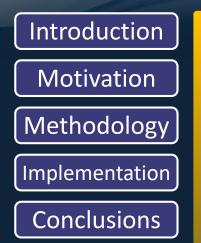
A Systems of Systems Methodology for Conceptual Studies of In-Situ Resource Utilization for Near Earth Object Applications

Defense Slides (updated with extra results) Thursday, 2nd July 2020 Christopher Kitson

EDS


Masters' Thesis Committee

Advisors

Researche

Θ.

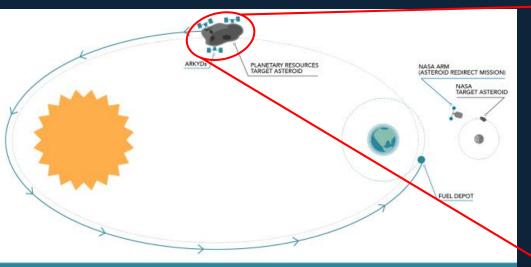
Dr. Alicia Sudol Research Engineer

Dr. Dimitri Mavris Faculty Advisor

Dr. Selcuk Cimtalay Research Engineer

Christopher Kitson Graduate Research Assistant

Georgia Aerospace Systems Tech Design Laboratory

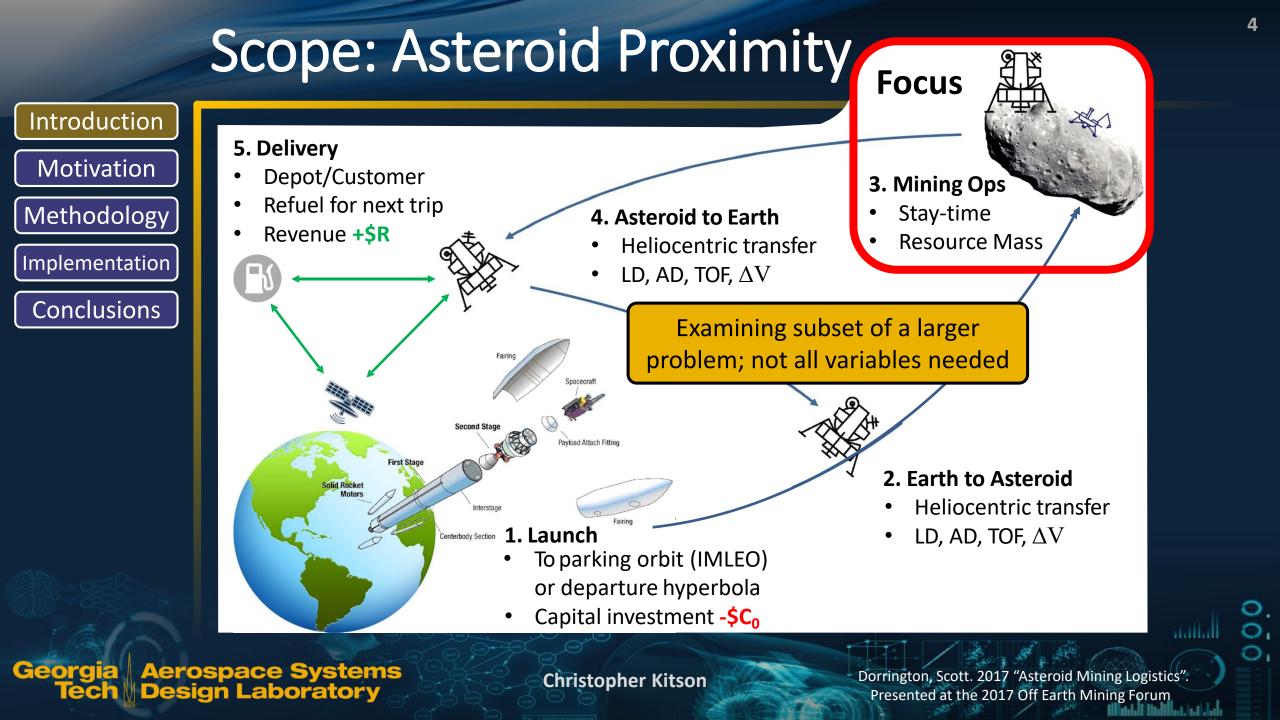

Christopher Kitson

Focus of Research

Introduction Motivation Methodology Implementation Conclusions

Create a method to explore the design space of industrial activity in outer space around asteroids and to better compare concepts.

Case study is to examine a pilot plant deployed to an asteroid, which is designed to produce enough propellant to return a given mass to Earth orbit.


Resource extraction happens within the asteroid's orbit around the Sun. Then, the refined resources are delivered to their point of need, such as high-Earth orbit.

Georgia Aerospace Systems Tech Design Laboratory


Christopher Kitson

HoneyBee Robotics Spider Planetary Resources, 2015. "Safe and Efficient Asteroid Mining". Zacny, Kris 2017 "Asteroid ISRU" SBAG, Tuscon, AZ,

Framing Questions

Why are Near Earth Objects (NEO) of interest?

Why develop better models for In-Situ Resource Utilization (ISRU)?

Why is a Systems of Systems (SoS) mindset beneficial?

Georgia Aerospace Systems Tech Design Laboratory

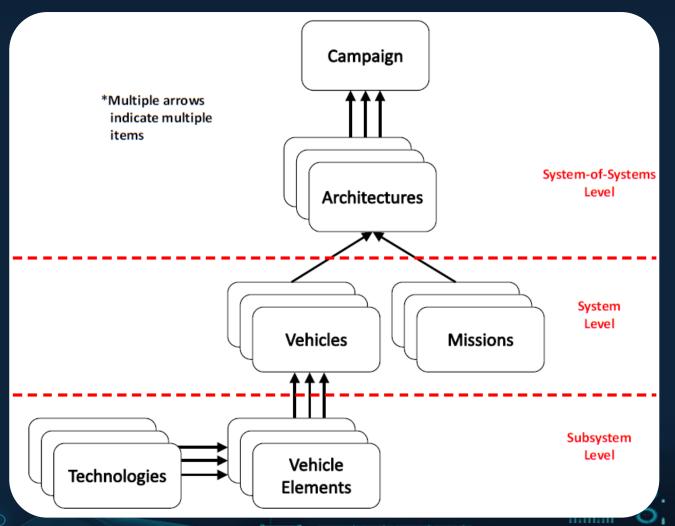
Christopher Kitson

A Hierarchy of Design Levels

Introduction

Motivation Background

Existing Gaps


Methodology

Implementation

Conclusions

 Systems of Systems (SoS) are comprised of systems, where the whole is greater than the sum of its parts

- SoS have:
 - Emergent capabilities beyond constituents
 - New functional niches for systems or subsystems
- Technologies must be rolled-up to ascertain impacts in SoS context
- 'Concept' means proposed architecture in this work

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Trent, D. J. (2011). Integrated Architecture Analysis and Technology Evaluation For System of Systems Modeled At The Subsystem Level [Dissertation, Georgia Institute of Technology].

In-Situ Resource Utilization (ISRU)

Introduction

Motivation

Background

Existing Gaps

Methodology

Implementation

Conclusions

ISRU is broadly defined, encompassing nearly all industrial activity in space. A reduction in payload mass is sought, by producing on-site instead of bringing

Resource Assessment (Prospecting)

Assessment of physical, mineral/ chemical, and volatile/ water resources, terrain, geology, and environment (orbital and local)

Resource Acquisition

Extraction, excavation, transfer, and preparation before processing

Resource Processing/ Consumable Production

In-Situ Construction

Processing resources into products with immediate use or as feedstock for construction and/or manufacturing ➤ Propellants, life support gases, fuel cell reactants, etc.

Civil engineering, infrastructure emplacement, and structure construction

using materials

resources

produced from in situ

Radiation shields.

landing pads, roads,

berms, habitats, etc.

In-Situ Manufacturing

Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources

In-Situ Energy

Generation and storage of electrical, thermal, and chemical energy with in situ derived materials > Solar arrays, thermal wadis, chemical batteries, etc.

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Linne et al., 2016. "Overview of Proposed ISRU Technology Development".

Θ.

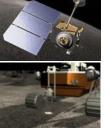
In-Situ Resource Utilization (ISRU)

Introduction

Motivation

Background

Existing Gaps


Methodology

Implementation

Conclusions

ISRU is broadly defined, encompassing nearly all industrial activity in space. A reduction in payload mass is sought, by producing on-site instead of bringing

Resource Assessment (Prospecting)

Assessment of physical, mineral/ chemical, and volatile/ water resources, terrain, geology, and environment (orbital and local)

Resource Acquisition

Resource Processing/ Consumable Production

In-Situ Construction

Processing resources into products with immediate use or as feedstock for construction and/or manufacturing ➤ Propellants, life support gases, fuel cell reactants, etc.

In-Situ Manufacturing

Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources

In-Situ Energy

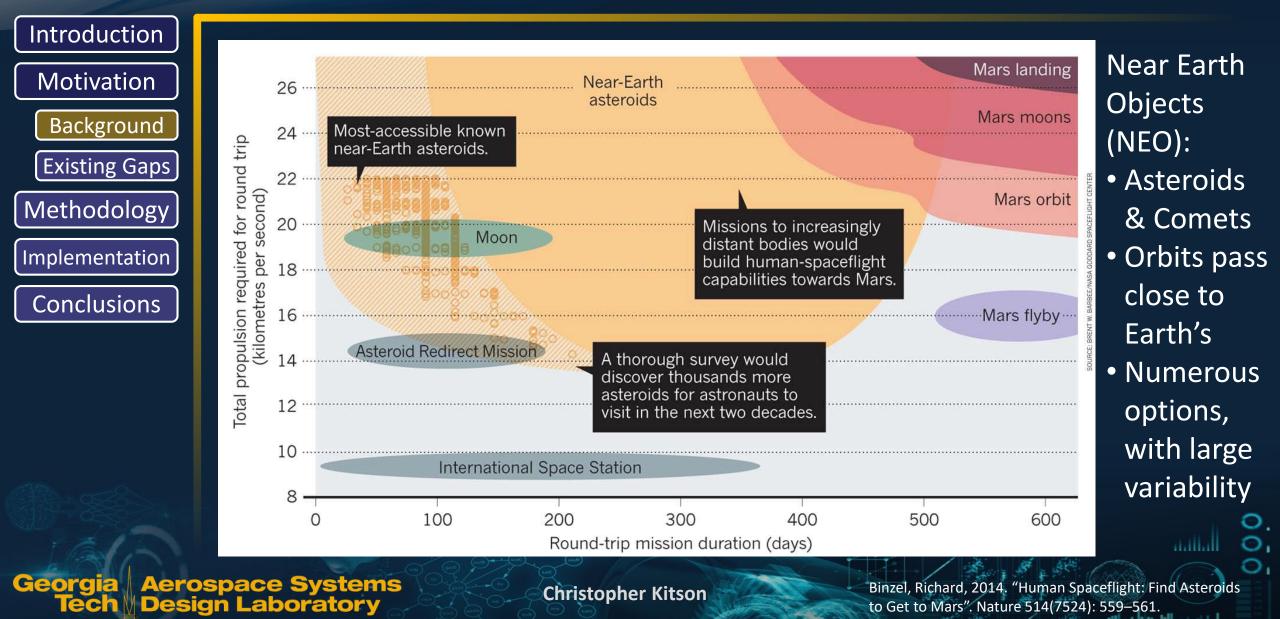
ISRU design is a SoS problem, since producing supplies is an emergent functional niche dependent on customer demands

Conjecture:

Extraction, excavation, transfer, and preparation before processing

Pradiation snields, landing pads, roads, berms, habitats, etc. Solar arrays, thermal wadis, chemical batteries, etc.

orage of


and /ith in situ

Georgia Aerospace Systems Tech Design Laboratory

Linne et al., 2016. "Overview of Proposed ISRU Technology Development".

Spaceflight Destinations

Round Trip Δv : (Earth/KSC -> LEO -> Destination -> LEO -> Earth)

9

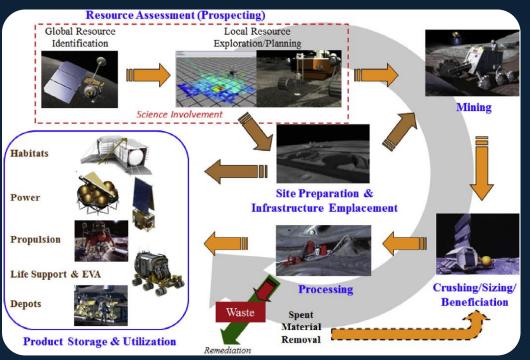
NASA Artemis – 'Sustainability' Implies ISRU

ISRU: Failure to Launch

Introduction Motivation

Background

Existing Gaps


Methodology

Implementation

Conclusions

 Mismatch between recognized potential and use in field

- Desired capability since 1960's
- ISS ECLSS closest thing flown
- Analog prototype ground tests perceived as insufficient risk reduction for flight mission use
- ISRU research focuses on crew, despite lowest failure tolerance

- ISRU does not operate in isolation, it needs a customer: *Network utility'* for space *'platform'* in need of a *'killer app'* [1]
 - Crew consumables (e.g. oxygen to breathe)
 - Rocket propellant (e.g. hydrogen-oxygen or 'hydrolox')

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

[1] Sercel, 2018 "Thoughts about Asteroid Mining,"[2] Sanders and Larson, 2015, doi: <u>10.1016/j.asr.2014.12.024</u>

ISRU: Failure to Launch

Introduction Motivation

Background

Existing Gaps

Methodology

Implementation

Conclusions

 Mismatch between recognized potential and use in field

- Desired capability since 1960's
- ISS ECLSS closest thing flown
- Analog prototype ground tests perceived as insufficient risk reduction for flight mission use
- ISRU research focuses on crew, despite lowest failure tolerance

- ISRU does not operate in isolation, it needs a customer: *Network utility'* for space *'platform'* in need of a *'killer app'* [1]
 - Crew consumables (e.g. oxygen to breathe)
 - Rocket propellant (e.g. hydrogen-oxygen or 'hydrolox')

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Sercel, 2018 "Thoughts about Asteroid Mining,"
 Sanders and Larson, 2015, doi: <u>10.1016/j.asr.2014.12.024</u>

Contrasting Destinations

Introduction					
	Category	Mars	Luna	NEO	
Motivation	Δv : Surface from LEO	≥ 12.5 km/s	≥ 9 km/s	≥ 4.5 km/s	[
Background Existing Gaps	Arrival	Entry, Descent, & Landing	Descent & Landing	Rendezvous with uncooperative target	
Methodology	Past Mission Failures	Many	Occasional	Few	
Implementation	Weather	Dust storms, Abrasion	Static discharge/cling Abrasion, Long nights	Static discharge/cling, Abrasion, space weather	
Conclusions	Planetary Protection	IV; V (restricted)	II; V (unrestricted)	I or II; V (unrestricted)	
	Landing Sites Considered	1 planet Mars ~50 sites (Curiosity)	1 moon of Earth ~5 sites (Luna-Glob)	17,607 asteroids (2018) ~4 sites each (OSIRIS-REx)	[
	Water Availability	Subsurface ice (widely distributed)	Pole crater ice (site specific)	Hydrates & buried ice (target dependent)	

Conjecture:

NEO offer better conditions for developing ISRU capabilities than Luna or Mars

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

 Barbee, B. W. (2015, January 7). Accessible Near-Earth Objects
 L. A. M. Benner, "Near-Earth Asteroid Delta-V for Spacecraft Rendezvous," Jan. 26, 2018.

0.0

Gaps In Existing Models of ISRU

Introduction Motivation

Background

Existing Gaps

Methodology

Implementation

Conclusions

Unsupported Assumptions

- Scaling laws: often a-priori assumptions in space logistics studies
- Errors of omission: missing functionality (esp. thermal) in concepts
- Microgravity: forget lack/reduced natural resorting forces, buoyancy, etc.

• Point Designs

- One-off efforts common
- "Technology is trying to drive mine planning" [1]

• Difficulty of Comparison

- Few shared metrics
- Wildly varying levels of detail included within same concept's systems

[1] Neal et al. 2019 "Lunar ISRU
 2019: Workshop Report".
 Christopher Kitson

Existing Concont	Missing	Specified	Primary Source
Existing concept	ting ConceptFunc. [#]e APIS (TransAstra Corp.)4(HoneyBee Robotics)4d Prospect (Astrotecture et al.)6tar Technology & Research)6iative for Interstellar Studies)10ker (Georgia Tech ASDL)12Mules (Catalyst Corporation)13y et al. (NASA Ames)14rum (Univ. of Washington)18Cuck 'Mosquito'19netary Resources)19Pioneer Astronautics)21Non-Cohesive' (Missouri S&T)24p Space Industries)26et al. (Arizona State)26riva (Meta Consulting)30. 'Cohesive' (Missouri S&T)31Kargel (USGS)33va (Rutgers University)34Mean18.6	Func. [%]	Filliary Source
Honey Bee APIS (TransAstra Corp.)	4	91%	Sercel, 2016
Spider (HoneyBee Robotics)	4	91%	Zacny et al., 2016
Robotic Asteroid Prospect (Astrotecture et al.)	6	86%	Cohen et al., 2013
Cornucopia (Star Technology & Research)	6	86%	Buet et al., 2013
Hein et al. (Initiative for Interstellar Studies)	10	77%	Hein et al., 2019
RockBreaker (Georgia Tech ASDL)	12	72%	Vanmali et al., 2005
Konstantin & Mules (Catalyst Corporation)	13	70%	Daniel Suarez, 2019
O'Leary et al. (NASA Ames)	14	67%	Billingham et al., 1979
Surculus Astrum (Univ. of Washington)	18	58%	Andrews et al., 2015
Kuck 'Mosquito'	19	56%	Kuck, 1997
(Planetary Resources)	19	56%	US 9266627 B1 (2016)
CAVoR (Pioneer Astronautics)	21	51%	US 20180194626 A1
Sonter (Asteroid Mining Group)	21	51%	Sonter, 1997
Gertsch et al. 'Non-Cohesive' (Missouri S&T)	24	44%	Gertsch et al., 1997
(Deep Space Industries)	26	40%	Lewis & Gump, 2015
Nallapu et al. (Arizona State)	26	40%	Nallapu et al., 2016
Sommariva (Meta Consulting)	30	30%	Sommariva, 2015
Gertsch et al. 'Cohesive' (Missouri S&T)	31	28%	Gertsch et al., 1997
Kargel (USGS)	33	23%	Kargel, 1994
Benaroya (Rutgers University)	34	21%	Benaroya, 2013
Mean	18.6	57%	43 subsystem functions
Standard Deviation	9.7	23%	20 concepts

Georgia Aerospace Systems Tech Design Laboratory

Gaps In Existing Models of ISRU

Introduction Motivation Background

Existing Gaps

Methodology

Implementation

Conclusions

Unsupported Assumptions

- Scaling laws: often a-priori assumptions in space logistics studies
- Errors of omission: missing functionality (esp. thermal) in concepts
- Microgravity: forget lack/reduced natural resorting forces, buoyancy, etc.

