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SUMMARY 

 

Fine particulate matter (PM2.5) is a complex mixture of chemical species 

originating from primary emission sources and secondary formation via photochemical 

reactions in the atmosphere. Acute and chronic human exposure to PM2.5 can cause 

adverse respiratory health outcomes leading to increased morbidity and mortality rates 

(Burnett et al., 1995; Schwartz et al., 1996). The U.S. EPA designated 208 counties as 

non-attainment areas in 2006 as ambient PM2.5 levels in those counties were above its 

National Ambient Air Quality Standards (NAAQS). Regulatory agencies in the non-

attainment areas are tasked with developing effective implementation plans which can 

reduce PM2.5 concentrations to meet the standards. In addition to health effects, PM2.5 

affects global climate change by disturbing the earth’s radiation balance and reduces 

local/regional visibility due to its radiative properties. 

Prescribed burning is an important source of primary and secondary PM2.5 as its 

emissions can elevate ambient PM2.5 concentrations and impair visibility in the 

southeastern U.S. However, lack of information about emissions from prescribed burning 

limits our understanding of its air quality impacts in the Southeast. In this thesis, 

emissions from active prescribed burning were characterized to improve our scientific 

knowledge of its emissions and ultimately air quality impacts. 

 Receptor models have been developed and applied to ambient PM2.5 chemical 

composition data in order to identify emission sources and quantify their contributions to 

ambient concentrations. However, little information is available to provide regional 

perspectives of PM2.5 sources and impacts in the Southeast. PM2.5 source apportionment 



 xii

conducted using CMB receptor modeling provides such information. This can provide 

new insights about whether regionally or more locally targeted control strategies should 

be developed and applied for PM2.5 emission sources in the region.  

Associating CMB PM2.5 source apportionment results with adverse health 

outcomes has been suggested as a complementary method instead of associating PM2.5 

mass or its chemical components. However, there are issues that should be addressed 

before the application of source apportionment results in PM epidemiologic studies. 

Associating source apportionment results from a single receptor site with adverse health 

outcomes averaged for an entire city or metropolitan area may make PM health study 

results uncertain if source apportionment results are not representative for an entire study 

area. Spatial representativeness of source apportionment results was examined. 

Uncertainties of source apportionment results are important for not only health 

studies but also policy analysis and decision making as they can affect confidence in the 

final results. They should be investigated for an appropriate application of source 

apportionment results. Thus, uncertainty and its contributors were estimated by 

propagating uncertainties in input data using Monte Carlo analysis. 

In addition to conducting fundamental studies to better understand PM2.5 sources 

and impacts in the southeast, it is also recognized that more issues are to be addressed. 

Future research is identified to continue along the path, including more emission 

characterization of primary sources to get representative source profiles, reduction of 

incongruities between source apportionment results and emission inventories, extended 

spatial representative studies, and application of optimized source apportionment 

methods. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 Particulate matter (PM) is emitted directly from primary emission sources and 

formed from photochemical reactions of its precursors in the atmosphere. PM is a 

physically and chemically complex pollutant in the atmosphere affecting the environment 

and human health (U.S. EPA, 2004). Its radiative properties, such as light scattering and 

absorbing, play a significant role in visibility impairment (Malm, 1999; Watson, 2002) 

and climate change (Charlson et al., 1992; Ramaswamy et al., 2001), and its deposition 

affects vegetation, water and structures (U.S. EPA, 2002). Acute and chronic exposures 

to PM (especially PM2.5, particles less than 2.5 µm in aerodynamic diameter) are 

suspected to cause adverse respiratory health outcomes leading to increased morbidity 

and mortality rates (Dockery et al., 1993, 1996; Pope et al., 1993, 1996; Schwartz et al., 

1993, 1994). PM epidemiologic studies led the United States Environmental Protection 

Agency (U.S. EPA) to promulgate more stringent National Ambient Air Quality 

Standards (NAAQS) for PM in 1997. Current PM2.5 NAAQS are 15 and 65 µg/m3 for 

annual and 24-hr standards, respectively, and a more stringent 24-hr standard of 35 µg/m3 

have been proposed (U.S. EPA, 2006). PM2.5 is one of primary concern for regulatory 

agencies, which have made efforts to meet the NAAQS since the U.S. EPA designated 

208 counties as non-attainment areas for PM2.5 in March, 2006 (www.epa.gov/air/data). 

Agencies with PM2.5 non-attainment counties must develop their own plans that 

demonstrate how they will achieve attainment status. 
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 PM2.5, unlike other criteria air pollutants, is a mixture of many different chemical 

species such as ionic species, trace metals, soot, and organic compounds. These chemical 

species come from a variety of primary source emissions and photochemical reactions of 

their precursors. Different primary sources emit chemically or physically different PM2.5 

and precursor gases producing PM2.5 with highly variable characteristics. This makes it 

difficult not only for scientists to understand its chemical and physical properties but also 

for regulatory and policy makers to develop effective control strategies. Scientists have 

made significant progress in understanding PM2.5 by developing theories and cutting-

edge measurement instruments, although there is still lack of complete knowledge about 

PM2.5, especially secondary organic aerosol formation. Such techniques have been used 

to characterize PM2.5 both in the atmosphere and primary emissions. For example, 

utilizing chemical composition data in developing receptor models, such as positive 

factorization matrix (PMF; Paatero, 1997, 1999), UNMIX (Henry et al., 1990; Kim et al., 

1999, 2000), iterated confirmatory factor analysis (ICFA; Christensen et al., 2006), and 

chemical mass balance (CMB; Miller et al., 1972; Watson et al., 1984, Schauer et al., 

1996; Marmur et al., 2005) has helped identify and quantify PM2.5 sources. 

 PM2.5 is regulated by NAAQS in terms of its mass, not specific components or 

groups. Epidemiologic studies have focused on understanding associations between 

adverse health outcomes and PM2.5 mass and species, and thinking that it is more likely 

that the associated health outcomes may result from some toxic components of PM2.5 

rather than its mass itself. In addition, different PM2.5 components may cause different 

degrees of adverse health outcomes. The specific components causing adverse health 

outcomes may be emitted from specific sources. Knowing which sources are of greatest 
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concern can help in developing control strategies in order to decrease adverse health 

effects. Therefore, source apportionment models can play a significant role in planning 

effective PM2.5 control strategies.  

 There are two different types of source apportionment models. Receptor models 

such as CMB, PMF, UNMIX, and ICFA, identify source impacts to a receptor site based 

on ambient measurement data, while source-based models, such as CAMx (ENVIRON 

inc., 2006), RADM (Boylan et al., 2002, 2006), and CMAQ (Murmur et al. 2006; Park et 

al., 2005) quantify source impacts forward from emission sources based on emission 

data. Both types of source apportionment models have their own strengths and 

weaknesses. Receptor models capture more of the temporal variability of source impacts 

and their results are highly tied with ambient measurement data (Murmur et al. 2006; 

Park et al., 2005). However, their source apportionment results are very sensitive to 

source profiles, not linked to emission sources directly, and estimated only where 

ambient measurement data is available. Source-based models provide spatial and 

temporal coverage of source impacts and source impacts are directly linked with emission 

sources (Park et al., 2005; Russell et al., 2005). However, the accuracy of their results 

highly depends on their input data, especially emission inventories which are typically 

the most uncertain input data (Park et al., 2005; Russell et al., 2004). 

 The CMB receptor model apportions ambient PM2.5 to its sources by 

incorporating both ambient measurement and source profile data. The basic equation of 

the CMB model is a species mass balance, noting that the ambient concentration of a 

species is made up of the linear combination of total mass off PM2.5 from individual 

sources times the fraction of that species in the PM2.5 emissions from that source. 
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where Ci is the ambient concentration of species i, fi is the fraction of species i in source j, 

and Sj is the source contribution of source j. There are several assumptions in the CMB 

receptor model: 1) compositions of source emissions are constant over the period of 

ambient and source sampling; 2) chemical species do not react with each other; 3) all 

sources with a potential for contributing to the receptor have been identified and have had 

their emissions characterized; 4) the number of sources or source categories is less than 

or equal to the number of species; 5) the source profiles are linearly independent of each 

other; and 6) measurement uncertainties are random, uncorrelated, and normally 

distributed (Watson et al., 2001).  

Miller et al. (1972) has applied a chemical element balance to the Pasadena 

(California) particulate matter to estimate contributions of primary PM sources. The 

chemical element balance has been further developed and extended for understanding of 

primary PM emission sources in Pasadena, CA (Friedlander, 1973). A similar approach 

has been applied for Chicago area (Winchester and Nifong, 1971). The equation (1) is 

usually overdetermined since the number of chemical species is larger than that of 

sources. An appropriate solution of the equation (1) is a least-square fit. The ordinary 

weighted least squares method, which propagates only uncertainties in ambient 

measurement data, has been applied by Friedlander (1973). Watson et al. (1984) has 

applied an effective variance method, which is incorporated into the current version of 

the CMB receptor model, in order to propagate uncertainties in both ambient 

measurement and source profile data. The equation (1) is solved by the effective variance 

method, which finds a set of source impacts to minimize χ2 (chi-square): 
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Advanced chemical speciation techniques have been developed to measure the 

concentrations of hundreds of particulate organic compounds emitted from various 

primary PM sources and collected on ambient filter samples (Rogge et al., 1991; Rogge 

et al., 1993a-d; Rogge et al., 1994). The detailed organic compound speciation data 

extends the ability of the CMB so that source contributions of more emission sources 

become identifiable by overcoming collinearities among the elemental profiles of the 

sources (Schauer et al., 1996, 2000). The CMB receptor model has also been applied to 

understand source impacts of volatile organic compound (VOC) emission sources 

(Harley et al., 1992; Fujita et al., 1994; Schauer et al., 2000). 

 Prescribed burning is an important source of PM2.5 in the U.S., emitting both 

primary particles and precursors of secondary particles. It has been reported that 

prescribed burning along with wildfires is the primary cause of elevated PM2.5 

concentrations and visibility impairment in the U.S. (Sandberg et al., 2002). It is a 

significant PM emission source in the southeastern U.S., which has the largest forest 

areas subject to prescribed burning (Hardy et al., 2001). Emissions from prescribed 

burning differ in various regions due to varying fuel and combustion conditions and are 

likely different in  terms of chemical characteristics of PM2.5 and volatile organic 

compounds (VOC). However, limited information is available about emission 

characteristics of active prescribed burning in the southeastern U.S. Therefore, it is 

essential to characterize emissions from prescribed burning to understand its air quality 
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impacts by providing more realistic source profiles of PM2.5 and VOC for CMB receptor 

model or emission factors for emission-based air quality models. 

 The chemical composition of PM2.5 varies at different regions because PM2.5 is a 

complex mixture of various chemical components from different emission sources. 

Receptor models can be applied for ambient PM2.5 to identify and quantify area-specific 

PM2.5 emission sources. Source apportionment studies have been conducted to 

understand PM2.5 sources and contributors in the southeastern U.S. (Kim et al., 2003, 

2004, 2005a; Liu et al., 2005; Marmur et al., 2005, 2006; Park et al., 2005; Zheng et al., 

2002, 2006). The studies show the applicability of source apportionment models on more 

local scales. However, the studies provide little information about the regionality of PM2.5 

sources in the southeast. The U.S. EPA launched the PM2.5 chemical Speciation Trend 

Network (STN) program to provide nationally consistent data for the assessments of 

PM2.5 trends (U.S. EPA, 1999) as a requirement of the new NAAQS. CMB receptor 

modeling can incorporate the STN PM2.5 data for source apportionment in order to give a 

regional perspective of PM2.5 sources in the southeast. This can provide new insights 

about whether regionally or more locally-targeted control strategies should be developed 

and applied. 

 Source apportionment results from receptor models can be used for epidemiologic 

studies to help identify associations between adverse health outcomes and PM2.5 emission 

sources (Laden et al., 2000; Mar et al., 2000; Tsai et al., 2000; Sarnat et al., 2006). 

However, health outcome data used for the epidemiologic studies comes from an entire 

city or metropolitan area, whereas source apportionment results typically are based on 

PM2.5 data at a single monitoring site. This could introduce errors or uncertainties on the 
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results of the health studies if source apportionment results at a single monitoring site are 

not representative of the study area. Thus, it is important to address whether source 

apportionment results at a single monitoring site can represent an entire study area or not. 

The Assessment of Spatial Aerosol Characterization in Atlanta (ASACA) program 

provides data for investigating spatial representativeness of source apportionment results 

at a single monitoring site for an entire metropolitan area. 

 The ultimate objective of PM health studies incorporating PM2.5 source 

apportionment is to provide useful information for policy decision making to develop 

effective PM2.5 control strategies. Uncertainties of source apportionments play an 

important role in the policy decision since they contribute to the final uncertainties of PM 

health studies. Knowledge of uncertainties can help policy makers prioritize which PM2.5 

source should be further studied and controlled. For example, they may want to reduce 

emissions from a PM2.5 source which is associated with a high adverse health risk with a 

small uncertainty rather than a high uncertainty. Therefore, it is crucial to quantify 

uncertainties and identify the contributors of them in the model results. 

 

Structure and Scope of the Thesis 

This thesis addresses a number of the issues confronting scientists, policy makers, and 

other stakeholders concerned with PM2.5 with particular focus on the southeastern U.S. 

Chapter 2, “Gaseous and particulate emissions from prescribed burning in 

Georgia”, describes emission characteristics of prescribed burning conducted in 

Georgia’s forested areas. Prescribed burning is an important source of air pollutants in the 

southeastern U.S., which has the largest forest areas subject to prescribed burning. 
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However, limited information is available about emission characteristics of active 

prescribed burning in the southeastern. Therefore, it is essential to characterize emissions 

from prescribed burning to understand its air quality impacts. Emission characterizations 

of PM2.5 and VOC from active prescribed burning were determined by directly measuring 

emissions at prescribed burning sites in Georgia. 

In Chapter 3, “Source apportionment of PM2.5 in the southeastern United 

States”, CMB receptor modeling was applied to ambient PM2.5 data of the U.S. EPA 

STN program in the southeast U.S. in order to estimate regional source impacts of 

primary and secondary PM2.5. 

Chapter 4, “Source apportionment of PM2.5 in Atlanta: a case study for spatial 

representativeness at urban scale”, addresses representativeness of source 

apportionment results at a receptor site for an entire urban area. Source apportionment 

results from the CMB receptor models can be applied to PM health studies (i.e., time 

series PM epidemiologic studies) to understand associations between adverse health 

outcomes and PM sources. It was investigated whether source apportionment results at a 

single monitoring site can represent an entire city or metropolitan area. 

Chapter 5, “Estimating uncertainties and uncertainty contributors of CMB 

PM2.5 source apportionment results”, describes how measurement uncertainties in both 

ambient measurement and source profile data contribute to final uncertainties in CMB 

modeling. Uncertainties of CMB source apportionment results are important factors for 

PM health studies, and policy analysis and decision making. Monte Carlo analysis with 

Latin hypercube sampling (MC-LHS) was applied to quantify uncertainties and identify 
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their contributors in the model results due to uncertainties from both ambient 

measurement and source profile data. 

Chapter 6 provides conclusions and recommendations for future research. 

 

 

 



 10

CHAPTER 2 

GASEOUS AND PARTICULATE EMISSIONS FROM PRESCRIBED 

BURNING IN GEORGIA 

 (an extended version of Lee, S.; Baumann, K; Schauer, J.J.; Sheesley, R.J.; 

Naeher, L.P.; Meinardi, S.; Blake, D.R.; Edgerton, E.S.; Russell, A.G.; Clements, M. 

Environmental Science & Technology, 39, 9049-9056, 2005) 

Abstract 

Prescribed burning is a significant source of PM2.5 in the southeastern United 

States. However, limited data exist on the emission characteristics from this source. 

Various organic and inorganic compounds both in the gas and particle phase were 

measured in the emissions of prescribed burnings conducted at two pine dominated forest 

areas in Georgia. The measurements of volatile organic compounds (VOCs) and fine 

particulate matter (PM2.5) allowed the determination of emission factors for the flaming 

and smoldering stages of prescribed burning. The VOC emission factors from smoldering 

were distinctly higher than flaming except for ethene, ethyne, and organic nitrate 

compounds. VOC emission factors show that emissions of certain aromatic compounds 

and terpenes such as α and β-pinenes, which are important precursors for secondary 

organic aerosol (SOA), are much higher from active prescribed burnings than from 

fireplace wood and laboratory open burning studies. Levoglucosan is the major 

particulate organic compound (POC) emitted for all these studies, though its emission 

relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, 

an important fingerprint for meat cooking, was only observed in our in situ study 

indicating a significant release from the soil and soil organisms during open burning. 
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Source apportionment of ambient primary fine particulate OC measured at two urban 

receptor locations 20-25 km downwind yields 74 ±11 % (prescribed burning 

contribution) of measure OC during and immediately after the burns using our new in situ 

profile.  In comparison with the previous source profile from laboratory simulations, 

however, prescribed burning source contribution is on average 27 ±5 % lower. 

 

2.1 Introduction 

Forest fires, both wildfire and prescribed burning, are important sources of primary 

air pollutants and precursors of secondary pollutants. In the southeastern United States, 

forest fires contribute about 20, 8, and 6 % of non-fugitive primary PM2.5, CO, and 

volatile organic compound (VOC) emissions, respectively (Barnard et al., 2003), and 

have been reported as the primary cause of increased PM2.5 levels and visibility 

impairment in the US (Sandberg et al., 2002). Primary air pollutants from forest fires can 

travel long distances (thousands of km). Canadian forest fires increased CO 

concentrations leading to elevated O3 levels in the South-Eastern US (Wotawa et al., 

2000) and elevated PM2.5 concentrations in an eastern US urban area were observed due 

to Canadian forest fires (Sapkota et al., 2005). While emission factors for major gas-

phase species, PM2.5 mass, EC and OC have been calculated in an attempt to improve the 

emission inventory for forest fires in the U.S. (Battye et al., 2002), they are primarily 

based on measurements and conditions resembling the Western US. Epidemiologic 

studies show an association between air pollutants emitted by forest fires (e.g. PM2.5 and 

O3) and adverse health effects (Samet et al., 2000; Pope et al., 2002; Fowler et al., 2003; 

Bell et al., 2004). 
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Prescribed burning is widely used (e.g. in Georgia >1 million acres annually) for 

various reasons, including controlling vegetation, enhancing biotic productivity and 

diversity, controlling disease and insects, reducing fuel accumulation, and habitat 

management for endangered species in the US, and especially in the Southeast (Hardy et 

al., 2001). Therefore, it is important to investigate emissions from prescribed burning in 

order to understand its impact on air quality. Because of its mixed fuel and different 

combustion conditions, prescribed burning likely has a different chemical composition of 

PM2.5 and VOC compared to residential wood burning emissions. Hays and colleagues 

(Hays et al., 2002) reported source profiles of PM2.5 and VOC from laboratory 

simulations of different forest fires. However, very limited data exists on emission 

characteristics from active prescribed burning in the US. In our study, emission 

characterizations of PM2.5 and VOC from prescribed burning were determined by directly 

measuring emissions at prescribed burning sites, providing source profiles of PM2.5 and 

VOC for future source apportionment and information for an improved emission 

inventory development. In addition, the newly developed source profile was applied for 

quantifying the primary source contributions to ambient organic carbon (OC) levels by a 

chemical mass balance model. 

 

2.2 Measurement sites 

Emission and ambient measurements were conducted in Georgia, U.S. during April, 

2004. Emission samples were collected at two pine dominated forest areas that are 

managed by prescribed burning (Figure 2.1). Fort Benning and Fort Gordon are both 

military installations that burn approximately 32,000 and 14,000 acres, respectively, 
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every year mainly to maintain a healthy habitat of endangered species (e.g. the red-

cockaded woodpecker), and to sustain military operations and training. Fort Benning is 

situated to the south-east of Columbus close to the Alabama border, and Fort Gordon is 

south-west of Augusta near the South Carolina border. Prescribed burnings were 

conducted on April 15 and 16, 2004 (331 and 345 acres, respectively) at Fort Gordon and 

on April 28 and 29, 2004 (204 and 381, respectively) at Fort Benning. During these 

periods, ambient samples were collected at the State’s regulatory monitoring locations of 

both Metropolitan Statistical Areas (MSA), a residential area in Augusta, 21 km 

downwind, and at a residential area with a few industrial sources in Columbus, 26 km 

downwind from the respective prescribed burning sites. 

               

Figure 2.1. Measurement locations in Georgia with the Augusta and Columbus 
receptor sites being 250°N/20km and 105°N/25km downwind from the 
corresponding Fort’s burn site, respectively 
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2.3 Experiment methods 

2.3.1. Emission Measurements. 

A total of four particle-phase emission samples, two at each site, were collected 

within a few m away from the downwind edge of the burning area on 4 different days in 

April 2004. Average ambient temperature during the measurements was 26.5 ± 2.7 °C 

under mostly clear skies and low to moderate winds, meeting the fundamental 

requirements for conducting prescribed burns in Georgia (detailed weather conditions are 

described in the Supporting Information). Custom-designed Particulate Composition 

Monitors (PCM), Federal Reference Method (FRM), and High Volume Samplers (HVS) 

were operated for about 3 hours simultaneously to collect particulate emissions. The 

PCM is for the determination of gravimetric PM2.5 mass, water soluble ionic species, 

organic/elemental carbon (OC/EC), and gases (Baumann et al., 2003), the FRM for 

gravimetric PM2.5 mass and trace elements (U.S. EPA, 1997), and the HVS (Tisch 

Environmental Inc., Cleves, OH, model TE-5070 base with TE-10557 venturi, and TE-

6001-2.5 PM2.5 impactor) for OC/EC analysis and particulate organic compound (POC) 

speciation. 

The two channel PCM was designed to measure particles less than 2.5 microns in 

aerodynamic diameter (PM2.5) and gases by employing denuders (Baumann et al., 2003; 

Perrino et al., 1999) and filter packs (Figure 2.2). The PM2.5 mass concentration was 

determined gravimetrically from the denuded and desiccated Teflon filter in channel 1, as 

well as particle phase sodium, potassium, ammonium, chloride, nitrate, sulfate, formate, 

acetate, and oxalate by ion chromatography (IC). In addition, 7 gaseous species, NH3, 

HCl, SO2, HNO3, formic, acetic and oxalic acids, were measured via IC of the denuder 
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extracts. Channel 2 was for the determination of PM2.5 OC and EC, employing a carbon 

monolith (NovacarbTM, Mast Carbon Ltd., UK) to effectively remove condensable 

organic vapors, hence minimize semi-volatile adsorption artifact prior to particulate OC 

collection on a 47 mm pre-baked quartz fiber filter (Pall-Life Sciences, Ann Arbor, MI), 

followed by a pre-baked back-up filter coated with XAD-4 (Gundel et al., 1995, 1998; 

Lane, 1999). Quartz filters were analyzed by a thermal optical ECOC analyzer (Sunset 

Laboratory Inc., Tigard, OR) using the NIOSH protocol (Birch et al., 1999; Schauer et 

al., 2003). 

A BGI PQ200 portable particulate sampler (BGI Inc., Waltham, MA) equipped with a 

WINS impactor (FRM) was operated to collect PM2.5 on Teflon filters (Teflo ringed 

membrane, Pall-Life Sciences, Ann Arbor, MI). After gravimetric PM2.5 mass 

determination Teflon filters were analyzed for major trace elements via energy dispersive 

X-ray fluorescence spectroscopy (XRF). 

 The HVS used larger pre-baked quartz fiber filters (8 x 10 inch, Pall-Life Sciences, 

Ann Arbor, MI), which were analyzed for POC via gas chromatography/mass 

spectrometry (GC/MS) at the University of Wisconsin, Madison. The organic analysis 

method has been also described previously (Sheesley et al., 2000, 2004).  

Precision of the IC analysis is ~7% for oxalate and better than 5% for all other ionic 

species, and the XRF analysis’ precision is less than 10%. The precision of the GC/MS 

analysis is within 25% based on comparing the analysis of blank filters spiked with 

quantification standards composed of a mix of analytes with historical lab results 

(Manchester-Neesvig et al., 2003). Uncertainties for PM2.5 mass, OC, and EC were 

assessed by instrument inter-comparisons. Undenuded FRM mass was 5 ± 8% higher 
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than the denuded PCM mass at an R2 of 0.94 based on the linear least-squares regression, 

indicating the FRM’s susceptibility for positive artifacts from condensation and 

adsorption of less volatile gaseous emissions. For OC/EC inter-comparison, the same 

samples were analyzed by each thermal optical ECOC analyzer at Georgia Institute of 

Technology and University of Wisconsin, Madison. Bias between the two instruments 

was 7% for OC and 3% for EC. The linear least-squares regression for the OC/EC ratios 

between PCM (x) and HVS (y) yielded a slope of 1.40 ± 0.15 (R2 = 0.97). This slope 

larger than 1 likely resulted from positive artifacts on HVS rather than small differences 

in the operating parameters of the analyzers (e.g. temperature program), considering the 

relatively small instrument biases. 

Evacuated stainless steel canisters were used to collect gaseous species including CO, 

CO2, CH4, non-methane hydrocarbons (NMHCs), halogenated hydrocarbons, and organic 

nitrates. Several emission samples distinctively separating the flaming from the 

smoldering stage were collected in February and April, 2003 and during the above PM 

measurements in April 2004. The mobility of the cans allowed the sampling of emissions 

only a few cm away from the source, whereas the PM sampling equipment was placed a 

few m away from the downwind edge of the area burnt. Ambient background levels were 

measured prior to or upwind of every prescribed burning, and considered in the 

subsequent determination of the net emissions. Those samples were analyzed by gas 

chromatography with flame ionization detection (FID), electron capture detection (ECD), 

and mass spectrometry (MS). The typical analytical precision is 3% and detection limit is 

5 pptv for NMHCs in accordance with the previously described analytical procedure 

(Colman et al., 2001). 
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Ch D1 D2 F1 F2 
1 SC PA T GSC 
2 CM Q XQ 
flow direction 

 
Figure 2.2. PCM channel configurations used for emission measurements (Ch: 
channel number, D: denuder), F: filter, SC: sodium carbonate, PA: phosphorous 
acid, T: Teflon-membrane filter, GSC: SC-coated glass fiber, Q: quartz fiber, XQ: 
XAD-4 coated quartz fiber, CM: carbon monolith upstream of cyclone). 
 

2.3.2. Ambient measurements. 

Two 3-channel PCMs were used to alternately collect gravimetric PM2.5 mass, water 

soluble ionic species, OC/EC, trace elements, and gases following the same denuded 

filter collection principle from above (Figure 2.3) and operational details described 

previously (Baumann et al., 2003). Two HVSs (Thermo Electron Co., Franklin, MA, 

model GMW PM10-VFC with a 2.5 µm slitted pre-separator SA231) were also deployed 
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for POC collection and speciation following the same procedures as used for the emission 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3. Schematic diagram of the three-channel PCM for ambient 
measurements (IC: ion chromatography, XRF: X-ray fluorescence spectroscopy, F: 
filter, SC: sodium carbonate, PA: phosphorous acid, T: Teflon-membrane filter, 
GSC: SC-coated glass fiber, Q: quartz fiber, XQ: XAD-4 coated quartz fiber, CM: 
carbon monolith upstream of cyclone). 
 

2.3.3. CMB source apportionment. 

Major primary emissions from gasoline-powered motor vehicles, medium-duty 

diesel trucks, meat cooking, residential wood burning, prescribed fire, and road dust were 

included in CMB8 in order to quantify their source contribution to ambient OC 

3 programmable pumps with 
individual valves and mass flow 

control in weather proof box

Sample air in

3 programmable pumps with 
individual valves and mass flow 

control in weather proof box

sample air in
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concentrations (Schauer et al., 1996; Watson et al., 2001). These source profiles were 

obtained from previous source test studies. The gasoline-powered vehicle source profile 

was generated by weighted-average of catalyst-equipped gasoline-powered motor 

vehicles and non-catalyst gasoline-powered motor vehicles (Schauer et al., 2002) based 

on their emissions in Georgia. The source profile for medium-duty diesel trucks was from 

Schauer et al. (1999a), meat cooking from Schauer et al. (1999b), prescribed burning 

from our study and Hays et al. (2002), road dust from Zheng et al. (2002), vegetative 

detritus from Rogge et al. (1993). The residential wood burning source profile was 

generated by averaging 6 source tests from Fine et al. (2002). 

 

2.4 Results and Discussions 

2.4.1. Chemical composition of PM2.5 emissions. 

All four PM2.5 samples were used to calculate average chemical composition of 

emissions from active prescribed burnings (Table 2.1), after subtracting ambient 

background levels, which were determined at the corresponding burn site up to one day 

prior to the actual conduct of the burn.  Fractions of OC and EC in PM2.5 emissions were 

60.25 ±18.5 % and 3.92 ±1.13 %, respectively. Among the water-soluble species, K+, 

acetate, and Cl- are the major ions comprising 0.65 ±0.45, 0.55 ±0.16, and 0.53 ±0.29 %, 

respectively. Total K and Cl are also identified by XRF (0.57 ±0.37 and 0.42 ±0.23 %, 

respectively). The linear regressions between total and water soluble fraction for K and 

Cl show that total and water soluble fractions of the two species are well correlated (R2 = 

0.97 and 0.96, respectively). Other trace elements identified by XRF were less than 0.3 

%. 
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Table 2.1. Average and standard deviation (STD) of the chemical composition of 
particle-phase emissions from prescribed burning. 

  AVERAGE STD 
PM 2.5 mass (mg m-3) 1.81 0.68 
OC and EC (weight % of PM2.5 mass)
Organic Carbon 60.25 18.52 
Elemental Carbon 3.92 1.13 
Ionic Species (weight % of PM2.5 mass)
Acetate 0.548 0.156 
Formate 0.447 0.114 
Nitrate 0.440 0.299 
Chloride 0.527 0.289 
Potassium 0.649 0.435 
Sulfate 0.245 0.112 
Ammonium 0.107 0.108 
Oxalate 0.069 0.014 
Sodium 0.016 0.008 
X-Ray Fluorescence (weight % of PM2.5 mass)
 Na 0.0431 0.0175 
 Mg 0.0001 0.0003 
 Al 0.0229 0.0426 
 Si 0.0186 0.0258 
 P 0.0010 0.0015 
 S 0.1074 0.0403 
 Cl 0.4217 0.2295 
 K 0.5707 0.3711 
 Ca 0.0006 0.0011 
 Ti 0.0004 0.0006 
 V BL BL
 Cr BL BL
 Mn 0.0011 0.0010 
 Fe 0.0082 0.0137 
 Co BL BL
 Ni BL BL
 Cu 0.0010 0.0010 
 Zn 0.0160 0.0089 
 Ga BL BL
 Ge BL BL
 As 0.0002 0.0003 
 Se 0.0001 0.0002 
 Br 0.0141 0.0091 
 Rb 0.0042 0.0028 
 Sr 0.0002 0.0003 
 Pb 0.0001 0.0003 

                *BL: below blank level 

2.4.2. Organic compounds of PM2.5 emissions. 

Emissions of specific POC normalized to OC (mg/g OC) were calculated after 

subtracting corresponding background levels (Table A.1). The total identified POC mass 

is 176 ±54 mg/g OC. Levoglucosan (95 ±40 mg/g OC), a monosaccharide derivative 

from the pyrolysis of cellulose, is the most dominant species among the identified POC. 

It is followed by resin acids, alkanoic acids, and alkenoic acids, 39 ±15, 27 ±12, 5 ±4 

mg/g OC, respectively. Resin acids are natural compounds that can be found in plant 

material, mainly conifers. Two different emission mechanisms, volatilization and 
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pyrolytic alteration, were suggested in a previous study (Simoneit et al., 1993). Pimaric, 

sandaracopimaric, and abietic acid are produced by volatilization and dehydroabietic acid 

by pyrolytic alteration. In our study, dehydroabietic acid is the major species emitted with 

33 ±14 mg/g OC. It is followed by isopimaric and pimaric acids, 3.0 ±1.2 and 2.5 ±1.0 

mg/g OC, respectively. In alkanoic acids, hexadecanoic, tetracosanoic and hexacosanoic 

acids are the major species emitted (6.7 ±2.9, 5.0 ±2.2, 3.7 ±1.6 mg/g OC, respectively). 

For alkenoic acids three compounds were identified, 9-octadecenoic acid and 9,12-

octadecadienoic acid being the dominant emissions (2.4 ±1.1 and 2.2 ±1.2 mg/g OC, 

respectively). Small amounts of alkanes were emitted (2.4 ±1.7 mg/g OC), with 

nonacosane being the most abundant of the identified alkanes (0.81 ±0.38 mg/g OC). 

Polycyclic aromatic hydrocarbons (PAH) emissions were emitted 1.5 ±0.7 mg/g OC, with 

retene as the major species (0.35 ±0.16 mg/g OC). Cholesterol, one of the important 

species identifying meat cooking smoke, was detected in our study (0.81 ±0.35 mg/g 

OC). 

 

2.4.3. Gaseous Emissions. 

Emission ratios were estimated for gaseous emissions from the canister measurements 

(Table A.2). Emission ratio relative to CO2 is determined by dividing excess mixing ratio 

above ambient background level by excess mixing ratio of  simultaneously measured CO2 

(Bongsan et al., 1991). The canister samples were distinguished into flaming (<0.1) and 

smoldering (> 0.1) stages based on ∆CO/∆CO2 ratios. In our study, the ratio is higher for 

smoldering (0.234 ±0.013) than flaming (0.071 ± 0.021), indicating more incomplete 

combustion during the smoldering stage.  The ratios listed in Table A-3 represent the 
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slopes (± standard error, SE) of the least squares linear correlations between the mixing 

ratios of the individual VOC compounds and CO2 measured absolutely (i.e. non-

background-corrected) in the flaming and smoldering emissions, respectively.  The 

coefficient of determination (R2) signifies how closely individual VOC emissions are 

driven by the combustion intensity and can be explained by the combustion process itself.  

For example, most species have higher R2 in the smoldering than flaming phase, while 

biogenic compounds (terpenes) and halogenated hydrocarbons show no correlation in 

either stage except for the methyl chloride and methyl bromide, which are common 

atmospheric tracers for biomass burning.  In general, emission ratios (i.e. slopes) are 

higher during smoldering than flaming except for ethene, ethyne, and organic nitrate 

compounds. 

 

2.4.4. Emission factors (EF) and profiles comparisons. 

EF (g-species per kg biomass burned) is estimated using the carbon mass balance 

method (Radke et al., 1998; Sinha et al., 2004) with the carbon content of biomass 

burned (Table A.3.a and A.3.b). In this method, it is assumed that all the burned carbon is 

emitted into the atmosphere as CO2, CO, CH4, NMHCs, and particulate carbon species 

(OC/EC). EF is defined by multiplying the carbon content of biomass to the relative mass 

ratio of a species (g) to the summation (kg) of all measured carbon mass. Hays and co-

workers (2002) found that the carbon content for aged needles of loblolly pine, the main 

fuel here is 42.6%, which was used in our calculations. Since the discrete nature of the 

fine PM sample collection did not allow the distinction between flaming and smoldering, 
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the same particulate carbon mass was applied to the total kg biomass calculations for both 

flaming and smoldering. 

Results from our study were compared with three other biomass burning emission 

estimates, two from fireplaces and one from an open burning simulation. Fine et al. 

(2002) and Schauer et al. (2001) measured emissions from fireplace burning of loblolly 

pine and pine, respectively (Fine et al., 2002; Schauer et al., 2001). Hays et al. (2002) 

measured emissions from open burning simulating the prescribed burning of aged 

loblolly pine needles. Schauer et al. used fuels obtained from the western US whereas in 

two other studies fuels from the southern US were burnt.  However, similar dilution 

sampling systems were used by all investigators to simulate the cooling and dilution 

effects of the atmosphere.  
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Figure 2.4. Comparisons of VOC emission factors assuming a biomass carbon 
content of 42.6 %; the error bars for our study represent single standard deviations 
of 10 flaming and 12 smoldering samples. 
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For the VOC species measured in our study, ethene has the highest EF for all studies 

(Figure 2.4). In general, emissions from laboratory burnings are in between the flaming 

and smoldering emissions of our study. Emissions from the smoldering stage are 

generally higher than from flaming and also higher than the two laboratory burnings. This 

trend becomes much stronger for aromatic and biogenic compounds such as benzene, 

toluene, xylenes, isoprene, and pinenes, which play an important role in the atmospheric 

formation of ozone and SOA. 

OC is the dominant PM2.5 component (more than 50 %) for all cases (Figure 2.5). K 

and Cl are the major trace elements (0.2~0.7 %) except for the open burning simulation, 

in which both were below detection limit. Water soluble potassium is often used as a 

tracer for biomass smoke. Note that other studies have reported only total potassium. 

Very similar amounts of water soluble potassium compared to total potassium was found 

in our study indicating that all potassium from prescribed burnings is likely water soluble. 

This is also the case for chlorine. 

 
 

Figure 2.5. Comparison of bulk PM2.5 chemical composition of emissions from this 
in situ study with different laboratory and fireplace wood burning studies; the error 
bars for this study represent single standard deviations of four samples. 
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The normalized POC emissions (mg/g OC) from those studies were calculated for 

the same compounds measured here (Figure 2.6). Thus, the total identified POC 

emissions were 307, 72, and 130 mg/g OC for Schauer et al. (2001), Fine et al. (2002), 

and Hays et al. (2002), respectively. Our POC emission of 176 mg/g OC is closer to that 

from Hays et al. (2002) than from the two fireplace wood burnings. Our distribution of 

major POC emissions is also most similar to Hays et al. (2002) (Figure 2.6a). 

Levoglucosan, a pyrolysis product of cellulose, is the most abundant species and is 

followed by resin acids for all studies. However, their normalized emissions (mg/g) are 

very different. While levoglucosan from our study is a factor of 2 or 3 higher than that 

from Fine et al. (2002) and Hays et al. (2002), it is a factor of 3 less than that from 

Schauer et al. (2001). Resin acid emissions are similar with Hays et al. (2002), whereas 

they are a factor of 2 or 3 higher than the two fireplace burnings. Dehydroabietic acid is 

the most dominant species for Hays et al. (2002) and our study, but abietic acid is the 

most dominant species for both fireplace burnings (Figure 2.6b). Note that abietic acid is 

not included for comparison of total resin acid emissions since it was not measured in our 

study. Unlike previous wood burning studies, the actual prescribed burning emitted 

cholesterol, which has been used as an important species for identifying meat cooking. 

Cholesterol, a common animal steroid, exists in soil due to the presence and activity of 

soil microorganism and higher living organisms (Puglisi et al., 2003). The cholesterol 

emission process during prescribed burning could be similar to steam-stripping and 

vaporization during meat cooking (Rogge et al., 1991). 
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Figure 2.6. Comparisons of normalized POC emissions in mg/g OC of major organic 
compound groups (a, levoglucosan x ½ of Schauer (2001)), and three resin acids (b). 
 

 

2.4.5. Prescribed burning source impacts 

Organic mass (OM), here assumed as 1.6*OC representing a typical urban 

environment (Baumann et al., 2003; Turpin et al., 2001), and sulfate are the major 

species of the measured ambient PM2.5 comprising more than 65% of its mass (Figure 

2.7). Rain events associated with low pressure frontal movements occurred before and 

after prescribed burning at Augusta and Columbus, respectively. The CMB model was 

used to quantify the contributions to ambient OC concentrations of the main primary 

sources (motor vehicles, residential wood burning, meat cooking, road dust, and 

vegetative detritus) including prescribed burning. Preliminary CMB analysis showed the 

residential wood burning contribution being statistically equal to zero, therefore, it was 

excluded. The model was run two times; first with a prescribed burning source profile 

from our study, secondly with one from Hays et al. (2001). Both CMB runs used the 

same selection of fitting species, which is based on a previous study (Schauer et al., 
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1996). The source apportionment results from the first CMB run are only reported here 

(Figure 2.8). The results show that motor vehicles and prescribed burning are the major 

sources contributing to the ambient [OC] at both sites during and immediately after the 

actual prescribed burns with 29 ±7 % and 74 ±11 % (±SE), respectively.  However, 

before the burns and during the regional rain events, measured [OC] cannot be 

completely explained by the selected primary sources, leaving a relatively large fraction 

un-apportioned (labeled “others” in Figure 2.8).  Whether this fraction can be considered 

SOA and to what extent it is related to the local prescribed burning emissions or more 

regional transport with slower atmospheric processing is highly speculative and subject to 

future investigation. 

      
Figure 2.7. Bulk chemical composition of ambient PM2.5 measured in April 2004 at 
Augusta (a), and Columbus (b); LOA is the sum of the three light organic acids.             
 

 
Figure 2.8. Contributions to ambient fine particulate OC concentrations measured 
at Augusta (a) and Columbus (b).   
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 CMB sensitivity using different prescribed burning source profiles is evaluated by 

comparing the two model results via linear least-squares regression (Table 2.2). 

Application of the two different prescribed burning source profiles changes not only the 

source contribution of prescribed burning itself, but yields also significant differences for 

both diesel and meat cooking source impacts. Higher levoglucosan (g/g OC) from our 

study leads to a 27 ±5 % (±SE) lower prescribed burning contribution. A 25 ±6 % lower 

meat cooking contribution is largely due to a higher 9-octadecenoic acid (g/g OC) 

relative to Hays et al. (2001) The CMB result yielding lower prescribed burning 

contribution from our in situ profile apportions less EC to that source, leading to a 20 ±16 

% higher diesel vehicle contribution. 

 

 

 

Table 2.2. Linear least-square regressions between two CMB source apportionment 
results using two different prescribed burning emission profiles; i.e. our in situ vs. 
lab simulation from Hays et al.. 
 
 

source R2 Slope* Intercept* 
gasoline vehicles 0.99 0.94 ± 0.02 0.02 ± 0.03 
diesel vehicles 0.94 1.20 ± 0.16 0.00 ± 0.03 
meat cooking 0.99 0.75 ± 0.06 -0.03 ± 0.02  
road dust 1.00 1.00 ± 0.01 0.00 ± 0.00 
prescribed burning 0.96 0.73 ± 0.05 -0.21 ± 0.26 
vegetative detritus 0.96 0.94 ± 0.07 0.00 ± 0.01 

 
* The regression slopes and intercepts with standard error; our study (y) vs. Hays 

et al. (x). 
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2.4.6. Implication of a new prescribed burning PM2.5 source profile for CMB source 

apportionment 

 CMB receptor modeling can attribute ambient PM2.5 to primary emission sources 

by using PM2.5 bulk chemical speciation data at both a receptor and emission sources. 

Biomass burning activities (i.e., wild fire, prescribed burning and residential wood 

burning etc) are significant primary emission sources of PM2.5. However, Source 

contribution of individual biomass burning activity can not be estimated accurately at the 

same time in CMB receptor modeling because of similarities among their source profiles. 

Source profiles of biomass burning emissions can be combined to estimate source 

impacts of biomass burning instead of estimating inaccurate each biomass burning 

impacts. There are two different biomass burning source profiles which were developed 

by using woody material in the southeast. One is residential wood burning from Fine et 

al. (2002), and the other is prescribed burning from this study. Source contribution 

estimates by CMB receptor modeling are typically more sensitive to source profile than 

ambient measurement data. Biomass burning source impacts were estimated by using 

three different source profiles in order to examine sensitivity of calculated source impacts 

to the source profiles (Table 2.3). Ambient measurement data at Dekalb, GA were used 

for this purpose. 

 

Table 2.3. Weight fraction of OC and K in three biomass burning source profiles. 

 residential wood 
burning 
(Fine et al., 2002) 

prescribed burning 
 
(this study) 

residential wood burning + 
prescribed burning 
(combined) 

OC 0.883 ± 0.060 0.603 ± 0.185 0.743 ± 0.195 
K 0.0070 ± 0.00008 0.0057 ± 0.0037 0.0063 ± 0.0037 
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Figure 2.9. Comparison of estimates of biomass burning source contribution using 
different source profiles. 
 

Results show that biomass burning source impacts estimated by using a combined source 

profile are 21% lower than those by using only prescribed burning source profile, but 

21% higher than those by using only residential wood burning source profile (Figure 2.9). 

Relatively different fractions of K and OC (Table 2.3), which are main driving forces of 

biomass burning source contribution, result in different source impact estimates. 

 In CMB receptor modeling, uncertainties in both ambient measurement and 

source profile data are propagated by inversely weighting effective variance to estimate 

uncertainties of source contributions (Watson et al., 1984). Therefore, using different 

source profiles with different uncertainties changes not only source contribution 

estimates, but also uncertainties in estimated source contributions. Relatively lower 
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uncertainties in residential wood burning source profile lead to much lower uncertainties 

in source contribution estimates than those in other two estimates (Figure 2.10). 

Residential wood burning source profile was created from laboratory emission source 

tests by burning different southeastern wood types in a same experiment setup (Fine et 

al., 2002), while prescribed burning source profile was produced by directly measuring 

emissions from actual prescribed burning (Lee et al., 2005). Woody materials were 

combusted in a same or very similar combustion condition, whereas mixed biomass 

materials (i.e., woods, dead leaves, small brushes, organic materials in soils etc) 

combusted in different combustion conditions. Mixed fuels and different combustion 

conditions may contribute to relatively higher uncertainties in the prescribed burning 

source profile. 
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 Figure 2.10. Comparison of uncertainty estimates of biomass burning source 
contribution using different source profiles. 
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CHAPTER 3 

SOURCE APPORTIONMENT OF PM2.5 IN THE SOUTHEASTERN 

UNITED STATES 

 

 (Lee, S.; Baumann, K.; Russell, A.G. Journal of the Air and Waster Management 

Association, 2006, in preparation) 

Abstract 

 PM2.5 source apportionment by chemical mass balance receptor model was 

performed to understand regional perspectives of source impacts in the southeastern 

United States. Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and 

secondary organic carbon (SOC), formed by atmospheric photochemical reactions, 

contribute the majority (>50%) of ambient PM2.5 with strong seasonality. Source 

apportionment results indicate that motor vehicle and biomass burning are the two main 

primary sources in the southeast showing relatively more motor vehicle source impacts 

rather than biomass burning source impacts in populated urban areas and vice versa in 

less urbanized areas. Spatial distributions of primary source impacts show that each 

primary source has distinctively different spatial source impacts from each other. The 

results also illustrate possible emission impacts from ship activities along the coast. 

Spatial-temporal correlations indicate that secondary particles are more regionally 

distributed, and impacts of primary sources are more local. In order to reduce primary 

source impacts, the results imply that targeted control strategies should be developed for 

specific regions based on the most important sources identified and the relative costs of 

emission reductions. 
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3.1. Introduction 

 Epidemiologic studies suggest that ambient particulate matter (PM) has 

significant associations with adverse respiratory and cardiovascular health effects 

(Dockery et al., 1993; Pope et al., 1995; Schwartz et al., 1994, 1996; Thurston et al., 

1994), and prompted the U.S. Environmental Protection Agency to promulgate National 

Ambient Air Quality Standards (NAAQS) in July, 1997. The majority of the past 

epidemiologic studies focused on linking human exposures to PM mass, its chemical 

components and size. More recent studies have been conducted to understand 

associations between PM emission sources and human exposure (Laden et al., 2000; Mar 

et al., 2000; Tsai et al., 2000, Sarnat et al., 2006). 

 Associated with the new NAAQS, the U.S. EPA established the PM2.5 chemical 

Speciation Trend Network (STN) program to provide nationally consistent data for the 

assessment of trends (U.S. EPA, 1999). Twenty-four hours integrated filter based 

samples are collected every 3 or 6 days at each monitoring site. The samples are analyzed 

to determine gravimetric mass and chemical composition, including ions, trace elements 

and carbonaceous compounds (i.e., organic and elemental carbons). 

 There have been PM2.5 source apportionment studies to understand its sources and 

contributions in the southeast (Kim et al., 2003, 2004, 2005a; Liu et al., 2005; Marmur et 

al., 2005, 2006; Park et al., 2005; Zheng et al., 2002, 2006). The studies also demonstrate 

the applicability of different source apportionment methods. However, little information 

about the regional perspective of PM2.5 source impacts in the region has been provided in 

the studies. The main goal of this study is to conduct source apportionment of PM2.5 and 

develop a regional perspective of source impacts in the southeastern U.S. 23 STN sites 
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from 6 southeastern states were selected (Figure 3.1). This study provides useful 

information for possible future epidemiologic studies that aim to improve our 

understanding of the association between fine PM sources and human health exposure 

and ultimately to help develop effective PM control strategies. 

 A chemical mass balance receptor model (CMB) is applied to identify primary 

source contributions for ambient measurement data collected at 23 STN sites between 

January 2002 and November 2003. Seasonal variation and spatial-temporal correlations 

of the identified PM sources are examined. 

 

   

Figure 3.1. STN ambient monitoring sites in the Southeast of U.S. every 3 days ( ) 
or 6 days (●) measurements. 
 

3.2 Method 

3.2.1. Primary Organic Carbon (OC) Estimation 
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 The CMB receptor model is used to estimate primary source contributions by 

using ambient measurement and source profile data. 

                                               ,,.......1,
1

, niSfC
n

i
jjii ==∑

=

                                               (1) 

where Ci is the ambient concentration of species i, fi is the fraction of species i in source j, 

and Sj is the source contribution of source j. Chemical species used in CMB are assumed 

to be non-reactive (Watson et al., 2001). However, organic carbon (OC) measured at a 

receptor site includes primary OC emitted from emission sources and secondary OC from 

photochemical formation. In order to apply CMB using OC information one must either 

add a secondary OC source, or, as done here, estimate primary OC. Simply adding a pure 

secondary OC source could lead to collinearity problems with OC dominant sources. 

Therefore, it is desirable to estimate primary OC prior to the source apportionment. 

Although many studies have been conducted to understand secondary OC (Altshuller, 

1983; Claeys et al., 2004; Glasius et al., 2000; Hoffmann et al., 1997; Jang and Kamens, 

1999; 2001; Noziere et al., 1999; Odum et al., 1996; 1997; Stern et al., 1987; Wangberg 

et al., 1997; Yu et al., 1999), it is problematic separating primary from secondary OC via 

direct chemical analysis. 

The EC tracer method, an indirect method, has been used to estimate primary and 

secondary OC, since EC is a good tracer for carbonaceous particles from primary 

combustion sources (Cabada et al., 2002, 2004; Castro et al., 1999; Gray et al., 1986; 

Strader et al., 1999; Turpin et al., 1991, 1995). In general, there are two approaches in the 

EC tracer method to separate primary and secondary OC. One is using ambient 

measurement data and the other is based on primary emission inventory data. In this 

study, a combined method was used to estimate monthly primary OC/EC ratios. First, a 
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primary OC/EC ratio was derived by using ambient OC and EC data at each site. A 

recent study shows that the Deming linear least-squares regression is the superior method 

among several ambient EC tracer methods (Chu, 2005). Deming regression was applied 

for daily OC and EC data in the lowest 10 % by OC/EC ratio. Second, monthly primary 

OC/EC ratios were obtained by compiling primary OC and EC emission data (equation 

1). Based on the 2001 National Emission Inventory, annual PM emissions were 

calculated for various categories from counties within 25 km of each monitoring site. 

Monthly temporal profiles of PM emissions were applied to get monthly PM emissions at 

each site and then a source specific OC and EC weight fraction from source emission 

experiments was multiplied to obtain monthly OC and EC emissions (Table 3.1): 
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where [OC/EC]primary is the monthly primary OC to EC ratio, PM2.5i is the monthly 

primary PM2.5 emission (tons/month) from a source i, and OCf,i is the weight fraction of 

PM2.5 from source i, ECf,i is the weight fraction of PM2.5 from a source i. The OC and 

EC weight fractions of PM2.5 from the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) method (Chow et al., 1993) were used since more 

comprehensive emissions data are available. Ambient STN OC/EC data were obtained 

using the National Institute of Occupational Safety and Health (NIOSH) method (Birch et 

al., 1996). The Deming regression does provide one primary OC/EC ratio for the entire 

ambient data set at each site. However, the primary OC/EC ratio varies as primary 

emissions change seasonally. The variability of monthly primary OC/EC ratios from a 
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median ratio based on emission inventory was weighted to the primary OC/EC ratio from 

the Deming regression (ambient data) in order to obtain monthly primary OC/EC ratios. 

 

Table 3.1. Primary OC/EC ratio estimations by combining two different EC tracer 
methods.  * Primary PM2.5 source categories and references for OC and EC weight fraction of PM2.5 
were used to obtain monthly primary OC/EC ratios based on emission inventory. On-road: light/heavy 
duty gasoline and diesel vehicles (Zielinska et al., 1998); Non-road: off-highway gasoline and diesel 
vehicles (Zielinska et al., 1998); Point non-electricity generation: fuel combustion [coal (Chow et al., 
2004), distilled oil (Houck et al., 1989), natural gas (Watson et al., 1988)], mineral production (Shareef, 
1987), pulp and paper production (Shareef, 1987), metal production (Shareef, 1987); Point electricity 
generation: power plant [coal (Chow et al., 2004), distilled oil (Houck et al., 1989), natural gas (Watson et 
al., 1988)]; Area: wild fires (Watson et al., 2001), prescribed burning (Watson et al., 2001), agricultural 
burning (Houck et al., 1989), yard waste burning (Chow et al., 2004), land clearing (Chow et al., 2004), 
fuel combustion [coal (Chow et al., 2004), distilled oil (Houck et al., 1989), natural gas (Watson et al., 
1988)], residential wood burning (Zielinska et al., 1998), waste incineration (Houck et al., 1989), meat 
cooking (Zielinska et al., 1998); Dust: agricultural production (Cooper et al., 1981), construction (Chow et 
al., 1991), paved road dust (Chow et al., 2004), unpaved road dust (Chow et al., 2004). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

State 

 

 

County 

Primary OC/EC ratio 

from ambient data 

(95% confidence 

interval) 

Median Primary OC/EC 

ratio from emission 

inventory* (Min-Max) 

Min-Max Primary 

OC/EC ratio from a 

combined method 

Bibb 5.84 (5.13-6.56) 3.31 (2.90 – 4.70) 5.13-8.30 

Coffee 6.99 (6.14-7.85) 4.02 (2.10 – 7.11) 3.66-12.38 

Clarke 4.08 (2.95-5.20) 2.84 (2.84 – 4.00) 3.01-5.75 

Chatham 4.06 (3.04-5.08) 3.38 (2.87 – 5.19) 3.45-6.24 

Dekalb 3.02 (2.70-3.34) 2.10 (1.51 – 2.44) 2.18-3.51 

Floyd 7.33 (4.56-10.09) 5.86 (5.41 – 5.49) 6.76-8.12 

Muscogee 7.63 (5.95-9.30) 3.13 (2.10 – 4.95) 5.12-12.05 

Georgia 

Richmond 6.42 (5.05-7.08) 3.53 (2.65 – 4.54) 4.82-8.27 

Jefferson 2.74 (2.47-3.01) 4.05 (3.93 – 4.42) 2.66-2.99 

Mobile 4.35 (3.00-5.69) 3.67 (3.26 – 4.74) 3.86-5.60 

Montgomery 4.13 (3.13-5.14) 2.48 (1.93 – 3.77) 3.21-6.30 

Alabama 

Morgan 6.99 (5.35-8.63) 2.57 (2.15 – 3.35) 5.85-9.14 

Escambia 5.03 (4.15-5.90) 4.46 (3.71 – 10.55) 4.18-11.89 Florida 

Leon 3.53 (3.22-3.85) 5.23 (2.78 – 12.64) 1.88-8.53 

Charleston 3.83 (3.42-4.23) 3.40 (2.63 – 5.43) 2.96-6.11 

Chesterfield 7.88 (5.53-10.23) 3.36 (2.63 – 4.27) 6.20-10.02 

Greenville 5.86 (4.43-7.28) 2.55 (1.99 – 3.02) 4.57-6.94 

South 

Carolina 

Richland 4.65 (3.74-5.56) 3.72 (3.37 – 4.06) 4.21-5.07 

Davidson 3.11 (2.48-3.75) 2.24 (1.84 – 2.64) 2.56-3.66 

Hamilton 5.06 (4.12-5.99) 2.30 (1.64 – 3.14) 3.60-6.89 

Lawrence 4.89 (3.92-5.86) 2.78 (2.32 – 4.75) 4.08-8.34 

Shelby 3.45 (3.02-3.89) 1.72 (1.31 – 2.08) 2.63-4.16 

Tennessee 

Sullivan 3.81 (2.82-4.80) 3.63 (3.59 – 4.39) 3.76-4.61 
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3.2.2. Source Apportionment 

 Major primary sources used in the source apportionment include motor vehicles, 

biomass burning, dust, coal combustion, oil combustion, mineral, metal, and pulp and 

paper production.  Theoretical profiles based on molecular weight fraction for ammonium 

bisulfate, ammonium sulfate, and ammonium nitrates were also included to identify 

inorganic secondary particle formation. The source profile for motor vehicles was 

generated by weighted-average of catalyst-equipped gasoline power vehicles and diesel 

vehicles based on their estimated emissions (Schauer et al., 1999, 2002). The biomass 

burning source profile was generated by averaging 6 source tests of southern woods (Fine 

et al., 2002). The source profile used for dust was from measurements in Alabama 

(Cooper et al., 1981). The source profile for coal combustion was from Chow et al. 

(2004). Other industrial source profiles were from Shareef (1987). When the reported 

ambient concentration of trace elements is below detection limit, it was replaced with a 

value of half of its detection limit. Uncertainty for each species in ambient data was 

calculated as 5 % of its concentration plus one third of its detection limit. 

 

3.3. Results and Discussion 

 CMB source apportionment was done by targeting chi-square values less than 4 

and r-square values larger than 0.8 over a period covering January 2002 to November 

2003. In general, annual averaged PM2.5 concentrations are relatively higher in the inland 

than the coastal area (Figure 3.2). Results show that most (>50%) of ambient PM2.5 are 

secondary from photochemical reactions. Motor vehicles and biomass burning are two 
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major primary sources in the study area. Dust and industrial sources typically follow in 

importance. 

Source contribution results averaged for three months representing each of the 

four seasons, winter (December-February), spring (March-May), summer (June-August), 

and fall (September-November) (Figure 3.3) show strong seasonality for secondary 

particles. Sulfate particles (NH4HSO4 and (NH4)2SO4) are higher in the warmer seasons 

whereas NH4NO3 is higher in the colder seasons. Like sulfate particles, secondary OC is 

also higher in the warmer seasons when the atmosphere is photochemically more active. 

Two primary sources, biomass burning and dust, have a strong seasonality. Biomass 

burning contributes more in the colder seasons when residential wood burning, prescribed 

burning, and agricultural burning are increased. In contrast, dust is higher in the drier 

summer season. There is no distinct seasonality for other primary sources. 

 

 

 

  

Figure 3.2. Source apportionment results-averaged from November, 2002 to 

November, 2003 
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Figure 3.3. Seasonal source contributions. (a) NH4HSO4+(NH4)2SO4, (b) NH4NO3. 
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Figure 3.3. Seasonal source contributions (continued). (c) secondary OC, (d) 
biomass burning. 
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Figure 3.3. Seasonal source contributions (continued). (e) dust, (f) motor vehicles. 
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Figure 3.3. Seasonal source contributions (continued). (g) pulp/paper production, 
(h) coal combustion. 
 



 44

1

0

co
nc

en
tra

tio
n,

 µ
g/

m
3

Bibb
Coffee
Clarke
Chatham

Floyd
Dekalb
Muscogee
Richmond

1

0

co
nc

en
tra

tio
n,

 µ
g/

m
3

Charleston
Chesterfield
Greenville
Richland

Jefferson
Mobile
Montgomery
Morgan

1

0

co
nc

en
tra

tio
n,

 µ
g/

m
3

Jan-Feb02 Mar-May02 Jun-Aug02 Sep-Nov02 Dec-Feb03 Mar-May03 Jun-Aug03 Sep-Nov03

Davidson
Hamilton
Lawrence
Shelby

Sullivan
Ecambia
Leon

Mineral production

(i)

1

0

co
nc

en
tra

tio
n,

 µ
g/

m
3

Bibb
Coffee
Clarke
Chatham

Floyd
Dekalb
Muscogee
Richmond

1

0

co
nc

en
tra

tio
n,

 µ
g/

m
3

Charleston
Chesterfield
Greenville
Richland

Jefferson
Mobile
Montgomery
Morgan

1

0

co
nc

en
tra

tio
n,

 µ
g/

m
3

Jan-Feb02 Mar-May02 Jun-Aug02 Sep-Nov02 Dec-Feb03 Mar-May03 Jun-Aug03 Sep-Nov03

Davidson
Hamilton
Lawrence
Shelby

Sullivan
Ecambia
Leon

Oil combustion

(j)

 

Figure 3.3. Seasonal source contributions (continued). (j) oil combustion, (k) metal 

production. 
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To address spatial distribution of each source category, surface maps were created 

by using one year averaged source apportionment results (Figures 3.4-3.6) and the 

inverse distance squared weighted method in ESRI® ArcGISTM 9.0 (ESRI, 2004). In the 

northwestern part of the study area, NH4HSO4 is relatively lower than (NH4)2SO4, but 

NH4NO3 is relatively larger than that in the southeastern area. This indicates that particles 

in the northwest are more neutralized by NH3 forming (NH4)2SO4 with excess NH3 

producing NH4NO3. In contrast, the southeastern area experiences relatively higher 

NH4HSO4 but lower (NH4)2SO4 and NH4NO3 than the northwestern part, which is 

indicative of more acidic particles due to less NH3 neutralization. This is consistent with 

NH3 emissions showing relatively higher emissions in the northwest than in the 

southeastern area (Figure 3.7). Motor vehicle source contributions are relatively larger in 

the more populated areas such as Dekalb (Atlanta), Jefferson (Birmingham), and Shelby 

(Memphis) while biomass burning contributions are larger in the less urbanized areas 

where biomass burning is more prevalent and actively used in controlled applications for 

land management purposes (Lee et al., 2005). For coal combustion, higher contributions 

occur in the areas close to source locations and are highest at Jefferson (Birmingham), 

AL where industrial facilities use coal for fuel. Relatively higher pulp and paper source 

contribution occurs along the coastal line where pulp and paper mills are located. Oil 

combustion contribution is also relatively higher along the coast especially at Chatham 

(Savannah), GA. This corresponds to PM2.5 emissions from shipping activities in the 

coastal port areas since residual oil is used for ships (Corbett and Fischbeck, 1997). 

Mineral production is higher at Bibb, Floyd, and Jefferson. Jefferson County has 
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relatively higher metal production impacts than other sites, but its source contribution is 

the lowest among the included industrial sources. 

 

Figure 3.4. Spatial distribution of source contributions. (a) NH4HSO4, (b) 
(NH4)2SO4, (c) NH4NO3, (d) SOC. 
 

 

Figure 3.5. Spatial distribution of source contributions. (a) biomass burning, (b) 
motor vehicles, (c) coal combustion, (d) pulp and paper production. 
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Figure 3.6. Spatial distribution of source contributions. (a) dust, (b) oil combustion, 
(c) mineral production, (d) metal production. 
 

 

Figure 3.7. Annual NH3 county emissions based on U.S. EPA 2001 National 
Emission Inventories. 
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Spatial-temporal correlations between all possible pairs of sites were calculated 

for each source category to understand which sources have more local or regional impact 

in the study area. In general, the correlations decrease as the distance between sites 

increases. This trend is distinct for the secondary origin particles (Figure 3.8), for which 

the correlations become insignificant once the pair is more than 300~400 km apart, thus 

showing the regional nature of secondary species. For the primary sources, correlations 

are generally poor, even for short distances, indicating a local nature of their impacts. 

Hence, the secondary particles formed from chemical reactions during atmospheric 

transport and dispersion have better correlation across larger distances than the primary 

source categories. It suggests that secondary particles underlying atmospheric formation 

have a more regional character whereas the primary sources are more local. 

 Source apportionment results consistently show more motor vehicle impacts 

relative to biomass burning in the urbanized areas but vice versa in the less urbanized 

areas. However, motor vehicle source impacts in Jefferson (Birmingham) are higher than 

in Dekalb (Atlanta), although PM2.5 emission inventories show relatively less motor 

vehicle emissions in Jefferson than Dekalb (Figure 3.9a). Jefferson is located in a valley 

which is surrounded by long parallel mountain ridges, while Dekalb is located in more 

flat terrain (www.epa.gov/wed/pages/ecoregions.html). The geographical environment of 

Jefferson may cause much less dispersion of pollutants so that more source impact 

happens with less motor vehicle emissions relative to Dekalb. Source apportionment 

results suggest that pulp/paper produciton impacts relatively higher along the coastal 

area. Pulp/paper production emission inventories also show a similar pattern suggesting 
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relatively higher emissions along the coast (Figure 3.9b). The highest pulp/paper 

emission occurs in Floyd, GA based on emission inventories.  
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Figure 3.8. Spatial-Temporal correlations of source contributions. (a) NH4HSO4 (b) 
(NH4)2SO4, (c) NH4NO3, (d) secondary OC, (e) biomass burning, (f) motor vehicle 
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 (k) Oil Combustion
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Figure 3.8. Spatial-Temporal correlations of source contributions (continued). (g) 
dust, (h) pulp/paper production, (i) coal combustion, (j) mineral production, (k) oil 
combustion, (l) metal production 
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Figure 3.9. Annual primary PM2.5 county emissions based on U.S. EPA 2001 
National Emission Inventories. (a) motor vehicle, (b) pulp/paper production, (c) coal 
combustion, (d) metal production 
 

However, this is not the case for the source apportionment results. For coal combustion, 

both source apportionment results and emission inventories show relatively higher 

impacts on the Tennessee and North Alabama areas (Figure 3.9c). Metal production 

impact is the highest at Jefferson, AL, where its emission inventories also suggest the 

highest emissions (Figure 3.9d). It appears that source impacts of oil combustion are 

relatively higher along the coast, especially at Chatham (Savannah). Most commercial 

ships (70~80%) use residual oils which contain more contaminants (Corbett and 

Fischbeck, 1997) and approximately 80% of ship emissions are concentrated mainly near 

the shore where the ship traffic density is the highest (Skjølsvik et al., 2000). Therefore, 

the emissions from ships may impact the inland near ports as shown, especially, at 

Chatham. 
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3.4. Conclusions 

 Source apportionment using CMB receptor model was performed for 24-hr 

ambient PM2.5 measurement data from U.S. EPA STN sites in the southeastern U.S. 

Secondary particles formed by atmospheric photochemical reactions make up the 

majority (>50%) of ambient PM2.5 and have strong seasonality. Motor vehicles and 

biomass burning are the two main primary sources. Motor vehicles are the highest 

primary source contributor in urban areas, while biomass burning dominates more in less 

urbanized areas. Spatial-temporal correlations show that secondary particles are more 

regionally distributed, and primary particles are more locally distributed. It implies that 

targeted control strategies can be developed for specific regions based on the most 

important sources identified and the relative costs of emission reductions. The 

comparisons with primary PM2.5 emission inventories suggest that the source 

apportionment results are congruous with the emission inventories in general. However, 

there are still incongruities between both data sets. The results might be used to 

compromise both emission inventory and source apportionment data to improve the 

congruity between both data sets. 
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CHAPTER 4 

SOURCE APPORTIONMENT OF PM2.5 IN ATLANTA: A CASE 

STUDY FOR SPATIAL REPRESENTATIVENESS AT AN URBAN 

SCALE 

(Sangil Lee and Armistead G. Russell, Environmental Science & Technology, in 

preparation) 

 

Abstract 

 PM2.5 source apportionment results from receptor models, such as chemical mass 

balance (CMB) are being used for epidemiologic studies by associating source impacts 

with adverse health outcomes. However, source apportionment results at a single 

monitoring site can introduce uncertainties into PM health studies when they are 

associated with averaged adverse health outcomes for an entire city or metropolitan area. 

Spatial representativeness of source apportionment results needs to be investigated to 

better assess their proper application in health studies. CMB source apportionment was 

conducted in both winter and summer, 2005 at four ambient monitoring sites operated as 

part of the Assessment of Spatial Aerosol Composition in Atlanta (ASACA). Comparison 

of source apportionment results indicate that secondary particles are spatially relatively 

uniform in Atlanta, while the degree of spatial representativeness of impacts of primary 

PM sources varies widely from one source to another. Biomass burning, dust, and motor 

vehicle source impacts at one site are spatially representative, whereas both coal and oil 

combustion sources are poorly representative. When source impacts of coal and oil 
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combustion at a single monitoring site are used, errors and/or uncertainties are introduced 

in regards to their use in PM health studies. 

 

4.1. Introduction 

 Particulate matter, particularly the fraction that is less than 2.5 µm in aerodynamic 

diameter (PM2.5), has been associated with adverse health effects, increasing morbidity 

and mortality rates due to both acute and chronic exposures (Dockery et al., 1993, 1996; 

Pope et al., 1993, 1996, 2002; Schwartz et al., 1993, 1994). However, its chemical 

complexity makes it difficult to understand associations between specific health 

outcomes and PM2.5 components. As an alternative approach, recent studies tried to 

understand associations between adverse health effects and PM2.5 emission sources by 

incorporating source apportionment results (Laden et al., 2000; Mar et al., 2000; Tsai et 

al., 2000; Sarnat et al., 2006). However, health outcome data used for epidemiologic 

studies typically come from an entire city or metropolitan area, whereas source 

apportionment results are based on PM2.5 data at a single monitoring site. As mentioned 

in Ito et al. (2004), this may introduce errors or uncertainties in the results of the health 

studies if source apportionment results at a single monitoring site are not representative 

for a study area. In previous studies, spatial variability of individual PM2.5 components at 

an urban scale has been examined by estimating spatiotemporal correlation between sites 

(Pinto et al., 1995; Ito et al., 2004; Kim et al., 2005b; Wade et al., 2006) or by a data-

withholding analysis (Park et al., 2006). Those studies show that secondary origin 

particles (i.e., sulfate) are uniformly distributed in an urban area, whereas primary 
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components are inhomogeneous. Thus, it is important to address whether source 

apportionment results at a single monitoring site can represent an entire study area.  

In order to address regionality of PM2.5 source impacts in the southeast U.S., 

source apportionments using a chemical mass balance (CMB) receptor model have been 

conducted for two years of PM2.5 data (Lee et al., 2006). That study suggests that primary 

PM2.5 emission sources contribute to more local impacts, while secondary PM2.5 sources 

are found to have more regionally uniform impacts. 

 In this study, it is investigated how well source apportionment results from a 

single monitor can represent local air sheds. The Assessment of Spatial Aerosol 

Composition in Atlanta (ASACA) project provides unique data for studying spatial 

representativeness (Bulter et al., 2003). A case study was performed for periods in both 

winter and summer of 2005 in order to address spatial representativeness of source 

apportionment results. 

 

4.2 Method 

4.2.1. Ambient measurement data 

 The ASACA project was initiated to investigate PM2.5 air pollution problems in 

Atlanta by understanding its sources and spatial and temporal trends (Figure 4.1). In this 

project there are three ambient monitoring sites [Fort McPherson (FMP), South Dekalb 

(SDK), and Tucker (TUK)] in Atlanta and one at Fort Yargo state park (FYG), about 50 

km away from TUK. A particulate composition monitor (PCM) was operated to collect 

24 hr filter-based PM2.5 samples for every day at three Atlanta sites and every 3 days at 

FYG (Bulter et al., 2003). The PCM has three channels to collect PM2.5 on three different 
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filters. The three different filters were used for the analysis of water-soluble ionic species 

(nylon filter), organic/elemental carbon (quartz filter), and trace elements (Teflon filter). 

The collected filter samples were analyzed for ionic species, organic/elemental carbon 

(OC/EC), and trace elements by means of ion chromatography (IC), thermal optical 

transmittance (TOT), and X-ray fluorescence (XRF), respectively. Continuous PM2.5 

mass was measured by a Tapered Element Oscillating Microbalance (TEOM®, Thermo 

Electron Corp., NY) at the three Atlanta sites. The mean, median, and 25 and 75th 

percentile values for PM2.5 mass, major ions and carbonaceous species (OC and EC) are 

presented here for the most recent two years, 2004-2005 (Table 4.1). The average 

temperature of the case study period is 11 ± 3˚C and 28 ± 2˚C for winter and summer, 

respectively. 

 

        

Figure 4.1. ASACA ambient monitoring sites. 
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Table 4.1. Mean, Median, 25th and 75th percentile for ambient concentrations 
(µg/m3) of PM2.5 mass, major ions, and OC/EC at four ASACA sites (2004-2005). 
 

 Mean Median 25, 75th percentiles # of data Mean Median 25, 75th percentiles # of data 
   FMP    SDK  

PM2.5 18.42 16.58 (12.08, 22.65) 601 19.01 16.54 (11.60, 24.34) 562 
NH4

+ 1.61 1.37 (0.83, 2.06) 682 1.62 1.36 (0.93, 1.98) 691 
NO3

- 1.01 0.75 (0.48,1.20) 682 0.84 0.55 (0.39, 0.96) 691 
SO4

2- 4.57 3.58 (2.04, 5.79) 682 4.40 3.56 (2.26, 5.53) 691 
OC 5.02 4.70 (3.12, 6.51) 690 5.05 4.55 (3.03, 6.43) 692 
EC 0.51 0.42 (0.27, 0.66) 690 0.77 0.53 (0.30, 1.09) 692 

   TUK    FYG  
PM2.5 18.37 16.45 (11.96, 22.93) 559 - - - - 
NH4

+ 1.65 1.44 (0.94, 2.10) 623 1.54 1.35 (0.93, 1.93) 196 
NO3

- 1.04 0.69 (0.44, 1.36) 623 0.91 0.42 (0.24, 1.06) 196 
SO4

2- 4.25 3.38 (2.14, 5.32) 623 4.11 3.34 (2.24, 5.25) 196 
OC 4.99 4.61 (3.14, 6.29) 628 4.49 4.18 (2.90, 5.81) 193 
EC 0.48 0.40 (0.26, 0.61) 628 0.27 0.23 (0.13, 0.34) 193 

 

4.2.2. Source apportionment 

 To investigate spatial representativeness of source apportionment results, we 

analyzed PM2.5 data covering seven days in both winter (January, 2005) and summer 

(July, 2005) from three Atlanta sites (only three days for FYG site). Source 

apportionment was performed using CMB receptor model (Watson et al., 2001) to 

identify and quantify primary and secondary source contributions at each site. Primary 

OC was estimated using EC tracer methods (Turpin et al., 1991, 1995; Cabada et al., 

2002) as described in Lee et al. (2006) prior to the CMB source apportionment. Major 

primary sources included in the CMB analysis are motor vehicles (Schauer et al., 1999; 

2002), biomass burning (Fine et al., 2002; Lee et al., 2005), dust, coal combustion, oil 

combustion, and metal production. Source profiles of gasoline and diesel power vehicles 

are combined to generate a source profile for motor vehicles (Schauer et al., 1999; 2002). 

Source profiles of 6 different southern wood burnings and prescribed burning were 

combined to create a biomass burning source profile. Dust source profile is from Cooper 

et al. (1981) and the source profiles of the other primary sources are obtained from 
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Shareef (1987). Theoretical profiles estimated from the molecular weight fraction of 

NH4HSO4, (NH4)2SO4, NH4NO3 were included to address secondary origin particles. 

 

4.3. Results 

 PM2.5 is found to be to have a strong spatial correlation in Atlanta during the past 

two years (Figure 4.2). In general, similar trends are also observed in major PM2.5 

components among the four ASACA sites, except for EC (Figure 4.3). Secondary 

components produced from photochemical reactions in the atmosphere are found to have 

higher spatial correlations than primary components directly emitted from their sources. 

Although ambient OC contains both primary OC and secondary OC, a significant portion 

is secondary, especially in summer, leading to significant correlations. PM2.5 between 

sites is also highly correlated since secondary components are the major fraction of 

PM2.5. However, EC, a solely primary component, is spatially more poorly correlated. 

These are consistent with what have been found in a previous study (Wade et al., 2006; 

Park et al., 2006). Scatter plots also show that EC has the largest deviation from a 1:1 

line. It suggests that primary EC impacts vary differently with the highest levels at SDK 

and lowest at FYG. Among the three Atlanta sites, the spatial correlations become 

stronger, even for primary EC (to higher than 0.5). 
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Figure 4.2. Spatial correlations of 24 hrs PM2.5 (µg/m3) in three Atlanta sites for two 
years (2004-05). The solid line is the 1:1 line. 
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Figure 4.3. Spatial correlations of major PM2.5  (µg/m3) components. a) Sulfate, b) 
ammonium, c) nitrate, d)OC (2004-2005). The solid line is the 1:1 line. 
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Figure 4.3. Spatial correlations of major PM2.5 (µg/m3) components (continued). e) 
EC (2004-2005). The solid line is the 1:1 line. 
     

 

Source apportionment results for seven (three Atlanta sites) or three days (FYG) 

were averaged for both winter and summer (Figure 4.4). PM2.5 mass was calculated by 

summing major components such as SO4
2-, NO3

-, NH4
+, EC and organic matter. Organic 

matter mass was estimated by multiplying OC by a factor of 1.6 (Turpin and Lim, 2001). 

PM2.5 mass is much higher in summer than in winter at all of the sites mainly because of 

increased secondary particulate matter production from photochemical reactions. There is 

a clear seasonal trend for secondary particles and primary sources, such as biomass 

burning and dust. Sulfate mass, especially NH4HSO4, is much higher in summer than 

winter, while NH4NO3 is higher in winter. Photochemical reactions during summer 

convert SO2 to condensed-phase sulfate faster. Finding that the sulfate is only partially 
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neutralized by NH3 suggests that PM2.5 is more acidic during summer. Relatively higher 

NH4NO3 during the winter is due largely to its temperature dependence for gas/particle 

equilibrium and less sulfate being produced leading to more ammonia (NH3(g)) being 

available to react with nitric acid (HNO3(g)). Secondary OC (SOC) is relatively higher in 

the summer than in the winter, likely due to increased biogenic VOC emissions. Biomass 

burning shows more impacts in the winter than summer as suggested by higher potassium 

(K) levels during winter (Table 4.2). Dust PM is relatively higher during the summer, a 

drier period which leads to more resuspension. The seasonal trend of dust source impacts 

is also supported by relatively higher Al and Si concentrations during the summer (Table 

4.2). Little seasonality was observed for the other primary sources. The results also show 

clearly that more motor vehicle impacts were observed at more populated Atlanta areas 

than at FYG. SDK has relatively higher motor vehicle impacts among the three Atlanta 

sites mainly due to heavy duty diesel trucks (HDDT). The HDDT is one of the main 

primary sources emitting EC. SDK is located near I-285 through which the HDDT detour 

around downtown Atlanta. 

 

Table 4.2. Seasonal average concentrations (µg/m3) of tracer species of dust and 
biomass burning for the periods of the case study. 

 

 

 

 

 
 

FMP SDK TUK FYG species, 
 µg/m3 Winter Summer Winter Summer Winter Summer Winter Summer 
Al 0.0162 0.0484 0.0276 0.0678 0.0186 0.0479 0.0108 0.0358 
Si 0.0309 0.0604 0.0227 0.0985 0.0234 0.0350 0.0073 0.0506 
K 0.0701 0.0393 0.0729 0.0531 0.0714 0.0382 0.0635 0.0424 
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Figure 4.4. Averaged source apportionment results for one week in both winter and 
summer 2005. (FMP: Fort McPherson, SDK: South Dekalb, TUK: Tucker, FYG: 
Fort Yargo, W: winter, S: summer). 
 
 
 
Table 4.3. Correlations (R) of estimated source contributions  

 

NH4HSO4 + 
(NH4)2SO4 FMP TUK SDK FYG   MOTOR FMP TUK SDK FYG 
FMP 1.00         FMP 1.00       
TUK 0.94 1.00       TUK 0.70 1.00     
SDK 0.98 0.95 1.00     SDK 0.83 0.72 1.00   
FYG 0.89 0.94 0.90 1.00   FYG 0.04 0.15 0.42 1.00 
NH4NO3 FMP TUK SDK FYG   DUST FMP TUK SDK FYG 
FMP 1.00         FMP 1.00       
TUK 0.87 1.00       TUK 0.86 1.00     
SDK 0.70 0.76 1.00     SDK 0.92 0.88 1.00   
FYG 0.91 0.81 0.81 1.00   FYG 0.96 0.87 0.92 1.00 
SOC FMP TUK SDK FYG   COAL FMP TUK SDK FYG 
FMP 1.00         FMP 1.00       
TUK 0.98 1.00       TUK 0.48 1.00     
SDK 0.95 0.94 1.00     SDK -0.04 0.09 1.00   
FYG 0.91 0.91 0.85 1.00   FYG 0.08 -0.43 0.54 1.00 
BIOMASS FMP TUK SDK FYG   OIL FMP TUK SDK FYG 
FMP 1.00         FMP 1.00       
TUK 0.95 1.00       TUK 0.21 1.00     
SDK 0.86 0.93 1.00     SDK -0.09 0.51 1.00   
FYG 0.79 0.67 0.70 1.00   FYG -0.39 0.38 0.63 1.00 
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Figure 4.5. Spatial correlations of primary sources (mg/m3). (a) biomass burning, 
(b) motor vehicle, (c) dust, (d) coal combustion, (e) oil combustion. The solid line is 
the 1:1 line. 
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Spatial correlations between possible pair sites were estimated for each source 

based on source apportionment results (Figure 4.5 and Table 4.3). The results show 

strong spatial correlations for secondary particles produced from photochemical reactions 

during atmospheric transport and dispersion as is indicated by the significant correlations 

of secondary PM2.5 components (Table 4.4). In general, primary source impacts directly 

from their emissions have weak spatial correlations except biomass burning and dust. 

Both biomass burning and dust impacts are correlated well, even for a non-urban site 

(FYG). This is also supported by significant correlations of K and Si, for biomass burning 

and dust, respectively (Table 4.4). Biomass burning includes wild fires, prescribed 

burning and residential/industrial wood burning. It looks like residential/industrial wood 

burning is more homogeneous in both urban and non-urban areas or distant burning 

activities (wild fires and prescribed burning)  are the major activities of biomass burning 

as impacting all four sites similarly. Fugitive dust is highly affected by regional or local 

weather (i.e., rain and wind speed). It is reasonable to assume that all four sites are 

influenced by a similar weather so that dust source impacts are more homogeneous. 

Motor vehicle impacts show moderate spatial correlations inside urban Atlanta area, but 

correlations with FYG are weak. This suggests that emission activities in Atlanta are 

similar inside the urban area, but very different from those around FYG. The other 

primary sources, coal combustion and oil combustion, are not well correlated even inside 

urban Atlanta, as indicated by poor correlations of Se and Ni, for coal and oil 

combustion, respectively (Table 4.4). This suggests that both sources have a very local 

nature of their impacts. Their source impacts likely depend on relative location of a 

receptor site to point sources and wind direction. However, in urban areas, emissions of 
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area and mobile sources are relatively more uniformly distributed than point sources 

leading to good spatial uniformities of their source impacts. This suggests that the degree 

of spatial representativeness of primary source impacts depends on how they are 

distributed and if the sources are local. 

 

Table 4.4. Correlations of important species for source apportionment. 

SO4
2- FMP TUK SDK FYG  OC FMP TUK SDK FYG 

FMP 1        FMP 1       
TUK 0.94 1      TUK 0.97 1     
SDK 0.99 0.96 1    SDK 0.89 0.93 1   
FYG 0.90 0.94 0.90 1  FYG 0.31 0.26 0.37 1 
NH4

+          EC         
FMP 1        FMP 1       
TUK 0.87 1      TUK 0.89 1     
SDK 0.93 0.92 1    SDK 0.79 0.85 1   
FYG 0.79 0.93 0.90 1  FYG 0.25 0.11 0.08 1 
NO3

-          K         
FMP 1        FMP 1       
TUK 0.87 1      TUK 0.96 1     
SDK 0.94 0.86 1    SDK 0.71 0.69 1   
FYG 0.91 0.80 0.91    FYG 0.94 0.96 0.41 1 
Si          Se         
FMP 1        FMP 1       
TUK 0.77 1      TUK 0.05 1     
SDK 0.92 0.71 1    SDK -0.05 0.69 1   
FYG 0.95 0.93 0.97 1  FYG * * * 1 
Ni               
FMP 1             
TUK 0.02 1           
SDK -0.34 0.6 1         
FYG 0.03 -0.15 -0.38 1       

 

* below detection limit or blank level 

 

4.4 Discussion 

Epidemiologic studies have been performed to understand adverse health effects 

associated with PM components (Schwartz et al., 1996; Mar et al., 2000; Tolbert et al., 

2000; Metzger et al., 2004; Peel et al., 2005). A complementary method for the studies is 

associating adverse health effects with source apportionment results from receptor 
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models such as CMB. This provides information for developing effective PM control 

strategies as well. However, there are still limitations for applying source apportionment 

results at a single monitoring site to PM health studies. This study investigated one of the 

limitations, which is spatial representativeness of source apportionment results at a single 

monitoring site on an urban scale. Results show that each source has a different degree of 

spatial representativeness. Secondary particles are spatially very representative for urban 

Atlanta. However, primary sources have very different spatial representativeness from 

one source to another. Some primary sources, such as biomass burning, dust, and motor 

vehicle, are spatially relatively uniform in urban Atlanta, while the spatial 

representativeness of both coal and oil combustion source apportionment results is weak. 

Due to lack of spatial uniformity, associating both coal and oil combustion at one site 

with adverse health outcomes could give variable results depending on which results are 

used. For those poorly representative sources, using source apportionment results at more 

monitoring sites should be considered to reduce errors or uncertainties arising from 

assuming that results from one site are spatially representative. 
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CHAPTER 5 

ESTIMATING UNCERTAINTIES AND UNCERTAINTY 

CONTRIBUTORS OF CMB PM2.5 SOURCE APPORTIONMENT 

RESULTS BY PROPAGATING UNCERTAINTIES 

 (Sangil Lee and Armistead G. Russell, Environmental Science & Technology, in 

preparation) 

 

 

Abstract 

 The chemical mass balance (CMB) model was applied for source apportionment 

of PM2.5 in Atlanta in order to explore levels and causes of uncertainties in source 

contributions. Monte Carlo analysis with Latin hypercube sampling (MC-LHS) was 

performed to estimate uncertainties and uncertainty contributors in CMB source 

apportionment results due to uncertainties in ambient measurement and source profile 

data. It was found that the most influential uncertainty contributors vary among the 

sources. The uncertainties in the source profile data contribute more to the final 

uncertainties in source apportionment results than by those in ambient measurement data. 

Mineral production source has the largest relative uncertainties, which is larger than 

twice of its source impacts. Uncertainty contribution estimations suggest that non-linear 

interactions and collinearities among source profiles also affect the final uncertainties 

although their influence is typically less than uncertainties in the source profiles. 
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5.1. Introduction 

 Particulate matter (PM) is a complex mixture of various chemical species from 

primary sources and secondary sources through photochemical formations in the 

atmosphere. The chemical mass balance (CMB) model (Watson et al., 2001), which 

utilizes various chemical components of ambient and emission source PM, has been used 

to identify PM sources and quantify their contributions to ambient PM. Such information 

can thus be used to develop effective control strategies. Recently, results from receptor 

models have been being used to understand associations between PM sources and adverse 

health effects (Laden et al., 2000; Mar et al., 2000; Tsai et al., 2000; Sarnat et al., 2006). 

For both applications, it is thus important to identify, understand, and quantify 

uncertainties in model results. 

CMB typically uses an effective variance (EV) solution approach to incorporate 

uncertainties from both ambient measurement and source profile data into its calculation 

(Watson et al., 1984). In the EV solution approach, input variables with smaller 

uncertainty tend to have more influence on solutions and vice versa. Uncertainties in 

input variables are also incorporated into uncertainty estimates of source contributions. 

Previous studies have been conducted to evaluate CMB performance with respect to 

model assumptions, such as constant source emission profiles, uncorrelated source 

composition, and normally distributed errors for input data (Christensen and Gunst, 2004; 

Javitz et al., 1988). Several different solution approaches along with the EV approach 

were applied for performance comparisons of different solution approaches in 

Christensen and Gunst (2004). 
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This study focuses on estimating CMB uncertainties due to uncertainties in input 

variables (i.e., ambient measurement and source profile data), and linking uncertainties in 

input variables to uncertainties of source contributions. In this study, Monte Carlo 

analysis with Latin hypercube sampling (MC-LHS) was applied to quantify uncertainties 

in source contributions due to uncertainties from both ambient measurement and source 

profile data (Morgan and Henrion, 1990). Multiple linear regression was applied to the 

MC-LHS results to identify the important variables and quantify their contributions to the 

uncertainties (Morgan and Henrion, 1990). 

 

5.2. Approach 

5.2.1. Ambient measurement data 

 Ambient PM2.5 (i.e., particulate matter with an aerodynamic diameter less than 2.5 

µm) measurement data used in this study is for Atlanta, GA. The ambient monitoring site, 

one from the U.S. Environmental Protection Agency’s PM2.5 Speciation Trend Network 

(U.S. EPA STN), is located in Dekalb County inside the Atlanta metropolitan area. 24-hr 

PM2.5 filter samples were collected every 3 days and analyzed for ionic species, trace 

metals, and organic/elemental carbon. Data between January 2002 and November 2003 

were used in this study (see Table B.1 for a summary). After removing the missing data, 

a total of 211 daily measurement data are included in this study. 

In order to apply the CMB model using OC information, one must either add a 

secondary OC source, or, as done by Lee et al. (2006), estimate primary OC since 

measured OC comes from primary emissions and photochemical reactions. Simply 

adding a pure secondary OC source could lead to collinearity problems with OC 
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dominant sources. Primary OC were estimated by applying EC tracer methods and 

applied in the CMB source apportionment. Detailed information about the source 

apportionment approach is presented elsewhere (Lee et al., 2006). For CMB source 

apportionment, a total of 11 source profiles were selected, which include ammonium 

bisulfate, ammonium sulfate, ammonium nitrate, biomass burning, motor vehicle, dust, 

coal combustion, paper and pulp production, oil combustion, mineral production, and 

metal production (Table B.2). 

 

5.2.2 CMB model and uncertainty sources 

 The basic equation of the CMB model is a statement of species conservation 

(Watson et al., 1984): 
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where 
jsσ (µg/m3) is the uncertainty of source contribution Sj (µg/m3) 

iCσ ( µg/m3) is the 

uncertainty on the ambient concentrations species i, and 
ijfσ  is the uncertainty in the 

fraction of species i in the source j profile. Uncertainties in input variables are propagated 

by inversely weighting the effective variance. 

 

5.2.3. Uncertainty propagation and Regression analysis 

 Influences of uncertainties in input variables on uncertainties of source 

contributions was evaluated through MC-LHS simulations followed by multiple linear 

regression analysis. It is assumed that the uncertainties in input variables are log-

normally distributed to sample non-negative values. For each CMB simulation, the values 

for each input variable were randomly paired with other values drawn from each input 

variable distribution by using Latin hypercube sampling (LHS). The LHS method is a 

stratified random sampling in which each input variable distribution is divided up into the 

number of samples with equally probable intervals (Morgan and Henrion, 1990). This 

method produces a more uniform distribution covering a full range of each distribution 

for a limited number of samples. Uncertainties in input variables are characterized by 

probability distributions in the MC-LHS analysis. Uncertainties are propagated through 

the CMB model by multiple simulations with randomly drawn values from the 

probability distributions of input variables. For source profiles, the sampled values were 

normalized if the sum of the sampled values is larger than 1. In this study, 600 samplings 

were done for each input variable to perform 600 CMB simulations. Source profiles of 

secondary inorganic particles (i.e., NH4HSO4, (NH4)2SO4, NH4NO3) were kept constant 

since their source profiles are theoretical molecular weight ratios. 
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 The main objective of this study is to identify important input variables in terms 

of their relative contribution to uncertainties in calculated source impacts. Multiple linear 

regression is applied to the MC-LHS results to estimate the importance of each input 

variable to the source contribution uncertainties: 

εββ ++= XS 0                                                             (4) 

where S is an n-by-1 vector of the predicted source contributions from n simulations, 0β  

is the regression intercept, X is a matrix n-by-p of p input variable values used in the n 

simulations, β  is an p-by-1 vector of the regression coefficients of input X, ε is an n-by-1 

vector of residual errors, n is the number of the simulation, and p is the number of the 

input variables. 

Regression coefficients were determined by least squares fitting of the data. 

Residual errors were examined to check normality, and they were approximately 

normally distributed with residuals appearing randomly around zero. The variance of 

source contribution from simulations is approximately equal to the sum of the squares of 

the variance contribution from each input variable (Morgan and Henrion, 1990) 

                                  ∑
=

≈
p

i
iis

1

222 σβσ                                                                      (5) 

where sσ is the standard deviation of the source contribution from simulations and iσ  is 

the standard deviation of the input variable i. The βi regression coefficients were 

standardized to be dimensionless, removing the dependence on input variable scales or 

units (Cullen and Frey, 1998; Morgan and Henrion, 1990). 



 74

                              
s

i
iiSRC

σ
σβ ×=                                                                  (6) 

where SRCi is the standardized regression coefficient of the input variable i. The 

standardized regression coefficients were used to estimate the uncertainty contributions 

of the input variables to the uncertainties in the source contributions. 

                             100(%) 2 ×= ii SRCUC                                                               (7) 

where UCi is the percent contribution from the uncertainty in input variable i to the 

uncertainty in the source contribution. Uncertainty estimates from both nominal CMB 

(i.e., calculated by the CMB model using equation 3) and MC-LHS will be compared as 

relative ratio of uncertainty to source contribution in scatter plots. 

 

5.3. Results and Discussion 

5.3.1 Comparison between CMB nominal and MC-LHS simulation 

Six hundred MC-LHS simulations were performed for each day of total 211 

measurement data. Means and standard deviations for source impacts from the 600 

simulations were calculated to compare with those of the nominal CMB simulation. The 

mean source contributions from MC-LHS simulations were compared with those from 

the CMB nominal simulation (Figure 5.1). The mean source contributions are within ± 

50% of the nominal contributions except for dust, coal combustion, and mineral 

production. In general, the mean source contributions taken from the MC-derived impacts 

of coal combustion are lower than the nominal contributions, while the mean source 

contributions of dust and mineral production are higher than the nominal contributions, 

especially for lower source impacts. Source contribution uncertainties typically are a 

factor of 2 less than the source contributions for NH4HSO4, (NH4)2SO4, NH4NO3, 
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biomass burning, motor vehicle, and metal productions calculated using either approach 

(Figure 5.2). Other sources, which generally have smaller impacts, have uncertainties 

which are about equal to or larger than their source contributions using either approach. 

For pulp/paper production and coal combustion, uncertainties found using MC-LHS are 

larger than those from the nominal simulation. The MC-LHS results indicate that those 

two source contributions are essentially indifferent from zero, while both sources are 

“identifiable” in the CMB nominal simulation. For mineral production, uncertainties are 

larger than the source contributions in both the nominal and MC-LHS simulations, 

suggesting that the impact is seldom significantly different than zero. 

  

5.3.2. Multiple regression analysis and uncertainty contribution 

Uncertainty contributions of individual input variables were estimated by 

applying multiple linear regression to the MC-LHS simulation results. OC and OCf 

represent OC in ambient measurement and source profile data, respectively. The 

subscript f indicates a fraction of species in source profiles. For both NH4HSO4 and 

(NH4)2SO4, the only two major variables accounting for the final uncertainty are the 

uncertainties in the observed levels of NH4
+ and SO4

2- (Table 5.1). However, the most 

influential variable within each secondary source is different; for example, SO4
2- is the 

most influential variable with for NH4HSO4, whereas NH4
+ is for (NH4)2SO4. NO3

-, on 

the other hand, is the most important variable in NH4NO3, contributing almost all of the 

total uncertainty. (NH4)2SO4 has negative SRCs to the acidic species (SO4
2- and NO3

-) but 

a positive SRC to NH4
+ suggesting that more neutralization by NH3 leads to more SO4

2- 

in (NH4)2SO4 rather than in NH4HSO4. Both OC and OCf contribute about 64% to total 
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uncertainty in biomass burning source contribution, while both EC and ECf (about 71%) 

are the most influential variables for motor vehicle source impacts. For dust, most (55%) 

of the total uncertainty is due to the uncertainties in the fractions of specific metals in the 

source profile (i.e., Alf, Caf and Sif). 54% of the total uncertainty in pulp/paper 

production is contributed by both Naf and Kf. For coal combustion, about 61% of the total 

uncertainty can be explained by the uncertainties in both Caf and Sef. Both Caf and Alf 

account for about 24% of the total uncertainty in mineral production impacts. Both Ni 

and Nif are the major uncertainty contributors (35%) for oil combustion, while Caf and 

Pbf are the primary contributors (46%) for metal production. Caf is an important 

uncertainty contributor for several primary sources such as dust, coal combustion, 

mineral, and metal productions, but with different responses (i.e., positive for dust and 

metal production; negative for coal combustion and mineral production). For primary 

sources, uncertainties in source profile data contribute more than those in ambient 

measurement data to total uncertainties. Although uncertainties in source profile data 

account for most of the total uncertainty, there are a few cases where ambient 

measurement data has a significant influence (e.g. biomass burning (OC), motor vehicle 

(EC), and oil combustion (Ni). However, the results of uncertainty contribution estimates 

show that the sum of fractions of the uncertainty explained by linear regression is 

significantly less than 100% for some sources. This suggests that non-linear interactions 

can be important, and that collinearity in source profiles is an issue. In particular, mineral 

production impacts are significantly affected. The two most influential variables of 

mineral production are Alf and Caf, but both are also important variables for dust and coal 

combustion. In addition, there is no unique variable significantly affecting the uncertainty 
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of mineral production. Source profile similarities with other sources contribute significant 

amounts of uncertainty for collinear sources, especially for mineral production. 

 Uncertainties in CMB source contributions were estimated by treating 

uncertainties in both ambient and source profile data under a probabilistic framework 

instead of the EV solution approach. Uncertainties in both input data were propagated 

through CMB model by applying MC-LHS analysis. Multiple linear regression analysis 

applied to the MC-LHS results was able to provide estimates of how much uncertainty is 

contributed by individual input variables. The results illustrate that the uncertainties in 

source profile data have a more significant influence to total uncertainties of source 

contributions. It suggests that uncertainties in the estimates of source contributions can be 

reduced largely by decreasing those in source profile data. Accurate CMB source 

apportionment depends on how well source profiles used in CMB represent sources 

impacting a particular receptor site. The source profile data used in this study, especially 

industrial emission sources, were generated from emission source tests in the 1980s and 

not in the southeast. These source profiles may not be representative for current primary 

sources in the southeast. Thus, more emission characterization studies of major primary 

sources in the southeast are necessary to better estimate source impacts and also to reduce 

source apportionment uncertainties. Uncertainties in source profile data can be reduced 

by applying more sensitive analytical methods such as inductively coupled plasma mass 

spectrometry (ICP-MS). Very sensitive methods may also be able to detect chemical 

species in low abundance which were not measured in the past, but are unique to specific 

sources. This can reduce source collinearity and would lead to reduction of the total 

uncertainty. Incorporating source-indicative gas to particle ratios into the CMB model 
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(Marmur et al., 2005) can also help differentiate between similar sources rather than only 

using PM2.5 chemical speciation, again reducing the influence of source collinearity on 

results and uncertainties. 

 This study shows how uncertainties of input data, especially source profile data, 

significantly affect CMB source apportionment results and uncertainties. High 

uncertainties in source profile data result source impacts estimated by the CMB model in 

being not significantly different from zero. Uncertainty estimates identified significant 

uncertainty contributors to identify key data needed to provide more accurate source 

apportionment. In particular, source profile data has to be updated for representative 

emission sources in specific regions, e.g., by conducting more source emission tests. 
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Figure 5.1. Mean source contributions from MC-LHS simulations (x, µg/m3) 
compared with source contributions from nominal CMB simulations (y, µg/m3). (a) 
NH4HSO4, (b) (NH4)2SO4, (c) NH4NO3, (d) biomass burning, (e) motor vehicle, (f) 
dust, (g) pulp/paper production, (h) coal combustion, (i) mineral production, (j) oil 
combustion, (k) metal production. The solid (−) line is the 1:1 line, bracketed by the 
two dashed (⋅⋅⋅) 1:2, 2:1 lines. 
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Figure 5.2. Source contribution (x, µg/m3) vs. uncertainty (y, µg/m3). (a) NH4HSO4, 
(b) (NH4)2SO4, (c) NH4NO3, (d) biomass burning, (e) motor vehicle, (f) dust, (g) 
pulp/paper production, (h) coal combustion, (i) mineral production, (j) oil 
combustion, (k) metal production. The solid (−) line is the 1:1 line, and the dashed 
(⋅⋅⋅) line is 2:1 (the source impact (“signal”) is twice the uncertainty (noise)). 
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Table 5.1. Averaged standardized regression coefficients and uncertainty 
contributions of input variables contributing the most uncertainty. 
(* subscript f means variables from source profiles) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 UC (%) SRC 
variable* mean STD mean STD 

NH4HSO4 (R2 = 0.68 ± 0.20) 
SO4

2- 43.21 18.46 0.64 0.15 
NH4

+ 29.66 11.89 -0.51 0.20 
NO3

- 2.09 3.56 0.10 0.10 
Sum 76.18 23.82   

(NH4)2SO4 (R2 = 0.80 ± 0.15) 
NH4

+ 64.11 13.52 0.80 0.09 
SO4

2- 22.00 9.98 -0.45 0.12 
NO3

- 3.97 5.83 -0.16 0.12 
Sum 90.76 17.44   

NH4NO3 (R2 = 0.89 ± 0.09) 
NO3

- 102.30 11.15 1.01 0.06 
Sum 102.94 10.69   

biomass burning (R2 = 0.60 ± 0.10) 
OCf 37.41 10.80 -0.60 0.09 
OC 26.16 8.70 0.50 0.09 
EC 7.85 3.62 -0.27 0.06 
ECf 3.11 1.75 0.17 0.06 
Znf 1.96 1.30 0.13 0.05 
Naf 0.95 1.07 -0.08 0.05 
Kf 0.81 0.77 -0.05 0.07 
Sum 78.26 14.14   

motor vehicle (R2 = 0.82 ± 0.05) 
EC 49.58 14.33 0.70 0.10 
ECf 21.12 9.38 -0.45 0.11 
Pf 10.60 6.60 -0.30 0.13 
Cdf 7.24 5.11 -0.24 0.12 
Znf 4.91 3.09 -0.21 0.06 
OCf 3.55 1.91 0.18 0.06 
OC 1.48 0.60 -0.12 0.03 
Znf 0.71 0.95 0.07 0.05 
Sum 99.72 10.32   

dust (R2 = 0.58 ± 0.07) 
Alf 20.31 9.35 -0.44 0.10 
Caf 19.32 8.24 0.42 0.12 
Sif 15.61 6.86 -0.38 0.09 
Sef 7.92 4.86 0.27 0.09 
Fef 2.13 1.21 -0.14 0.05 
Crf 1.82 2.35 -0.12 0.07 
Pf 1.49 1.13 0.10 0.06 
Cr 0.99 1.22 0.08 0.06 
Sum 72.57 10.16   

pulp/paper production (R2 = 0.52 ± 0.15) 
Naf 41.34 19.24 -0.63 0.15 
Kf 12.99 11.12 -0.31 0.18 
Pf 8.42 6.76 -0.26 0.13 
Na 5.76 10.16 0.19 0.14 
K 0.86 1.19 0.07 0.06 
Sum 69.35 25.16   

Sum is the averaged sum of fractions of the 
total  uncertainty explained by linear regression, 
and includes all contributors 

 UC (%) SRC 
variable* mean STD mean STD 

coal combustion (R2 = 0.60 ± 0.04) 
Caf 48.53 11.65 -0.69 0.08 
Sef 12.84 5.72 -0.35 0.09 
Pf 10.33 5.99 -0.30 0.12 
Alf 4.23 4.87 -0.17 0.12 
OCf 2.97 3.08 -0.15 0.08 
Mnf 2.86 2.10 -0.16 0.06 
EC 0.96 0.81 0.08 0.05 
Mg 0.82 0.71 0.08 0.04 
Sum 84.73 10.41   

mineral production (R2 = 0.43 ± 0.11) 
Alf 12.29 7.94 0.33 0.12 
Caf 11.96 7.76 -0.33 0.11 
Naf 3.98 4.40 0.16 0.12 
Pbf 2.76 2.30 -0.15 0.07 
Sif 2.29 2.53 -0.13 0.07 
Pf 2.14 2.15 0.13 0.07 
Cdf 2.00 1.34 -0.13 0.05 
Asf 1.80 1.33 0.12 0.06 
Cof 1.76 2.06 -0.11 0.08 
Crf 0.74 0.66 -0.08 0.04 
Sum 43.25 12.07   

oil combustion (R2 = 0.65 ± 0.11) 
Ni 25.65 15.22 0.48 25.65 
Nif 9.76 8.52 -0.28 9.76 
Pbf 6.22 5.07 -0.23 6.22 
Alf 5.68 5.09 0.21 5.68 
Pf 3.69 3.56 -0.17 3.69 
Cuf 2.97 2.77 0.15 2.97 
Caf 2.56 2.62 0.13 2.56 
V 2.37 3.75 0.12 2.37 
Sif 2.32 3.17 0.12 2.32 
Fef 2.29 1.92 -0.14 2.29 
Pb 1.77 1.41 0.12 1.77 
Mnf 1.67 1.21 0.12 1.67 
Pb 1.63 1.89 0.11 1.63 
Vf 1.35 2.29 -0.09 1.35 
Znf 1.24 2.20 -0.07 1.24 
Cu 1.16 0.59 -0.10 1.16 
Sum 75.06 13.80   

metal production (R2=0.81±0.05) 
Pbf 23.51 12.11 -0.47 0.12 
Caf 22.58 14.29 0.44 0.19 
Znf 9.12 4.59 -0.29 0.07 
Cuf 6.78 5.00 -0.22 0.14 
Pb 5.90 5.72 0.22 0.10 
Asf 4.83 5.67 -0.19 0.12 
As 4.24 4.36 0.19 0.09 
Cu 3.71 2.63 0.18 0.07 
Zn 3.23 1.78 0.17 0.05 
Fef 2.96 3.04 -0.14 0.09 
Alf 2.42 2.49 0.13 0.08 
Ni 0.80 1.30 -0.07 0.06 
Sum 91.94 7.46   
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 CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

  

 PM2.5 affects the environment in different ways. Adverse human health effects 

and visibility impairment associated with PM2.5 are main driving forces for both scientific 

researches and regulations. As March, 2006, more than 200 counties are designated as 

non-attainment areas in terms of PM2.5 and 47 counties in the Southeast. State agencies 

with PM2.5 non-attainment counties must develop their own plans that demonstrate how 

they will achieve attainment status. State agencies also have to address emission sources 

of visibility impairment and develop strategies to improve visibility. It is essential to 

understand of PM2.5 and sources in order to develop effective control strategies of PM2.5. 

Air quality impacts of primary PM2.5 emission sources can be estimated by source 

apportionment techniques such as source-oriented and receptor-oriented models.  

 This thesis describes fundamental and applied studies related with receptor-

oriented models for better understanding of PM2.5 and sources in the southeastern U.S. 

Although source apportionment studies have been conducted to understand air quality 

impacts of PM2.5 emission sources in the Southeast, little information is available 

regarding to regional perspective of PM2.5 source impacts in the region. A regional source 

apportionment study (Chapter 3) using CMB receptor model shows that secondary origin 

particles are major components of ambient PM2.5 in the Southeast. Motor vehicles and 

biomass burning (i.e., wild fires, prescribed burning, and residential wood burning etc) 

are main primary emission sources apportioned to ambient PM2.5 in the region and 

followed by dust and other combustion sources. It was also found that secondary particles 
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were distributed more regionally, while primary source impacts were distributed more 

locally. This suggests that regional efforts have to be applied effective to reduce 

secondary origin particles, while more localized efforts have to be applied to reduce 

impacts of primary emission sources. 

 The source apportionment results from Chapter 3 can be used for PM health 

studies to understand associations between sources and adverse health effects and for 

policy analysis and decision making to develop implementation plans of PM2.5. It is 

necessary to understand uncertainties in the source apportionment results since they can 

play a significant role in PM health studies and policy decision making. Knowledge of 

uncertainties can help policy makers prioritize which PM2.5 source should be further 

studied and controlled. An uncertainty estimating study (Chapter 5) suggests that 

measurement errors in source profile data contribute more to uncertainties in estimates 

source contributions than those in ambient measurement data. 

 The CMB receptor model utilizes ambient measurement and source profile data to 

estimate air quality impacts of emission sources to ambient PM2.5 concentrations. 

Previous studies (Christensen and Gunst, 2004; Watson et al., 1984) and Chapter 5 in this 

thesis show that source contributions and uncertainties estimated by the CMB receptor 

model are largely influenced by source profiles and their uncertainties. Therefore, it is 

important to use more accurate and representative source profiles of primary emission 

sources at a specific region in the CMB receptor model in order to obtain more accurate 

air quality impacts of primary emission sources. Results in the Chapter 3 indicate that 

biomass burning including prescribed burning is an important emission source of PM2.5 in 

the Southeast. However, there is little emission characterization data of actual prescribed 
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burning. Particulate emissions from actual prescribed burning in two Georgian forest 

areas were characterized to develop a real-world prescribed burning source profile. It was 

found that particulate emissions from actual prescribed burning are organic matter 

dominant emissions showing OC (60% of PM2.5 mass) and followed by EC (4%) and K 

(0.57%). The application of a combined source profile (residential wood burning and 

prescribed burning) in the CMB receptor model indicates that biomass burning source 

impacts are estimated 21% less but relatively higher uncertainties than just using 

residential wood burning. More detailed organic compound speciation shows that 

cholesterol, an important fingerprint of meat cooking source, was found in emissions 

from actual prescribed burning, suggesting combustion of soil organisms or animal litter 

during the understory prescribed burning. Cholesterol has been used as a main tracer of 

meat cooking in the CMB receptor model by using molecular markers. However, a 

previous study has suggested that there may be other sources emitting cholesterol due to 

highly overestimated meat cooking (Sheesley et al., 2004). It is suggested that prescribed 

burning can be an important cholesterol source where are impacted by emissions from 

prescribed burning. 

 This thesis describes regional perspective of PM2.5 source impacts in the 

Southeast by using the CMB receptor model and addresses related issues such as 

uncertainties of the estimated source contributions and emission characteristics (i.e., 

source profiles). The following are detailed conclusions of each chapter and 

recommendations for future research. 
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Gaseous and particulate emissions from prescribed burning in Georgia 

 Direct measurements of gaseous and particulate emissions at prescribed burning 

sites in Georgia provide detailed chemical characteristics of PM2.5 and VOC from active 

prescribed burning. The measurements allowed the determination of emission factors for 

the flaming and smoldering stages of prescribed burns. VOC emission factors from 

smoldering were distinctly higher than those from flaming except for ethene, ethyne, and 

organic nitrate compounds. Important precursors of secondary organic aerosol, such as 

aromatic compounds and terpenes, are much higher from active prescribed burning than 

from fireplace wood and laboratory open burning studies. Although levoglucosan is 

found as the major particulate organic compound emitted from prescribed burning as in 

previous biomass burning studies, cholesterol, an important fingerprint for meat cooking, 

was observed in this study of active prescribed burning. This indicates that there is a 

significant release of cholesterol from the soil and organisms during active open burning. 

A CMB source apportionment using a newly developed prescribed burning source profile 

shows increased prescribed burning impacts during and immediately after burns. A CMB 

sensitivity test using previous different prescribed burning source profiles indicates that 

prescribed burning impacts are on average 27%, lower when the source profile from our 

in situ study is used. 

 

Source apportionment of PM2.5 in the southeastern U.S. 

 PM2.5 chemical composition data from the U.S. EPA STN program provides an 

opportunity to address PM2.5 source impacts in the southeast from a regional prespective. 

Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and SOC, formed by 
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atmospheric photochemical reactions contribute to the majority (>50%) of ambient PM2.5 

with strong seasonality. Source apportionment results indicate that motor vehicle and 

biomass burning are the two main primary sources in the southeast showing more motor 

vehicle source impacts in populated urban areas and more biomass burning source 

impacts in less urbanized areas. Spatial distributions of primary source impacts show that 

each primary source has distinctively different spatial source impacts. Results also find 

emission impacts from ship activities along the coast. Spatiotemporal correlations 

indicate that secondary particles are more regionally distributed, and primary source 

impacts are more local. In order to reduce primary source impacts, the results imply that 

targeted control strategies should be developed for specific regions based on the sources 

identified and the relative costs of emission reductions.  

 

Source apportionment of PM2.5 in Atlanta: a case study for spatial 

representativeness at an urban scale 

 Source apportionment results from receptor models, such as CMB, can be used 

for epidemiologic studies by associating source impacts with adverse health effects. 

However, the spatial representativeness of the source apportionment results at a single 

monitoring site needs to be investigated to better assess their application in PM health 

studies since health outcome data often are taken over an entire city or metropolitan area. 

Source apportionment results from four Atlanta monitoring sites indicate that secondary 

particles have good spatial representativeness for Atlanta, while the degree of spatial 

representativeness of primary sources varies. Biomass burning, dust, and motor vehicle 

source impacts were found to be spatially relatively uniform, whereas both coal and oil 
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combustion sources are not. When source apportionment results of both coal and oil 

combustion at a single monitoring site are used for PM health studies, they may introduce 

errors or uncertainties in results. 

 

Estimating uncertainties and uncertainty contributors of CMB PM2.5 source 

apportionment results. 

 Uncertainties in CMB source apportionment results can be used in PM health 

studies, policy analysis and decision making. Monte Carlo analysis with Latin hypercube 

sampling (MC-LHS) was performed for a better understanding of uncertainties in source 

apportionment results by propagating uncertainties in ambient measurement and source 

profile data in a probabilistic framework. It was found that the most influential 

uncertainty contributors vary among the sources. Uncertainties in source profile data 

contribute more to the final uncertainties in source apportionment results than from those 

in ambient measurement data. Mineral production source has the largest relative 

uncertainties, which is larger than twice its source impacts. The results from this study 

suggest that non-linear interactions and collinearities among source profiles also affect 

the final uncertainties although their influence is typically less than uncertainties in 

source profile data. 

 

Future Research 

 Emission characterization of active prescribed burnings was investigated in 

Chapter 2. Although the study provided useful information for better understanding of air 

quality impacts of prescribed burning, more research is still needed to be done in order to 
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get more representative emission data for the southeastern U.S. There are several 

different forest types in the southeast, which includes loblolly pine forests investigated in 

Chapter 1. Each forest type occupied by different tree species has not only different fuels 

but also very different fuel loadings for prescribed burning (Ottmar, 2001). There has 

been improvement in fuel loading estimations and classifications (Ottmar and Vihnanek, 

2001; Sandberg et al., 2001). Thus, more emission characteristic data for different forest 

types combined with better fuel information can provide more insight about air quality 

impacts of prescribed burning in the southeast and elsewhere. 

 CMB receptor modeling was applied for source apportionment of PM2.5 in the 

southeastern U.S. This study provides regional spatial distributions of PM2.5 source 

impacts. However, there are incongruities in spatial distributions of some primary source 

impacts when they are compared to those of the national emission inventory. It is needed 

to address why there are discrepancies between both data. Since CMB modeling can not 

directly link source impacts to emission sources, potential source contribution function 

(PSCF) analysis (Hopke et al., 1995) can be performed to find possible source areas 

based on CMB source apportionment results. Comparing the results with the emission 

inventory data may help identify the reasons of the incongruities in order to compromise 

both emission inventory and source apportionment data. 

 Source apportionment results can be used for PM epidemiologic studies which 

attempt to associate PM sources with adverse health outcomes. However, there are 

uncertainty issues of source apportionment results that need to be addressed before their 

further application. One uncertainty issue is representativeness of source apportionment 

results at a single monitoring site for an entire city when the source apportionment results 
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are incorporated with aggregated health outcomes for an entire city. The other issue is 

uncertainty of source apportionment results due to measurement errors in ambient 

measurement and source profile data. Chapter 4 investigated the representativeness of 

source apportionment results for Atlanta. Although it gives insights about which 

calculated source impacts are more spatially representative, this analysis should be 

extended so that more concrete conclusions may be developed. 

 In Chapter 5, Monte Carlo analysis was applied to investigate uncertainties of 

source apportionment results by propagating the measurement errors in the model. The 

results indicate that measurement errors in source profile data contribute more to the total 

uncertainties of source apportionment results rather than those in ambient measurement 

data in general. Therefore, more accurate source profile data are of primary importance to 

reduce source apportionment uncertainties. Sensitive analytic methods such as 

inductively coupled plasma mass spectrometry (ICP-MS) can be used to create more 

accurate source profile and ambient measurement data. Accurate CMB source 

apportionment also depends on how well source profiles used in CMB represent sources 

impacting a particular receptor site. There are several recent emission characterization 

studies of biomass burnings in the southeastern U.S. (Fine et al., 2002; Hays et al., 2002; 

Lee et al., 2005). However, there is a lack of emission information for point sources such 

as industrial facilities in the southeastern U.S. Thus, having representative emission 

source profiles of industrial emission sources in the southeast can decrease uncertainties 

in CMB source apportionment. Practically, it may not be possible to get updated emission 

source profiles for all emission sources in the near future. A possible alternative way to 

get around this problem may be to use ICFA (Christensen et al., 2006) or CMB-LGO 
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(Marmur et al., 2005). ICFA treats source profiles differently by applying different 

degrees of constraints depending on their credibility. It puts loosened constrains onto less 

accurate source profiles, such as industrial source profiles, and vice versa. CMB-LGO 

incorporates source indicative gas-to- particle ratios as model constraints to optimize 

source profiles. Distinctly different ratios among emission sources reduce collinearities 

among source profiles to improve the performance of the traditional CMB model. 

 This thesis examines the emission characterization of prescribed burning and air 

quality impacts of PM2.5 emission sources in the southeast U.S, and addresses uncertainty 

issues in CMB source apportionment results due to spatial representativeness and 

measurement uncertainties. More emission characterization studies of prescribed burning 

should be done for different forest types in Georgia in order to obtain better 

representative emission characteristics. Spatial variability of source impacts needs to be 

conducted with enough data sets for better application for further health studies. It is 

desired to update emission characteristics of primary emission sources not only to 

improve accuracy of source apportionment by reducing uncertainties in source profiles, 

but also to provide better emission data for air quality models.  
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APPENDIX A 

Table A.1. Average and standard deviation (STD) of normalized POC emissions 
from prescribed burning in mg per g OC. 
 
   
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 AVERAGE STD 
Alkanes 
Tetracosane 0.1388 0.0705 
Pentacosane 0.2501 0.1276 
Hexacosane 0.2282 0.1250 
Heptacosane 0.2499 0.1639 
Octacosane 0.1155 0.0538 
Nonacosane 0.8068 0.3847 
iso-nonacosane DL DL 
anteiso-triacontane DL DL 
Triacontane 0.1939 0.0937 
Hentriacontane 0.2884 0.1375 
Dotriacontane DL DL 
Tritriacontane 0.0900 0.0723 
Tetratriacontane DL DL 
Pentatriacontane DL DL 
Hexatriacontane DL DL 
Tetratetracontane DL DL 
iso-hentriacontane DL DL 
anteiso-dotriacontane DL DL 
iso-tritriacontane DL DL 
Alkenoic Acids 
9-hexadecenoic acid 0.5076 0.3254 
9-octadecenoic acid  (oleic acid) 2.4382 1.1394 
9,12-octadecadienoic acid 2.2530 1.2726 
Alkanoic Acid 
tetradecanoic acid 2.0066 0.9764 
pentadecanoic Acid 0.6372 0.3281 
hexadecanoic acid 6.7301 2.9428 
heptadecanoic acid 0.2481 0.1184 
octadecanoic acid 2.2421 1.0502 
nonadecanoic acid 0.4882 0.2505 
eicosanoic acid 1.1948 0.5701 
heneicosanoic acid 0.2886 0.1278 
docosanoic acid 1.7855 0.8199 
tricosanoic acid 0.6541 0.2863 
tetracosanoic acid 4.9520 2.2088 
pentacosanoic acid 0.3832 0.1679 
hexacosanoic acid 3.6715 1.6200 
heptacosanoic acid 0.1411 0.0652 
octacosanoic acid 0.9882 0.4472 
nonacosanoic acid 0.1684 0.0868 
triacontanoic acid 0.8029 0.4244 
pinonic acid DL DL 
Alkanedioic Acids 
butanedioic acid 0.3964 0.2064 
pentanedioic acid 0.0813 0.0429 
hexanedioic acid 0.0265 0.0196 
heptanedioic acid 0.0300 0.0240 
octanedioic acid 0.0595 0.0409 
nonanedioic acid 0.2586 0.1358 
decanedioic acid 0.0679 0.0416 
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Table A.1. Continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* DL: below detection limit 
§ steranes and hopanes (16 species) are below detection limit. 

 
 

 

  AVERAGE STD 
PAHs   
Fluoranthene 0.0895 0.0390 
Acephenanthrylene 0.0280 0.0140 
Pyrene 0.1068 0.0450 
benz[a]anthracene 0.0800 0.0329 
chrysene/triphenylene 0.0978 0.0411 
Coronene 0.0074 0.0044 
benzo [b]fluoranthene 0.0505 0.0210 
benzo[k]fluoranthene 0.0407 0.0167 
benzo[j]fluroanthene 0.0128 0.0067 
benzo[a]pyrene 0.0298 0.0124 
benzo[e]pyrene 0.0499 0.0208 
Perylene 0.0039 0.0022 
indeno[c,d]pyrene 0.0737 0.0342 
dibenz[a,h]anthracene 0.0017 0.0013 
benzo[ghi]perylene 0.0358 0.0149 
cyclopenta[c,d]pyrene 0.2888 0.1381 
1-methylchrysene 0.0279 0.0159 
benzo[ghi]fluoranthene 0.0972 0.0778 
Retene 0.3490 0.1645 
9,10 anthraquinone DL DL 
1h-phenalen-1-one DL DL 
9-fluorenone DL DL 
benz[a]anthracene-7,12-dione DL DL 
benz[d,e]anthracene-7-one DL DL 
1,8-naphthalic anhydride DL DL 
Phthalates   
bis[2-ethylhexyl]phthalate 0.0895 0.0390 
butyl benzyl phthalate DL DL 
diethyl phthalate 0.0355 0.0322 
dimethyl phthalate 0.0142 0.0095 
dibutyl phthalate 0.1031 0.0671 
dioctyl phthalate DL DL 
Aromatic Carboxylic Acids   
1,2-benzenedicarboxylic acid 0.0147 0.0088 
1,3-benzenedicarboxylic acid DL DL 
1,4-benzenedicarboxylic acid 0.0090 0.0071 
1,2,4-benzenetricarboxylic acid DL DL 
1,3,5 or 1,2,3 benzenetricarboxylic acid DL DL 
1,2,4,5-benzenetetracarboxylic acid DL DL 
1,2,3,5 or 1,2,3,4 benzenetetracarboxylic acid DL DL 
4-methyl-1,2-benzenedicarboxylic acid DL DL 
Resin Acids   
dehydroabietic acid 33.3164 14.3022 
isopimaric acid 2.9594 1.2311 
pimaric acid 2.4659 1.0099 
Others   
Levoglucoscan 94.7506 40.2568 
Cholesterol 0.8071 0.3511 
Stigmasterol 1.0115 0.4408 
Squalene 2.6824 1.2024 
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Table A.2. Emission ratios relative to CO2 (± standard error, and coefficient of 
determination R2) of gaseous emissions from least squares linear fittings between 
mixing ratios of individual VOC and CO2 measured in 10 flaming and 12 
smoldering emission samples, respectively. 
 

 
 
 
 
 
 

  Flaming (10) Smoldering (12) 
  ∆X/∆CO2 ± uncertainty R2 ∆X/∆CO2 ± uncertainty R2

CO, ppmv/ppmv 0.0709 ± 0.0205 0.89 0.2337 ± 0.0133 0.99
CH4, ppmv/ppmv 0.0030 ± 0.0016 0.69 0.0107 ± 0.0016 0.96
chloroform, pptv/ppmv 0.0016 ± 0.0128 0.01 0.0000 ± 0.0026 0.00
dichloromethane, pptv/ppmv -0.1606 ± 0.5010 0.06 -0.0669 ± 0.3050 0.02
trichloroethylene, pptv/ppmv 0.0001 ± 0.0039 0.00 0.0190 ± 0.0029 0.96
tetrachloroethylene, pptv/ppmv 0.0074 ± 0.0416 0.02 0.0039 ± 0.0030 0.47
methyl chloride, pptv/ppmv 8.6976 ± 3.7600 0.78 32.6700 ± 3.0600 0.98
methyl bromide, pptv/ppmv 0.2959 ± 0.1540 0.71 2.0833 ± 0.2140 0.98
methyl nitrate, pptv/ppmv 0.8219 ± 0.3510 0.79 0.0113 ± 0.0113 0.33
ethylnitrate, pptv/ppmv 0.0579 ± 0.0253 0.78 0.0044 ± 0.0011 0.89
i-propylnitrate, pptv/ppmv 0.1025 ± 0.0464 0.76 0.0352 ± 0.0031 0.98
n-propylnitrate, pptv/ppmv 0.0075 ± 0.0068 0.45 0.0004 ± 0.0003 0.49
2-butylnitrate, pptv/ppmv 0.0531 ± 0.0207 0.81 0.0095 ± 0.0028 0.86
ethane, ppbv/ppmv 0.2621 ± 0.1320 0.72 0.9095 ± 0.1010 0.98
propane, ppbv/ppmv 0.0525 ± 0.0284 0.69 0.2445 ± 0.0275 0.98
i-butane, ppbv/ppmv 0.0029 ± 0.0019 0.62 0.0177 ± 0.0019 0.98
n-butane, ppbv/ppmv 0.0091 ± 0.0053 0.66 0.0651 ± 0.0071 0.98
i-pentane, ppbv/ppmv 0.0007 ± 0.0015 0.13 0.0022 ± 0.0002 0.98
n-pantane, ppbv/ppmv 0.0034 ± 0.0020 0.66 0.0255 ± 0.0028 0.98
2-methylpentane, ppbv/ppmv 0.0007 ± 0.0003 0.74 0.0051 ± 0.0006 0.98
3-methylpentane, ppbv/ppmv 0.0002 ± 0.0001 0.60 0.0011 ± 0.0001 0.98
n-hexane, ppbv/ppmv 0.0023 ± 0.0013 0.67 0.0162 ± 0.0018 0.98
n-heptane, ppbv/ppmv 0.0018 ± 0.0009 0.72 0.0118 ± 0.0013 0.98
n-octane, ppbv/ppmv 0.0012 ± 0.0007 0.69 0.0091 ± 0.0010 0.97
ethene, ppbv/ppmv 1.2414 ± 0.5550 0.77 0.8568 ± 0.1680 0.93
ethyne, ppbv/ppmv 0.3888 ± 0.1780 0.76 0.0969 ± 0.0566 0.59
propene, ppbv/ppmv 0.2447 ± 0.0960 0.81 0.3982 ± 0.0426 0.98
1-butene, ppbv/ppmv 0.0374 ± 0.0152 0.80 0.0621 ± 0.0053 0.99
i-butene, ppbv/ppmv 0.0240 ± 0.0108 0.77 0.0890 ± 0.0086 0.98
trans-2-butene, ppbv/ppmv 0.0083 ± 0.0040 0.74 0.0299 ± 0.0031 0.98
cis-2-butene, ppbv/ppmv 0.0063 ± 0.0034 0.69 0.0220 ± 0.0025 0.97
1,3-butadiene, ppbv/ppmv 0.0232 ± 0.0178 0.53 0.0280 ± 0.0092 0.82
benzene, ppbv/ppmv 0.0952 ± 0.0325 0.85 0.1885 ± 0.0247 0.97
toluene, ppbv/ppmv 0.0431 ± 0.0151 0.84 0.1044 ± 0.0219 0.92
ethylbenzene, ppbv/ppmv 0.0053 ± 0.0021 0.80 0.0133 ± 0.0033 0.89
m-xylene, ppbv/ppmv 0.0090 ± 0.0044 0.74 0.0362 ± 0.0083 0.90
p-xylene, ppbv/ppmv 0.0042 ± 0.0021 0.74 0.0080 ± 0.0031 0.77
o-xylene, ppbv/ppmv 0.0035 ± 0.0017 0.74 0.0127 ± 0.0019 0.96
isopropylbenzene, ppbv/ppmv 0.0006 ± 0.0003 0.73 0.0021 ± 0.0005 0.89
propylbenzene, ppbv/ppmv 0.0008 ± 0.0005 0.57 0.0047 ± 0.0013 0.87
3-ethlytoluene, ppbv/ppmv 0.0022 ± 0.0014 0.62 0.0052 ± 0.0038 0.48
4-ethyltoluene, ppbv/ppmv 0.0015 ± 0.0009 0.64 0.0101 ± 0.0033 0.83
2-ethyltoluene, ppbv/ppmv 0.0007 ± 0.0005 0.60 0.0031 ± 0.0004 0.97
isoprene, ppbv/ppmv 0.0010 ± 0.0106 0.01 0.0250 ± 0.0102 0.75
α-pinene, ppbv/ppmv 0.0012 ± 0.0052 0.03 0.0202 ± 0.0254 0.24
β-pinene, ppbv/ppmv 0.0017 ± 0.0019 0.35 0.0123 ± 0.0029 0.90
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Table A.3.a. Emission Factors of gas phase emissions from flaming and smoldering 
stages in g or mg per kg biomass burned. 
 

 Flaming Stages Smoldering Stages 
 AVERAGE STD AVERAGE STD
CO, g/kg 63.65 18.61 149.28 53.97
CO2, g/kg 1436.76 30.82 1247.68 105.76
CH4, g/kg 1.63 0.81 6.49 4.91
NH3, g/kg 0.1505 0.2894 0.4982 0.7748
SO2, g/kg 0.0312 0.0601 0.1035 0.1609
HONO, g/kg 0.0786 0.1512 0.2602 0.4047
HNO3, g/kg 0.0026 0.0049 0.0085 0.0132
HCl, g/kg 0.0031 0.0059 0.0102 0.0158
acetic acid, g/kg 0.2928 0.5631 0.9695 1.5075
formic acid, g/kg 0.1558 0.2996 0.5158 0.8020
oxalic acid, g/kg 0.0373 0.0718 0.1235 0.1921
chloroform, mg/kg 0.0249 0.0367 0.0794 0.1788
dichloromethane, mg/kg 0.0877 0.1862 1.8782 3.1042
trichloroethylene, mg/kg 0.0154 0.0322 0.0146 0.0350
tetrachloroethylene, mg/kg 0.0930 0.1833 0.0365 0.0721
methyl chloride, mg/kg 11.2191 4.7485 23.8814 9.7904
methyl bromide, mg/kg 0.7599 0.5661 1.6765 1.5210
methyl nitrate, mg/kg 0.7330 0.7270 0.1743 0.1335
ethylnitrate, mg/kg 0.0752 0.0704 0.0316 0.0351
i-propylnitrate, mg/kg 0.1408 0.1230 0.1464 0.1605
n-propylnitrate, mg/kg 0.0178 0.0186 0.0081 0.0131
2-butylnitrate, mg/kg 0.0840 0.0743 0.1246 0.2148
ethane, g/kg 0.2179 0.1008 0.7387 0.5714
propane, g/kg 0.0635 0.0316 0.2476 0.2139
i-butane, g/kg 0.0047 0.0025 0.0143 0.0120
n-butane, g/kg 0.0146 0.0081 0.0397 0.0341
i-pentane, g/kg 0.0039 0.0038 0.0043 0.0057
n-pantane, g/kg 0.0067 0.0036 0.0178 0.0155
2-methylpentane, g/kg 0.0016 0.0010 0.0034 0.0037
3-methylpentane, g/kg 0.0005 0.0004 0.0009 0.0011
n-hexane, g/kg 0.0049 0.0027 0.0103 0.0095
n-heptane, g/kg 0.0042 0.0022 0.0088 0.0082
n-octane, g/kg 0.0031 0.0018 0.0069 0.0071
ethene, g/kg 0.8405 0.3461 1.3573 0.6210
ethyne, g/kg 0.2986 0.1348 0.3277 0.1785
propene, g/kg 0.2664 0.0985 0.5841 0.2951
1-butene, g/kg 0.0554 0.0219 0.1125 0.0462
i-butene, g/kg 0.0363 0.0155 0.0947 0.0477
trans-2-butene, g/kg 0.0134 0.0061 0.0401 0.0257
cis-2-butene, g/kg 0.0099 0.0050 0.0311 0.0211
1,3-butadiene, g/kg 0.0537 0.0324 0.1205 0.0619
benzene, g/kg 0.2115 0.0731 0.4226 0.2446
toluene, g/kg 0.1074 0.0371 0.3582 0.3458
ethylbenzene, g/kg 0.0142 0.0057 0.0505 0.0532
m-xylene, g/kg 0.0231 0.0112 0.1278 0.1330
p-xylene, g/kg 0.0112 0.0051 0.0452 0.0481
o-xylene, g/kg 0.0091 0.0043 0.0325 0.0262
isopropylbenzene, g/kg 0.0019 0.0009 0.0107 0.0104
propylbenzene, g/kg 0.0023 0.0016 0.0270 0.0365
3-ethlytoluene, g/kg 0.0066 0.0040 0.0655 0.0866
4-ethyltoluene, g/kg 0.0045 0.0033 0.0790 0.1196
2-ethyltoluene, g/kg 0.0020 0.0013 0.0075 0.0061
isoprene, g/kg 0.0236 0.0286 0.1433 0.1114
α-pinene, g/kg 0.0338 0.0306 0.5108 0.5966
β-pinene, g/kg 0.0098 0.0064 0.0882 0.0951
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Table A.3.b. Emission Factors of particle phase emissions from flaming and 
smoldering stages in g or mg per kg biomass burned. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Emission factors were calculated by using the same value for both flaming and smoldering for SO2, NH3, 
HONO, HNO3, HCl, acetic acid, formic acid, oxalic acid, and particulate components since there was no 
separate measurement between flaming and smoldering for those species. 
 
 
 

 

 

 

 

 

  Flaming Stages Smoldering Stages 
 AVERAGE STD AVERAGE STD 
PM2.5, g/kg 0.6621 0.2479 1.1453 0.4288 
OC, g/kg 0.3989 0.1932 0.6900 0.3343 
EC, g/kg 0.0259 0.0123 0.0449 0.0212 
acetate, g/kg 0.0036 0.0017 0.0063 0.0030 
formate, g/kg 0.0030 0.0013 0.0051 0.0023 
nitrate, g/kg 0.0029 0.0023 0.0050 0.0039 
Cl-, g/kg 0.0035 0.0023 0.0060 0.0040 
K+, g/kg 0.0043 0.0033 0.0074 0.0057 
sulfate, g/kg 0.0016 0.0010 0.0028 0.0017 
ammonium, g/kg 0.0007 0.0008 0.0012 0.0013 
oxalate, g/kg 0.0005 0.0002 0.0008 0.0003 
Cl, g/kg 0.0028 0.0018 0.0048 0.0032 
K, g/ kg 0.0038 0.0028 0.0065 0.0049 
Na+, g/kg 0.0001 0.0001 0.0002 0.0001 
Na, mg/kg 0.0003 0.0002 0.0005 0.0003 
Mg, mg/kg 0.0010 0.0018 0.0017 0.0032 
Al, mg/kg 0.1514 0.2876 0.2619 0.4974 
Si, mg/kg 0.1229 0.1768 0.2126 0.3058 
P, mg/kg 0.0064 0.0102 0.0111 0.0177 
S, mg/kg 0.7108 0.3769 1.2295 0.6520 
Ca, mg/kg 0.0039 0.0073 0.0068 0.0126 
Ti, mg/kg 0.0025 0.0043 0.0044 0.0075 
Mn, mg/kg 0.0075 0.0071 0.0129 0.0122 
Fe, mg/kg 0.0541 0.0929 0.0936 0.1607 
Cu, mg/kg 0.0065 0.0073 0.0112 0.0127 
Zn, mg/kg 0.1058 0.0709 0.1831 0.1226 
As, mg/kg 0.0013 0.0020 0.0022 0.0035 
Se, mg/kg 0.0008 0.0011 0.0014 0.0020 
Br, mg/kg 0.0931 0.0695 0.1610 0.1202 
Rb, mg/kg 0.0278 0.0215 0.0480 0.0372 
Sr, mg/kg 0.0011 0.0023 0.0018 0.0039 
Pb, mg/kg 0.0010 0.0017 0.0017 0.0030 
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APPENDIX B 

 
Table B.1. Ambient PM2.5 composition in Atlanta, GA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Mean             STD (Min       –          Max) 
Sb 0.00436 ±  0.00439 (0.00005 -  0.03170) 
As 0.00125 ±  0.00098 (0.00002 -  0.00539) 
Al 0.02102 ±  0.03556 (0.00046 -  0.35400) 
Ba 0.01297 ±  0.01085 (0.00002 -  0.05390) 
Br 0.00318 ±  0.00168 (0.00023 -  0.00928) 
Cd 0.00191 ±  0.00134 (0.00004 -  0.01160) 
Ca 0.03139 ±  0.01658 (0.00348 -  0.08360) 
Cr 0.00064 ±  0.00080 (0.00005 -  0.01070) 
Co 0.00030 ±  0.00017 (0.00001 -  0.00157) 
Cu 0.00400 ±  0.00382 (0.00023 -  0.02250) 
Fe 0.07296 ±  0.04343 (0.01160 -  0.26200) 
Pb 0.00242 ±  0.00183 (0.00010 -  0.01360) 
Mn 0.00125 ±  0.00092 (0.00005 -  0.00481) 
Ni 0.00038 ±  0.00031 (0.00002 -  0.00296) 
Mg 0.00790 ±  0.01831 (0.00006 -  0.16000) 
La 0.00366 ±  0.00532 (0.00013 -  0.03210) 
P 0.00226 ±  0.00346 (0.00005 -  0.02880) 
Se 0.00125 ±  0.00078 (0.00005 -  0.00499) 
Ti 0.00521 ±  0.00345 (0.00023 -  0.02120) 
V 0.00086 ±  0.00065 (0.00005 -  0.00443) 
Si 0.09311 ±  0.07676 (0.00316 -  0.56200) 
Zn 0.00847 ±  0.00829 (0.00023 -  0.10200) 
K 0.05848 ±  0.03902 (0.00698 -  0.35700) 
Na 0.04084 ±  0.05082 (0.00080 -  0.30700) 
NH4

+ 1.40 ±  0.78 (0.16 -  4.80) 
OC 2.61 ±  1.84 (0.13 -  11.31) 
NO3

- 0.86 ±  0.77 (0.14 -  5.00) 
EC 0.90 ±  0.59 (0.06 -  3.46) 
SO4

2- 4.70 ±  2.91 (0.91 -  17.00) 
PM2.5 15.72 ±  6.73 (5.11 -  37.80) 
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Table B.2. Primary emission source profile data used in this study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Biomass burninga Motor vehicleb Dustc Pulp/paper productiond 
species f σf f σf f σf f σf 
Sb 0.00000 0.00010 0.00063 0.00211 0.00000 0.00010 0.00004 0.00022 
As 0.00000 0.00010 0.00000 0.00027 0.00000 0.00010 0.00001 0.00003 
Al 0.00000 0.00010 0.00131 0.00120 0.09280 0.02970 0.00090 0.00161 
Ba 0.00000 0.00010 0.00000 0.00750 0.00000 0.00010 0.00016 0.00042 
Br 0.00002 0.00000 0.00000 0.00011 0.00036 0.00027 0.00010 0.00004 
Cd 0.00000 0.00010 0.00043 0.00115 0.00000 0.00010 0.00003 0.00007 
Ca 0.00020 0.00001 0.00121 0.00065 0.03150 0.01090 0.00424 0.00100 
Cr 0.00000 0.00010 0.00007 0.00033 0.00270 0.00025 0.00002 0.00004 
Co 0.00000 0.00010 0.00007 0.00008 0.00000 0.00010 0.00000 0.00010 
Cu 0.00000 0.00010 0.00007 0.00011 0.00000 0.00026 0.00003 0.00006 
Fe 0.00000 0.00010 0.00067 0.00011 0.03140 0.01010 0.00075 0.00100 
Pb 0.00004 0.000003 0.00007 0.00038 0.00000 0.00010 0.00004 0.00013 
Mn 0.00000 0.00010 0.00007 0.00020 0.00080 0.00035 0.00034 0.00025 
Ni 0.00000 0.00010 0.00000 0.00011 0.00000 0.00023 0.00007 0.00018 
Mg 0.00000 0.00010 0.00000 0.00008 0.00000 0.00010 0.00091 0.00184 
La 0.00000 0.00010 0.00089 0.00990 0.00000 0.00010 0.00027 0.00061 
P 0.00000 0.00010 0.00096 0.00049 0.00123 0.00104 0.00026 0.00100 
Se 0.00000 0.00010 0.00003 0.00011 0.00010 0.00018 0.00001 0.00001 
Ti 0.00000 0.00010 0.00003 0.00276 0.00444 0.00147 0.00003 0.00002 
V 0.00000 0.00010 0.00000 0.00092 0.00030 0.00022 0.00009 0.00003 
Si 0.00046 0.00004 0.00521 0.00042 0.19700 0.06200 0.00182 0.00167 
Zn 0.00035 0.00001 0.00104 0.00009 0.00090 0.00037 0.00017 0.00007 
K 0.00699 0.00008 0.00011 0.00077 0.00494 0.00174 0.04799 0.03548 
Na 0.00000 0.00010 0.00000 0.00008 0.00000 0.00010 0.10775 0.05139 
NH4

+ 0.00086 0.00012 0.01136 0.00087 0.00000 0.00010 0.00000 0.00010 
OC 0.88299 0.05983 0.26557 0.01412 0.00000 0.00010 0.29735 0.07373 
NO3

- 0.00345 0.00035 0.00299 0.00300 0.00000 0.00010 0.00374 0.00190 
EC 0.09564 0.01011 0.24943 0.01952 0.00000 0.00010 0.02634 0.01824 
SO4

2- 0.00406 0.00038 0.01026 0.00198 0.00000 0.00010 0.20396 0.05818 
species Coal combustione Mineral productiond Oil combustiond Metal productiond 
Sb 0.00011 0.00049 0.00021 0.00070 0.00066 0.00023 0.03749 0.00834 
As 0.00002 0.00055 0.00008 0.00009 0.00004 0.00001 0.05028 0.00707 
Al 0.05027 0.03261 0.02111 0.00415 0.00655 0.00075 0.02354 0.01027 
Ba 0.01011 0.01010 0.00061 0.00204 0.00158 0.00007 0.00071 0.00095 
Br 0.00028 0.00057 0.00012 0.00005 0.00008 0.00008 0.00072 0.00034 
Cd 0.00003 0.00027 0.00015 0.00031 0.00000 0.00010 0.01444 0.00348 
Ca 0.15708 0.10526 0.09860 0.01812 0.02750 0.00900 0.01215 0.01475 
Cr 0.00024 0.00019 0.00126 0.00011 0.00022 0.00004 0.00314 0.00204 
Co 0.00004 0.00065 0.00175 0.00096 0.00093 0.00012 0.00003 0.00010 
Cu 0.00085 0.00075 0.00062 0.00022 0.00104 0.00041 0.03931 0.00594 
Fe 0.03428 0.02019 0.00779 0.00225 0.01550 0.00300 0.05170 0.00886 
Pb 0.00052 0.00090 0.00242 0.00086 0.01400 0.00400 0.08497 0.01367 
Mn 0.00109 0.00106 0.00071 0.00014 0.00029 0.00006 0.01203 0.00249 
Ni 0.00019 0.00017 0.00061 0.00029 0.01700 0.00350 0.00243 0.00024 
Mg 0.00801 0.00859 0.00328 0.00377 0.00000 0.00010 0.00346 0.00606 
La 0.00004 0.00269 0.00002 0.00007 0.00027 0.00003 0.00000 0.00010 
P 0.00276 0.00455 0.00045 0.00030 0.01250 0.00250 0.00185 0.00036 
Se 0.00548 0.00833 0.00057 0.00001 0.00002 0.00001 0.00058 0.00004 
Ti 0.00807 0.00516 0.00134 0.00019 0.00085 0.00035 0.00082 0.00077 
V 0.00075 0.00081 0.00004 0.00002 0.01500 0.00300 0.00055 0.00007 
Si 0.10147 0.06807 0.08834 0.03146 0.02250 0.00500 0.04432 0.00772 
Zn 0.00294 0.00333 0.00127 0.00018 0.00965 0.00295 0.05962 0.00597 
K 0.00493 0.00256 0.01306 0.00587 0.00185 0.00040 0.02542 0.00562 
Na 0.00862 0.01778 0.01466 0.00412 0.02850 0.00750 0.00897 0.00348 
NH4

+ 0.01697 0.02128 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010 
OC 0.25786 0.25766 0.05255 0.02273 0.02100 0.00500 0.02400 0.00733 
NO3

- 0.00651 0.01092 0.00271 0.00637 0.00000 0.00010 0.00254 0.00524 
EC 0.01313 0.02225 0.01467 0.03922 0.03960 0.00835 0.00171 0.00127 
SO4

2- 0.27273 0.22563 0.14061 0.08087 0.42500 0.05000 0.05734 0.01345 
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