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ABSTRACT

Clustering is an important technique for undersitagaf
large multi-dimensional datasets. Most of clusigrin
research to date has been focused on developingatic
clustering algorithms and cluster validation methotihe
automatic algorithms are known to work well in diegl
with clusters of regular shapes, e.g. compact $gier
shapes, but may incur higher error rates when mgalith
arbitrarily shaped clusters. Although some effonve
been devoted to addressing the problem of skewedels,
the problem of handling clusters with irregular @& is
still in its infancy, especially in terms of diménsality of
the datasets and the precision of the clusterirsylte
considered. Not surprisingly, the statistical irdiovorks
ineffective in validating clusters of irregular gles, too. In
this paper, we address the problem of clusterind an
validating arbitrarily shaped clusters with a visua
framework (VISTA). The main idea of the VISTA
approach is to capitalize on the power of visuéliraand
interactive feedbacks to encourage domain expests t
participate in the clustering revision and clustgri
validation process. The VISTA system has two unique
features. First, it implements a linear and reégabl
visualization model to interactively visualize niult
dimensional datasets in a 2D star-coordinate sj&®ond,

it provides a rich set of user-friendly interactiendering
operations, allowing users to validate and refiree dluster
structure based on their visual experience as aselheir
domain knowledge.

Keywords: Data Clustering, Cluster Validity, Information
Visualization, Human Factor in Clustering

1. INTRODUCTION

Over the past decades most of the clustering relsdes been
focused on automatic clustering algorithms and issiedl
validity indices. The automatic methods are knowmvork well
in dealing with clusters of regular shapes, e.gamact spherical
shapes, but incur high error when dealing withteaihly shaped

clusters.  Concretely, problems with the automatic

clustering/validation algorithms can be briefly suarized as
follows:

= It is hard to handle the arbitrarily shaped clustavhich
are common in applications. Some new algorithme lik
CURE [3], WaveCluster [20] and DBSCAN [15], have
addressed this problem and try to solve it in retsil
situations, such as in low dimensional datasetsther

cluster shapes are elongated/enlarged regular ¥eed is
still considered as an unsolved hard problem duéhéo
complexity in multi-dimensional (>3D) space and the
unpredictable skewed cluster distributions.

= The arbitrarily shaped clusters also make the ticadil
statistical cluster validity indices ineffective 81 which
leaves it difficult to determine the optimal clusséructure.
For example, the compactness index of an elongstage
is not high but the quality of cluster could be sidered as
good in practice.

= In applications, some irregularly shaped clusteey rhe
formed by combining two regular clusters or by tiplg
one large cluster with the incorporation of domain
knowledge. However, it is inconvenient to incorgera
domain knowledge in or allow the user to steer the
clustering process with automatic algorithms.

One feature of the automatic clustering algorithmghat it
almost excludes human from the clustering procedsch is

good in terms of reducing user’'s workload, but Wehig not so
good since the user cannot easily manipulate tbeegs. What
the user can do is usually setting the parametefsrd the
clustering algorithm running, waiting for the algbm

producing the results, validating the results aepleating the
entire process if the results are not satisfact@yce the
clustering algorithm starts running, the user cammonitor or
steer the cluster process, which also makes it toairtcorporate
domain knowledge into the clustering process argkdally
inconvenient for large-scale clustering since theative cycle is
long. This exclusion makes the existing clusterframework
inefficient and unintuitive for the user to dealthvapplication-
specific clustering.

Since clustering is an unsupervised process, clusiédity
indices are used to evaluate the quality of clastéhe
compactness or density of clusters, and the diksityibetween
clusters, etc.[]) Particularly, cluster validitydices are used to
decide the optimal number of clusters. The typicalices
includes root-mean-square standard deviation (RMBSR-
squared (RS), and S_Dbw[18, 25]. Although thes&éaxwere
proved effective in determining the optimal numbécompact
well-separated spherical clusters, they do not woell for
arbitrarily shaped clusters. A simple example igufé 1 shows
that the perfect clustering result of irregularstérs is often not
consistent with the evaluation result. The 2D sgfithdataset
consists of two clusters, both containing the sammber of
items and one of which is an elongated ellipse hVEiticlidean
distance the indices RMSSTD, RS and S_Dbw all sstghe k-
means clustering result (Figure 1-2) is better,cihis, however,
not recommended intuitively. A partition of thredusters



Figure 1-1 correct clustering.
RMSSTD = 4.6516, RS = 0.5923
S_Dbw = 1.5870

1-2 k-meegsult
RMSSTD=4.55365 0.6093
S_Dbw = 1.4605

1-3 k-means result (3 cljter
RMSSTD= 3.4837, RS=0.7715
S_Dbw2022

*The smaller RMSSTD, larger RS or smaller Swibeans the better partition in [18]

(Figure 1-3) even gives better index values thartitipms of
two, which is not correct at all. The indices signdb not work
in evaluating irregular clusters.

