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ABSTRACT  

Clustering is an important technique for understanding of 
large multi-dimensional datasets. Most of clustering 
research to date has been focused on developing automatic 
clustering algorithms and cluster validation methods. The 
automatic algorithms are known to work well in dealing 
with clusters of regular shapes, e.g. compact spherical 
shapes, but may incur higher error rates when dealing with 
arbitrarily shaped clusters. Although some efforts have 
been devoted to addressing the problem of skewed datasets, 
the problem of handling clusters with irregular shapes is 
still in its infancy, especially in terms of dimensionality of 
the datasets and the precision of the clustering results 
considered. Not surprisingly, the statistical indices works 
ineffective in validating clusters of irregular shapes, too. In 
this paper, we address the problem of clustering and 
validating arbitrarily shaped clusters with a visual 
framework (VISTA). The main idea of the VISTA 
approach is to capitalize on the power of visualization and 
interactive feedbacks to encourage domain experts to 
participate in the clustering revision and clustering 
validation process. The VISTA system has two unique 
features. First, it implements a linear and reliable 
visualization model to interactively visualize multi-
dimensional datasets in a 2D star-coordinate space. Second, 
it provides a rich set of user-friendly interactive rendering 
operations, allowing users to validate and refine the cluster 
structure based on their visual experience as well as their 
domain knowledge.    

 Keywords: Data Clustering, Cluster Validity, Information 
Visualization, Human Factor in Clustering 

1. INTRODUCTION 
Over the past decades most of the clustering research has been 
focused on automatic clustering algorithms and statistical 
validity indices. The automatic methods are known to work well 
in dealing with clusters of regular shapes, e.g. compact spherical 
shapes, but incur high error when dealing with arbitrarily shaped 
clusters. Concretely, problems with the automatic 
clustering/validation algorithms can be briefly summarized as 
follows:  

� It is hard to handle the arbitrarily shaped clusters, which 
are common in applications. Some new algorithms like 
CURE [3], WaveCluster [20] and DBSCAN [15], have 
addressed this problem and try to solve it in restricted 
situations, such as in low dimensional datasets, or the 

cluster shapes are elongated/enlarged regular ones. Yet it is 
still considered as an unsolved hard problem due to the 
complexity in multi-dimensional (>3D) space and the 
unpredictable skewed cluster distributions.  

� The arbitrarily shaped clusters also make the traditional 
statistical cluster validity indices ineffective [18], which 
leaves it difficult to determine the optimal cluster structure. 
For example, the compactness index of an elongated shape 
is not high but the quality of cluster could be considered as 
good in practice.  

� In applications, some irregularly shaped clusters may be 
formed by combining two regular clusters or by splitting 
one large cluster with the incorporation of domain 
knowledge. However, it is inconvenient to incorporate 
domain knowledge in or allow the user to steer the 
clustering process with automatic algorithms.  

One feature of the automatic clustering algorithms is that it 
almost excludes human from the clustering process, which is 
good in terms of reducing user’s workload, but which is not so 
good since the user cannot easily manipulate the process. What 
the user can do is usually setting the parameters before the 
clustering algorithm running, waiting for the algorithm 
producing the results, validating the results and repeating the 
entire process if the results are not satisfactory. Once the 
clustering algorithm starts running, the user cannot monitor or 
steer the cluster process, which also makes it hard to incorporate 
domain knowledge into the clustering process and especially 
inconvenient for large-scale clustering since the iterative cycle is 
long. This exclusion makes the existing clustering framework 
inefficient and unintuitive for the user to deal with application-
specific clustering.  

Since clustering is an unsupervised process, cluster validity 
indices are used to evaluate the quality of clusters (the 
compactness or density of clusters, and the dissimilarity between 
clusters, etc.[]) Particularly, cluster validity indices are used to 
decide the optimal number of clusters. The typical indices 
includes root-mean-square standard deviation (RMSSTD), R-
squared (RS), and S_Dbw[18, 25]. Although these indices were 
proved effective in determining the optimal number of compact 
well-separated spherical clusters, they do not work well for 
arbitrarily shaped clusters. A simple example in Figure 1 shows 
that the perfect clustering result of irregular clusters is often not 
consistent with the evaluation result. The 2D synthetic dataset 
consists of two clusters, both containing the same number of 
items and one of which is an elongated ellipse. With Euclidean 
distance the indices RMSSTD, RS and S_Dbw all suggest the k-
means clustering result (Figure 1-2) is better, which is, however, 
not recommended intuitively. A partition of three clusters 



(Figure 1-3) even gives better index values than partitions of 
two, which is not correct at all. The indices simply do not work 
in evaluating irregular clusters.     

Since the geometry and density features of clusters derived from 
the distance (similarity) relationship, determines the validity of 
clustering results, no wonder that visualization is the most 
intuitive method for validating clusters, especially the clusters in 
irregular shape. Many clustering algorithms in literature employ 
the 2D-plot of the clustering results to validate their 
effectiveness on 2D experimental datasets. However, the cluster 
visualization is not commonly used in practice because of the 
difficulty in visualizing multi-dimensional (>3D) datasets. 