Mean

Standard Deviation

• Point Designs

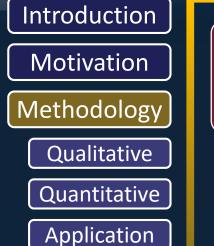
- One-off efforts common
- "Technology is trying to drive mine planning" [1]
- Difficulty of Comparison
 - Few shared metrics
 - Wildly varying levels of detail included within same concept's systems

eorgia Aerospace Systems Tech Design Laboratory [1] Neal et al. 2019 "Lunar ISRU
 2019: Workshop Report".
 Christopher Kitson

E	Existing Concept	Missing Func. [#]	Specified Func. [%]	Primary Source	е
Hone	ey Bee APIS (TransAstra Corp.)	4	91%	Sercel, 2016	
S	oider (HoneyBee Robotics)	4	91%	Zacny et al., 2016	
Robotic As	Provid Durant (Astronomic to 1)	<u>^</u>	0.004	2013 ., 2013	
Cornur Hein et	Resea	irch Objec	tive:	2013 2019	
Rc				, 2005	
Konsta	A methodolog	gy WIII D	e devei	DDEC 2019	
				1979	
Surci	to compare on	equal f	ooting L	n-Situ , 2015	
		cquar	0000091	7	
	Resource Utili	zation (ICPII) CV	(2016)	ļ
1	Resource offi	Zation	131(0) 39	30CIII 326 A1	
S		\sim		97	
Gertsch	of System (So	S) CONCE	epts invo	IVING 1997	
			-	, 2015	
	Near Earth	n Obiect	ts (NFOs	2016	
٤				2015	
Gertsch	ברמו. כטוובזועב (ועווזסטעון סער)	JI	2070	Gensen et al., 1997	
	Kargel (USGS)	33	23%	Kargel, 1994	
Be	naroya (Rutgers University)	34	21%	Benaroya, 2013	

18.6

9.7


57%

23%

43 subsystem functions

20 concepts

Preforming Systematic Comparisons

Implementation

Conclusions

Research Question 1: How can comparisons between In-Situ Resource Utilization (ISRU) System of Systems (SoS) be done systematically at the conceptual level?

- Design specifications for how to accomplish a goal
 - Normally describes a system, or collection of them (System of Systems)
 - Goal can be a function, purpose, task, or mission
- Requirements constraints placed upon a design
 - Limits the options considered within the design space
 - Stakeholders impose requirements to align the design with their aims

Conjecture:

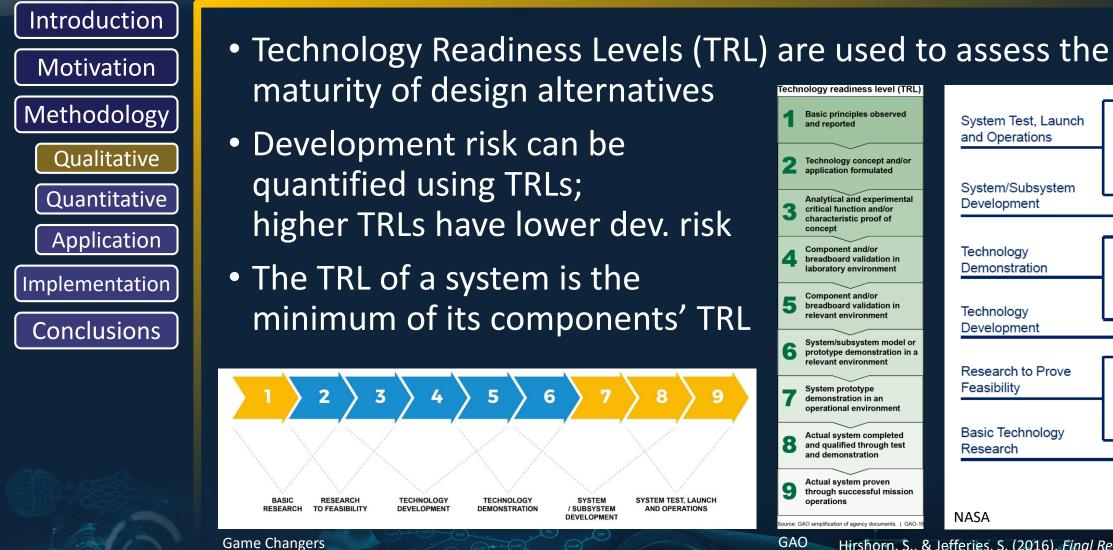
Design aspects can be categorized as either qualitative or quantitative

Georgia Aerospace System Tech Design Laboratory

Morphological Matrix of Alternatives

- Qualitative requirements can be represented by discerning amongst alternatives that fulfil the same function
- These design alternatives are tabulated by characteristic in a morphological matrix
- A concept is a set of morphological options, where one option from each row is selected from the matrix
- Trade studies are enabled by definition of the morphological options within the design space

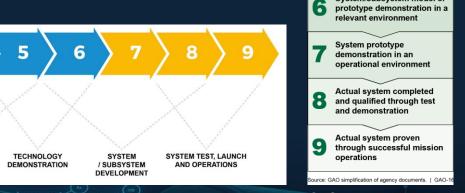
	4				
	Alternatives Characteristics	. 1	2	3	4
រំខ	Vehicle	Wing & Tail	Wing & Canard	Wing, Tail & Canard	Wing
onfig	Fuselage	Cylindrical	• Oval	None	
0	Pilot Visibility	Synthetic Vision	Conventional		
ion	Range (nmi)	3000	3500	4000	
ISS	Passengers	100		200	
Μ	Mach Number	0.8	0.83	0.85	0.9
Prop Mission	Туре	Turbofan	AST Engine	IHPTET	
	Combustor	Conventional	RQL	LPP	
tro	Static Stability	Stable	> Unstable	Relaxed	
Control	Gust control	Conventional	Unloaded		
Aero	Low Speed	Conventional Flaps	Conventional Flaps & Slots	C C	
A	High Speed	Conventional	LFC	NLFC	HLFC
Struct	Wing	Aluminum	Titanium	Composite	
Stı	Fuselage	Aluminum	Titanium	Composite	

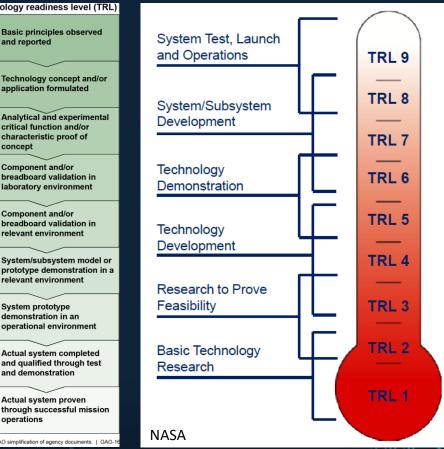

Selection of an aircraft concept from a morphological matrix (Mavris & Kirby, 1999)

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Mavris, D. N., & Kirby, M. R. (1999, May 24). *Technology Identification, Evaluation, And Selection For Commercial Transport Aircraft*. 14. San Jose, California: Society of Allied Weight Engineers.

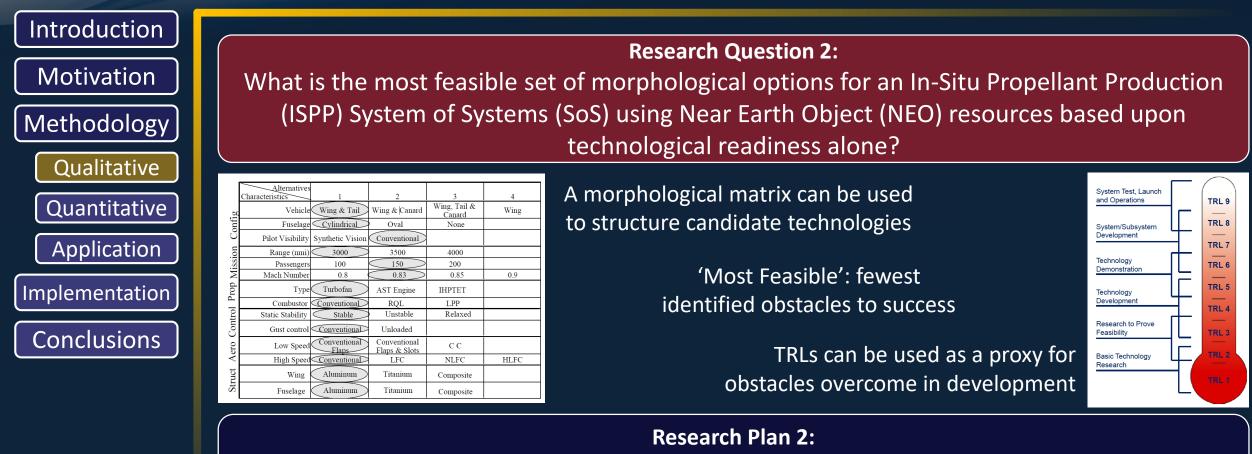

Technology Readiness Levels


Aerospace Systems Design Laboratory

Technology readiness level (TRL) Basic principles observed and reported

- higher TRLs have lower dev. risk
- minimum of its components' TRL

Christopher Kitson

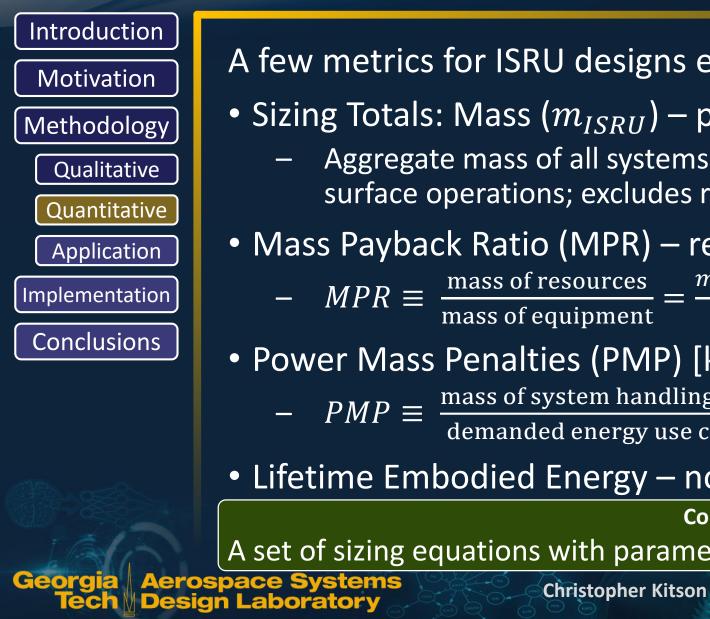


Hirshorn, S., & Jefferies, S. (2016). Final Report of the NASA Technology Readiness Assessment (TRA) Study Team (p. 63). Persons, T. M., & Sullivan, M. J. (2016). Technology Readiness Assessment Guide (No. GAO-16-410G). atta di natifa tatan

GAO

concept

Facilitating Qualitative Comparisons



Decompose existing designs according to functional requirements. Construct morphological matrix from function decomposition, assigning Technology Readiness Level (TRL) values to each option. Use TRL rankings by category as the primary selection criterion to form baseline.

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Quantifying Performance

A few metrics for ISRU designs exist in the literature:

- Sizing Totals: Mass (m_{ISRII}) payload/instrument mass
 - Aggregate mass of all systems directly or indirectly involved in NEO surface operations; excludes return vehicle dry mass
- Mass Payback Ratio (MPR) reduction in initial mass in LEO
 - $MPR \equiv \frac{\text{mass of resources}}{\text{mass of equipment}} = \frac{m_{fuel} + m_{ox} + m_{samp}}{m_{ISRU}}$
- Power Mass Penalties (PMP) [kg/kW] habitat power to mass
 - $-PMP \equiv \frac{\text{mass of system handling energy}}{\text{demanded energy use capacity}} = \frac{m_{POWER}}{P_{ISRU}}, \frac{m_{HEAT}}{Q_{H,ISRU}}, \frac{m_{COOL}}{Q_{C,ISRU}}$
- Lifetime Embodied Energy not used in this thesis

Conjecture:

A set of sizing equations with parameters are required to quantify performance

Types of Parameters

Introduction **Research Question 3:** Motivation What parameters are needed to adequately describe a Near Earth Object Methodology (NEO) sample return mission involving In-Situ Propellant Production (ISPP)? Qualitative Primary Secondary Quantitative **Options & tuning factors Driving factors** Application Implementation Needed, but not critical High variability between • Conclusions subjects makes setting a Calibration for model, or \bullet default value difficult, overriding defaults Flags for options selected otherwise inappropriate ullet• Featured in many and/or • Fixed values to reduce highly significant equations confounding, unless input Need range & nominal value Need default value •

Georgia Aerospace Systems Tech Design Laboratory

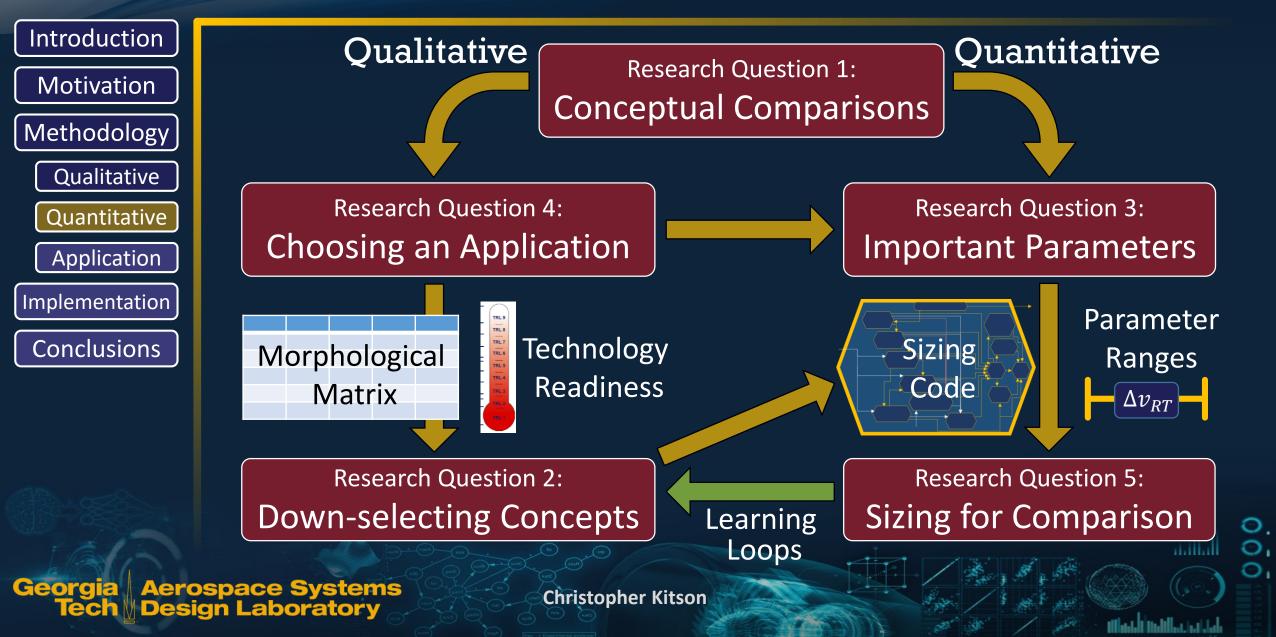
Christopher Kitson

Preforming Systematic Comparisons

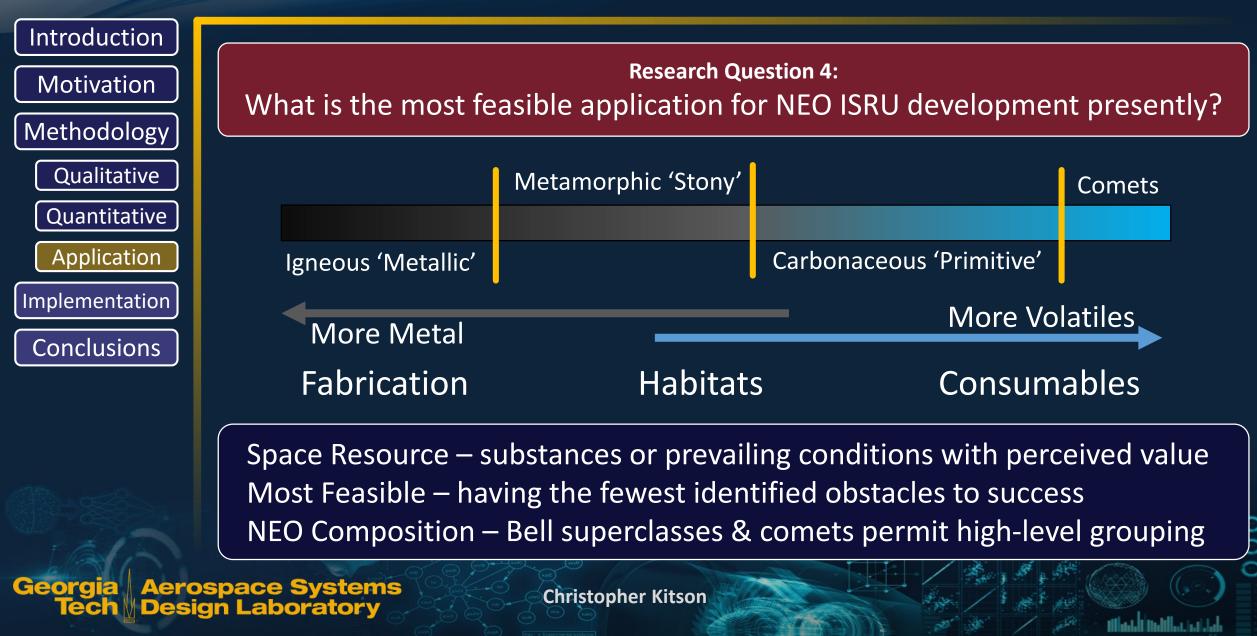
Conclusions

Research Question 1: How can comparisons between In-Situ Resource Utilization (ISRU) System of Systems (SoS) be done systematically at the conceptual level?

Qualitative – Morphological Matrix from functional decomposition Quantitative – Default values and ranges for inputs into sizing code Application – Provides context for implementation


Conjecture 1:

By using qualitative and/or quantitative aspects, design concepts can be compared systematically. Morphological matrices give structure to designs, which can be compared qualitatively with Technology Readiness Levels (TRLs). Sizing codes can be associated with morphology, and used to compare them quantitatively to identify general trends in performance.


Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

A Methodology for Conceptual Comparisons

NEO Space Resources

Policy & Personnel Angles

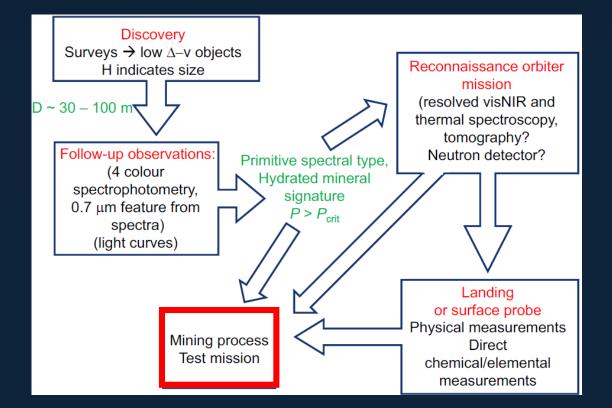
- Crewed Exploration
 - Greatest demand for ISRU products to offset heavier baseline payloads
 - Unproven ISRU systems on critical path highly risky, but most beneficial
 - Highest consequences of failure, but people are better at fixing things:
 ISRU maintenance, reliability, & operations is *unsolved problem*
- Policy Angles
 - Outer Space Treaty limited/no property rights & mining claims
 - Private Investment very long time horizons, unproven fundamentals
 - Planetary Protection landers Cat. II, return Cat. V (unrestricted)

Conjecture:

Producing propellant for scientific sample return sidesteps these issues

Georgia Aerospace Systems Tech Design Laboratory

Sample Return Mission

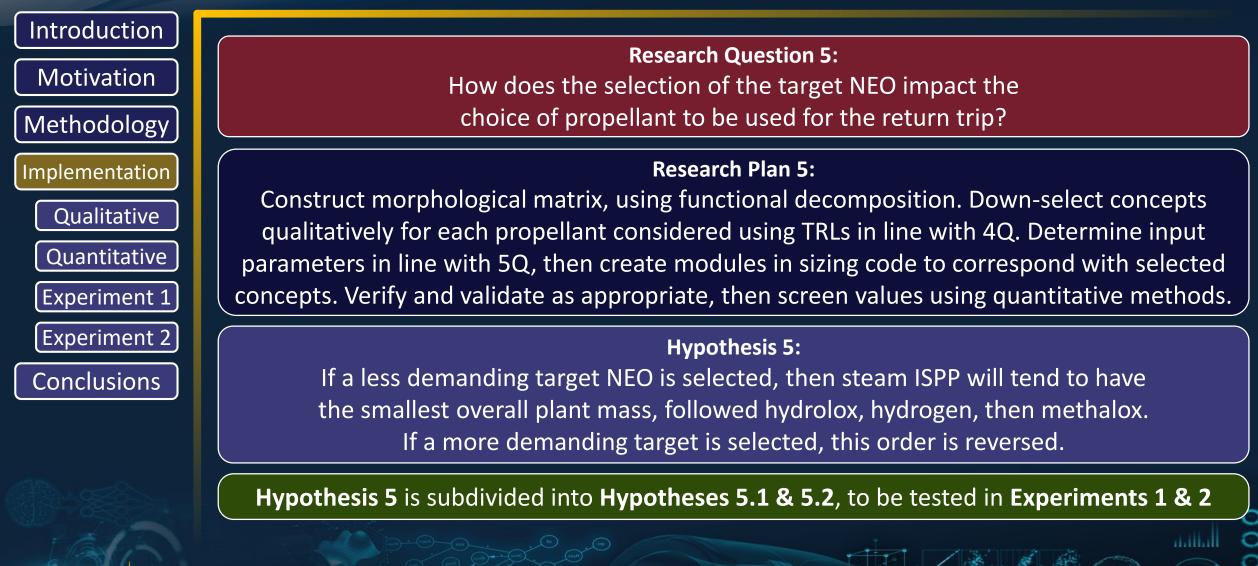

Introduction Motivation Methodology Qualitative Quantitative Application Implementation

Conclusions

Proposed Name: **SNIPT S**ample return from **N**ear earth object with **I**n-situ **P**ropellant production **T**echnology demonstrator

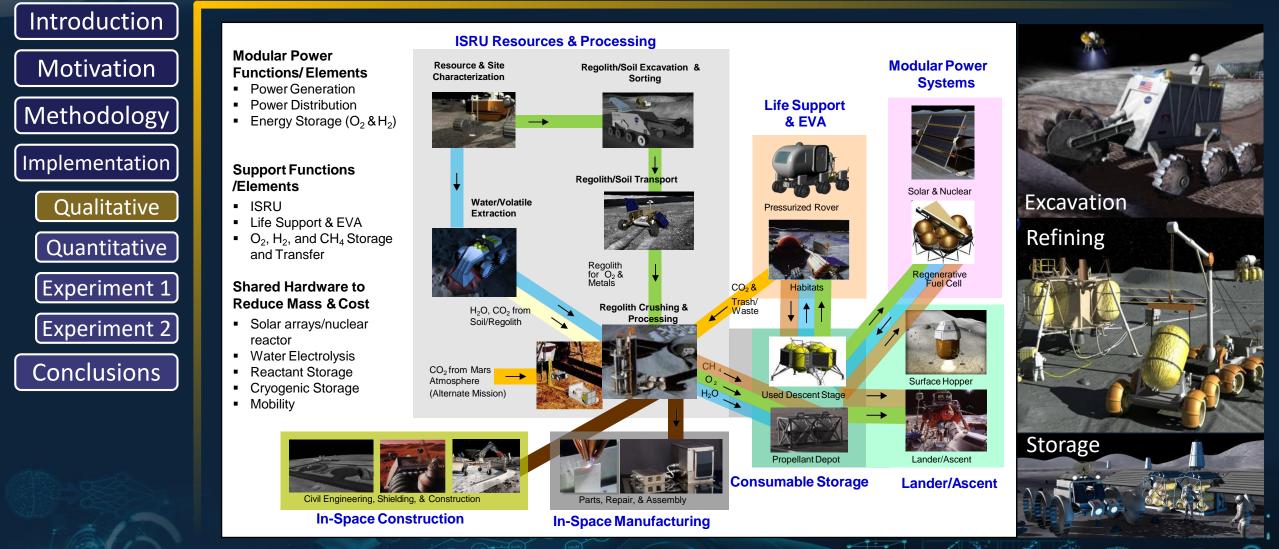
Science objectives could include:

- Study of asteroid regolith, with focus on changes under heating
- Asteroid composition vs. depth
- Test theories on asteroid evolution and formation of early solar system



Conjecture 4:

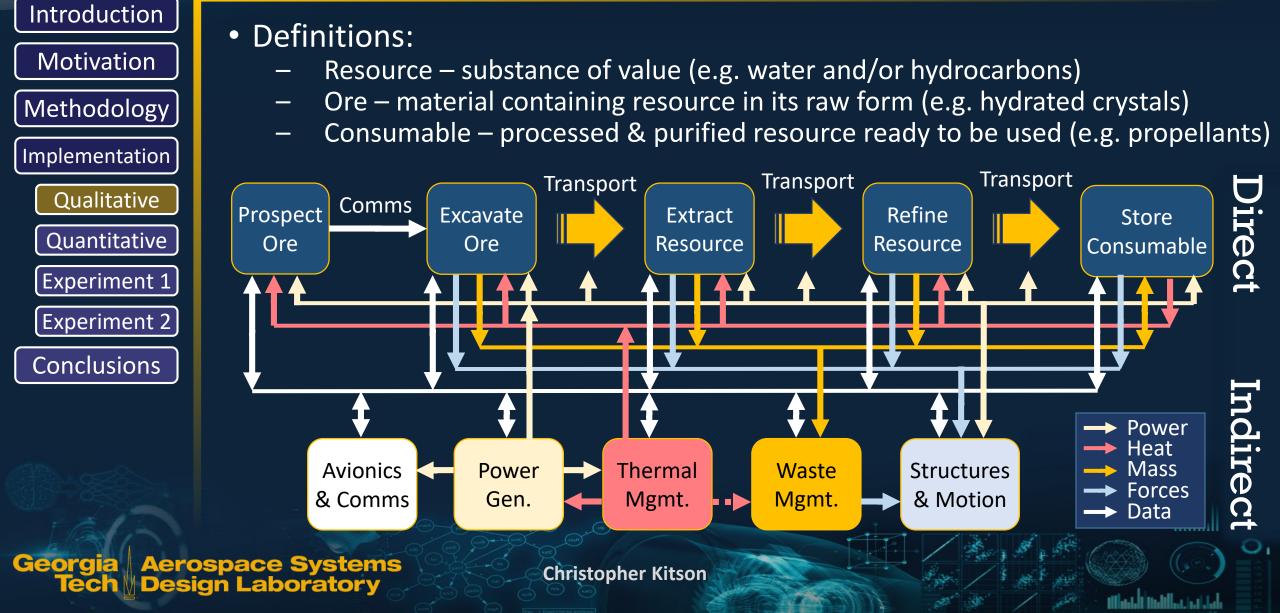
In-Situ Propellant Production (ISPP) using NEO resources for a sample return mission is the most feasible ISRU SoS application presently.


Georgia Aerospace Systems Tech Design Laboratory Green (2018). "Wrap Up: How to Improve Our Knowledge".

ISPP: Propellant Choice Trade Study

Georgia Aerospace Systems Tech Design Laboratory

NASA Lunar ISRU Concept (2019)



Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Jakupca, Ian. 2019. "NASA Fuel Cell and Hydrogen Activities". Paper presented at the Annual Merit Review, Department of Energy, April 30.

Functional Decomposition to Systems Level

Morphology: Existing Concepts

Legend: Option for Case Study Null Option (not needed) Violates Mission Assumpt. Unspecified in Literature

Wheel Woodsheet and the

Introduction Categorization of Existing Concepts Honey Bee APIS Spider Robotic Asteroid Prospect Cornucopia (Star Hein et al. (Initiative for RockBreaker Konstantin & Mules Surculus Astrum (HonevBee Robotics) (Astrotecture / HoneyBee) Technology & Research) Interstellar Studies) (Georgia Tech ASDL) (Catalyst Corporation) (Univ. of Washington) Task Group Category (TransAstra Corp.) Separation Single Unit (None) Single Unit (None) Single Unit (None) Swarming Craft Swarming Craft Swarming Craft Detachable Modules Integration Detachable Modules **Motivation** Sample Redunancy Independent Strings Independent Strings Multiple Craft Multiple Craft Multiple Craft Multiple Craft Independent Strings Independent Strings Return Vehicle Thrust Class Solar Thermal Electrothermal (resistance) Solar Thermal Ion Thruster Solar Sail Ion Thruster, Solar Sail Chemical Reaction (liquid) Electromagnetic (ELF) Propellant Water/Steam Water/Steam Water/Steam Noble Gas - Xenon N/A Noble Gas - Argon Methalox Water or Noble Gas (Argor N/A N/A N/A N/A ? (Unspecified) Chamber Reaction N/A N/A N/A Methodology Whole SoS Whole SoS N/A Return Vehicles Return Type Partial / Some Systems Return Vehicles Return Vehicles Return Vehicles Active Observation Active Observation Prospecting Local Observations Precursor, Passive Obs Sampling Only Precursor, Sampling Only Passive Observation Active Observation Active Observation N/A Wave Type Visible Light N/A Visible Light Visible Light Radar Vis. Light, Subatomic Part Visible Light, Gamma Rays Sampling N/A Excavate (automated) Kinetic Penetrator (smart) N/A N/A ? (Unspecified) N/A N/A Clamshell Enclosure Excavation Containment Synched Bag Tube Sleeve Tube Sleeve Localized Membrane N/A Synched Bag Tube Sleeve Implementation Cut Rock Optical Beam (spalling) Auger Bit Optical Beam (spalling) Auger Bit Optical Beam (spalling) Beam (laser) & Jet (plasma) Rotary Cutter Rotary Cutter N/A Powderize N/A Cut Debris (Kerf/Spall) Cut Debris (kerf/spall) ¦N/A Cut Debris (kerf/spall) Rip/Fracture Rip/Fracture N/A N/A N/A N/A N/A N/A Sorting/Sizing Centerfugal & Filtration ? (Unspecified) <u>Oualitative</u> Heating [Primary] Focused Sunlight Resistance (electrical) Focused Sunlight N/A Laser (artificial) Jet (plasma) Focused Sunlight Dielectric (artifcial) Extraction ISRU Beneficiation N/A N/A N/A N/A N/A Fabry-Perot Resonator Centerfugal & Chemical Electrostatic Sorting N/A Volatile Capture Cold Trap (condensation) Cold Trap (condensation) Cold Trap (condensation Cold Trap (condensation) N/A Condenser ? (Unspecified) Direct N/A N/A N/A N/A N/A N/A Split Water Refining Make Oxygen ? (Unspecified) Quantitative N/A Make Hydrogen N/A N/A N/A N/A N/A Electrolysis (Unspecified) ? (Unspecified) N/A N/A N/A N/A Crack Hvdrocarbons N/A N/A Pyrolysis (Heat) ? (Unspecified) N/A N/A N/A N/A N/A N/A Make Methane ? (Unspecified) N/Δ Experiment 1 Quality Control ? (Unspecified) Process Monitoring ? (Unspecified) N/A ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) Solid (Regolith) Medium Cryogenic Solid (Ice) Liquid (Water) Liquid (Water) Cryogenic Solid (Ice) Solid (Regolith) Liquid & Granular Soilds Liquid & Granular Soilds Storage Sunshield / Shade Insulation Sunshield / Shade Multi-Laver Insulation ? (Unspecified) ? (Unspecified) Multi-Laver Insulation ? (Unspecified) ? (Unspecified) Auger / Screw Feeder Material Handling Granular Solids N/A Auger / Screw Feeder N/A N/A Mechanical Pusher ? (Unspecified) Auger / Screw Feeder Experiment 2 ? (Unspecified) ? (Unspecified) Fluids (Liquid & Gas) Pressure Fed (by Heating) Pressure Fed (by Heating) Pressure Fed (by Heating) N/A Pressure Fed (by Heating) 'Jet (momentum transfer) Work Input Heating (Volume Increase) Shaft Work (Pump, Auger Heating (Volume Increase Shaft Work (Pump, Auger) Heating (Volume Increase) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) Autonomous ? (Unspecified) Automated, Astronauts Automated Avionics Autonomy Autonomous (if possible) Autonomous Conclusions Computation Distributed (control boards) Centralized Distributed (in ORUs) Distributed (main & sys.) Distributed ? (Unspecified) Centralized (server rack) ? (Unspecified) Wired Wired Local Comms Transmitted Transmitted Transmitted Transmitted Transmitted Transmitted Radio Radio (steerable antennae) ? (Unspecified) ? (Unspecified) Deep Space Comms Laser Link Radio (Dish) Radio (Rectenna/Dish Laser Link Power Electrical Generation Photovoltaic Cells Photovoltaic Cells Photovoltaic Cells Photovoltaic Cells Photovoltaic Cells Concentrated Solar Photovoltaic Cells Fission Reactor Energy Storage Batteries Batteries ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) Indirect ISRU N/A Beam Transmission Mirrors N/A Mirrors ? (Unspecified) Beamed Microwaves Mirrors N/A Thermal Heating [Secondary] Resistance (electrical) Resistance (electrical) Resistance (electrical) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) Cooling Radiators ? (Unspecified) Radiators ? (Unspecified) ? (Unspecified) Passive ? (Unspecified) ? (Unspecified) Cold Plate Finned Heat Exchangers ? (Unspecified) ? (Unspecified) N/A ? (Unspecified) ? (Unspecified) ? (Unspecified) Water Loop Distribution Peltier Effect (electrical) Loop - (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) ? (Unspecified) Wastes Tailings & Overburden Secure in Place Eject into Space ? (Unspecified) N/A ? (Unspecified) Storage/Reuse ? (Unspecified) Storage/Reuse ? (Unspecified) ? (Unspecified) ? (Unspecified) N/A ? (Unspecified) **Byproducts & Excess** ? (Unspecified) Storage/Reuse ? (Unspecified) Inflatable Truss & Recessed Lattice ? (Unspecified) Structures Support Structure Space Frame Central Bus / Cylindrical ? (Unspecified) Truss, collapsible ? (Unspecified) **RCS** Thrusters Positioning Anchor / Harpoon Friction with Excavator Inflatable Airbags Anchor / Harpoon **RCS** Thrusters RCS Thrusters Anchor / Harpoor Relative Motion Robotic Joints Robotic Joints RCS Thrusters Robotic Joints **RCS** Thrusters RCS Thrusters RCS Thrusters **RCS** Thursters N/A Rotation Control Friction with Containment ? (Unspecified) N/A ? (Unspecified) Selective Ablation Selective Ablation ? (Unspecified) Main Source: Sercel, 2016 Zacny et al., 2016 Cohen et al., 2013 Buet et al., 2013 Hein et al., 2019 Vanmali et al., 2005 Daniel Suarez, 2019 Andrews et al., 2015

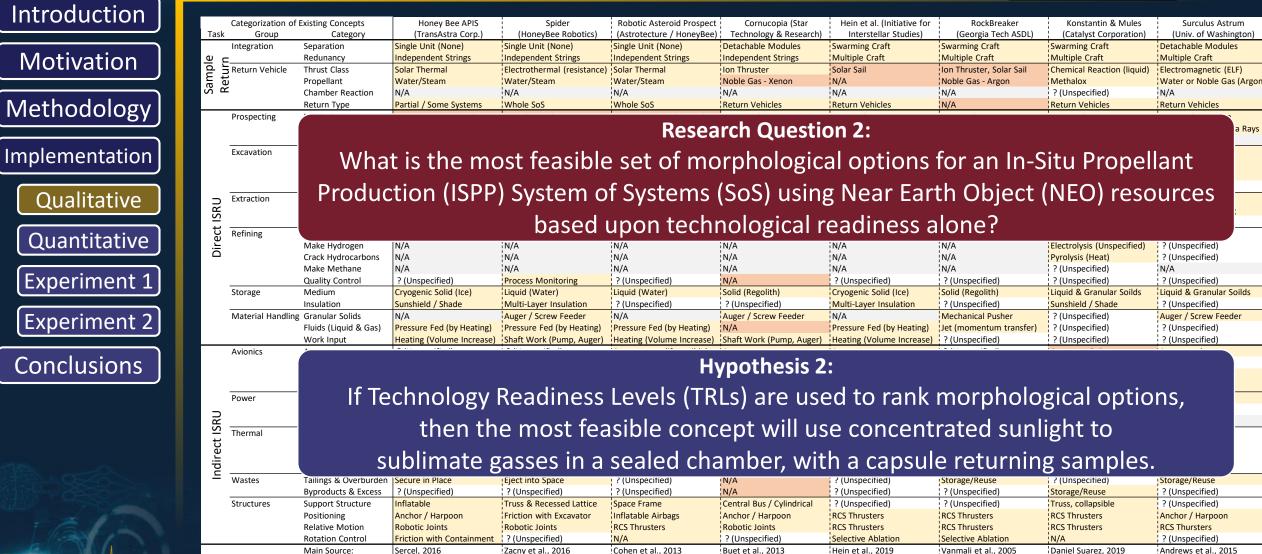
Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

30

[′]20

8


shown

Morphology: Existing Concepts

Legend: Option for Case Study Null Option (not needed) Violates Mission Assumpt. Unspecified in Literature 31

⁸/₂₀

shown

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Morphological Matrix: Option Sources