Since the geometry and density features of clusterived from
the distance (similarity) relationship, determiriee validity of
clustering results, no wonder that visualizationth& most
intuitive method for validating clusters, espegidhie clusters in
irregular shape. Many clustering algorithms inrlitere employ
the 2D-plot of the clustering results to validatéeit

effectiveness on 2D experimental datasets. Howelercluster
visualization is not commonly used in practice hseaof the
difficulty in visualizing multi-dimensional (>3D)atasets.

Clustering algorithms and validity indices haveaioswer the
two problems: “how to recognize the special streetaf each
particular dataset?” and “how to refine a givenriegise cluster
definition?” In this paper, we propose a visuahfeavork that
allows the user to be involved into the clusterprgcess via
interactive visualization. The core of the visuanfiework is the
visual cluster rendering system VISTA. VISTA canrlaevith

any algorithmic results — at the beginning, VISTApborts the
algorithmic clustering result into the visual ckistrendering
system, and then lets the user participate in tiving

“clustering-evaluation” iterations interactively.it the reliable
mapping mechanism employed by VISTA system, the oae
visually validate the defined clusters via interaztoperations.
The interactive operations also allow the user dgfine the
clusters or incorporate domain knowledge to defbedter
cluster structure.

Combining with the algorithmic clustering result§]JSTA

works well in improving the understanding of theuster
structure and the performance of validating andhirgf the
arbitrarily shaped clusters. We will demonstrate gower of
VISTA with two concrete examples — one is about hiow
validate and refine the algorithmic results wittsual cluster
rendering and the other is how to incorporate darkabwledge
into the clustering process via visualization.

We organize the paper as following. The visual faork and
VISTA system are introduced in section 2; in settly two
empirical examples are demonstrated in details htowsthe
power of VISTA in validating and refining clustefer real
datasets. The related work is discussed in sedtidfinally, we
conclude our work and give some of the future work.

2. VISTA VISUAL FRAMEWORK

Most frequently, the clustering is not finished whehe
computer/algorithm finishes unless the user hasluated,
understood and accepted the patterns or resutiggftine, the
user has to be involved in the “clustering — arialggaluation”
iteration. In many cases, a simplified process thaiploys
automatic algorithms is like the following:

1. Run the algorithms with initial parameters.

2. Evaluate the cluster quality and analyse theteting
results with statistical indices and domain knowked

3. If the result is not satisfactory, adjust theapaeters
and re-run the clustering algorithms, then do sep
again until the satisfactory result is found.

4. If the result is satisfactory, do post-procegsimhich
may label all of the items in the entire datasejust
output the cluster description.

Concrete discussion can be found in [14]. Our disimn will
focus on steps 2 and 3. In step 2, it is oftenfauwtive to
validate the arbitrarily shaped clusters with thraditional
cluster validity indices. And it is also difficufor human to
verify the result with the domain knowledge. Inpst8, it is
usually very time-consuming to find appropriategmaeters for
a new run. The user often has to try several depa@meters
and find the relations between the clustering tesuFor
example, CURE [3] requires the parameter of the bemof
representative points and shrink factor and DBSCE® needs
a proper Eps and MinPts to get satisfactory claster

We observed that with automatic clustering algonghsteps 2
and 3 can only be done in sequence. The user dariune the
parameters before the algorithm running and theit feaand
evaluate the results. We propose that if we carweave these
two steps, e.g. the user can participate in thsteling process,
monitoring and steering the process, the entiregg®would be
more efficient. Instead of achieving this interwieav by
improving the existing automatic algorithms — whiobuld be
very hard — we develop an interactive cluster \iseadering
system to get human involved in. The entire visteahework is
like Figure 2.
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Figure 2. Visual framework for validating and réfig clusters

Former studies [4] in the area of visual data epgilon support
the notion that visual exploration can help in dtgn. Visual
representations, especially interactive visualirgtican be very
powerful in revealing trends, highlighting outliershowing
clusters, and exposing gaps. Previous researchsstiay with
the right coding, human pre-attentive perceptudllssican
enable users to recognize patterns, spot outlidesitify gaps
and find clusters in a few hundred milliseconds][1For
example, in a scatter-plot based visualization,hhman visual
ability is adept at finding the clusters — the palense area very
quickly, and the shape of the cluster is identif@dthe same
time too. All of the advantages make the interactoluster
visualization systems very attractive.

However, there are some challenges for clusteraliiation
techniques, among which the most challenging oneluster
preserving— the clusters appearing in the 2D/3Mialigation
should be the real clusters in k-D (k>=3) spacec&ia k-D to
2D/3D mapping inevitably introduces visual bias,ctsuas
broken clusters, overlapping clusters or fake elssformed by
outliers, static visualization is not sufficient daradditional
rendering techniques are needed to improve thaligiality.

In VISTA cluster rendering system, we use a lingaraffine)
mapping [24] —a-mapping to avoid the breaking of clusters
after mapping, but the overlapping and fake clgsteay exist.
The compensation technique is interactive
visualization. The interactive operations are usedhange the
projection plane, which allows the user to obsehe datasets
from different perspectives. Continuously changedialization
usually provides important clues for the user gcdminate the
overlapping and the fake clusters.

