

Partnership for AiR Transportation Noise and Emission Reduction

An FAA/NASA/TC-sponsored Center of Excellence

Near Term Operational Changes FAA PARTNER Project 32

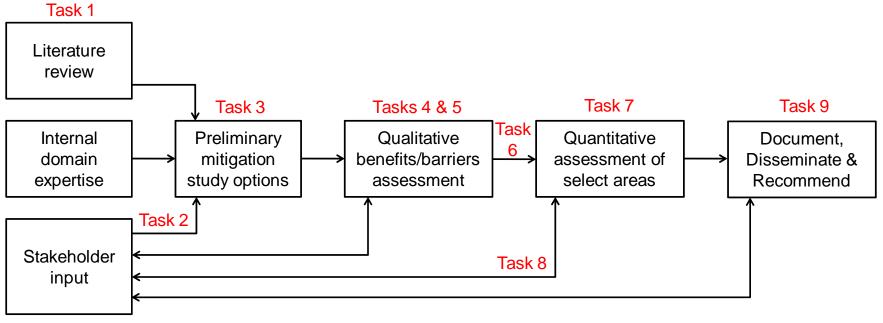
Steve Urlass, project manager Presentation by Prof. Karen Marais, Purdue, lead investigator Dr. Tom Reynolds & Prof. John Hansman, MIT, co-investigators

This work was funded by the FAA, under FAA Award Nos.: 06-C-NE-MIT, Amendment No. 017 07-C-NE-PU, Amendment No. 024.

> Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA, NASA, or Transport Canada

> > EWG Operations Standing Committee Workshop Georgia Tech, Atlanta 17-18 May, 2010

- Need to identify and evaluate ways to reduce the environmental impacts of aviation in the near-term with minimal implementation barriers
- Minor adjustments to operating procedures or limited equipment/infrastructure changes
 - Some techniques already being implemented, e.g. CDAs
 - Some still in research stage, e.g. surface movement optimization
 - Others yet to be fully defined
- Require effort to systematically identify, evaluate and prioritize potential near-term operational changes


Objectives

- Systematic identification and assessment of environmental impact reduction potential of a comprehensive set of near-term operational changes in terms of:
 - Environmental impact mitigation potential (climate, air quality, noise)
 - Interdependencies
 - Operational implications (e.g. procedures, capacity, efficiency, workload)
 - Barriers to implementation (e.g. costs, technology)
- In-depth analysis of most promising operational changes
 - Implementation plans based on stakeholder costs and benefits
- Collection of operational changes prioritized according to environmental benefits and feasibility of implementation
- Work with aviation industry and government partners to successfully identify and implement appropriate environmental mitigation options

Approach

Stage 1

- 1. Identification of Benefits Pool via Literature Review & System Analysis
- 2. Obtain Stakeholder Input
- 3. Categorize Mitigation Options
- 4. Evaluate Potential Environmental Impact of Identified Mitigation Options
- 5. Identify Barriers to Implementation of Identified Mitigation Options
- 6. Identify Most Promising Mitigation Options for Detailed Investigation in Stage 2

Stage 2

- 7. Investigate Environmental and Operational Impact of Selected Mitigation Options
- 8. Stakeholder Interviews on Selected Mitigation Options
- 9. Document and Disseminate Results

Mitigation Identification

- Mitigation options & barriers collected from variety of sources
 - Journals, conferences, key industry docs (e.g. ICAO, RTCA, IPCC, etc.)
 - Expert interviews with wide spectrum of stakeholders
 - Professional knowledge

Stakeholder Group	Organization	Department
		AEE: Project Managers (x4)
		ATO: Chief Scientist, Terminal Services, Environmental Programs
Regulator	FAA	APP: Airport Planning
		ARC: NY Area Program Integration
		FAA/Eurocontrol Liaison
ATC	FAA	Controllers: Oak ARTCC, DFW TRACON, LAX Tower
ATC	ISAVIA	Iceland Oceanic
	United	Pilot
Airlines	American	Pilot
	Alaska	Airspace & Technology Director
Airporto	PANY&NJ	Airspace Senior Advisor, Environment Manager
Airports	Massport	Environment Manager
R&D	CSSI	Environment Programs
Γαυ	NASA	Researchers at Ames