[Introduction]													
	Tacl	Shaded by Sou Group	urce of Option			Morpholog	ical Ontions			Null?			Shading:
	Tasr	Integration	Category Separation	Single Unit (None)	Detachable Modules	Subsequent Missions	Swarming Craft			INUIT			Source
Motivation	e e	~		Single String (None)	Independent Strings	Cross-Strapped Strings	Multiple Craft						
	d	Return Vehicle	Propulsion	Chemical Reaction (liquid)	Solar Thermal	Nuclear Thermal	Electrothermal	Electromagnetic	lon Thruster		-	M	licrogravity TRL
	Sample	Return Vehicle	Propellant	Water/Steam	Hydrogen	Hydrolox	Methalox	-				In	nplementation
	ŝ	ř	Chamber Reaction	Fuel Rich	Stoichiometric	Oxidizer Rich				N/A			npiementation
Methodology			Return Type	Partial / Some Systems	Whole SoS	Return Vehicles							
		Prospecting	Local Observations	Passive Observation	Active Observation	Seismic Survey	Orbit Gravimetry						
			<i>/</i> ·	Far Infrared / Thermal	Near Infrared	Visible Light	Radar	Sound / Mechanical	Subatomic Particles	N/A			
		-	Sampling	Kinetic Penetrator (smart)	Impactor (dumb)	Excavate (automated)	Touch & Go (TAGSAM)	Skyhook / Harpoon		N/A	-		
Implementation		Excavation	Containment	Clamshell Enclosure	Synched Bag	Tube Sleeve	Localized Membrane	lat (alasas)	Data a Cuttar			12 0-	ategories
			Cut Rock Powderize	Auger Bit Pneumatic Probes	Corer Borehole Heating	Percussive Drill Rip/Fracture	Optical Beam (Spalling) Cut Debris (kerf/spall)	Jet (plasma) Crush	Rotary Cutter	N/A		43 La	alegones
			Sorting/Sizing	Filtration	Centrifugal (density)	Sieves	Cut Debris (keri/spail)	Crush		N/A			U
Qualitative	_	Extraction	Heating [Primary]	Focused Sunlight	Light (lamp/laser)	Resistance (electrical)	Dielectric (microwave)	Jet (Heated)	Induction	N/A	า		
	RL B	Extraction	Beneficiation	Centrifugal (density)	Magnetic Separation	Electrostatic Separation	• •	Reformer	Leachate (chemical)	N/A	L 2	U5 UI	ptions
	ISRU		Volatile Capture	Cold Trap (Deposition)	Condenser	Sorbents	Vacuum Distillation		Leadnace (onennoal)	,			
	Direct	Refining	Make Oxygen	Carbothermal Reduction	Split Water	Metal Electrolysis	Ionic Liquid Reduction			N/A			
Quantitative	ire	0	Make Hydrogen	Acidic Electrolysis (Voltage)	Alkaline Electrolysis	Solid Oxide Electrolysis	Thermolysis (Heat)	Photocatalytic (Light)		N/A	- つ フ	*1 ∩ ∠≿	³ Combos
			Crack Hydrocarbons	Reverse Water Gas Shift	Steam Reforming	Pyrolysis (Heat)	Thermal Oxidation (Burn)	Fluid Catalytic		N/A	۷.۱	ТО	COMDUS
			Make Methane	Fischer-Tropsch Process	Sabatier Process	Photocatalytic				N/A	(27	O - H (11) - H	
Experiment 1			Quality Control	Process Monitoring	Output Check	Batch Quarantine					(27	Octilior	n, short scale)
		Storage	Medium	Cryogenic Liquid	Cryogenic Solid			Chemical	Gel				
			Insulation	Multi-Layer Insulation	Coatings (External)	Sun Shade / Sunshield	Dewar / Vacuum Shell	Body Lining (Internal)			-		
Experiment 2		Material Handling	•	Mechanical Pusher	Auger / Screw Feeder	Pneumatics	Rotating Feeder ('Airlock')	Electrostatic		N/A			
			Fluids (Liquid & Gas) Work Input	Pressure Fed (by Heating) Heating (Volume Increase)	Pressure Differentual Shaft Work	Flow Ionization Linear Actuator	Jet (momentum transfer) Compressor (Pressure)	Ref. Frame (Spin)					
		Avionics	Autonomy	Autonomous	Automated	Remote	Compressor (Pressure)	Ref. Frame (Spin)					
Conclusions		Avionics	Computation	Centralized	Distributed	String Isolated							Source
			Local Comms	Transmitted	Wired	String isolated							
			Deep Space Comms	Powerful Radio (DSN)	Laser Link	Repeaters							Existing
		Power	Electrical Generation	Concentrated Solar	Photovoltaic Cells	Thermal Gradient	Radioactive Decay (RTG)	Fission Reactor			-	61%	LAISting
			Energy Storage	Batteries	Capacitors	Chemical / Fuel Cell	Thermal Mass			N/A		01/0	Conconto
	ect ISRU		Beam Transmission	Fiber Optics	Mirrors	Beamed Microwaves				N/A			Concepts
		Thermal	Heating [Secondary]	Focused Sunlight	Light (lamp/laser)	Resistance (electrical)	Chemical Reaction						
	ect		Cooling	Passive	Radiators	Barbecue Roll	Heat Storage	Sublimation				0 = 0 (Space &
	Li L		Heat Exchangers	Cold Plate	Finned	Tubular	Phase Change / Cycle			N/A		25%	•
	Indire		Distribution	Water Loop	Refrigerant Loop	Heat Pipes	Peltier Effect (Electrical)	Thermoacoustics			-		ISRU Field
		Wastes	Tailings & Overburden	Eject into Space	Storage/Reuse	Deposit in Source	Secure in Place						
		Structures	Byproducts & Excess Support Structure	Vent into Space Central Bus / Cylindrical	Storage/Reuse Truss / Space Frame	Inject into Source Panel / Stressed Skin	Floors / Support Decks	Inflatable					Other
	1	Juluciales	Positioning	RCS Thrusters	Inflatable Airbags	Anchor / Harpoon	Guy Wires / Tensegrity		Microspines / Claw			120/	Uner
			Relative Motion	RCS Thrusters	Main Thrusters Robotic Joints		Cable Tension	Internal Gas Jets	n with Excavator Microspines / Claw al Gas Jets Reaction Wheels		13%		Fielde
			Rotation Control	Selective Ablation	Thruster Pods	Orbital Nudging	Friction with Containment	Impactor	Action Wheels	N/A	1		Fields
					(Ant)				·· / 201	2 35	in State	A A A A	

Georgia Aerospace System Tech Design Laboratory

Christopher Kitson

أوار المراجع الأور المحملات

Morphological Matrix: Microgravity TRLs³³

Introduction													
[introduction]		Shaded Options:	Microgravity TRLs									Chading	
	Task	Group	Category			Morpholo	gical Options			Null?		Shading:	
		Integration	Separation	Single Unit (None)	Detachable Modules	Subsequent Missions	Swarming Craft					Source	
Motivation	e e	Return Vehicle	Redunancy	Single String (None)	Independent Strings	Cross-Strapped Strings	Multiple Craft				D./	licrogravity TR	1
Intervation	du	Return Vehicle	Propulsion		Solar Thermal	Nuclear Thermal	Electrothermal	Electromagnetic	Ion Thruster		IV	icrogravity in	1L
	ar	e ve	Propellant	Water/Steam	Hydrogen	Hydrolox	Methalox				Ir	nplementatio	n 🖌
	S -	-	Chamber Reaction	Fuel Rich	Stoichiometric	Oxidizer Rich				N/A			
Methodology			Return Type	Whole SoS	Partial / Some Systems	Return Vehicles							
		Prospecting	Local Observations	Passive Observation	Active Observation	Seismic Survey	Orbit Gravimetry				170		
			Wave Type Sampling	Far Infrared / Thermal Kinetic Penetrator (smart)	Near Infrared Impactor (dumb)	Visible Light Excavate (automated)	Radar Touch & Go (TAGSAM)	Sound / Mechanical	Subatomic Particles	N/A N/A		μ-g TF	1LS
		Excavation	Containment	Clamshell Enclosure	Synched Bag	Tube Sleeve	Localized Membrane	Skyhook / Harpoon		IN/A			
Implementation		EXCOVATION	Cut Rock	Auger Bit	Corer	Percussive Drill	Optical Beam (spalling)	Jet (plasma)	Rotary Cutter		400	in ant	
· ·			Powderize	Pneumatic Probes	Borehole Heating	Rip/Fracture	Cut Debris (kerf/spall)	Crush	Rotary Cutter	N/A	aoci	umente	ea.
			Sorting/Sizing	Filtration	Centrifugal (density)	Sieves	Cut Debris (Keri/spail)	Crush		N/A			/
Qualitative		Extraction	Heating [Primary]	Focused Sunlight	Light (lamp/laser)	Resistance (electrical)	Dielectric (microwave)	Jet (Heated)	Induction				
	ISRU	Extraction	Beneficiation	Centrifugal (Density)	Magnetic Separation	Electrostatic Separation	Molten Powderization	Reformer	Leachate (Chemical)	N/A	mor	e in w	ork
	IS		Volatile Capture	Cold Trap (Deposition)	Condenser	Sorbents	Vacuum Distillation		Leadinate (chermoal)	,/.			· · · ·
	Direct	Refining	Make Oxygen	Carbothermal Reduction	Split Water	Metal Electrolysis	Ionic Liquid Reduction			N/A			
Quantitative	ire	. 0	Make Hydrogen	Acidic Electrolysis	Alkaline Electrolysis	Solid Oxide Electrolysis	Thermolysis (Heat)	Photocatalytic (Light)		N/A		TDLC	
	ā		Crack Hydrocarbons	Reverse Water Gas Shift	Steam Reforming	Pyrolysis (Heat)	Thermal Oxidation (Burn)	Fluid Catalytic		N/A		TRLs	
			Make Methane	Fischer-Tropsch Process	Sabatier Process	Photocatalytic				N/A	-		
Experiment 1			Quality Control	Process Monitoring	Output Check	Batch Quarantine						(TBD)	
		Storage	Medium	Cryogenic Liquid	Cryogenic Solid	Pressurized Gas	Granular Solid	Chemical	Gel			4	
			Insulation	Multi-Layer Insulation	Coatings (External)	Sun Shade / Sunshield	Body Lining (Internal)	Dewar / Vacuum Shell				1	
Experiment 2		Material Handlin	5	Mechanical Pusher	Auger / Screw Feeder	Pneumatics	Rotating Feeder ('Airlock')	Electrostatic		N/A		•	
			Fluids (Liquid & Gas)	Pressure Fed (by Heating)	Jet (momentum transfer)	Pressure Differential	Flow Ionization					2	
			Work Input	Heating (Volume Increase)	Shaft Work (Pump)	Linear Actuator	Compressor (Pressure)	Reference Frame (Spin)				-	
		Avionics	Autonomy	Autonomous	Automated	Remote						3	
Conclusions			Computation	Centralized	Distributed	String Isolated							
			Local Comms	Transmitted	Wired	-						4	
			Deep Space Comms	Powerful Radio (DSN)	Laser Link	Repeaters							
		Power	Electrical Generation	Concentrated Solar Power		Thermal Gradient	Radioactive Decay (RTG)	Fission Reactor				5	
	ISRU		Energy Storage	Batteries	Capacitors Mirrors	Chemical / Fuel Cell Beamed Microwaves	Thermal Mass			N/A N/A		J	
	ISF	Thermal	Beam Transmission Heating [Secondary]	Fiber Optics Focused Sunlight	Light (lamp/laser)	Resistance (electrical)	Chemical Reaction			IN/A		6	
	ect	mermai	Cooling	Passive	Radiators	Barbecue Roll	Heat Storage	Sublimation				U	
	Je Je		Heat Exchanger	Cold Plate	Finned	Tubular	Phase Change / Cycle	Subilitiation		N/A		7	
	Indire		Distribution	Water Loop	Refrigerant Loop	Heat Pipes	Peltier Effect (electrical)	Thermoacoustics				/	
	2	Wastes	Tailings & Overburden	Eject into Space	Storage/Reuse	Deposit in Source	Secure in Place					8	
			Byproducts & Excess	Vent into Space	Storage/Reuse	Inject into Source		•				0	
		Structures	Support Structure	Central Bus / Cylindrical	Truss / Space Frame	Panel / Stressed Skin	Floors / Support Decks	Inflatable				9	Ο.
			Positioning	RCS Thrusters	Inflatable Airbags	Harpoon / Anchor	Guy Wires / Tensegrity	Microspines / Claw	Friction with Excavator			9	
			Relative Motion	RCS Thrusters	Main Thrusters	Robotic Joints	Cable Tension	Internal Gas Jets	Reaction Wheels			N/A	0,
			Rotation Control	Selective Ablation	Thruster Pods	Orbital Nudging	Friction with Containment	Impactor		N/A	1 march	IN/A	
			and the second					-	Par 2 5 4	Sec			0

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Morphological Matrix: Selections

Introduction											
	Selected Optio	ns for Concepts	HoneyBee {tweaked}	Concept 'S'	Concept 'H'	Concept 'HO'	Concept 'MO'			Shading:	
	Task Group	Category	Steam - Optical	Steam - Electric	Hydrogen	Hydrolox	Methalox			Shauing:	
	Integration	Separation	Single Unit (None)	Single Unit (None)	Single Unit (None)	Single Unit (None)	Single Unit (None)			Source	
Motivation	<u>e</u>	Redunancy	Independent Strings	Cross-Strapped Strings	Cross-Strapped Strings	Cross-Strapped Strings	Cross-Strapped Strings				
	Sample Return Vehicle	Propulsion	Solar Thermal	Solar Thermal	Electromagnetic (VASMIR)	Chemical Reaction (liquid)	Chemical Reaction (liquid)			Microgravity T	KL
	an	Propellant	Water/Steam	Water/Steam	Hydrogen	Hydrolox	Methalox			Implementatio	าท
	S ff	Chamber Reaction	N/A	N/A	N/A	Fuel Rich	Fuel Rich			Implementatio	
Methodology		Return Type	Some Systems Left Behind	Return Vehicles	Return Vehicles	Return Vehicles	Return Vehicles				
	Prospecting	Local Observations	Active Observation	Active Observation	Active Observation	Active Observation	Active Observation		lave		4
		Wave Type	Radar	Radar	Radar	Radar	Radar	HVORO	IOX C	oncept	L .
		Sampling	N/A	N/A	N/A	N/A	N/A				(
Implementation	Excavation	Containment	Synched Bag	Tube Sleeve	Tube Sleeve	Tube Sleeve	Tube Sleeve			• 1	
		Cut Rock	Optical Beam (spalling)	Corer	Corer	Corer	Corer	has f	ewe	st low	
		Powderize	N/A	Cut Debris (Kerf/Spall)	Cut Debris (Kerf/Spall)	Cut Debris (Kerf/Spall)	Cut Debris (Kerf/Spall)				
		Sorting/Sizing	N/A	N/A	N/A	N/A	N/A			_	
Qualitative	⊃ Extraction	Heating [Primary]	Focused Sunlight	Light (lamp/laser)	Light (lamp/laser)	Light (lamp/laser)	Light (lamp/laser)	$\mu_{\sigma} T$	RI	ptions	
	SC Extraction	Beneficiation	N/A	Filtration	Filtration	Filtration	Filtration	µ-g i			
		Volatile Capture	Cold Trap (Condensation)	Sorbents	Sorbents	Sorbents	Sorbents				
Quantitative	Refining	Make Oxygen	N/A	N/A	N/A	Split Water	Split Water				4
	i.	Make Hydrogen	N/A	N/A	Acidic Electrolysis (Voltage)		Acidic Electrolysis (Voltage)			TRLs	
		Crack Hydrocarbons	N/A	N/A	N/A	N/A	Pyrolysis (Heat)			TINES	_
		Make Methane	N/A	N/A	N/A	N/A	Sabatier Process			(TBD)	
Experiment 1		Quality Control	Process Monitoring	Process Monitoring	Process Monitoring	Process Monitoring	Process Monitoring			(יסטי)	
	Storage	Medium	Cryogenic Solid	Cryogenic Solid	Cryogenic Liquid	Cryogenic Liquid	Cryogenic Liquid			1	
		Insulation	Sunshield / Shade	Multi-Layer Insulation	Multi-Layer Insulation	Multi-Layer Insulation	Multi-Layer Insulation		TRLs	L 1	
Experiment 2	Material Handlin	0	N/A	Auger / Screw Feeder	Auger / Screw Feeder	Auger / Screw Feeder	Auger / Screw Feeder	Concept		2	
		Fluids (Liquid & Gas)	Pressure Fed (by Heating)	Pressure Differential	Pressure Differential	Pressure Differential	Pressure Differential	concept	< 6	2	
		Work Input	Heating (Volume Increase)	Shaft Work (Pump, Auger)	Shaft Work (Pump, Auger)	Shaft Work (Pump, Auger)	Shaft Work (Pump, Auger)		~ 0		
	Avionics	Autonomy	Automated	Automated	Automated	Automated	Automated		4.0	3	
Conclusions		Computation	Distributed	Distributed	Distributed	Distributed	Distributed	HoneyBee	10		A
		Local Comms	Wired	Wired	Wired	Wired	Wired	·····//		4	
		Deep Space Comms	Laser Link	Powerful Radio (DSN)	Powerful Radio (DSN)	Powerful Radio (DSN)	Powerful Radio (DSN)	Water	6		4
	Power	Electrical Generation	Photovoltaic Cells	Photovoltaic Cells	Photovoltaic Cells	Photovoltaic Cells	Photovoltaic Cells	valei	0	5	
	\supset	Energy Storage	Batteries	Batteries	Batteries	Batteries	Batteries		_	J	
	SI	Beam Transmission	Mirrors	N/A	N/A	N/A	N/A	Hydrogen	5	C	
	Thermal	Heating [Secondary]	Resistance (electrical)	Resistance (electrical)	Resistance (electrical)	Resistance (electrical)	Resistance (electrical)			6	
		Cooling	Radiators	Radiators	Radiators	Radiators	Radiators	Hydrolox	4	-	
	i z	Heat Exchanger	Cold Plate	Finned	Finned	Finned	Finned		- -	7	
	Indirect	Distribution	Water Loop	Refrigerant Loop	Refrigerant Loop	Refrigerant Loop	Refrigerant Loop	Mathalay	C I		
	— Wastes	Tailings & Overburden	Secure in Place	Storage/Reuse	Storage/Reuse	Storage/Reuse	Storage/Reuse	Methalox	6	8	
		Byproducts & Excess	Vent into Space	Storage/Reuse	Storage/Reuse	Storage/Reuse	Storage/Reuse				
	Structures	Support Structure	Inflatable	Panel / Stressed Skin	Panel / Stressed Skin	Panel / Stressed Skin	Panel / Stressed Skin			9	e
		Positioning	Anchor / Harpoon	Microspines / Claw	Microspines / Claw	Microspines / Claw	Microspines / Claw			-	-
		Relative Motion	Robotic Joints	Robotic Joints	Robotic Joints	Robotic Joints	Robotic Joints			N/A	e
		Rotation Control	Friction with Containment	Selective Ablation	Selective Ablation	Selective Ablation	Selective Ablation	A. S. S. M.			0
		- CV - Sul		(sure)			and the second s	A	1 A A AN		