While the visual cluster rendering system is corabimith the
algorithmic result, the two can improve each otfiéxe coloured
algorithmic result in visualization provides visuelustering
clues — the points in same colour, i.e. the sangel, should be
grouped in the same area, which can guide the tosénd a
satisfactory visualization. On the other side, #atisfactory
cluster visualization after rendering can validdue algorithmic
results by visually checking the match of the visolster
distribution and the algorithmic distribution. Théore, the
better way for visual cluster rendering is to comebithe
algorithmic results with the interactive visualipat system.

The basic methodology employed in visual clustdidating
and refining follows the steps:

dynamic

Stepl.Load the dataset, (and algorithmic result if ealzli)

Step2. Use the interactive operations to find a satisfigct
visualization,

Step3. Import domain knowledge if available, make theuais
boundaries between clusters and refine the algoidthesult if
applicable.

Step4.Output the refined result.

To illustrate how the VISTA works, we will brieflintroduce
the a-mapping and some interactive operations. The ainiti
version of VISTA is used to render Euclidean dagsehere
the similarity is defined by Euclidean distancencsi the
Euclidean datasets are the most common datasets
applications. By default, we will not mention thagain in the
following discussion.

a-mapping

Circle C

Normalized .-" -
Fuclidean Sp’a(‘,o

P(x,, %0 %)

Figure 3. lllustration ofi-mapping withk=6

We invent a linear mapping-mapping that partially preserves
k-dimensional K-D) information in 2D space and is used to
build a k-parameter-adjustable interactive visualizationtesys
o-mapping mapsk-D data to 2D star coordinates [9] and
normalizes the visualization into the designatespldiy area.

A k-axis 2D star coordinates is defined by an origirxy, o)
andk coordinatess; S, .. S, which represent thiedimensions

in 2D spaces. Thk coordinates are equidistantly distributed on

the circumference of the circg, as in Figure 3, where the unit
vectors are § = (G, 0,,) i= 1.k,

0, = cos@rli), G, =sin@rli)- The radiusc of the circleC is

the scaling factor, which determines the size &eddetail level
of the visualization.

o-mapping is a parameterized mapping that utilizésr s
coordinates to establish the visualization. We desca-
mapping as follows. Let a 2D poil@ (x, y) represent &-
dimensional max-min normalized [10] (with normatipa
bounds [-1, 1]) data poif(Xo, X ...%...,%) mapped onto the 2D
star coordinatesQ(x, y) is determined by the average of the

vector sum ofk vectors § X (i= 1.k ) adjusted byk
parametersdy, as,..., ay) and scaled by the radias

a-mapping:
k

A(Xy oo X, g ey @) = (€1K)Y x5 -0 (D)
i=1

i.e. the position of) (x, y)is determined by,

in
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{xy}=
{(c/k) Zk:ai X, cos@rrli)—x%,, (c/k) Zk:ai X, sin@r/i) - yo}

Theq; (i = 1,2,..k, —1<a; <1) in the definition are dimensional
adjustment parameters, one for each oktenensions — that is
where the named-mapping” comes froma; is set to 0.5

initially.

Thea-mapping has two properties:

= The mapping is linear. Without loss of generalitle set
Oto (0, 0). It is easy to see tlemapping is a linear
mapping, given the constands It is known that the linear
mapping does not break clusters but may causeapysng
clusters [24, 9], and sometimes, overlapping ogtlito
form fake clusters. Given that tlbeemapping is linear and
there is no “broken clusters” in the visualizati@ach gap
seen in visualization confirms a real gap in thigioal
space. What we need to do is to separate the ppanta
clusters, and the falsely clustered outliers, wtdohld be
done with the help of interactive operations.

=  The mapping is adjustable loy. o; (i = 1,2,..k, —1<a; <1)

can be regarded as the weight of ithle dimension, which
means how significant theé-th dimension is in the
visualization. By changing; continuously, we can see the
effect of thei-th dimension on the cluster distribution. In
addition, when one value or several values are changed
continuously at the same time, th® dataset is mapped to
a series of smoothly changed projections, whichvigeo
important cluster clues.

The visual rendering operations

The VISTA system looks like Figure 4. The task loé V/ISTA
cluster rendering system is to provide the intévact
visualization techniques to help the users find aeparate the

overlapping  clusters  through  continuously  changed
visualization. We have designed and implementedeta of
interactive rendering operations in VISTA.

a-parameter adjustment

The most important operation in VISTA systenoigarameter
adjustment (or simplyg-adjustment). This operation changes
the a parameters defined in formula (1). Each changeshés
the visualization in real time (about several headr
milliseconds, depending on different hardware apmftions
and the size of dataset}:parameter adjustment enables the user
to find the dominating dimensions, to observe thtaset from
different perspectives and to distinguish the @aters from
overlapping with a series of continuously changed
visualizations.

