

PROJECT ADMINISTRATION DATA

OCA contact: Kathleen R. Ehlinger

Sponsor technical contact

MR. BERTON BRODT
(504)536-5178
E.I. DUPONT DE NEMOURS AND COMPANY
P.D. BOX 2000

LAPLACE, LA 70068

894-4820

Sponsor issuing office

MR. C.H. EVANS
(000)000-0000
E.I. DU PONT DE NEMOURS AND COMPANY

LEGAL DEPARTMENT - M-2618
1007 MARKET STREET
WILMINGTON, DE 19898

ONR resident rep. is ACO (Y/N): N
N / A supplemental sheet GIT X

Security class (U,C,S,TS) : U
Defense priority rating : N/A
Equipment title vests with: Sponsor NONE PROPOSED.
Administrative comments -
INITIATION OF PROJECT. NOTE: THERE IS A PROPRIETARY AGREEMENT ON THIS PROJECT. SPONSOR INVOICED FOR ADVANCE PAYMENT OF $\$ 9,000$.

Notice of project closeout

CommentsEFFECTIVE DATE 2-1-92. CONTRACT VALUE $\$ 36,488$. \qquad

Subproject Under Main Project No. \qquad
Continues Project No. \qquad

Distribution Required:
Project Director Y
Administrative Network Representative Y
GTRI Accounting/Grants and Contracts Y
Procurement/Supply Services Y
Research Property Managment Y
Research Security Services N
Reports Coordinator (OCA) Y
GTRC Y
Project File Y
Other CARL BAXTER-FMD Y
FRED CAIN-OOD Y

MODELING THE ALKALINE AGING OF G-TYPE NEOPRENE LATEXES

A Report Prepared for
E.I. du Pont de Nemours and Company Polymer Products Department

June 22, 1993

Work Done by: C.L. Liotta, F.J. Schork, C.M. Gilmore (author) Schools of Chemistry and Chemical Engineering Georgia Institute of Technology
Atlanta, GA 30332-0400,0100

Abstract

G-Type Neoprene alkaline aging has been mathematically modeled based on a simplified mechanism involving simultaneous branching, scission and capping reactions. With key assumptions involving the unpeptized polymer MWD, molecular weight predictions, calculated from the leading moments of the polymer chain distributions, agree with experimental profiles and exhibit the expected sensitivity to peptizing agent concentrations. Residual peptizing agent and reactive site predictions are also consistent with analytical findings, but the observed particle size sensitivity is not fully explained by mass transfer effects.

TABLE OF CONTENTS

ABSTRACT 1
INTRODUCTION 3
SUMMARY AND CONCLUSIONS. 3
RECOMMENDATIONS. 5
DISCUSSION OF RESULTS. 6
$=$ I. Process Description 6
A. Reactor Configuration 6
B. Reaction Mechanism and Kinetics 7
II. Mathematical Model Development 11
A. Mechanistic Assumptions 11
B. Fundamental Theories and Derivations. 16
C. Mass Balances 17
D. Discrete Transformation, Moment Equations 21
E. Model Summary and Solution Requirements 23
III. Simulation Development. 25
A. Computer Strategy 25
B. Parameter Estimation. 25
IV. Simulation Results 29
A. Comparison with Laboratory Data 29
B. Sensitivity Analysis. 38
C. Predictive Capability 45
REFERENCES 50
APPENDICES 51
I. Nomenclature. 51
II. . Neoprene Recipes, Experimental Results 52
III. . Computer Program. 55
A. Variable Notation 55
B. Program Listing 58
C. Sample Input/Output Files 66
IV. Indexing Terms. 69

INTRODUCTION

The objective of this work, commissioned by DuPont to Georgia Tech [1], was to identify and mathematically model the mechanisms governing GType Neoprene alkaline aging, with the ultimate goal of facilitating quality improvement.

This report details progress made toward the accomplishment of this objective. The proposed mechanism[2] is restated, followed by the detailed mathematical model development, from the mass balances to the molecular weight moment equations. Finally, model validity is checked by comparison with laboratory data, and model sensitivity and predictive capability are assessed.

SUMMARY AND CONCLUSIONS

This report documents the progress of Georgia Tech personnel commissioned to 1) aid in the mechanistic understanding of G-Type Neoprene alkaline aging, and 2) produce a mathematical model of the associated peptization reactions.

In practice, G-Type Neoprene latex aging curves generally first exhibit a decrease, followed by a possible increase in Mooney viscosity, and are sensitive to latex particle size. Recent GPC data also suggest a sensitivity to the unpeptized polymer molecular weight distribution (MWD), as some peptization curves are characterized by an initial increase in molecular weight. While the details of this early increase are unresolved, mechanistically, the Mooney viscosity and molecular weight trends may be explained by a few key simultaneous scission, branching and capping reactions. Specifically, chain scission at the polysulfide sites is accomplished by the attack of dithiocarbamates (derived from tetraethylthiuram disulfide, TETD, or N, N-dibutyldithiocarbamate, Tepidone) on the sulfur-sulfur linkages of the copolymer. Branching results from the nucleophilic attack of a polymeric sulfide ion (derived from the scission reaction) on an allylic chloride or vinyl chloride group of another chain. Alternatively, the polymeric sulfide ion may be capped by reaction with TETD. The TETD/Tepidone ratio controls the capping/scission rate and thus determines molecular weight evolution. The mechanism is complicated by possible reversibility of the scission and capping reactions, and particle/aqueous-phase interfacial reactions.

The subject model (Model I) neglects these complications and also assumes that the unpeptized polymer is uniformly aged in a single well-mixed batch, is uniform with respect to reactive sites, and is characterized by a
unimodal MWD. The latex is assumed monodisperse, and the particle phase homogeneous. Tepidone uptake is modeled assuming a mass transfer resistance at the particle/aqueous-phase interface. Efforts aimed at relaxing some of these assumptions are reported separately (Models II,III).

Based on these assumptions, mass balances for the two polymer populations (uncharged and polymeric sulfide ions), reactive site, and peptizing agent concentrations were used to generate equations describing the three leading moments of each MWD. Model I then, comprised of 12 coupled ODEs, predicts the polymer weight and number-average molecular weights, and the Tepidone, TETD, and reactive site concentrations versus aging time. Major user-specified parameters, in addition to the recipe and other physical constants, include the latex and unpeptized polymer properties (e.g. $M W_{w}$, $M W_{n}, D_{p}$), rate constant Arrhenius parameters and medium correction factors, and Tepidone mass transfer parameters.

Model I predicted the laboratory peptization behavior of G-Type polymers that did not exhibit a large MW increase early in peptization (indicative of a persistent multimodal MWD with a preponderance of low MW chains). The $M W_{w}$ and residual TETD profiles were in good agreement with measured values, and the predicted residual allylic chloride and S_{6} site levels were qualitatively consistent with analytical findings.

Model I predictions of TETD and Tepidone effects were consistent with empirical observations and the proposed mechanism, i.e. the TETD/Tepidone ratio controlled the capping/scission rate and thus determined molecular weight evolution. Increasing the Tepidone level at a fixed, sufficient TETD concentration decreased $M W_{w}$, as did increasing the TETD level at a fixed Tepidone concentration.

Model I predictions of peptization rate were most sensitive to the scission rate constant and Tepidone level, while minimum $M W_{w}$ predictions were sensitive to the capping and branching (allylic chloride only) rate constants. Increased/decreased sulfur incorporation was also observed to decrease/increase the final $M W_{w}$, while peptization rate predictions were also sensitive to the Tepidone partition coefficient, with an increase in affinity for ,the particle phase causing an increase in peptization rate. Order of magnitude changes in the Tepidone mass transfer coefficient also impacted peptization rate. However, with the monodispersed latex assumption, $\pm 20 \%$ changes in the average particle diameter did not significantly affect Tepidone transfer.

RECOMMENDATIONS

- Model I use for general understanding of peptization variables.
- Model I use to aid development of peptization analytical techniques.
- Couple Model I with existing software to predict RTD effects.
- Continued model development to merge peptization chemistry and multimodal unpeptized polymer MWD.
- Analyze particle size effects with polydisperse latex.

DISCUSSION OF RESULTS

Mathematical modeling of a given process typically entails first, identification of the governing mechanisms, second, statement of the associated reaction kinetics, third, expression of the necessary mass and/or energy balances, fourth, application and/or development of appropriate mathematical solution techniques, and lastly, verification of the model predictions. This modeling strategy (Figure 1) was applied to the G-Type Neoprene alkaline aging process. Results are presently discussed.

Figure 1: Modeling Schematic

I. Process Description

.A. Reactor Configuration

In practice, G-Type Neoprenes may be aged over several vessels, and polymer exiting a given vessel is characterized by a residence time distribution. The subject model neglects these complications, and assumes the polymer is uniformly aged in a single well-mixed batch. Multiple vessel and nonideal flow complications may be handled separately by solving the subject model in conjunction with suitable software.

B. Reaction Mechanism and Kinetics

Experimentally, G-Type Neoprene latex aging curves generally first exhibit a decrease, then an eventual increase in Mooney viscosity (Figure 2), and are sensitive to latex particle size. Note, however, that some experimental data[3] show an early increase in MW, followed by the expected MW decrease. ${ }^{1}$ This data supports characterization of the peptization process by simultaneous MW-decreasing and MW-increasing reactions. As depicted in Figure 2, chain scission at the polysulfide sites is thought to dominate when the Mooney decreases, and branching and/or other MW-increasing reactions dominate when the viscosity increases. A proposed aging mechanism, accounting for simultaneous peptization/capping/branching and interphase mass transfer, has been reported[2], but is restated here (with some additions) for continuity.

Figure 2: G-Type Neoprene Aging Curve (illustrative)
The reactions, listed in Table 1, represent three basic mechanisms: nucleophilic attack, acid-base equilibrium, and oxidation ${ }^{2}$. Nucleophilic attack is the dominant mechanism and may involve the attack of several nucleophiles (dithiocarbamate (T^{-}), hydroxide ion (OH^{-}), polymeric sulfide ion ($S-M_{q}$)) on electrophilic disulfide bonds (chloroprene-sulfur copolymer (M_{n}), tetraethylthiuram disulfide (TETD, $T T$), mixed disulfide ($T_{b} T_{e}$)). Note that M_{n} is of arbitrary length and may be part of a branched network. Also, as depicted by the schematic in Figure 3, the reactions may occur in the particle phase and/or at the particle-aqueous phase interface, depending on the solubility of the involved species.

[^0]Table 1: G-Type Neoprene Alkaline Aging - Proposed Mechanism[2]

\#	Reaction	Type ${ }^{\text {a }}$	Site ${ }^{\text {b }}$	Other Comments
1	$M_{n}+T^{-} \xrightarrow{k_{1}} S^{-} M_{q}+M_{n-q} T$	NA	P,I	- Primary scission reaction - Occurs at any sulfur (except RS bond)
1a	$\mathrm{M}_{n}+\mathrm{OH}^{-} \xrightarrow{k_{19}} S^{-} M_{q}+M_{n-q} O H$	NA	I	$\bullet \mathrm{OH}^{-}$insoluble in particle phase
2	$M_{n}+S^{-} M_{q} \xrightarrow{k_{z}} M_{r}+S^{-} M_{m}$	NA	P	- Molecular weight redistribution
$\begin{array}{r}3 \\ 3 \mathrm{a} \\ \hline\end{array}$	$\begin{gathered} M_{n}+S^{-} M_{q} \xrightarrow{k_{3}} M_{n+q}+\mathrm{Cl}^{-} \\ M_{n}+T^{-} \xrightarrow{k_{3}} M_{n}+\mathrm{Cl}^{-} \end{gathered}$	NA	P	\bullet Allylic chloride (cis 1,2 isomer) - Branching reaction -Tepidone sink
4	$\mathrm{TT}+\mathrm{OH}^{-} \xrightarrow{k_{4}} \mathrm{~T}^{-}+\mathrm{TOH}$	NA	1	$\bullet T T$ may be mixed disulfide
5	$T_{e} T_{e}+T_{b}^{-} \xrightarrow{k_{B}} T_{b} T_{e}+T_{e}^{-}$	NA	P,I	- Disulfide exchange - Occurs between any dithiocarbamate and any thiuram disulfide - Various sulfide ions kinetically indistinguishable
6	$T T+S^{-} M_{q} \xrightarrow{k_{q}} T^{-}+T S M_{q}$	NA	P	\bullet Occurs with any thiuram disulfide
7	$\mathrm{M}_{n}+S^{-} \mathrm{Mq}_{q} \xrightarrow{k_{7}} \mathrm{M}_{n+q}+\mathrm{Cl}^{-}$	NA	P	- Vinyl chloride - Branching reaction $\bullet k_{7}$ small, but [VC] large
8		ABE	I	- Hydrolysis of polymeric sulfide ion
9	$2 \mathrm{RS}^{-}+2 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{k}_{9}} \mathrm{RSSR}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-}$	OXD	I	- Oxidation of polymeric sulfide ions - O_{2} retards peptization

${ }^{a}$ Mechanism type: NA - nucleophilic attack, ABE - acid-base equil., OXD - oxidation
${ }^{\text {b }}$ Physical site of reaction: P - particle phase, I - particle interface

Figure 3: G-Type Neoprene Aging Mechanistic Schematic
The deceptively simple Table 1 reaction set actually encompasses complex equilibrium reactions and polymer structure/reactivity complications. Consider Reactions 1 and 2.

$$
\begin{aligned}
& M_{n}+T^{-} \xrightarrow{k_{1}} M_{n-q} T+S^{-} M_{q} \\
& M_{n}+S^{-} M_{q} \xrightarrow{k_{2}} M_{r}+S^{-} M_{m}
\end{aligned}
$$

The capped chain from Reaction $1\left(M_{n-q} T\right)$ may react with a polymeric sulfide ion ($S^{-} M_{q}$) according to Reaction 2. If the polymeric sulfide ion attacks the terminal sulfur linkage of the capped chain, a higher MW chain and a pseudo Tepidone are formed, i.e.

$$
M_{n-q} T+S^{-} M_{q} \xrightarrow{k_{2}^{\prime}} M_{n}+T^{-}
$$

This is, in effect, the reverse of Reaction 1. Similarly, consider Reactions 6 and 1.

$$
\begin{gathered}
T T+S^{-} M_{q} \xrightarrow{k_{s}} M_{q} T+T^{-} \\
M_{n}+T^{-} \xrightarrow{k_{1}} M_{n-q} T+S^{-} M_{q}
\end{gathered}
$$

The capped chain from Reaction 6 ($M_{q} T$) may react with Tepidone (T^{-}) according to Reaction 1. If Tepidone attacks the terminal sulfur linkage of the capped chain, a polymeric sulfide ion and a pseudo thiuram are formed, i.e.

$$
M_{q} T+T^{-} \xrightarrow{k_{i}^{\prime}} S^{-} M_{q}+T T
$$

This is, in effect, the reverse of Reaction 6. Both Reaction 1 and Reaction 6 reverse reactions require chain scission at the terminal polysulfide site. The assumption that the ratio of terminal sites to intramolecular sites is small affords a potential modeling simplification.