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

Martin Martin

Morphological Matrix: Selections

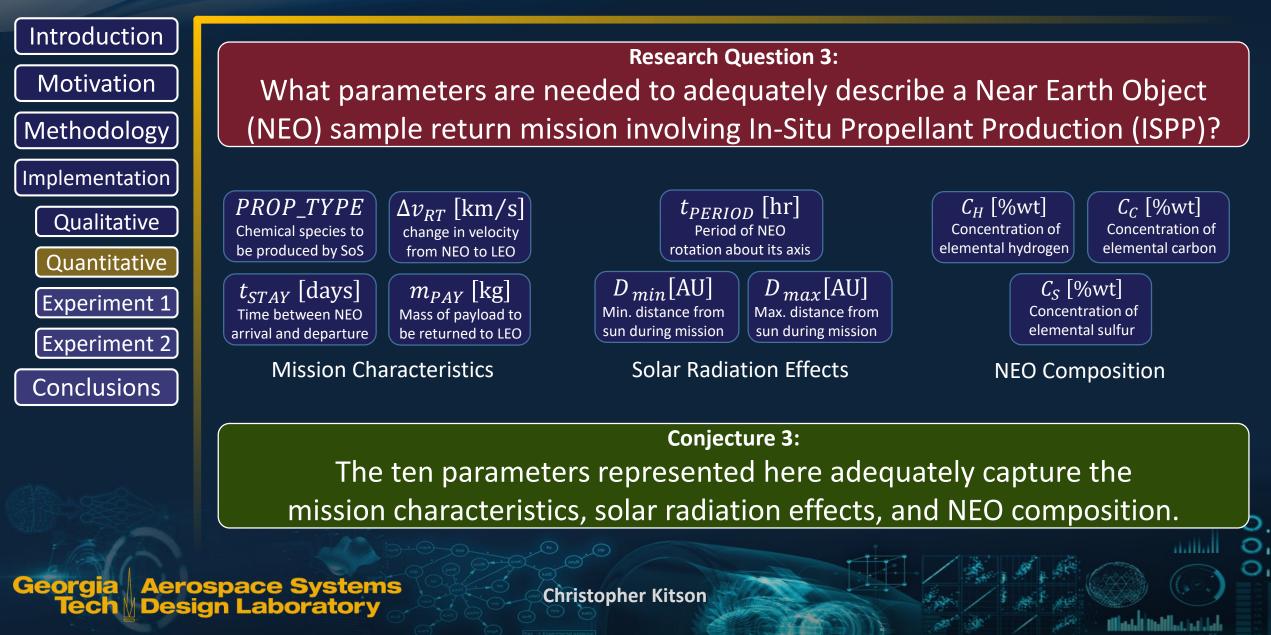
Introduction											
	Selected Op	tions for Concepts	HoneyBee {tweaked}	Concept 'S'	Concept 'H'	Concept 'HO'	Concept 'MO'			Shading:	
	Task Group	Category	Steam - Optical	Steam - Electric	Hydrogen	Hydrolox	Methalox			Shaung:	
	Integration	Separation	Single Unit (None)	Single Unit (None)	Single Unit (None)	Single Unit (None)	Single Unit (None)			Source	
Motivation	Return S S S S S S S S S S S S S S S S S S S	Redunancy	Independent Strings	Cross-Strapped Strings	Cross-Strapped Strings	Cross-Strapped Strings	Cross-Strapped Strings			Microgravity T	ы
		Propulsion	Solar Thermal	Solar Thermal	Electromagnetic (VASMIR)	Chemical Reaction (liquid)	Chemical Reaction (liquid)			viicrogravity i	RL
	ger ar	Propellant	Water/Steam	Water/Steam	Hydrogen	Hydrolox	Methalox			Implementatio	on
	03 -		N/A	N/A	N/A	Fuel Rich	Fuel Rich				
Methodology		Return Type	Some Systems Left Behind	Return Vehicles	Return Vehicles	Return Vehicles	Return Vehicles				
	Prospecting	Local Observations	Active Observation	Active Observation Radar	Active Observation	Active Observation Radar	Active Observation Radar	Lydro		oncont	5
		Wave Type Sampling	N/A	N/A	N/A	N/A	N/A	пушо		oncept	5
	Excavation	Containment	Synched Bag	Tube Sleeve	Tube Sleeve	Tube Sleeve	Tube Sleeve	-		•	
[Implementation]	Excavation	Cut Rock	Optical Beam (spalling)	Corer	Corer	Corer	Corer	hact		st low	
		Powderize	N/A	Cut Debris (Kerf/Spall)	Cut Debris (Kerf/Spall)	Cut Debris (Kerf/Spall)	Cut Debris (Kerf/Spall)	nasi	ewes	st IOW -	
		Sorting/Sizing	N/A	N/A	N/A	N/A	N/A				
Qualitative	- Extraction	Heating [Primary]	Focused Sunlight	Light (lamp/laser)	Light (lamp/laser)	Light (lamp/laser)	Light (lamp/laser)	·· ~ T	י וח		
Quantative		Beneficiation	N/A	Filtration	Filtration	Filtration	Filtration	u-e i		otions	
	IS	Volatile Capture	Cold Trap (Condensation)	Sorbents	Sorbents	Sorbents	Sorbents				
Quantitativa	Nation Struction	Make Oxygen	N/A	N/A	N/A	Split Water	Split Water				
Quantitative	ire	Make Hydrogen	N/A	N/A	Acidic Electrolysis (Voltage	Acidic Electrolysis (Voltage	e) Acidic Electrolysis (Voltage)			TRLs	
		Crack Hydrocarbons	N/A	N/A	N/A	N/A	Pyrolysis (Heat)			INLS	
		Make Methane	N/A	N/A	N/A	N/A	Sabatier Process				
Experiment 1		Quality Control	Process Monitoring	Process Monitoring	Process Monitoring	Process Monitoring	Process Monitoring			(TBD)	
	Storage	Medium	Cryogenic Solid	Cryogenic Solid	Cryogenic Liquid	Cryogenic Liquid	Cryogenic Liquid			1	
		Insulation	Sunshield / Shade	Multi-Layer Insulation	Multi-Layer Insulation	Multi-Layer Insulation	Multi-Layer Insulation		TRLs	L L	
Experiment 2	Material Hand	ling Granular Solids	N/A	Auger / Screw Feeder	Auger / Screw Feeder	Auger / Screw Feeder	Auger / Screw Feeder	Concept		2	
		Fluids (Liquid & Gas)	. ,	Pressure Differential	Pressure Differential	Pressure Differential	Pressure Differential	concept	< 6	2	
		Work Input	Heating (Volume Increase)	Shaft Work (Pump, Auger)) Shaft Work (Pump, Auger)	Shaft Work (Pump, Auger)	Shaft Work (Pump, Auger)			•	
	Avionics	Autonomy	Automated	Automated	Automated	Automated	Automated	Llonov/Doo	10	3	
Conclusions		Computation	9		Decult 2.			HoneyBee	10		
		Local Comms	N .		Result 2:					4	
	Power	Deep Space Comms	<u> </u>	•				Water	6	_	
		Electrical Generation Energy Storage	l The hy	/drogen_o	xygen (hyd	rolox) nro	nellant 📘		-	5	
	n n	Beam Transmission						Hydrogen	5	-	
	C S Thermal	Heating [Secondary]			ما میں میں مالح ا			ingulogen	5	6	
	t	Cooling	aesig	n selected	through r	narrowing	down		л		
	Ē	Heat Exchanger	C C		Ŭ	Ŭ		Hydrolox	4	7	
		Distribution	n ontio	nc iicing T	RLs shoul	hartasak	hattar				
	<u>Wastes</u>	Tailings & Overburden		nis using i	NLS SHOUR	ιατιαδαι		Methalox	6	8	
		Byproducts & Excess	1						-		-
	Structures	Support Structure	haselin	e for com	parison tha	an the Hor				9	0
		Positioning									
		Relative Motion	Ro							N/A	0
		Rotation Control	Friction with Containment	Selective Ablation	Selective Ablation	Selective Ablation	Selective Ablation	Ser S . M			0
		and and the					and the second second	A STATE OF LESS	1 AAAA		

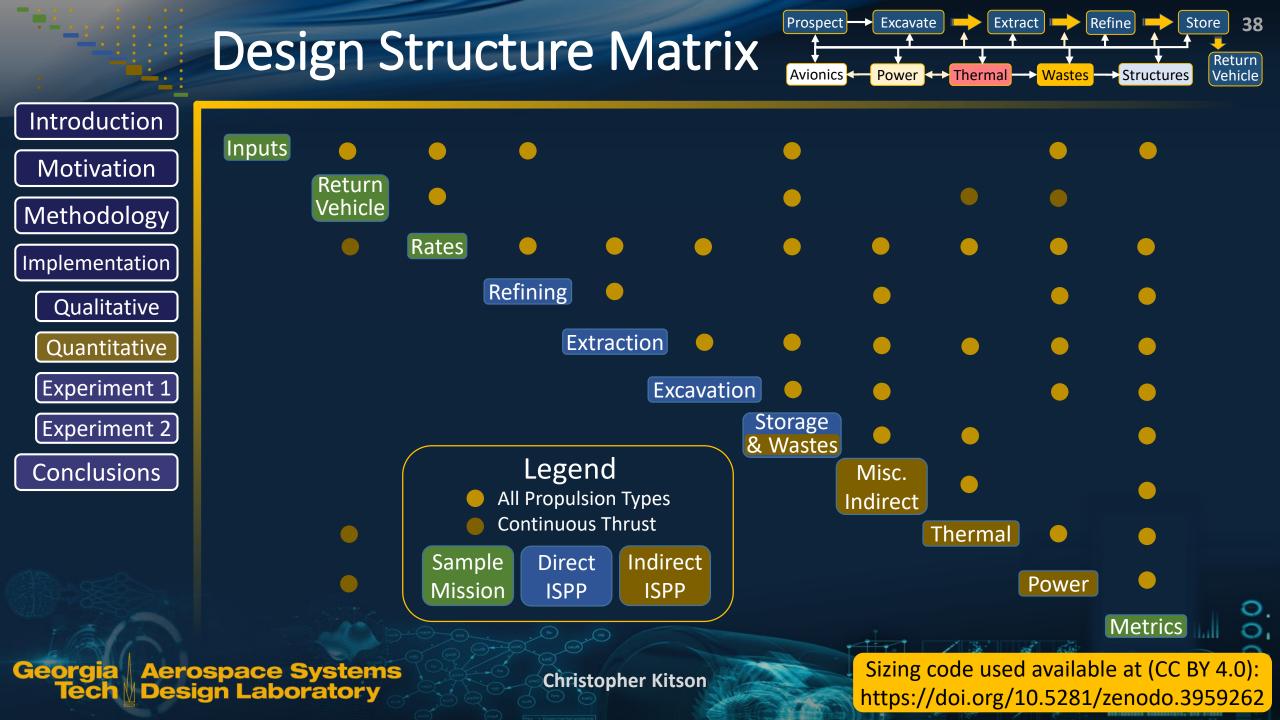
Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

ահուն անհունքերի

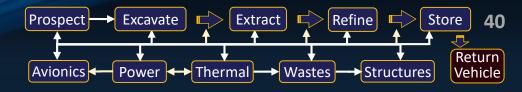
Morphological Matrix: Implementation


Introduction												
		Implementation of	' Selected Options	HoneyBee {tweaked}	Concept 'S'	Concept 'H'	Concept 'HO'	Concept 'MO'			Ch	nading:
	Task	Group	Category	Steam - Optical	Steam - Electric	Hydrogen	Hydrolox	Methalox				iaung:
		Integration			Single Unit (None)	Single Unit (None)	Single Unit (None)	Single Unit (None)			S	ource
Motivation	<u>e</u> e			<u> </u>	Cross-Strapped Strings	Cross-Strapped Strings		Cross-Strapped Strings			N 4:	
	Sample Return	Return Vehicle	Propulsion	Solar Thermal	Solar Thermal	Electromagnetic (VASMIR)		Chemical Reaction (liquid)			iviicro,	gravity TRL
	an Xef	1	Propellant	Water/Steam	Water/Steam	Hydrogen	Hydrolox	Methalox			Imple	mentation
	S R	•		N/A	N/A	N/A	Fuel Rich	Fuel Rich				
Methodology		Dreamant		Some Systems Left Behind		Return Vehicles	Return Vehicles	Return Vehicles				
		Prospecting		Active Observation	Active Observation	Active Observation		Active Observation	Parti	a siz	ing done	on pal
					Radar N/A			Radar N/A				
		Excavation	1 0		N/A Tube Sleeve	N/A Tube Sleeve	¦N/A ¦Tube Sleeve	N/A Tube Sleeve				
Implementation				Optical Beam (spalling)	Corer	Corer	Corer	Corer	With	ave.	existing	sections
				Optical Beam (spalling) N/A	Corer Cut Debris (Kerf/Spall)	Corer Cut Debris (Kerf/Spall)	Corer Cut Debris (Kerf/Spall)	Corer Cut Debris (Kerf/Spall)			6	
					N/A	N/A						
Qualitative	-	Extraction	Heating [Primary]	N/A Focused Sunlight	Light (lamp/laser)	Light (lamp/laser)	Light (lamp/laser)	Light (lamp/laser)			•	Sama
Qualitative	ISRU		- · · ·	U	Filtration	Filtration		Filtration				Some
	IS I				Sorbents	Sorbents	Sorbents	Sorbents			Concept	
	Direct	Refining			N/A	N/A	Split Water	Split Water				Sizing
Quantitative	e.	5			N/A	Acidic Electrolysis (Voltage					۹	6
	ā		Crack Hydrocarbons		N/A	N/A	N/A	Pyrolysis (Heat)			HoneyBee	e 44%
			· ·		N/A		N/A	Sabatier Process			TIONEYDEL	- 44/0
Experiment 1					Process Monitoring	Process Monitoring		Process Monitoring				
		Storage	Medium	Cryogenic Solid	Cryogenic Solid	Cryogenic Liquid	Cryogenic Liquid	Cryogenic Liquid			Water	58%
			Insulation	Sunshield / Shade	Multi-Layer Insulation	Multi-Layer Insulation	Multi-Layer Insulation	Multi-Layer Insulation			۱	
Experiment 2		Material Handling			Auger / Screw Feeder	Auger / Screw Feeder	Auger / Screw Feeder	Auger / Screw Feeder			Hydrogen	n 61% 🛛
				. ,		Pressure Differential		Pressure Differential				. 31/0
						<u>, </u>		Shaft Work (Pump, Auger)			Hydrolox	62%
		Avionics		Automated	Automated	Automated	Automated	Automated			TIYUIUUX	UZ/0
Conclusions				Distributed	Distributed	Distributed	Distributed	Distributed				C20/
				Wired	Wired	Wired	Wired	Wired			Methalox	63%
			Deep Space Comms	Laser Link	Powerful Radio (DSN)	Powerful Radio (DSN)	Powerful Radio (DSN)	Powerful Radio (DSN)				
		Power	Electrical Generation	Photovoltaic Cells	Photovoltaic Cells	Photovoltaic Cells	Photovoltaic Cells	Photovoltaic Cells			Average	58%
	\Box		Energy Storage	Batteries	Batteries	Batteries	Batteries	Batteries			Average	
	ISRU	Thorres			N/A	N/A		N/A				
	H H	Thermal			Resistance (electrical)	Resistance (electrical)		Resistance (electrical)		1	Implam	ontation
	ec e		Cooling	Radiators Cold Plate	Radiators	Radiators	Radiators Finned	Radiators		N Contraction	lunhieu.	entation
	Indirect			Cold Plate	Finned					4.000	1	
	Ĕ	Wastes		Water Loop	Refrigerant Loop	Refrigerant Loop	i	Refrigerant Loop		40%	6 Reast	onable
		wasies	Tailings & Overburden Byproducts & Excess	Secure in Place Vent into Space	Storage/Reuse Storage/Reuse	Storage/Reuse	¦Storage/Reuse ¦Storage/Reuse	Storage/Reuse				
		Structures	/1	Inflatable	Panel / Stressed Skin	Panel / Stressed Skin		Panel / Stressed Skin		18%	5 Lim	nited
		Junuluies		Anchor / Harpoon	Microspines / Claw	Microspines / Claw	Microspines / Claw	Microspines / Claw				incu
			-	Robotic Joints	Robotic Joints	Robotic Joints	Robotic Joints	Robotic Joints		120	/ Nlat	Cizod
						Selective Ablation	Selective Ablation	Selective Ablation	13.1	42%	o INOT	Sized
					Con Control Tolation				1 2 S	35 6 Get	C. A. A. A.	
Georgia Aeros	SDS	CO SI	stems		R_ //		HUTTER .		1 5th \$	Constant President		


Georgia | Aerospace System Tech || Design Laboratory

Christopher Kitson

Wheel Woodsheet and the


Key Parameters of Interest

	Inputs by Type	Prospect → Excavate Extract Refine Store 39
Introduction Motivation Methodology Implementation	Input Handling: Python keyword argu Primary Driving factors	iments, or CSV batch reader Secondary Options & tuning factors
Qualitative Quantitative Experiment 1 Experiment 2 Conclusions	PROP_TYPE Chemical species to be produced by SoSΔν _{RT} [km/s] change in velocity from NEO to LEO t_{STAY} [days] Time between NEO arrival and departure $D_{min}[AU]$ Min. distance from sun during mission $D_{max}[AU]$ Max. distance from sun during mission t_{PERIOD} [hr] Period of NEO totation about its axis	$C_H [\%wt]$ Concentration of elemental hydrogen $C_C [\%wt]$ Concentration of elemental carbon $C_S [\%wt]$ Concentration of elemental sulfur $DCDNC$ Boolean switch: concentrator / lamp $M_{PAY} [kg]$ Mass of payload to be returned to LEO $OVERBURDEN$ Megortion of mass ecavated that isn't ore $MARGIN$ Moportion of addl. mass at SoS level $OVERSIZE$ Multiplier on prop. demanded quantity $REDUNDANT$ Integer count of subsystem strings
Georgia Aero Tech Desi	ospace Systems gn Laboratory	 Override default values Option flag/switches High level modifiers

Propellant to Return

Introduction Motivation Methodology Implementation Qualitative Quantitative Experiment 1 Experiment 2 Conclusions

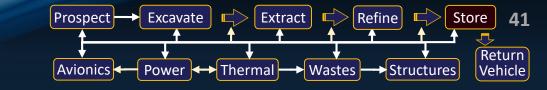
 $\Delta v = 5000 \text{ m/s}$ $m_{PAY} = 2000 \text{ kg}$ 30% mass contingency

Return Vehicle Module: single rocket stage sized to find propellant required

Propellant	<i>I_{sp}</i> [s]	m_{eng} [kg]	P_{eng} [W]	η _{eng} [%]	Comparable Engine	
Hydrogen	3000 s	500 kg	100 kW	70% eff.	Ad Astra VASIMR VF-200	[4,5]
Water	270 s	118 kg	480 kW	50% eff.	TransAstra Omnivore @ 1850 K	[6]
Hydrolox	460.1 s	230 kg	mix 5.7		Aerojet Rocketdyne RL10C-3	[3]
Methalox	362 s	250 kg	mix	3.4	Avio Vega M10	[2]

Bare dry mass sized based upon Mass Estimating Relations given by Akin [1]

Propellant	Bare Dry [kg]	m _{PROP} [kg]
Hydrogen	5178 kg	1396 kg
Water	4557 kg	38616 kg
Hydrolox	1872 kg	8248 kg
Methalox	1644 kg	11822 kg


• Spherical tanks with connecting frustums, plus electronics

- Solar panels (Hydrogen) & solar concentrator (Water) sized via Power Module, none for impulsive thrust
- Radiators for excess heat sized by Thermal Module

HoneyBee: 4714 kg (reported) vs. 4941 kg (0% cont.) Δv = 290 m/s, m_{PAY} = 10⁵ kg, I_{sp} = 335 s [6]

D. L. Akin, "Mass Estimating Relations," Sep. 17, 2019,
 Avio, "VEGA E: M10 Motor," *Avio.com*, Aug. 2018.
 Aerojet Rocketdyne, "RL10 Propulsion System," Mar. 2019.
 F. Chang Diaz *et al.*, "An Overview of the VASIMR ® Engine," Jul. 201
 F. Chang Díaz and E. Seedhouse, "The VASIMR® Nuclear-Electric ..."
 J. C. Sercel, et al. "Stepping stones:...", Mar. 2018,

Georgia Aerospace Systems Tech Design Laboratory

Introduction Motivation Methodology

Implementation

Qualitative Quantitative

Experiment 1

Experiment 2

Conclusions

Rates Module: Adjust mass flow of propellant, find NEO insolation properties

Irradiation

Sunlight reaching NEO

- 1360.8 W/m² @ 1 AU, solar min [1]
- Inverse square law to scale with heliocentric distance

Rate Adjustment

Mass Flow

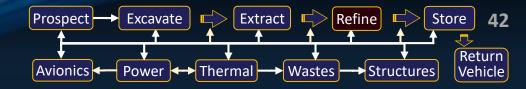
Average demanded propellant

- Increase non-limited to stochiometric
- Useful time adjustment
 - Light & Dark operation factors
 - Deployment & checkout time
- Oversize mult. factor option

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

NEO Temperature


Average expected NEO surface temperature

- Radiative equilibrium temperature, constant sunlight assumed
 - Absorptivity (0.982)
 - Emissivity (0.9)
 - Beam Param (1.8)
 - Area Ratio (1/4: sphere)
- Ignored diurnal cycle variation

Values for min. & max. heliocentric distance computed

[1] Kopp and Lean, 2011. DOI: 10.1029/2010GL045777

Refining

Introduction **Motivation** Methodology Implementation Qualitative Quantitative **Experiment 1 Experiment 2** Conclusions

Refining Module: convert volatiles ($H_2O \& CO_2$) into consumables (propellant)

MIT HabNet sizing equations & tuning factors used as baseline

- Added temperature states, to track heating & cooling
- Replaced tanks with rubberized ASME BPVC code
- Added stoichiometry checks & a few flow sensors

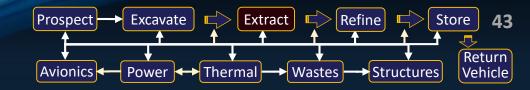
Acidic Electrolyzer

Split water across proton exchange membrane

- Multiple instances of fixed cell
- Variable casing size & tank instances
- State temperatures for hydrogen dryer and heat exchanger heat/cool
- Molar & mass species flow rates
- Pump included

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson


Sabatier Reactor

Methane from carbon dioxide and hydrogen

- Multiple instances of fixed channel
- Variable piping & tank instances
- State temperatures for chamber and 'phase separator' used for heat/cool
- Molar & mass species flow rates

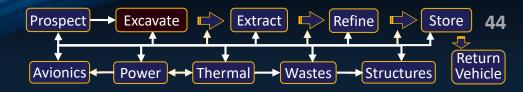
Do, 2016. "Towards Earth Independence-Tradespace ..."
 Schrenk, 2015. "Master Thesis Development of an ISRU..."