Continuousa-parameter adjustment of one dimension looks at
the effect of this dimension on the entire viswualian. If we
adjust thea value of the dimension the point movement can
be represented by:
AG) = AKXy X Oy @) = AKXy X, QL 0000 )
=(c/k)(a; —a))x§
which means that the points having largewill be moving
faster along the direction @fth coordinate in star coordinates,
similar x; moving in a similar way. This point movement regea
the characteristics of dimension In Euclidean datasets,
changinga value of any dimension of the two points, which
have similar values in each dimension and thusectoseach
other, does not change the distance of the twatpaitot. This
means close points tend to move together incaagjustment.
This property makesi-adjustment very effective in revealing
cluster overlapping. The corresponding dimension-by
dimension rendering rules [1] are proved very ¢ifecin
practice to find cluster boundary.

Compared to the basic rendering techniques “axtmgg and
“axis rotation” in the original star coordinatesssm [9],
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VISTA a-adjustment, powered by the VISTA visualization
model, can solely support the user to find satiefgc
visualization. In facta-adjustment together with the zooming
factor c, determines the range of possible projection ahat
o-adjustment can cover. Since the zooming factaloes not
change the structure of the content in visualiratmnly is the
a-adjustment enough to provide the informative ptgsn
planes. The mapping described in the original star
coordinates[9] can be actually rephrased in VISTsualization
model: the originalk-dimensional pointP(xy, X ...%...,%) iS
normalized to [0, 1] and; (i = 1,2,..K) is limited to [0, 1]. The
positive-onlya-adjustment shows the dynamic visual effect just
as the “axis scaling” described by the author. Kietess,a-
adjustment in [-1, 1] defines more than “axis sugli

In general,a-adjustment in different range can be intuitively
understood as the projection of “visual rotatidof point cloud
around the perpendicular axis of coordinatBifferenta-value
range defines different rotation angle (Figure FQr example,
“axis scaling” can be regarded as the projectiorotdtion from
0° to 90° around the perpendicular axis as shovigare 5-1.

While the range ofi-values determines the ability of interactive
operations, the scope of the normalized originalues
influences the result of visualization. To make deenonstration
clearer, without loss of generality we consider shiaation that
the main contributing dimension iisvith a set ofa-values, e.g.
/K21 <j <k O * X5 ;J: (c/k) a; * x'* g When the values in

dimensioni are normalized to [0, 1], in the original star
coordinates the point cloud always distributes gltre positive
direction of S, which squeezes the effective visualization onto
one side of the display area and shows less detaide the
point cloud (Figure 5-1). Whereas, normalizing td,[1]
elongates the point cloud and allows the user &ene more
details (Figure 5-3).

Combining the different scopes of normalized valaesl a
values, we can observe different effects @fparameter
adjustment. We list four typical intuitive rendegieffects as in
Figure 5.a-mapping in VISTA model is the case in Figure 5-4,
which efficiently utilizes the entire display ar@ad enables
“180° rotation” of data points along the centrepesdicular
axis. The original mapping in star coordinateshis tase in
Figure 5-1, which tends to squeeze the point claas thus
limit the observation angles. To sum up, VISTA zation

* observed as rotation in continuausdjustment

5-8[0,1], norm[-1,1] 5-4a[-1,1], norm[-1,1]

model enables the design of more powerful intevacti
operations.

Other operations

Sincea-parameter adjustment is the most frequently uset] o
some operations, such as random rendering and atitom
rendering, are used to increase the efficiencyn-gfarameter
adjustment [1]. Another set of operations suppainfpset-
oriented operations and are used to refine visuabter
definition after we get initial cluster visualizati with o-
parameter adjustment. These operations includessabkection,
cluster marking, cluster splitting, cluster mergingnd
hierarchical structure defining. Domain knowledgeform of
labelled items can be incorporated into visual@atiMost of
the following operations are designed for clusefining and
high-level structure defining yet not defined ij.[1

=  Subset selection

This operation defines a subset of points by fredha
drawing an enclosed region on screen or selectirange

of one dimension. The selected subset can be uwed f
further processing, such as cluster marking, mgrgind
splitting.

Initially, we have one subset, which is the entisaset.
The clusters are defined as subsets. We ngmesubset as
ss. After loading labels, which defireclusters, the subsets
becomes 95, SS, ..., S§. Suppose before selection, we
have hadm subsets ordered ass(, s, ..., Sg) - The
(mt+1)-th subset is selected from one or more sub¥ées.
define subset selection as following, where ‘- dst
difference operation.
S8):(S$..58..59) —(S5-SS,y,--

S5SR S8 SHwSH)

=  Merging & splitting clusters

These two operations enable the user to refine the
visualized algorithmic clustering result. If theeudinds a
part of a cluster should be semantically separtted the
cluster, she/he can use selection operation tatdbiie part

and then excludes it from the cluster. If two ngattusters
should be regarded as one cluster from the domain
knowledge, the user just selects them and merges ifito

one cluster. A Cluster boundary can be refined byging

and splitting operations, too. Splitting subsé&t subsetl
andi2, and merging subseto j are defined as following,
where ‘U’ is set union operation.



