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SUMMARY 

 

Over the past decade, nanomaterials have been the subject of enormous interest. 

These materials are notable for their tunable properties that exist when material’s size is 

confined and show potential for use in wide-ranging industrial, biomedical, and 

electronic applications. The purpose of this thesis is to discuss some of the 

photochemistry that occurs on the nanoscale; especially those photochemical reactions 

that are adjustable by plasmonic metal nanoparticles.  

When nanoparticles are small in size compared to the wavelength of incident 

light, a localized surface plasmon resonance occurs. For certain noble metals, such as 

gold and silver, this frequency occurs in the visible or near IR range, and therefore it can 

be utilized for many important applications. Only silver and gold nanoparticles were 

utilized in this thesis work, and they were used in application for three separate files: 

environment, catalysis, and energy. 

The first application involves using gold nanocages for azo-dye degradation. Azo-

dyes are frequently used in the textile industry and are toxic and carcinogenic. These dyes 

are typically released through waste water and thus are a threat to the surrounding 

ecosystem. The most challenging problem for removal of these pollutants is that azo-dyes 

are not compatible with traditional environmental treatment processes. A new 

nanoreactor, gold nanocages with unique hollow interiors, is developed to overcome this 

obstacle. The inner layer of a gold nanocage is silver and the outer surface is gold. When 

a gold nanocage is purged with oxygen gas, the silver atoms can be easily transformed to 

silver oxide. The band gap of silver oxide is 2.5-3.1 eV and it is therefore an analog of 



 xviii 

other metal oxide materials, allowing it to absorb the energy from light and produce 

radicals to perform photodegradation of azo-dyes. The photocatalyic efficiency of these 

hollow gold nanocages is better than that of solid catalysts because the surface-to-volume 

ratios is higher in gold nanocages and also because of the increased likelihood of the azo-

dyes contacting hydroxyl radicals since the reactants can be confined within the cages.   

The second application is to use the photothermal effect for catalysis. The 

photothermal effect is when plasmonic metal nanoparticles rapidly convert absorbed light 

energy into heat and the heat from the metal lattice dissipates into the surrounding 

environment by phonon-phonon relaxation. Therefore, plasmonic metal nanoparticles can 

be regarded as a thermal agent. This characteristic is most often applied to cancer 

therapy. This is the first time that photothermal effect has been utilized to enhance the 

catalysis of the electron transfer reaction between hexacyanoferrate and thiosulfate. Two 

different types of plasmonic gold nanoparticles were prepared: gold nanospheres with a 

surface plasmon resonance band at 527 nm and gold nanocages with a surface plasmon 

resonance band at 796 nm. Two continuous wavelength laser were used, 514 and 808 nm, 

to irradiate the gold nanospheres and the gold nanocages, respectively. The gold 

nanoparticles served not only as a catalyst but also as a heating source to increase the 

reaction solution temperature. The properties of gold nanoparticles remained the same 

even after extended exposure to the laser. This technique can be used for accelerating 

thermal or photochemical reactions and may have the potential to heat reactions via solar 

energy.  

The last application involves applying the plasmonic field of silver nanoparticles 

to bacteriorhodopsin, which is a photosynthetic system and a future candidate for use as 
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alternative energy. Bacteriorhodopsin (bR) can transfer light energy into electrochemical 

energy by utilizing a proton gradient. However, the photocurrent density values reported 

so far are around 0.2-40 pA cm
-2

 in thin film systems, which also require an external bias. 

In this thesis work, a non-thin film (solution) based electrochemical cell was successfully 

built up which did not require any external bias. The cell design used commercially 

available indium tin oxide glass as optical windows and electrodes. Small amounts of bR 

suspensions were utilized as the photovoltaic medium to generate the proton gradient 

between two half-cells separated by a molecular porous membrane. The maximum 

photocurrent density was 1.5 nA/cm
3
, which is orders of magnitude higher than previous 

reports. To achieve an even higher photocurrent, metallic nanoparticles were prepared 

and incorporated into bR. Silver nanoparticles whose surface plasmon resonance overlaps 

well with the longest-lived intermediate of the bR photocycle (M412) show a significant 

enhancement of photocurrent generation. The plasmonic field of silver nanoparticles can 

effectively increase the flux of blue photons and the bypassed photocycle is formed due 

to this enhanced blue light effect. The photocurrent generation of bR in the presence of 

silver nanoparticles can be as high as 25 nA/cm
3
, 15 times higher than pure bR. The 

bypassed photocycle is formed, most notably affects the rates of bR ground state recovery 

and M412 formation. Spectroscopy is utilized for measuring the effect of the plasmonic 

field of the silver nanoparticles on the kinetics. The photocurrent generation of bR is still 

limited to the nano-ampere range. As an extension, bR was assembled onto TiO2 

nanotubes for water splitting applications. The generated photocurrent density was 0.65 

mA/cm
2
, which is a ~ 50% increase as compared to that measured for pure TiO2 

nanotubes (0.43 mA/cm
2
) fabricated and tested under the same conditions. This 



 xx 

enhancement in photocurrent can be related to the unique proton pumping ability of bR as 

well as to the novel structural properties of the fabricated nanotube arrays. 
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CHAPTER 1 

INTRODUCTION OF NANOMATERIALS AND 

BACTERIORHODOPSIN 

 

ABSTRACT 

This chapter is an introduction to metal nanomaterials and bacteriorhodopsin. 

First, the origins and properties of metal nanoparticles are introduced. The common 

methods of metal nanoparticles synthesis are also mentioned. The unique optical 

properties of metal nanoparticles, especially gold and silver, can be applied to various 

applications, including alteration of the bacteriorhodopsin photocycle and photothermal 

therapy, which are also discussed. Second, the structure and photocycle of 

bacteriorhodopsin are introduced. The use of bacteriorhodopsin for energy generation is 

also mentioned. Finally, the organization of the dissertation is presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

1.1 Properties and Applications of Nanomaterials 

 

Origins of Nanomaterials 

Nanomaterials have been a major area of interest in scientific research over the 

previous few decades. Nanomaterials are in the size range of 1-100 nm, and can be 

dispersed in gaseous, liquid, or solid media. Because the size of nanomaterials are 

intermediate between that of a macroscopic solid and that of an atomic system, 

nanomaterials possess unique optical, electronic, and chemical properties that are 

extremely different from individual atoms as well as their bulk counterparts.
1,2

 Three 

major factors are responsible for these differences: high surface-to-volume ratio,
3-5

 

quantum size effects,
6
 and electrodynamic interactions.

7
 

The first synthesis of metallic gold nanoparticles was probably in the 4
th

 century 

BC in Egypt and China. Since then, gold has been exploited for both its curative and 

aesthetic properties. The centuries old methods of using colloidal gold to make ruby glass 

and for coloring ceramics are still in use today. The most famous example is the 

Lycurgus cup, crafted by the Romans in the 4
th

 century and can been seen in the British 

Museum in London.
8
 When the cup is illuminated from the outside by white light, bluish-

green light is scattered and the cup appears green. When the light is placed inside the cup, 

the glass absorbs the green light and remaining colors of the white light appear reddish-

orange (Figure 1-1).  Barber et al. revealed the presence of approximately 70 nm metal 

nanoparticles via transmission electron microscopy. X-ray analysis showed that these 

nanoparticles were a silver-gold alloy, with a ratio of silver to gold of about 7:3. This 

evidence confirms the dichroic effect is caused by colloidal metal nanoparticles.
9
 

. 
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Figure 1-1: The Lycurgus Cup made by Romans around the 4
th

 century AD. (a) When 

illuminated from the outside, it shows green (reflected light). (b) When illuminated from 

the inside, it glows red (transmitted light).  

 

Optical Properties of Metallic Nanoparticles 

One of the most interesting aspects of metal nanoparticles is their optical 

properties. In 1857, Michael Faraday was the first to scientifically study metallic 

nanoparticles in colloidal solutions, which exhibited colors from ruby red to amethyst.
10

 

He started to list the factors impacting the color of those solutions and evidenced that 

“the mere variation in the size of particles gave rise to a variety of resultant colors.” The 

colors of white light absorbed and scattered by the small gold nanoparticles was first 

explained theoretically by Mie in 1908 by solving Maxwell’s equation for spherical 

nanoparticles.
11

 Mie theory attributes the plasmon band of spherical particles to the 

dipole oscillations of the free electrons in the conduction band occupying the energy 

states immediately above the Fermi energy level.
12

 When gold nanoparticles are small 

enough, they display a ruby red color due to the strong absorption of green light at 520 
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nm, corresponding to the wavelength of the plasmon resonance that occurs for those gold 

nanoparticles.  

The localized surface plasmon resonance (LPSR) is a phenomenon observed 

when the charge density of metallic nanoparticles oscillates. For a special domain of 

frequency, metallic nanoparticles interact with incident light, resulting in the collective of 

the conduction electrons of nanoparticles in resonance with the oscillation frequency of 

the incident light (Figure 1-2). This results in strong light scattering, the appearance of an 

intense surface plasmon absorption band and an enhancement of the local 

electromagnetic fields.
13-15

 The frequency and intensity of the LSPR band are 

characteristic of the type of material,
16

 and are highly sensitive to the size
17

 ,shape
18

, and 

local environment
19

 of nanomaterials. The oscillation frequency is critically determined 

by four factors: the density of electrons, the effective electron mass, and shape/size of the 

charge distribution. In principle, one could control any of these parameters to tune the 

properties of metallic nanoparticles and further systematically vary the color of metallic 

nanoparticles (Figure 1-3).   

 

 

Figure 1-2: Schematic for localized surface plasmon resonance for a sphere, showing the 

displacement of the conduction electron charge cloud relative to the nuclei.  
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Figure 1-3: The optical properties of metallic nanoparticles are strongly dependent on the 

types of material, and are highly sensitive to the size and shape of nanostructures. 

 

Methods of Metal Nanoparticles Synthesis 

The ability to fabricate materials at the nanoscale level is crucial. Among the 

many attributes of nanoparticle scaffolds is their ability to be synthetically manipulated in 

term of size and shape, often exhibiting intrinsic functionality. In this section, some of 

methods used for metal nanoparticle synthesis are discussed.  

 

Chemical Reduction Method 

The chemical reduction methods used to prepare colloidal metal nanoparticles 

generally follows the same three-steps: (1) The precursor metal salt is dissolved into 

solution, (2) The precursor metal salt is reduced by a reducing agent, and (3) The metal 

particle grows in size as time progresses until a capping agent restricts the growth at a 

specific size and/or shape. 

The chemical reduction method is the most common and simplest method of 

synthesizing metallic nanoparticles. The most popular one is the citrate reduction of 

metal salt in solutions, which was introduced by Tukevitch in 1951.
20

 It leads to size of 

metal nanoparticles around 20 nm. In this method, citric acid acts both as a capping and 
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reducing agent. The size of metallic nanoparticles (between 16 to 147 nm) can be 

controlled by changing the citric acid to metallic salt ratio.
21

  

The sodium borohydride reduction method is another common method of metal 

nanoparticles synthesis.
22-26

 This method is generally fast, with metal nanoparticle 

formation occurring quickly after the addition of sodium borohydride. Metallic 

nanoparticles of various compositions, such as platinum, palladium, gold and silver have 

also been synthesized using the sodium borohydride reduction method in the presence of 

polymer protecting agents. The size of the metal nanoparticles produced via the sodium 

borohydride reduction method is usually less than 10 nm. 

There are several other reduction methods that have been used to synthesize metal 

nanoparticles. Organic solvents (alcohol and methanol) act both as a solvent and reducing 

agent and the reduction of the metal salt takes place when the solution is refluxed in the 

presence of protecting polymer.
27-32

 The use of solvent as a reducing agent results in a 

fast reduction of the metal salt and the solvent is oxidized to form a carbonyl compound 

after the reduction process. Hydrogen gas can be used as a reducing agent for the 

preparation metal nanoparticles.
33-35

 The hydrogen reduction method involves bubbling 

hydrogen gas into a metal salt solution and nanoparticles can be formed after several 

hours of bubbling.  

 

Physical Methods: Photochemistry, Sonochemistry, and Theromolysis 

Light irradiation is another tool that can improve the quality of metallic 

nanoparticles. The photochemical reduction method can be divided into two mechanisms: 

reduction of metal salt by radiolytically produced reducing agents or degradation of an 

organometallic complex by radiolysis.
36,37

 The radiation sources include X-ray or 

gamma-ray radiation and also UV-visible radiation by the use of a xenon or mercury 

lamp. Radiolysis produces solvated electrons in aqueous solution to form new radicals 

that are able to reduce metal salts.  
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The sonochemical reduction method of a precursor metal salt involves generation 

of an active species, reduction of the metal salt, and growth of the nanoparticle in a 

sonicated liquid.
38,39

 A sonication method involves the formation, growth, and explosion 

of bubbles in liquid media. These steps include: in gas phase into the cavitation bubbles 

where high temperature and pressure allow water pyrolysis to form H and OH radicals, at 

the interface between the cavitation bubbles and the solution, and finally in the solution. 

The reduction process mainly takes place at the bubble/solution interface and in solution 

and does not take place in the gas phase due to the low vapor pressure of the precursor 

transition metal salts.   