Introduction	Ext
Motivation	
Methodology	
Implementation	_
Qualitative	
Quantitative	
Experiment 1	
Experiment 2	
Conclusions	

Extraction Module: evolve volatiles ($H_2O \& CO_2$) from NEO ore

Thermal Vacuum

Bake out volatiles in vacuum chamber


- Batch heated size volume
 - Linear temperature ramp used
 - Takt time vs. ore per batch
- Walls: nested tank instances
- Heating Demand
 - Specific heat: ore itself
 - Sublimation: volatiles
- Cooling Demand
 - Specific heat: volatiles

Separate SO₂ from H₂O & CO₂, then them too

- Thermal Cycling
 - Specific heat: volatiles
 - Sets stage temperatures
- Not yet sized: chamber, where to sit

Georgia Aerospace Systems Tech Design Laboratory

Introd	uction
IIIIUU	uction

Motivation

Methodology

Implementation

- Qualitative
- Quantitative
- Experiment 1

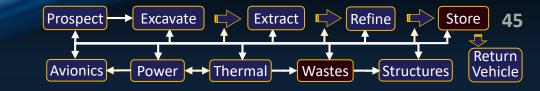
Experiment 2

Conclusions

Excavation Module: extract NEO ore from bulk NEO

Corer

Cutting head that can also take samples


- Multiple instances of fixed size
 - Cores per bit drilled
 - Kerf dust vs. soild removed
 - Cutting energy per volume
- Cutting energy per volume

Robotic Arm

Means to reposition cutting head

- Multiple Instances of fixed size
 - one per group of corers
- NASA InSight arm, borrowed not sized

Georgia Aerospace Systems Tech Design Laboratory

Introduction Motivation Methodology

Implementation

Qualitative

Quantitative

Experiment 1

Experiment 2

Conclusions

Storage Module: all mass input stored after processing; chill then put in tank

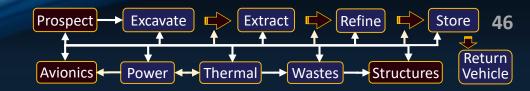
Chiller

Storage & Wastes

Heat removed for cryogenic storage

- Cooling Requested
 - Pulls last stage temperature
 - Cools to vaporization or sublimation point for material

Chemical	<i>T_{in}</i> [K]	T _{store} [K]
Oxygen	358 K	90 K
Carbon Dioxide	358 K	194 K
Sulfur Dioxide	333 K	263 K
Water	358 K	273 K
Methane	363 K	111 K
Hydrogen	358 K	20 K
Svetome	VAN	


Tankage

Rubberized ASME BVPC Instance

- Pressure vessel, thickness to code Sized to 1 atmosphere, except for granular solids
- Densified propellant used to compute storage volume
- **Overburden** is the component of regolith that is not considered to be ore; regolith that is excavated but not subject to extraction.
- **Tailings** are the portion of ore that is left after volatiles have been extracted.
- Byproducts are substances produced while refining volatiles that are not considered consumables in their own right.
- Excess is consumables produced beyond the quantity demanded oby the customer.

Georgia | Aerospace Systems Tech || Design Laboratory

Miscellaneous

Introduction

Methodology

Motivation

Implementation

Qualitative

Quantitative

Experiment 1

Experiment 2

Conclusions

Miscellaneous: Avionics – command & communications to coordinate SoS Material Handling – move masses between equipment Prospecting – locate ore in NEO, usually from orbit Structures – bear mechanical loads, control attachment to NEO

Auger

Granular solid material handling

Digitized scaling from MIT HabNet; sized at 1 rpm, too small DIA otherwise

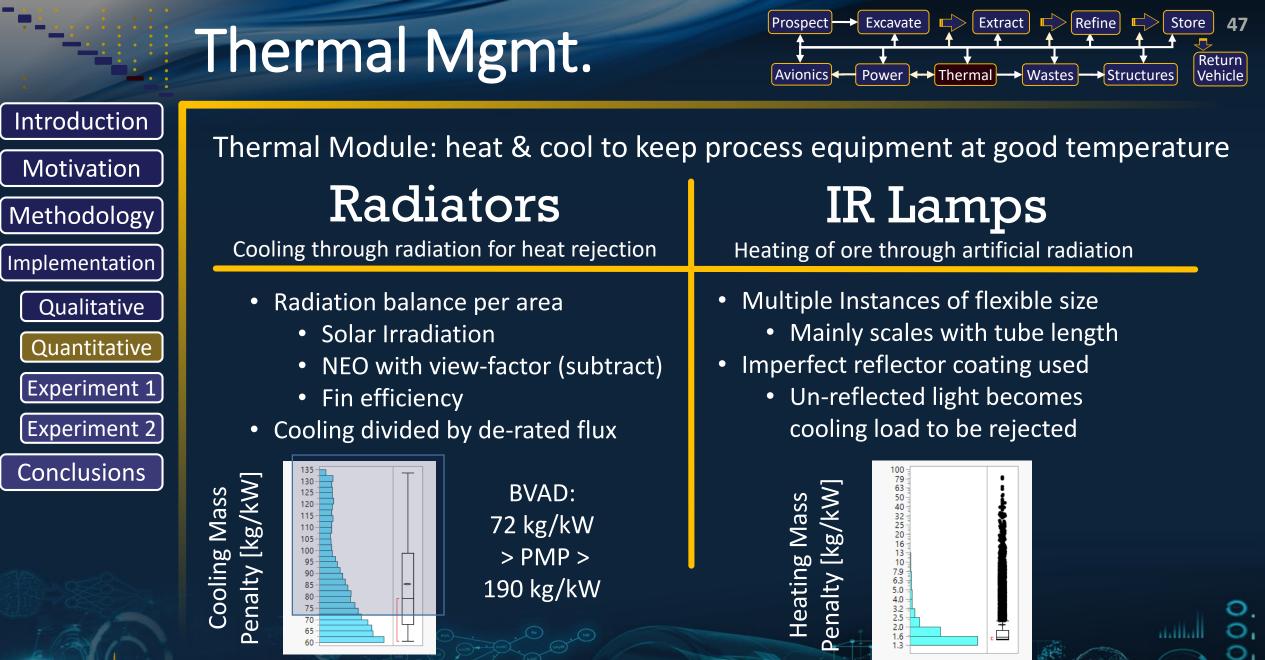
Pump Fluids material handling

Multiple instances (10 kg ea.), taken from MIT HabNet Electrolyzer

Georgia Aerospace Systems Tech Design Laboratory

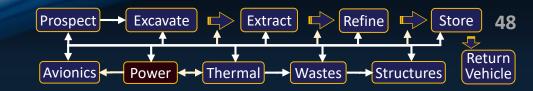
Christopher Kitson

Unsized Functions


Fairly high fairly high values for system mass contingencies (30%) and overall SoS mass margin (30%) by default, to compensate.

> MARGIN Proportion of addl. mass at SoS level

CONTINGENCY Proportion of addl. mass at system level


Sized overall mass of SoS nearly doubles as a result.

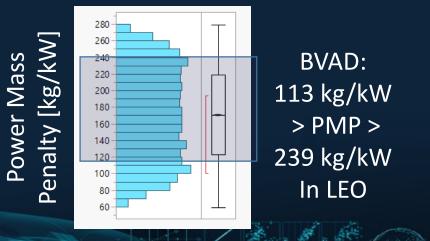

[1] Do, 2016. "Towards Earth Independence-Tradespace ..."
[2] Schrenk, 2015. "Master Thesis Development of an ISRU..."

Georgia Aerospace Systems Tech Design Laboratory Anderson et al., 2015. "Life Support Baseline Values and Assumptions Document" (BVAD)

Power Mgmt.

Power Module: electrical generation & storage

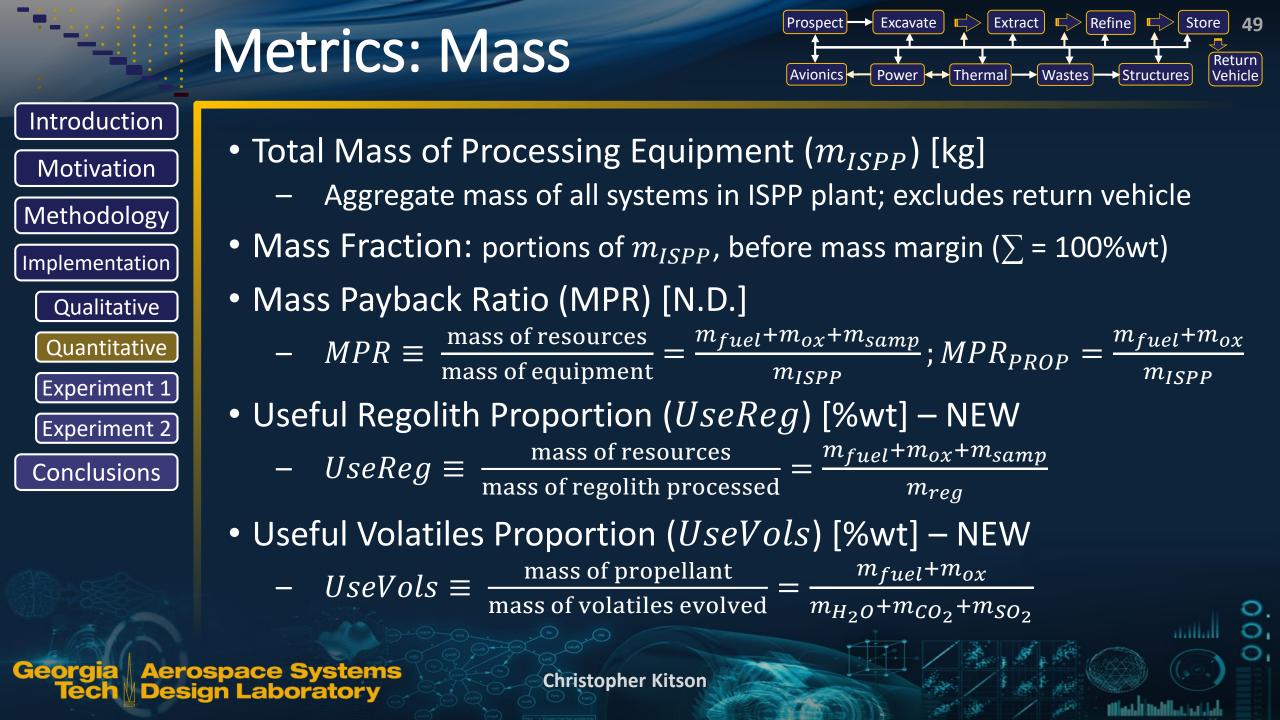
Photovoltaic Cells

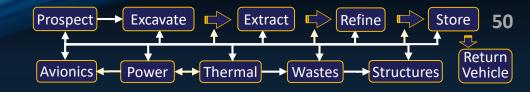

Electricity from solar irradiation

- Uprate demand to account for dark operation & charging inefficiency
- Derating incident irradiation
 - Solar Irradiation
 - Temperature (not cooled, in radiative equilibrium)
 - Degradation during mission
 - Losses: Cell, Assembly, Cosine
- Power divided by de-rated flux gives area, mass per area used

Li-Ion Batteries

Secondary battery cells for operation in dark


- Multiple instances of fixed size
- Energy storage sized for average dark power during dark portion of NEO period


Georgia | Aerospace Systems Tech || Design Laboratory

Christopher Kitson

Anderson et al., 2015. "Life Support Baseline Values and Assumptions Document" (BVAD)

Metrics: Energy Use

• Total Power (P_{ISPP}) [We], Heating ($Q_{H,ISPP}$) [Wt], Cooling ($Q_{C,ISPP}$) [Wt] demand of ISPP plant (direct & indirect), excluding return vehicle

• Energy Use Fractions: portions of total energy use ($\Sigma = 100\%$) – NEW

- Power, Heating, & Cooling aggregated double counting from transformations included
- Specific Energy Intensity (SEI) [J/kg] NEW
 - $-SEI \equiv \frac{\text{rate of energy use}}{\text{rate of propellant production}} = \frac{P_{ISPP} + Q_{H,ISPP} + Q_{C,ISPP}}{\dot{m}_{fuel} + \dot{m}_{ox}}$
- Power Mass Penalties (PMP) [kg/kW]
 - $PMP \equiv \frac{\text{mass of system handling energy}}{\text{demanded energy use capacity}} = \frac{m_{POW}}{P_{ISPP}}, \frac{m_{HEAT}}{Q_{H,ISPP}}, \frac{m_{COOL}}{Q_{C,ISPP}}$
- Mass Throughput (*f*) [1/day (Earth)]

 $- f \equiv \frac{\text{mass of matter processed}}{\text{mass of equipment * time to process}}; f = \frac{m_{PROP}}{m_{ISPP} * t_{PROD}}$

Aerospace Systems Design Laboratory

Q5.1: Varying Mission Parameters

Cases: 275

Introduction	Experiment 1 (E1):									
Motivation	Vary the six primary input parameters associated with the mission $(\Delta v_{RT}, t_{STAY}, PROP_TYPE)$ and solar irradiation $(D_{SUN,min}, D_{SUN,max}, t_{PERIOD})$, with constant sample mass and composition.									
Methodology										
Implementation	Design of Experiments	Variable	Units	Min.	Nom.	Max.	0.5 – 3.0 km/s [1]			
Qualitative	Change in velocity required to (NEO to LEO)	Δv_{RT}	m/s	500	4,646 ^[5]	8,000	3.8 – 27 km/s [5]			
	time on station at NEO	t_{STAY}	days	30	100	365	0.1 – 100 years [1]			
Quantitative	Minimum solar distance of NEO during mission	D _{min}	AU	0.75	0.9633 ^[3]	1.2	0.75 – 1.2 AU [1]			
Experiment 1	Maximum solar distance of NEO during mission	D_{max}	AU	0.85	1.4159 ^[3]	1.45	0.85 – 1.45 AU [1]			
Experiment 2	Period of the NEO	t _{PERIOD}	hours	2.5	7.6326 ^[3]	24	1 – 9.5 day ⁻¹ [2]			
Conclusions	Propellant Type	PROP_TYPE	Steam	Hydrogen	Hydrolox	Methalox	Cases: 275			
	Hypothesis 5.1: If sized ISPP plant mass sensitivity to primary inputs about NEO orbital characteristics									

If sized ISPP plant mass sensitivity to primary inputs about NEO orbital characteristics

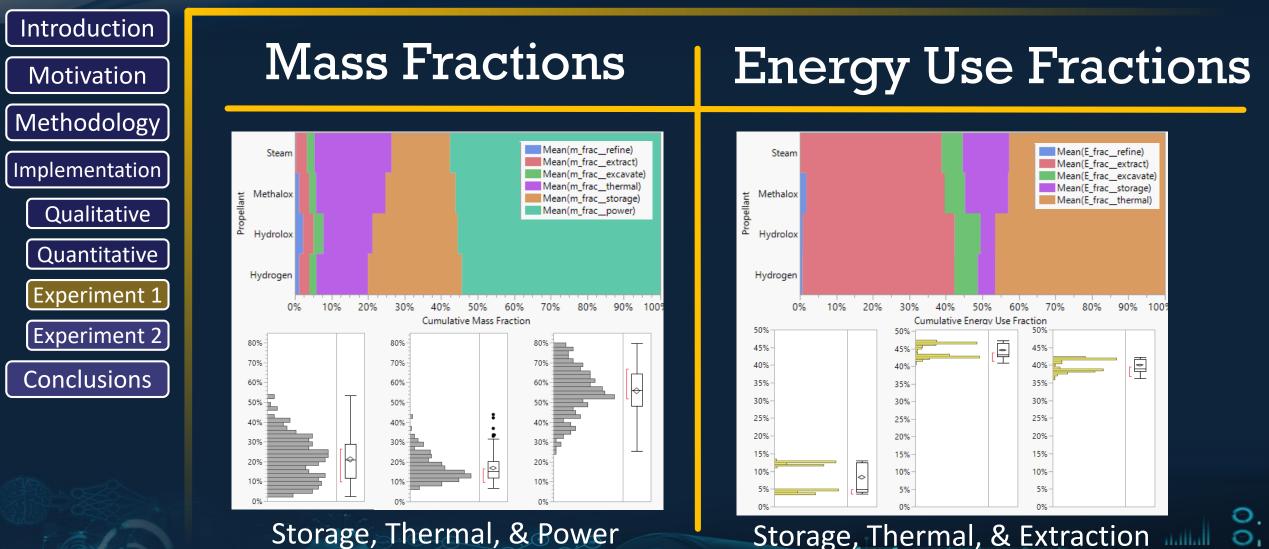
is analyzed, then the change in velocity to return (Δv_{RT}) [km/s]

will have the greatest contribution to variability.

Aerospace Systems .aboratorv

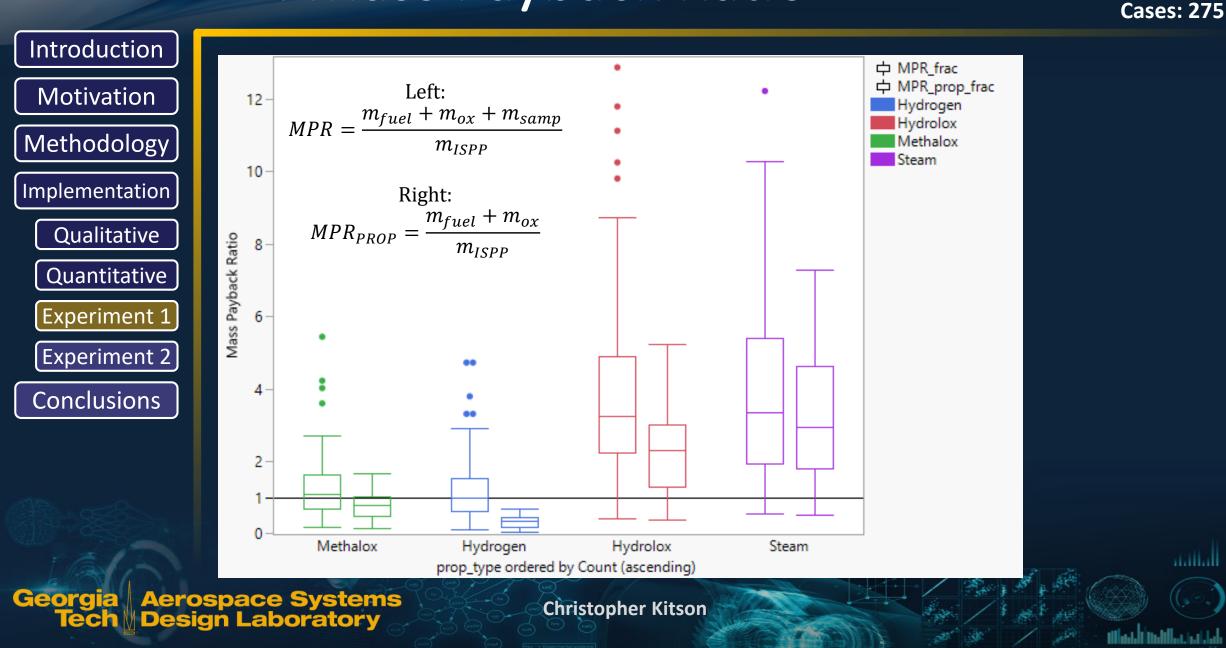
Christopher Kitson

[2] (Pravec et al. 2008)


[1] (Jedicke et al. 2018) [3] Ryugu in (Scheeres et al. 2019) [4] Orgueil Meteorite (Metzger et al. 2019) [5] Delta-v for Rendezvous (Benner 2018)

E1: Relative System Sizing

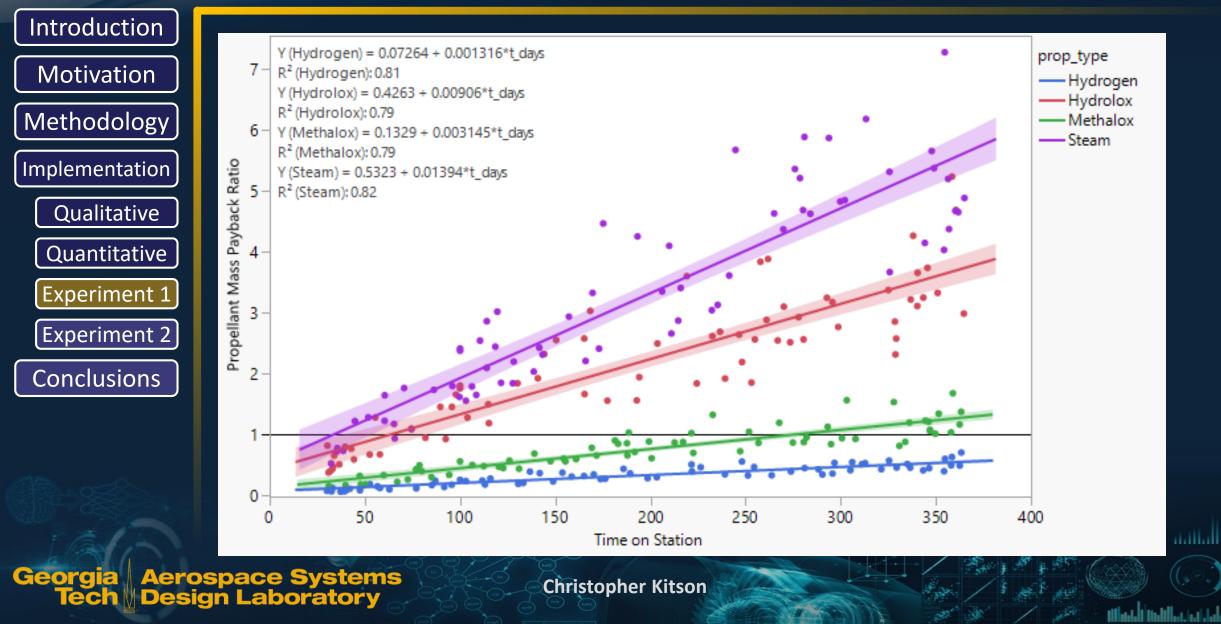
Cases: 275


52

 \odot

Georgia Aerospace Systems Tech Design Laboratory

E1: Mass Payback Ratio


Θ.

0.

Ο,

E1: Mass Payback Ratio

Cases: 275

Ο.

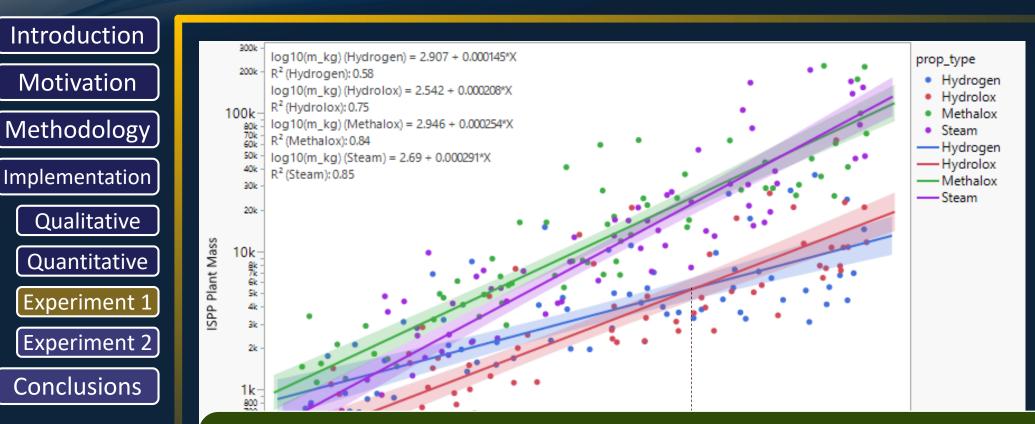
0.

Ο,

E1: Concept Scaling

Introduction 300k log10(m_kg) (Hydrogen) = 2.907 + 0.000145*X prop_type 200k - R2 (Hydrogen): 0.58 Motivation Hydrogen log10(m_kg) (Hydrolox) = 2.542 + 0.000208*X Hydrolox R² (Hydrolox): 0.75 Methalox 100k Methodology log10(m_kg) (Methalox) = 2.946 + 0.000254*X 80k 70k 60k Steam R² (Methalox): 0.84 — Hydrogen 50k log10(m_kg) (Steam) = 2.69 + 0.000291*X Hydrolox 40k Implementation R² (Steam): 0.85 Methalox 30k — Steam 20k Qualitative SPP Plant Mass 10k Quantitative Sk **Experiment 1** 4k3k Experiment 2 2k Conclusions 1k 800 700 600 500 400 300 200 100 1k 2k 3k 5k 6k 7k 8k 0 4kChange in Velocity to Return Aerospace Systems Design Laboratory **Christopher Kitson** ech

Θ.


0.

Ο,

أبارين والاور الموال

Cases: 275

E1: Concept Scaling

Result 5.1:

Return energy $(\Delta v_{RT} \text{ [km/s]})$ does have the greatest contribution to variability. Hydrolox has the lightest sized plant on average for $\Delta v_{RT} \leq 5.8 \text{ km/s}$, until it is superseded by hydrogen. Steam tends to have the heaviest sized plant, but the greatest propellant mass payback ratio.

Change in Velocity to Return

Christopher Kitson

Cases: 275

Q5.2: Varying NEO Composition

Cases: 13,342

Introduction									
Motivation	Experiment 2 (E2): Vary payload mass (m_{PAY}) and composition ($C_C, C_H, C_S, OVERBURDEN$)								
Methodology	in addition to other mission and solar irradiation related parameters								
	Design of Experiments	Variable	Units	Min.	Nom.	Max.	0.5 – 3.0 km/s [1]		
Implementation	Change in velocity required to (NEO to LEO)	Δv_{RT}	m/s	500	4,646 ^[5]	8,000	3.8 – 27 km/s [5]		
	time on station at NEO	t_{STAY}	days	30	100	365			
Qualitative	Minimum solar distance of NEO during mission	D_{min}	AU	0.75	0.9633 ^[3]	1.2	0.75 – 1.2 AU [1]		
Quantitative	Maximum solar distance of NEO during mission	D_{max}	AU	0.85	1.4159 ^[3]	1.45	0.85 – 1.45 AU [1]		
	Period of the NEO	t _{PERIOD}	hours	2.5	7.6326 ^[3]	24	1 – 12 day ⁻¹ [2]		
[Experiment 1]	Propellant Type	PROP_TYPE	Hydrogen	Steam	Hydrolox	Methalox			
Experiment 2	Mass of samples returned from NEO	m_{SAMP}	kg	100	2,000	10,000			
	Regolith removed that is overburden, not ore	OVERBURDEN	%wt	0%	0%	90%			
Conclusions	Mass fraction of NEO ore that is carbon atoms	C _C	%wt	0.5%	3.22% ^[4]	15%	55%wt CO ₂		
	Mass fraction of NEO ore that is hydrogen atoms	C_H	%wt	0.5%	2.02% ^[4]	5.49%	98%wt water		
	Mass fraction of NEO ore that is sulfur atoms	C_S	%wt	0%	5.25% ^[4]	10%	20.6%wt SO ₂		
		Hypothesis 5.2:							
	If sized ICDD plant mass consitivity to NEO composition is each red								

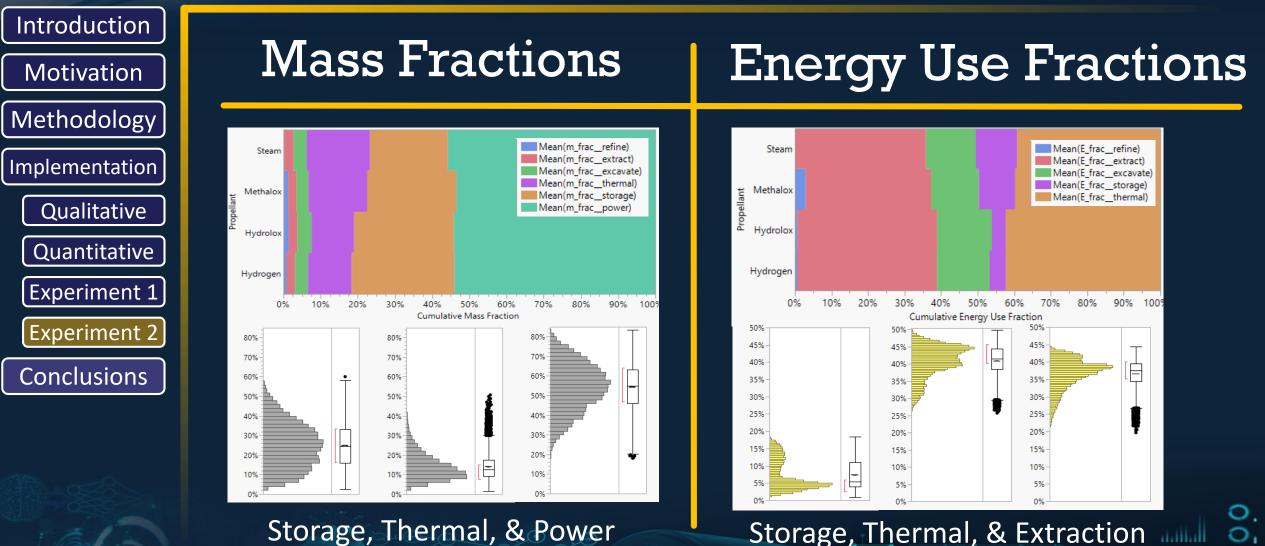
If sized ISPP plant mass sensitivity to NEO composition is analyzed,

then the availability of water will have the greatest contribution to variability.

When uncertainty in composition is considered, Methalox concepts are anticipated to be more robust.

Aerospace Systems Design Laboratory

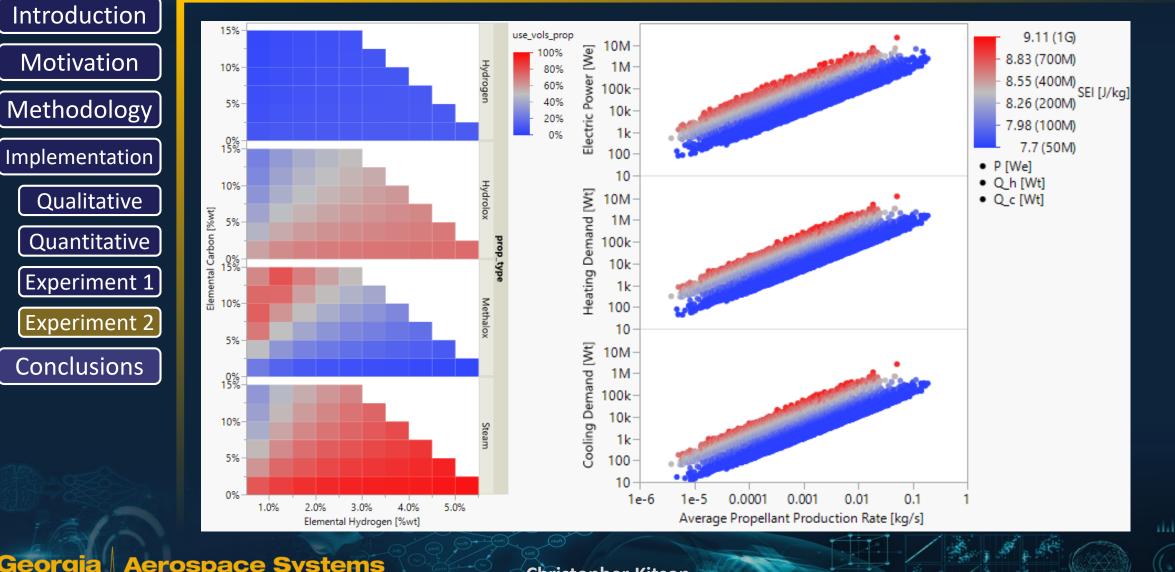
Christopher Kitson


[1] (Jedicke et al. 2018) [3] Ryugu in (Scheeres et al. 2019) [2] (Pravec et al. 2008) [4] Orgueil Meteorite (Metzger et al. 2019) [5] Delta-v for Rendezvous (Benner 2018)

E2: Relative System Sizing

Cases: 13,342

58


Ο,

Storage, Thermal, & Power

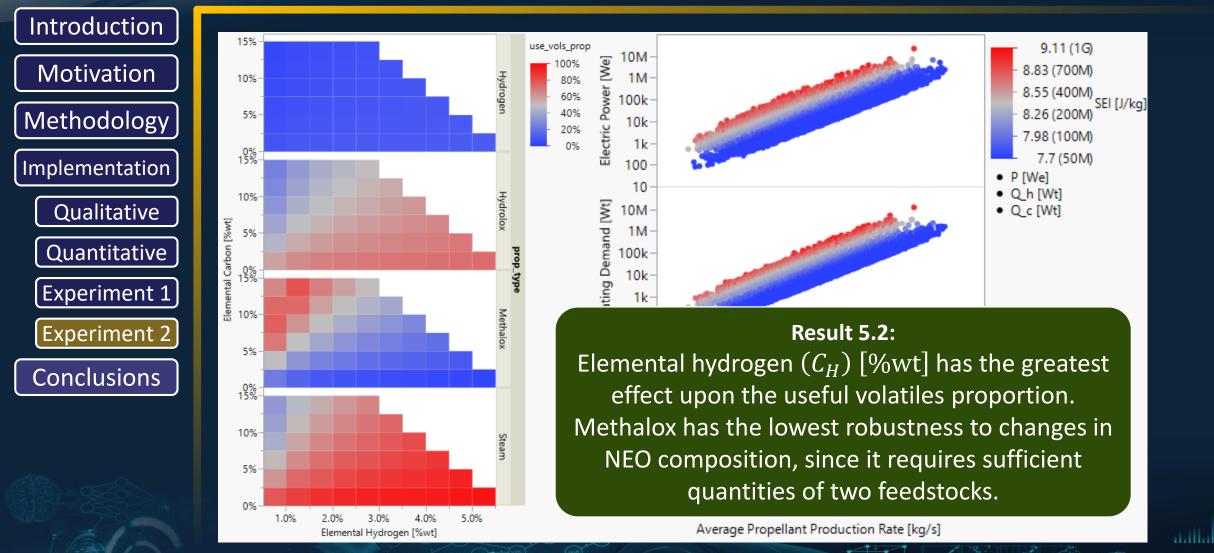
Aerospace Systems Design Laboratory

E2: Composition Effects

orgia Aerospace Systems Tech Design Laboratory

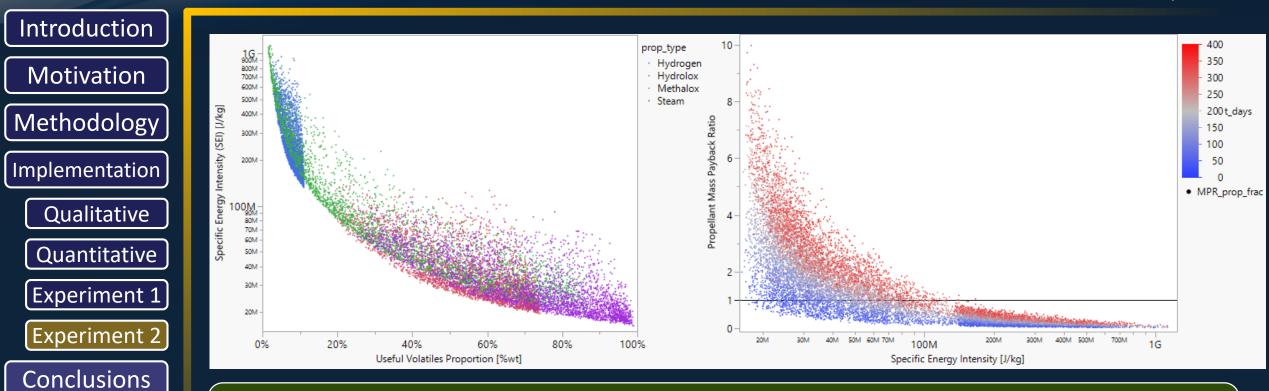
Christopher Kitson

Ο.


0

ο.

Cases: 13,342


E2: Composition Effects

Cases: 13,342

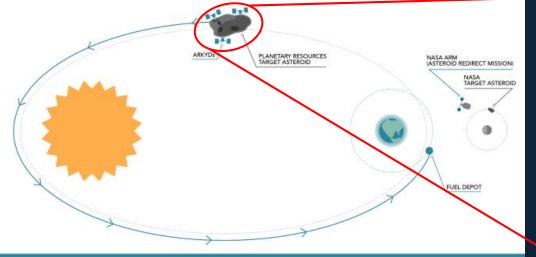
Georgia Aerospace Systems Tech Design Laboratory Ο.

E2: Specific Energy Intensity (SEI)

Conjecture 5:

Increasing the useful volatiles proportion drives the specific energy intensity, which in turn drives propellant mass payback ratio.

Extraction system performance drives SoS sizing due to large energy demands.


Georgia Aerospace Systems Tech Design Laboratory Cases: 13,342

Research Objective (Achieved)

A methodology has been developed to compare on equal footing In-Situ Resource Utilization (ISRU) System of System (SoS) concepts involving Near Earth Objects (NEOs).

Case Study is the conceptual design and sizing of a sample return mission to a 'primitive' Near Earth Object (NEO), involving the use of In-Situ Propellant Production (ISPP) to enable return to Low Earth Orbit (LEO).

Resource extraction happens within the asteroid's orbit around the Sun. Then, the refined resources are delivered to their point of need, such as high-Earth orbit.

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

HoneyBee Robotics Spider Planetary Resources, 2015. "Safe and Efficient Asteroid Mining". Zacny, Kris 2017 "Asteroid ISRU" SBAG, Tuscon, AZ,

Research Question Summary

Research Question 1: Systematic comparisons of design concepts

> Research Question 2: Most feasible NEO ISPP concept from TRLs

Research Question 3: Parameters to describe NEO ISPP for sample return

Research Question 4: Most feasible application for NEO ISRU?

> Research Question 5: Choice of produced propellant trade study

Georgia | Aerospace Systems Tech || Design Laboratory

Introduction

Motivation

Methodology

Implementation

Conclusions

Review Goals

Contributions

Future Work

Conjecture 1: Qualitative: Morphological matrix & TRLs Quantitative: Sizing code, parameters & metrics

Result 2: Hydrolox 'HO' concept should act as a good baseline

Conjecture 3:

 $\Delta v_{RT} [km/s], m_{SAMP} [kg], D_{min} [AU], D_{max} [AU], C_C [\%wt], C_H [\%wt], C_S [\%wt], t_{STAY} [days (Earth)], t_{PERIOD} [hours (Earth)], PROP_TYPE$

Conjecture 4:

Sample return from Near earth object with In-situ Propellant production Technology demonstrator (SNIPT)

Result 5.1, Result 5.2, & Conjecture 5:Hydrolox lightest $\Delta v_{RT} \leq 5.8 \text{ km/s}$, then hydrogen but $MPR_{PROP} < 1$ C_H [%wt] $\rightarrow UseVols$ [N.D.] $\rightarrow SEI$ [J/kg] $\rightarrow MPR_{PROP}$ [N.D.]

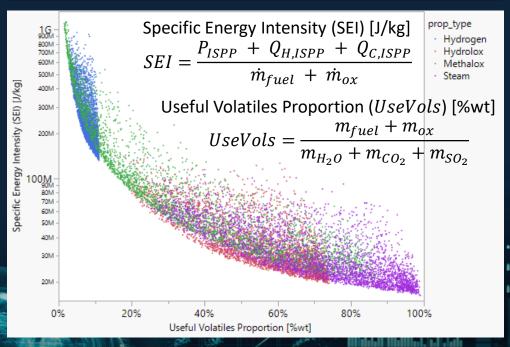
Novel Contributions

Introduction Motivation Methodology

Implementation

Conclusions

Review Goals


Contributions

Future Work

- Review of proposed NEO ISRU SoS concepts
- Idea for SNIPT mission proposal
- Morphological matrix of alternatives for NEO ISPP SoS design trades
- Proposed standardized terminology for NEO ISPP SoS options
- Baseline functionally complete NEO ISPP SoS concept, with reference mission
- Sizing code tied to morphological matrix
- Sizing code considering energy use for NEO ISPP SoS concepts
- Additional metrics to quantify performance of NEO ISPP SoS concepts, and identifying relationships between them
- Propellant trade study from ISRU perspective

Georgia Aerospace Systems Tech Design Laboratory

~ .	Shaded Options: N								Null?
Task	Group	Category Separation	Single Unit (None)						
	Integration								
Sample	Return Vehicle	Redunancy		Independent Strings	Cross-Strapped Strings	Multiple Craft			
Ĕ	Return venicie	Propulsion Propellant	Chemical Reaction (liquid)		Nuclear Thermal	Electrothermal Methalox	Electromagnetic	Ion Thruster	
a a	2			Hydrogen	Hydrolox	Methalox			
0, -	-			Stoichiometric	Oxidizer Rich				N/A
				Partial / Some Systems	Return Vehicles				
	Prospecting	Local Observations		Active Observation	SeismicSurvey	Orbit Gravimetry			
				Near Infrared	VisibleLight	Radar	Sound / Mechanical	Subatomic Particles	N/A
			Kinetic Penetrator (smart)		Excavate (automated)	Touch & Go (TAGSAM)	Skyhook / Harpoon		N/A
	Excavation			Synched Bag	Tube Sleeve	Localized Membrane			_
				Corer	Percussive Drill	Optical Beam (spalling)	Jet (plasma)	Rotary Cutter	
		Powderize		Borehole Heating	Rip/Fracture	Cut Debris (kerf/spall)	Crush		N/A
		Sorting/Sizing		Centrifugal (density)	Sieves				N/A
	Extraction			Light (lamp/laser)	Resistance (electrical)	Dielectric (microwave)	Jet (Heated)	Induction	
5				MagneticSeparation	Electrostatic Separation	Molten Powderization	Reformer	Leachate (Chemical)	N/A
Direct ISRU		Volatile Capture		Condenser	Sorbents	Vacuum Distillation			
e a	Refining	Make Oxygen		Split Water	Metal Electrolysis	Ionic Liquid Reduction		-	N/A
				AlkalineElectrolysis	Solid Oxide Electrolysis	Thermolysis (Heat)	Photocatalytic (Light)		N/A
				Steam Reforming	Pyrolysis (Heat)	Thermal Oxidation (Burn)	Fluid Catalytic		N/A
				Sabatier Process	Photocatalytic				N/A
		Quality Control		Output Check	Batch Quarantine				
	Storage	Medium		CryogenicSolid	Pressurized Gas	Granular Solid	Chemical	Gel	
		Insulation		Coatings (External)	Sun Shade / Sunshield	Body Lining (Internal)	Dewar / Vacuum Shell		
	Material Handling			Auger / Screw Feeder	Pneumatics	Rotating Feeder ('Airlock')	Electrostatic		N/A
		Fluids (Liquid & Gas)		Jet (momentum transfer)	Pressure Differential	Flow Ionization			
		Work Input	Heating (Volume Increase)		Linear Actuator	Compressor (Pressure)	Reference Frame (Spin)		
	Avionics			Automated	Remote				
		Computation		Distributed	String Isolated				
		Local Comms	Transmitted	Wired					
		Deep Space Comms		Laser Link	Repeaters				
	Power		Concentrated Solar Power		Thermal Gradient	Radioactive Decay (RTG)	Fission Reactor		_
l ⊃		Energy Storage	Batteries	Capacitors	Chemical / Fuel Cell	Thermal Mass			N/A
Indirect ISRU			Fiber Optics	Mirrors	Beamed Microwaves				N/A
<u>.</u>	Thermal	Heating [Secondary]		Light (lamp/laser)	Resistance (electrical)	Chemical Reaction		_	
GT 1				Radiators	Barbecue Roll	Heat Storage	Sublimation		
.≝		Heat Exchanger		Finned	Tubular	Phase Change / Cycle		_	N/A
2		Distribution		Refrigerant Loop	Heat Pipes	Peltier Effect (electrical)	Thermoacoustics		
-	Wastes	Tailings & Overburden		Storage/Reuse	Deposit in Source	Secure in Place			
		Byproducts & Excess		Storage/Reuse	Inject into Source				
	Structures	Support Structure	Central Bus / Cylindrical	Truss / Space Frame	Panel / Stressed Skin	Floors / Support Decks	Inflatable		
		Positioning	RCS Thrusters	Inflatable Airbags	Harpoon / Anchor	Guy Wires / Tensegrity	Microspines / Claw	Friction with Excavator	
		Relative Motion	RCS Thrusters	Main Thrusters	RoboticJoints	Cable Tension	Internal Gas Jets	Reaction Wheels	
		Rotation Control	Selective Ablation	Thruster Pods	Orbital Nudging	Friction with Containment	Impactor		N/A

Trade Studies Enabled

- Requirements Analysis mission & destination
 - Comparing alternate NEO destinations (esp. Δv , aphelion, perihelion, composition)
 - Investigating changes in mission duration (esp. time on station)
 - Changes in readiness status (scheduled downtime, lesser operation in darkness)
 - Reserve capacity (oversize factor, redundant strings, mass contingency and margin)
- Propellant Customer / Return Vehicle Options
 - Propellant choice impacts upon ISPP SoS sizing (mass, energy use, complexity)
 - Impulsive vs. continuous thrust propulsion as a customer of ISPP
 - Sensitivity studies of ISPP sizing versus propulsion performance (specific impulse, mixture ratio, engine mass, power demand, cooling load)

• ISRU Option Trades

- Processing high-grade ore deposits vs. homogenous low-grade regolith (overburden fraction, elemental composition, different cutting energies)
- Comparing volatile yield between NEO of different elemental composition
- 'Optical mining' with concentrated sunlight vs. electric heat lamps
- Varying storage tank materials and storage temperature

Georgia | Aerospace Systems Tech || Design Laboratory

Recommended Future Work

• Improve Sizing Code

- Size rest of options within for selected concepts
- Add other options within a category for comparison
- Tweak to enable more involved trade studies
- Probability density functions for parameters using Bayesian methods
- Technology Identification Evaluation and Selection (TIES)
 - Formal Technology Readiness Assessment
 - Compatibility matrix inclusion
 - Cost modeling (project planning)
- Requirements Analysis
 - Morphological matrix put into SysML, automatic filtering
 - Automatic model generation & sizing from qualitative selections
- Space Logistics Code Integration

Georgia Aerospace Systems Tech Design Laboratory

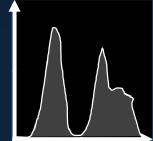
Introduction

Motivation

Methodology

Implementation

Conclusions


Review Goals

Contributions

Future Work

Christopher Kitson

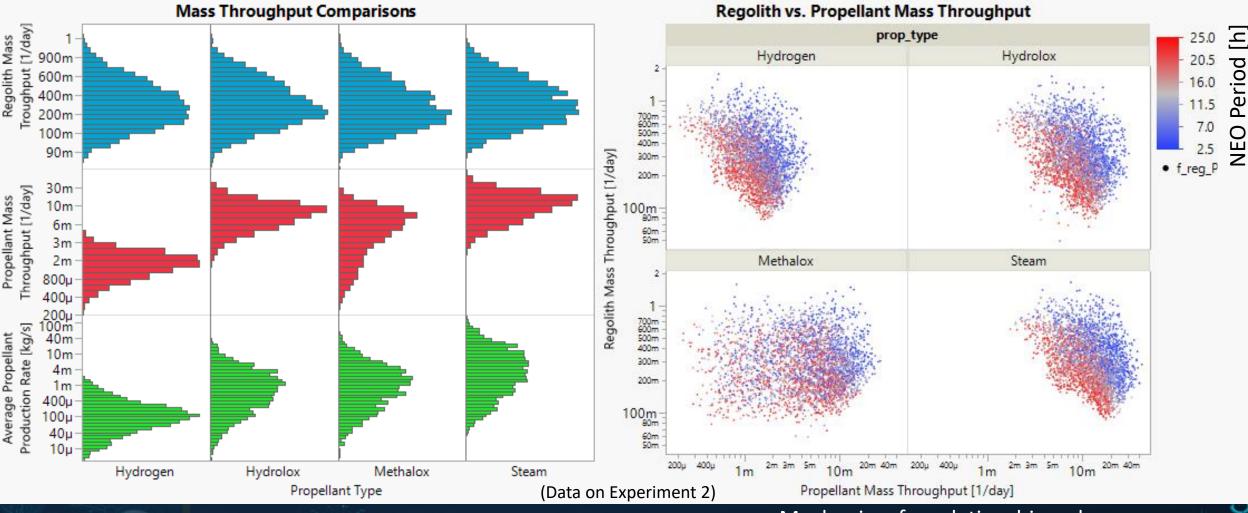
NASA Mars DRA 5.0 Architecture	DDT&E	To First Mission	Through Third Mission
Case 1a: ECLSS O ₂ and N ₂ /Ar with Earth H ₂ – Solar Powered	86%	88%	90%
Case 1b: ECLSS O_2 and N_2/Ar with Earth H_2 – Nuclear Powered	100%	100%	100%
Case 2a: ECLSS O_2 and N_2/Ar with Mars H_2O – Solar Powered	140%	146%	152%
Case 2b: ECLSS O_2 and N_2/Ar with Mars H_2O – Nuclear Powered	131%	132%	134%
Case 3: ECLSS and Propellant O_2 and N_2/Ar with Earth H_2 and CH_4 – Nuclear Powered	103%	104%	106%
Case 4: ECLSS and Propellant O ₂ and N ₂ /Ar with Mars H ₂ O – Nuclear Powered	191%	202%	213%

Requirements

Define stakeholder goals and success conditions

والمتعاليين والتلوين المتعاق

Questions?

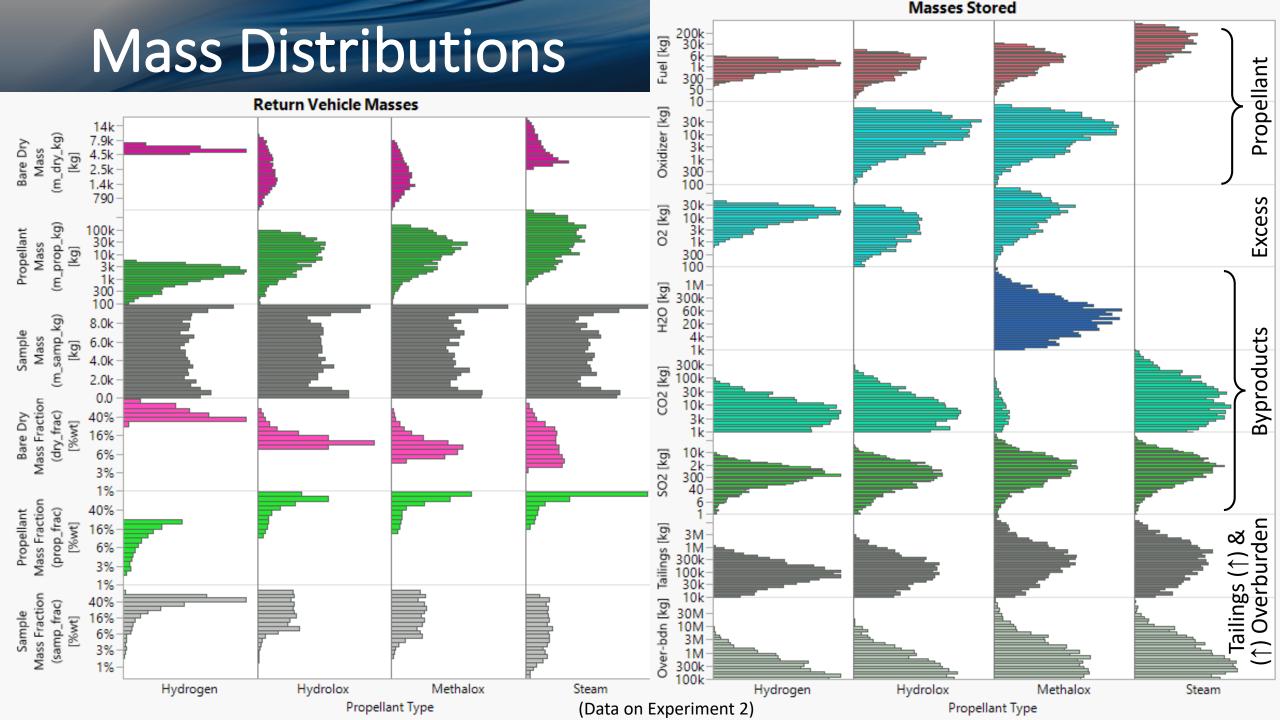

kitsonc (at) gatech.edu

EDS

New Materia 67

Fedex

Mass Throughput Distributions



Mechanism for relationship unknown

Georgia Aerospace Systems Tech Design Laboratory

Christopher Kitson

0.

Identified Systems within an ISRU SoS

Introduction Motivation	Direct Critical path elements in processing	Indirect Support other systems involved in ISRU
Methodology mplementation Conclusions	 Prospecting find the ore in the NEO find the ore in the NEO Excavation separate the ore from the NEO Fectorial Process the resource from the ore Process & purify into a consumable Storage maintain stocks with minimal loss Material Handling / Transport move masses between equipment 	<section-header> Avionics command and communications to coordinate Sos powide sufficient energy for NEO operations powide sufficient energy to prevent overheating, and provide sufficient heat Mastes end states for processed matter besides products Structures bear mechanical loads, control attachment to NEO </section-header>
	Senado Svetome	

Georgia Aerospace System Tech Design Laboratory

N

Im

Christopher Kitson

ալու տես հետ

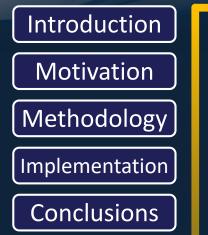
Prospecting

Prospecting is the discernment of locations with greater concentrations of space resources on or within the target NEO that are reasonably accessible.

- Local Observations refers to the primary method of gathering information in the vicinity of the body of interest without direct contact.
- Wave Type describes oscillations in a medium that are used to gather data.
- **Sampling** refers to methods of disturbing NEO regolith to ascertain its properties.

Georgia Aerospace System Tech Design Laboratory

Excavation


Introduction Motivation Methodology Implementation Conclusions

Excavation is the process of separating the ore from the NEO, or otherwise directly interacting with the NEO to release resources.

- **Containment** is isolating a volume to prevent material from floating off, preferably also involving a gas-tight seal.
 - **Cut Rock** refers to methods to separate material from the NEO.
 - **Powderize** or comminution refers to means for a reduction in particle size of the excavated rock, if desired.
- **Sorting/Sizing** is means of differentiating between excavated substances, especially by size.

Georgia | Aerospace System Tech || Design Laboratory

Extraction

Extraction refers to the removal and purification resources of interest from their ores.

- **Primary Heating** refers to methods to raise the temperature of the material being processed, especially for the sublimation of volatiles like water.
- **Beneficiation** refers to methods to concentrate or increase the grade of a resource, by separating out other parts not of interest.
- Volatile Capture describes methods to isolate the resource(s) extracted from the ore, for further refinement or storage.

Georgia Aerospace System Tech Design Laboratory

Refining

Refining is defined here as the processing of resources from an intermediate state into a readily useable form termed a consumable. These categories focus on propellant production.

- Make Oxygen refers to methods to obtain elemental oxygen from NEO resources.
- Make Hydrogen refers to methods to obtain hydrogen gas from NEO resources.
- Crack Hydrocarbons refers to methods to decompose organic molecules.
- Make Methane or methanation, refers to methods to synthesize simple hydrocarbons from other chemical species.
- Quality Control refers to methods to verify that the propellant produced is of sufficiently high purity (meeting a standard) to be used by the return vehicle.

Georgia Aerospace Systems Tech Design Laboratory

Storage & Wastes

Introduction Motivation Methodology Implementation Conclusions

Storage refers to methods for preservation of consumables for future use.

- Medium refers to the form of matter that the consumable is in during storage, along with a closely related confinement method
- Insulation refers to passive methods to maintain the consumable within a preferred temperature range for storage.

Waste management refers to the end state of matter processed within the ISRU SoS that is not part of the desired quantity of consumables (e.g. propellant).

- Tailings & Overburden comprise the unwanted granular solids produced.
- Byproducts & Excess comprise the unwanted fluids produced.

Georgia | Aerospace Systems Tech || Design Laboratory

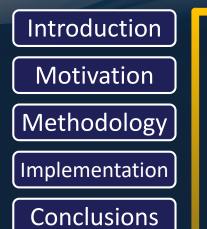
Material Handling

Introduction Motivation Methodology Implementation Conclusions

Material Handling examines methods to transport mass between locations.

- Fluids conveyance for liquids and/or gasses, which are notable for their ability to flow and defined by their properties under shear.
- Granular Solids conveyance for discrete solid particles or powders which have properties in betwixt solids and liquids .
- Work Input is the primary method of providing energy for material handling.

Avionics



Avionics or data system refers to the command, control, and communication aspects of coordinating a SoS.

- Autonomy refers to the locus of decision making within the SoS and the methods to troubleshoot control logic to ensure tasks are carried out according to plan.
- **Computation** refers to implemented instruction set architecture, or how computer processing nodes are distributed within the SoS.
- Local Comms refers to how instructions are sent between systems within the SoS.
- Deep Space Comms refers to the means of long range communications between spacecraft(s) in 'deep space' and responsible personnel back on Earth.

Georgia | Aerospace System Tech || Design Laboratory

Power

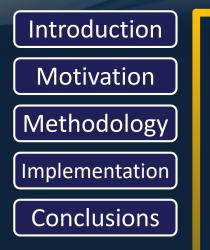
Power management refers to the primary means by which electrical energy is harnessed throughout the SoS.

- Electrical Generation is the primary means by which sufficient electricity for all operations on the NEO is provided, when and where it is needed.
- Energy Storage refers to methods to store charge and/or smooth power demand.

Thermal

Methodology

Implementation


Conclusions

Thermal management refers to active methods by which the thermal energy of systems within the SoS is kept within permissible limits.

- Secondary Heating is defined here as a supplemental method to add additional thermal energy into the SoS, where the extraction heating subsystem is the primary.
- **Cooling** is the dissipation of excess thermal energy to prevent overheating.
- Heat Exchangers aid thermal energy transferring into, out of, and between fluids.
- Distribution refers to methods to transfer thermal energy from one location to another within the SoS, especially though the use of coolant loops.
- Beam Transmission refers to methods to transfer electromagnetic waves throughout the SoS, especially for cutting or heating with focused light.

Georgia Aerospace Systems Tech Design Laboratory

Structures

Structures refers to equipment designed to bear mechanical loads and maintain control of the spacecraft.

- **Support Structure** refers to the backbone to which other modules are secured to, and is the primary means of conveying structural loads within the spacecraft.
- **Positioning** refers to ways to counteract reaction forces to maintain contact with another body; stay at a given location.
- **Relative Motion** refers to methods to reposition systems with respect to another body; change locations deliberately.
- Rotation Control, or de-spin and de-wobble, refers to methods to slow the rate of rotation about its axis or arrest secondary tumbling motions.

Georgia Aerospace Systems Tech Design Laboratory