sepE]

stal |

petal_w

Figure 6-1: the initial visualization with k-mealabels

Split (i1i2m:(s$..$5..58) ~(S$.. $5-5%...5§,58)
where sg =ss-sg

Merge (,j,m:
(S§,--S$.-S§...5%,) - (SS,--5$.1,5$,,.--S§ US$,...5%,)

= Defining hierarchical cluster structure

With the operations of defining the cluster hiehgrcthe
user can group the clusters together to form adniggvel
cluster structure, or the user can zoom into orgelaluster
and find the fine cluster structure in the clusteratively.
These operations together define a layered clsstacture.
With the operations of zooming in or zooming obg tiser
can find the cluster details at different level. &ihve are
rendering at some laygrwhere it hasn subsets, and want
to groupk selected clusters, the hierarchy defines:

H,(Ms$,,S%,---.8%)
(58,5858 ~ (B, B, Fy, (58, 5%,--,5K))

where,ss; ... sg are the grouped subsets a®j 0 (S5,
SS, S

= Importing domain knowledge

A set of domain knowledge is transferred to a $et-D
items with different group identities. These iterase
imported into the visual rendering system and resdién
different colours with different groups. These aoled

Visible gap
between A and B

K-means cluster
boundary

petal_w

Figure 6-2: k-means result, RMSSTD =0.4 8 = 0.8002,
S_Dbw = 1.415

items act as the guidance to re-define the clysieiition
with domain knowledge.

If domain knowledge is represented by k groupsterhs,
these items forrk new subsets after they are loaded, which
then used to direct further cluster splitting orrgieg. For
example, if gl coversg andss, then we can consider
merging them.

D(M,g,,9,---,0¢):
(ss,ss,...,SS,) — (S5,SS,-.-,SS,,9y5---,0¢)

3. EMPIRICAL STUDY

In this section, we will introduce two examples wabual
rendering. The first one demonstrates the abilityVeSTA
visual validating and interactive refining. The @ed one shows
how to incorporate domain knowledge into VISTA bu
cluster rendering. The datasets used in the examde be
found at [28].

3.1 Analyzing the “Iris” dataset

In this example, we will use the most popular @tisg
algorithm — k-means [12] to produce the clusteriegult on the
dataset “iris”, and then import the result into VK system.
With VISTA system, we will validate the k-means uks
visually and then try to refine the clusters andpriove the
quality of the k-means clusters. The quality ofstéus will be
also evaluated by statistical indices RMSSTD, R# &_Dbw
[18, 25] at the same time to see if the statistiodices are
consistent with the visual improvement.

“Iris” dataset is a famous dataset widely used &ttgrn
recognition and clustering. It is a 4-D datasettaiming 150
instances, and there are three clusters, each hasstnces.
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Figure 6-3: Editing the clusters

One cluster is linearly separable from the othes;tthe latter
two are not exactly linearly separable from eadtent

Firstly, we load the dataset and import the k-mdabels for
“iris” dataset into the visualization. Different usters are
visualized in different colors. The initial visusdition is like
Figure 6-1, where we can find one cluster has Issgrarated
from the other two. After interactive cluster reridg, mainly
the o-parameter adjustment, the visual boundaries become
clearer (Figure 6-2). The boundary B-C clearly sates cluster
C from the other two clusters. The gap betweentetus and B
can be visually perceived but not so clear. Thenapping
model confirms that this gap does exist in the gpBce since-
mapping does not break clusters. We make this gapeavisual
boundary A-B. This visually perceived boundary Aif not
consistent with the k-means boundary, but we hawrem
confidence with it since it has been intuitivelynfiomed. There
is a principle in visual cluster rendering — we ferevisual
perception rather than statistical information heseawe believe
the visual ability is better than statistical methan dealing
with arbitrarily shapes.

Considering this visual boundary, we want to edé& k-means
result with visual cluster editing operations. Eimse split the
points that belong to cluster A but visualized inster B, from
cluster A. These points are then merged into aluBteDo the
same operation on the B points in cluster A as shiowFigure
6-3. After the editing operations, the points i ttiusters are
shown more homogeneously (Figure 6-4). The visaalitipn
exactly reflects the real cluster distribution (gare Figure 6-4
and 6-5).

