetical events. However, the self-limiting effect is

such that each event (ti, xi, yi) that would have occurred in the underlying Hawkes process

with no self-limiting is probabilistically “blocked” with probability p = 1−e
−β

|box(ti)| by each

of the events that occurred and were not blocked in the interval (ti − α, ti]. If we assume

that multiple overlapping blockings of a single hypothetical event are probabilistically in-

dependent, then the probability that the event (ti, xi, yi) is not blocked is e
−βN(α,ti)

|box(ti)| . Hence,

the intensity of Equation 3.2 tells us that events occur only when the underlying Hawkes

process would hypothetically cause them to occur, and only if they are not probabilistically

blocked by some of the prior events that did in fact occur (weren’t blocked themselves).

Under this interpretation, one could again create a Poisson-thinning type algorithm to

simulate the self-limiting spatio-temporal Hawkes process. Though the implementation of

such an algorithm is not quite as straightforward as it was in the previous cases.
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Once again, simulation of a spatio-temporal Hawkes process can be done more effi-

ciently by further modifying the algorithm of Dassios and Zhao [15]. To use this algorithm,

we need to use the self-exciting kernel g(t− ti) = kωe−ω(t−ti). This gives the algorithm in

Figure 3.3

In Figure 3.3, each U(0, 1) is a uniform random variable on [0, 1] and B(1, q) is a

Bernoulli random variable with probability of success q.
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Input: T - The final simulation time; µ, k, ω, s - Hawkes parameters; p - a two-
dimensional probability distribution function

Output: A realization of a spatio-temporal Hawkes process, {(t1, x1, y1), . . . , (tn, xn, yn)}
1: ts = − ln(U(0,1))

µ

2: xs = U(0, L)
3: ys = U(0, L)
4: g = k
5: events = (ts, xs, ys)
6: while ts < T do
7: tb = − ln(U(0,1))

µ

8: ζ = ln(U(0,1))
sum(g)

+ 1

9: xs = U(0, L)
10: ys = U(0, L)
11: if ζ > 0 then
12: td = − ln(ζ)

ω

13: else
14: td = tb
15: end if
16: ∆t = min(tb, td)
17: ts = ts+ ∆t
18: g = ge−ω∆t

19: if td == ∆t then
20: parentX = x-value of location of parent chosen according to g
21: parentY = y-value of location of parent chosen according to g
22: xs and ys are chosen according to p(x− parentX, y − parentY )
23: end if
24: if (xs, ys) ∈ box(ts) then
25: q = e

−βN(α,ts)
|box(t)|

26: else
27: q = 1
28: end if
29: if B(1, q) == 1 then
30: g = [g, k]
31: events = [events, (ts, xs, ys)]
32: end if
33: end while
34: events = events where t < T and (x, y) ∈ [0, L]× [0, L]

Figure 3.3: Self-limiting Spatio-temporal Hawkes Process Simulation Algorithm
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3.3 Estimating the Parameters of a Self-limiting Hawkes Process

To estimate the parameters of a self-limiting Hawkes process, we modify the Expectation-

Maximization procedure described above. Plugging the intensity from Equation 3.1 into

Equation 2.2 and then taking the expectation with respect to the probabilistic branching

structure P as defined by Equation 2.3 yields the following equation:

E[L ] = ln(µ)
∑
i

Pii − β
∑
i

PiiN(α, ti) + ln(kω)
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− β
∑
j<i

PijN(α, ti)− µ
∫ T

0

e−βN(α,t)dt− kω
∫ T

0

e−βN(α,t)
∑
ti<t

e−ω(t−ti)dt.

(3.3)

Here P is defined as

Pij =


µe−βN(α,ti)

λ(ti)
i = j

kωe−βN(α,ti)e−ω(ti−tj)

λ(ti)
j < i,

(3.4)

which is actually equivalent to the definition of P in Equation 2.8 since e−βN(α,ti) is a

factor in the numerator and denominator of each fraction, and thus, can be cancelled.

First, we note that on a fixed time interval from [0, T ], N(α, t) is just a piece-wise

constant function

N(α, t) =



n1 t ∈ [τ0 = 0, τ1]

n2 t ∈ (τ1, τ2]

...
...

nl t ∈ (τl−1, τl = T ].

(3.5)

The pairs (ni, τi) can be easily computed by realizing that N(α, t) increases by exactly

one at each event time ti and decreases by exactly one at each time ti + α. The set {τi} is
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therefore constructed by taking the union of the two sets {ti} and {ti + α}, sorting it, and

removing any entries with values greater than T .

Using this, we can rewrite our complete data log-likelihood as

E[L ] = ln(µ)
∑
i

Pii − β
∑
i

Piins(ti) + ln(k)
∑
j<i

Pij + ln(ω)
∑
j<i

Pij

− ω
∑
j<i

Pij(ti − tj)− β
∑
j<i

Pijns(ti) − µ
l∑

i=1

e−βni(τi − τi−1)

+ k

n∑
i=1

l∑
j=1

e−βnj
[
e−ω(τj−ti) − e−ω(τj−1−ti)

]
1E,

(3.6)

where 1E is the indicator function for the event E = {ti < τj} and s(ti) is the index of

ti in {τ0, . . . , τl}.

For more details on this calculation, see Appendix B.

Our log-likelihood function now contains five unknowns (µ, k, ω, α, and β). For µ, k,

ω, and β, we can find the respective partial derivatives of E[L ] and set them equal to 0 in

order to maximize the log-likelihood. This gives the following formulas:

µ =

n∑
i=1

Pi,i

l∑
i=1

e−βni(τi − τi−1)

, (3.7)

k =

−
∑
j<i

Pi,j

n∑
i=1

l∑
j=1

e−βnj
[
e−ω(τj−ti) − e−ω(τj−1−ti)

]
1{ti<τj}

, (3.8)

0 =
1

ω

∑
j<i

Pi,j −
∑
j<i

Pi,j(ti − tj) + k
l∑

j=1

e−βnj
n∑
i=1

(ti − τj)e−ω(τj−ti)1E

− k
l∑

j=1

e−βnj
n∑
i=1

(ti − τj−1)e−ω(τj−1−ti)1E,

(3.9)
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and

0 = −
∑
i

Pi,ins(ti) −
∑
j<i

Pi,jns(ti) + µ

l∑
i=1

nie
−βni(τi − τi−1)

− k
n∑
i=1

l∑
j=1

nje
−βnj

[
e−ω(τj−ti) − e−ω(τj−1−ti)

]
1E.

(3.10)

However, as N(α, t) is not differentiable with respect to α, we must maximize over α

using some other method. For now, assume α is given, in which case the remaining parame-

ters µ, k, ω, and β could be found using the same basic E-M algorithm given in Figure 2.4,

with the maximization step done using Equation 3.7 - Equation 3.10. In practice, how-

ever, simultaneously solving Equation 3.9 and Equation 3.10 can be quite computationally

demanding. Hence, in our implementations throughout the remainder of this paper, we

have chosen instead to perform a parameter sweep over β values, numerically solving only

Equation 3.9 for each of the β values swept over, thereby also obtaining µ and k from Equa-

tion 3.7 and Equation 3.8, then simply choosing the parameter combination that resulted in

the highest value for L .

To estimate α, we also perform a parameter sweep, noting the maximal log-likelihood

obtained for each test value of α and then simply selecting that α, and its accompanying µ,

k, ω, and β, with the greatest overall log-likelihood.

3.4 Estimating the Parameters of Self-limiting Spatio-temporal Hawkes Process

Just as we have done before, we will use g(t− ti) = kωe−ω(t−ti) in Equation 3.2. We will

also use p(x− xi, y − yi) = 1
4s2
e
−(|x−xi|+|y−yi|)

s in the same equation.

To estimate the parameters of a self-limiting spatio-temporal Hawkes process, we will

once again use a version of the Expectation-Maximization algorithm given in Figure 2.4
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[16]. Plugging in the intensity from Equation 3.2 into Equation 2.9 and simplifying gives

E[L ] = ln (µ)
∑
i

Pii +
∑
i

Piiq(ti, xi, yi, α, β) + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|) +
∑
j<i

Pijq(ti, xi, yi, α, β)

− µ

[
TL2 +

l∑
j=1

bj(τj − τj−1)

(
e
−βnj
bj − 1

)]

+
k

4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj

Sij
s2

+
S ′ij
s2

)(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

]
,

(3.11)

where {n1, . . . , nl} are the discrete values of the function N(α, t), {τ1, . . . , τl} are the

times where N(α, t) changes value, and bj is the area of box(t) in the interval [τi−1, τi).

For more information on {n1, . . . , nl} and {τ1, . . . , τl}, see the previous section.

Before we define Sij and S ′ij , let

Si(t) =

∫∫
box(t)

e
−(|x−xi|+|y−yi|)

s dxdy

and

S ′i(t) =

∫∫
box(t)C

e
−(|x−xi|+|y−yi|)

s dxdy.

Since box(t) and box(t)C are constants in the interval [τj−1, τj) and each integrand does

not depend on t, each of these integrals is a constant in the interval [τj−1, τj). Sij is the value

of Si(t) in the interval [τj−1, τj) and S ′ij is the value of S ′i(t) in the interval [τj−1, τj).

To define Sij and S ′ij explicitly, let us say that box(t) = [leftj, rightj] × [bottomj, topj]

in the interval [τj−1, τj]. For convenience, we give explicit definition of Sij
s2

and
S′ij
s2

instead

of Sij and S ′ij . These are given by
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Sij
s2

=



(
e
xi−leftj

s − e
xi−rightj

s

)(
e
yi−bottomj

s − e
yi−topj

s

)
for Case 1(

2− e
leftj−xi

s − e
xi−rightj

s

)(
e
yi−bottomj

s − e
yi−topj

s

)
for Case 2(

e
rightj−xi

s − e
leftj−xi

s

)(
e
yi−bottomj

s − e
yi−topj

s

)
for Case 3(

e
xi−leftj

s − e
xi−rightj

s

)(
2− e

bottomj−yi
s − e

yi−topj
s

)
for Case 4(

2− e
leftj−xi

s − e
xi−rightj

s

)(
2− e

bottomj−yi
s − e

yi−topj
s

)
for Case 5(

e
rightj−xi

s − e
leftj−xi

s

)(
2− e

bottomj−yi
s − e

yi−topj
s

)
for Case 6(

e
xi−leftj

s − e
xi−rightj

s

)(
e

topj−yi
s − e

bottomj−yi
s

)
for Case 7(

2− e
leftj−xi

s − e
xi−rightj

s

)(
e

topj−yi
s − e

bottomj−yi
s

)
for Case 8(

e
rightj−xi

s − e
leftj−xi

s

)(
e

topj−yi
s − e

bottomj−yi
s

)
for Case 9,

where

Case 1 = {(xi, yi) : xi ≤ leftj, yi ≤ bottomj}

Case 2 = {(xi, yi) : leftj < xi < rightj, yi ≤ bottomj}

Case 3 = {(xi, yi) : xi ≥ rightj, yi ≤ bottomj}

Case 4 = {(xi, yi) : xi ≤ leftj, bottomj < yi < topj}

Case 5 = {(xi, yi) : leftj < xi < rightj, bottomj < yi < topj}

Case 6 = {(xi, yi) : xi ≥ rightj, bottomj < yi < topj}

Case 7 = {(xi, yi) : xi ≤ leftj, yi ≥ topj}

Case 8 = {(xi, yi) : leftj < xi < rightj, yi ≥ topj}

Case 9 = {(xi, yi) : xi ≥ rightj, yi ≥ topj}.