The Table 1 reaction set is further complicated by the polymer structure and reactivity. Although conveniently characterized by an average molecular weight, the unpeptized polymer is obviously comprised of a distribution(s) of chain lengths, each potentially varying in intramolecular structure, e.g. allylic Cl sites, sulfur concentration and sequence length distribution. Thus, the polymer MWD may be uni- or multi-modal, and the reaction rate constants are functions of the number of sulfurs in the polysulfide linkage (sulfur rank).

Finally, in addition to the Table 1 reaction set, the proposed peptization mechanism accommodates dithiocarbamate (Tepidone, T^{-}) transfer from the aqueous phase into the particle:

$$
\left(T^{-}\right)_{a q} \xrightarrow{k_{m} a}\left(T^{-}\right)_{\text {particle }}
$$

The electrostatic double layer at the particle surface presents a resistance to transfer of the sulfide ion across the interface. According to this model, Tepidone uptake is governed by 1) the equilibrium partitioning of Tepidone between the particle and aqueous phases, 2) mass transfer resistance at the particle surface ($k_{m} a$), and 3) the rate of reaction of Tepidone inside the particle. Other, possibly less favorable, mechanisms are discussed in Reference [2].

II. Mathematical Model Development

A. Mechanistic Assumptions

As is evident from the proposed mechanism, the simplest of polymeric processes are often very complex, necessitating simplifying assumptions for successful modeling. The subject aging models incorporate several key assumptions (Table 2). The base assumptions apply to all models, while further simplifications are model-specific. Key assumptions requiring further elaboration are presently discussed. Minor assumptions (not listed in Table 2) are stated as appropriate in the subsequent text.

Table 2: Model Assumptions

	Model I	Model II	Model III
Base Assumptions			
Monodisperse latex	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Homogeneous particle phase	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Unpeptized polymer 100\% soluble	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Indistinguishable ion rxns negl.	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Uniform allylic Cl	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Chain scission arbitrary	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Average rate constants	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Other Simplifications			
Interfacial rxns negl.	$\sqrt{ }$		$\sqrt{ }$
Unimodal MWD	$\sqrt{ }$	$\sqrt{ }$	
Uniform sulfur dist.	$\sqrt{ }$	$\sqrt{ }$	
Scission at end site negl.	$\sqrt{ }$	\cdot	$\sqrt{ }$
Reactions 1',2' negl.	$\sqrt{ }$		$\sqrt{ }$
Capped/Uncapped negl.	$\sqrt{ }$		$\sqrt{ }$
(i.e. $M_{n} T=M_{n}$)			
Tepidone sink (allylic Cl) negl.	$\sqrt{ }$		$\sqrt{ }$

Base Assumptions (all models)

The unpeptized polymer is present in latex particles which are assumed spherical and of uniform diameter and compostion. Relaxing the monodisperse PSD assumption does not significantly complicate modeling equations, but computation time is increased since the equations are solved repeatedly for several particle sizes. On the other hand, the homogeneous particle phase assumption avoids the complexity of partial differential equations since any radial dependence of species concentrations is neglected. This assumption is potentially significant since several reactions involve partially water-soluble species.

The unpeptized polymer is further assumed to be 100% soluble[3]. This is in contrast to earlier thought that a fraction of the polymer was insoluble, presumably due to crosslinking and/or excessive entanglement. A given polymer chain is assumed uniform with respect to intramolecular branching sites (e.g. allylic Cl) and polysulfide linkages. Allylic Cl may be relatively evenly distributed, but sulfur is probably not uniformly incorporated during polymerization[5]. Nonetheless, with the assumption of uniform intramolecular sulfur distribution, scission may occur arbitrarily at any site along the chain. The polysulfide linkages may contain 2 to 8 sulfurs, but the S_{6} configuration appears prevalent[6], and is therefore assumed exclusively. Accordingly, average rate constants are used, but compensation is made for a general reduction in rate constants with decreased sulfur rank.

Other Assumptions (model-specific)

While all of the subject models incorporate the base assumptions, they may be distinguished based on characterization of the unpeptized polymer MWD and treatment of certain end-chain and interfacial reactions. Specifically, both Models I and II assume that the unpeptized polymer MWD is unimodal, but GPC results[3] show a definite multimodality (Figures 4 and 5), which may (Figure 5) or may not (Figure 4) persist after the onset of peptization. More importantly, peptization appears very sensitive to the unpeptized polymer structure. Thus, Model III assumes a trimodal MWD, and . also accommodates an overall variance of sulfur incorporation with polymer molecular weight, i.e. polymer in a given MW fraction may contain more or less sulfur than that in another fraction. This affords a possible means of adjusting relative reactivities without altering rate constants.

Like Model I, however, Model III neglects interfacial reactions ($1 a, 4,8$, and 9 in Table 1) and reactions decribing scission at the terminal sulfur linkage of a capped chain. First, consider the interfacial reaction assumption. Doyle[7] measured a definite, but slow reduction in Mooney viscosity after adding TETD only to a G-Type Neoprene. This may be explained by the reaction of

Figure 4: MWD(GPC) vs Aging Time for Run 4[3].

Figure 5: MWD(GPC) vs Aging Time for Run 2[3].

TETD with OH^{-}to yield T^{-}(Reaction 4), and subsequent chain scission via Reaction 1. The observed slow Mooney reduction (compared to that observed with both TETD and Tepidone added) suggests that Reaction 4, and thus Reaction 1a, may be neglected. Recent GPC measurements[3], however, show a significant change in MW after TETD, but before Tepidone addition (Table 3), suggesting the significance of interfacial and/or unidentified reactions. Model II includes Reactions la and 4, but assumes a constant low [$O H^{-}$]. Alternatively, Reaction 4 effects may be estimated by assuming a fraction of the added TETD is lost to T^{-}, perhaps during the quick transfer to the particle phase.

Table 3: Average MW for Unpeptized and Thiuram Only Samples[3].

		Unpeptized	With TETD Only
Run 2	$M W_{n}$	108,000	105,000
	$M W_{w}$	854,000	$1,408,000$
Run 6	$M W_{n}$	105,000	114,000
	$M W_{w}$	$1,579,000$	625,000

Next consider the reactions describing scission at the terminal sulfur linkage of a capped chain. Specifically,

$$
\begin{gathered}
M_{n} T+T^{-} \xrightarrow{k_{1}^{\prime}} S^{-} M_{n}+T T \\
M_{n-q} T+S^{-} M_{q} \xrightarrow{k_{2}^{\prime}} M_{n}+T^{-}
\end{gathered}
$$

NMR analysis of model compound reactions with Tepidone only[4,6] and separate analysis of Tepidone uptake data[6] with no TETD added revealed no TETD formation. This suggests that k_{6} is much larger than k_{1}^{\prime}, a conclusion also supported by kinetic studies[6]. On the other hand, kinetic studies estimated k_{2}^{\prime} at roughly an order of magnitude greater than k_{1} and NMR analysis indicated little capped product in the absence of TETD, both potentially supporting the relative significance of Reaction 2^{\prime}. NMR results also indicate, however, that the capped product is unstable, somehow decomposing to a polymeric sulfide ion and diethylamine. This suggests that the unidentified decomposition rate constant is larger than k_{2}^{\prime}, thus explaining the absence of capped product when only Tepidone is added. More pertinent to MW considerations, Reaction 2' may not afford a net MW increase since it would follow Reaction 1 and it is unlikely that a higher MW capped chain or polymeric sulfide ion would preempt the Reaction 1 products. Reaction with a capped product from Reaction 6 would result in a higher MW species, but further chain scission is probable (Reaction 2' also generates a Tepidone) since TETD sustains reduced MW. The net effect of Reaction 2 could be a
higher equilibrium particle-phase Tepidone concentration. Lastly, note that Reaction 2 may effect a MW increase via scission near the chain end, e.g.

	$M_{5}+S_{15}^{-}$	$\xrightarrow{k_{2}}$	$M_{2}+S_{18}^{-}$
M_{n}	10		10
M_{w}	12.5		16.4

Neglecting the end-chain reactions eliminates the need for tracking the capped species and reduces the number of model equations. Models I and III incorporate this simplification, while Model II includes the end-chain reactions.

Finally, consider Tepidone reaction at the allylic Cl (Reaction 3a). While kinetic measurements[6] support inclusion of this reaction as a true Tepidone sink, Tepidone uptake measurements (Figure 6) do not show a significant continual decrease in the aqueous phase Tepidone concentration when allylic Cl is undoubtedly present[3]. Reaction 3 a is omitted from Models I and III, but is included in Model II.

Figure 6: Tepidone Uptake with Neoprene GRT Latex at $40^{\circ} \mathrm{C}[6]$.
Many of the model-specific assumptions resulted from mechanistic insight gained and/or emphasized after modeling efforts were well underway. Thus, the first model, Model I, has been analyzed most completely, and is emphasized in subsequent discussion.

B. Fundamental Theories and Derivations

Having proposed the mechanism governing the aging process, and identified key simplifying assumptions, construction of the model equations follows. Here, the fundamental principles of mass balances, discrete transformation, and moment representations are employed. A brief discussion of these principles follows. The reader is referred to References [8]-[10] for more detail.

For this batch system, mass balances are of the form

$$
\left\{\begin{array}{c}
\text { change } \tag{1}\\
\text { in concentration } \\
\text { with time }
\end{array}\right\}=\left\{\begin{array}{c}
\text { total rate of addition } \\
\text { or depletion of concentration } \\
\text { by various mechanisms }
\end{array}\right\}
$$

and may be written for the polymer chain populations (M_{n} and $S^{-} M_{n}$), along with other species, to obtain a complete differential molecular weight distribution (MWD).

The mass balances constitute an infinite set (n from 1 to ∞) of coupled ordinary differential equations (ODEs). Aside from the obvious calculational difficulties, the routine use of full differential MWDs to represent the state of reacting polymer is often impractical or impossible. It is more convenient to use the leading moments of the differential MWD. For the populations M_{n} and S_{n}, the kth moments are defined as

$$
\begin{align*}
& \eta_{k}=\sum_{n=1}^{\infty} n^{k} M_{n} \quad k=0,1,2, \ldots \\
& \lambda_{k}=\sum_{n=1}^{\infty} n^{k} S_{n} \quad k=0,1,2, \ldots \tag{2}
\end{align*}
$$

and the number and weight-average molecular weights ($M W_{n}, M W_{w}$) as

$$
\begin{align*}
M W_{n} & =w\left[x_{M}\left(\frac{\eta_{1}}{\eta_{0}}\right)+x_{S}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)\right] \tag{3}\\
M W_{w} & =w\left[x_{M}\left(\frac{\eta_{2}}{\eta_{1}}\right)+x_{S}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)\right] \tag{4}\\
P D & =M W_{w} / M W_{n} \tag{5}
\end{align*}
$$

where w is the mer molecular weight and x_{M} and x_{S} are the weight fractions of the M_{n} and S_{n} populations, respectively. $P D$ is the polydispersity.

Obviously, the moment equations may be obtained directly from Eqn. (2) by the indicated series summation of the mass balances, i.e.

$$
\begin{equation*}
\frac{d \eta_{k}}{d t}=\sum_{n=1}^{\infty} n^{k} \frac{d M_{n}}{d t} \tag{6}
\end{equation*}
$$

but it is generally easier to use a discrete transformation technique, such as Z-transforms, and then extract the moments. Given the population M_{n}, the Z-transform is defined as

$$
\begin{equation*}
\mathcal{M}(z)=\sum_{n=0}^{\infty} M_{n} z^{-n} \tag{7}
\end{equation*}
$$

and the infinite set of ODEs is transformed to a single equation for $\frac{d \mathcal{M}(x)}{d t}$. The moment equations become
or

$$
\begin{equation*}
\eta_{k}=\left[(-1)^{k} \frac{\partial^{k} \mathcal{M}(z)}{\partial(\ln z)^{k}}\right]_{x \rightarrow 1} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \eta_{k}}{d t}=\frac{d}{d t}\left[(-1)^{k} \frac{\partial^{k} \mathcal{M}(z)}{\partial(\ln z)^{k}}\right]_{z \rightarrow 1} \tag{9}
\end{equation*}
$$

and a set of three moment equations ($\frac{d \eta_{0}}{d t}, \frac{d \eta_{1}}{d t}, \frac{d \eta_{2}}{d t}$) replaces the $\frac{d \mathcal{M}(x)}{d t}$ equation.

As is the case in many polymer systems, here, the equation for η_{2} depends on η_{3}. As pointed out by Tirrell[10], this generally occurs when a polymer participates in a reaction which can occur at every monomer unit along the chain, and not only at the ends. This is the case in Reactions 1 and 2, where the nucleophile (T^{-}or $S^{-} M_{q}$) may attack the polymer chain (M_{n}) at any monomer unit. Tirrell further applies a moment closure procedure using the associated Laguerre polynomials to obtain the following expression for an arbitrary distribution described as a perturbation around a T-distribution:

$$
\begin{equation*}
\eta_{3}=\frac{\eta_{2}}{\eta_{0} \eta_{1}}\left(2 \eta_{0} \eta_{2}-\eta_{1}^{2}\right) \tag{10}
\end{equation*}
$$

With this substitution ${ }^{3}$, the set of moment equations may be solved numerically.

C. Mass Balances

Using the form of Eqn. (1), Model I mass balances are written for the polymer populations (M_{n} and $S^{-} M_{n}$), the polysulfide ($R S$), allylic chloride ($A C$), and vinyl chloride ($V C$) reactive sites, and the Tepidone (aqueous T_{w}, particle T_{p}) and TETD (TT) concentrations. Balances are based on the simplified mechanism listed in Table 4.

[^1]Table 4: G-Type Neoprene Alkaline Aging - Model I Mechanism[2]

\#	Reaction
1	$M_{n}+T^{-} \xrightarrow{k_{1}} S^{-} M_{q}+M_{n-q} T$
2	$M_{n}+S^{-} M_{q} \xrightarrow{k_{q}} M_{r}+S^{-} M_{m}$
3	$M_{n}+S^{-} M_{q} \xrightarrow{k_{3}} M_{n+q}+l^{-}$
6	$T T+S^{-} M_{q} \xrightarrow{k_{q}} T^{-}+T S M_{q}$
7	$M_{n}+S^{-} M_{q} \xrightarrow{k_{\tau}} M_{n+q}+l^{-}$

Uncharged Polymer Population, M_{n}

Noting that $M_{n}, M_{n} T$, and $T S M_{n}$ are equivalent, and $S^{-} M_{n}$ may be written as S_{n} for simplicity, the mass balance on species M_{n} ($n=1,2, \ldots$; $M_{0}=S_{0}=0$) is given by

$$
\begin{align*}
\frac{d M_{n}}{d t}= & k_{1} T_{p} f_{s} \sum_{q=n+1}^{\infty} M_{q}-k_{1} T_{p} f_{s}(n-1) M_{n} \\
& +k_{2} f_{2} \sum_{q=0}^{n-1} S_{q} \sum_{p=(n-q)+1}^{\infty} M_{p}-k_{2} f_{s}(n-1) M_{n} \sum_{q=1}^{\infty} S_{q} \\
& +k_{3} f_{a} \sum_{q=1}^{n-1} q M_{q} S_{n-q}-k_{3} f_{a} n M_{n} \sum_{q=1}^{\infty} S_{q} \\
& +k_{7} f_{v} \sum_{q=1}^{n-1} q M_{q} S_{n-q}-k_{7} f_{v} n M_{n} \sum_{q=1}^{\infty} S_{q}+k_{6}[T T] S_{n} \tag{11}
\end{align*}
$$

where f_{s}, f_{a} and f_{v} are the fraction of polysulfide linkages, allylic chlorides, and vinyl chlorides in the polymer chain (moles reactive sites/mole mer). The equation form reflects the rate dependence on the number of reactive sites, not the polymer concentration.

Polymeric Sulfide Ions, $S^{-} M_{n}$ or S_{n}

- The mass balance on species S_{n} is given by

$$
\begin{align*}
\frac{d S_{n}}{d t}= & k_{1} T_{p} f_{s} \sum_{q=n+1}^{\infty} M_{q}+k_{2} f_{s} \sum_{q=1}^{\infty} S_{q} \sum_{p=n}^{\infty} M_{p} \\
& +k_{2} f_{s} S_{n} \sum_{p=1}^{\infty} p M_{p}-k_{3} f_{a} S_{n} \sum_{q=1}^{\infty} q M_{q} \\
& -k_{7} f_{v} S_{n} \sum_{q=1}^{\infty} q M_{q}-k_{6}[T T] S_{n} \tag{12}
\end{align*}
$$

Polysulfide Reactive Sites，$[R S]$
The mass balance on the polysulfide reactive sites is potentially compli－ cated by the fact that each linkage of 3 or more sulfurs provides more than one reactive site．Thus，the effect of each of the reactions on $[R S]$ depends upon the length of the sulfur linkages in M_{n} and S_{q} ，and／or where the scis－ sion occurs．For example，as indicated below，for a given scission，Reaction 2 could increase，decrease，or not affect［ $R S]$ ．

$$
\begin{aligned}
& R_{1}-S_{4}^{-}+R_{2}-S_{6}-R_{3} \\
& \xrightarrow{\text { 年 }} R_{1}-S_{8}-R_{2}+R_{3}-S_{2}^{-} \quad \text { (7 sites) } \\
& \text { 륵 } R_{1}-S_{5}-R_{2}+R_{3}-S_{5}^{-} \quad \text { (4 sites) } \\
& \xrightarrow{\text { 初 }} R_{1}-S_{6}-R_{2}+R_{3}-S_{4}^{-} \quad \text { (} 5 \text { sites) }
\end{aligned}
$$

In the above example，the composition of R_{1}, R_{2} and R_{3} also affect［RS］． To avoid this complexity，the balance is written for the polysulfide linkage concentration，effectively assuming each linkage provides one reactive site． Thus，

$$
\begin{align*}
\frac{d[R S]}{d t}= & -k_{1} T_{p} f_{t} \sum_{n=1}^{\infty}(n-1) M_{n}+k_{3} f_{a} S_{n} \sum_{q=1}^{\infty} q M_{q} \\
& +k_{6}[T T] \lambda_{0}+k_{7} f_{v} S_{n} \sum_{q=1}^{\infty} q M_{q} \tag{13}
\end{align*}
$$

To convert $[R S]$（mole sites／cc－part）to $f_{\text {s }}$（mole sites／moles mer），divide by the total mer concentration，i．e．

$$
\begin{equation*}
f_{s}=\frac{[R S]}{\eta_{1}+\lambda_{1}} \tag{14}
\end{equation*}
$$

Eqn．（15）affords a virtual conservation of reactive sites and necessitates an independent reduction of rate constants with sulfur rank reduction．Alter－ natively，one might track the depletion of S_{6} linkages via Reaction 1 only， and assume each S_{6} scission yields two less reactive S_{2}, S_{3} ，or S_{4} linkages． A reduced rate constant（ $k_{1, \text { red }}=k_{1}$ ．reduction factor）would then apply to the low sulfur rank sites，and $k_{1} f_{s}$ would be expanded to $\left[k_{1} f_{s}+2 k_{1, \text { red }}\left(f_{\infty 0}\right.\right.$ －$\left.\left.f_{s}\right)\right]$ in the other rate expressions．The Model I code reflects this alternate approach；for brevity，$k_{1} f_{s}$ is not expanded in the text．A similar treatment is applied to $k_{2} f_{s}$ ．

Allylic Chloride Sites，［AC］
Allylic chloride sites in the soluble fraction are expressed by

$$
\begin{equation*}
\frac{d[A C]}{d t}=-k_{3} f_{a} S_{n} \sum_{q=1}^{\infty} q M_{q} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{a}=\frac{[A C]}{\eta_{1}+\lambda_{1}} \tag{16}
\end{equation*}
$$

Vinyl Chloride Sites, [VC]
Vinyl chloride sites in the soluble fraction are expressed by

$$
\begin{equation*}
\frac{d[V C]}{d t}=-k_{7} f_{v} S_{n} \sum_{q=1}^{\infty} q M_{q} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{v}=\frac{[V C]}{\eta_{1}+\lambda_{1}} \tag{18}
\end{equation*}
$$

Tepidone, T_{w} and T_{p}
By assumption, the Tepidone is initially present in the aqueous phase $\left(T_{w}\right)$, and then transfers to the particle $\left(T_{p}\right)$, the driving force being the departure from equilibrium concentrations. T_{w} is given by

$$
\begin{equation*}
\frac{d T_{w}}{d t}=-\frac{k_{m} A_{p}}{V_{w}}\left[T_{w}-\left(\frac{1}{P C}\right) T_{p}\right] \tag{19}
\end{equation*}
$$

where $P C$ is the partition coefficient, i.e. $\left(T_{p} / T_{w}\right)_{\text {equil }}$. Similarly, Tepidone enters the particles at the same rate, is consumed by Reaction 1, and produced by Reaction 6. Thus,

$$
\begin{align*}
\frac{d T_{p}}{d t}= & \frac{k_{m} a_{p}}{v_{p}}\left[T_{w}-\left(\frac{1}{P C}\right) T_{p}\right]-k_{1} T_{p} f_{1} \sum_{n=1}^{\infty}(n-1) M_{n} \\
& +k_{6}[T T] \sum_{n=1}^{\infty} S_{n} \tag{20}
\end{align*}
$$

Tetraethylthiuram Disulfide, $[T T]$
By assumption, TETD is exclusively in the particle phase at the beginning of peptization. It is consumed by Reaction 6. Thus,

$$
\begin{equation*}
\frac{d[T T]}{d t}=-k_{6}[T T] \sum_{n=1}^{\infty} S_{n} \tag{21}
\end{equation*}
$$

Table 5: Z-Transforms

Function	Z-Transform
M_{n}	$\mathcal{M}(z)=\sum_{n=0}^{\infty} M_{n} z^{-n}$
c	$c\left(\frac{z}{z-1}\right)$
$\sum_{q=1}^{n} M_{q}$	$\mathcal{M}(z)\left(\frac{z}{z-1}\right)$
$n M_{n}$	$-z \frac{\partial \mathcal{M}(x)}{\partial z}$
$\sum_{q=1}^{n-1} q M_{q} S_{(n-q)}$	$-S(z) \frac{\partial \mathcal{M}(z)}{\partial z}$

D. Discrete Transformation, Moment Equations

As outlined in Section II.B., the infinite set of mass balances is transformed to a finite, solvable set by employing Z-transforms, and the associated moment generation property. Using the Z-transforms in Table 5 and the moment definitions in Eqn. (2), each term in Eqns. (13) and (14) is transformed to yield

$$
\begin{align*}
\frac{d \mathcal{M}(z)}{d t}= & k_{1} T_{p} f_{s}\left(\frac{\eta_{0}-z \mathcal{M}(z)}{z-1}\right)-k_{1} T_{p} f_{s}\left[\sum_{n-1}^{\infty} n z^{-n} M_{n}-\mathcal{M}(z)\right] \\
& +\mathcal{Z}\left(k_{2} f_{s} \sum_{q=0}^{n-1} S_{q} \sum_{p=(n-q)+1}^{\infty} M_{p}\right)-k_{2} f_{s} \lambda_{0}\left[\sum_{n-1}^{\infty} n z^{-n} M_{n}-\mathcal{M}(z)\right] \\
& +k_{3} f_{a} S(z)\left(\sum_{n=1}^{\infty} n z^{-(n+1)} M_{n}\right)-k_{3} f_{a} \lambda_{0} \sum_{n=1}^{\infty} n z^{-n} M_{n} \\
& +k_{7} f_{v} S(z)\left(\sum_{n=1}^{\infty} n z^{-(n+1)} M_{n}\right)-k_{7} f_{v} \lambda_{0} \sum_{n=1}^{\infty} n z^{-n} M_{n} \\
& +k_{6}[T T] S(z) \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d S(z)}{d t}= & k_{1} T_{p} f_{2}\left(\frac{\eta_{0}-z \mathcal{M}(z)}{z-1}\right)+k_{2} f_{s} \lambda_{0}\left(\frac{\eta_{0}-z \mathcal{M}(z)}{z-1}\right)-k_{6}[T T] S(z) \\
& -k_{2} f_{s}\left(\eta_{1}-\eta_{0}\right) S(z)-k_{3} f_{a} \eta_{1} S(z)-k_{7} f_{v} \eta_{1} S(z) \tag{23}
\end{align*}
$$

The Z-transform of the third term in Eqn. (11) is not easily identified, so the contribution to the moment equations is calculated directly from the mass balance (Eqn. (6)). For the remaining terms, the moment contributions are calculated by evaluating Eqn. (9). Specifically, for Eqn. (22),

$$
\begin{aligned}
& \frac{d \eta_{0}}{d t}=\left.\frac{d \mathcal{M}(z)}{d t}\right|_{z \rightarrow 1} \\
& \frac{d \eta_{1}}{d t}=\frac{d}{d t}\left(-\left.z \frac{\partial \mathcal{M}(z)}{\partial z}\right|_{z \rightarrow 1}\right) \\
& \frac{d \eta_{2}}{d t}=\left.\frac{d}{d t}\left(z \frac{\partial}{\partial z}\left(z \frac{\partial \mathcal{M}(z)}{\partial z}\right)\right)\right|_{z \rightarrow 1}
\end{aligned}
$$

Similar equations apply for the S_{n} distribution $\left(\lambda_{0,1,2}\right)$. The differentiation becomes tedious, as the limit evaluation requires repeated use of L'Hopital's Rule, and is greatly facilitated by the use of a math software package, e.g. Mathematica. After simplifying, the moment equations are given by

$$
\begin{align*}
\frac{d \eta_{0}}{d t}= & k_{6}[T T] \lambda_{0} \tag{24}\\
\frac{d \eta_{1}}{d t}= & -\frac{k_{1} T_{p} f_{2}}{2}\left(\eta_{2}-\eta_{1}\right)+k_{2} f_{s}\left[\lambda_{1}\left(\eta_{1}-\eta_{0}\right)-\frac{\lambda_{0}}{2}\left(\eta_{2}-\eta_{1}\right)\right] \\
& +k_{3} f_{a} \lambda_{1} \eta_{1}+k_{6}[T T] \lambda_{1}+k_{7} f_{v} \lambda_{1} \eta_{1} \tag{25}\\
\frac{d \eta_{2}}{d t}= & \frac{k_{1} T_{p} f_{s}}{6}\left(\eta_{1}+3 \eta_{2}-4 \eta_{3}\right)+k_{3} f_{a}\left(2 \lambda_{1} \eta_{2}+\lambda_{2} \eta_{1}\right) \\
& +k_{2} f_{5}\left[\lambda_{2}\left(\eta_{1}-\eta_{0}\right)+\lambda_{1}\left(\eta_{2}-\eta_{1}\right)-\frac{\lambda_{0}}{6}\left(4 \eta_{3}-3 \eta_{2}+\eta_{1}\right)\right] \\
& +k_{6}[T T] \lambda_{2}+k_{7} f_{v}\left(2 \lambda_{1} \eta_{2}+\lambda_{2} \eta_{1}\right) \tag{26}\\
\frac{d \lambda_{0}}{d t}= & k_{1} T_{p} f_{2}\left(\eta_{1}-\eta_{0}\right)-k_{3} f_{a} \eta_{1} \lambda_{0}-k_{6}[T T] \lambda_{0}-k_{7} f_{v} \eta_{1} \lambda_{0} \tag{27}\\
\frac{d \lambda_{1}}{d t}= & \frac{k_{1} T_{p} f_{9}}{2}\left(\eta_{2}-\eta_{1}\right)-k_{2} f_{5}\left[\lambda_{1}\left(\eta_{1}-\eta_{0}\right)-\frac{\lambda_{0}}{2}\left(\eta_{2}-\eta_{1}\right)\right] \\
& -k_{3} f_{0} \lambda_{1} \eta_{1}-k_{6}[T T] \lambda_{1}-k_{7} f_{v} \lambda_{1} \eta_{1} \tag{28}\\
\frac{d \lambda_{2}}{d t}= & \frac{k_{1} T_{5} f_{6}}{6}\left(2 \eta_{3}-3 \eta_{2}+\eta_{1}\right)+\frac{k_{2} f_{v} \lambda_{0}}{6}\left(2 \eta_{3}-3 \eta_{2}+\eta_{1}\right) \\
& -k_{2} f_{s} \lambda_{2}\left(\eta_{1}-\eta_{0}\right)-k_{3} f_{a} \eta_{1} \lambda_{2}-k_{6}[T T] \lambda_{2}-k_{7} f_{v} \eta_{1} \lambda_{2} \tag{29}
\end{align*}
$$

Given the extent of mathematical manipulation required to obtain the moment equations, a cursory check of the equations against the simplified mechanism (Table 4) is appropriate. First, the total number of mers is constant, i.e.

$$
\frac{d \eta_{1}}{d t}+\frac{d \lambda_{1}}{d t}=0
$$

Second, η_{0}, the total concentration of M_{n} chains, is increased by Reaction 6 only while λ_{0}, the total concentration of S_{n} chains, is increased by Reaction 1, and decreased by Reactions 3, 6, and 7.

Lastly, consider the molecular weight effects predicted by the moment equations (Table 6). The effects were predicted by isolating the moment contributions from each reaction and applying the molecular weight definitions in Eqns. (3) and (4). As expected, Reaction 1 can only decrease $M W$, Reactions 3 and 7 can only increase $M W$, and Reaction 6 has no direct effect. Reaction 2, however, has no effect on $M W_{n}$, but can either increase or decrease $M W_{w}$ since

$$
\left(\frac{d \eta_{2}}{d t}+\frac{d \lambda_{2}}{d t}\right)_{R \pi n 2}=k_{2} f_{\mathrm{s}}\left[\lambda_{1}\left(\eta_{2}-\eta_{1}\right)+\frac{\lambda_{0}}{3}\left(\eta_{1}-\eta_{3}\right)\right]
$$

Consideration of these effects is useful when tuning model parameters.

Table 6: Predicted Qualitative MW Effects

	Effect on \ldots		
Rxn	$M W_{\omega}$	$M W_{n}$	
1	\downarrow	\downarrow	
2	$\uparrow \downarrow$	-	
3,7	\uparrow	\uparrow	
6	-	-	

E. Model Summary and Solution Requirements

In summary, based on the simplified mechanism of Table 4, Model I predicts the polymer number and weight-average molecular weights, and the Tepidone, TETD, and reactive site concentrations versus aging time. It is comprised of the following 12, coupled ODEs ${ }^{4}$:

$$
\begin{equation*}
\frac{d T_{w}}{d t}=-\frac{k_{m} A_{p}}{V_{w}}\left[T_{w}-\left(\frac{1}{P C}\right) T_{p}\right] \tag{30}
\end{equation*}
$$

[^2]\[

$$
\begin{align*}
\frac{d T_{p}}{d t}= & \frac{k_{m} a_{p}}{v_{p}}\left[T_{w}-\left(\frac{1}{P C}\right) T_{p}\right]-k_{1} T_{p} f_{s}\left(\eta_{1}-\eta_{0}\right) \\
& +k_{6}[T T] \lambda_{0} \tag{31}\\
\frac{d[T T]}{d t}= & -k_{6}[T T] \lambda_{0} \tag{32}\\
\frac{d \eta_{0}}{d t}= & k_{6}[T T] \lambda_{0} \tag{33}\\
\frac{d \eta_{1}}{d t}= & -\frac{k_{1} T_{p} f_{s}}{2}\left(\eta_{2}-\eta_{1}\right)+k_{2} f_{s}\left[\lambda_{1}\left(\eta_{1}-\eta_{0}\right)-\frac{\lambda_{0}}{2}\left(\eta_{2}-\eta_{1}\right)\right] \\
& +k_{3} f_{a} \lambda_{1} \eta_{1}+k_{6}[T T] \lambda_{1}+k_{7} f_{v} \lambda_{1} \eta_{1} \tag{34}\\
\frac{d \eta_{2}}{d t}= & \frac{k_{1} T_{p} f_{s}}{6}\left(\eta_{1}+3 \eta_{2}-4 \eta_{3}\right)+k_{3} f_{a}\left(2 \lambda_{1} \eta_{2}+\lambda_{2} \eta_{1}\right) \\
& +k_{2} f_{s}\left[\lambda_{2}\left(\eta_{1}-\eta_{0}\right)+\lambda_{1}\left(\eta_{2}-\eta_{1}\right)-\frac{\lambda_{0}}{6}\left(4 \eta_{3}-3 \eta_{2}+\eta_{1}\right)\right] \\
& +k_{6}[T T] \lambda_{2}+k_{7} f_{v}\left(2 \lambda_{1} \eta_{2}+\lambda_{2} \eta_{1}\right) \tag{35}\\
\frac{d \lambda_{0}}{d t}= & k_{1} T_{p} f_{s}\left(\eta_{1}-\eta_{0}\right)-k_{3} f_{a} \eta_{1} \lambda_{0}-k_{6}[T T] \lambda_{0}-k_{7} f_{v} \eta_{1} \lambda_{0} \tag{36}\\
\frac{d \lambda_{1}}{d t}= & \frac{k_{1} T_{p} f_{s}}{2}\left(\eta_{2}-\eta_{1}\right)-k_{2} f_{s}\left[\lambda_{1}\left(\eta_{1}-\eta_{0}\right)-\frac{\lambda_{0}}{2}\left(\eta_{2}-\eta_{1}\right)\right] \\
& -k_{3} f_{a} \lambda_{1} \eta_{1}-k_{6}[T T] \lambda_{1}-k_{7} f_{v} \lambda_{1} \eta_{1} \tag{37}\\
\frac{d \lambda_{2}}{d t}= & \frac{k_{1} T_{p} f_{s}}{6}\left(2 \eta_{3}-3 \eta_{2}+\eta_{1}\right)+\frac{k_{2} f_{s} \lambda_{0}}{6}\left(2 \eta_{3}-3 \eta_{2}+\eta_{1}\right) \\
& -k_{2} f_{s} \lambda_{2}\left(\eta_{1}-\eta_{0}\right)-k_{3} f_{a} \eta_{1} \lambda_{2}-k_{6}[T T] \lambda_{2}-k_{7} f_{v} \eta_{1} \lambda_{2} \tag{38}\\
\frac{d[R S]}{d t}= & -k_{1} T_{p} f_{s}\left(\eta_{1}-\eta_{0}\right)+\left(k_{3} f_{a}+k_{7} f_{v}\right) \eta_{1} \lambda_{0}+k_{6}[T T] \lambda_{0} \tag{39}\\
\frac{d[A C]}{d t}= & -k_{3} f_{a} \eta_{1} \lambda_{0} \tag{40}\\
\frac{d[V C]}{d t}= & -k_{7} f_{v} \eta_{1} \lambda_{0} \tag{41}
\end{align*}
$$
\]

Supporting algebraic expressions include:

$$
\begin{aligned}
\eta_{3} & =\frac{\eta_{2}}{\eta_{0} \eta_{1}}\left(2 \eta_{0} \eta_{2}-\eta_{1}^{2}\right) \\
f_{2} & =\frac{[R S]}{\eta_{1}+\lambda_{1}} \\
f_{a} & =\frac{[A C]}{\eta_{1}+\lambda_{1}} \\
f_{v} & =\frac{[V C]}{\eta_{1}+\lambda_{1}} \\
M W_{n} & =w\left[x_{M}\left(\frac{\eta_{1}}{\eta_{0}}\right)+x_{S}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
M W_{w} & =w\left[x_{M}\left(\frac{\eta_{2}}{\eta_{1}}\right)+x_{S}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)\right] \\
P D & =M W_{w} / M W_{n}
\end{aligned}
$$

where w is the mer molecular weight and x_{M} and x_{S} are the weight fractions of the M_{n} and S_{n} populations, respectively. Simple algebraic equations, detailed in Appendix III, are also used to calculate initial conditions from user-supplied data. Specifically, the user specifies the unpeptized polymer MWD, the weight-average particle diameter, recipe variables, reaction rate constant parameters, and other physical constants. Sample data files are also included in Appendix III.

III. Simulation Development

A. Computer Strategy

The FORTRAN code used to solve Model I is charted in Figure 7 and detailed in Appendix III. The subroutine ALGBR reads the input data files (RCP1 and CNST1) and calculates the initial conditions for the ODEs, which are numerically integrated using Gear's backward differentiation method. The IVPAG subroutine is available as part of the International Mathematical and Statistical Library (IMSL) software package. Results are written to three output files, MOLWGT, SITES, and MOMENT, examples of which are also included in Appendix III. The FORTRAN code is executed on a Digital Equipment Corporation VAX 6210.

B. Parameter Estimation

Most of the crucial model parameters were unavailable in the literature, and estimates were obtained from a kinetic study by S. Arthur [6]. The reader is referred to Reference [6] for experimental details and discussion, but rate constant estimates are presented in Table 7.

Assuming an Arrhenius dependence is applicable, i.e.

$$
k=A \exp \left(-\frac{E}{R T}\right)
$$

a plot of $\ln k$ vs. $\frac{1}{T}$ is characterized by a slope of $-\frac{E}{R}$ and an intercept equal to $\ln A$. Table 8 lists the calculated Arrhenius parameters, assuming k_{1} and k_{6} have the same temperature dependence, as do k_{2} and k_{3} (by assumption). In the absence of explicit data, these assumptions are made since Reactions 1 and 6 involve similar molecules, as do Reactions 2 and 3.

The rate constants reported in Table 7 were messured in both an 85:15 acetonitrile/water solution and methylene chloride, the polarity of which is thought to more closely resemble that of the particle. While potential

Figure 7: Peptization Model Flowchart

Table 7: Rate Constant Estimates[6]

Rate Constant	Value, l/mol - sec		Temp.,
k_{1}	19	$10^{-2}-10^{-4}$	22
k_{1}	49	-	40
k_{2}	76	-	21
k_{3}	0.19	10^{-2}	23
k_{3}	0.49	-	40
k_{6}	60	$10-10^{2}$	21
k_{7}	$\sim 10^{-6}$	-	20
k_{7}	1.2×10^{-4}	-	78

Table 8: Arrhenius Parameters

	$\left(\frac{E}{R}\right), K$	$A, c c /$ molsec
k_{1}	4866.	2.75 E 11
k_{2}	4594.	4.62 E 11
k_{3}	5169.	7.22 E 09
k_{6}	4603.	3.75 E 11
k_{7}	8498.	3.88 E 09

medium polarity effects appear significant, rate constant measurements using swollen and unswollen particles revealed an insensitivity of the rate of diffusion of small molecules (e.g. Tepidone, TETD) to the degree of swelling[6]. Thus, Reactions 1 and 6 are probably less affected by medium viscosity than are Reactions 2, 3, and 7, which involve two macromolecules. The model allows for independent adjustment of the constants for medium polarity and viscosity effects (RMEDCOR parameters).

Still another adjustment is made to k_{3}, the rate constant characterizing the branching reaction at the allylic chloride. Arthur[6] was unable to synthesize a pure sample of the tertiary allylic chloride, so the reported k_{3} applies to the primary isomer. The respective rate constants may differ by 5 X (tertiary more reactive). However, by the time 30% of the tertiary isomer has reacted, the remainder has rearranged to the primary isomer. Thus, Model I multiplies k_{3} by 5 until 30% of the allylic chloride sites are branched, at which point the adjustment ceases.

The final rate constant adjustment is made to accommodate an apparent reduction in the reactivity of the polysulfide linkages as peptization progresses and the overall sulfur rank is reduced. This is consistent with the presence of residual cleavable sites in the peptized rubber. Arthur[6] quantified this reduction by measuring k_{1} with di-, tri- and tetrasulfide in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$.

Sulfur Rank	$k_{1}, l / m o l-s e c$
2	$3.3 \mathrm{E}-04$
3	$6.4 \mathrm{E}-02$
4	$2.0 \mathrm{E}+01$

By inference, k_{1} for S_{6} is probably on the order of 10^{2}, and is reduced by 2 or 3 orders of magnitude when S_{6} is cleaved to a linkage of lower rank. In the model, k_{1} and k_{2} are multiplied by a user-specified reduction factor (RKRED) in rate expressions for lower sulfur rank linkages.

In addition to rate constant estimates, Arthur[6] also reports useful mass .transfer-related data. The Tepidone partition coefficient is estimated at $\stackrel{*}{*} / 150$, and Tepidone uptake data (t vs. T_{ψ}) is reported for several Neoprene GRT latexes. Using this data, Schork[11] estimated k_{m}, the mass transfer coefficient, at $6.4 \mathrm{E}-10 \mathrm{~cm} / \mathrm{sec}$.

IV. Simulation Results

A. Comparison with Laboratory Data

G Neoprene peptization sample sets, prepared and analyzed by Gossen and Aronson[3], were used to further improve the rate constant, and other model parameter, estimates. Experimental details are reported separately[3]; conditions are summarized in Table 9. Weight-averaged particle diameters were calculated from light transmission data according to $D_{p}=117$ - 1.68(\%trans), as reported by Aronson[5]. The runs basically involved aging unstripped G Neoprene plant or miniworks latex samples under controlled laboratory conditions. With the exception of Run 3, the aging temperature was maintained at $40^{\circ} \mathrm{C}$, but Tepidone and TETD concentrations were intentionally varied. Samples were analyzed for MWD (GPC in THF), residual TETD, Mooney viscosity, and various other data. Standard Neoprene GW and GRT recipes are presented in Appendix II, along with some analytical results for each of the six sample sets. Use of the data to improve model parameter estimates is presently discussed.

Table 9: Summary of Peptization Experiments[3]

Run $\#$	Polymer Type	Conv. $\%$	D_{p}, nm	Sulfur, g phm	Pep. T, ${ }^{\circ} \mathbf{C}$	TETD, g phm	Tepidone N, g phm
(Standard)	GW	-	-	0.335	40	1.1800	2.0000
(Standard)	GRT	$83-85$	$95-100$	0.600	40	0.4348	0.7990
1	GWM2	71.3	90.1	0.335	40	1.1800	0.7976
2	GRT	-	-	0.600	40	0.4468	0.8505
3	GRT	82.2	-	0.600	30	0.4815	0.8505
4	GRTM2	84.7	93.5	0.600	40	0.3451	1.3607
5	GWM2	70.8	102	0.335	40	1.1800	2.1300
6	GRTM1	84.4	102	0.600	40	0.5519°	2.2547

${ }^{\circ}$ 2nd shot added after $24 \mathrm{hrs}=1.3015$.
Molecular weight profiles of the laboratory sample sets are shown in Figure 8 (data in Table A.II.1). To aid discussion, the peptization reactions, rate constant order of magnitudes, and probable correction factors are summarized in Table 10. In Table 10, the reaction rate order of magnitude (from Table 7) is multiplied by factors estimating the difference between the polarity and viscosity of acetonitrile/water and the particle interior. A sulfur rank adjustment is also included because k_{1} and k_{2} were measured using an S_{4} model compound[6], and the more reactive S_{6} is presumed prevalent in the unpeptized polymer.

Figure 8: GW and GRT Experimental $M W_{\boldsymbol{w}}$ Profiles[3].

Table 10: Peptization Rate Constants

31

Peptization Reaction	$\begin{gathered} k_{1}, \mathrm{cc} / \mathrm{mol}-\mathrm{sec} \\ \text { (in } \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C} \text {) } \end{gathered}$	Rate Adjustments			$k_{i}, \mathrm{cc} / \mathrm{mol}-\mathrm{sec}$ (in particle, $20^{\circ} \mathrm{C}$)
		Polarity	Visc	S Rank	
$M_{n}+T^{-} \xrightarrow{k_{1}} S^{-} M_{q}+M_{n-q} T$	$\mathrm{O}\left(10^{4}\right)$	$10^{-3}-10^{-5}$	1	10	$\mathrm{O}\left(1-10^{2}\right)$
$M_{n}+S^{-} M_{q} \xrightarrow{k_{m}} M_{r}+S^{-} M_{m}$	$\mathrm{O}\left(10^{4}\right)$	$10^{-3}-10^{-5}$	10^{-1}	10	$\mathrm{O}\left(10^{-1}-10\right)$
$\mathrm{Mn}_{n}+S^{-} \mathrm{M}_{q} \xrightarrow{\text { 岛 }} \mathrm{M}_{n+q}+\mathrm{Cl}^{-}$	$\mathrm{O}\left(10^{2}\right)$	10^{-1}	10^{-1}	1	$\mathrm{O}(1)$
$T T+S^{-} M_{q} \xrightarrow{\text { m }} T^{-}+T S M_{q}$	$\mathrm{O}\left(10^{4}\right)$	1-10	1	1	$\mathrm{O}\left(10^{4}-10^{5}\right)$
$\mathrm{M}_{n}+S^{-} \mathrm{M}_{q} \xrightarrow{\text { 㿽 }} \mathrm{M}_{n+q}+\mathrm{Cl}^{-}$	$\mathrm{O}\left(10^{-3}\right)$	10^{-1}	10^{-1}	1	$\mathrm{O}\left(10^{-5}\right)$

The corrected constants suggest that 1) reaction at the vinyl chloride sites (Reaction 7) is relatively insignificant, and 2) the reaction of TETD with polymeric sulfide ions is very fast. The potential dominance of Reaction 6 is of particular importance since this capping reaction is thought to deter MW increases. Note, however, that the rate of the branching (MW-increasing) and capping reactions are obviously also dependent upon the allylic Cl and TETD concentrations. At the beginning of a standard GRT peptization, the allylic Cl site concentration is roughly 3 orders of magnitude greater than the TETD concentration (calculated from the recipe in Appendix II). Therefore, as peptization continues, concentration differences could offset the disparity in rate constants, allowing a MW increase. This is possibly the case in Runs 4 and 6, where residual TETD is present (by titration), but the MW eventually increases.

Runs 4 and 6 do not, however, exhibit the large MW increases during the early stages of peptization observed in the Run 1,2 and 3 sample sets. As discussed earlier (Section II.A.), the extent of this increase appears to be related to the unpeptized polymer structure[3]. Polymer characterized by a persistent multimodal MWD with a preponderance of low MW chains exhibit a larger, more sustained MW increase during the early stages of peptization (Runs 1, 2, and 3). Model I does not accommodate multimodal MWDs and therefore does not predict this early MW increase. Similarly, several sample sets exhibited a significant change in MW with the addition of TETD only (Table 3). The Model I mechanism requires Tepidone for the onset of peptization, but is still useful if a continued MW increase does not ensue. Run 4 simulations are presented first.

In Run 4, the standard recipe TETD and Tepidone charges are decreased by 20% and doubled, respectively, to force an increase in Mooney viscosity with peptization time. Simulations are shown in Figures 9 and 10. Rate constant correction factors are summarized in Table 11 (k_{7} is omitted, but was adjusted in the same manner as k_{3}). The required corrections for k_{1}, k_{2}, and k_{3} were in the expected ranges, but k_{6} was reduced further to obtain a reasonable fit to the $M W_{w}$ data (Figure 9a). This is consistent with the substantial ($\sim 50 \%$) residual TETD level (Figures 9 b and 10 a). With a very high k_{6}, the MW continued to decrease despite the high allylic Cl concentration (Figure 10b). The residual aqueous-phase Tepidone concentration is also substantial ($\sim 60 \%$, Figure 10 a), and the particle-phase concentration is relatively low (Figure 10c). This aqueous phase preference is consistent with the estimated Tepidone partition coefficient[6]. Returning to Figure 10 b , note that the more reactive S_{6} linkage level is plotted. As these are cleaved, less reactive sites remain. Polydispersities (not shown) were higher than expected, possibly reflecting the unimodal MWD assumption or the need for further k_{2} adjustment.

Table 11: Rate Constant Correction Factors

Constant	Run 4	Run 6	Run 2	Run 5
\boldsymbol{k}_{1}	$4.00 \mathrm{E}-02$	$3.00 \mathrm{E}-02$	$3.00 \mathrm{E}-02$	$3.00 \mathrm{E}-02$
\boldsymbol{k}_{2}	$3.00 \mathrm{E}-03$	$3.00 \mathrm{E}-03$	$3.00 \mathrm{E}-03$	$3.00 \mathrm{E}-03$
\boldsymbol{k}_{3}	$3.15 \mathrm{E}-02$	$3.30 \mathrm{E}-02$	$3.30 \mathrm{E}-02$	$8.75 \mathrm{E}-02$
\boldsymbol{k}_{6}	$2.50 \mathrm{E}-03$	$2.00 \mathrm{E}-03$	$2.00 \mathrm{E}-03$	$2.00 \mathrm{E}-03$

Figure 9: Model Fit to Run $4 M W_{w}$ and $w t \%$ TETD.

Figure 10: T_{w}, TETD, Reactive Site and T_{p} Predictions (Run 4)

Run 6 tracked a 'GRTM1' (a GW Tepidone charge was inadvertantly added) peptization over 3 days. Additionally, a second TETD shot was added to some samples after 24 hours. Simulations are shown in Figures 11 and 12. With only slight adjustment of the rate constants used for Run 4 simulations (Table 11), a reasonable $M W_{w}$ fit is obtained (Figure 11a) and an impressive wt\% TETD prediction is noted (Figure 11b). Consistent with the proposed reaction mechanism, the second TETD shot reverses the MW increase by capping chains that would otherwise be coupled. Figure 12 shows the expected decrease in the rate of allylic Cl depletion.

Figure 11: Model Fit to Run $6 M W_{w}$ and $w t \%$ TETD.

Figure 12: Allylic Cl Prediction (Run 6)
In Run 2, a standard GRT peptization, $M W_{w}$ doubled during the first hour of peptization, presumably reflecting polymer structural changes associated with the transition from a multimodal to unimodal MWD. Model I does not accommodate these changes, but simulation of the subsequent $M W_{w}$ decrease is shown in Figure 13. Here, the aged polymer properties were used as initial conditions. The initial Tepidone and TETD concentrations were not adjusted since T_{p} quickly assumes a low value, and a substantial TETD residual was measured. Allylic Cl and polysulfide site concentrations were likewise unadjusted since the structural reconfiguration chemistry has not been identified.

Figure 13: Model Fit to Run $2 M W_{w}$.

Lastly, Run 5 tracked a standard GW peptization for 3 hours. While the unpeptized polymer MWD was not perfectly unimodal, $M W_{n}$ was not extremely low and a smooth $M W_{\omega}$ decrease was measured. A good fit of the data was obtained (Figure 14a) by more than doubling k_{3}, the rate constant for branching at the allylic Cl (Table 11). A corresponding increased allylic Cl depletion is not predicted (Figure 14b). The correctness of this k_{3} increase should be weighed in light of GW and GRT polymer differences.

Figure 14: Model Fit to Run $5 W_{w}$, Allylic Cl Prediction.

B. Sensitivity Analysis

The sensitivity of Model I predictions to the reaction rate constants (k_{1}, k_{2}, k_{3}, k_{6}), recipe parameters (Tepidone, TETD, sulfur incorporation), the rate reduction factor, and mass transfer parameters (Tepidone partition coefficient, k_{m}, D_{p}) is evaluated by changing the subject parameter, while leaving the others unchanged. (Alternatively, one might employ a rigorous statistical procedure, e.g. ANOVA, for further detail.) The standard GRT recipe, with Run 4 rate constant correction factors, is used as the base condition.

Sensitivity of the $M W_{\omega}$ predictions to $\pm 50 \%$ changes in k_{1} and Tepidone concentration is shown in Figure 15. Consistent with Reaction 1, increasing k_{1} or the Tepidone concentration increases the rate at which polysulfide linkages are cleaved, and thus the $M W_{w}$ reduction rate. Since this is a rate effect, a comparable MW is reached, sooner or later, in all cases. However, acceleration or deceleration of this rate similarly affects the onset of an observable MW increase due to brạnching.

Figure 15: Model Sensitivity to k_{1} and [Tepidone].

With fixed rate constants, the minimum predicted MW varies with sulfur incorporation (Figure 16). Although not verified quantitatively, the scale of this variance appears consistent with incorporated sulfur versus Mooney viscosity data reported by Aronson[5]. Less incorporated sulfur results in fewer polysulfide linkages, the cleavable sites affording MW reduction, and higher final MW levels.

Figure 16: Model Sensitivity to Sulfur Incorporation.

MW profiles are also sensitive to k_{3} and k_{6}, the rate constants governing the branching (allylic Cl) and capping reactions. As shown in Figure 17, and explained by the proposed mechanism, increasing k_{3} increases the likelihood that a polymeric sulfide ion will be branched via Reaction 3, rather than redistributed (Reaction 2) or capped (Reaction 6). Note that MW does not increase when k_{3} and TETD are increased simultaneously (Figure 17a). However, the MW increase is accelerated with significant decreases in either k_{6} or TETD (Figure 17b) since polymer chains are again more likely to be branched than capped.

Figure 17: Model Sensitivity to k_{3}, k_{6} and [TETD].

Consistent with the proposed mechanism, adjusting k_{2}, the rate constant characterizing the MW redistribution reaction, appears to affect the final MW attained, but not the MW reduction rate (Figure 18). Increased redistribution appears to lower both the $M W_{w}$ and polydispersity. This is noted in light of the model equations, which suggest that Reaction 2 can decrease or increase MW depending on the polymer chain (M_{n}) and polymeric sulfide ion (S_{n}) distributions (Section II.D.). The polydispersity profile is unexpected and may reflect the unimodal MWD assumption.

Figure 18: Model Sensitivity to $\boldsymbol{k}_{\mathbf{2}}$.

Both k_{2} and k_{1} are corrected for the continued reduction of S_{6} linkages to S_{2}, S_{3} and/or S_{4} sites, whose reactivity is reduced by at least 2 to 3 orders of magnitude. Adjusting this parameter (RKRED, from base 10^{-2} and 10^{-3}) does not significantly affect the early aging curve, when S_{6} sites are relatively plentiful. However, when the S_{6} sites are nearly depleted, decreasing RKRED can virtually halt all reactions in the Model I mechanism. Specifically, if Reaction 1 does not proceed, the polymeric sulfide ions (S_{n}) required for Reactions 2, 3 and 6 are not formed, and all reactions cease. This is depicted in Figure 19, where the MW increase observed during Run 6 is not predicted if RKRED is reduced by an order of magnitude (to 10^{-3}).

Figure 19: Model Sensitivity to RKRED.
Lastly, consider model sensitivity to mass transfer parameters. Of the three parameters considered (Tepidone partition coefficient, k_{m}, and D_{p}), only the particle diameter does not significantly affect the peptization rate. The Tepidone partition coefficient (PC) was estimated at $\frac{1}{150}[6]$, but could be as low as $\frac{1}{1000}$ or as high as $\frac{1}{10}$ [11]. As shown in Figure 20a, decreasing PC by an order of magnitude decreases T_{p} by roughly 90%, and lowers the peptization rate (Figure 20b). On the other hand, increasing PC by an order of magnitude accelerates the process to the extent that an early MW increase (due to branching) is observed. TETD depletion is accelerated (Figure 20c), with an ensuing reduction in the capping reaction rate.

Figure 20: Model Sensitivity to Tepidone Partition Coefficient(PC).

Order of magnitude changes in k_{m}, the mass transfer coefficient, significantly affect peptization, but $\pm 20 \%$ changes in D_{p}, the weight-averaged particle diameter, do not significantly affect Tepidone transfer (Figure 21). A smaller particle and/or larger k_{m} increases T_{p} and thus accelerates the MW reduction, and vice versa, but, in the case of D_{p}, these effects are negligible. Thus, the increase in Mooney viscosity with particle size observed in practice is not fully explained by Tepidone mass transfer. Note, however, that changing either k_{m} or D_{p} by an order of magnitude has the same effect on T_{p} predictions (Eqn. (20), $\frac{k_{m} a_{p}}{v_{p}}=\frac{k_{m} 6}{D_{p}}$ for spherical particles). Thus the predicted particle size effect could be more significant for very polydisperse latexes.

Figure 21: Model Sensitivity to k_{m} and D_{p}.

C. Predictive Capability

Doyle's study of Mooney viscosity for Neoprene G types[7] provides useful data for independent assessment of the model predictive capability. Doyle measured aging curves (Mooney viscosity versus time) at $25^{\circ} \mathrm{C}$ for a wide range of TETD and Tepidone concentrations. While Mooney viscosity is not totally indicative of MWD (Figure 22), a general correlation appears valid (Figure 23), and was used to convert Doyles's aging curves to approximate $M W_{\boldsymbol{w}}$ profiles. In the simulations that follow, the unpeptized polymer is assumed similar to that of Run 6, as are the rate constants.

Figure 24 shows the effect of varying the Tepidone level at a fixed TETD concentration. As expected, Mooney viscosity and $M W_{w}$ decrease with increased Tepidone concentration according to Reaction 1. Consistent with Reaction 6, at a fixed Tepidone level, $M W_{w}$ decreases with increased TETD concentration (Figure 25), as more chains are capped rather than branched. Mechanistically, fixing the TETD/Tepidone ratio balances the capping (and thus branching) and scission reactions.

Finally, in Figure 26, both the model predictions and experimental aging curves exhibit the expected increase in peptization rate with increased temperature. This is consistent with the representation of the rate constants by Arrhenius' law.

Figure 22: Mooney Curve.

Figure 23: Mooney/MW Correlation.

Figure 24: Model Comparison with Mooney Trends[7]: Constant TETD, Vary 7-

Figure 25: Model Comparison with Mooney Trends[7]: Constant T^{-}, Vary TETD.

Figure 26: Model Comparison with Mooney Trends[7]: Temperature Effect.

References

[1] F.J. Schork, 'G-Type Neoprene Latex Aging', August 2, 1991.
[2] C.L. Liotta and F.J. Schork, 'G-Type Neoprene Latex Aging Proposed Mechanistic Studies', January 5, 1992.
[3] P. Gossen and M. Aronson, 'G-Neoprene Peptization: Advances in Understanding the Evolution of Polymer Microstructure', DP 93-L-3.
[4] H.E. Simmons III, Peptization Meeting Presentation, March 30, 1993.
[5] M. Aronson, Peptization Meeting Presentations, Georgia Institute of Technology, November 10, 1992, March 30, 1993.
[6] S. Arthur, 'Neoprene Peptization Kinetics Derived from Model Compounds', DP 92-E-35.
[7] A.M. Doyle, 'Improved Mooney Viscosity Control for ChloropreneSulfur Copolymers (Neoprene G Types)', ERD-3401.
[8] W.H. Ray, 'On the Mathematical Modeling of Polymerization Reactors', J. Macromol. Sci. - Revs. Macromol. Chem., C8(1), 1-56(1972).
[9] F.J. Schork, Control of Polymerization Reactors. New York, NY: Marcel Dekker, 1993.
[10] M.V. Tirrell and R.L. Laurence, 'Polymerization Reaction Engineering,' notes for a short course at the University of Minnesota Polymerization and Polymer Process Engineering Center, Minneapolis, MN, 1983.
[11] F.J. Schork, 'Mass Transfer Effects in GRT Tepidone Uptake', December 7, 1992.

APPENDIX I

Nomenclature ${ }^{1}$

APPENDIX II

Neoprene GW Recipe

parts per 100 Monomer
Monomer Solution
Chloroprene 100.0
Rosin S 4.0
Water Solution
Demineralized water 93.97
Copper Ion 0.4 ppm
Sodium Hydroxide(50\%)
Sodium Chloride 1.26 0.075
Sulfur Dispersion
Sulfur 0.335
20\% 'Lomar' PW 1.75
Catalyst Solution (A-3)
Demineralized water 1.613
Potassium persulfate 0.085
Silver salt 0.0021
Kettle Stabilizer (Type V)
Toluene 1.634
Demineralized water 1.227
Dresinate X 0.034
TETD 1.180
'Ethyl' Antioxidant 736 0.047
'Duponol' WAQE 0.167
Kettle Plasticizer
'Tepidone' N 2.0
'Duponol' WAQE 0.13
$:$ Model Parameters
DPART 1.1206
GTEPN 2.00
GTETD 1.180
GSUL 0.335
VW 101.8
WP 107.71

Neoprene GRT Recipe

parts per 100 Monomer
Monomer Solution
Chloroprene 98.0
ACR 2.0
Rosin S 4.0
Water Solution
Demineralized water 105.77
Copper Ion 0.4 ppm
Sodium Hydroxide(50\%) 1.40
Sodium Chloride 0.075
Sulfur Dispersion
Sulfur 0.6
20\% 'Lomar' PW 3.0
Catalyst Solution (A-3)
Demineralized water 4.270
Potassium persulfate 0.225
Silver salt 0.0056
Kettle Stabilizer (Type I)
Toluene 0.6325
Demineralized water 0.6031
Dresinate X 0.0150
TETD 0.4348
Santowhite Crystals 0.0925
'Duponol' WAQE 0.0721
Kettle Plasticizer
'Tepidone' N 0.799
'Duponol' WAQE 0.051
Model Parameters
DPART 1.1603
GTEPN 0.799
GTETD 0.4348
GSUL 0.6
VW 115.33
WP 106.64

Table 12: Laboratory Peptization Sample Data*[3]

Aging Time Run 1 (GWM2)	$M W_{n}$	$\boldsymbol{M} W_{\boldsymbol{\omega}}$	$P D$	TETD, wt\%
before $T^{-}, T E T D$	184,000	1,736,000	9.4	-
10 min .	136,000	2,459,000	18.1	-
30 min .	184,000	2,415,000	11.0	-
105 min .	171,000	2,158,000	12.6	-
Run 2 (GRT)				
before $T^{-}, T E T D$	108,000	854,000	7.9	0.10
after TETD, before T^{-}	105,000	1,408,000	13.4	0.26
30 min .	104,000	1,269,000	12.2	0.36
45 min .	108,000	1,441,000	13.4	0.31
60 min .	121,000	2,143,000	17.7	0.26
1.25 hr	128,000	2,141,000	16.7	0.26
2.00 hr	96,000	891,000	9.3	0.29
5.00 hr	100,000	815,000	8.1	0.25
11.00 hr	102,000	865,000	8.5	0.18
Run 3 (GRT)				
0 min .	24,000	331,000	13.9	-
30 min .	66,000	932,000	14.1	-
3 hr	159,000	3,191,000	20.0	-
41.75 hr	118,000	774,000	6.5	-
Run 4 (GRTM2)				
before $T^{-}, T E T D$	109,000	1,119,000	10.3	-
after TETD, before T^{-}		1,516,000	-	0.29
0 hr	91,000	780,000	8.6	0.25
1 hr	116,000	579,000	5.0	0.25
2 hr	-	587,000	-	0.26
3 hr	-	638,000	-	0.24
4 hr	-	735,000	-	0.20
6 hr	-	985,000	-	0.23
10 hr	103,000	1,000,000	9.8	0.24
Run 5 (GWM2)				
before $T^{-}, T E T D$	236,000	1,844,000	7.8	0
30 min .	142,000	1,011,000	7.1	1.24
3 hr	136,000	861,000	6.3	1.24
Run 6 (GRTM1)				
before T-, TETD	105,000	1,579,000	15.0	0
after TETD, before T^{-}	114,000	625,000	5.5	0.55
0 hr	106,000	664,000	6.3	0.61
0.5 hr	102,000	495,000	4.9	0.61
20 hr	84,000	495,000	5.9	0.33
44 hr	89,000	1,001,000	11.2	0.30
49 hr	99,000	866,000	8.7	0.33
$24.5 \mathrm{hr} \mathbf{w / 2 n d ~ T T}$	-	421,000	-	1.02
44 hr w/2nd TT	79,000	344,000	4.4	1.49
49 hr w/2nd TT	71,000	336,000	4.7	1.32

Appendix III

Computer Program

A. Variable Notation (underlined variables are required input)

	A(1,1)	IVPAG parameter
	Ai	frequency factor (Arrhenius' law) for $\mathrm{RKi}, \mathrm{cc} /$ mole sec
	AP	total surface area of particles, cm^{2} - part
$=$	ALGBR	subroutine used to calculate initial conditions
	CNST1.DAT	input data file
	DCM	weight-average particle diameter, cm
	IVPAG	IMSL subroutine used to solve ODEs
	DNM	weight-average particle diameter, nm
	DPART	particle-phase density, $g / c c$ - part
	DY(i)	Y (i) dummy used to facilitate data transfer
	ERi	E / R (Arrhenius' law) for RKi, K
	ETAi	ith moment of M_{n} distribution, moles/cc - part
	ETAij	contribution of jth reaction to ETAi, moles/cc-part sec
	FA	fraction allylic chlorides in polymer chain, mole/mole mer
	FAO	initial fraction allylic chlorides in polymer chain, mole/mole mer
	FCN	IVPAG subroutine containing ODEs
	FCNJ	IVPAG subroutine containing dummy Jacobian
	FCONV	fractional conversion at begin peptization
	FETA	weight fraction M_{n}
	FLAM	weight fraction S_{n}
	FS	fraction polysulfide linkages in polymer chain, mole/mole mer
	FSO	initial fraction polysulfide linkages in polymer chain, mole/mole mer
	FSULINC	fraction recipe sulfur incorporated in polymer
	FV	fraction vinyl chlorides in polymer chain, mole/mole mer
	FVO	initial fraction vinyl chlorides in polymer chain, mole/mole mer
	GSUL	sulfur, g phm
	GSULINC	sulfur incorporated, $g \mathrm{phm}$
	GTEPN	Tepidone N, g phm
	GTETD	TETD, g phm
	H	IVPAG parameter
	ICOUNT	count for write to output data files
	IFLAG	flag to adjust RK3
	INDEX	IVPAG parameter

	INORM	IVPAG parameter
	LAMi	ith moment of S_{n} distribution, moles/cc-part
	MEND	number of times IVPAG called
	METH	IVPAG parameter
	MOLWGT.DAT	output data file
	MOMENT.DAT	output data file
	MXSTEP	IVPAG parameter
	NODES	IVPAG parameter
	PARAM(50)	IVPAG parameter
E	PCOUNT	write to output data files when ICOUNT $=$ PCOUNT
	RCP1.DAT	input data file
	RKi	reaction rate constant for Reaction i, cc/mole sec
	RKM	mass transfer coefficient, $\mathrm{cm} / \mathrm{sec}$
	RKRED	factor by which RKi is reduced with S rank
	RLAMij	contribution of jth reaction to RLAMi, moles/cc - part sec
	RMEDCORi	medium polarity/viscosity correction factor
	RMERMW	modified mer (chloroprene-sulfur) molecular weight, g/mole
	RMN	$M W_{n}$ of unpeptized polymer, $g /$ mole
	RMONMW	monomer molecular weight, $\mathrm{g} / \mathrm{mole}$
	RMW	$M W_{\omega}$ of unpeptized polymer, $\mathrm{g} / \mathrm{mole}$
	RMWN	number-average molecular weight, g/mole
	RMWW	weight-average molecular weight, $g /$ mole
	RNP	particle number
	RPC	Tepidone partition coefficient, ($\left.T_{p} / T_{w}\right)_{\text {equil }}$.
	RPCOUNT	PCOUNT (real)
	RPD	polydispersity of MWD
	RPI	π
	SAP	surface area of particle, $\mathrm{cm}^{2} /$ particle
	SIMTIM	simulation time, hrs
	SITES.DAT	output data file
	STEPN	Tepidone N step, g phm
	STETD	TETD step, g phm
	SULMW	sulfur molecular weight, $g /$ mole
	SVP	volume of particle, cc/particle
	T	time, sec
	TEMP	temperature, K
	TEPMW	Tepidone molecular weight, g/mole
	TETDMW	TETD molecular weight, g/mole
	TIDG	IVPAG parameter
	TIEND	IVPAG parameter
	TOL	IVPAG parameter
	TSTEP	ODEs solved every TSTEP seconds during SIMTIM

TWO	initial aqueous-phase Tepidone concentration, mole/cc-aq
VP	particle-phase volume, cc-part phm
VW	aqueous-phase volume, cc-aq phm
WP	particle-phase weight, g - part phm
WTETD	wt\% TETD (based on dry polymer)
Y(i)	dependent variable for ith ODE, mole/sec
	Note: 1-T ${ }_{w}, 2-T_{p}, 3-T T, 4-\eta_{0}, 5-\eta_{1}, 6-\eta_{2}$,
	$7-\lambda_{0}, 8-\lambda_{1}, 9-\lambda_{2}, 10-[R S], 11-[A C], 12-[V C]$
YPRIME(i)	right-hand-side of ODE for $Y(\mathrm{i})$

B. Program Listing

```
PROGRAM PEP
C THIS PROGRAM SOLVES mDDEL I FOR G-TYPE NEOPRENE ALKALINE AGING.
C IT PREDICTS MOLECULAR WEIGHT, RESIDUAL REACTIVE SITES, AND
C PEPTIZING AGENT CONCENTRATIONS VS AGING TIME.
C DECLARE STORAGE
- DIMENSIDN A(1,1),PARAM(50),Y(12),DY(12)
EXTERNAL FCN,FCNJ,IVPAG
COMMON/MISC/ ETA3,DY,PCDUNT,RMERMW,SIMTIM,TSTEP,TWO,TTO
COMMON/PART/ AP,RKM,RPC,SAP,SVP,VW
COMMON/RKS/ RK1,RK2,RK3,RK6,RK7,RKRED
CDMMON/SITES/ FS,FA,FV,FSO,FAD,FVO
CDMMDN/STEP/ T,TETDMW,TEPMW,VP,STETD,STEPN
C OPEN DUTPUT FILES
OPEN (UNIT=13,NAME='MOLWGT.DAT',TYPE='NEW')
OPEN (UNIT=14,NAME='SITES.DAT',TYPE='NEW')
OPEN(UNIT=15,NAME='MDMENT.DAT',TYPE='NEW')
C SPECIFY IVPAG PARAMETERS
NODES=12
TOL=0.9E-06
H=1.OE-10
PARAM(1)=H
MNSTEP=1000000000
'PARAM (4)=MXSTEP
INORM=0
PARAM(10)=INORM
METH=2
PARAM(12)=FMETH
INDEX=1
TIDG=0.0
C fEAD DATA FILES AND PERFORM SUPPORTING ALGEBRAIC CALCULATIONS
```

```
CALL ALGBR
DD I=1,12
Y(I)=DY(I)
ENDDD
C Main Calculation lodp
T=0.0
ICDUNT=0
IFLAG=0
MEND=SIMTIM*3600./TSTEP
RMWN=RMERMW*Y(5)/Y(4)
RMWW=RMERMW*Y(6)/Y(5)
RPD=RMWW/RMWN
WTETD =Y (3)*TETDMW*(VP/(VP+VW))*(100./1.077)*(1./.4)
10 FORMAT (7(1X,E9.4))
WRITE (13,10) T/3600.,RMWW,RMWN,RPD,Y(1)/TWD,Y (2),Y(3)/TTD
WRITE(14,10) T/3600.,Y(10),Y(11),Y(12),FS/FSO,FA/FAO,FV
WRITE(15,10) T/3600.,Y(4),Y(5),Y(6),Y(7),Y(8),Y(9)
DD M=1,MEND
TIEND=TIDG+TSTEP
T=TIEND
C Adjust allylic chlorine rate constant
IF (IFLAG.EQ.O.AND. (FA/FAD).LE.O.70) THEN
RK3=RK3/5.0
IFLAG=1
ENDIF
C Solve ODEs
CALL IVPAG(INDEX,NODES,FCN,FCNJ,A,TIDG,TIEND,
    1 TOL,PARAM,Y)
ICOUNT=ICOUNT +1
C Calculate MW from moments and write results
```

```
IF(T.EQ.1.O.OR.ICOUNT.EQ.PCDUNT) THEN
FIRST=Y(5)+Y(8)
FETA=Y(5)/FIRST
FLAM=Y(8)/FIRST
RMINN=RMERMW* (FETA*Y (5)/Y (4)+FLAM*Y (8)/Y (7))
RMWW=RMERMWW* (FETA*Y (6)/Y (5)+FLAM*Y(9)/Y (8))
RPD=RMWW/RMWN
WTETD=Y(3)*TETDNW*(VP/(VP+VW))*(100./1.077)*(1./.4)
```

```
WRITE (13,10) T/3600.,RMWW,RMWN,RPD,Y(1)/TWO,Y(2),Y(3)/TTD
```

WRITE (13,10) T/3600.,RMWW,RMWN,RPD,Y(1)/TWO,Y(2),Y(3)/TTD
WRITE (14,10) T/3600.,Y(10),Y(11),Y(12),FS/FSO,FA/FAO,FV
WRITE (14,10) T/3600.,Y(10),Y(11),Y(12),FS/FSO,FA/FAO,FV
WRITE (15,10) T/3600.,Y(4),Y(5),Y(6),Y(7),Y(8),Y(9)
WRITE (15,10) T/3600.,Y(4),Y(5),Y(6),Y(7),Y(8),Y(9)
ICOUNT=0
ICOUNT=0
ENDIF
ENDIF
ENDDD
C CLOSE DATA FILES
CLOSE (UNIT=13)
CLOSE (UNIT=14)
CLOSE (UNIT=15)
STDP
END

```
C*****************************************************************************

C SUPPORTING ALGEBRAIC CALCULATIONS

SUBROUTINE ALGBR
DIMENSION DY(12)

COMMDN/MISC/ ETA3,DY,PCDUNT,RMERMW,SIMTIM,TSTEP,TWD,TTD
COMMON/PART/ AP,RKM,RPC,SAP,SVP,VW
COMMON/RKS/ RK1,RK2,RK3,RK6,RK7,RKRED
COMMON/SITES/ FS,FA,FV,FSO,FAO,FVO
COMMON/STEP/ T,TETDMW, TEPMW,VP,STEID,STEPN

OPEN (UNIT=11,NAME='RCP1.DAT',TYPE='OLD')
```

OPEN(UNIT=12,NAME='CNST1.DAT',TYPE='OLD')
15 FORMAT(E10.4, 18(/ E10.4))
20 FORMAT(E10.4, 22(/ E10.4))
READ(11,15) GSUL,GTEPN,GTEID,STEPN,STETD,VW,WP,DPART,
1 DNM,FCONV,FSULINC,RMN,RMW,FAD,FVO,TEMP,
1 TSTEP,SIMTIM,RPCOUNT
PCDUNT=RPCOUNT
READ(12,20) A1,ER1,A2,ER2,A3,ER3,A6,ER6,A7,ER7,
1 RMEDCOR1,RMEDCOR2,RMEDCOR3,RMEDCOR6,RMEDCOR7,
1 RKRED,RKM,RPC,RMONMW,SULMW,TEPMW,TETDMW,RPI
C CALCULATE INITIAL CONDITIONS FOR ODEs
DY(1)=GTEPN*0.47/(TEPMW*VW) !TW
TWO=DY (1)
DY(2)=0.0 !TP
VP=WP/DPART
DY(3)=GTETD/(TETDMW*VP) !TT
TTD=DY (3)
GSULINC=GSUL*FSULINC
RMERMW=RMONMW*(1.+GSULINC/(FCONV*100.))
DY(5)=FCONV*100./(RMONMW*VP) !ETA1
DY(4)=DY(5)/(RMN/RMERMW) !ETAO
DY(6)=DY(5)* (RMW/RMERMW) !ETA2
ETA3=(DY(6)/(DY(4)*DY(5)))*(2.*DY(4)*DY(6)-DY(5)**2.)
DY(7)=0.0 !LAMO
DY(8)=0.0 !LAM1
DY(9)=0.0 !L_MM2
C Calculate initial sulfur and chlorine reactive sites
DY (10) =GSULINC/(SULMW*6.*VP) !RSD
DY(11) $=$ FCONV*100.*FAD/(RMONMW*VP) IACO
DY (12) $=$ FCCNV*100.*FVO/ (RMONMW*VP) ! VCO

```
```

FSO=DY(10)/DY(5)
FS=FSD
FA=FAD
FV=FVD
C CALCULATE RATE CONSTANTS
RK1=A1*EXP(-ER1/TEMP) !CC/MDL-SEC
RK2=A2*EXP(-ER2/TEMP)
RK3=A3*EXP(-ER3/TENP)
RK6=A6*EXP(-ER6/TEMP)
RK7=A7*EXP(-ER7/TENP)
C . Apply medium correctioon
RK1=RK1*RNEDCOR1
RK2=RK2*RMEDCOR2
RK3=RK3*RMEDCOR3*5.0
RK6=RK6*RMEDCOR6
RK7=RK7*RMEDCOR7
C CALCULATE MASS TRANSFER-RELATED VARIABLES
DCM=DNM*1.0E-07
SAP=RPI*(DCM**2.)
SVP=(RPI/6.)*(DCM**3.)
RNP=VP/SVP
AP=SAP*RNP
CLOSE(UNIT=11)
CLOSE (UNIT=12)
RETURN
END
C*\#?
C ODEs
SUBROUTINE FCN (NODES,TIDG,Y,YPRIME)
DIMENSION Y(NODES), YPRIME (NODES) ,DY(12)

```
```

COMMON/MISC/ ETA3,DY,PCOUNT,RMEFMW,SIMTIM,TSTEP,TWO,TTO
COMMON/PART/ AP,RKM,RPC,SAP,SVP,VW
COMMDN/RKS/ RK1,RK2,RK3,RK6,RK7,RKRED
COMMON/SITES/ FS,FA,FV,FSO,FAO,FVO
COMONON/STEP/ T,TETDMW,TEPMW,VP,STETD,STEPN
C Adjust k1 and k2 for sulfur linkage reactivity
RK1ADJ=RK1*FS+2.*RK1*RKRED*(FSD-FS)
RK2ADJ=RK2*FS+2.*RK2*RKRED*(FSD-FS)
YPRIME (1) =-(RKM*AP/VW)*(Y(1)-(1./RPC)*Y(2))
IF(STEPN.GT.O.AND.T.EQ.86400.) THEN
YPRIME (1)=YPRIME (1)+(GTEPN*0.47/(TEPMW*VW))/TSTEP
ENDIF
YPRIME (2)=(RKM*SAP/SVP)*(Y(1)-(1./RPC)*Y(2))
1 -RK1ADJ*Y(2)*(Y(5)-Y(4))+RK6*Y(3)*Y(7)
YPRIME(3)=-RK6*Y(3)*Y(7)
IF(STEID.GT.O.AND.T.EQ.86400.) THEN
YPRIME (3)=YPRIME (3)+(STETD/(TETDMW*VP))/TSTEP
ENDIF
ETA01=0.0
ETA02=0.0
ETA03=0.0
ETA06=RK6*Y(3)*Y(7)
ETA07=0.0
YPRIME(4)=ETA01+ETA02+ETA03+ETA06+ETA07
ETA11=-(RK1ADJ*Y(2)/2.)*(Y(6)-Y(5))
ETA12=RK2ADJ*(Y(8)*(Y(5)-Y(4))-(Y(7)/2.)*(Y(6)-Y(5)))
ETA13=RK3*FA*Y(8)*Y(5)
ETA16=RK6*Y(3)*Y(8)
ETA17=RK7*FV*Y(8)*Y(5)
YPRIME(5)=ETA11+ETA12+ETA13+ETA16+ETA17
ETA21=(RK1ADJ*Y(2)/6.)*(Y(5)+3.*Y(6)-4.*ETA3)
ETA22=RK2ADJ* (Y (9)* (Y(5)-Y(4))+Y(8)*(Y(6)-Y(5))-

```
```

1
(Y(7)/6.)*(4.*ETA3-3.*Y(6)-Y(5)))
ETA23=RK3*FA*(2.*Y(8)*Y(6)+Y(9)*Y(5))
ETA26=RK6*Y(3)*Y(9)
ETA27=RK7*FV*(2.*Y(8)*Y(6)+Y(9)*Y(5))
YPRIME(6)=ETA21+ETA22+ETA23+ETA26+ETA27
ETA3=(Y(6)/(Y(4)*Y(5)))*(2.*Y(4)*Y(6)-Y(5)**2.)
RLAM01*RK1ADJ*Y(2)*(Y(5)-Y(4))
RLAMO2=0.0
RLAMO3=-RK3*FA*Y(5)*Y(7)
RLAMO6=-RK6*Y(3)*Y(7)
RLAMO7=-RK7*FV*Y(5)*Y(7)
YPRIME (7)=RLAMO1+RLAMO2+RLAM03+RLAM06+RLAM07
RLAM11=(RK1ADJ*Y(2)/2.)*(Y(6)-Y(5))
RLAM12=-RK2ADJ*(Y(8)*(Y(5)-Y(4))-(Y(7)/2.)*(Y(6)-Y(5)))
RLAM13=-RK3*FA*Y(5)*Y(8)
RLAM16=-RK6*Y(3)*Y(8)
RLAM17=-RKK*FV*Y(5)*Y(8)
YPRIME (8)=RLAM11+RLAM12+RLAM13+RLAM16+RLAM17
RLAM21=(RK1ADJ*Y(2)/6.)*(Y(5)-3.*Y(6)+2.*ETA3)
RLAM22=-RK2ADJ*(Y (9)*(Y(5)-Y(4))-
1 (Y(7)/6.)*(2.*ETA3-3.*Y(6)+Y(5)))
RLAM23=-RK3*FA*Y(5)*Y(9)
RLAM26=-RK6*Y (3)*Y(9)
RLAM27=-RK7*FV*Y(5)*Y(9)
YPRIME(9)=RLAM21+RLAM22+RLAM23+RLAM26+RLAM27
YPRIME (10)=-RK1*FS*Y(2)*(Y(5)-Y(4))
YPRIME (11) =-RK3*FA*Y(5)*Y(7)
`YPRIME (12)=-RK7*FV*Y(5)*Y(7)
FS=Y(10)/(Y(5)+Y(8))
FA=Y(11)/(Y(5)+Y(8))
FV=Y(12)/(Y(5)+Y(8))
RETURN
END
SUBROUTINE FCNJ(NODES,TIDG,Y,PD)

```

DIMENSION Y(NODES), PD (NODES,NODES)
RETURN
END

\section*{C. Sample Input/Output File}

\section*{CNST1.DAT}
\(2.7500 \mathrm{E}+11\) A1 frequency factor for \(\mathrm{k} 1 \mathrm{cc} / \mathrm{mol} \mathrm{sec}\) 4.8660E+03 ER1 E/R for k1 K
\(4.6200 \mathrm{E}+11 \mathrm{~A} 2\) frequency factor for \(\mathrm{k} 2 \mathrm{cc} / \mathrm{mol} \mathrm{sec}\) 4.5940E+03 ER2 E/R for k2 K
- 7.2200E+09 A3 frequency factor for \(\mathrm{k} 3 \mathrm{cc} / \mathrm{mol} \mathrm{sec}\)
- \(\quad 5.1690 \mathrm{E}+03 \mathrm{ER} 3 \mathrm{E} / \mathrm{R}\) for k 3 K
\(3.7500 \mathrm{E}+11 \mathrm{~A} 6\) frequency factor for \(\mathrm{k} 6 \mathrm{cc} / \mathrm{mol} \mathrm{sec}\) 4.6030E+03 ER6 E/R for k6 K
\(3.8800 \mathrm{E}+09 \mathrm{~A} 7\) frequency factor for \(\mathrm{k} 7 \mathrm{cc} / \mathrm{mol} \mathrm{sec}\) 8.4980E+03 ER7 E/R for k7 K
4.0000E-02 RMEDCOR1 medium corr for \(k 1\)
3.0000E-03 RMEDCOR2 medium corr for \(k 2\)
3.1500E-02 RMEDCOR3 medium corr for k3
2.5000E-03 RMEDCOR6 medium corr for k 6
3.1500E-02 RMEDCOR7 medium corr for \(k 7\)
1.0000E-02 RKRED reactive site access corr
\(6.4000 \mathrm{E}-10 \mathrm{RKM}\) mass transfer coeff \(\mathrm{cm} / \mathrm{sec}\)
6.6667E-03 RPC Tepidone partition coeff
8.8540E+01 RMONMW monomer MW g/mole
\(3.2060 \mathrm{E}+01\) SULMW sulfur MW g/mole
2.2739E+02 TEPMW Tepidone MW g/mole
2.9656E+02 TETDMW TETD MW g/mole
3.1416E+00 pi

\section*{RCP1.DAT}
0.6000E+00 GSUL grams S phm
\(0.7990 \mathrm{E}+00\) GTEPN grams Tepidone N phm
\(0.4348 \mathrm{E}+00\) GTEID grams TETD phm
\(0.0000 \mathrm{E}+00\) STEPN grams step Tepidone N phm
\(0.0000 \mathrm{E}+00\) STETD grams step TETD phm
\(1.1533 \mathrm{E}+02 \mathrm{VW}\) aqueos volume cc phm
1.0663E+02 WP particle phase \(g\) phm
1.1603E+00 DPART particle phase g/cc
\(1.0000 \mathrm{E}+02\) DNM wgt-avg particle diam nm
\(0.8400 \mathrm{E}+00\) FCONV frac conv at begin pep
\(0.5000 \mathrm{E}+00\) FSULINC frac recipe \(S\) incor in polymer
\(1.0500 \mathrm{E}+05 \mathrm{RMN}\) MWn of unpeptized polymer g/mole
\(1.5790 \mathrm{E}+06 \mathrm{RMW}\) MWw of unpeptized polymer g/mole
\(0.0100 \mathrm{E}+00 \mathrm{FAO}\) init frac allylic Cl
\(0.9900 \mathrm{E}+00 \mathrm{FVO}\) init frac vinyl Cl
3.1315E+02 TEMP temperature K
1.0000E+01 TSTEP DDE solution freq sec
2.0000E+01 SIMTIM simulation time hrs
3.6000E+01 PCOUNT data write count

MOLWGT.DAT (labels not present)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(t\), hrs & MWw & MWn & PD & Tw/Two & Tp & TT/TTO \\
\hline & . \(0000 \mathrm{E}+00\) & . \(1579 \mathrm{E}+07\) & .1050E+06 & .1504E+02 & .1000E+01 & . \(0000 \mathrm{E}+00\) & .1000E+01 \\
\hline & . \(1000 \mathrm{E}+00\) & . 1192E+07 & . \(1421 \mathrm{E}+06\) & .8391E+01 & . \(9701 \mathrm{E}+00\) & .7290E-07 & . \(9836 \mathrm{E}+00\) \\
\hline & .2000E+00 & . 1037E+07 & . \(1262 \mathrm{E}+06\) & .8217E+01 & . \(9480 \mathrm{E}+00\) & .7169E-07 & . \(9624 \mathrm{E}+00\) \\
\hline & . \(3000 \mathrm{E}+00\) & . \(9306 \mathrm{E}+06\) & .1156E+06 & .8054E+01 & .9266E+00 & .7035E-07 & .9426E+00 \\
\hline & .4000E+00 & . \(8527 \mathrm{E}+06\) & . 1080E+06 & .7897E+01 & .9062E+00 & . 6911E-07 & .9240E+00 \\
\hline & . \(6000 \mathrm{E}+00\) & . \(7938 \mathrm{E}+06\) & . \(1023 \mathrm{E}+06\) & .7759E+01 & . \(8865 \mathrm{E}+00\) & .6797E-07 & .9066E+00 \\
\hline & .6000E+00 & .7480E+06 & .9785E+05 & .7645E+01 & . \(8677 \mathrm{E}+00\) & .6690E-07 & .8903E+00 \\
\hline & .7000E+00 & .7118E+06 & . \(9424 \mathrm{E}+05\) & .7553E+01 & . \(8497 \mathrm{E}+00\) & .6590E-07 & . \(8751 \mathrm{E}+00\) \\
\hline & continued & & & & & & \\
\hline
\end{tabular}

\section*{SITES.DAT (labels not present)}
\begin{tabular}{ccccccc}
\(\mathbf{t}, \mathrm{hrs}\) & {\([\mathrm{RS}]\)} & [aC] & [VC] & fs/fso & fa/fao & \(\mathbf{f v}\) \\
\(.0000 \mathrm{E}+00\) & \(.1697 \mathrm{E}-04\) & \(.1032 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.1000 \mathrm{E}+01\) & \(.1000 \mathrm{E}+01\) & \(.9900 \mathrm{E}+00\) \\
\(.1000 \mathrm{E}+00\) & \(.1624 \mathrm{E}-04\) & \(.1029 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.9570 \mathrm{E}+00\) & \(.9970 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\) \\
\(.2000 \mathrm{E}+00\) & \(.1551 \mathrm{E}-04\) & \(.1025 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.9137 \mathrm{E}+00\) & \(.9931 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\) \\
\(.3000 \mathrm{E}+00\) & \(.1481 \mathrm{E}-04\) & \(.1021 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.8726 \mathrm{E}+00\) & \(.9893 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\) \\
\(.4000 \mathrm{E}+00\) & \(.1414 \mathrm{E}-04\) & \(.1017 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.8335 \mathrm{E}+00\) & \(.9857 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\) \\
\(.5000 \mathrm{E}+00\) & \(.1352 \mathrm{E}-04\) & \(.1014 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.7965 \mathrm{E}+00\) & \(.9822 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\) \\
\(.6000 \mathrm{E}+00\) & \(.1292 \mathrm{E}-04\) & \(.1010 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.7613 \mathrm{E}+00\) & \(.9788 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\) \\
\(.7000 \mathrm{E}+00\) & \(.1236 \mathrm{E}-04\) & \(.1007 \mathrm{E}-03\) & \(.1022 \mathrm{E}-01\) & \(.7282 \mathrm{E}+00\) & \(.9757 \mathrm{E}+00\) & \(.9900 \mathrm{E}+00\)
\end{tabular}

MOMENT.DAT (labels not present)
```

 t,brs eta0 eta1 eta2 lambda0 lambda1 lambda2
 .0000E+00 .8736E-05 .1032E-01 .1834E+03 .0000E+00 .0000E+00 .0000E+00
.1000E+00 .8998E-05 .9280E-02 .1208E+03 .1568E-06 .1043E-02 .1778E+02
.2000E+00 .9335E-05 .9437E-02 .1074E+03 .1530E-06 .8854E-03 .1306E+02
.3000E+00 .9652E-05 .9563E-02 .9809E+02 .1461E-06 .7595E-03 .1002E+02
.4000E+00 .9948E-05 .9658E-02 .9105E+02 .1394E-06 .6645E-03 .8010E+01
.5000E+00 .1023E-04 .9732E-02 .8560E+02 .1329E-06 .5903E-03 .6609E+01
.6000E+00 .1048E-04 .9792E-02 .8131E+02 .1268E-06 .5308E-03 .5590E+01
.7000E+00 .1073E-04 .9841E-02 .7787E+02 .1209E-06 .4819E-03 .4822E+01
continued . . .

```

\section*{APPENDIX IV}

\section*{Indexing Terms}

\section*{G-TYPE NEOPRENE \\ AGING \\ PEPTIZATION \\ MATHEMATICAL MODEL}
\[
111
\]```


[^0]:    ${ }^{2}$ As presented in Section IV.C., the author assumes a general positive correlation of Mooney viscosity with MW (Figure 23), realizing that Mooney viscosity actually depends on parts of the MWD and the peptization reactions occuring in the Mooney apparatus.
    ${ }^{2}$ Other unidentified reactions probably occur during peptization. Ongoing NMR studies suggest, at least, the formation of diethylamine[4].

[^1]:    ${ }^{3}$ Substitution of the moment expressions for $M_{n}, M_{w}$ and $M_{z}$ into Eqn. (10) yields $M_{z}=2 M_{w}-M_{n}$, an obvious underestimation.

[^2]:    ${ }^{4}$ In application, only the first RHS term in Eqn (39) is retained and $k_{1} f_{a}$ is expanded to $\left[k_{1} f_{s}+2 k_{1, \text { red }}\left(f_{e 0}-f_{s}\right)\right]$ in other rate expressions. A similar treatment is applied to $k_{2} f_{s}$.