We check the validating results of the widely usddster
validity indices RMSSTD, RS and S_Dbw, to see it th
statistical validation is consistent with the visiraprovement.
RMSSTD is used to estimate the homogeneity of thsters.
Smaller RMSSTD indicates that the clusters are ncorapact.
RS is used to estimate the dissimilarity betweessters. Larger

Figure 6-4teifediting, EMSSTD = 0.4396, RS=0.7712,
S_Dbw =1.511

RS indicates higher dissimilarity between groupsDiSw is a
compound evaluation of compactness and dissinyijagig. the
overall quality of clusters. The smaller S_Dbw ifaplthe better
quality. [18]

The statistical evaluation shows RMSSTD is incrdafem
0.4421 to 0.4614, RS is decreased from 0.82548098, and
S _Dbw rises from 1.4158 to 1.5115 after visual egimdy. This
means the compactness of clusters and the dissignbetween
clusters are decreased at the same time — theygoldilustering
after visual improvement is worse than the k-measult in
statistics, which is not correct in practice! Theegular shapes
of A and B, together with the closeness to eackrotinakes the
statistical methods ineffective in this scenario.

—

petal_w

Figure 6-5: the real cluster distribution visuadizeith the labels
from the original dataset.



Figure 7-1: The visualization after initial rendegioperations

As the literature of the “iris” dataset mentiondioe clusters A
and B are not linearly separable. To further refine cluster
definition, we can also informally define a smadinibiguous
area” around the gap between A and B, the pointghich have
equal probability of belonging to A or B. In addit, in
extended experiments with trained users, all usarsfind the
visualization like Figure 6-4, which means visualidity could
be very practical in exploring certain datasets. Wié support
this assertion with more experimental result irtisec3.3.

In conclusion, we believe that the VISTA systenbéiter than
the statistical indices, in terms of validating iagrily shaped
clusters. In this example, we have seen that samstthe vague
boundary between the two clusters is easily chetiyeduman
visual ability but it is not so easy for the auttimalgorithms.
In addition, this example also shows the power ofine
refining ability of the VISTA system — after valiilan, the user
can improve the quality of clusters immediately daiting the
clusters — which effectively combines the two stéejpe-
clustering” and “evaluation” together. Certainlg, Gases where
the clusters are not easily be visualized, e.gstets in very
high-dimensional datasets, (e.g. >50 dims for VI§Tke
statistical indices are still the only choice, evkaugh it is not
so effective.

3.2 Incorporating Domain knowledge

In this empirical example, we will demonstrate ttia VISTA

system can conveniently incorporate the domain kedge into
the clustering process and provide intuitive clfeesthe user to
define the application-specific clusters. We fitsfine the form
of “domain knowledge” that can be utilized in VIST&stem,
and then show how to use the domain knowledgestinduish

the application-specific cluster distribution withe example of
rendering “shuttle” dataset.

Domain knowledge plays a critical role in the chustg process
[14]. It is the semantic explanation to the dathiclv is different
from the structural clustering criteria, such astatice between

Figure 7-2: The landmarks amggjssted cluster structure.

points. Domain knowledge usually leads to a higielleluster
distribution, which may be different from the stual
clustering results, for example, the original ctust may be
grouped to form larger clusters or split to formefi cluster
structure.

Domain knowledge can be represented in various soim
Artificial Intelligence [14]. In VISTA system, weequire only
one of the simplest forms to provide the domaiates
clustering criteria. We define the domain knowledgs
following:

Suppose the dataset contains a set of instancgsafd the
user have some knowledge about the application.fdime

of the domain knowledge can be the specific praggrthe
experimental results, or any hypotheses the apjaita
holds. We need a small number of typical instantgsXs,

...y Xp (n << the number of items N in the dataset) tteotf
the properties, or the experimental results. Adogrdo the
domain knowledge, this set of instances should be
partitioned intom groups. Them groups are represented by
0(X1,1 X120 Xy BX2 Xoo s Xosew Gnl(Xima X

ma2 ---» Xmwm)- We give labels to the instances so that each
instance is represented as (instance, label#).eTdrer we
have then instances labeled as

(xl,l! 1) (Xl,Zi 1) (Xl,tl! 1)

(Xm,l! m) (>(m,2! m) (Xm,mb m)

They are regarded as additional points of the dgtagth
domain categorical labels. We name them “landmaiks”
VISTA system. The number of the instances is sdldimat
they cannot work effectively as a training dataget
classification algorithms to classify the entiréatets.

When visualizing a dataset, the landmark pointsi@aded and
visualized in different colors according to theategorical ID.
This guiding information can direct the user toigefthe high-
level cluster structure, or to refine the algoritbnslustering



results. Automatic algorithms have no such abdjter it is very
inefficient or clumsy to incorporate this functiditya into the
automatic algorithms.

An alternative method is to visualize the datasst find then

sample some points from the “critical areas” on the

visualization, such as the connective area of temtpclouds.
The sample points are classified with the domamwkadge and
re-imported into the visualization as the “landngdrfo direct
rendering.

We use the “shuttle” dataset and the second metiood
demonstrate how the VISTA system incorporates thmain
knowledge into the clustering process. “Shuttlefadat is a 9-D
dataset. There are three large clusters and sawyeltisters in
the dataset. Approximately 80% of the data belotgone
cluster. The other two large clusters have abod Hxad 5%
points, respectively. We use the testing datasgtiwhas 14500
items, for visualization.