The thermal reduction of the precursor metal salt is a reduction method involving 

the decomposition of the precursor metal salt to the zerovalent form.
40,41

 Thermolysis 

conditions such as reaction temperature and reaction time affect the size of nanoparticles. 

Thermal reduction method can be performed by using a laser as the heating generation 

source and the size of the resultant nanoparticles can be controlled by adjusting the laser 

settings.  

 

Two-Phase Synthesis 

The two-phase reduction method was developed by Schiffrin et al in 1993.
42

 This 

method has had a considerable impact on the overall field in the past two decades 

because of the facile synthesis of thermal and air stable metal nanoparticles with 

controllable sizes. This method is inspired by Faraday’s two-phase system and uses thiol 

ligands that strongly bind transition metals due to the soft character of both the transition 

metal and sulfur.
43

 A precursor metal salt is transferred to toluene using 

tetractylammonium bromide (TOAB) as the phase-transfer reagent and reduced by 

sodium borohydride.  Depending on the ratio of metal salt to capping agent (thiol or 

amine), the size of nanoparticle can be tuned between 1 and 10 nm. A single toluene 

phase method was also reported whereby ammonium salt-stabilized metal nanoparticles 
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were synthesized, followed by an exchange reaction with dodecanethiol.
44

 Murray et al. 

have enhanced this method’s popularity by offering various functional thiols, which has 

opened a new area of the two-phase method.
45

  

 

Applications of Nanomaterials 

The unusual size-dependent properties of metal nanoparticles have motivated a 

great number of researchers devoted into this field.  Fascinating aspects of nanomaterials 

include size-related electronic, magnetic and optical properties (quantum size effect), and 

their applications to catalysis and biology. Nanotmaterials will be key materials and 

building block in the 21
st
 century. Details of applications on optical property, 

photothermal effect, and catalysis involved in the dissertation work will be discussed in 

this section.  

 

Application using Optical Property 

Confinement and quantization of conduction electrons within a small volume 

enhance the optical conductance property of nanomaterials. When the dimensions of 

nanoparticles become smaller than the wavelength of exciting light, energy can be 

confined in the small spatial regions through the local excitation of the surface plasmon 

resonance. The enhanced fields in these regions are used in a wide range of applications 

including optical energy transport,
46

 biological sensors,
47

 surface-enhanced Raman 

scattering (SERS),
48

 and waveguide.
49

  

In this dissertation, the effect of the unique optical properties of metal 

nanoparticles the dynamic change of bacteriorhodopsin (bR) is of interest. Biesso et al. 

have reported alterations of the bacteriorhodopsin photocycle when a plasmonic field is 

introduced into the system.
50

 The primary step of the bacteriorhodopsin photocycle 

involves the retinal isomerization of a protonated Schiff base. The sequence of events of 

the primary step is: 
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Biesso et al incorporated bR with citrate capped gold nanosphers (Figure 1-4) and used 

femtosecond time-resolved pump-probe spectroscopy to examine the effect of the 

plasmonic field effect during the transition of the intermediate I460 and J625.   

 

 
Figure 1-4: Gold nanosphere shows single surface plasmon resonance band in the visible 

range.
51

 

 

The absorption of light by the retinal component of bR is followed a large charge 

redistribution in the protonated Schiff base is followed. This charge system is unbalanced 

and these should induce a large polarization on the protein cavity around the retinal 

electronic system. In the presence of a plasmonic electric field, the retinal electronic 

system will have a different potential energy surface than the unperturbed system. The 

plasmonic field of gold nanospheres should affect the rate of dynamic of bR within the 

protein pocket and affect the decay rate of I460 (Figure 1-5).  



 10 

 

Figure 1-5: Effect of increasing the concentration of citrate-capped gold nanospheres on 

the dynamics of the primary step (the decay of I460) of bR.
50

 

 

Biesso et al also mentioned the M412 intermediate decay kinetics in the presence 

of plasmonic field of gold nanorods.
52

 Upon absorption of light, bR undergoes a 

photocycle involving several intermediates where structural rearrangements take place. 

Among all of the intermediates, M412 is the longest-lived and the most studied. The decay 

of M412 was measured via flash photolysis carried out using a frequency doubled 

nanosecond laser at 532 nm. An NIR cw laser at 808 nm continuously excited the gold 

nanorods whose surface plasmon resonance absorption occurs at 795 nm (Figure 1-6).  
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Figure 1-6: While gold nanospheres show one SPR band in the visible region, gold 

nanorods show two bands: a strong longitudinal band in the near-infrared region 

corresponding to electron oscillation along the long axis and a weak transverse band, 

similar to that of gold nanospheres, in the visible region corresponding to electron 

oscillations along the short axis.
51

 

 

In the presence of gold nanorods, the decay time of M412 decreased as the 

concentration of gold nanorods increased. The dependence of the decay time constant on 

the concentration of gold nanorods is shown in the inset of Figure 1-7. Gold nanorods are 

known to efficiently convert absorbed photons into heat through electron-electron or 

electron-photon relaxation. Therefore, the decrease in M412 lifetime observed in the 

presence of gold nanorods may be due to the heat transfer from gold nanorods to the bR 

medium.  
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Figure 1-7: Dependence of the decay kinetics of M412 on gold nanorods concentration in 

the presence of NIR laser irradiation. Each decay lifetime value was obtained by fitting 

the decay kinetic with a single exponential function.
52

 

 

 

Photothermal Effect 

When a plasmonic metal nanoparticle absorbs light, its free electrons it are 

excited. Excitation at the plasmon resonance frequency causes a collective oscillation of 

the nanoparticles’ free electrons. The excitation is converted to heat via electron-electron 

and electron-phonon relaxations on the time scale of picoseconds. Subsequently the heat 

generated from plasmonic metal nanoparticles is dissipated into the surrounding 

environment. This rapid photothermal conversion can be utilized for the localized heating. 

Plasmonic metal nanoparticles can heat the surrounding medium immediately by 

employing light radiation with a frequency strongly overlapping with the surface plasmon 

resonance absorption of plasmonic metal nanoparticles.
53,54

  

The photothermal effect of plasmonic metal nanoparticles is widely applied in 

biological systems. Three methods of exploiting the photothermal effect are: (1) 

hyperthermia, (2) optically triggered bond opening, and (3) drug delivery.  

Hyperthermia uses the photothermal effect of nanoparticles to induce cell death in 

biological system.
55-57

: Cells are very sensitive to small increases in temperature; a rise of 



 13 

only few degrees in temperature can lead to cell death. The plasmonic heating of metal 

nanoparticles holds great promise for cancer therapy or bacterial infection. The idea is to 

direct plasmonic metal nanoparticles to surrounded to cancer tissues. Metal nanoparticles 

are targeted to cancer cells by conjugating the surface of metal nanoparticle with ligands 

that are specific to receptors overexpressed on cancer cells. By external irradiation with a 

certain wavelength of light, plasmonic nanoparticles can convert the light to heat, causing 

the surrounding cancer cells to be selectively killed. Thus, heat generated by plasmonic 

nanoparticles can destroy cancer tissues locally without exposing the entire the entire 

organism to elevated temperatures (Figure 1-8a).  

(2) Optically triggered opening of bonds: The binding of complimentary 

oligonucleotides to double stranded DNA is temperature dependent. When DNA is linked 

to plasmonic metal nanoparticles, a local temperature increase can be induced by 

plasmonic nanoparticles, which can trigger the breaking of DNA bonds (Figure 1-8b).
58

 

(3) Drug Delivery: plasmonic nanoparticles can also be used to remotely control the 

release of drug from containers (Figure 1-8c).
59

 The drug is embedded inside a container, 

which is functionalized with plasmonic nanoparticles. The wall of container breaks upon 

optical excitation of the plasmon nanoparticles, thus releasing the drug.   
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Figure 1-8: (a) Hyperthermia: the temperature inside cells (drawn in gray) is raised by 

illumination of plasmonic nanoparticles, leading to cell death. (b) Breaking of bonds: 

when plasmonic nanoparticles (core in red, stabilizing shell in grey) are conjugated with 

ligands (shown in green) that are specific to receptors (shown in blue) which are bound to 

other plasmonic nanoparticles, these two kinds of plasmonic nanoparticles will be linked 

to assemblies mediated by receptor–ligand binding. As the distance between the particles 

in such aggregates is small, their plasmon resonance is shifted to higher wavelengths and 

the particle solution appears violet/blue. Upon illumination the plasmonic nanoparticles 

get hot and the bonds of the receptor–ligand pairs melt. Therefore the assemblies are 

dissolved, the average distance between the particles is increased, and the particle 

solution appears red. (c) Drug delivery: plasmonic nanoparticles are embedded in the 

walls of polyelectrolyte capsules. The capsule cavity is loaded with drug (drawn in 

orange). Upon illumination the heat created by the nanoparticles causes local ruptures in 

the capsule walls and thus release the drug. 
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Catalysis 

Until recently, noble metals have been considered among the least catalytically 

useful metals. However, after Haruta et al used gold nanoparticles supported on metal 

oxides and found its extremely high catalytic ability on CO oxidation in 1989, catalysis 

with metal nanoparticles is now an expanding area and a large number of new catalytic 

systems for various reactions are now being explored.  

As the size of a noble metal particle decreases, its surface area increases and also 

allows a greater proportion of its atoms or molecules to be displayed on the surface rather 

than the interior of the material. Figure 1-9 shows the inverse relationship between the 

particle size and the number of molecules expressed on the particle surface.
60

 The 

enormous surface-to-volume ratio of metal nanoparticles makes them attractive for 

catalysis.  

 

Figure 1-9: Inverse relationship between particle size and number of surface-expressed 

molecules. For instance, in a particle of 30 nm size, about 10% of its molecules are 

expressed on the surface, whereas at 10 and 3 nm size the ratios increase to 20% and 

50%, respectively. The number of atoms or molecules on the surface of the particle can 

determine the activity of material.
60
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1.2 Basic Properties of Bacteriorhodopsin 

 

Structure of Bacteriorhodopsin 

Bacteriorhodopsin (MW=26,000) is the light transducing membrane protein 

usually found in two-dimensional crystalline patches (purple membrane) of 

Halobacterium halobium (Figure 1-10).
61-64

 This bacterium grows in high salt conditions 

(4 M NaCl). The purple membrane, which contains the bacteriorhodopsin protein in a 

lipid matrix, is grown by the bacterium when the concentration of oxygen becomes too 

low to sustain the generation of ATP. Bacteriorhodopsin is a one of the nature 

photosynthetic system: it can convert absorbed sunlight into proton gradient (details of 

proton transport of bR are discussed in the next section). The bR protein is constituted of 

248 amino acids, organized in 7 α-helices. The protein is about 4.7 nm long, and it 

traverses the entire width of the membrane. The horizontal cross-section of bR range 

from 2.5 to 3.5 nm in diameter, excluding its conjugated lipids.
65

  

 

Figure 1-10: Bacteriorhodopsin consists of 249 amino acids which are arranged in seven 

α-helical bundles inside the lipid membrane and from a cage where retinal is in the center 

of it.  

 



 17 

Surrounded by the α-helices, in a tight protein pocket, lies the retinal protonated 

Schiff base, which is covalently attached to the protein through the residue Lys-216 on 

helix G (Fig 1-11). The Schiff base is perpendicular to the helices, and is located roughly 

midway through the membrane thickness, at an angle of about 20 degrees with respect to 

the membrane plane.
66,67

 To allow vectorial proton transport, deprotonation and 

reprotonation of the Schiff base must occur from different sides of the membrane. Thus, 

the accessibility of the Schiff base to its two facilitating residues, Asp96 and Asp 85, 

must be switched during the photocycle. The retinal divides the protein cavity into two 

half channels. One is the extracellular channel, which contains polar residues that from 

hydrogen channels with the nearby peptides and provides an overall polar environment. 

The other is the cytoplasmic channel, which is mostly hydrophobic. The geometry of the 

retinal, the protonated Schiff base, and its precise electrostatic interaction with the 

surrounding charges (Asp85, Asp212, and Arg82) and dipoles tune the absorption 

maximum to fit the protein’s biological function.  

 

Figure 1-11: Amino acid sequences and putative membrane spanning regions of 

bacteriorhodopsin. Amino acids which under normal conditions carry a charge are shown 

in thickened circles (positively charged) or boxes (negatively charged).  
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Photocycle of Bacteriorhodopsin 

Bacteriorhodopsin is a light-driven proton pump, which moves protons from the 

cytoplasmic side to the extracellular side of the membrane. This light-induced proton 

pumping generates a proton (electrochemical) gradient that the bacterium uses to 

synthesize ATP in the absence of oxygen. After bR is kept in darkness for a period of 

time, the retinal reaches equilibrium between two isomers: all-trans and 13-cis with a 

ratio of 50:50. This is known as the dark adapted state of bR, and the maximum 

absorption is at 560 nm.
68

 After light absorption, bR converts to a light-adapted state with 

a maximum absorption at 568 nm (ratio of all-trans and 13-cis is 95:5).
69

 The 

experiments of bR presented in the dissertation all used light-adapted bR.  

 

Figure 1-12: Under illumination by visible light, all-trans light-adapted bR is isomerized 

to the 13-cis conformation, which initiates the bR photocycle. 