Clustering algorithms and validity indices have to answer the 
two problems: “how to recognize the special structure of each 
particular dataset?” and “how to refine a given imprecise cluster 
definition?” In this paper, we propose a visual framework that 
allows the user to be involved into the clustering process via 
interactive visualization. The core of the visual framework is the 
visual cluster rendering system VISTA. VISTA can work with 
any algorithmic results – at the beginning, VISTA imports the 
algorithmic clustering result into the visual cluster rendering 
system, and then lets the user participate in the following 
“clustering-evaluation” iterations interactively. With the reliable 
mapping mechanism employed by VISTA system, the user can 
visually validate the defined clusters via interactive operations. 
The interactive operations also allow the user to refine the 
clusters or incorporate domain knowledge to define better 
cluster structure.  

Combining with the algorithmic clustering results, VISTA 
works well in improving the understanding of the cluster 
structure and the performance of validating and refining the 
arbitrarily shaped clusters. We will demonstrate the power of 
VISTA with two concrete examples – one is about how to 
validate and refine the algorithmic results with visual cluster 
rendering and the other is how to incorporate domain knowledge 
into the clustering process via visualization.    

We organize the paper as following. The visual framework and 
VISTA system are introduced in section 2; in section 3, two 
empirical examples are demonstrated in details to show the 
power of VISTA in validating and refining clusters for real 
datasets. The related work is discussed in section 4. Finally, we 
conclude our work and give some of the future work.  

2. VISTA VISUAL FRAMEWORK  
Most frequently, the clustering is not finished when the 
computer/algorithm finishes unless the user has evaluated, 
understood and accepted the patterns or results, therefore, the 
user has to be involved in the “clustering – analysis/evaluation” 
iteration. In many cases, a simplified process that employs 
automatic algorithms is like the following: 

1. Run the algorithms with initial parameters. 

2. Evaluate the cluster quality and analyse the clustering 
results with statistical indices and domain knowledge.   

3. If the result is not satisfactory, adjust the parameters 
and re-run the clustering algorithms, then do step 2 
again until the satisfactory result is found. 

4. If the result is satisfactory, do post-processing, which 
may label all of the items in the entire dataset or just 
output the cluster description.  

Concrete discussion can be found in [14]. Our discussion will 
focus on steps 2 and 3. In step 2, it is often ineffective to 
validate the arbitrarily shaped clusters with the traditional 
cluster validity indices. And it is also difficult for human to 
verify the result with the domain knowledge. In step 3, it is 
usually very time-consuming to find appropriate parameters for 
a new run. The user often has to try several sets of parameters 
and find the relations between the clustering results. For 
example, CURE [3] requires the parameter of the number of 
representative points and shrink factor and DBSCAN [15] needs 
a proper Eps and MinPts to get satisfactory clusters. 

We observed that with automatic clustering algorithms steps 2 
and 3 can only be done in sequence. The user can only tune the 
parameters before the algorithm running and then wait for and 
evaluate the results. We propose that if we can interweave these 
two steps, e.g. the user can participate in the clustering process, 
monitoring and steering the process, the entire process would be 
more efficient. Instead of achieving this interweaving by 
improving the existing automatic algorithms – which could be 
very hard – we develop an interactive cluster visual rendering 
system to get human involved in. The entire visual framework is 
like Figure 2.  

                         
     Figure 1-1 correct clustering.      1-2 k-means result              1-3 k-means result (3 clusters)  
     RMSSTD = 4.6516, RS = 0.5923   RMSSTD=4.5536, RS= 0.6093    RMSSTD= 3.4837, RS= 0.7715 
     S_Dbw = 1.5870    S_Dbw = 1.4605    S_Dbw = 1.2022 
 
     *The smaller RMSSTD, larger RS or smaller S_Dbw means the better partition in [18] 



Figure 2. Visual framework for validating and refining clusters   

Former studies [4] in the area of visual data exploration support 
the notion that visual exploration can help in cognition. Visual 
representations, especially interactive visualization, can be very 
powerful in revealing trends, highlighting outliers, showing 
clusters, and exposing gaps. Previous research shows that, with 
the right coding, human pre-attentive perceptual skills can 
enable users to recognize patterns, spot outliers, identify gaps 
and find clusters in a few hundred milliseconds [17]. For 
example, in a scatter-plot based visualization, the human visual 
ability is adept at finding the clusters – the point-dense area very 
quickly, and the shape of the cluster is identified at the same 
time too. All of the advantages make the interactive cluster 
visualization systems very attractive.  

However, there are some challenges for cluster visualization 
techniques, among which the most challenging one is cluster 
preserving– the clusters appearing in the 2D/3D visualization 
should be the real clusters in k-D (k>=3) space. Since a k-D to 
2D/3D mapping inevitably introduces visual bias, such as 
broken clusters, overlapping clusters or fake clusters formed by 
outliers, static visualization is not sufficient and additional 
rendering techniques are needed to improve the visual quality.  

In VISTA cluster rendering system, we use a linear (or affine) 
mapping [24] – α-mapping to avoid the breaking of clusters 
after mapping, but the overlapping and fake clusters may exist. 
The compensation technique is interactive dynamic 
visualization. The interactive operations are used to change the 
projection plane, which allows the user to observe the datasets 
from different perspectives. Continuously changed visualization 
usually provides important clues for the user to discriminate the 
overlapping and the fake clusters.  

While the visual cluster rendering system is combined with the 
algorithmic result, the two can improve each other. The coloured 
algorithmic result in visualization provides visual clustering 
clues – the points in same colour, i.e. the same cluster, should be 
grouped in the same area, which can guide the user to find a 
satisfactory visualization. On the other side, the satisfactory 
cluster visualization after rendering can validate the algorithmic 
results by visually checking the match of the visual cluster 
distribution and the algorithmic distribution.  Therefore, the 
better way for visual cluster rendering is to combine the 
algorithmic results with the interactive visualization system.  

The basic methodology employed in visual cluster validating 
and refining follows the steps: 

Step1. Load the dataset, (and algorithmic result if available) 

Step2. Use the interactive operations to find a satisfactory 
visualization, 

Step3. Import domain knowledge if available, make the visual 
boundaries between clusters and refine the algorithmic result if 
applicable.  

Step4. Output the refined result. 

To illustrate how the VISTA works, we will briefly introduce 
the α-mapping and some interactive operations. The initial 
version of VISTA is used to render Euclidean datasets, where 
the similarity is defined by Euclidean distance, since the 
Euclidean datasets are the most common datasets in 
applications. By default, we will not mention this again in the 
following discussion.  

αααα-mapping 

            c s1s2s3s4 s6
Circle C Q(x,y)NormalizedEuclidean SpaceP(x1,x2...x6) s5

 
Figure 3. Illustration of α-mapping with k=6 

We invent a linear mapping α-mapping that partially preserves  
k-dimensional (k-D) information in 2D space and is used to 
build a k-parameter-adjustable interactive visualization system. 
α-mapping maps k-D data to 2D star coordinates [9] and 
normalizes the visualization into the designated display area.  

A k-axis 2D star coordinates is defined by an origin o~ (x0, y0) 
and k coordinates S1, S2, …, Sk , which represent the k dimensions 
in 2D spaces. The k coordinates are equidistantly distributed on 
the circumference of the circle C, as in Figure 3, where the unit 
vectors are )ˆ,ˆ(

~
yixii uuS = , i= 1..k, 

)/2sin(ˆ),/2cos(ˆ iuiu yixi ππ == . The radius c of the circle C is 

the scaling factor, which determines the size and the detail level 
of the visualization.   

α-mapping is a parameterized mapping that utilizes star 
coordinates to establish the visualization. We describe α-
mapping as follows. Let a 2D point Q (x, y) represent a k-
dimensional max-min normalized [10] (with normalization 
bounds [-1, 1]) data point P(x0, x1,…xi…,xk) mapped onto the 2D 
star coordinates. Q(x, y) is determined by the average of the 

vector sum of k vectors is~ ·x'i (i= 1..k ) adjusted by k 

parameters (α1, α2,…, αk) and scaled by the radius c. 

αααα-mapping:  
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i.e. the position of Q (x, y)is determined by,  
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The αi (i = 1,2,…k, –1≤αi ≤1) in the definition are dimensional 
adjustment parameters, one for each of the k dimensions – that is 
where the name “α-mapping” comes from. αi is set to 0.5 
initially.  
 
The α-mapping has two properties: 
� The mapping is linear. Without loss of generality, we set 

o~ to (0, 0). It is easy to see the α-mapping is a linear 
mapping, given the constants αi. It is known that the linear 
mapping does not break clusters but may cause overlapping 
clusters [24, 9], and sometimes, overlapping outliers to 
form fake clusters. Given that the α-mapping is linear and 
there is no “broken clusters” in the visualization, each gap 
seen in visualization confirms a real gap in the original 
space. What we need to do is to separate the overlapping 
clusters, and the falsely clustered outliers, which could be 
done with the help of interactive operations.  

� The mapping is adjustable by αi. αi (i = 1,2,…k, –1≤αi ≤1) 
can be regarded as the weight of the i-th dimension, which 
means how significant the i-th dimension is in the 
visualization. By changing αi continuously, we can see the 
effect of the i-th dimension on the cluster distribution. In 
addition, when one α value or several α values are changed 
continuously at the same time, the k-D dataset is mapped to 
a series of smoothly changed projections, which provide 
important cluster clues.  

The visual rendering operations 
The VISTA system looks like Figure 4. The task of the VISTA 
cluster rendering system is to provide the interactive 
visualization techniques to help the users find and separate the 

overlapping clusters through continuously changed 
visualization. We have designed and implemented a set of 
interactive rendering operations in VISTA.   

αααα-parameter adjustment 

The most important operation in VISTA system is α-parameter 
adjustment (or simply, α-adjustment). This operation changes 
the α parameters defined in formula (1). Each change refreshes 
the visualization in real time (about several hundred 
milliseconds, depending on different hardware configurations 
and the size of dataset). α-parameter adjustment enables the user 
to find the dominating dimensions, to observe the dataset from 
different perspectives and to distinguish the real clusters from 
overlapping with a series of continuously changed 
visualizations.  

Continuous α-parameter adjustment of one dimension looks at 
the effect of this dimension on the entire visualization. If we 
adjust the α value of the dimension i, the point movement can 
be represented by:  
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which means that the points having larger xi will be moving  
faster along the direction of i-th coordinate in star coordinates, 
similar xi moving in a similar way. This point movement reveals 
the characteristics of dimension i. In Euclidean datasets, 
changing α value of any dimension of the two points, which 
have similar values in each dimension and thus close to each 
other, does not change the distance of the two points a lot.  This 
means close points tend to move together in any α-adjustment. 
This property makes α-adjustment very effective in revealing 
cluster overlapping. The corresponding dimension-by-
dimension rendering rules [1] are proved very effective in 
practice to find cluster boundary.  

Compared to the basic rendering techniques “axis scaling” and 
“axis rotation” in the original star coordinates system [9], 

 
Figure 4  VISTA system 



VISTA α-adjustment, powered by the VISTA visualization 
model, can solely support the user to find satisfactory 
visualization. In fact, α-adjustment together with the zooming 
factor c, determines the range of possible projection planes that 
α-adjustment can cover. Since the zooming factor c does not 
change the structure of the content in visualization, only is the 
α-adjustment enough to provide the informative projection 
planes. The mapping described in the original star 
coordinates[9] can be actually rephrased in VISTA visualization 
model: the original k-dimensional point P(x0, x1,…xi…,xk) is 
normalized to [0, 1] and αi (i = 1,2,…k) is limited to [0, 1]. The 
positive-only α-adjustment shows the dynamic visual effect just 
as the “axis scaling” described by the author. Nevertheless, α-
adjustment in [-1, 1] defines more than “axis scaling”.  

In general, α-adjustment in different range can be intuitively 
understood as the projection of “visual rotation* ” of point cloud 
around the perpendicular axis of coordinate i. Different α-value 
range defines different rotation angle (Figure 5). For example, 
“axis scaling” can be regarded as the projection of rotation from 
0º to 90º around the perpendicular axis as shown in Figure 5-1.  

While the range of α-values determines the ability of interactive 
operations, the scope of the normalized original values 
influences the result of visualization. To make the demonstration 
clearer, without loss of generality we consider the situation that 
the main contributing dimension is i with a set of α-values, e.g. 
(c/k)∑1 ≤ j ≤ k   αj * x

′
j* js

≈  (c/k) αi * x
′
i* is . When the values in 

dimension i are normalized to [0, 1], in the original star 
coordinates the point cloud always distributes along the positive 
direction of Si, which squeezes the effective visualization onto 
one side of the display area and shows less details inside the 
point cloud (Figure 5-1). Whereas, normalizing to [-1, 1] 
elongates the point cloud and allows the user to observe more 
details (Figure 5-3).  

Combining the different scopes of normalized values and α 
values, we can observe different effects of α-parameter 
adjustment. We list four typical intuitive rendering effects as in 
Figure 5. α-mapping in VISTA model is the case in Figure 5-4, 
which efficiently utilizes the entire display area and enables 
“180º rotation” of data points along the centre perpendicular 
axis. The original mapping in star coordinates is the case in 
Figure 5-1, which tends to squeeze the point clouds and thus 
limit the observation angles. To sum up, VISTA visualization 

                                                                 
* observed as rotation in continuous α-adjustment 

model enables the design of more powerful interactive 
operations. 

Other operations 

Since α-parameter adjustment is the most frequently used one, 
some operations, such as random rendering and automatic 
rendering, are used to increase the efficiency of α-parameter 
adjustment [1]. Another set of operations support point-set-
oriented operations and are used to refine visual cluster 
definition after we get initial cluster visualization with α-
parameter adjustment. These operations include subset selection, 
cluster marking, cluster splitting, cluster merging, and 
hierarchical structure defining. Domain knowledge in form of 
labelled items can be incorporated into visualization. Most of 
the following operations are designed for cluster refining and 
high-level structure defining yet not defined in [1]. 

� Subset selection  

This operation defines a subset of points by freehand 
drawing an enclosed region on screen or selecting a range 
of one dimension. The selected subset can be used for 
further processing, such as cluster marking, merging and 
splitting.   

Initially, we have one subset, which is the entire dataset. 
The clusters are defined as subsets. We name i-th subset as 
ssi. After loading labels, which define c clusters, the subsets 
becomes (ss1, ss2, …, ssc). Suppose before selection, we 
have had m subsets ordered as (ss1, ss2, …, ssm) . The 
(m+1)-th subset is selected from one or more subsets. We 
define subset selection as following, where ‘-‘ is set 
difference operation.   

),...,,...,()...,,...,(:)( 111111 ++++ −−−→ mmmmimmi ssssssssssssssssssssmSS
 

� Merging & splitting clusters 

These two operations enable the user to refine the 
visualized algorithmic clustering result. If the user finds a 
part of a cluster should be semantically separated from the 
cluster, she/he can use selection operation to select this part 
and then excludes it from the cluster. If two nearby clusters 
should be regarded as one cluster from the domain 
knowledge, the user just selects them and merges them into 
one cluster. A Cluster boundary can be refined by merging 
and splitting operations, too. Splitting subset i to subset i1 
and i2, and merging subset i to j are defined as following, 
where ‘U’ is set union operation. 

    

Figure 5-1: α [0,1], norm [0, 1]      5-2 α[-1,1], norm[0,1]           5-3 α[0,1], norm[-1,1]        5-4  α[-1,1], norm[-1,1] 
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� Defining hierarchical cluster structure 

With the operations of defining the cluster hierarchy, the 
user can group the clusters together to form a higher level 
cluster structure, or the user can zoom into one large cluster 
and find the fine cluster structure in the cluster iteratively. 
These operations together define a layered cluster structure. 
With the operations of zooming in or zooming out, the user 
can find the cluster details at different level. When we are 
rendering at some layer j, where it has m subsets, and want 
to group k selected clusters, the hierarchy defines: 
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where, ssi1 … ssik are the grouped subsets and ss
׳
j ⊂ (ss1, 

ss2,… ssm).  

� Importing domain knowledge 

A set of domain knowledge is transferred to a set of k-D 
items with different group identities. These items are 
imported into the visual rendering system and rendered in 
different colours with different groups. These coloured 

items act as the guidance to re-define the cluster partition 
with domain knowledge.  

If domain knowledge is represented by k groups of items, 
these items form k new subsets after they are loaded, which 
then used to direct further cluster splitting or merging. For 
example, if g1 covers ss1 and ss2, then we can consider 
merging them. 
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3. EMPIRICAL STUDY 
In this section, we will introduce two examples of visual 
rendering. The first one demonstrates the ability of VISTA 
visual validating and interactive refining. The second one shows 
how to incorporate domain knowledge into VISTA visual 
cluster rendering. The datasets used in the examples can be 
found at [28].  

3.1 Analyzing the “Iris” dataset 
In this example, we will use the most popular clustering 
algorithm – k-means [12] to produce the clustering result on the 
dataset “iris”, and then import the result into VISTA system. 
With VISTA system, we will validate the k-means result 
visually and then try to refine the clusters and improve the 
quality of the k-means clusters. The quality of clusters will be 
also evaluated by statistical indices RMSSTD, RS, and S_Dbw 
[18, 25] at the same time to see if the statistical indices are 
consistent with the visual improvement.  

“Iris” dataset is a famous dataset widely used in pattern 
recognition and clustering. It is a 4-D dataset containing 150 
instances, and there are three clusters, each has 50 instances. 
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Figure 6-1: the initial visualization with k-means labels   Figure 6-2: k-means result, RMSSTD =0.4108, RS = 0.8002,  

S_Dbw = 1.4158 



One cluster is linearly separable from the other two; the latter 
two are not exactly linearly separable from each other.  

Firstly, we load the dataset and import the k-means labels for 
“iris” dataset into the visualization. Different clusters are 
visualized in different colors. The initial visualization is like 
Figure 6-1, where we can find one cluster has been separated 
from the other two. After interactive cluster rendering, mainly 
the α-parameter adjustment, the visual boundaries become 
clearer (Figure 6-2). The boundary B-C clearly separates cluster 
C from the other two clusters. The gap between cluster A and B 
can be visually perceived but not so clear. The α-mapping 
model confirms that this gap does exist in the 4-D space since α-
mapping does not break clusters. We make this gap as the visual 
boundary A-B. This visually perceived boundary A-B is not 
consistent with the k-means boundary, but we have more 
confidence with it since it has been intuitively confirmed. There 
is a principle in visual cluster rendering – we prefer visual 
perception rather than statistical information because we believe 
the visual ability is better than statistical methods in dealing 
with arbitrarily shapes.  

Considering this visual boundary, we want to edit the k-means 
result with visual cluster editing operations. First, we split the 
points that belong to cluster A but visualized in cluster B, from 
cluster A. These points are then merged into cluster B. Do the 
same operation on the B points in cluster A as shown in Figure 
6-3. After the editing operations, the points in the clusters are 
shown more homogeneously (Figure 6-4). The visual partition 
exactly reflects the real cluster distribution (compare Figure 6-4 
and 6-5).  

We check the validating results of the widely used cluster 
validity indices RMSSTD, RS and S_Dbw, to see if the 
statistical validation is consistent with the visual improvement. 
RMSSTD is used to estimate the homogeneity of the clusters. 
Smaller RMSSTD indicates that the clusters are more compact. 
RS is used to estimate the dissimilarity between clusters. Larger 

RS indicates higher dissimilarity between groups. S_Dbw is a 
compound evaluation of compactness and dissimilarity, e.g. the 
overall quality of clusters. The smaller S_Dbw implies the better 
quality. [18]  

The statistical evaluation shows RMSSTD is increased from 
0.4421 to 0.4614, RS is decreased from 0.8254 to 0.8098, and 
S_Dbw rises from 1.4158 to 1.5115 after visual rendering. This 
means the compactness of clusters and the dissimilarity between 
clusters are decreased at the same time – the quality of clustering 
after visual improvement is worse than the k-means result in 
statistics, which is not correct in practice! The irregular shapes 
of A and B, together with the closeness to each other, makes the 
statistical methods ineffective in this scenario.    

 
Figure 6-5: the real cluster distribution visualized with the labels 

from the original dataset. 
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Figure 6-3: Editing the clusters     Figure 6-4: After editing, EMSSTD = 0.4396, RS=0.7712,  

S_Dbw =1.5115 



As the literature of the “iris” dataset mentioned, the clusters A 
and B are not linearly separable. To further refine the cluster 
definition, we can also informally define a small “ambiguous 
area” around the gap between A and B, the points in which have 
equal probability of belonging to A or B. In addition, in 
extended experiments with trained users, all users can find the 
visualization like Figure 6-4, which means visual validity could 
be very practical in exploring certain datasets. We will support 
this assertion with more experimental result in section 3.3. 

In conclusion, we believe that the VISTA system is better than 
the statistical indices, in terms of validating arbitrarily shaped 
clusters. In this example, we have seen that sometimes the vague 
boundary between the two clusters is easily checked by human 
visual ability but it is not so easy for the automatic algorithms. 
In addition, this example also shows the power of online 
refining ability of the VISTA system – after validation, the user 
can improve the quality of clusters immediately by editing the 
clusters – which effectively combines the two steps “re-
clustering” and “evaluation” together. Certainly, in cases where 
the clusters are not easily be visualized, e.g. clusters in very 
high-dimensional datasets, (e.g. >50 dims for VISTA), the 
statistical indices are still the only choice, even though it is not 
so effective.  

3.2 Incorporating Domain knowledge 
In this empirical example, we will demonstrate that the VISTA 
system can conveniently incorporate the domain knowledge into 
the clustering process and provide intuitive clues for the user to 
define the application-specific clusters. We first define the form 
of “domain knowledge” that can be utilized in VISTA system, 
and then show how to use the domain knowledge to distinguish 
the application-specific cluster distribution with the example of 
rendering “shuttle” dataset.  

Domain knowledge plays a critical role in the clustering process 
[14]. It is the semantic explanation to the data, which is different 
from the structural clustering criteria, such as distance between 

points. Domain knowledge usually leads to a high-level cluster 
distribution, which may be different from the structural 
clustering results, for example, the original clusters may be 
grouped to form larger clusters or split to form finer cluster 
structure.  

Domain knowledge can be represented in various forms in 
Artificial Intelligence [14]. In VISTA system, we require only 
one of the simplest forms to provide the domain-related 
clustering criteria. We define the domain knowledge as 
following: 

Suppose the dataset contains a set of instances {Xi} and the 
user have some knowledge about the application. The form 
of the domain knowledge can be the specific properties, the 
experimental results, or any hypotheses the application 
holds. We need a small number of typical instances X1, X2, 
…, Xn (n << the number of items N in the dataset) to reflect 
the properties, or the experimental results. According to the 
domain knowledge, this set of instances should be 
partitioned into m groups. The m groups are represented by 
g1(X1,1, X1,2,…, X1,t1), g2(X2,1, X2,2, …, X2,t2),…gm(Xm,1, X 

m,2, …, X m,tm). We give labels to the instances so that each 
instance is represented as (instance, label#). Therefore, we 
have the n instances labeled as  

(X1,1, 1) (X1,2, 1)… (X1,t1, 1) 

… 

(Xm,1, m) (Xm,2, m)… (Xm,mt, m) 

They are regarded as additional points of the dataset, with 
domain categorical labels. We name them “landmarks” in 
VISTA system. The number of the instances is so small that 
they cannot work effectively as a training dataset for 
classification algorithms to classify the entire datasets.  

When visualizing a dataset, the landmark points are loaded and 
visualized in different colors according to their categorical ID. 
This guiding information can direct the user to define the high-
level cluster structure, or to refine the algorithmic clustering 
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Figure 7-1: The visualization after initial rendering operations       Figure 7-2: The landmarks and suggested cluster structure. 

 



results. Automatic algorithms have no such abilities, or it is very 
inefficient or clumsy to incorporate this functionality into the 
automatic algorithms.    

An alternative method is to visualize the dataset first and then 
sample some points from the “critical areas” on the 
visualization, such as the connective area of two point clouds. 
The sample points are classified with the domain knowledge and 
re-imported into the visualization as the “landmarks” to direct 
rendering.  

We use the “shuttle” dataset and the second method to 
demonstrate how the VISTA system incorporates the domain 
knowledge into the clustering process. “Shuttle” dataset is a 9-D 
dataset. There are three large clusters and some tiny clusters in 
the dataset. Approximately 80% of the data belongs to one 
cluster. The other two large clusters have about 15% and 5% 
points, respectively. We use the testing dataset, which has 14500 
items, for visualization. 

After loading the dataset and adjusting the α parameters, we get 
the initial visualization, which shows the cluster distribution is 
highly irregular. There are five homogenous segments (Figure 7-
1). We have no idea whether they are five individual clusters, or 
they should be grouped or split to form higher-level clusters. 

We then pick several points from the visualization, which 
should ideally cover the connective areas. Suppose the “expert” 
with experiments or any domain knowledge (use the labels from 
the original datasets to mimic) tells us the sample points should 
be grouped into three clusters. Using them as the “landmarks”, 
we find a possible cluster structure as in Figure 7-2. To observe 
the landmarks clearly, we visualized other data points in white 
color. The result shows the datasets probably should be 
partitioned in the suggested way. The real cluster distribution of 
the “shuttle dataset” is visualized in Figure 7-3 for comparison.  

 
Figure 7-3: the clusters with original labels 

To sum up, since the automatic algorithms exclude the human 
from the clustering process, the domain knowledge cannot be 
easily incorporated into the clustering process. With the help of 
VISTA system, the user is able to incorporate the domain 
knowledge into the clustering process to define application-
specific cluster distribution online. This combination of human-

based analysis/evaluation and clustering process breaks the gap 
between human and the machines, and thus improves the 
efficiency of the entire cluster analysis process. 

3.3 More Experimental Results 
The VISTA visual clustering system was implemented in Java. 
In this section we will introduce more experimental results to 
show the power of visual cluster rendering system in finding 
clusters individually or in combining any external information to 
provide better clustering results. These experiments were 
conducted on a number of well-known datasets that can be 
found in UCI machine learning database[28]. These datasets, 
although small or median in size, have irregular cluster 
distribution, which is an important factor for testing the 
effectiveness of the VISTA system. 

Five well-trained users use the VISTA cluster rendering system 
to find satisfactory visualization for each of the ten datasets. 
After we use the interactive visual operations to find the 
satisfactory visualization, either solely by visual rendering or 
incorporated by algorithmic result, we mark the areas which are 
regarded as clusters and the items in each area are respectively 
labelled with the cluster ID. With the original labels in the 
datasets, we define the items that are wrongly clustered as the 
errors, the number of which divided by the size of the dataset is 
the error rate of visual cluster rendering on this dataset. 

We firstly use unguided visual rendering (UGV) to find the 
visual partition. Unguided visual rendering does not rely on any 
external information and only depends on the visually observed 
dense-point areas and the gaps between the areas. Since there is 
visual bias on the visualization, the visual rendering sometimes 
may trap in local minima, where the user thinks the visualization 
is satisfactory enough for defining cluster boundaries. We want 
to avoid trapping in local minima by incorporating some 
external information, either from other clustering algorithms or 
domain knowledge. In our experiments, 10% of labelled items 
randomly selected from the original datasets are used as the 
“landmarks”. We also compare the results of K-means and 
CURE algorithms on the experimental datasets. CURE 
clustering is recognized as one that can deal with irregular 
cluster shapes in some level, and K-means is the most popular 
algorithm commonly used in research or applications. The 
experiment shows that individually CURE or K-means cannot 
deal the arbitrarily shaped clusters very well and UGV may trap 
into some local minima, but by combining with the external 
information we can improve the UGV result more or less. The 
result also shows the visualization result, either UGV or 
combined rendering, is often better than algorithmic result for 
arbitrarily shaped clusters. Most of the interaction time is less 
than 5 mins, which means it is not difficult for a trained user to 
find a satisfactory visualization.  

We list the experimental results in Table 1, where N is the 
number of rows in the given dataset, k is dimensionality of the 
dataset, and c is the number of clusters in the dataset. 
“UGV(%)” is error rates (%) of unguided visual rendering 
result. “Combo(%)” is the error rates(%) of the combining of 
UGV with the “landmark points”. “Time(min)” is the interaction 
time used in the “combo” method. “CURE(%)” is error rates 
(%) of CURE clustering algorithm. “K-means(%)” is the error 
rates (%) of K-means clustering algorithm.  



 

4. RELATED WORK 
The common cluster analysis framework is described in the 
clustering review paper [14]. Recently, some algorithms have 
been developed to deal with arbitrarily shaped clusters. CURE 
[3] uses a set of representative points to describe the boundary 
of a cluster in its hierarchical algorithm. But the number of 
representative points increases dramatically with the increase of 
the complexity of cluster shapes in order to maintain the 
precision. CHAMELEON [23] employs a multilevel graph 
partitioning algorithm on the k-Nearest Neighbour graph, which 
may produce better results than CURE on complex cluster 
shapes for spatial datasets. But the high complexity of the 
algorithms prevents its application on higher dimensional 
datasets. DBSCAN [15] is a density-based algorithm but it is 
very sensitive to the parameter Eps and MinPts. The 
distribution-based algorithm DBCLASD [22] and the wavelet 
transformation based algorithm WaveCluster [20] were also 
reported as being efficient only in spatial datasets. In 
conclusion, the automatic algorithms can deal with the 
arbitrarily shaped clusters in some situations, but the results are 
not general enough to apply to any application which has 
dimensionality higher than 3D. The most difficult problem is, 
for high-dimensional (>3D) datasets, the arbitrarily shaped 
clusters produced by the automatic algorithms are hard to be 
validated, since the statistical indices [18] are not effective for 
such clusters.   

Information visualization is commonly recognized as a useful 
method for understanding sophistication in datasets. Many 
efforts have been made to analyze the datasets in a visual way. 
We discuss the scatterplot-based techniques only because it is 
the most intuitive techniques for cluster visualization. The early 
research on general plot-based data visualization is Grand Tour 
and Projection Pursuit [7]. Since there are numerous projections 
from a multidimensional data space to a 2D space, the purpose 
of the Grand Tour and the Project Pursuit is to guide the user to 
find the interesting projections. L.Yang [8] utilizes the Grand 
Tour technique to show projections of datasets in an animation. 
They projected the dimensions to coordinates in a 3D space. 
However, when the 3D space is shown on a 2D screen, some 
axes may be overlapped by other axes, which make it hard to 
perform direct interactions on dimensions. Dhillon [5] provides 
a method for visualizing only 3 clusters while preserving the 
distances. When more than 3 clusters exist, his method needs the 
help of Grand Tour techniques. Other techniques, such as 

Scatterplot matrices, coplots, prosection [2] and FastMap based 
visualization [21, 19] only create static visualization, which 
inevitably distorts the cluster structure but have no effective 
methods to rectify it, thus do not provide enough information for 
correct clustering. In the KDD 2002 tutorial [13], more 
visualization methods were also discussed.  

Star Coordinates [9] is a visualization system designed to 
visualize and analyze the clusters interactively. We utilize the 
form of Star Coordinates and build a normalized α -mapping 
model in our system. We have discussed that α -mapping model 
extends the ability of the original mapping in star coordinates 
paper and demonstrated the particular ability of VISTA system 
in visually validating and refining clusters.   

HD-Eye [26] is another interactive visual clustering system. 
HD-Eye visualizes the density-plot of the interesting projection 
of two of the k dimensions. It uses icons to represent the 
possible clusters in each projection and the relationship between 
the clusters. However, it is hard for users to synthesize all of the 
interesting 2D projections to find the general pattern of the 
clusters. In fact, visually determining the basic cluster 
distribution solely through user interaction is not necessary. The 
semi-automatic 1D visualization based algorithm OPTICS [27] 
actually works well in finding the basic arbitrarily shaped 
clusters, the result of which can be utilized by some high-level 
visualization systems, such as VISTA. However, OPTICS itself 
cannot be easily applied to analyze the shape of clusters and the 
distance relationship between clusters, or to incorporate any 
domain knowledge in cluster analysis. 

5. CONCLUSION 
Most of researchers have focused on automatic clustering 
algorithms, but very few have addressed the human factor in the 
clustering process. Although the existing clustering algorithms 
and cluster validity methods are working well on spherical 
clusters with some statistical assumptions, they have 
encountered the difficulty in dealing with arbitrarily shaped 
clusters. In order to solve this problem, we have to check the 
human factor in the clustering process more carefully. The 
VISTA system demonstrates some possible ways to introduce 
the users into the clustering process.  

In this paper, we proposed the VISTA visual framework to 
combine the algorithmic results with visual cluster rendering 
system. The power of VISTA visual cluster rendering system 
enables the users to visually validate and interactively refine the 
clusters. It also allows the users to incorporate domain 
knowledge into the clustering process in a convenient way. The 

Dataset N k c UGV(%) Combo(%) Time (min) CURE (%) K-means(%) 
Bre-canc-wisc 699 10 2 16.7 3.3 ± 0.4 1.6 ± 0.3 8.6 5.1 

Crx 690 15 2 20.2 14.5 ± 0.3 2.3 ± 0.8 46.8 48.0 
Iris 151 4 3 5.5 0.7 ± 1.2 1.9 ± 0.3 32.7 11.3 

Page-blocks 5473 10 5 13.0 7.8 ± 0.2 2.6 ± 0.4 32.7 45.6 
Hepatitis 155 19 2 21.9 21.7 ± 2.4 2.7 ± 0.2 35.7 42.6 

Heart 270 12 2 24.0 18.6 ± 1.5 2.3 ± 0.5 47.4 21.1 
Mushroom 8124 21 2 24.7 8.4 ± 0.3 5.5 ± 0.4 31.9 40.2 
Australian 690 14 2 15.4 14.6 ± 0.7 2.6 ± 0.9 36.8 14.5 

Wine 178 12 3 7.9 2.1 ± 0.5 3.1 ± 0.4 32.0 5.6 
Shuttle.test 14500 9 7 10.2 4.0 ± 0.4 1.7 ± 0.2 20.5 23.2 

Table 1: More experimental results on typical datasets having irregular cluster distribution 



empirical study shows that the VISTA framework/system works 
very well in visual validating and refining the algorithmic 
clustering results. 

The current VISTA system can handle datasets with 
dimensionality less then 50. Dimensionality higher than or close 
to 50 will cause the difficulty in human visual understanding 
and operations. The system capability also restricts the number 
of data items that can be handled. In the experimental system 
(P4, 1.6G, 256M), the VISTA system can handle about 100K 
points and refresh the visualization in real-time (several 
hundreds of milliseconds). The future work will be focused on 
handling high-dimensional and larger datasets. 
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