After loading the dataset and adjusting thparameters, we get
the initial visualization, which shows the clusthstribution is
highly irregular. There are five homogenous segméfigure 7-
1). We have no idea whether they are five individiasters, or
they should be grouped or split to form higher-lehasters.

We then pick several points from the visualizatiavhich
should ideally cover the connective areas. Suppuséexpert”
with experiments or any domain knowledge (use dhels from
the original datasets to mimic) tells us the sangalmts should
be grouped into three clusters. Using them as ldmedinarks”,
we find a possible cluster structure as in Figu& To observe
the landmarks clearly, we visualized other datanfzoin white
color. The result shows the datasets probably shdwg
partitioned in the suggested way. The real cludisribution of
the “shuttle dataset” is visualized in Figure 768 domparison.
[ ]

1 i3

# -
.

& *

Figure 7-3: the clusters with original labels

To sum up, since the automatic algorithms exclidehtuman
from the clustering process, the domain knowledgenot be
easily incorporated into the clustering processhWhe help of
VISTA system, the user is able to incorporate tloenain
knowledge into the clustering process to definelieation-
specific cluster distribution online. This combiioat of human-

based analysis/evaluation and clustering procesakbrthe gap
between human and the machines, and thus imprdwes t
efficiency of the entire cluster analysis process.

3.3 More Experimental Results
The VISTA visual clustering system was implemented in Java.
In this section we will introduce more experimentasults to
show the power of visual cluster rendering systenfinding
clusters individually or in combining any exterfiraormation to
provide better clustering results. These experimenere
conducted on a number of well-known datasets tlaat loe
found in UCI machine learning database[28]. Theatagbts,
although small or median in size, have irregulanstr
distribution, which is an important factor for test the
effectiveness of the VISTA system.

Five well-trained users use the VISTA cluster reimdpsystem
to find satisfactory visualization for each of then datasets.
After we use the interactive visual operations tod fthe

satisfactory visualization, either solely by visuahdering or
incorporated by algorithmic result, we mark theaarevhich are
regarded as clusters and the items in each are@spectively
labelled with the cluster ID. With the original kb in the

datasets, we define the items that are wronglyteled as the
errors, the number of which divided by the size¢hef dataset is
the error rate of visual cluster rendering on tiafgaset.

We firstly use unguided visual rendering (UGV) iadf the

visual partition. Unguided visual rendering does medy on any
external information and only depends on the viguabserved
dense-point areas and the gaps between the aiees.tBere is
visual bias on the visualization, the visual reimpisometimes
may trap in local minima, where the user thinksuisealization
is satisfactory enough for defining cluster bouietarWe want
to avoid trapping in local minima by incorporatirgpme
external information, either from other clusterialgorithms or
domain knowledge. In our experiments, 10% of ladakitems
randomly selected from the original datasets amed uss the
“landmarks”. We also compare the results of K-meansl

CURE algorithms on the experimental datasets. CURE
clustering is recognized as one that can deal \itgular

cluster shapes in some level, and K-means is th& papular
algorithm commonly used in research or applicatiofike

experiment shows that individually CURE or K-meamsinot
deal the arbitrarily shaped clusters very well &gV may trap
into some local minima, but by combining with theteznal

information we can improve the UGV result more esd. The
result also shows the visualization result, eithéGV or

combined rendering, is often better than algorithneisult for
arbitrarily shaped clusters. Most of the interatctiome is less
than 5 mins, which means it is not difficult fotrained user to
find a satisfactory visualization.

We list the experimental results in Table 1, whards the
number of rows in the given datasktis dimensionality of the
dataset, andc is the number of clusters in the dataset.
“UGV(%)" is error rates (%) of unguided visual remmihg
result. “Combo(%)” is the error rates(%) of the doning of
UGV with the “landmark points”. “Time(min)” is thiateraction
time used in the “combo” method. “CURE(%)” is ern@tes
(%) of CURE clustering algorithm. “K-means(%)” iset error
rates (%) of K-means clustering algorithm.



Dataset N k c| UGV(%) | Combo(%)| Time (min) CURE (% K-means(%
Bre-canc-wisc 699 10 p 16.7 3.3x04 1.6 +0{3 8.6 5.1
Crx 690 15| 2 20.2 145+0.38 23+0.8 46.8 48.0
Iris 151 4 3 5.5 0.£1.2 1.9+0.3 32.7 11.3
Page-blocks 5473 10 3) 13.0 7.8+0)2 2604 32.7 45.6
Hepatitis 155 19| 2 21.9 21724 2.7+02 35.7 2.64
Heart 270 12 | 2 24.0 186 1.6 23+0p 47.4 21.1
Mushroom 8124 21| 7 24.7 8.4+0.3 55+0/4 31.9 .240
Australian 690 14| 2 15.4 146 +0J7 2.6+09 36.8 14.5
Wine 178 12 | 3 7.9 2.1+£0.5 3.1+04 32.0 5.6
Shuttle.test 14500 9 i 10.2 40+04 1.7+02 520. 23.2

Table 1: More experimental results on typical detsabaving irregular cluster distribution

4. RELATED WORK

The common cluster analysis framework is describbedhe
clustering review paper [14]. Recently, some althons have
been developed to deal with arbitrarily shapedtelss CURE
[3] uses a set of representative points to des¢hbeboundary
of a cluster in its hierarchical algorithm. But thember of
representative points increases dramatically withihcrease of
the complexity of cluster shapes in order to maintthe
precision. CHAMELEON [23] employs a multilevel gtap
partitioning algorithm on the k-Nearest Neighbotagh, which
may produce better results than CURE on complestetu
shapes for spatial datasets. But the high complexdt the
algorithms prevents its application on higher disienal
datasets. DBSCAN [15] is a density-based algorithu it is

very sensitive to the parameter Eps and MinPts. The

distribution-based algorithm DBCLASD [22] and thewelet

transformation based algorithm WaveCluster [20] evaiso
reported as being efficient only in spatial datasein

conclusion, the automatic algorithms can deal withe

arbitrarily shaped clusters in some situations,thatresults are
not general enough to apply to any application Wwhias
dimensionality higher than 3D. The most difficulioplem is,

for high-dimensional (>3D) datasets, the arbityariihaped
clusters produced by the automatic algorithms anel o be
validated, since the statistical indices [18] ac¢ effective for

such clusters.

Information visualization is commonly recognized asiseful
method for understanding sophistication in dataséany
efforts have been made to analyze the datasetvisual way.
We discuss the scatterplot-based techniques ordsuse it is
the most intuitive techniques for cluster visudima. The early
research on general plot-based data visualizatiddrand Tour
and Projection Pursuit [7]. Since there are numegojections
from a multidimensional data space to a 2D spdmepturpose
of the Grand Tour and the Project Pursuit is talguhe user to
find the interesting projections. L.Yang [8] utég the Grand
Tour technique to show projections of datasetsnim@mation.
They projected the dimensions to coordinates inDaspace.
However, when the 3D space is shown on a 2D scre®ne
axes may be overlapped by other axes, which makard to
perform direct interactions on dimensions. Dhil[&h provides
a method for visualizing only 3 clusters while mesng the
distances. When more than 3 clusters exist, hibadeteeds the
help of Grand Tour techniques. Other techniquegh sas

Scatterplot matrices, coplots, prosection [2] aadtMap based
visualization [21, 19] only create static visualiaa, which

inevitably distorts the cluster structure but hawe effective

methods to rectify it, thus do not provide enougfloimation for

correct clustering. In the KDD 2002 tutorial [13iore

visualization methods were also discussed.

Star Coordinates [9] is a visualization system glesil to
visualize and analyze the clusters interactivelye Wilize the
form of Star Coordinates and build a normalizedhapping
model in our system. We have discussed thaiapping model
extends the ability of the original mapping in staordinates
paper and demonstrated the particular ability &8 MA system
in visually validating and refining clusters.

HD-Eye [26] is another interactive visual clusterisystem.
HD-Eye visualizes the density-plot of the intenegtprojection
of two of the k dimensions. It uses icons to represent the
possible clusters in each projection and the watiip between
the clusters. However, it is hard for users to Isgsize all of the
interesting 2D projections to find the general gattof the
clusters. In fact, visually determining the basituster
distribution solely through user interaction is necessary. The
semi-automatic 1D visualization based algorithm @FST[27]
actually works well in finding the basic arbitrgrilshaped
clusters, the result of which can be utilized bynedhigh-level
visualization systems, such as VISTA. However, GFS itself
cannot be easily applied to analyze the shapeustais and the
distance relationship between clusters, or to ipomte any
domain knowledge in cluster analysis.

5. CONCLUSION

Most of researchers have focused on automatic eclogt
algorithms, but very few have addressed the humetoif in the
clustering process. Although the existing clusggraigorithms
and cluster validity methods are working well onhefical
clusters with some statistical assumptions, theyveha
encountered the difficulty in dealing with arbiiharshaped
clusters. In order to solve this problem, we havecheck the
human factor in the clustering process more cdsefdihe
VISTA system demonstrates some possible ways todate
the users into the clustering process.

In this paper, we proposed the VISTA visual framdwio
combine the algorithmic results with visual clustendering
system. The power of VISTA visual cluster renderBygtem
enables the users to visually validate and interelgtrefine the
clusters. It also allows the users to incorporamain
knowledge into the clustering process in a conveniay. The



empirical study shows that the VISTA framework/esystworks
very well in visual validating and refining the afihmic
clustering results.

The current VISTA system can handle datasets with
dimensionality less then 50. Dimensionality higtiean or close

to 50 will cause the difficulty in human visual werdtanding
and operations. The system capability also resttlet number

of data items that can be handled. In the expetmhesystem
(P4, 1.6G, 256M), the VISTA system can handle add@kK
points and refresh the visualization in real-timseveral
hundreds of milliseconds). The future work will fieused on
handling high-dimensional and larger datasets.
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