 

Light absorption triggers isomerization of the all-trans configuration of retinal to 

the 13-cis isomer (Figure 1-12).
70

 This event initiates the photocycle of bR (Figure 1-13), 

a sequence of transitions through various intermediates with different spectral absorption 

properties (Figure 1-14). The retinal and its configurational transformations have been 

well characterized in a variety of spectroscopic studies using techniques ranging from X-
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ray,
71

 Raman,
72

 FTIR,
73

 and NMR spectroscopy.
74

 The light-driven proton transport 

process is initiated by absorption of light around 560 nm, followed by an immediate 

charge separation step.  The charge transport through the molecule is associated with 

deprotonation and reprotonation of the retinal Schiff base linkage.  

 

 

Figure 1-13: Photocycle scheme from the kinetics of bacteriorhodopsin. Only the bR and 

O states contain all-trans retinal; in all other states the retinal is 13-cis. Proton release to 

the extracellular state, occurs as the M2 state progresses the M2’ state, and from the 

cytoplasmic side occurs as N progresses to N’.
75 
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Figure 1-14: The absorption spectra of the main intermediates in the bR photocycle.
76

 

 

  

The initial bR state, as well as each of the intermediates, has a single, broad and 

asymmetric absorption band in the visible range (Figure 1-14). The maximum absorption 

of most of these states lies between 550 to 620 nm, with the exception of M intermediate 

which has a strongly blue-shifted maximum at 410 nm. Following photoexcitation of bR, 

the red-shifted K intermediate builds up within a few picoseconds, followed by formation 

of the blue-shifted L intermediate on a microsecond time scale (Figure 1-14).  

 It should be emphasized that the only light dependent event in the conventional 

photocycle of bR is the initial isomerization of the retinal. All subsequent steps are 

thermal relaxation. The proton pumping cycle comprises sequential transfer steps 

between pairs of donor and acceptor groups extending across the protein. Three of the 
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groups are critical: the protonated Schiff base, the anionic Asp85 near the extracellular 

side, and the protonated Asp96 near the cytoplasmic side. They divide the protein into 

three domains, the Schiff base domain, the proton release domain, and the proton uptake 

domain.  

The primary proton transfer event from the Schiff base to Asp85 (step 1 in Figure 

1-15) defines the L-to-M spectral transition, which induces a large blue shift in the 

absorption maximum. Concurrent with protonation of Asp85, a proton is released to the 

extracellular medium with a time constant of about 50 µs on step 2 in Figure 1-15.
77

 

Meanwhile, a large structure rearrangement on the cytoplasmic side of the protein occurs. 

These arrangements open a switch of the retinal, so the Schiff base can subsequently be 

reprotonated from Asp96 (step 3 in Figure 1-15) on the cytoplasmic side.
78

 This 

corresponds spectrally to the M2 to N transition and have a time constant of about 1 ms. 

Asp96 is reprotonated from the cytoplasmic medium (step 4 in Figure 1-15), and the 

absorption peak is further red-shifted as the retinal thermally reisomerizes to recover the 

all-trans configuration. This is associated with the N to O transition and has a time 

constant of about 2 ms. Finally, the ground state is recovered when a proton is transferred 

from Asp 85 to the release group on the extracellular side via Arg82 with a time constant 

of about 8 ms (step 5 in Figure 1-15).  
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Figure 1-15: Yellow arrows show the proton transfer steps in the bR photocycle. The 

primary proton transfer (1) is from the Schiff base to Asp85. A proton is released to the 

extracellular medium (2) by the proton release group, thought to be formed by Glu194, 

Glu204 and water molecules. The Schiff base is subsequently reprotonated from Asp96 

(3), which is then reprotonated from the cytoplasmic medium (4). The final proton 

transfer step (5) from Asp85 to the proton release group (via Arg82) restores the ground 

state.
79
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pH effect 

The sequence of proton transfer reactions of bR discussed above is pertinent 

under normal biological conditions that is pH > 5.8. Proton transfer reactions are 

intrinsically dependent on the pH values and the photocycle of bR is no exception with a 

different pathway being followed for low and high pH (Figure 1-16). When the 

environmental pH is higher than 5.8, the proton release to the extracellular side occurs 

during the interconversion of the M state and the proton uptake occurs in the transition of 

NO. The time scale of this proton release reaction proceeds in the microsecond domain. 

At pH < 5.8, the proton uptake occurs during the transition from NO, prior to the 

proton release during the transition from O bR. Here, the time domain of proton release 

is delayed into the late millisecond range. The reason for this change is proton kinetics in 

the photocycle is that the pKa of the proton release group involved in this proton 

pumping cycle is 5.8.
80-83 

Hence, the switch is at pH = 5.8.  

 

 

Figure 1-16: A simplified model for the bR photocycle at low and high pH. The proton 

pump sequence is changed by the pH due to the proton release group with a pKa=5.8. At 

high pH, proton release (through the LM reaction) precedes uptake (through the MN 

reaction), whereas at low pH, this sequence is reversed and the O intermediate is involved 

rather than N or M.
83
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Blue Light Effect 

During the photocycle of bR, the two most interesting configurations of the 

proton are the bR ground state with a protonated Schiff base (λmax=570 nm) and the 

long-lived intermediate, M412, with a deprotonated Schiff base (λmax=412 nm). The M412 

is generated following the retinal isomerization in 70 µs and can revert to the bR ground 

one of two ways. The first is the traditional thermal relaxation through a number of other 

intermediates (M412NObR570), which takes 15 ms. The second is a much more 

rapid photochemical process that occurs upon excitation with blue light in nearly 

hundreds of nanoseconds. This is the known blue light effect. M412 can be photoexcited 

by applying an intense blue light and this transition from M412 to bR570 can be 

summarized as MM ́bR.
84,85

 The primary reaction MM  ́is attributed to a 13-

cisall-trans isomerization of retinal in picoseconds, and the M ́bR transition has 

been interpreted in terms of Schiff base reprotonation in 200 nanoseconds. Hessling et al. 

have demonstrated the depletion of M intermediate via this effect by an FT-IR study 

(Figure 1-17a).
86

 Blue light effect can be applied in various fields. One of them is energy 

generation: since a short-cut of the photocycle is formed, the proton released rate is also 

enhanced. Another example is to use the switchable characteristic of bR to record 

negative values of light intensity. Lewis et al has demonstrated that the value of a pixel in 

an image can be represented by the concentration of the bR or M state.
87

 Shining yellow 

light on a pixel would increase the concentration of the M state, whereas shining blue 

light would increase the concentration of the bR state. If a film is originally prepared with 

equal concentrations of bR and M, then negative and positive values can be represented 

as increases in the concentrations of bR or M that correspond to a surplus of blue or 

yellow light, respectively (Figure 1-17b). They used this characteristic of such a bR film 

to approximate the operation of a difference of Gaussians.  
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Figure 1-17: (a) Refined photocycle model considering the results of double flash 

experiments in the infrared spectral region. M intermediates can either be thermally 

relaxed through a series of intermediates change to the bR ground state with a time 

constant of 50 milliseconds or photochemically converted back to bR ground state with a 

time constant of hundreds of nanoseconds.
86

 (b) Simplified photocycle model of bR 

considering only the initial ground state and the longest living intermediate M412.
87

  

 

 

Light Harvesting Proton Pumping for Bioenergy 

Global demand for energy is increasing with population growth and 

modernization. The world energy consumption is close to 3.5 Terawatts (TW) of energy 

and more than 80% of it is supplied by fossil fuels. Concerns over the security of these 

energy sources and climate effects of carbon emission have led to interest in renewable 

energy, such as wind, hydrothermal, and the most promising one: solar energy. Sunlight 

is abundant on the Earth’s surface, even after being absorbed and reflected by the 

atmosphere. Average solar illumination at North American latitudes is 200 watts per 

square meter. Using 10% of the land in the US at 2% efficiency would produce 4 TW of 

energy, enough to meet our current energy needs.  

By continuous wavelength (cw) illumination, bR can transform light energy into 

electrochemical energy stored in a proton gradient across a membrane and exhibit 

stationary photocurrent amplitude. Moreover, bR has exceptional stability to salt 

concentration, high temperatures, resistance to chemical and photochemical degradation, 
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and preserved functionality in a wide range of pH values.
88,89

 These unique 

characteristics of bR could make it promising for applications in solar energy. Table 1-1 

summarizes the relevant results from a partial literature survey on this aspect. Although 

there are some differences in bR film preparations, device configuration and experimental 

conditions, most photocurrent values are 0.2-40 pA cm
-2

 ML
-1

.
90

  

 

Table 1-1: Comparison of monolayer-level photocurrent response of dry bR, deduced 

from the results of bR monolayers or multilayers performed in different device 

configurations.
90

 

 

 

1.3 Thesis Focus and Organization 

The rest of the thesis is structured as follows. In Chapter 2, the detailed 

preparations of bacteriorhodopsin and synthesis/characterization methods of metal 

nanoparticles are described. The bacteriorhodopsin preparation includes culture 

conditions, extraction, and purification steps of purple membrane. Gold/silver 

nanospheres, silver nanocubes, gold nanocages, and TiO2 nanotube synthesis are 

described in this chapter. The analytical techniques used to image the samples by 

spectroscopic measurement and electron microscopy are also discussed. 
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Chapter 3 discusses the photocatalytic activity of gold nanocages with different 

sizes and morphology. In this work, it is shown that the silver oxide formation is the key 

to perform the photodegradation of methyl orange, which is one of the azo-dyes and is 

toxic to the environment. The degradation rate is found to be more efficient than 

photodegradation reaction using semiconductor nanomaterials, such as TiO2 and ZnO. 

This is because the unique hollow interior of gold nanocages can form a “cage effect”, 

meaning that the dye molecules could be caged by surrounding hydroxyl radicals and 

undergo a large number of collisions per unit time to enhance the reaction rate. The 

observed results on the rate are discussed in terms of 1) the surface area of the inner wall 

covered with Ag (Ag2O), 2) the density and size of the pores in the walls, and 3) the 

cavity size of the nanoparticles. 

The photothermal effect is when the plasmonic energy is converted rapidly into 

heat that raises the temperature of the medium. This mechanism is used widely in the 

biological and medical fields, with the most famous application being cancer therapy. 

Chapter 4 discusses the first endeavor to apply the photothermal effect to catalysis. In 

the designed experiments, gold nanoparticles served not only as a catalyst but also as a 

heat source to increase the reaction solution temperature. The rate of the catalytic reaction 

between hexacyanoferrate (III) and thiosulfate on gold nanoparticles is found to increase 

when irradiated with light in resonance with surface plasmon absorption of the gold 

nanoparticles. To reveal the mechanism of the photothermal effect on the electron 

transfer reaction, the activation energy of the reaction via two different methods: 

photothermal effects of surface plasmon and by direct heating in a thermostat were 

compared. The two activation energies are found to be the same, suggesting that the 

plasmonic field effect in this electron transfer reaction is thermally induced and laser 

exposure does not change or damage the gold nanoparticles. 

Bacteriorhodopsin can transfer light energy into electrochemical energy stored in 

a proton gradient across the membrane and it exhibits a stationary photocurrent 
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amplitude.  This unique characteristic of bR could make it promising for applications in 

solar energy. However, the photocurrent density values reported so far are around 0.2-40 

pA cm-
2
 in a thin film system. In Chapter 5, a solution-based electrochemical cell that 

did not require bR thin film preparation or external bias is discussed. A superior 

photocurrent generation in this solution-based photochemical cell is observed compared 

to the thin film systems. The details of cell design and various performance conditions 

are discussed in this chapter.  

After an appropriate cell for solution-based bR work has been constructed, the 

next goal was to raise the photocurrent generation of bR. The conventional photocycle 

takes 15 milliseconds, but it can be shortened to 70 microseconds through the absorption 

of an intense blue light. In Chapter 6, the effects on bR of Ag, Ag-Au, and Au 

nanoparticles having different surface plasmon resonances were compared. From the 

results of the photocurrent measurement, the plasmonic enhanced photocurrent can be as 

high as 25 nA cm
-3

, 15 times higher than that of pure bR. This value of photocurrent 

density is also orders of magnitude higher than previous reports. The mechanism of the 

by-passed photocycle formation is revealed by kinetic measurements.  

In recent years, considerable efforts have been made to improve the performance 

of photoactive nanostructured materials for water splitting applications. In Chapter 7, the 

assembly and use of bacteriorhodopsin (bR)/TiO2 nanotube arrays hybrid electrode 

system are reported. The results demonstrate the opportunity to fabricate fairly stable 

bR/TiO2 hybrid electrodes that can be used as photoanodes for photoelectrochemical 

water splitting. Under AM 1.5 illumination (100 mW/cm
2
) (a solar mimic), the hybrid 

electrodes achieved a 50% increase of photocurrent density compared to that measured 

for pure TiO2 nanotubes. Assorted experiments have been done to prove that the unique 

proton pumping ability is the key to enhanced photocurrent. Multiple scans of bR/TiO2 

hybrid electrodes have also been performed to ensure long-term stability.  
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CHAPTER 2 

PREPARATION OF BACTERIORHODOPSIN AND SYNTHESIS OF 

PLASMONIC NANOMATERIALS 

Abstract  

 The experimental details are described in this chapter, including the procedure 

used to prepare/purify bR and the synthesis protocol of nanomaterials (gold/silver 

nanospheres, silver nanocubes, gold nanocages, and TiO2). The techniques for 

characterization of nanomaterials are also elucidated in this chapter.  

 

2.1 Preparation of Bacteriorhodopsin 

 A standard procedure for growing bR by Oesterhelt et al published in 1974 is 

modified.
1
  

 

Preparation of Growth Medium 

 The recipe for 1 liter of growth medium of Halobacterium halobium is: 

    2g      KCl 

  10g     MgSO4 

0.26g    CaCl2 

238g     NaCl 

3.42g    Sodium citrate 

   10g    Oxoid L37 bacteriological peptone 

 The salts are dissolved in high purity D.I. water by use of a magnetic stirrer. The 

peptone is always added last, after the other salts have been dissolved. All media are 

autoclaved before inoculation. 
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Preparation of Cultures 

A) New petri dish colonies are prepared by adding Bactro-Agar to the desired 

amount of culture medium. Autoclave, then pour into petri dishes while still hot 

and let them gel. To inoculate, sterilize a nichrome wire in a burner flame, and 

then dip it into a culture and streak the loop across the plate. The plate is placed in 

the lighted incubator until good-sized colonies are visible. The plate may then be 

stored until needed.  

B) Initially, 5 mL of medium in a 50 mL flask is autoclaved for 60 min. After 

cooling to room temperature, the flask is inoculated by selecting a single colony 

from a petri dish and transferring it to the flask with a sterile scalpel. The flask is 

then put in a 37 ºC incubator shaker. When the culture becomes turbid, it is ready 

to be used in the next step. 

C) Autoclave 1 L of culture medium in a 2.5 L flask and inoculate with the 5 mL of 

culture from the last step. Place on the incubator shaker at 37 ºC for about 5 days.  

 

Purification of Bacteriorhodopsin 

A) Fill centrifuge tubes with culture medium containing bacteria cell. Spin at 8,000 

rpm at 4 ºC for 10 min. Pour off the supernatant, but leave the pellet of cells at the 

bottom of the bottle.  Refill the centrifuge tubes with culture medium, and repeat 

this process until the entire medium has been centrifuged.  

B) Transfer the cells to a 500 mL flask using 4 M NaCl to clean out the centrifuge 

tubes. Add 3 mg of deoxyribonulease to the mixture. Stir mixture at room 

temperature overnight. 

C) Load the cell suspension into dialysis tubes (membrane tubing, molecular weight 

cutoff: 12,000-14,000). Wet the tubing thoroughly, tie a knot in one end, and then 

pour in the suspension using a long-stem funnel. Tie off the other end, trying to 

minimize air bubbles.   
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D) Dialyze against 0.1 M NaCl for 2 days in the refrigerator. Change the NaCl 

solution after the first day of dialysis. The drop in salt concentration from 4 to 0.1 

M will cause sufficient osmotic pressure inside the cells to rupture their 

membranes.  

E) Collect the lysed cells and centrifuge the lysate at 19,000 rpm for 30 min at 4ºC.  

Carefully pour off the supernatant and collect the pellets. Homogenize them 

(using tissue grinder) and divide the suspension into centrifuge tubes.  

F) Spin again at 19,000 rpm for 30 min at 4 ºC. Repeat until the supernatant is clear. 

A slight pink color is also acceptable.  

G) Collect the pellets and resuspend in D.I. water. Spin as above and repeat washing 

until supernatant is clear. The purity is determined by the ratio of intensity of the 

absorption at 280 nm and that at 568 nm. The value should be smaller than 1.8 to 

ensure the purity of sample (Figure 2-1).   

 

Figure 2-1: Absorption spectra of bR after two consecutive washes with D.I. water. 

*Figure adopted from Dr. Arianna Biesso’s dissertation. 
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2.2 Synthesis of Nanomaterials 

 

Synthesis of Gold/Silver Spheres 

 A modified version of the gold nanoparticle synthesis by Freund et al published in 

1985 was used.
2,3

 The 0.01% gold salt (HAuCl4) and trisodium citrate solutions are made 

up in D.I. water. Generally, 25 mL of the HAuCl4 was brought to boiling and 0.5 mL of 

the citrate solution of the appropriate concentration (Table 2-1) was added under 

continuous stirring. Boiling and stirring were continued for 20 min. The redshift of 

surface plasmon resonance peak can be observed with the increasing size of gold 

nanospheres (Figure 2-2). The solution was cooled in a bath at 25 ºC and stored in a 25 

mL volumetric flask. The colloids were indefinitely stable when stored at 5-10 ºC. 

 

Table 2-1: Characteristics of citrate-stabilized gold nanospheres.
2
 

 

 

Figure 2-2: Absorption spectrum of gold nanosphers with various sizes. 
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 The silver nanospheres are prepared by the same method, except for the silver 

nanospheres less than 10 nm in size. The small silver nanospheres were prepared by the 

following recipe: 

A 100 mL solution of 0.25 mM AgNO3 and 0.6 mM sodium citrate were mixed at 

room temperature for 20 min. Next, 0.5 mL of freshly prepared 50 mM NaBH4 was 

added all at once with vigorous stirring and a distinct yellow color occurred immediately. 

The solution was continuously stirred for another 30 min for more stable nanoparticles. 

Synthesis of Silver Nanocubes 

 The synthesis of silver nanocubes followed the method of Xia et al.
4
 In this 

method, ethylene glycol serves as both solvent and reducing agent. A trace amount of 

Na2S is added to catalyze the reduction of AgNO3. The rapidly of the reduction 

effectively limits the formation of twinned Ag seeds, thus promoting silver nanocube 

formation. Moreover, the addition of polyvinyl pyrrolidone (PVP), which selectively 

binds to {100} silver facets, further facilitates the formation of a cubic shape. 

An oil bath is heated to 150 ºC. Once a stable temperature is reached, 6 mL of 

ethylene glycol is pipetted into vial and placed in the oil bath for 1 h to remove any 

possible moisture. A cap is loosely placed on the top of vial to allow water vapor to 

escape.  

Next, the PVP (M.W.=55,000), Na2S and AgNO3 solutions are added into the pre-

heated ethylene glycol solution. A series of color changes should be observed: Trace 

purple, transparent bright yellow (within 1 min), yellow-orange (within 2-3 min), and 

opaque ruby (within 7-10 min) (Figure 2-3). Larger silver nanocubes can be prepared by 

increasing the heating time. To quench the reaction, remove the reaction vials from the 

heated oil bath and place them in a water bath held at room temperature.  
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Figure 2-3: Photograph of silver nanocubes. The reaction media of as-synthesized silver 

nanocubes appears ruby-red when viewed from the top. 

 

 

Once the reaction vials have cooled, transfer the contents are transferred into 

centrifuge tubes. Each vial is rinsed with acetone and the product is spun down at 2,000 g 

for 20-30 min. The supernatant is discarded and D.I. water is added to each centrifuge 

tube. The particles are washed and centrifuged at 9,000 g for 10 min twice. The silver 

nanocubes are stored in D.I. water and ready for use (Figure 2-4).  

 

Figure 2-4: Scanning electron microscope image of silver nanocube. 
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Synthesis of Gold Nanocages 

The prepared silver nanocubes can be used as sacrificial templates to prepare 

hollow and porous gold nanocages via a galvanic replacement reaction. An illustration of 

the galvanic replacement reaction between silver nanocubes and a HAuCl4 solution is 

shown in Figure 2-5. The replacement reaction is initiated at the cube surface of highest 

energy and then continues to form a partially hollow, homogeneous wall composed of an 

Au/Ag alloy. After box formation, the continued addition of HAuCl4 solution facilitates 

dealloying and corner reconstruction of the Au/Ag nanobox to form porous gold 

nanocages. With further addition of HAuCl4, gold nanoframes can be formed.  

 

 

Figure 2-5: Mechanism of gold nanocage formation. The addition of HAuCl4 can greatly 

affect the morphology of gold nanocages.  

 

First, a 10 mL of 9 mM PVP (M.W.=55,000) and 10 mL of 0.1 mM HAuCl4 in 

D.I. water are prepared. Next, 5 mL of the PVP solution is added to a round bottom flask 

followed by 100 uL of the as-synthesized silver nanocubes. The solution is heated to a 

mild boil and then the HAuCl4 solution is added into the reaction flask. As the HAuCl4 

solution is added to the reaction flask, a series of color changes will be observed, which 

can be used to estimate the position of the surface plasmon resonance peak of gold 

nanocages (Figure 2-6). The gold nanocages are isolated by centrifugation, followed by 

decantation twice (Figure 2-7). 
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Figure 2-6: (Top) Vials containing gold nanocages prepared with the different volumes 

of HAuCl4 solution added. From left to right, 0, 0.3, 0.5, 1.0, 1.5, 2.0, 4.0 and 5.5 mL. 

(Bottom) The corresponding UV-visible absorbance spectrum of the gold nanocages. The 

SPR peak of the gold nanocages is tunable throughout the visible to near-IR regions by 

varying the volume of HAuCl4 solution added.  
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Figure 2-7: A scanning electron microscope image of gold nanocages (scale bars are 100 

nm for both images.) 

 

 

Synthesis of TiO2 Nanotubes 

Pure titanium foil is ultrasonically cleaned with acetone then rinsed with D.I. 

water. The anodization was performed in a two-electrode electrochemical cell with 

titanium foil as the working electrode and platinum foil as the counter electrode under 

constant applied voltage at room temperature in chloride containing electrolytes (Figure 

2-8). A DC power supply was used for the potentiostatic anodization. After anodization, 

the samples were rinsed thoroughly with D.I. water and then dried with pure nitrogen.  
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Figure 2-8: Schematic of the anoization set up for TiO2 nanotube preparation 

 

2.3 Other Instrumentation used in this Dissertation 

 

Electron and Surface Probe Microscopes 

The nanomaterials were imaged using several microscopy methods. The formed 

morphology of nanomaterials was analyzed by scanning electron microscopy (LEO 1530 

Thermally-Assisted Field Emission SEM, Zeiss/LEO). All images were taken using a 

secondary electron detector and an accelerating voltage from 1-10 kV. 

The transmission electron microscope (TEM) images were obtained using a JEOL 

100CX-2 TEM. The TEM images provide information on the structure and size 

distribution of nanomaterials. The TEM grids used for imaging are coated copper grids 

purchased from Ted Pella.  

 

Absorption Spectroscopy 

The UV-visible extinction spectroscopy of nanomaterials was performed using 

Oceanoptics (DH 2000). The Raman experiments were performed on a Kaiser Optical 

System coupled to an Olympus microscope. The excitation wavelength was 785 nm and 
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the power was tunable from 10-35 0mW. The signal collection was taken at 180° through 

a chilled CCD camera.  
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CHAPTER 3 

PHOTOCATALYSIS IN GOLD NANOCAGE NANOREACTORS 

Abstract 

 The photo-degradation of methyl orange was found to take place very efficiently 

using hollow Au nanocages which are known to have remaining Ag on their interior 

walls which can be oxidized to Ag2O. The degradation rate is found to be more efficient 

than photodegradation reaction using semiconductor nanomaterials, such as TiO2 and 

ZnO. The reaction rate is found to increase by increasing the degree of Ag oxidation on 

the interior wall of the nanocages prior to the reaction and is a function of the nanocavity 

size and the pore density of the nanocage walls. As the cage size varies, it is found that 

the photocatalytic rate increases then decreases with a maximum rate at a nanoparticle 

size of 75 nm with a medium pore density in the walls. All these results suggest that the 

catalysis is occurring inside the cavity, whose interior walls are covered with the Ag2O 

catalysts. Similar to the mechanism proposed in the degradation by the other 

semiconductors, we propose that the photo-degradation mechanism involves the 

formation of the hydroxyl radical resulting from the photo-excitation of the Ag2O 

semiconductor. The observed results on the rate are discussed in terms of 1) the surface 

area of the inner wall covered with Ag (Ag2O), 2) the density and size of the pores in the 

walls, and 3) the cavity size of the nanoparticles. 
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3.1 Introduction 

 Nanomaterials with hollow structure are promising, due to their unique optical 

and catalytical properties.
1-7 

Due to the larger surface to volume ratios; they are expected 

to be more effective in catalysis. Gold nanocages were first synthesized by Xia and et al.
8
 

They have developed a facile way to synthesize nanoparticles of uniform shape and size 

with hollow interiors and have demonstrated that hollow nanocages have high catalytic 

activity, similar to Pd nanotubes for Suzuki coupling reaction
9
 and Pd-Au-Ag nanocages 

for methyl red hydrogenation.
10

 Hollow gold nanocages that are very stable and have a 

novel layered structure have never been used as a novel photocatalyst.
11

 In this work we 

used them in the photodegradation of methyl orange (MO) dye and found them to be 

more efficient than TiO2
12-14

 and ZnO
15

 in the photodegradation of azo dyes.  

 The most common reported photocatalyst for the photocatalytic oxidative 

degradation of azo-dyes is semiconductor materials, such as TiO2
12-14

 and ZnO
15

. The 

basic photocatalytic principle of semiconductor materials (usually metal oxides) is 

photogenerated electrons (from the conduction band) and holes (from the valance band) 

migrating to the metal oxide surface and reacting with adsorbed O2/H2O to generate 

reactive radicals which can attack the azo-dyes and lead to their photodegradation.
12

 

 The method of galvanic replacement transform the silver nanocubes into gold 

nanocube shells with pores in the walls whose number increases with the nanocube shell 

size and their inside wall are coated with the remaining silver. In the present work, we 

examine the effect of cavity size on the rate of the photodegradation of the methyl orange 

dye by using the Ag walls of the Au nanocavity. It is known that silver is easily oxidized 

to silver oxide solution even at 300 K and the formation of silver oxide (Ag2O) is 

extremely stable in ambient condition.
16

 The reported band gap of silver oxides is ～2.5 

eV (400 nm-500 nm) and it can therefore be an analogous to the other semiconductor 

materials.
17

 Upon the absorption of the light energy, it produces radicals that could 

perform oxidative degradation of MO.  



 49 

 We prepared gold nanocages of various sizes and different cavity volumes to 

serve as nanoreactors. The photodegradation reaction of MO demonstrates that the 

oxygen treatment is the key point for nonreactors to become a good photocatalyst for this 

reaction. We found that the catalytic activity increases then decreases as the nanocavity 

becomes larger. This is explained by the fact that increasing the cavity size first increases 

then decreases the cavity surface area. The smaller surface area at the large cavity 

proposed to result from the increase in its surface pores. 

 

3.2 Experimental Section 

 Gold nanocages (AuNCs) of various sizes and wall thickness were prepared from 

silver nanocube template nanoparticles via the galvanic replacement method.
18

 Silver 

nanocubes (AgNCs) were prepared by heating 30 mL of ethylene glycol (EG) at 150 ºC 

for 1 hour, followed by the addition of 0.2 g of polyvinyl pyrrolidone (PVP, MW 55k) 

dissolved in 10 mL EG. The resulting solution was heated until the temperature reached 

150 ºC. A solution of 0.4 mL sodium sulfide dissolved in ethylene glycol (3 mM) was 

added. Three sizes of AgNCs were prepared (50, 75, and 100 nm) by slowly injecting 

various amounts of silver nitrate (2.5, 3, and 3.5 ml of 282 mM dissolved in EG, 

respectively) into the reaction mixture. The silver ions were reduced completely after 15 

minutes, producing AgNCs. Diluting 10 mL of AgNC solution with acetone and 

subsequently centrifuging purified the AgNCs. The particles were then re-dispersed in 

deionized water. The solution of purified AgNCs was brought to a boil and a 10 mg/L 

solution of hydrogen tetrachloroaurate was injected slowly. This mixture was 

continuously refluxed until its color remained constant. Vigorous magnetic stirring was 

maintained throughout the synthesis. The thickness and porosity of the AuNC’s walls 

were controlled by the amount of gold salt added to the solution.
19

 Eight individual 

colloidal solutions of AuNCs were prepared from the three sizes of AgNCs (50nm, 75nm, 

and 100 nm). From the 50nm AgNCs, three AuNC samples were synthesized of different 



 50 

wall thickness (samples I, II, and III). From the 75 nm AgNCs, three AuNC samples were 

synthesized of different wall thickness (samples IV, V and VI), and from the 100 nm 

AgNCs, two samples were synthesized of different wall thickness (samples VII and VIII). 

As the shape of the nanocages was varied through additional AuCl4
-
, the surface plasmon 

resonance was red-shifted, due to the further loss of silver atoms in the alloy structure. 

Oxygen treatment of the AuNCs was performed prior to the photocatalysis experiments. 

An aliquot of 50 mL of the AuNC solution was stirred in the cylinder and oxygen gas 

was bubbled through the solution at a rate of 30 mL/min for six hours to oxidize the 

silver atoms of the AuNCs to silver oxide (Ag2O). The photocatalysis reactions were 

carried out in a quartz cell containing the reaction mixture irradiated by a 50W high-

pressure Xe-Hg lamp. The reaction temperature was held constant at room temperature to 

reduce thermal effects on the catalytic rate. The reaction mixture was composed of 2 mL 

of the nanocube solution and 200 μL of methyl orange (MO) (20 mg/L). Optical 

measurement of the characteristic peak of MO (~480 nm) was used to monitor the 

changes in the concentration of the MO reactant during the photocatalytic experiments. 

All optical measurements were collected using an Ocean optics UV-Vis spectrometer 

HR4000Cg-UV-NIR. 

 The 50 nm AuNCs with surface plasmon peaks at 650, 700, and 800 nm had 

optical densities (ODs) of 1.5, 2.6, and 2, respectively. The 75 nm AuNCs had ODs of 

1.8, 2.3, and 2, respectively. The 100 nm AuNCs with plasmon peaks at 700 and 800 nm 

had ODs of 1.5 and 1.4 respectively. A Holoprobe Raman microscope (Kaiser Optical 

Systems) with 785 nm laser excitation was used for Raman measurements. 
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3.3 Results and Discussions 

 

Preparation of Silver Nanocages 

 To prepare various sizes of AuNCs, one must synthesize AgNCs first for use as a 

sacrificial template during the galvanic replacement reaction. Here, three different sizes 

of AgNCs were prepared (50, 75, and 100 nm). The synthetic approach of AuNCs is 

based on the galvanic replacement reaction between AgNCs and the gold salt solution. 

The gold ions are reduced at the expense of silver atoms that compose the nanocubes, 

which are oxidized via the following equation:
19

 

 
)1(433 )()()()(4)(

  aqaqsaqs ClAgAuAuClAg
 

 The first stage of this synthesis is a solid silver-gold alloy wall formed when a 

relatively small amount of gold salt is added to the template solution. Their box-like and 

solid Au/Ag alloy wall characterizes the particles in this stage and the SEM images show 

the uniformity and closed wall structures (See Figure 3-1 I, IV, and VII).
18-20

 In the later 

stage of synthesis, as more gold salt is added to the box-like AuNC solutions, some silver 

atoms undergo a de-alloying process from the Au/Ag alloy walls. Numerous pores within 

the walls are formed by selectively extracting silver atoms and porous AuNCs are 

generated from the box-like AuNCs. The continuous etching of the silver core leads to an 

increase in the void size and causes the SPR peak to red-shift compared to the 

corresponding solid box-like AuNC structure (Figure 3-2). In the final stage of synthesis, 

when the amount of gold salt added to the porous AuNCs was further increased, Au 

atoms were simultaneously reduced, inducing changes in the porosity. According to 

equation (1), one gold cation (Au
3+

) is reduced by three silver atoms, thus resulting in a 

continuous etching of the silver core producing nearly an empty AuNC (Figure 3-1 III 

and VI). Because of the loss of the silver atoms, AuNCs in the final stages were 

transformed into frame-like AuNCs producing vacant cavities of AuNCs. By increasing 
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the pore sizes in the walls and thinning the wall thickness caused a shift in the SPR peak 

of the frame-like AuNCs from the visible to the near-IR range (800 nm, Figure 3-2A, B). 

In summary, the synthetic steps based on galvanic replacement are a simple and versatile 

method to make gold nanostructures with a specific porosity of the wall, a precise volume 

of the cavity, and a desired position of the SPR band.
18-20 

 

 

Figure 3-1: SEM images of AuNC samples. I, II, and III are the 50 nm AuNCs. IV, V, 

and VI are the 75 nm AuNC samples. VII and VIII are the 100 nm AuNC samples. I, IV, 

and VII are the boxlike AuNCs. II, V, and VIII are the porous AuNCs. III and VI are the 

framelike AuNCs. 
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Figure 3-2: Normalized SPR extinction spectra of (A) 50 nm size AuNCs, (B) 75 nm size 

AuNCs, and (C) 100 nm size AuNCs. By varying the volume of HAuCl4 solution added 

to the AgNCs, the SPR band of the AuNCs was tuned from the visible to the near-IR 

region due to changes in porosity and volume of the cavity of the particles. The particles 

are divided into three groups: (1) poreless Au/Ag alloy walls, boxlike AuNCs (samples I, 

IV, and VII), (2) enlarged pores in the Au/Ag alloy walls, porous AuNCs (samples II, V, 

and VIII), and (3) nearly empty interiors, framelike AuNCs (samples III and VI). 
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Characterization of Silver Oxide Formation 

 To activate the AuNCs as photocatalysts, the remaining silver atoms on the inside 

walls of the cavity of the AuNCs were oxidized into silver oxides (Ag2O). The silver 

oxide is capable of adsorbing the energy from light at a frequency between 400-500 nm 

to produce radicals that perform oxidative degradation of azo-dyes. Silver atoms can be 

efficiently converted into silver oxides upon oxygen treatment by bubbling oxygen gas 

into the solution. The oxidation of silver into silver oxide by oxygen gas is 

thermodynamically and electrochemically allowed at room temperature.
16, 21 

Oxygen gas 

oxidizes silver atoms according to the following equation:  

 
             V 0.056E                            O2Ag O  4Ag

    V 229.1E                       O2H  4e 4H  O

V 173.1E         4e  4H  O2Ag  O2H  4Ag

      22

o

    22

o

22











-

-

 

 Figure 3-3A shows the surface plasmon spectra of AuNCs before and after 

oxygen treatment. The surface plasmon resonance red-shifts upon oxidation, which is in 

agreement with the results of other groups. 
22-24

 In addition, the comparison of the Raman 

spectra of the fresh and oxygen-treated AuNCs shows a large increase in the silver oxide 

(Ag2O) peak at 525 cm
-1

 in oxygen-treated samples (Figure 3B). 
25-26 
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Figure 3-3: (A) Surface plasmon resonance spectra of 75 nm AuNCs before (black) and 

after (red) treatment with oxygen gas. (B) Raman spectrum of AuNCs before (black) and 

after (red) oxygen treatment. Shift in surface plasmon spectrum and the increases in 

intensity of the 525 cm
-1

 Ag2O Raman band both support the formation of Ag2O by 

oxygen treatment 

 

  

 

Photocatalytic Ability of Silver Nanocages 

Different Treatment Step 

 In order to test the active source of the Ag dependent photoreduction (Ag or 

AgOx), we treated three colloidal solutions of nano-cages (originally from the same 

batch) in the following manner: (1) as-synthesized (no-treatment), (2) aged for one 

month, and (3) oxygen purged. The data from UV-vis and Raman spectroscopy gave us 

powerful evidence of silver oxide formation in the oxygen-purged and one-month-old 

nanocages.  

 The change in MO concentration was quantitatively monitored during the reaction 

by monitoring the optical absorption peak intensity located around 480 nm. This peak is 

sensitive to the changes in pH of the medium and red-shifts with decreasing pH. In the 

absence of the photocatalyst, the MO itself is stable for several hours upon irradiation 
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with the Xe-Hg lamp (data not shown). Therefore, the observed rapid decrease of the MO 

absorbance peak in the presence of AuNCs results from the catalyzed photo-degradation. 

The absorbance intensity at 480 nm of MO is measured in intervals of ten minutes and 

the reaction rate was obtained by calculating the absorbance change of MO as a function 

of time. 

 The AuNCs performed well as photocatalytic degradation on the MO agents after 

being activated through oxygen treatment. Prior to oxygen treatment, the AuNCs lacked 

photocatalytic activity in the catalytic degradation of MO. The photodegradation reaction 

of MO demonstrated that the oxygen treatment is the key point for nanocages to form a 

good photocatalyst; the photoactivity will be largely affected by the silver oxide 

formation (Figure 3-4) and both of these two samples showed much better reaction rates 

(Table 3-1). 

  

 

Figure 3-4: Photocatalytic activities of Au-Ag nanocages with different treatments. 
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 Generally, AuNCs exhibit a much higher photocatalytic activity compared to 

TiO2 (Table 3-1) under superior reaction conditions (higher MO concentration, less 

catalysts amount and weaker lamp intensity). However, the high photocatalytic ability of 

the AuNCs is not solely due to the silver oxides. The unique hollow interior of the 

AuNCs increases the contact between the active catalyst sites and the reactants. To verify 

the significance of the hollow cavity in AuNCs, we prepared the particles of commercial 

bought silver oxide and the silver oxide nanoparticles by citrated acid reduction. The 

activity of AuNCs was compared to those of the two silver oxides solutions without 

hollow interiors, and AuNCs were found to have a much higher reaction rate of MO 

decolorization compared with the two silver oxide particles (Figure 3-5). The results 

suggest that the unique structure of the AuNCs serves as a good nano-reactor to confine 

the reactants inside the particles’ cavity, resulting in an enhancement of their 

photocatalytic activity. 

 

Table 3-1: Comparison of reaction rate over different catalysts 

 
 *determined by ICP-mass 
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Figure 3-5: Photocatalytic activities of AuNCs, commercial Ag2O, Ag@citrate acid 

before and after oxygen treatment 

 

 

 

Size and Structure 

  

 The photocatalytic activity of three different sizes of AuNCs (50, 75, and 100 nm) 

having the same SPR band position (around 700 nm) under the same conditions were 

compared. During the sixty minutes photocatalytic reactions, the photo-degradation 

process of MO was almost complete when catalyzed by 75 nm-AuNCs (Figure 3-6B). 

However, thirty and sixty percent of the MO remained when the degradation catalysis 

was carried out by the 50 nm and 100 nm AuNCs, respectively (Figure 3-6A and C). All 

eight AuNCs samples synthesized here were used as photocatalysts and their activities 

were studied. The reaction rates of these eight catalysts all obeyed first-order kinetics as 

shown in A, B and C of Figure 3-7. The time-dependent extinction spectra of MO 

catalyzed by three samples are shown in Figure 3-6.  
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Figure 3-6: Time-dependent extinction spectra of methyl orange catalyzed by AuNCs 

with similar SPR bands at 700 nm but of different sizes: (A) 50 nm (sample II), (B) 75 

nm (sample V), and (C) 100 nm (sample VII). The photodegradation experiment took 1 

h, and absorbance of MO was measured every 10 min. All three experiments were 

performed under the same conditions. 

 

  

 The photocatalytic ability of AuNCs and solid AgNCs were compared. There is 

no hollow cavity inside the AgNCs because they are solid nanostructures. For AgNCs 

(fresh and oxygen treated ones), the photocatalytic activity was significantly non-existent, 
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as indicated by no measurable change in the MO absorption peak during the reaction. 

Although the absorption peak of MO and the SPR band of pure AgNCs were close to one 

another, the change of the MO absorption peak can still be monitored during the 

photocatalytic reactions. During the one-hour reaction time, there was only a slight 

change of the MO absorbance (results not shown).  

 There are a number of observations that strongly suggest that the catalysis occurs 

within the cage cavity of these particles. 1) The observation that oxidized Ag (which is 

only present on the inside walls of the cavity) is required for the catalytic process; 2) the 

dependence of the catalytic rate on the cavity size; 3) the fact that solid Ag cubes have no 

significant catalytic activity.  

 The photocatalytic activity of the three classifications of AuNCs (box-like, 

porous, and frame-like) can be distinguished from one another. Among these three 

different categories, the most inactive one is the box-like AuNCs (samples I, IV, and VII) 

and the most active one is the porous AuNCs (samples II, V, and VIII). The rate 

constants for the photo-degradation of MO by samples I, IV, and VII (box-like) were 

found to be 0.002, 0.002, and 0.007 min
-1

 of cage sizes of 50, 75, and 100 nm, 

respectively (slope of black data points in Figure 3-7). The rate constants for the photo-

degradation of MO by samples II, V, and VIII (porous) were all far beyond 0.010 min
-1

, 

(slope of the red data points in Figure 3-7) with the highest rate of 0.034 min-1 for the 

75nm size porous cages (sample V). The reaction rate constants of frame-like AuNCs 

(slope of the blue data points in Figure 3-7) were all in-between the box-like and porous 

AuNC rates. 
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Figure 3-7: First-order relationship for the photocatalytic degredation of methyl orange 

by AuNCs of different cage sizes: (A) 50, (B) 75, and (C) 100 nm. Three different colors 

represent different groups of AuNCs: black is the boxlike AuNCs, red is the porous 

AuNCs, and blue is the framelike AuNCs. (D) The correlation between the size of 

AuNCs and the reaction rate and the comparison of three different kinds of AuNCs. 
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3.4 Possible Mechanism 

 

 Upon excitation of silver oxide above the band-gap energy, electrons are excited 

from the valence band to the conduction band, generating a hole in the valence band. 

Water molecules in the solution are oxidized into hydroxyl radicals and protons by the 

holes in the valence band 
27-28

 while the electrons in the conduction band reduce oxygen 

in the presence of water molecules into hydroxyl and peroxide radicals. Those generated 

radicals react with the MO molecules, resulting in MO radicals. MO radicals undergo 

intramolecular fragmentation and the two MO radicals may be combined together to form 

dimer molecules. It is necessary to continuously produce hydroxyl radicals to continue 

the photo-degradation reactions. The hydroxyl radical generation process is depicted in 

Figure 3-8A and B. 

 

 

Figure 3-8: Schematic diagrams of (A) the oxygen-treated gold nanocage; (B) the 

photochemical generation of hydroxyl radical by silver oxide; (C) pores in the walls 

allowing solution to diffuse into the cavity where photodegradation takes places. When 

the size of the cage reaches a certain size, it could create a cage effect that confines the 

hydroxyl radicals inside the cavity.  

 

  

   There are three factors affecting the rate of the reaction. The first factor is the 

surface area of the Ag2O covered wall inside the cavity. Since the inner walls of the 

AuNCs are coated with Ag2O, the hydroxyl radicals are generated on the inner surface of 

the cavity. The increased surface area inside the cavity of the particle contributes to the 

increase in the concentration of the hydroxyl radical as well as an increase in the collision 
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probability. The second factor is the pore size of the AuNCs. The pore size in the wall of 

the cage could affect the rate of the photocatalytic reactions. The reactant dyes and the 

product photofragments diffuse in and out through the pores of the cage. Thus the pore 

size on the particle walls serves to regulate the flux of molecular species and thus 

maintains the steady state concentration during the reaction. The third factor is the size of 

the cage in which the hydroxyl radicals and the MO collide with each other. The cavity 

size thus controls the collision rate between the hydroxyl radicals and the MO dye 

molecules.
29

 

 There are three different cube sizes of AuNCs and the cavity sizes can be 

controlled by adding various amounts of gold salt. For the particles with the smallest 

cavity, the box-like AuNCs (samples I, IV, and VII), the reaction rate of all three sizes 

are the slowest (under 0.007 min
-1

). Previously it was mentioned that the most significant 

reason for the low activity of box-like AuNCs is because they lack pores in their walls. 

The dye molecules could not diffuse easily and rapidly due to the pore-less walls of box-

like AuNCs. This means the reactants could not be catalyzed effectively. However, this 

could also be attributed to the high surface coverage of the capping material to the 

external surface of the solid cube, which prevents molecular species from reacting with 

the surface. However, the reaction rate of the frame-like AuNCs is not relatively large 

either (under 0.012 min
-1

), even though there are numerous pore channels on the walls for 

the reactants to diffuse inside the cavity. In this case, the determining factor is the small 

Ag2O surface area inside the cavity. In preparation of frame-like AuNCs, hollow 

structures and pores are routinely produced. While this results in the formation of large 

pore channels, it also causes the decrease in the silver layers on the inner surface areas. 

This insufficient surface area of silver oxides could be the reason for the low activity of 

frame-like AuNCs. 

 Therefore, achieving the optimum reaction rate requires (1) that there be a high 

surface area of Ag (which is oxidized to Ag2O) on the inner wall of the cage to generate 
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sufficient hydroxyl radicals, (2) that the channel (pore) sizes are sufficiently large enough 

to allow the reactants and products to diffuse into and out of the cavity but small enough 

to keep the radical steady state concentration high, and (3) that the cavity size inside the 

cage is appropriately sized to allow for an optimum collision rate between the reactants. 

When the pore sizes and surface area of silver oxide achieve a good balance, the cavity 

forms a “cage effect”, meaning that the dye molecules could be caged by surrounding 

hydroxyl radicals and undergo a large number of collisions per unit time to enhance the 

reaction rate (Figure 3-8C). In our case, the cavity size of 75 nm AuNCs results in a 

reaction rate of 0.034 min
-1

, which is twice as large as the rate with our other AuNCs 

catalysts. 

 

3.5 Conclusion 

 Quantitative comparison can be made with other non nanocage oxide catalysts, 

such as TiO2
14

 and ZnO
15

. The specific reaction rate constant is 0.034, 0.040, and 0.010 

min
-1

 for the AuNCs, TiO2
14

 and ZnO
15

, respectively. The reaction rate constant of TiO2 

is larger than that of AuNCs. However, the concentration of the catalysts used in TiO2 

(0.3 g/100 mL) is 15 times larger than that used in our experiment (0.02 g/100 

mL). Furthermore, the strength of lamp used in the TiO2 experiment is 500 W, while that 

used in our system is only 50 W. Thus one could conclude that the Ag2O within the 

cavity of the AuNCs seems to be a more efficient photocatalyst. The explanation for the 

extremely high activity of the AuNCs is that it has an optimum balance of the three 

properties listed above, namely, a cavity with high Ag concentrations with pore sizes that 

allow the reactants and products to diffuse in and out without restrictions while confining 

the reactants in a small region that optimizes the collision frequency with hydroxyl 

radicals. The surface area of the silver oxides, pore channel sizes, and cavity sizes seem 

to be the crucial factors that determine the AuNCs activity, and these three factors can be 
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easily tuned by the galvanic synthetic method to allow for the largest enhancement of the 

nanoreactor. 
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CHAPTER 4 

PLASMONIC FIELD EFFECT ON THE HEXACYANOFERRATE –

THIOSULFATE ELECTRON TRANSFER CATALYTIC REACTION 

ON GOLD NANOPARTICLES 

Abstract 

 The rate of the catalytic reaction between hexacyanoferrate (III) and thiosulfate on 

gold nanoparticles is found to increase when irradiated with light in resonance with 

surface plasmon absorption of the gold nanoparticles. Turning on the plasmonic field by 

turning on light at the surface plasmon extinction band could increase the rate by one of 

two possible mechanisms. In the first one, the electromagnetic field could change its 

radiative or nonradiative electron transfer process (Mechanism I). In the other mechanism 

(Mechanism Ⅱ), the strongly absorbed light by the gold nanoparticles is rapidly 

converted from light energy into heat energy that increases the temperature of the 

medium and increases the reaction rate. In order to determine which mechanism the 

plasmonic catalytic effect follows, we determined the activation energy of the reaction by 

heating the reaction solution via two different methods: irradiation at the surface plasmon 

resonance of the gold catalyst and by direct heating in a thermostat. The two activation 

energies are found to be the same, suggesting that the plasmonic field effect in this 

electron transfer reaction is thermally induced.   
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4.1 Introduction 

Nanoscale metallic particles have been the subject of intense study in recent years 

because of their unique catalytic and optical properties.
1-5

 Surface plasmon resonance 

(SPR) is an interesting optical phenomenon induced by the coupling of the incident 

electromagnetic wave of light with the conduction band electrons in the metal. This 

induces a coherent electronic oscillation of the free electrons of the metal with respect to 

the positive metallic lattice as a result of the oscillating electromagnetic field. This 

electronic oscillation can be simply visualized as a photon confined to the size of the 

nanostructure, constituting an intense surface electromagnetic field that is detected over 

distances comparable to the size of the nanoparticle.
6
  

 There is a rich variety of applications utilizing the SPR property of gold 

nanoparticles, including optical energy transport,
7,8

 chemical and biological sensors,
9-12

 

surface-enhanced Raman scattering (SERS),
13-15

 and the photothermal effect in which the 

plasmonic energy is converted rapidly into heat that raises the medium temperature.
16,17

 

This mechanism is used in photothermal cancer therapy by gold nanoparticles.
18-20

 The 

plasmonic field’s effect has been observed on the rate of the non-radiative electronic 

relaxation in CdTe-Au core-shell semiconductor.
21

 The mechanism was found to result 

from radiative coupling between the plasmonic field and the electrons in the 

semiconductor. The effects of the plasmonic field on the rate of retinal 

photoisomerization and the reprotonation of the Schiff base in the photocycle of 

bacteriorhodopsin has also recently been reported.
22

 

In the present paper, we examine the effect of exciting the gold SPR on the rate of 

an electron transfer reaction where the gold nanoparticles serve as the catalyst. The 

catalytic reaction studied here is the reduction of ferricyanide by thiosulfate: 
23-25

 

(1)OSCNFeOSCNFe (aq)
-4

(aq)(aq)
-2

32(aq)6

 
2

646

3 )(22)(2  
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The catalyst used here is 25 nm gold nanospheres with an SPR band at 527 nm 

and 75 nm gold nanocages with an SPR band at 796 nm. Exciting the surface plasmon 

resonance during the catalytic process could accelerate the rate of the reaction by a 

number of mechanisms: 1) electronic density exchange between the excited gold 

nanoparticle and nearby reactants;
 26

 2) the plasmonic near field on electron transfer 

process itself; 
21,27,28

 or 3) the rapid conversion of the excited SPR into heat , rising the 

solution temperature and thermally accelerating the chemical reaction. 
29,30

  If it is the 

third mechanism that is accelerating the rate of the chemical reaction, the activation 

energy measured by changing the solution temperature by increasing the light intensity 

should be the same as that determined by raising the reaction temperature in thermostatic 

water bath.  

The value of the activation energy for this electron transfer reaction is found to be 

similar when measured either by thermostatic water bath or by plasmonic photothermal 

reactor. This observed result supports the conclusion that the conversion of the excited 

SPR into heat is the dominant effect and other possible processes involving the surface 

plasmon field on the electronic dynamics during the reaction are negligible.  

 

4.2 Experimental Section 

 

Synthesis of Gold Nanocages: 

In each synthesis, 5 mL ethylene glycol (EG) was first heated in an oil bath at 150 

°C for 4 h to remove trace amounts of water. Then two solutions, one containing 0.94 M 

of silver nitrate and another containing 0.375 M poly-(vinyl pyrrolidone) (PVP, Mw: 

55,000) and 0.22 mM NaCl were injected into treated EG at the same time. In a typical 

synthesis, the solution underwent a number of color changes before the color became 

stable after approximately 46 hr. The samples were washed with acetone and then with 

water to remove excess EG and PVP. A 5-ml aliquot of the aqueous dispersion 
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containing silver cores was refluxed for 10 min. Aliquots (15mL) of 1 mM HAuCl4 

aqueous solution were added drop-wise to the refluxing solution. This mixture was 

continuously refluxed until its color became stable. Vigorous magnetic stirring was 

maintained throughout the synthesis.
31,32  

 

Synthesis of Gold Nanospheres: 

A 50 mL solution of 0.25 mM HAuC14 was brought to a boil and 0.40 mL of the 

1% citrate solution by weight was added under continuous stirring. This protocol is based 

on the reduction of HAuCl4 by citrate, which serves both as a reducing agent and an 

anionic stabilizer through the following reaction: 

(2)18H6Au24Cl6COO5HOHC6AuCl (aq)(S)(aq)(g)2(aq)2(aq)786(aq)4

   

Boiling and stirring were continued for several minutes and a brilliant red color appeared. 

The solution was cooled in a bath at 25 ℃ and stored at 5-10 ºC.
33,34 

The final 

concentration was adjusted to be 2.0 mM before as a catalyst. The concentration was 

determined by ICP-MS (VG PlasmaQuad 3). 

 

Electron Transfer Reaction: 

A 0.1 M stock solution of hexacyanoferrate (III) was prepared using the 

potassium hexacyanoferrate (III) salt. A 1.0 M stock solution of thiosulfate was prepared 

using the sodium thiosulfate salt. The pH of both stock solutions was adjusted to 7.0 in 

order to carry out the reaction at a pH of 7.0. The electron transfer reaction between 

hexacyanoferrate (III) ions and thiosulfate ions was carried out by adding 20 µL of 0.1 M 

potassium hexacyanoferrate (III) ions and 20 µL of 1 M sodium thiosulfate to 2.0 mL of 

gold nanospheres or gold nanocages solutions.  
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Kinetics of the Electron Transfer Reaction 

The kinetics of the electron transfer reaction was monitored by using absorption 

spectroscopy with an Ocean Optics UV-vis spectrometer HR4000Cg-UV-NIR. The 

intensity of the hexacyanoferrate (III) absorption peak at 420 nm was monitored as a 

function of time every 10 minutes for 50 min. The rate constant of the reaction was 

determined from the slope of the graph of –ln A vs. time, assuming that the reaction is 

first order, since thiosulfate concentration was kept high (1.0 M). The rate constant of the 

reaction was determined at five different temperatures. In order to carry out the reaction 

at different temperatures, two different heating methods were used. In the first one, the 

water thermostat method, the quartz cell was placed into a circulator (Neslab, RTE-110) 

that was heated to the desired temperature by water circulation.  

The other method was the gold plasmonic photothermal method. Two kinds of 

laser have been used and compared: 

 

Continuous Wavelength Laser 

An argon ion laser (Coherent, Innova 300, 514 nm) was used to irradiate a gold 

nanosphere solution and a diode laser (Power Technology, 808 nm) was used to irradiate 

the gold nanocage solution. The solution temperature was measured by using a handheld 

infrared thermometer (Omega) with careful calibrations. The activation energy of the 

reaction was determined from the slope of the graph of ln k vs. 1000/T. 

 

Pulsed Laser 

 The amplified Ti-Sapphire femtosecond laser system (Clark-MXR CPA 1000) 

was employed to irradiate gold nanocage solutions. Briefly, the Ti:Sapphire Oscillator 

(Clark -MXR NJA-5) was pumped by a frequency-doubled Nd:Vanadate laser (Coherent 

Verdi) with an output power of 3.5 W at 532 nm, generating laser pulses of 100 

femtosecond duration with a 90 MHz repetition rate at 800 nm (Scheme 4-1). A 
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frequency-doubled Nd:YAG laser (GCR-2, Spectral Physics, 532 nm with a bandwidth of 

10 ns) was used to irradiate gold nanospheres (Scheme 4-2).  

 

 

Scheme 4-1: Experimental setup of the femto second laser (800 nm). Photoexcitation of 

gold nanocages to catalyze electron transfer reaction 

 

 

 
 

Scheme 4-2: Experimental setup of the nanosecond laser (532 nm). Photoexcitation of 

gold nanospheres to catalyze electron transfer reaction 
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Recycling the Electron Transfer Reaction: 

In order to test the recyclability of the gold nanocatalysts, the same particles were 

used to catalyze multiple cycles of the electron transfer reactions. The absorption spectra 

were measured to make sure that all of the hexacyanoferrate (III) ions were used up, 

signaling that the first cycle of the reaction was over. After the first cycle of the electron 

transfer reaction was completed, the second cycle of the electron transfer reaction was 

initiated by adding 2.0µL of 1 M potassium hexacyanoferrate (III) and 2.0µL of 1 M 

sodium thiosulfate to the solution. Both the 1.0 M potassium hexacyanoferrate (III) stock 

solution and the 1.0 M sodium thiosulfate stock solution are adjusted to a pH of 7.0 prior 

to their use. Then the stability and catalytic activity of the nanoparticles was compared 

between the first and second cycle. 

 

 

 

4.3 Results and Discussions 

 

Preparation of Gold Nanospheres and Gold Nanocages 

Two gold nanostructures were synthesized and used to investigate their catalytic 

activity on the electron transfer reaction. One is the gold nanosphere which was 

synthesized by Freund’s method.
33

 By fixing the ratio of citrate to HAuCl4 at 0.7 this 

yielded 254 nm gold nanospheres with a surface plasmon resonance (SPR) band at 527 

nm (Figure 4-1A). The other shape is the gold nanocage (AuNC). The synthetic approach 

of AuNCs is based on the galvanic replacement reaction between the silver core and the 

gold ion salt solution. The gold ions are reduced at the expense of silver atoms, which are 

oxidized via the following equation:
 
 

)3(433 )()()()(4)(

  aqaqsaqs ClAgAuAuClAg  
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The SPR band of AuNCs can be tuned by adding various amount of HAuCl4 to generate 

different thickness of the walls at various porosities. The morphology of the AuNCs used 

in this paper is almost hexagonal structures of 75±6 nm sizes and with the SPR band at 

796 nm (Figure 4-1B).  

 

Figure 4-1: Normalized surface plasmon resonance spectra of (A) the gold nanospheres, 

and (B) the gold nanocages; the scale bar of both insets is 75 nm. 

 

  

Electron Transfer Catalytic Reactions on Gold Nanoparticles 

Continuous Wavelength Laser 

The electron transfer reaction between hexacyanoferrate (Ⅲ) ions and thiosulfate 

ions is catalyzed by the gold spheres or the gold nanocages. The reaction was carried out 

at different temperatures and the kinetics of the reaction was monitored by using 

absorption spectroscopy. The disappearance of the hexacyanoferrate (Ⅲ) absorbing at 

420 nm was monitored for every 10 min during the first 50 min of the reaction. Figure 4-

2A-C shows the catalytic reaction that was carried out in the presence of gold spheres. 

The two peaks, one at 420 and the other at 530 nm, are a result of the hexacyanoferrate (

Ⅲ) species and the SPR band of gold spheres, respectively. The electron transfer reaction 
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was compared at two different temperatures. The normalized optical density value (O.D.) 

of hexacyanoferrate (Ⅲ) at the end of the reaction performed at room temperature was 

0.65. (22 ℃, Fig 4-2A) However the final O.D. value was only 0.49 for the reaction 

performed at 40 ℃ (Fig 4-2B), where the temperature was controlled by a water bath. 

This temperature dependent phenomenon also occurs when the reaction is catalyzed by 

the gold nanocages. The O.D. value of hexacyanoferrate (Ⅲ) at the end of the reaction 

was 0.85 at room temperature (22 ℃, Fig 4-2D) and 0.47 at 40 ℃ (Fig 4-2E).  

 

 

Figure 4-2: The electron transfer reactions catalyzed by the gold nanospheres (A-C) and 

by the gold nanocages (D,E). (A and D) The reaction is operated at room temperature (22 

°C). (B and E) The reaction is operated at 40 °C heated by water bath. (C and F) The 

reaction is operated at 40 °C heated by CW laser. 

 

 

The dissimilarity between reactions catalyzed by gold nanospheres and gold 

nanocages is because the extinction value of SPR band of gold nanospheres at 530 nm 
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decreased with the decrease in concentration of hexacyanoferrate (Ⅲ), whereas the SPR 

band value of gold nanocages at 800 nm remained unchanged with time. This 

phenomenon can be explained by the difference in the synthetic method of these two 

catalysts. The gold nanospheres were stabilized by citrate and the gold nanocage was 

capped by ethylene glycol and PVP. Citrate is a small molecule and its ability to stabilize 

gold nanoparticles is not as good as polymers. Moreover, one reactant of this electron 

transfer reaction is thiosulfate. It is known that sodium thiosulfate is able to extract gold 

from minerals and form strong complexes [Au(S2O3)2]
3-

.
35,36

 The gold atoms on the gold 

nanospheres dissolve after mixing with thiosulfate ions because of the poor protection of 

the citrate capping material. The dissolution process of gold and the loss of the weak 

citrate capping agent also caused a serious aggregation of gold nanospheres. The radius 

of diffusion of the gold nanospheres was measured by the Dynamic Light Scattering 

(DLS) technique. The radius of pure gold nanospheres was around 30 nm and the radius 

increased greatly to 700 nm after mixing with thiosulfate solutions (Fig 4-3A). On the 

contrary, the radius of diffusion of the gold nanocages increased slightly from its original 

value of 80 nm to 114 nm after adding the thiosulfate solutions (Fig 4-3B). The 

aggregation of gold nanospheres after mixing with the thiosulfate solutions was also 

observed by the TEM images (Fig 4-3A). The results from DLS and TEM images both 

showed that the gold nanocages are better protected by polymers than the gold 

nanospheres protected by citrate.  

Those stabilizing polymers not only prevent the gold from leaching during the 

reactions but also maintained the catalytic ability of gold nanocages. The reaction rate 

constant of gold nanocages during the first cycle was 0.0076 min
-1

 and 0.0062 min
-1

 

during the second cycle. However, the reaction rate constant of gold nanospheres was 

0.011 min
-1

 for the first cycle and 0.0042 min
-1

 for the second cycle. The recycling 

experiment showed the second cycle activity of gold nanocages was at 85 % compared to 

the first cycle, while it dropped to 32 % for gold nanospheres. The structure of the gold 
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nanospheres was essentially destroyed, leading to aggregation due to the effects of the 

thiosulfate. Thus their catalytic ability was not preserved for the recycling experiment. 

On the other hand, the gold nanocages were stabilized well by the polymer capping 

material during the reactions, and the conservation of structure helped maintain their 

catalytic activity.  

 

 

 

Figure 4-3: The results of hydrodynamic radius of diffusion species as measured by 

dynamic light scattering. (A) The average radius of diffusion of pure gold nanospheres is 

30 nm shown in red lines. After 10 min of mixing with thiosulfate solutions (1.0 M, 20 

μL), the average radius of diffusion of gold nanospheres increases to 700 nm shown in 

blue lines. The inset TEM image is the gold nanospheres after mixing with thiosulfate 

solutions showing aggregated form of the gold nanospheres and the scale bar is 100 nm. 

(B) The average radius of diffusion of pure gold nanocages is 80 nm, shown in red lines. 

After 10 min of mixing with thiosulfate solutions (1.0 M, 20 μL), the average radius of 

diffusion of gold nanocages increases slightly to 114 nm shown in blue lines. The 

changes in the radius of diffusion for gold nanospheres and gold nanocages after mixing 

with hexacyanoferrate (0) were also measured by DLS. No change in the radius of 

diffusion is observed by hexacyanoferrate (III) for both gold nanospheres and gold 

nanocages (data not shown here). 
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Pulsed Laser 

 In addition to the continuous wavelength laser, pulsed lasers were also used as 

irradiation sources. A femtosecond laser (wavelength=800 nm) and nanosecond laser 

(wavelength=532 nm) were used to irradiate gold nanocages and gold nanospheres, 

respectively. The electron transfer reaction under pulsed laser was shown in Figure 4-4 

and 4-5. There were two main drawbacks of using a pulsed laser as the irradiation source. 

First, the temperature of the reaction solution was in flux. The irradiated solution could 

not be stabilized at a specific temperature due to the instantaneous irradiation by the 

pulsed laser. Since the temperature of solution was not stable, the activation energy of 

reaction could not be measured. The other drawback was that the intense irradiation of 

the pulsed laser was shown to damage the structure of gold nanospheres. In the absence 

of reactants, the plasmonic absorption peak of gold nanospheres was decreased under 

nanosecond laser irradiation with intensity above 2W (Figure 4-6). The color of the gold 

nanospheres was changed from the original ruby to orange (Figure 4-7), demonstrating 

that the structure of the gold nanospheres was damaged under nanosecond laser 

irradiation.  

The instantaneous irradiation of a pulsed laser can not be adopted as an 

appropriate irradiation source in this experiment. The aim of this experiment is to use 

gold nanoparticles as catalysts and as a heating source to increase the catalytic efficiency 

of electron transfer reactions. If the structure of the gold nanoparticles is damaged, this 

affects the catalytic ability of the gold nanoparticles, and the generated heat generated 

from the gold nanoparticles will be less due to the decreased plasmonic absorption peak. 

In the next section, the activation energy of plasmonic heating method and thermostatic 

methods will be compared. The activation energy data is all obtained using a continuous 

wavelength laser as an irradiation source.  
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Figure 4-4: (A-C) Absorbance plots of the electron transfer reactions catalyzed by gold 

nanocages femto second laser irradiation (λirradiation=800 nm) with various irradiation 

powers. (D-F) Determination of the catalytic rate constant using gold nanocages under 

femtosecond laser irradiation with 0.085W, 0.2W, and 0.4W laser power, respectively. 
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Figure 4-5: (A-C) Absorbance plots of the electron transfer reactions catalyzed by gold 

nanospheres nano second laser irradiation (λirradiation=532 nm) with various irradiation 

powers. (D-F) Determination of the catalytic rate constant using gold nanospheres under 

nano second laser irradiation with 1W, 2W, and 3W laser power, respectively. 
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Figure 4-6: (A-C) Gold nanospheres irradiated with nanosecond laser (λirradiation=532 

nm) with various irradiation intensity. With the increased laser power, the absorption 

peak of gold nanospheres is decreased over time. 

 

 

 

 

Figure 4-7: The color of gold nanospheres is altered from the original ruby to orange 

when the intensity of nanosecond laser irradiation is above 2W.  
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Activation Energy Determination from Thermostatic Water Bath 

The activation energies for the electron transfer reaction catalyzed by gold 

nanospheres and gold nanocages were measured by thermostatic method. The rate 

constant of the reaction was determined at five different temperatures (22, 30, 35, 40, 50 

℃ for the gold nanospheres; 22, 30, 43, 50, 60 ℃ for the gold nanocages) and the 

temperature was controlled by the thermostat water bath method. The activation energy 

was obtained from the slope of the linear Arrhenius plot of ln k vs 1000/T (slope = -

Ea/R). The activation energy of the gold nanocages was found to be 24±1 kJ/mole and the 

gold nanosphere was 29±2 kJ/mole (Figure 4-8A). The lower activation energy of gold 

nanocages could either be due to differences between the surface gold atomic structure 

and the internal core atoms or to the presence of the remaining Ag atoms on the cage 

internal surface. In addition, the gold nanocage with a strong protective polymer 

surfactant can serve as a more robust and suitable catalyst when a reaction component is 

harmful to gold, like thiosulfate. 

 

 

Activation Energy Determination from Photothermal Heating of the Gold 

Nanoparticles 

We found that exposing the reaction mixture with the gold catalyst to light at a 

frequency resonant with the surface plasmon band raises the solution temperature. In 

order to examine if the change in the reaction rate by exciting the surface plasmon 

excitation is a result of thermal effects, we need to measure the activation energy 

photothermally and compare it with that measured thermally.  

We used a laser to irradiate and heat the solution to the desired temperature by 

adjusting the laser intensity. When gold nanoparticles absorb light, the free electrons in 

the gold nanoparticles are excited. Excitation at the surface plasmon resonance frequency 
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causes a collective oscillation of the free electrons. As the electrons cool and interact with 

the positively charged crystal lattice of the gold nanoparticles, energy is transferred as 

heat. According to calculations and the photothermal application for cancer therapy, the 

gold nanoparticles can be regarded as a thermal agent and rapidly convert the light energy 

into heating the lattice as a result electron-phonon and relaxation process.
37, 38

 

Subsequently the heat from the gold nanoparticles lattice dissipates into the surrounding 

environment by phonon-phonon relaxation and the temperature of the surrounding 

medium is raised. 

 Two CW laser wavelengths were used here, 514 nm and 808 nm, to irradiate gold 

nanospheres solution (SPR band at 527 nm) and gold nanocages solution (SPR band at 

798 nm), respectively. The gold nanosphere and gold nanocage solutions were 

homogeneously heated by absorbing the radiation from the continuous lasers. The 

temperature of the gold nanospheres solution was raised to 40 ℃ and kept constant after 

20 min of argon ion laser (1.9 W/cm
2
, 514 nm) exposure. Hexacyanoferrate (Ⅲ) and 

thiosulfate solutions were then added into this gold nanosphere solution to start the 

catalytic reaction. The solution was under laser irradiation throughout the reaction period 

to maintain constant temperature. The changes in the optical density of the 

hexacyanoferrate (Ⅲ) absorption band and SPR band of gold nanospheres were quite 

similar to the changes occurring at 40 ℃ heated by thermostatic method (Figure 4-2C). 

The same result of gold nanocages was also observed when the diode laser (2.48 W/cm
2
, 

808 nm) was used for the irradiation (Figure 4-2F).  

 The control of temperature in the gold nanocage system was more precise than 

that in the gold nanospheres system. The temperature was maintained during the entire 

reaction time (50 minutes) for the gold nanocages while the temperature was only 

maintained for the first thirty minutes and dropped one to two Celsius degrees in the final 

twenty minutes for the gold nanospheres. The temperature drop is due to large decrease 
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in the gold nanospheres concentration during the reaction, as determined from the 

decrease of the intensity of the SPR band (Figure 4-2C). Although the temperature was 

changing, the drop was small enough (1-2 ℃) to be acceptable for the reaction rate 

constant determination of this reaction. Each rate constant was averaged by repeating the 

experiment five times to diminish the error. The reaction rate constant was obtained for 

both gold nanospheres and gold nanocages at five different temperatures (22, 32, 36, 42, 

50 ℃ for gold nanospheres; 22, 29, 38, 43, 51 ℃ for gold nanocages) by modifying the 

intensity of laser power and the activation energy was also calculated. The activation 

energy of the reaction catalyzed by the gold nanospheres was 29±3 kJ/mole and it of gold 

nanocages was 24±1 kJ/mole (Figure 4-8B). The activation energy observed by using the 

gold plasmonic heating method for both gold nanospheres and gold nanocages was quite 

similar to the activation energy obtained by thermostat method (29±2 kJ/mole for the 

gold nanospheres and 24±1 kJ/mole for the gold nanocages). This demonstrates that the 

mechanism of how gold nanoparticles catalyze the electron transfer reaction by two 

different methods is the same and laser exposure does not change or damage the gold 

nanoparticles. 
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Figure 4-8: The activation energy of the reaction catalyzed by gold nanospheres (9) and 

gold nanocages (2). The activation energy of the reaction was determined from the slope 

of the graph of ln k vs 1000/T. (A) The temperature was controlled by a thermostat water 

bath; (B) the temperature was controlled by a CW laser. 

 

 

 

Photothermal Effect on Catalysis 

The dependence of the temperature change of the solutions of gold nanoparticles 

in the absence of any reactant with the strength of the laser power is shown in Figure 4-5. 

The trend of the temperature change of gold nanospheres resembled that for gold 

nanocages. Also, the temperature increased slowly with weaker intensity of laser power 

and then increased rapidly at stronger power. A control experiment was carried out using 

pure water, instead of gold nanospheres or gold nanocages, under the same light intensity 

and time of laser exposure. There was no temperature change observed without adding 

the gold nanocatalysts. One difference between the gold nanosphere and gold nanocage 

was that the gold nanocage required higher laser intensity compared to gold nanospheres 

for the same degree of temperature change. The maximum of temperature rise was 30 ℃ 
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for both the gold nanospheres and the gold nanocages. However, the laser intensity 

requirement for gold nanospheres was 3.04 W/cm
2
 while the requirement for gold 

nanocages was 4.40 W/cm
2 

with the same optical density of gold nanoparticles (Figure 4-

9). The SPR spectra of the gold nanospheres or gold nanocages were both unchanged 

after laser irradiation (data not shown).  

The difference of the laser power strength used in each case is due to the size 

difference of the gold nanospheres and the gold nanocages. It is known that the SPR 

extinction of the gold nanoparticles varies as a function of size and shape. A combination 

of experimentally measured spectra and computed results using the DDA method both 

show that the light scattering efficiency is strongly dependent on the gold nanostructure 

size.
39,40

 The scattering efficiency is enhanced with increasing size, so the scattering 

efficiency of gold nanocages is higher than gold nanospheres. Due to the sharp corners of 

the cage, the extinction is also expected to be higher. For these two reasons, the amount 

of light absorbed by the spheres is expected to be higher. The rapid conversion of the 

absorbed light into heat leads to the spheres to be more effective heating agents than the 

cages. Furthermore, the gold nanosphere is capped with citrate molecules while the gold 

nanocage is surrounded by the much larger PVP or ethylene glycol polymers. More heat 

is transferred to the solution through small molecules than for the nanoparticle with the 

larger polymers, whose complex vibrations retain a large fraction of the energy and act as 

an efficient sink.  
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Figure 4-9: Measured temperature plotted as a function of intensity of the laser used. (A) 

Gold nanospheres (ODλ=514 nm=3.0, 2.0 mL) illuminated by the Argon laser (514 nm). 

(B) Gold nanocages (ODλ=808 nm)=3.0, 2.0 mL) illuminated by the diode laser (808 

nm). Each measurement of temperature change is taken after 20 min fixed strength of 

laser irradiation. 

 

4.4 Conclusions 

The above observations suggest the potential use of plasmonic nanoparticle as 

photothermal heating elements. Instead of using the cumbersome technique of a 

thermostatic water bath or an oil bath, the reaction temperature can be controlled by a cw 

(continuous wavelength) laser beam or a strong cw Xenon or mercury lamp. The total 

heat mass generation in the thermostatic method is larger than the photothermal one 

because the heat transfer loss from the bulk equipment to catalysts is larger than 

photothermal systems which the plasmonic nanoparticle heats inside the solutions.  

In this system, gold nanoparticles served not only as a catalyst but also as heating source 

to increase the reaction solution temperature. The properties of gold nanospheres or gold 

nanocages remain unchanged with long time exposure to the laser. Other reactions in 
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which gold is not a catalyst can also use gold nanoparticles as photothermal heaters when 

placed in a jacket surrounding the reaction mixtures. This technique can be used for 

accelerating thermal or photochemical reactions. The application of this conclusion in 

industry could be useful in heating and accelerating product formation by using solar 

energy and recyclable gold nanoparticles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 90 

4.5 References 

 

[1] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 

668. 

[2] Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters, Springer, Berlin, 

1995.  

[3] Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331.  

[4] Moores, A.; Goettmann, F. New J. Chem. 2006, 30, 1121. 

[5] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797. 

[6] Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080. 

[7] Krenn, J. R.; Dereux, A.; Weeber, J. C.; Bourillot, E.; Lacoute, Y.; Coudonnet, J. P. 

Phys. Rev. Lett. 1999, 82, 2590. 

[8] Pendry, J. B. Science 1999, 285, 1687. 

[9] Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547.  

[10] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607. 

[11] Lin, S. Y.; Liu, S. W.; Lin, C. M.; Chen, C. H. Anal. Chem. 2002, 74, 330. 

[12] Sun, Y. G.; Xia, Y. N. Anal. Chem. 2002, 74, 5297. 

[13] Gersten, J. I.; Nitzan, A. J. Chem. Phys. 1980, 73, 3023. 

[14] Nie, S.; Emory, S. R. Science 1997, 275, 1102. 

[15] Baker, G. A.; Moore, D. S. Anal. Bioanal. Chem. 2005, 382, 1751. 



 91 

[16] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G.. V.; Li, X.; Marquez, M.; Xia, Y. 

Chem. Soc. Rev. 2006, 35, 1084. 

[17] Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41, 

1578. 

[18] Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; 

Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. 2003, 100, 13549. 

[19] Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, 

S.; McDonald, J. F.; El-Sayed, M. A. Cancer Lett. 2008, 269, 57. 

[20] Liu, H.; Chen, D.; Tang, F.; Du, G.; Li, L.; Meng, X.; Liang, W.; Zhang, Y.; Teng, 

X.; Li, Y. Nanotechnology 2008, 19, 455101. 

[21] Neretina, S.; Qian, W.; Dreaden, E. C.; Hughes, R. A.; Preston, J. S.; Mascher, P.; 

El-Sayed, M. A. Nano Lett. 2008, 8, 2410. 

[22] Biesso, A.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2008, 130, 3258. 

[23] Narayanan, R.; El-Sayed, M. A. J. Phys. Chem. B 2003, 107, 12416. 

[24] Narayanan, R.; El-Sayed, M. A. Nano Lett. 2004, 4, 1343. 

[25] Narayanan, R.; El-Sayed, M. A. J. Phys. Chem. B 2005, 109, 18460. 

[26] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 

668.  

[27] Bauer, C.; Abid, J.-P.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302.  

[28] Novo, C.; Funston, A. M.; Mulvaney, P. Nature Nanotechnology 2008, 3, 598. 

[29] Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. 

Nano Lett. 2007, 7, 1929. 



 92 

[30] Tabor, C.; Qian, W.; El-Sayed, M. A. J. Phys. Chem. 2007, 111, 8934. 

[31] Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 2004, 4, 1733. 

[32] Sun, Y.; Xia, Y. Science 2002, 298, 2176. 

[33] Freund, P. L.; Spiro, M. J. Phys. Chem. 1985, 89, 1074. 

[34] Turkevich, J.; Stevenson, P. C.; Hiller, J. Discuss. