
In the novel Invisible Cities by Italo Calvino, Marco
Polo, returning from his travels, encounters Kublai

Khan. It’s the end of the day, near the end of the great
Khan’s life, and perhaps at the end of his empire. Marco
Polo tells of the cities he visited while traveling the far-
flung empire. Each one is fantastic and is described in
a short fable, so the whole story takes on the quality of
a folktale constructed around a series of adventures.
The reader can’t be sure whether these cities actually
exist or whether they are an illusion in Marco Polo’s or
the Khan’s mind.

We are now faced with the possibility and, in some
cases, the results of acquiring accurate digital repre-
sentations of our cities. But these cities will be just as
invisible as Marco Polo’s unless we meet some funda-
mental challenges. The first challenge is to take data
from multiple sources, which are often accurate but
incomplete, and weave them together into comprehen-
sive models. Because of the size and extent of the data
that we can now obtain, this modeling task is daunting
and must be accomplished in a semiautomated manner.
Once we have comprehensive models, and especially if
we can build them rapidly and extend them at will, the
next question is what to do with them. Thus, the second
challenge is making the models visible. In particular,
they must be made interactively visible so users can
explore, inspect, and analyze them.

In this article, we discuss the nature of the acquired
data and how we’re beginning to meet these challenges
and produce visually navigable models. We’ve devel-
oped 3D City, a semiautomated system that supports
human intervention at key points to meet the challenge
of constructing complete and extended urban models
from several data sources. We’ve already built virtual
environments (VEs) for urban planning and emergency
response using 3D City.

Once we’ve met the challenges of urban construction
and visualization, possible applications include educa-
tion, urban planning, emergency response, tourism and
entertainment, military operations, traffic management,
construction (especially large-scale projects), various
geolocated and mobile services, citizen–government rela-
tions (when complex civic projects are vetted), and games
based on real locations. For example, large-scale urban
projects now require coordinated efforts by affected
neighborhood groups; the business community; and city,

state, and federal governments. Collecting data and mod-
eling a city as it is creates a foundation for inserting new
structures, bridges, and roads. We can provide different
constituencies with interactive visualizations of different
model designs. Vehicle and pedestrian traffic models can
be applied to the street layouts and then visualized in the
city environment, helping with overall planning and with
meeting government requirements (such as those from
the US Environmental Protection Agency). The results
will be faster, less expensive, and better planning and con-
struction. With the appropriate apparatus for collecting
and then inserting new data into existing data collections,
we’ll be able to always keep an urban database up to date.
Any change in a building facade, move of a lamppost, or
removal of a tree can be recorded.

Urban data acquisition
There are now several ways to acquire accurate loca-

tion, height, and appearance information for 3D urban
features such as buildings, bridges, roads, sidewalks,
and trees. We can use geocorrected imagery from aeri-
al photography and satellites at high resolution (down
to a foot or less). There are ground-based close-up
images of buildings, groups of buildings, or other urban
features. Many of these are freely available on the Web.
Airborne laser range-finding systems, such as Lidar, per-
mit an airplane to quickly collect a high-resolution
height field for a small city in just a few hours. Synthetic
aperture radar (SAR) can capture similar information.
Now ground-based systems using cameras, or laser
range finding with calibrated cameras,1 can collect copi-
ous amounts of accurately located, ground-level 3D
detail and appearance information.

The data provided by these technologies are typical-
ly incomplete, or they provide some parts at higher
detail than others. The aerial and satellite methods can
provide accurate locations and footprints; they also offer
height information that ranges from good to highly
accurate. For example, Lidar provides heights at the res-
olution of inches for samples that can be as close as a
foot apart. However, the sides of buildings, especially
taller buildings, have much less detail. The ground-
based methods can provide highly accurate 3D details
on building facades and associated appearance infor-
mation (from calibrated cameras). However, they often
will provide less detail for the upper floors of taller build-

William
Ribarsky, Tony
Wasilewski, and
Nickolas Faust

Georgia Institute
of Technology

0272-1716/02/$17.00 © 2002 IEEE

From Urban Terrain Models to Visible Cities __________

Projects in VR
Editors: Lawrence Rosenblum and
Michael Macedonia

2 July/August 2002

ings (see Figure 11 for an example). In addition, some
techniques that capture fairly complete building facades
haven’t been applied to extended models of cityscapes.
In all methods, trees or other buildings (or cars and
pedestrians in ground-based techniques) can occlude
parts of the acquired model. Thus, we must use a com-
bination of methods to derive complete models, and we
must often augment these with techniques for filling
holes where no acquired data exist.

Semiautomated urban construction
Our system lets us more rapidly build urban databas-

es than with manual methods. In an initial test, we expe-
rienced more than a factor of 10 speed-up in using the
semiautomated system 3D City rather than the previ-
ous manual methods for constructing a model of down-
town Atlanta. The current version of our system is faster,
has more capabilities, and has been used to build sev-
eral other urban databases.

Our system uses imagery from various sources. Users
first compile one or more overhead photos of the urban
area to be modeled. If close-up oblique images are avail-
able for selected buildings, users have the option of using
a close-range photogrammetry tool to create more
detailed 3D models. Other buildings can be created from
one or more overhead images. Users select roof corners,
base corners, and shadow extents (see Figure 2), and
they create a building with a flat-topped textured roof at
the appropriate height (given the date and time a photo
was taken). Building sides can be textured using texture
images loaded into a texture library or extracted from
perspective-distorted images obtained from ground-level

or oblique photos. Users then export the building mod-
els into VGIS, a real-time 3D geospatial visualizer that
places the urban terrain in its global setting. Here, we
perform final placement and adjustment of the buildings
and insert them into the VGIS database, after which users
can explore and interact with the created urban terrain.

Figure 3 (next page) shows our system’s overall envi-
ronment. The items within the dotted box are part of
the modeling system, which runs on a desktop PC. Users
can bring into the system orthorectified overhead
images and oblique images in various formats.
Footprint, position, and height information are extract-
ed from the overhead images, as Figure 2 shows.

IEEE Computer Graphics and Applications 3

1 (a) Overview
of Berkeley,
California,
facade mesh.
(b) Detail from
mesh with
textures.
(Courtesy of
Avideh Zakhor.)

(a)

(b)

2 Building selection, anchoring, and shadow selection.

Sometimes shadow information is
insufficient, so we can additionally
resolve heights by referring to build-
ings of known height, counting
floors, or using other factors.

We introduced photogrammetry
software (indicated by the modeling
software module in Figure 3) in the
pipeline to provide more detailed
models of landmark buildings, such
as the Transamerica tower in the
San Francisco model (see Figure 4).
Oblique images from multiple
angles provide data for the detailed
model, which we position and scale
using the techniques in Figure 2. A
texture library (see Figure 5) pro-
vides enriched detail for building
facades. After users select a texture
quadrilateral from an oblique
image, the software performs a pro-
jective mapping to a rectangular tex-
ture and stores it in the library. The
projective mapping removes most of
the perspective distortion and
makes the texture look as it would
from an orthogonal view. We can
then choose textures in the library
and apply them to selected parts of
the building facades. This semiau-
tomated method provides both par-
ticular textures (from photos of the
building being modeled) and gen-
eralized textures—for example,
brick fronts for filling in missing
appearance information. A building
roof library provides various pre-
modeled roof structures that can be
attached to the tops of buildings by

Projects in VR

4 July/August 2002

3D City
reconstruction environment

TIF,JPEG,BMP

TIF,JPEG,BMP

3D buildings,
wavefront format

Auto tree,
bush

modeling

Building extraction
and

positioning tools

Modeling
software

3D Studio or other
modeling package

3D buildings
modified,
wavefront
format

VGIS insertion
interface and database

Overhead
urban photo

Oblique
building photo

3 Overview of
the 3D City
modeling envi-
ronment.

4 Oblique view
of San Francisco
model with
Transamerica
Building and
other land-
marks.

5 Texture
library thumb-
nail window.

user selection to provide more real-
istic roofs. After modeling, items are
fed into the VGIS system (lower
right in Figure 3) for final position-
ing with respect to the rest of the
cityscape, terrain imagery and ele-
vation data, and features such as
roads. The system then transforms
the final city model into the VGIS
internal format so that it’s available
for interactive visual navigation.

A separate module in Figure 3
extracts tree and shrub information
from overhead images. Figure 6 illus-
trates the entire process schemati-
cally. The system splits a geolocated
and geocorrected image into smaller
(512 × 512 pixel) images. Users
select tree areas by choosing tree
masks—the white tree areas on the
black background in Figure 6. We
create the masks with standard
image-manipulation software. Given
this training data, the system sam-
ples pixels and extracts average color
values. The software uses alternat-
ing stages of color selection and blur-
ring to choose areas likely to be trees. Once the system
has tree areas, it needs to derive locations for individual
trees. A thinning technique is used to find “skeletons”
representing the essential topology of the tree areas but
located in the center of tree groups (where the trunks
are likely to be). Tree group width is preserved in this
thinning step. Tree group width maxima are used as tree
position indicators. Overlapping trees are culled, and
tree coordinates are derived from pixel coordinates in
the geolocated subimages. Finally, 3D tree objects
(height scaled according to width and colored based on
sample tree statistics) are placed at these coordinates
and shipped to VGIS for insertion. The system performs
this process in a series of automated steps.

This approach has several advantages. After the train-
ing step the procedure is automatic, although small
adjustments of the tree models may be desirable at the

end. Exact tree trunk positions aren’t extracted (hard to
do anyway for dense clusters of trees), rather likely cen-
ters for a given canopy are found. With information
about average foliage width for a given tree species and
size, we can automatically generate the likely number
of tree trunks and their positions. Figure 7 shows an
example of the automated tree detection for a true-color
aerial photograph. We plan to extend this algorithm by
looking at the frequency information embedded in the
tree textures. This will make the algorithm more accu-
rate and will permit it to distinguish between different
types of trees and between trees and shrubs.

Automated construction of detailed,
interactive urban environments

The swelling flow of urban data acquisition makes us
want to go beyond semiautomated methods. A complete

IEEE Computer Graphics and Applications 5

Subimages

Original image

Tree area detection

Sampled
tree pixels

Thinning Tree locations

Maxima

6 Process for
tree and shrub
identification
and modeling.

7 Aerial image
with modeled
trees.

method would have to handle a much larger range of
scales, from small 3D details (on the order of inches) on
the side of a building to whole cityscapes. To attack this
problem, we recently teamed with Avideh Zakhor and
her group at the University of California, Berkeley.
Figure 1 shows some facades acquired with their auto-
mated tools.1 Two major problems exist. These models
are generated without the means for interactive visual-
ization as they grow in size and, as discussed earlier,
they are incomplete. We’ve initially attacked the latter
problem by inserting simplified versions of the models,
with facade outlines and appearance information con-
verted to textures, into the semiautomated methods we
explained in the last section. We can then complete the
models using the semiautomated tools.

To attack the problem of interactive visualization of
scalably large urban data, we developed a structure with
global geospatial reach.2,3 In this method, static 3D
objects (such as urban data) are inserted into a forest of
quadtrees that span the Earth. A related quadtree struc-
ture organizes multiresolution terrain elevation and
image data. The static object quadtree descends to the
level of urban blocks. Traversal provides efficient first-
order culling of urban data and sets paging priorities for
bringing urban data into memory (what is in view, what
is close by and may be in view soon, and what isn’t like-
ly to be in view soon). A filled quadnode contains the
center of a 3D block bounding box; the block footprint
can extend beyond the node’s boundary. Thus, neigh-
bor nodes out of the view frustum can potentially con-
tain objects that extend into the view frustum. We chose
a quadnode level appropriate for a block footprint of
about 50 meters on a side, the dimensions of a typical
city block. If a typical building is the size of a house (10
meters on a side), we would have to consider no more
than tens of buildings on average for each block. We can
adjust this footprint for different settings (urban versus
suburban), but we haven’t done this so far.

Recently we’ve considered the construction and inter-
active visualization of multiresolution block models. (See
http://www.gvu.gatech.edu/datavis/research/research.

html for more information and
references.) A multiresolution orga-
nization and view-dependent visual-
ization approach is necessary to
achieve interactive navigation of
extended, highly detailed models.
Working with the Berkeley group, we
take block-sized chunks of the urban
facade textured mesh. We organize
these into the block hierarchy in
Figure 8. In this method, the block is
divided into a series of facades rather
than individual buildings. In dense
urban environments, individual
buildings are often joined together
and may even be hard to distinguish
as individuals. The facade structure
can include free-standing buildings
(as a set of facades) and related
objects such as lampposts or side-
walks, which are child objects for

neighboring facades (see Figure 8). Such objects will typ-
ically be part of the acquired data, as Figure 1 shows.
There are numberous ways to create the multiresolution
facade hierarchy; we use the bounding sphere hierarchy
developed for Qsplat.4 The sphere hierarchy is set up by
starting from the bounding box for the overall model and
recursively splitting vertices along the longest axis to find
the children’s bounding boxes (and bounding spheres).
The Qsplat hierarchy was originally used for splat-based
rendering. Our approach has the advantage of support-
ing both splat-based (point) and polygonal rendering.
Trees, for example, might be best rendered using splats,
but large, flat areas of facades are best rendered with
polygons.

The bounding-sphere hierarchy is a fast way to orga-
nize 3D vertices on each facade. At the highest level of
detail (LOD), each vertex is represented by a unique
sphere. This is a leaf node. Parent nodes hold the aver-
age position of their children, and their bounding
spheres encompass the child-bounding spheres. For
splat-based rendering, a splat is associated with each
node. For polygon-based rendering, a simplification
process must be constructed that connects all the LODs.
We follow the bounding-sphere hierarchy to create a
simplification process because this procedure is fast and
seems to produce reasonably good results. However, the
procedure needs more thorough evaluation. We intro-
duce special boundary vertices that the mthod doesn’t
merge during simplification (although other vertices
can be merged to them). These are the final vertices and
connect the facade hierarchy with the textured build-
ing structure we described in the last section. Using
these results, we’re now setting up a view-dependent
rendering structure for interactive navigation of these
highly detailed urban environments within our global
geospatial system.

Current directions
We continue to work on the automated construction

and organization of extended, detailed models so that
they can be used for interactive visual navigation. As we

Projects in VR

6 July/August 2002

Linked global quadtree

Q Q Q Q

Block

Facade 1 Facade N

Object 1 Object M

LOD
hierarchy

8 Hierarchical
structure of 3D
urban block
geometry.

begin to address even larger models (of the size of an
urban downtown, for example, with thousands of build-
ings), we must go beyond textured geometry methods.
We can combine these methods with image-based ren-
dering (for example, to depict more distant details in a
city) and develop a data organization to handle the com-
bination of methods. Ultimately, this data structure
must have a temporal component so that we can effi-
ciently collect and store changes in the urban environ-
ment over time.

We believe that our geometric simplification meth-
ods can also be applied to the extended CAD models of
cities developed by architects, construction engineers,
city planners, and so forth. Up until to now, this huge
resource (for example, models for much of Manhattan)
has been inaccessible to interactive visualization and
visual query approaches because its models are so dif-
ferent and so much more detailed than the models in
interactive visualization. �

Acknowledgments
The Office of Naval Research supported this work

under Award No. N00014-97-1-0898. In addition, the
US Department of Defense Multidisciplinary University
Research Initiative (MURI) program through the Army
Research Office supported this work under Grant
DAAD19-00-1-0352.

References
1. C. Früh and A. Zakhor, “Fast 3D Model Generation in Urban

Environments,” Proc. Int’l Conf. Multisensor Fusion and Inte-
gration for Intelligent Systems 2001, 2001, pp. 165-170.

2. D. Davis et al., “Real-Time Visualization of Scalably Large
Collections of Heterogeneous Objects,” Proc. IEEE Visual-
ization 99, Report GIT-GVU-99-14, ACM Press, New York,
1999, pp. 437-440.

3. N. Faust and W. Ribarsky, “Development of Tools for Con-
struction of Urban Databases and Their Efficient Visual-
ization,” Modeling and Visualizing the Digital Earth, M.
Abdelguerfi, ed., Kluwer, Amsterdam, 2001.

4. S. Rusinkiewicz and M. Levoy, “Qsplat: A Multiresolution
Point Rendering System for Large Meshes,” Computer
Graphics (Proc. Siggraph 2000), ACM Press, New York,
2000, pp. 343-352.

Readers may contact Bill Ribarsky at the GVU Center,
College of Computing, Georgia Inst. of Tech., Atlanta, GA
30332-0280, email ribarsky@cc.gatech.edu.

Readers may contact the department editors by email
at rosenblu@ait.nrl.navy.mil or Michael_Macedonia@
stricom.army.mil.

IEEE Computer Graphics and Applications 7