Mitigation Evaluation

- Concepts and technologies compiled into a master mitigation list
 - Sorted according to the primary phase of flight addressed
 - Surface (S)
 - Departure (D)
 - Cruise (C)
 - Approach (A)
 - Miscellaneous (M)
 - Along with associated comments and feedback about potential barriers or other adverse effects
- All-inclusive compilation of concepts in the master list
- Categorized and prioritized using expert judgment
 - Environmental benefit (Fuel/CO2, climate, air quality, noise)
 - Implementation barriers

Environmental Impact and Implementability Classification

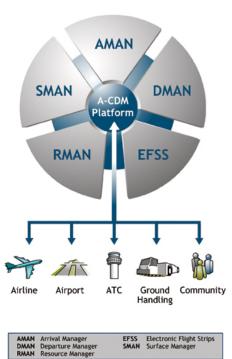
- Mitigations rated Primary (P), Secondary (S), Neutral (0), or Adverse (A) in each environmental impact category
- Ease of implementation rated **Easy**, **Medium**, or **Hard**
 - "Easy" if they had already been successfully implemented somewhere, or did not require significant stakeholder change or technical development
 - "Hard" if there were significant technical barriers or stakeholder opposition
 - E.g., a mitigation requiring major ATC changes or controversial policy shifts would be "Hard," while building a new taxiway or modifying an instrument approach procedure might be "Easy" or "Medium"
- Potential impact rated Strong, Moderate, or Weak depending on environmental impacts at a system-wide level
- Short-listed options are now under further investigation

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
S	S	Р	S	Medium	Strong

Short-Listed Options (1 of 2)

Mitigation	Fuel (F)	Climate (C)	Air Quality	Noise	Implementability	Potential Impact
SURFACE (S)						
S-1: Queue Management Systems						
S-1.2: Advanced Systems (optimized strategies)	S	S	Р	S	Medium	Strong
S-2: Taxi Fuel Minimization						
S-2.4: Improved surface situational awareness, harvesting ASDE- X data	S	S	Р	S	Easy	Moderate
S-4: Improved Airport Taxiway Configurations						
S-4.3: Hold or passing areas near runway ends	S	S	Р	S	Medium	Moderate
S-5: Improved coordination tools						
S-5.1: Improved information sharing	S	S	Р	S	Medium	Strong
S-5.2: Flight plan change delivery over datalink	S	S	Р	S	Medium	Moderate
DEPARTURE (D)						
D-1: Departure procedures						
D-1.5: Trajectories to minimize population noise exposure	А	А	A	Р	Easy	Strong
D-1.6: Max-climb departures	S	S	S	Р	Easy	Moderate
D-1.10: Operating in best noise configuration	0/A	0/A	0/A	Р	Easy	Strong
D-2: Increased flexibility in departure routes						
D-2.1: RNP/RNAV Enabled SIDs	Р	Р	S	S	Medium	Moderate
CRUISE (C)						
C-1: Horizontal Route Efficiency						
C-1.1: RHSM, multi-laning	Р	Р	0	0	Hard	Strong
C-1.2: Minimize lateral route inefficiency	Р	Р	0	0	Medium	Strong
C-2: Vertical Routing Efficiency						
C-2.2: Increased directional airways	Р	Р	0	0	Easy	Moderate
C-2.3: Cruise climb	Р	Р	0	0	Medium	Strong
C-2.4: Step-climb	Р	Р	0	0	Easy	Moderate
C-2.5: Increase priority for giving requested/optimal altitudes	Р	Р	0	0	Easy	Moderate
C-3: Speed Efficiency						
C-3.1: Individual aircraft fuel-optimized cruise speeds	Р	Р	0	0	Hard	Strong
C-3.2: Cruise Mach reductions	Р	Р	0	0	Easy	Strong
C-3.3: More efficient passing options	Р	Р	0	0	Medium	Strong

Short-Listed Options (2 of 2)


Mitigation	Fuel (F)	Climate (C)	Air Quality	Noise	Implementability	Potential Impact
APPROACH (A)						
A-1: Advanced Approach Procedures						
A-1.2: Steeper descent and approach	S	S	S	Р	Medium	Moderate
A-1.3: Low power/low drag	S	S	S	Р	Medium	Moderate
A-1.4: RNP/RNAV Enabled STARs	Р	Р	S	S	Medium	Moderate
A-3: Absorbing Delay Enroute Instead of Terminal Area	Р	Р	S	S	Medium	Moderate
LANDING (L)						
L-2: Reduced Thrust Reverse	S	S	S	Р	Easy	Moderate
MISCELLANEOUS (M)						
M-2: Improved Airline/ATC Coordination						
M-2.1: Airborne flow program	Р	Р	0	0	Easy	Moderate
M-2.2: Increased use of TMA or similar tools	Р	Р	0	0	Medium	Moderate
M-2.3: Integrated CDM/TFM solutions	Р	Р	S	0	Medium	Moderate
M-2.5: Information sharing tools (SWIM)	S	S	S	0	Medium	Moderate
M-2.6: Special activity airspace real-time status & scheduling	Р	Р	0	0	Hard	Moderate
M-2.8: Flight plan change delivery over datalink	Р	Р	S	0	Medium	Strong
M-3: Policy Measures						
M-3.2: Increase ATC priority for environmental performance	Р	Р	Р	Р	Medium	Strong
M-5: Airspace Redesign to Increase Efficiency	Р	Р	S	S	Medium	Strong

S-1.2 Advanced Queue Management Systems

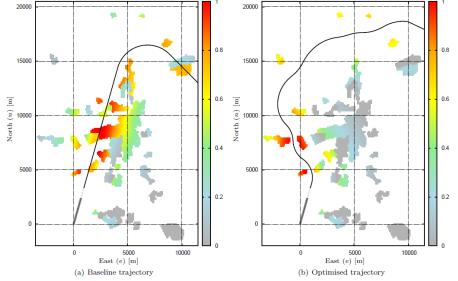
Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
S	S	Р	S	Medium	Strong

- Improve air quality through reduced fuel use on surface
- Queue management systems' aim is to improve the overall efficiency of operations, reduce taxi times, and hence increase the throughput of airports
- Includes various approaches: N-control, AMAN, DMAN, SMAN and RMAN
- Barriers and Comments
 - Gate Conflicts
 - Controller workload and responsibility
 - Push crew and tug availability
 - De-icing hold procedures
 - Implications of external constraints (enroute, departure fix, MIT, APREQ)
 - Coordination between ramp and FAA
 - Requires a priority shift Environment vs. Capacity (policy changes required)

S-2.4 Improved Surface Situation Awareness & Harvest ASDE-X Data

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
S	S	Р	S	Easy	Moderate

- Improve air quality through reduced fuel use on surface
- ASDE-X is an airport surface surveillance system that provides aircraft and ground vehicle identification to ATC
- ASDE-X enables improved surface situation awareness with potential for improved environmental performance
- ASDE-X data can be harvested and analyzed to identify operational inefficiencies
- Barriers and Comments
 - Share information among FOCs, ATC and Airport
 - Increased awareness can prevent premature pushbacks, thus decrease fuel consumption
 - ASDE-X not available at all airports
 - Analysis algorithms need to be tailored to individual airports



D-1.5 Trajectories to Minimize Population Noise Exposure

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
Α	Α	Α	Р	Easy	Strong

- Reduce noise impact by avoiding noise sensitive areas
- Generation of an optimized departing trajectory for each flight
- Based on the population density, airport layout, meteorological conditions, and aircraft performance, and airspace constraints

- Barriers and Comments
 - Ability to implement individual high precision trajectories (requires RNP?)
 - ATC Complexity and clearance delivery
 - Concentration of noise at specific locations
 - EWR Dispersal headings
 - Trades with efficiency and fuel/climate (e.g. BOS noise procedures add distance)

C-1.1 RHSM and Multi-laning

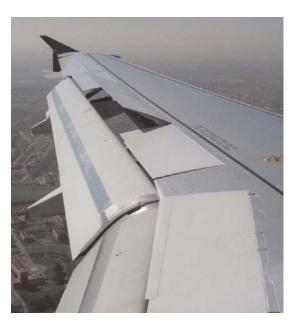
Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
Р	Р	0	0	Hard	Strong

- Reduce fuel burn by allowing more efficient use of available airspace through increased capacity and better passing maneuvers
- Higher navigational precision via RNAV/RNP and ADS-B enables
 reduced separation en route
- Reduced separation allows higher airway capacity and fewer inefficient traffic avoidance maneuvers
- Multilaning can enable passing along an airway, preventing avoidance maneuvers and allowing custom cruise speed selection
- Barriers and Comments
 - Change in separation minima require significant safety analysis
 - Passing distances can be significant
 - FMS needs special route offset capability
 - Need to understand how to identify and correct blunder situations quickly

C-3.3 More Efficient Passing Options

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
Р	Р	0	0	Medium	Strong

- Reduce fuel burn by allowing more efficient handling of aircraft flying at different speeds
- Separation conflicts along an airway are often handled via
 - a heading change off route, which increases trip distance
 - an altitude change, which can move an aircraft away from its fueloptimal altitude
- RNAV and ADS-B would enable more precise aircraft position information to ATC, and tighter passing procedures
- RNP and multilaning could enable a "passing lane" for minimal route disturbance
- Barriers and Comments
 - ATC uncertainty requires large margin in separation when passing for safety
 - Mixed equipage issues, all participating aircraft need to be equipped
- 4 x RNP

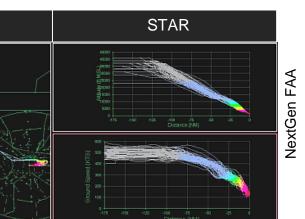

Long passing distances

A-1.3 Low-Power Low-Drag

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
S	S	S	Р	Medium	Moderate

- Reduce noise and fuel use by using clean aerodynamic configuration for longer on approach
- Keep aircraft speed higher for longer during descent/approach keeps aircraft in clean aerodynamic configuration and low engine power for longer, with noise and fuel reduction benefits
- Delay deployment of high lift devices, drag devices and undercarriage to reduce airframe drag and need for engine power

- Barriers and Comments
 - ATC prefers to run everyone slow from a long way out to make sure runways are being used to maximum extent possible
 - More time to get everyone lined up and hit minimum spacing more easily
 - Deceleration to final stabilized approach speed occurs later and hence unpredictable aircraft stream compression closer to airport may lead to capacity loss


A-1.4 RNP/RNAV Enabled STARs

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
Р	Р	S	S	Medium	Moderate

Conventional

- Reduce noise impact by avoiding noise sensitive areas
- Reduce fuel use by enabling more precise and flexible arrival trajectories
- Potential to reduce path length
- Can route around noise sensitive areas
- May allow OPDs
- Barriers and Comments
 - Potential environmental review of modified procedures
 - Individual stakeholders vs overall population exposure
 - Need mechanisms to deal with mixed levels of performance (aircraft and avionics)
 - Aircraft equipage and flight crew/controller training
 - Procedure development
 - Explore trade-offs in procedures with downwind vs. base leg only vs. straight in
 - Move away from current approach procedure design philosophy of overlaying advanced procedures upon existing profiles

M-3.2 Increase ATC Priority For Environmental Performance

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact
Р	Р	Р	Р	Medium	Strong

- Reduce fuel burn and noise by encouraging controllers to increase priority of aircraft environmental performance
- ATC operational priorities currently focus on safety, capacity and controller workload
- Environmental performance not an explicit ATC consideration: need policy shift
- Environmental metrics and flight optimization information provided to controllers could help them make better decisions

Source: http://www.volpe.faa.gov

- Barriers and Comments
 - Measurement of environmental performance information can be difficult
 - Cannot sacrifice safety
 - Controller workload implications

Summary

- Stage I complete
 - Literature review (new research will be added as it appears)
 - Stakeholder interviews
 - Mitigation Identification and Evaluation
 - Identified over 50 mitigation options
 - Quantitative evaluation of environmental impacts and barriers to implementation
 - Short-list of options identified
- Next steps?
 - Quantitative evaluation of environmental impact of selected options
 - Potential topics
 - Vertical speed and altitude optimization
 - RNP/RNAV
 - LPLD
 - More detailed assessment of barriers to implementation
 - Follow-up interviews to assist in detailed evaluation
- Key challenges/barriers
 - Identification of "best" mitigation options
 - Requesting stakeholder input from this workshop

References

- Tom G. Reynolds et al., "Potential of Operational Changes to Mitigate Environmental Impacts of Aviation", 27th Congress of the International Council of the Aeronautical Sciences, Nice, France, 19-24 September 20.
- Delri Muller et al., "Evaluation of Operational Measures to Mitigate Environmental Impact through Reduced Aircraft Fuel Use", ATIO 2010, Texas, September 2010.

Contributors

- Investigators
 - Karen Marais (Purdue)
 - Tom Reynolds and John Hansman (MIT)
- Students
 - Delri Muller and Payuna Uday (Purdue)
 - Jonathan Lovegren (MIT)