Then we have
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S ′ij
s2

=
(

2− e
−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

)
− Sij

s2
.

For more details on the derivation of Equation 3.11, see Appendix B.

To maximize E[L ] with respect to µ, k, ω, and s, we can once again take the respective

partial derivatives and set them equal to 0. This gives us the following formulas:

µ =

∑
i

Pii

TL2 +
l∑

j=1

bj(τj − τj−1)

(
e
−βnj
bj − 1

) ,

k =

−4
∑
j<i

Pij

l∑
j=1

n∑
i=1

[(
e
−βnj
bj

Sij
s2

+
S′ij
s2

)(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

] ,

0 =
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj) +
kω

4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj

Sij
s2

+
S ′ij
s2

)
(
(ti − τj)e−ω(τj−ti) − (ti − τj−1)e−ω(τj−1−ti)

)
1{ti<τj}

]
,

and

0 = −2s
∑
j<i

Pij +
∑
j<i

Pij(|xi − xj|+ |yi − yj|)

+
k

4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj s2 d

ds

(
Sij
s2

)
+ s2 d

ds

(
S ′ij
s2

))
(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

]
.

Here d
ds

(
Sij
s2

)
and d

ds

(
S′ij
s2

)
are again defined piecewise using the same nine cases as

before:
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Case 1:
d

ds

(
Sij
s2

)
=

1

s2

[
− (−leftj − bottomj + xi + yi)e

−leftj−bottomj+xi+yi
s

+ (−leftj − topj + xi + yi)e
−leftj−topj+xi+yi

s

+ (−rightj − bottomj + xi + yi)e
−rightj−bottomj+xi+yi

s

− (−rightj − topj + xi + yi)e
−rightj−topj+xi+yi

s

]
,

Case 2:
d

ds

(
Sij
s2

)
=

1

s2

[
− 2(yi − bottomj)e

yi−bottomj
s + 2(yi − topj)e

yi−topj
s

+ (leftj − bottomj − xi + yi)e
leftj−bottomj−xi+yi

s

− (leftj − topj − xi + yi)e
leftj−topj−xi+yi

s

+ (−rightj − bottomj + xi + yi)e
−rightj−bottomj+xi+yi

s

− (−rightj − topj + xi + yi)e
−rightj−topj+xi+yi

s

]
,

Case 3:
d

ds

(
Sij
s2

)
=

1

s2

[
− (rightj − bottomj − xi + yi)e

rightj−bottomj−xi+yi
s

+ (rightj − topj − xi + yi)e
rightj−topj−xi+yi

s

+ (leftj − bottomj − xi + yi)e
leftj−bottomj−xi+yi

s

− (leftj − topj − xi + yi)e
leftj−topj−xi+yi

s

]
,
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Case 4:
d

ds

(
Sij
s2

)
=

1

s2

[
− 2(xi − leftj)e

xi−leftj
s + 2(xi − rightj)e

xi−rightj
s

+ (bottomj − leftj − yi + xi)e
bottomj−leftj−yi+xi

s

− (bottomj − rightj − yi + xi)e
bottomj−rightj−yi+xi

s

+ (−topj − leftj + yi + xi)e
−topj−leftj+yi+xi

s

− (−topj − rightj + yi + xi)e
−topj−rightj+yi+xi

s

]
,

Case 5:
d

ds

(
Sij
s2

)
=

1

s2

[
2(bottomj − yi)e

bottomj−yi
s + 2(yi − topj)e

yi−topj
s

+ 2(leftj − xi)e
leftj−xi

s − (leftj + bottomj − xi − yi)e
leftj+bottomj−xi−yi

s

− (leftj − topj − xi + yi)e
leftj−topj−xi+yi

s + 2(xi − rightj)e
xi−rightj

s

− (−rightj + bottomj + xi − yi)e
−rightj+bottomj+xi−yi

s

− (−rightj − topj + xi + yi)e
−rightj−topj+xi+yi

s

]
,

Case 6:
d

ds

(
Sij
s2

)
=

1

s2

[
− 2(rightj − xi)e

rightj−xi
s + 2(leftj − xi)e

leftj−xi
s

+ (bottomj + rightj − xi − yi)e
bottomj+rightj−xi−yi

s

− (bottomj + leftj − xi − yi)e
bottomj+leftj−xi−yi

s

+ (rightj − topj + yi − xi)e
rightj−topj+yi−xi

s

− (leftj − topj + yi − xi)e
leftj−topj+yi−xi

s

]
,
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Case 7:
d

ds

(
Sij
s2

)
=

1

s2

[
− (topj − leftj − yi + xi)e

topj−leftj−yi+xi
s

+ (topj − rightj − yi + xi)e
topj−rightj−yi+xi

s

+ (bottomj − leftj − yi + xi)e
bottomj−leftj−yi+xi

s

− (bottomj − rightj − yi + xi)e
bottomj−rightj−yi+xi

s

]
,

Case 8:
d

ds

(
Sij
s2

)
=

1

s2

[
− 2(topj − yi)e

topj−yi
s + 2(bottomj − yi)e

bottomj−yi
s

+ (leftj + topj − yi − xi)e
leftj+topj−yi−xi

s

− (leftj + bottomj − yi − xi)e
leftj+bottomj−yi−xi

s

+ (topj − rightj + xi − yi)e
topj−rightj+xi−yi

s

− (bottomj − rightj + xi − yi)e
bottomj−rightj+xi−yi

s

]
,

and

Case 9:
d

ds

(
Sij
s2

)
=

1

s2

[
− (rightj + topj − xi − yi)e

rightj+topj−xi−yi
s

+ (rightj + bottomj − xi − yi)e
rightj+bottomj−xi−yi

s

+ (leftj + topj − xi − yi)e
leftj+topj−xi−yi

s

− (leftj + bottomj − xi − yi)e
leftj+bottomj−xi−yi

s

]
.

Just like in the standard spatio-temporal Hawkes case, we can rewrite ∂E[L ]
∂ω

= 0 and

∂E[L ]
∂s

= 0 in the form ω = f1(k, ω, s) and s = f2(k, ω, s) and then evaluate these two

functions at the values of k, ω, and s from the previous iteration to update these parameters.
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Rewriting ∂E[L ]
∂ω

= 0 and ∂E[L ]
∂s

= 0 in this way gives

ω =

∑
j<i

Pij∑
j<i

Pij(ti − tj)− A(k, ω, s)

and

s =

∑
j<i

Pij(|xi − xj|+ |yi − yj|) + A′(k, ω, s)

2
∑
j<i

Pij
,

where

A(k, ω, s) =
k

4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj

Sij
s2

+
S ′ij
s2

)
(
(ti − τj)e−ω(τj−ti) − (ti − τj−1)e−ω(τj−1−ti)

)
1{ti<τj}

]

and

A′(k, ω, s) =
k

4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj s2 d

ds

(
Sij
s2

)
+ s2 d

ds

(
S ′ij
s2

))
(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

]
.
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CHAPTER 4

TESTING PARAMETER ESTIMATION

4.1 Hawkes E-M Algorithm Vs. Self-limiting Hawkes E-M Algorithm

We tested our method over the following sets of parameters for the preventative action:

α ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5},

β ∈ {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045}.

We tested each value in each of these sets by choosing one parameter to vary while

holding the other parameter constant at the fifth value in its set. So while we were testing

the different values of α, β was fixed at 0.025. Likewise, while we were testing the different

values of β, α was fixed at 2.5. For each test, µ, k, and ω were fixed at 0.65, 0.65, and 50,

respectively.

For a particular set of values of α and β, 100 realizations of a Hawkes process on

time interval [0, 1000] were created with the given parameters. When simulating these pro-

cesses, we employed the thinning algorithm. This was done so that each realization would

yield two datasets: one a standard Hawkes process, which we will refer to as the hypo-

thetical dataset, which could be interpreted as the set of crimes that might have occurred

with no police intervention; the other, which we will refer to as the self-limiting dataset, a

corresponding subset of the hypothetical dataset representing the full self-limiting process,

which can be thought of as the set of crimes that might have actually occurred when police

deterrence was in place.

For each realization, the parameters µ, k, and ω were then estimated using the standard

Hawkes process E-M algorithm on both resulting datasets, and using our self-limiting E-M

34



algorithm on the self-limiting dataset only. For this test, when using our self-limiting E-M

algorithm on the self-limiting dataset, we used the true values of α and β to estimate the

other parameters. This allows us to determine the extent to which the self-limiting aspect of

the process affects parameter estimation. This is an important point to consider, given that

current applications to crime data do not explicitly consider the effects of police activity,

and therefore may have systematically biased estimates for parameter values.

To determine how well parameters have been estimated in each of these various scenar-

ios, we consider relative error metrics for each of the estimated parameters. For example,

if µ(i)
e is the estimated value of µ for the ith Hawkes process in one of the three scenarios,

then our average relative error over the 100 realizations for that scenario is

1

100

100∑
i=1

|µ(i)
e − µ|
µ

;

corresponding values are computed for the other parameters.

Results are shown in Figure 4.1 and Figure 4.2. Each figure consists of nine different

plots. Each row shows the relative errors in estimates of µ, k, and ω under one of the three

scenarios. The top row shows the errors in estimation for the standard Hawkes datasets

using the standard Hawkes E-M algorithm, and serves as a control. The middle row shows

the errors when the standard Hawkes E-M algorithm is used on the self-limiting datasets.

The bottom row shows the errors in estimation when using our self-limiting E-M algorithm

on the self-limiting datasets.

Across α and β values, we find that estimation error for each of the three parameters

is roughly the same when comparing the standard Hawkes datasets estimated via standard

Hawkes E-M (top rows) to the self-limiting datasets estimated via our self-limiting E-M

(bottom rows). This shows that our algorithm is able to estimate the parameters of a self-

limiting Hawkes process as well as can be done for a standard Hawkes process of the same

parameters. The middle rows show how mis-specification of the model – using standard

Hawkes as the model when the process is in reality self-limiting – can lead to significant
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errors in parameter estimation, in a systematic way. Recall that α can be thought of as

the memory of the police force and β can be thought of as the intensity of the police

force. So as α and β increase, the number of events prevented within the hypothetical

datasets increases. As more events are prevented, we should expect that the accuracy of the

estimation via standard Hawkes E-M should decrease as we lose more information about

the underlying Hawkes process, which is precisely what we find for parameters µ and k.

However, the error in estimating parameter ω is not very sensitive to the precise value of α

or β used.

Figure 4.1: Parameter estimation error when α is varied under various testing conditions
described in the text.

Next, we tested how well the parameters are estimated when using the parameter sweep

method for estimating α and β. To do this, we first chose two sets of self-limiting Hawkes

parameters on which to test the estimation:
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Figure 4.2: Parameter estimation error when β is varied under various testing conditions
described in the text.

{µ = 0.65, k = 0.65, ω = 50, α = 2, β = 0.05},

{µ = 0.65, k = 0.65, ω = 50, α = 5, β = 0.01},

We then generated 100 self-limiting Hawkes processes for each set of parameters. For

each process, we used the self-limiting E-M algorithm along with the parameter sweep

method to estimate the parameters. Table 4.1 and Table 4.2 show the average values of each

of the five parameters estimated using this method as well as the percent error between the

average estimated and true values of the parameters for both sets of true parameters. As

we can see, even though the estimation of α and β leads to much higher errors than is

found with the other parameters, the values found are still reasonable and lead to accurate

estimation of µ, k, and ω.
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Table 4.1: The average estimated parameters compared with the true parameters for the
first set of true parameters.

Average
Parameter True Values Estimated Values Percent Error (%)

µ 0.65 0.6637 2.11
k 0.65 0.6449 -0.78
ω 50 51.5862 3.17
α 2 3.15 57.50
β 0.05 0.0429 -14.20

Table 4.2: The average estimated parameters compared with the true parameters for the
second set of true parameters.

Average
Parameter True Values Estimated Values Percent Error (%)

µ 0.65 0.6955 7.00
k 0.65 0.7138 9.82
ω 50 50.6129 1.23
α 5 3.745 -25.10
β 0.01 0.0261 161.00

4.2 Spatio-temporal Hawkes E-M Algorithm Vs. Self-limiting Spatio-temporal Hawkes

E-M Algorithm

To test our self-limiting spatio-temporal Hawkes method, we repeated the same analysis as

was done in section 4.1. Just like before, we tested over the following sets of parameters:

α ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5},

β ∈ {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045},

with µ, k, ω, and s fixed at 0.65, 0.65, 50, and 0.1, respectively. In this analysis, for

a particular set of values of α and β, 10 realizations of a Hawkes process on time inter-

val [0, 100] and the spatial region [0, 10] × [0, 10] were created with the given parameters.

Recall from section 4.1, that in the prior analysis we used 100 realizations of a Hawkes

process, each on the time interval [0, 1000], for each pair of parameters. Due to the com-
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putational expense of our spatio-temporal methods, repeating the prior analysis was not

feasible without reducing the number of realizations as well the size of the time interval.

Results are shown in Figure 4.3 and Figure 4.4. Each subplot shows how the error in

the estimation of one of the parameters changes as either α varies (Figure 4.3) or β varies

(Figure 4.4). The top row shows the errors in estimation for the standard Hawkes datasets

using the standard Hawkes E-M algorithm, and serves as a control. The middle row shows

the errors when the standard Hawkes E-M algorithm is used on the self-limiting datasets.

The bottom row shows the errors in estimation when using our self-limiting E-M algorithm

on the self-limiting datasets. For more information about the testing conditions described

above, refer back to section 4.1.

Across α and β values, we find that estimation error for each of the four parameters is

roughly the same when comparing the standard spatio-temporal Hawkes datasets estimated

via standard spatio-temporal Hawkes E-M (top rows) to the self-limiting datasets estimated

via our self-limiting spatio-temporal E-M (bottom rows). This shows that our algorithm is

able to estimate the parameters of a self-limiting spatio-temporal Hawkes process as well

as can be done for a standard spatio-temporal Hawkes process of the same parameters.

While the errors displayed in the bottom rows are comparable to those in the top rows,

we should note that the errors in estimating µ, k, ω, and s are increasing as α and β increase,

a phenomenon that we did not see to this degree in our previous analysis. This could be

caused by the fact that in a realization of a spatio-temporal Hawkes process, preventing

a single event causes a loss of information larger than the prevention of a single event in

a temporal Hawkes process. We suspect that if we redid the analysis in section 4.1 with

larger values of α and β, we would eventually see the same behavior. Another possible

cause for the experiment in which we allowed α to vary is that in this analysis the α values

used were a greater percentage of T than they were in the previous analysis. Thus, a higher

percentage of events were blocked.

The middle rows show how mis-specification of the model – using standard spatio-
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temporal Hawkes as the model when the process is in reality self-limiting – can lead to

significant errors in parameter estimation, in a systematic way. Recall that α can be thought

of as the memory of the police force and β can be thought of as the intensity of the police

force. So as α and β increase, the number of events prevented within the hypothetical

datasets increases. As more events are prevented, we should expect that the accuracy of the

estimation via standard Hawkes E-M should decrease as we lose more information about

the underlying Hawkes process, which is precisely what we find for parameters µ and ω.

This time, the error in estimating parameter k and s does not seem very sensitive to the

precise value of α or β used, however, I expect that k would exhibit similar behavior to µ

and ω given a greater number of iterations.
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Figure 4.3: Parameter estimation error when α is varied under various testing conditions
described in the text.
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Figure 4.4: Parameter estimation error when β is varied under various testing conditions
described in the text.
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CHAPTER 5

RESULTS USING REAL CRIME DATA

5.1 Hawkes Model Vs. Self-limiting Hawkes Model

Here, we employ our self-limiting Hawkes process on crime data from Chicago, obtained

via their open access portal [17]. We stress here that the main purpose of this analysis is

not to establish that the self-limiting Hawkes process is superior to the standard Hawkes

process in describing real world crime data; indeed, as we will show, neither model seems

especially well fitting to the data analyzed here, for reasons we hypothesize below. Instead,

this analysis is meant only to establish the plausibility of the model with respect to an

often-used alternative (the standard Hawkes with exponentially decaying excited kernel),

and show that one can readily fit the self-limiting Hawkes to real world datasets.

The dataset considered contains the times and locations of all burglaries in Chicago

from 2001 to 2020. We selected burglaries for the tests in this section because the “repeat

victimization” of burglary targets has been studied in depth and is widely accepted [9, 18].

It is suspected that many other crime types show this repeat victimization as well [8]. While

this is good evidence that pure crime data of these crime types (with no police activity) will

have the self-exciting tendency that we see in a Hawkes process, without knowing more

about the police response to each particular crime type, we can’t say whether or not either

the standard Hawkes model or our self-limiting Hawkes model will accurately represent

actual data (with any police activity already baked in) of these crime types. For example, if

we have a crime type where the police response to each individual event is highly variable

and depends upon the circumstances of the event, then it is unlikely that either model will

accurately represent actual data of this crime type. This is true even if the crime type

exhibits strong repeat victimization. The response of police to burglaries likely varies less
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than other types of crime, making burglary a good candidate for our model.

Though location information is provided in the dataset, we are only considering purely

temporal processes here. Prior work [18] has shown that parent-daughter crime pairs are

often separated by relatively small distances. To allow our temporal processes to account

for this, we have binned our data into squares with sides 1500 feet long, considering each

such bin separately. In a square this size, any crime could conceivably be the daughter of

any crime that occurred before it.

5.1.1 Residual Analysis

Having spatially binned our data, we only consider the ten squares with the highest total

crime counts. For each such bin, we first divide the events into two sets, a training set

(the first half of the events) and a testing set (the second half of the events). We then es-

timate the parameters of the training set using both the standard and self-limiting Hawkes

models. As we mentioned in chapter 2 and chapter 3, when estimating the parameters of

the self-limiting Hawkes model, we will be using the E-M algorithm to estimate µ, k, and

ω, and these estimates will be done independently for each square. For the estimation of

α and β, we use the same values for all squares; this seems plausible, as the response of

police to crime numbers is likely more consistent across space than crime rates themselves.

After performing the sweeps, we choose the values of α and β that maximize the num-

ber of squares where the self-limiting Hawkes process outperformed the standard Hawkes

process on the square’s training set. Here, we say that model A outperforms model B if

the parameters estimated using model A result in a higher log-likelihood value and lower

Akeike information criteron value (to be defined later) than the parameters estimated using

model B.

We choose this metric for selecting α and β this way since the standard Hawkes is our

baseline model, and we want to determine if the self-limiting Hawkes could potentially be

a better fit than it. We note that, given this procedure, the actual best fitting self-limiting
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Hawkes parameters would likely do better than what we present below, were we to allow

α and β to vary from square to square, and choose the parameters for each square that

maximized that square’s log-likelihood.

The values of the parameters found in this way are given in Table 5.1 and Table 5.2.

Table 5.1: The values of the parameters using the standard Hawkes model.

Square µ (days−1) k ω (days−1)
1 0.0917 0.3933 0.0890
2 0.0590 0.6032 0.0204
3 0.0948 0.1439 0.4550
4 0.0513 0.5644 0.0287
5 0.1111 0.0461 11.1671
6 0.0987 0.2162 0.3034
7 0.0874 0.3115 0.1268
8 0.0734 0.4469 0.0531
9 0.0737 0.4428 0.0553

10 0.0720 0.4608 0.0620

Table 5.2: The values of the parameters using the self-limiting Hawkes model using average
best fit values α = 1.124 days and β = 0.03.

Square µ (days−1) k ω (days−1)
1 0.0821 0.4703 0.0798
2 0.0581 0.6152 0.0275
3 0.0689 0.3901 0.0712
4 0.0585 0.4981 0.0463
5 0.1110 0.0485 10.8960
6 0.0599 0.5416 0.0460
7 0.0823 0.3621 0.1170
8 0.0692 0.4905 0.0592
9 0.0657 0.5177 0.0539
10 0.0710 0.4761 0.0724

To determine goodness of fit for each of these estimates, we compute the residuals

{r1, . . . , rn} for each of the two models in each testing set, where

ri =

∫ ti

0

λ(t)dt.

Here, {t1, . . . , tn} are the times of the crimes in the testing set that occurred in the
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current square and λ uses our best fit parameters from the training set for that square. Note

that the times in the testing set are shifted so that the final event of the training set is time

t = 0 for the testing set.

If a model correctly represents the dataset, then the residuals should be distributed in a

way consistent with a unit rate homogeneous Poisson process. Graphically, this means that

when plotted as points (i, ri), the resulting curve should lie close to the line y = x. We

measure the goodness of fit of each model using the Kolmogorov–Smirnov test statistic

KS = max
1≤i≤n

|ri − i|;

results are given in Table 5.3. We found that the self-limiting Hawkes model has a

smaller KS test statistic than the standard Hawkes model in seven of the ten squares tested,

meaning that the self-limiting model is statistically significant at a higher confidence level

than the standard Hawkes process for these seven squares. However, neither was model

statistically significant at the 95% confidence level in any of the squares. There are several

possible reasons for this finding. One possibility is that the excited kernel for real data is

not exponentially decaying; this can be observed in [10], where a non-parametric method

is used to estimate the kernel g of the Hawkes process, and the results are clearly not

exponential decay. Another possibility is that the true values of the parameters are changing

over the time period spanned by the dataset. In fact, this is especially likely since the dataset

spans a very long time period (20 years) and since we trained our model solely on the first

10 years while testing solely on the last 10 years. Additionally, by spatially grouping

the data into small squares with no interaction, we are introducing some error, since it is

possible that families of events could straddle the border of two or more squares.

Figure 5.1 shows a graphical example of the residual analysis. Here the two solid lines

on either side of the line y = x represent the boundaries of the regions in which 95% of

Poisson processes with the same number of events fall. Since the residuals of both models

go outside this region, it is not likely that they are consistent with a Poisson process with
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Table 5.3: The Kolmogorov–Smirnov test statistics of the residuals using both models.
Square numbers written in green designate squares where the self-limiting model outper-
formed the standard model while numbers in red designate the opposite.

KS KS
Square (Standard) (S-L)

1 96.1088 91.6981
2 69.5929 71.0726
3 71.6870 49.8222
4 41.1858 45.4628
5 65.4766 65.3632
6 81.0281 55.3470
7 80.7324 79.6442
8 88.6134 87.9864
9 99.2195 93.5650
10 101.9143 103.3003

rate 1. Therefore, it is not likely that the crimes in this data set follow a standard Hawkes

model or a self-limiting Hawkes model with the estimated values of α and β. In seven

of the ten squares, the self-limiting model outperformed the Hawkes model even though

neither fell completely in the 95% confidence region.

5.1.2 Log-likelihood and Akeike Information Criterion

Another way to measure the goodness of fit between models is to compare the log-likelihood

and Akeike information criterion (AIC) values for the two models. The AIC is defined as

AIC = 2(p−L ),

where p is the number of estimated parameters in the model and L is the log-likelihood

value of the estimated parameters. The set of parameters that minimizes the AIC is the more

likely model.

For this analysis, we divide the data set up into the same squares, training sets, and test-

ing sets as we used for the residual analysis above. Once again, we estimate the parameters

of the training sets using both models. We then compute the log-likelihood and AIC values
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Figure 5.1: Residual analysis for square number 3.

of each testing set using the parameters estimated using the corresponding training sets.

The log-likelihood values are given in Table 5.4 and the AIC values are given in Table 5.5.

The right-most column of Table 5.5 lists the relative likelihoods of the better performing

models, defined as

relative likelihood = e
AICmin−AICmax

2 .

This measure represents how probable the higher AIC model is to minimize the infor-

mation loss relative to the lower AIC model.

For example, if we look at square 3, the relative likelihood of the self-limiting Hawkes

model over the standard Hawkes model is approximately 4.9547× 10−5. So, in this square

the standard Hawkes model is 4.9547 × 10−5 times as likely to minimize the information
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loss as the self-limiting Hawkes model.

Table 5.4: The log-likelihood values for each square using both models. Square numbers
written in green designate squares where the self-limiting model outperformed the standard
model while numbers in red designate the opposite.

Square Standard Hawkes Self-Limiting Hawkes
1 -6636.9262 -6637.0029
2 -6306.8672 -6305.7260
3 -5990.5639 -5978.6513
4 -5852.7513 -5854.3436
5 -5756.4231 -5756.2455
6 -5784.7157 -5769.6630
7 -5724.0204 -5721.3741
8 -5705.6152 -5705.5996
9 -5560.0839 -5554.7970

10 -5509.8785 -5510.6495

Table 5.5: The AIC values for each square using both models and the relative likelihood of
the better performing model. Square numbers written in green designate squares where the
self-limiting model outperformed the standard model while numbers in red designate the
opposite.

Standard Self-Limiting Relative
Square Hawkes Hawkes Likelihood

1 13279.8524 13284.0058 0.1253
2 12619.7345 12621.4520 0.4237
3 11987.1279 11967.3027 4.9547× 10−5

4 11711.5026 11718.6872 0.0275
5 11518.8463 11522.4911 0.1616
6 11575.4314 11549.3261 2.1444× 10−6

7 11454.0408 11452.7481 0.5239
8 11417.2304 11421.1992 0.1375
9 11126.1679 11119.5940 0.0374

10 11025.7570 11031.2991 0.0626

As we can see in Table 5.5, the self-limiting Hawkes model resulted in lower AIC values

in four of the ten squares. Thus, in these four squares, it is more likely that the data follows

a self-limiting Hawkes process rather than a standard Hawkes process. Moreover, in three

of these squares, the relative likelihood values indicate that the probability of the standard

Hawkes model resulting in a smaller information loss than the self-limiting Hawkes model
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is effectively zero. Hence, the self-limiting Hawkes process based on an exponentially

decaying excited kernel is in some circumstances a better fitting model to our crime data

than the standard Hawkes process with the same form of kernel.

5.1.3 Receiver Operating Characteristic (ROC) Curve

Measuring the goodness of fit between the two models can also be done by measuring the

predictive power of the models. One way to do this is to measure the area under the receiver

operating characteristic curve.

Before we define the receiver operating characteristic curve, first recall that

true positive rate (TPR) =
TP

TP + FN

and

false positive rate (FPR) =
FP

FP + TN
,

where TP is the number of true positive results, i.e. the test correctly indicates the pres-

ence of some characteristic; TN is the number of true negative results, i.e. the test correctly

indicates the absence of the characteristic; FP is the number of false positive results, i.e. the

test incorrectly indicates the presence of the characteristic; and FN is the number of false

negative results, i.e. the test incorrectly indicates the absence of the characteristic.

A true positive rate close to 1 means that when a characteristic is truly present, the test

indicates that it is present most of the time. A false positive rate close to 0 means that when

a characteristic is truly absent, the test indicates it is absent most of the time. Therefore,

the closer the the true positive rate is to 1 and the the closer the false positive rate is to 0,

the better the test.

The ROC curve is a way to visualize the diagnostic ability of a binary classifier using

the true and false positive rates of the classifier. Given two possible states, state 1 (positive)
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and state 2 (negative), and a vector where entry i is the probability that element i belongs

to state 1, the ROC curve is a parametric plot of the true positive rate and false positive rate

for each possible threshold to consider an element as belonging to state 1.

For example, suppose that we set a threshold of 0. Then the classifier will classify all

results as positive, resulting in a true positive rate of 1 and a false positive rate of 1. Thus,

the point (1, 1) belongs to all ROC curves. Likewise, suppose we set a threshold of 1. Then

the classifier will classify all results as negative, resulting in a true positive rate of 0 and a

false positive rate of 0. Thus, the point (0, 0) also belongs to all ROC curves. For thresholds

between 0 and 1, the classifier will classify all elements with probabilities greater than the

chosen threshold to be positive and all other elements to be negative. In general, this results

in true and false positive rates between 0 and 1. The point (FPR,TPR) corresponding to our

chosen threshold will then be another point on the ROC curve. By repeating this process

for many different threshold values, we can approximate the ROC curve.

To compare two classifiers using their ROC curves, we can simply compare the areas

under the two curves. This is known as the area under the receiver operating characteristic

curve (AUROC). The better the classifier, the closer the AUROC will be to 1. The worse

the classifier is, the closer the AUROC will be to 0.5 (a classifier that randomly guesses will

result in a ROC curve near the line y = x). Therefore, a classifier with a higher AUROC is

more likely to be a better classifier than one with a lower AUROC.

To apply this analysis to our standard and self-limiting Hawkes models, we first divided

the Chicago burglary dataset up into the same squares as before. For each square, we

started by considering the data from the first 75% of the days (e.g. if a square contained

100 days worth of data, we would start by considering just the events that occurred in the

first 75 days). We then estimated the parameters of each square of these truncated datasets

using both the standard Hawkes and self-limiting Hawkes models. Next, we evaluated each

intensity function at the values of the estimated parameters. Using this, we estimated the

probability that at least one event would occur during the next day. Then the truncated
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datasets for each square were updated with the next day’s actual data (not predicted) and

the process was repeated until we reached the final day in the dataset. This algorithm is

summarized in Figure 5.2.

Input: A dataset with the times and locations of crimes, α, β
Output: Two daily crime probability vectors for each square, one using the standard

Hawkes algorithm and one using the self-limiting Hawkes model
1: Divide the dataset into squares with the desired side length.
2: for each square do
3: tempSet = the beginning 75% of the data in each square
4: for each day of the prediction period do
5: [µH , kH , ωH ] = the parameters of tempSet using the standard Hawkes model
6: [µS, kS, ωS] = the parameters of tempSet using the self-limiting Hawkes

model
7: pH = the probability of a crime occurring on the current day using the Hawkes

intensity function evaluated at µH , kH , ωH
8: pS = the probability of a crime occurring on the current day using the self-

limiting Hawkes intensity function evaluated at µS, kS, ωS, α, β
9: tempSet = tempSet ∪ the current day’s actual data

10: end for
11: end for

Figure 5.2: Algorithm for using both the standard Hawkes and self-limiting Hawkes model
to estimate the probabilities of crimes occurring each day.

After completing this algorithm, we are left with the estimated probabilities of at least

one crime occurring each on day in the last 25% of the days in each square using both

models. With this, we can we can create two ROC curves for each square; one for the

standard Hawkes model and one for the self-limiting model.

In addition to the ten squares from the Chicago burglary dataset, we also repeated this

analysis on two hypothetical datasets: one containing a realization of a standard Hawkes

process with parameters similar to what we found in our real squares and one containing

a realization of a self-limiting Hawkes process also with parameters similar to what we

found in our real squares. On the Hawkes dataset, we created an ROC curve using only the

standard Hawkes model, whereas on the self-limiting dataset, we created two ROC curves:

one using the standard Hawkes model and another using the self-limiting model. This gave

us a baseline of the predictability of each type of Hawkes model as well as what we might
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expect to see if the model is mis-specified.

As graphical examples of ROC curves, Figure 5.3 shows the ROC curves from the

two hypothetical datasets and Figure 5.4 shows the two ROC curves from square 3 of the

Chicago dataset.
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Figure 5.3: The ROC curves for the hypothetical datasets described in the text.

Additionally, the AUROC values for each of the three ROC curves created using the

hypothetical datasets are given in Table 5.6 and the AUROC values from each square in the

Chicago dataset are given in Table 5.7.

Table 5.6: The area under the receiver operating characteristic curve (AUROC) for hypo-
thetical standard Hawkes dataset using the standard Hawkes model and the hypothetical
self-limiting dataset using both models.

AUROC AUROC AUROC
(Standard on Standard Dataset) (Standard on S-L Dataset) (S-L on S-L Dataset)

0.5812 0.5267 0.5279
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Figure 5.4: The ROC curves for the square with the third most crimes using both the
standard and self-limiting Hawkes models.

Let us first examine the results from the hypothetical datasets. Intuitively, the AUROC

obtained from the hypothetical standard Hawkes dataset should be the highest of the three.

This will become clear once we realize what makes a stochastic process predictable. A

stochastic process is predictable if its intensity function has a high degree in dependence

on the history of the process up until that point. So, a process such as the Poisson process,

whose intensity function has no dependence on the history of the process should be com-

pletely unpredictable leading to an AUROC of around 0.5. Since the background part of a

Hawkes process is a Poisson process, the self-exciting aspect of the Hawkes process is the

only part that lends itself to predictability. So, the self-limiting Hawkes process, which has

a damped self-exciting effect due to the self-limiting tendency, should be less predictable

than the standard Hawkes process. This is exactly what we see in Table 5.6.
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Table 5.7: The area under the receiver operating characteristic curve (AUROC) for each
of the squares. Square numbers written in green designate squares where the self-limiting
model outperformed the standard model while numbers in red designate the opposite.

AUROC AUROC
Square (Standard) (S-L)

1 0.5418 0.5399
2 0.5243 0.5245
3 0.4956 0.5100
4 0.5760 0.5746
5 0.5495 0.5478
6 0.5882 0.5859
7 0.5633 0.5648
8 0.4674 0.4691
9 0.5711 0.5751

10 0.5034 0.5006

Additionally, since each AUROC value is between 0.5 and 0.6, neither hypothetical

dataset is very predictable. This means that most of the time, the background intensity,

which is a Poisson process, outweighs the self-exciting part of the intensity for the Hawkes

parameters that are typical of our real crime data squares. So, we shouldn’t expect the

prediction results in any of the squares to be much better than these hypothetical values.

The purpose of this analysis is not to actually be able to predict crimes in the real world

(though maybe this is possible with a change in methodology!), but to establish that the

self-limiting Hawkes model is at least as likely as the standard Hawkes model to be the true

model of the burglary crime data.

Now, let’s examine the results from the real crime data. As predicted from our hypo-

thetical datasets, neither model in any of the squares performed particularly well. In fact,

in square 8, both models performed worse than chance! This means that they would have

performed better by simply predicting a crime when they did not expect one and predicting

no crime when they did expect one. In five of the ten squares, the self-limiting Hawkes

model out-performed the standard Hawkes model, which is on par with the other results

given in this chapter. Also, in the squares in which the standard model performed better,

the AUROC of the self-limiting model was no more than 0.0028 or 0.56% less than the
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AUROC of the standard model. So, according to this analysis, the self-limiting Hawkes

process fits the crime data at least as well, if not slightly better, than the standard Hawkes

model.
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CHAPTER 6

RESULTS USING NON-CRIME DATASETS

Throughout this thesis, we have focused primarily on the application of self-limiting Hawkes

processes to urban crime data. In chapter 1, we mention that the standard Hawkes process

has been used to accurately model many systems that exhibit self-exciting tendencies. Sim-

ilarly, we can use the self-limiting Hawkes process to model systems other than urban crime

if we suspect that the system exhibits a self-limiting tendency alongside the self-exciting

tendency.

It is well accepted that financial markets exhibit a self-exciting tendency [2, 3, 4, 5]

and can be modelled with a standard Hawkes process. Most of these studies use a Hawkes

process to model the arrival of orders of a particular security. We believe that price jumps

of some securities exhibits both the self-exciting and self-limiting behavior typical of self-

limiting Hawkes processes.

This idea relies on the assumption that there are two large groups of investors: those

who buy into a security as its price rises and those who either sell or short the security as the

price rises. Under this assumption, as the price of a security begins to rise, the first group

of investors will start buying more of the security nudging the price higher. This causes the

self-exciting tendency of the positive price jumps. At the same time, the second group of

investors, believing the security to be overvalued, either sell what they already own of the

security or short it, nudging the price lower. This causes the self-limiting tendency of the

positive price jumps. If we consider the negative price jumps, the roles are reversed.

We believe that for some securities, this assumption is reasonable. In particular, this as-

sumption is reasonable for high profile securities that are experiencing what most investors

believe to be a bubble. Examples of this are the GamesStop and AMC stocks in early 2021

as well as the cryptocurrency Dogecoin in 2021.
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6.1 The Data

For our analysis, we will be using the minute-by-minute close price of Dogecoin from

August 1, 2021 to August 13, 2021 [19]. Before we can begin our analysis, we need to

decide what constitutes an event. For the Chicago crime dataset, this was straightforward

since the dataset already consisted of burglary events. The Dogecoin dataset is effectively

a sampling of the Dogecoin price every minute. So, we need to decide which of these

samples should be considered an event.

For this, we divide the dataset up into minutes when the price rose and minutes when

the price fell. Then we only consider the minutes where the rise or fall is larger than

certain thresholds. For each choice of threshold, this gives us two sequences of events, one

containing the minutes where the price rose by more than the threshold and one containing

the minutes where the price fell by more than threshold. We will refer to the sequence

containing the price rises as dataset 1 and the sequence containing the price falls as dataset

2. We can then model each dataset of events with both the standard and self-limiting

Hawkes processes and compare their performances.

For this analysis, we will be using the thresholds 0.2%, 0.3%, and 0.4%. Thresholds

larger than around 0.4% resulted in datasets without enough events to obtain meaningful

results. Conversely, thresholds less than around 0.2% resulted in datasets with too many

events to be computationally feasible for this analysis.

6.2 Residual Analysis

Recall from subsection 5.1.1, that one way to determine the goodness of fit of a model is to

use residual analysis. Just as we did before, we will divide each dataset into a training set

(the first half of the events) and a testing set (the second half of the events). We will then

estimate the parameters of each training set and use the estimated parameters to calculate

the residuals on the corresponding testing sets using both the standard Hawkes and self-
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limiting Hawkes models.

The values of the parameters found using the standard Hawkes model are given in

Table 6.1 and the values of the parameters found using the self-limiting Hawkes model are

given in Table 6.2.

Table 6.1: The values of the parameters using the standard Hawkes model. The threshold
value is given in parentheses next to the dataset number.

Dataset µ (minutes−1) k ω (minutes−1)
1(0.2%) 0.0105 0.8658 0.0217
2(0.2%) 0.0094 0.8805 0.0186
1(0.3%) 0.0038 0.9026 0.0189
2(0.3%) 0.0042 0.8855 0.0205
1(0.4%) 0.0017 0.9167 0.0181
2(0.4%) 0.0025 0.8626 0.0200

Table 6.2: The values of the parameters using the self-limiting Hawkes model.

Dataset µ (minutes−1) k ω (minutes−1) α (minutes) β
1(0.2%) 0.0115 1.1336 0.0426 6.9 0.25
2(0.2%) 0.0098 1.0941 0.0311 6.9 0.19
1(0.3%) 0.0040 1.0095 0.0256 6.9 0.15
2(0.3%) 0.0044 0.9438 0.0244 6.9 0.08
1(0.4%) 0.0017 0.9319 0.0187 6.9 0.03
2(0.4%) 0.0025 0.8626 0.0200 0 0

Note the unexpected result that in five of the six datasets, α = 6.9 minutes. This

implies that α, which can be thought of as the “memory” of the self-limiting component,

is an inherent property in the Dogecoin price dataset and is therefore not very sensitive to

either our choice of threshold or choice of positive or negative price jumps. Also, note that

in dataset 2 at the 0.4% threshold, our estimated values of α and β are both 0. According

to the self-limiting model, there is no self-limiting going on in this dataset! So, we should

expect that the values of the other three parameters are the same as when they are estimated

with the standard Hawkes model, which is exactly what we see. Because of this, the two

models will behave nearly identically throughout this analysis. We will still include this

dataset in the analysis to compare with the other datasets.
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Recall, that given events {t1, . . . , tn} and intensity function λ, the residuals {r1, . . . , rn}

are defined as

ri =

∫ ti

0

λ(t)dt.

Note that we shifted the times in the testing sets so that the final event of each training

set is time t = 0 for the corresponding testing set before we computed the residuals.

If a model correctly represents a dataset, we should expect that, graphically, the points

(i, ri) should fall near the line y = x. So, we can compare multiple models by plotting the

residuals obtained from each model and determining which model’s residuals lie closest

to the line y = x under some metric. To quantify this distance from y = x, we used the

Kolmogorov-Smirnov test statistic and the sum of the squared errors which are defined as

KS = max
1≤i≤n

|ri − i|

and

Errors =
n∑
i=1

(ri − i)2.

For more information on residual analysis and the KS test statistic, refer back to sub-

section 5.1.1.

The KS values for each of the datasets are given in Table 6.3. The sums of the squared

errors are given in Table 6.4. As you can see, at a threshold of 0.2%, the standard Hawkes

model outperformed the self-limiting Hawkes model on both datasets using both metrics.

At a threshold of 0.3%, the self-limiting Hawkes model outperformed the standard Hawkes

model on dataset 1 using the KS test statistic and on both datasets using the sum of squared

errors. At a threshold of 0.4%, the self-limiting Hawkes model outperformed the standard

Hawkes model on dataset 1 using both metrics and, of course, both models performed

equally well on dataset 2.
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Table 6.3: The Kolmogorov–Smirnov test statistics of the residuals using both models.
Datasets where the self-limiting model outperformed the standard model are written in
green. Datasets written in red designate the opposite. The threshold value is given in
parentheses next to the dataset number.

KS KS
Dataset (Standard) (S-L)
1(0.2%) 54.4358 78.1165
2(0.2%) 49.7013 65.2982
1(0.3%) 22.2464 21.9434
2(0.3%) 27.2578 27.9174
1(0.4%) 12.9956 12.8733
2(0.4%) 16.7154 16.7154

Table 6.4: The sums of the squared errors of the residuals using both models. Datasets
where the self-limiting model outperformed the standard model are written in green.
Datasets written in red designate the opposite. The threshold value is given in parentheses
next to the dataset number.

Error Error
Dataset (Standard) (S-L)
1(0.2%) 9.0841× 105 1.6692× 106

2(0.2%) 8.4575× 105 1.2076× 106

1(0.3%) 72525 59723
2(0.3%) 1.1283× 105 1.1067× 105

1(0.4%) 9379 8945
2(0.4%) 17016 17016

Figure 6.1 and Figure 6.2 show a graphical example of the residual analysis for the two

datasets at the 0.3% threshold. Just as before, the two solid lines on either side of the line

y = x represent the boundaries of the regions in which 95% of Poisson processes with the

same number of events fall.

At the 0.2% threshold, in neither model did the residuals stay within this region on

either dataset. So, it is not likely that they are consistent with a Poisson process with rate

1. Therefore, it is not likely that either dataset at this threshold follow a standard Hawkes

model or a self-limiting Hawkes model.

At the 0.3% threshold, the residuals for dataset 1 stay inside of this region for both

models. So, both models were statistically significant at the 95% confidence level for this
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Figure 6.1: Residual analysis for dataset 1 at a threshold of 0.3%.

dataset, and it is plausible that the positive price jumps follow a standard Hawkes model or

a self-limiting Hawkes model, though the self-limiting Hawkes model is more likely. Since

the residuals for dataset 2 go outside this region, neither model was statistically significant

at the 95% confidence level for this dataset. Therefore, it is not likely that the negative price

jumps in this data set follow a standard Hawkes model or a self-limiting Hawkes model.

At the 0.4% threshold, dataset 1 stays inside of this region for both models. So, both

models were statistically significant at the 95% confidence level for this dataset, and it is

plausible that the positive price jumps follow a standard Hawkes model or a self-limiting

Hawkes model, though the self-limiting Hawkes model is more likely.
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Figure 6.2: Residual analysis for dataset 2 at a threshold of 0.3%.

6.3 Log-likelihood and Akeike Information Criterion

Another way to measure the goodness of fit between models is to compare the log-likelihood

and Akeike information criterion (AIC) values for the two models. The AIC is defined as

AIC = 2(p−L ),

where p is the number of estimated parameters in the model and L is the log-likelihood

value of the estimated parameters. We can then use the AIC values to calculate relative

likelihoods of the two models on each dataset:

relative likelihood = e
AICmin−AICmax

2 .
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For more information on these metrics, refer back to subsection 5.1.2.

The log-likelihood values are given in Table 6.5 and the AIC values are given in Ta-

ble 6.6. The right-most column of Table 6.6 lists the relative likelihoods of the better

performing models.

Table 6.5: The log-likelihood values for each dataset using both models. Datasets where
the self-limiting model outperformed the standard model are written in green. Datasets
written in red designate the opposite. The threshold value is given in parentheses next to
the dataset number.

Dataset Standard Hawkes Self-Limiting Hawkes
1(0.2%) -2411.0 -2396.6
2(0.2%) -2421.9 -2412.9
1(0.3%) -1383.8 -1381.0
2(0.3%) -1384.2 -1383.7
1(0.4%) -795.223 -795.205
2(0.4%) -809.4 -809.4

Table 6.6: The AIC values for each dataset using both models and the relative likelihood
of the better performing model. Datasets where the self-limiting model outperformed the
standard model are written in green. Datasets written in red designate the opposite. The
threshold value is given in parentheses next to the dataset number.

Standard Self-Limiting Relative
Dataset Hawkes Hawkes Likelihood
1(0.2%) 4827.9 4803.2 4.2840× 10−6

2(0.2%) 4849.8 4835.7 8.6422× 10−4

1(0.3%) 2773.6 2772.0 0.4324
2(0.3%) 2774.4 2777.5 0.2172
1(0.4%) 1596.4 1601.2 0.0934
2(0.4%) 1624.8 1628.8 0.1353

As we can see in Table 6.5 and Table 6.6, at the 0.2% threshold, the self-limiting model

resulted in higher log-likelihood values and a lower AIC values for both datasets. Further-

more, the relative likelihood values indicate that the probability of the standard Hawkes

model resulting in a smaller information loss than the self-limiting Hawkes model is effec-

tively zero for both datasets. Hence, the self-limiting Hawkes process is in some circum-

stances a better fitting model to our Dogecoin price data at this threshold than the standard

Hawkes process.
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At the 0.3% threshold, in both datasets the self-limiting Hawkes model resulted in a

higher log-likelihood, but the slightly higher log-likelihood of dataset 2 was not enough

overcome the extra two parameters estimated in the self-limiting model. This resulted in

a higher AIC values for dataset 2. This further confirms our results from section 6.2 that

a self-limiting Hawkes model is a plausible model for the positive price jumps, but it is

unlikely that the negative price jumps also follow a self-limiting Hawkes model at this

threshold.

At the 0.4% threshold, for dataset 1, the self-limiting Hawkes model resulted in a higher

log-likelihood, but a lower AIC value due to the extra two parameters estimated in the self-

limiting model. Notice that for dataset 2, the AIC value due the standard Hawkes model

is lower than the AIC value due to the self-limiting model even though they have identical

log-likelihoods. This is because the AIC punishes a model for estimating extra parameters.

Since the self-limiting model estimates two more parameters than the standard Hawkes

model, we see a lower AIC value here. So, it is unlikely that the positive or negative price

jumps follow a self-limiting Hawkes model at this threshold.

6.4 Receiver Operating Characteristic (ROC) Curve

Just as we did in subsection 5.1.3, we then measured the goodness of fit of the two models

using each of their predictive powers. In particular, we compared the areas under the re-

ceiver operating characteristic curves (AUROCs) of each dataset using both models. Recall

that the receiver operating characteristic curve (ROC) is a curve consisting of points of the

form (FPR,TPR), where FPR and TPR are the false positive and true positive rates, respec-

tively, for a given threshold for being classified as positive. We can compare the predictive

power of different models by comparing the areas under their respective ROC curves; mod-

els resulting in higher AUROC values are more likely to be better fitting models to the data

than models with lower AUROC values.

For more information on ROC curves and the area under them, refer back to subsec-

64



tion 5.1.3.

In addition to our real Dogecoin datasets, we repeated this analysis on two hypothetical

datasets: one containing a realization of a standard Hawkes process with parameters similar

to what we found in our real datasets and one containing a realization of a self-limiting

Hawkes process also with parameters similar to what we found in our real datasets. On

the Hawkes dataset, we created an ROC curve using only the standard Hawkes model,

whereas on the self-limiting dataset, we created two ROC curves: one using the standard

Hawkes model and another using the self-limiting model. This gave us a baseline of the

predictability of each type of Hawkes model as well as what we might expect to see if the

model is mis-specified.

As graphical examples of ROC curves, Figure 6.3 shows the ROC curves from the two

hypothetical datasets, Figure 6.4 shows the two ROC curves from dataset 1 at the 0.3%

threshold, and Figure 6.5 shows the two ROC curves from dataset 2 at the 0.3% threshold.

Additionally, the AUROC values for each of the three ROC curves created using the

hypothetical datasets are given in Table 6.7 and the AUROC values from each Dogecoin

dataset are given in Table 6.8.

Table 6.7: The area under the receiver operating characteristic curve (AUROC) for the hy-
pothetical standard Hawkes dataset using the standard Hawkes model and the hypothetical
self-limiting dataset using both models.

AUROC AUROC AUROC
(Standard on Standard Dataset) (Standard on S-L Dataset) (S-L on S-L Dataset)

0.7191 0.7068 0.7102

Let us first examine the results from the hypothetical datasets. Intuitively, the AUROC

obtained from the hypothetical standard Hawkes dataset should be the highest of the three.

An explanation for this is given in subsection 5.1.3. This is exactly what we see in Table 5.6,

though the effect is less pronounced here using Dogecoin-like parameters than it was in the

previous chapter using crime-like parameters. This could be a result of a smaller self-

limiting effect than was seen in the hypothetical datasets using the crime-like parameters.
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Figure 6.3: The ROC curves for the hypothetical datasets described in the text.

This would cause the self-limiting Hawkes dataset to be relatively close to the standard

Hawkes dataset.

Additionally, since each AUROC value is above 0.7, both hypothetical datasets are quite

predictable. This means that most of the time, the self-exciting part of the intensity, which

relies on the history of the process, outweighs the background intensity for the Hawkes

parameters that are typical of our Dogecoin datasets. So, we should expect the prediction

results for both datasets to be similar to these hypothetical values.

Now, let’s examine the results from the real Dogecoin data. On both datasets at each

threshold, the standard Hawkes model outperformed the self-limiting Hawkes model. Though

in dataset 1 at the 0.3% threshold, where the self-limiting model performed the worst rela-

tive to the standard model, the AUROC value for the self-limiting model was only 0.0072

or 1.13% lower than the AUROC value for the standard model. So, even though according
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Figure 6.4: The ROC curves for dataset 1 at the 0.3% threshold using both the standard and
self-limiting Hawkes models.

to this analysis, the standard Hawkes model is a better fit to the Dogecoin data at each

threshold, it is not much more likely than the self-limiting model.

Note that as the threshold increases, so does the AUROC value. This could be due to the

fact that small price jumps in the Dogecoin data are more governed by random fluctuations

in the market than the large price jumps. As the threshold increases, we are excluding more

and more of these small price jumps leaving us with jumps that are significant enough to

be governed by something other than random fluctuations in the market.

All analyses considered, we think that both the standard Hawkes model and the self-

limiting Hawkes models are both plausible models for the Dogecoin datasets.
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Figure 6.5: The ROC curves for dataset 2 at the 0.3% threshold using both the standard and
self-limiting Hawkes models.

Table 6.8: The area under the receiver operating characteristic curve (AUROC) for each
dataset. Datasets where the self-limiting model outperformed the standard model are writ-
ten in green. Datasets written in red designate the opposite. The threshold value is given in
parentheses next to the dataset number.

AUROC AUROC
Dataset (Standard) (S-L)
1(0.2%) 0.5746 0.5698
2(0.2%) 0.6038 0.6023
1(0.3%) 0.6432 0.6360
2(0.3%) 0.6666 0.6645
1(0.4%) 0.6903 0.6853
2(0.4%) 0.6803 0.6782
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we introduced a self-limiting Hawkes process, a variant of the Hawkes pro-

cess where the self-exciting component is counteracted by a self-limiting component. We

also introduced a self-limiting spatio-temporal Hawkes process, which is analogous to a

self-limiting Hawkes process except that it contains a spatial component in addition to the

temporal component.

In the context of modelling crime data, the self-exiting component represents the like-

lihood that crime at a point in time will likely lead to more crime in the near future. The

self-limiting component represents the efforts of a police force in preventing crime events

from happening. In the context of modelling financial data, the self-exciting component

represents investors who buy into a security as its price rises. The self-limiting component

represents investors who either sell or short a security believing it to be overvalued. More

generally, we can use a self-limiting Hawkes process to model any system where we can

reasonably identify likely self-exciting and self-limiting tendencies as we have done above.

We provide methods for simulating the self-limiting Hawkes and self-limiting spatio-

temporal Hawkes processes, as well as methods for estimating the parameters of the self-

limiting Hawkes process and the self-limiting spatio-temporal Hawkes process given a

dataset of event times. Using maximum likelihood estimation, it has been shown that

the parameters of a standard Hawkes process can be estimated with high accuracy [16].

Using a variation of this method that takes into account the preventative action of the

self-limiting Hawkes process, we show that one can still estimate the parameters of the

underlying Hawkes process with high accuracy. This is true for both the temporal and

spatio-temporal models.

Further, using real crime data, we were able to show that the self-limiting Hawkes
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process is a plausible alternative to the standard Hawkes process, though neither of the

two processes were very likely fits to the data. Using real financial data, the self-limiting

Hawkes process is a plausible alternative to the standard Hawkes process, though, by some

measures, both the standard Hawkes and self-limiting Hawkes models were better fits for

the financial data than they were for the crime data.

Due to computational constraints, we were only able to demonstrate the the perfor-

mance of our self-limiting spatio-temporal Hawkes methods on hypothetical data, not on

the real crime data. Future work in this area could involve making the spatio-temporal

algorithms more efficient so that they could be applied to real-world data. One way this

could be done is by relaxing some of the constraints on the algorithm. For example, at a

particular location, we might be able to ignore the effects of events that are sufficiently far

away since they are unlikely to generate any daughter events near the current location. As

new stochastic processes are developed and analyzed that better model real-world data, we

expect that the demand for fast, efficient estimation algorithms will greatly increase.

Another avenue of inquiry would be testing self-limiting Hawkes models with excited

kernels g that are not decaying exponentials, which would also likely enhance the ability

of the model to fit real-world data.
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APPENDIX A

CH. 2 CALCULATIONS

A.1 Derivation of Equation 2.4

Recall that the complete data log-likelihood for the Hawkes process was first given by

E[L ] =
∑
i

Pii ln(µ)−
∫ T

0

µdt+
∑
j<i

Pij ln
(
kωe−ω(ti−tj)

)
−
∫ T

0

∑
i:ti<t

kωe−ω(t−ti)dt.

The first and third term can be simplified using the properties of logarithms. Since the

second term is the integral of a constant, µ, over the interval [0, T ], this is just µT .

Now, let’s take a look at the fourth term. Since the excited kernel g(t− ti) doesn’t take

effect until time ti, we can switch the integral and sum if we adjust the limits on each:

∫ T

0

∑
i:ti<t

kωe−ω(t−ti)dt =
n∑
i=1

∫ T

ti

kωe−ω(t−ti)dt

=
n∑
i=1

[
−ke−ω(t−ti)

]T
ti

=
n∑
i=1

(
−ke−ω(T−ti) − k

)
= k

n∑
i=1

(
1− e−ω(T−ti)

)
.

Putting this all together gives us Equation 2.4:
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E[L ] = ln(µ)
∑
i

Pii + ln(kω)
∑
j<i

Pij − ω
∑
j<i

Pi,j(ti − tj)− µT

− k
∑
i

(
1− e−ω(T−ti)

)
.

A.2 Derivation of Equation 2.10

Recall that the complete data log-likelihood for the spatio-temporal Hawkes process was

first given by

E[L ] = ln (µ)
∑
i

Pii + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|)−
∫ T

0

∫ L

0

∫ L

0

λ(t, x, y)dxdydt.

We can find a closed-form expression of the integral term as follows:
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∫ T

0

∫ L

0

∫ L

0

λ(t, x, y)dxdydt

=

∫ T

0

∫ L

0

∫ L

0

(
µ+

kω

4s2

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s

)
dxdydt

= µTL2 +
kω

4s2

n∑
i=1

∫ T

ti

∫ L

0

∫ L

0

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s dxdydt

= µTL2 +
kω

4s2

n∑
i=1

∫ T

ti

e−ω(t−ti)
∫ L

0

e
−|y−yi|

s

∫ L

0

e
−|x−xi|

s dxdydt

= µTL2 +
kω

4s2

n∑
i=1

[
2s− s

(
e
−xi
s + e

−(L−xi)
s

)] ∫ T

ti

e−ω(t−ti)
∫ L

0

e
−|y−yi|

s dydt

= µTL2

+
kω

4s2

n∑
i=1

[
2s− s

(
e
−xi
s + e

−(L−xi)
s

)] [
2s− s

(
e
−yi
s + e

−(L−yi)
s

)] ∫ T

ti

e−ω(t−ti)dt

= µTL2 − k

4s2

n∑
i=1

[
2s− s

(
e
−xi
s + e

−(L−xi)
s

)] [
2s− s

(
e
−yi
s + e

−(L−yi)
s

)] [
e−ω(t−ti)

]T
ti

= µTL2 − k

4

n∑
i=1

(
2− e

−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

) (
e−ω(T−ti) − 1

)
.

This gives us Equation 2.10:

E[L ] = ln (µ)
∑
i

Pii + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|)− µTL2

+
k

4

∑
i

(
2− e

−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

) (
e−ω(T−ti) − 1

)
.
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APPENDIX B

CH. 3 CALCULATIONS

B.1 Derivation of Equation 3.6

Recall that the complete data log-likelihood for the self-limiting Hawkes process was first

given by

E[L ] = ln(µ)
∑
i

Pii − β
∑
i

PiiN(α, ti) + ln(kω)
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− β
∑
j<i

PijN(α, ti)− µ
∫ T

0

e−βN(α,t)dt− kω
∫ T

0

e−βN(α,t)
∑
ti<t

e−ω(t−ti)dt.

Replacing N(α, t) with the values given in Equation 3.5, we have

E[L ] = ln(µ)
∑
i

Pii − β
∑
i

Piins(ti) + ln(kω)
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− β
∑
j<i

Pijns(ti) − µ
l∑

i=1

∫ τi

τi−1

e−βnidt− kω
l∑

j=1

∫ τj

τj−1

e−βnj
∑
ti<t

e−ω(t−ti)dt,

where s(ti) is the index of ti in {τ0, . . . , τl}. Since the intervals [τ0, τ1], . . . , [τl−1, τl]

don’t overlap and their union is [0, T ], each of the integrals over [0, T ] can be rewritten as

the sum of integrals over each of the above intervals. It is more convenient to do this since

N(α, t) is a constant in each of these intervals.

We will handle each of the integral terms separately:
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µ
l∑

i=1

∫ τi

τi−1

e−βnidt = µ
l∑

i=1

e−βni
∫ τi

τi−1

dt

= µ

l∑
i=1

e−βni(τi − τi−1)dt

and

kω
l∑

j=1

∫ τj

τj−1

e−βnj
∑
ti<t

e−ω(t−ti)dt = kω
l∑

j=1

e−βnj
∫ τj

τj−1

∑
ti<t

e−ω(t−ti)dt

= kω
l∑

j=1

e−βnj
∫ τj

τj−1

n∑
i=1

e−ω(t−ti)1{ti<t}dt

= kω
n∑
i=1

l∑
j=1

e−βnj
∫ τj

τj−1

e−ω(t−ti)1{ti<t}dt

= kω
n∑
i=1

l∑
j=1

e−βnj
∫ τj

τj−1

e−ω(t−ti)1{ti<τj}dt

= kω
n∑
i=1

l∑
j=1

e−βnj1{ti<τj}

∫ τj

τj−1

e−ω(t−ti)dt

= kω
n∑
i=1

l∑
j=1

e−βnj1{ti<τj}
−1

ω

[
e−ω(τj−ti) − e−ω(τj−1−ti)

]
= −k

n∑
i=1

l∑
j=1

e−βnj
[
e−ω(τj−ti) − e−ω(τj−1−ti)

]
1{ti<τj}.

Notice that between the third and fourth lines, 1{ti<t} was replaced with 1{ti<τj}. This

follows from the definition of the τi’s. Recall that the set {τi} is constructed by taking the

union of the two sets {ti} and {ti + α}, sorting it, and removing any entries with values

greater than T .

In the third line, we are integrating e−ω(t−ti)1{ti<t} over the interval [τj−1, τj]. So,

we have three cases: ti ≤ τj−1, ti ∈ (τj−1, τj), or ti ≥ τj . Since ti ∈ {τ0, . . . , τl},

ti 6∈ (τj−1, τj). So, there are really only two cases: ti ≤ τj−1 or ti ≥ τj . If ti ≤ τj−1,
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then e−ω(t−ti)1{ti<t} just becomes e−ω(t−ti) on the interval [τj−1, τj]. If ti ≥ τj , then

e−ω(t−ti)1{ti<t} just becomes 0 on the interval [τj−1, τj]. So 1{ti<t} can be replaced with

either 1{ti≤τj−1} or 1{ti<τj}.

Putting this all together gives us Equation 3.6:

E[L ] = ln(µ)
∑
i

Pii − β
∑
i

Piins(ti) + ln(k)
∑
j<i

Pij + ln(ω)
∑
j<i

Pij

− ω
∑
j<i

Pij(ti − tj)− β
∑
j<i

Pijns(ti) − µ
l∑

i=1

e−βni(τi − τi−1)

+ k
n∑
i=1

l∑
j=1

e−βnj
[
e−ω(τj−ti) − e−ω(τj−1−ti)

]
1E,

where E = {ti < τj}.

B.2 Derivation of Equation 3.11

Plugging the intensity function for a spatio-temporal Hawkes process into Equation 2.9 and

removing all terms that don’t include the parameters µ, k, ω, or s gives

L = −
∫ T

0

∫ L

0

∫ L

0

(
µ+

kω

4s2

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s

)
q(t, x, y, α, β)dxdydt

+
∑
i

ln

µ+
kω

4s2

∑
j:tj<ti

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s

 q(ti, xi, yi, α, β)

 ,

(B.1)

where

q(t, x, y, α, β) =


e
−βN(α,t)
|box(t)| if (x, y) ∈ box(t)

1 else
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and box(t) is a box centered on the mean location of the events in the interval [t−α, t).

Its width is twice the standard deviation in the x component of the locations of the events

in the interval [t − α, t). Its height is twice the standard deviation in the y component of

the locations of the events in the interval [t− α, t).

We will begin by finding a simplified expression for the integral term in Equation B.1.

Define

I1 =

∫ T

0

∫ L

0

∫ L

0

µq(t, x, y, α, β)dxdydt

and

I2 =

∫ T

0

∫ L

0

∫ L

0

kω

4s2
q(t, x, y, α, β)

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s dxdydt.

Then

∫ T

0

∫ L

0

∫ L

0

λ(t, x, y)dxdydt = I1 + I2.

Now
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I1 = µ

∫ T

0

∫ L

0

∫ L

0

q(t, x, y, α, β)dxdydt

= µ

[∫ T

0

∫∫
box(t)

e
−βN(α,t)
|box(t)| dxdydt+

∫ T

0

∫∫
box(t)C

dxdydt

]
= µ

[
l∑

j=1

∫ τj

τj−1

∫∫
box(t)

e
−βnj
bj dxdydt+

∫ T

0

(L2 − |box(t)|)dt

]

= µ

l∑
j=1

(
e
−βnj
bj

∫ τj

τj−1

bjdt+

∫ τj

τj−1

(L2 − bj)dt

)

= µ

l∑
j=1

(
e
−βnj
bj · bj(τj − τj−1) + (L2 − bj)(τj − τj−1)

)

= µ

[
TL2 +

l∑
j=1

bj(τj − τj−1)

(
e
−βnj
bj − 1

)]
.

and

I2 =

∫ T

0

∫ L

0

∫ L

0

kω

4s2
q(t, x, y, α, β)

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s dxdydt

=
kω

4s2

[∫ T

0

∫∫
box(t)

e
−βN(α,t)
|box(t)|

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s dxdydt

+

∫ T

0

∫∫
box(t)C

∑
i:ti<t

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s dxdydt

]

=
kω

4s2

[
l∑

j=1

n∑
i=1

∫ τj

τj−1

∫∫
box(t)

e
−βnj
bj e−ω(t−ti)e

−(|x−xi|+|y−yi|)
s 1{ti<τj}dxdydt

+
l∑

j=1

n∑
i=1

∫ τj

τj−1

∫∫
box(t)C

e−ω(t−ti)e
−(|x−xi|+|y−yi|)

s 1{ti<τj}dxdydt

]

=
kω

4s2

l∑
j=1

n∑
i=1

[
e
−βnj
bj

∫ τj

τj−1

e−ω(t−ti)Si(t)1{ti<τj}dt+

∫ τj

τj−1

e−ω(t−ti)S ′i(t)1{ti<τj}dt

]
,

where
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Si(t) =

∫∫
box(t)

e
−(|x−xi|+|y−yi|)

s dxdy

and

S ′i(t) =

∫∫
box(t)C

e
−(|x−xi|+|y−yi|)

s dxdy.

Since Si(t) and S ′i(t) are a constants in the interval [τj−1, τj), we will call these con-

stants Sij and S ′ij , respectively. Then we have

I2 =
kω

4s2

l∑
j=1

n∑
i=1

[
e
−βnj
bj Sij

∫ τj

τj−1

e−ω(t−ti)1{ti<τj}dt+ S ′ij

∫ τj

τj−1

e−ω(t−ti)1{ti<τj}dt

]

=
kω

4s2

l∑
j=1

n∑
i=1

[(
e
−βnj
bj Sij + S ′ij

)∫ τj

τj−1

e−ω(t−ti)1{ti<τj}dt

]

=
−k
4s2

l∑
j=1

n∑
i=1

[(
e
−βnj
bj Sij + S ′ij

)(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

]
.

=
−k
4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj

Sij
s2

+
S ′ij
s2

)(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

]
.

In the above calculations, we use several constants which have not been defined yet.

{τ0, . . . , τl} are the times when N(α, t) changes. Therefore, N(α, t) and |box(t)| are both

constants in the interval [τj−1, τj], and so we call these constants nj and bj , respectively.

To find expressions for Sij and S ′ij , we first need to define the boundaries of the box in

which preventative action takes place. box(t) = [cx(t) − σx(t), cx(t) + σx(t)] × [cy(t) −

σy(t), cy(t) + σy(t)], where cx(t), cy(t), σx(t), and σy(t) are the means and standard devi-

ations described above. Since cx(t), cy(t), σx(t), and σy(t) are all constants in the interval

[τj−1, τj], we will define box(t) = [left(t), right(t)]× [bottom(t), top(t)] = [leftj, rightj]×

[bottomj, topj] in that interval. Then
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Sij =

∫∫
boxj

e
−(|x−xi|+|y−yi|)

s dxdy

=

∫∫
boxj

e
−|x−xi|

s e
−|y−yi|

s dxdy

=

∫ topj

bottomj

e
−|y−yi|

s

∫ rightj

leftj

e
−|x−xi|

s dxdy

=

∫ rightj

leftj

e
−|x−xi|

s dx

∫ topj

bottomj

e
−|y−yi|

s dy.

If xi ≤ leftj , then

∫ rightj

leftj

e
−|x−xi|

s dx =

∫ rightj

leftj

e
xi−x
s dx = −se

xi−rightj
s + se

xi−leftj
s .

If leftj ≤ xi ≤ rightj , then

∫ rightj

leftj

e
−|x−xi|

s dx =

∫ xi

leftj

e
x−xi
s dx+

∫ rightj

xi

e
xi−x
s dx = 2s− se

leftj−xi
s − se

xi−rightj
s .

If xi ≥ rightj , then

∫ rightj

leftj

e
−|x−xi|

s dx =

∫ rightj

leftj

e
x−xi
s dx = se

rightj−xi
s − se

leftj−xi
s .

The y integrals will be very similar. Then wherever (xi, yi) is with relation to the self-

limiting box, we can combine these integrals to get
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Sij
s2

=



(
e
xi−leftj

s − e
xi−rightj

s

)(
e
yi−bottomj

s − e
yi−topj

s

)
for Case 1(

2− e
leftj−xi

s − e
xi−rightj

s

)(
e
yi−bottomj

s − e
yi−topj

s

)
for Case 2(

e
rightj−xi

s − e
leftj−xi

s

)(
e
yi−bottomj

s − e
yi−topj

s

)
for Case 3(

e
xi−leftj

s − e
xi−rightj

s

)(
2− e

bottomj−yi
s − e

yi−topj
s

)
for Case 4(

2− e
leftj−xi

s − e
xi−rightj

s

)(
2− e

bottomj−yi
s − e

yi−topj
s

)
for Case 5(

e
rightj−xi

s − e
leftj−xi

s

)(
2− e

bottomj−yi
s − e

yi−topj
s

)
for Case 6(

e
xi−leftj

s − e
xi−rightj

s

)(
e

topj−yi
s − e

bottomj−yi
s

)
for Case 7(

2− e
leftj−xi

s − e
xi−rightj

s

)(
e

topj−yi
s − e

bottomj−yi
s

)
for Case 8(

e
rightj−xi

s − e
leftj−xi

s

)(
e

topj−yi
s − e

bottomj−yi
s

)
for Case 9,

where

Case 1 = {(xi, yi) : xi ≤ leftj, yi ≤ bottomj}

Case 2 = {(xi, yi) : leftj < xi < rightj, yi ≤ bottomj}

Case 3 = {(xi, yi) : xi ≥ rightj, yi ≤ bottomj}

Case 4 = {(xi, yi) : xi ≤ leftj, bottomj < yi < topj}

Case 5 = {(xi, yi) : leftj < xi < rightj, bottomj < yi < topj}

Case 6 = {(xi, yi) : xi ≥ rightj, bottomj < yi < topj}

Case 7 = {(xi, yi) : xi ≤ leftj, yi ≥ topj}

Case 8 = {(xi, yi) : leftj < xi < rightj, yi ≥ topj}

Case 9 = {(xi, yi) : xi ≥ rightj, yi ≥ topj}.

Since S ′ij are the spatial integrals outside of the self-limiting box, this is the same as the
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spatial integral over all of [0, L]× [0, L] minus the part that is inside the self-limiting box.

Thus

S ′ij =

∫ L

0

∫ L

0

e
−(|x−xi|+|y−yi|)

s dxdy − Sij

= s2
(

2− e
−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

)
− Sij.

So,

S ′ij
s2

=
(

2− e
−xi
s − e

−(L−xi)
s

)(
2− e

−yi
s − e

−(L−yi)
s

)
− Sij

s2
.

Now we will turn to the summation term in Equation B.1.

∑
i

ln

µ+
kω

4s2

∑
j:tj<ti

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s

 q(ti, xi, yi, α, β)


=
∑
i

ln

µ+
kω

4s2

∑
j:tj<ti

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s

+ ln (q(ti, xi, yi, α, β))


=
∑
i

ln

µ+
kω

4s2

∑
j:tj<ti

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s

+
∑
i

ln (q(ti, xi, yi, α, β)) .

(B.2)

Assume that we knew which events were background events and which were daughter

events. Let B be the set of indices of the background events and D the set of indices of

the daughter events. Since background events are attributable entirely to the µ part of the

intensity function and daughter events are attributable entirely to the self-limiting part of

the intensity function, Equation B.2 can be rewritten as
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∑
i∈B

ln(µ) +
∑
i∈D

ln

 kω

4s2

∑
j:tj<ti

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s

+
∑
i∈B∪D

ln (q(ti, xi, yi, α, β))

=
∑
i∈B

ln(µ) +
∑
i∈D

ln

(
kω

4s2

)
+
∑
i∈D

ln

 ∑
j:tj<ti

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s


+
∑
i∈B∪D

ln (q(ti, xi, yi, α, β))

Since, in practice, we don’t actually know what B and D are, we can instead take the

expectation of Equation B.1 with respect to the probabilistic branching structure P , where

Pij =


prob. that i is a background event , i = j

prob. that i is a daughter of j , j < i

.

More specifically,

Pij =


µq(ti,xi,yi,α,β)

λ(ti)
i = j

kω
4s2

e−ω(ti−tj)e
−(|xi−xj |+|yi−yj |)

s q(ti,xi,yi,α,β)

λ(ti)
j < i

.

After taking the expectation, Equation B.2 becomes
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∑
i

Pii ln(µ) +
∑
j<i

Pij ln

(
kω

4s2

)
+
∑
j<i

Pij ln

(
e−ω(ti−tj)e

−(|xi−xj |+|yi−yj |)
s

)
+
∑
i

Pii ln (q(ti, xi, yi, α, β)) +
∑
j<i

Pij ln (q(ti, xi, yi, α, β))

= ln(µ)
∑
i

Pii + ln

(
kω

4s2

)∑
j<i

Pij +
∑
j<i

Pij ln
(
e−ω(ti−tj)

)
+
∑
j<i

Pij ln

(
e
−(|xi−xj |+|yi−yj |)

s

)
+
∑
i

Pii ln (q(ti, xi, yi, α, β))

+
∑
j<i

Pij ln (q(ti, xi, yi, α, β))

= ln(µ)
∑
i

Pii + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|) +
∑
i

Pii ln (q(ti, xi, yi, α, β))

+
∑
j<i

Pij ln (q(ti, xi, yi, α, β)) .

Putting all this together with the integral term gives the complete data log-likelihood

E[L ] = ln (µ)
∑
i

Pii +
∑
i

Piiq(ti, xi, yi, α, β) + ln

(
kω

4s2

)∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)

− 1

s

∑
j<i

Pij(|xi − xj|+ |yi − yj|) +
∑
j<i

Pijq(ti, xi, yi, α, β)

− µ

[
TL2 +

l∑
j=1

bj(τj − τj−1)

(
e
−βnj
bj − 1

)]

+
k

4

l∑
j=1

n∑
i=1

[(
e
−βnj
bj

Sij
s2

+
S ′ij
s2

)(
e−ω(τj−ti) − e−ω(τj−1−ti)

)
1{ti<τj}

]
,

which is exactly what appears in Equation 3.11.
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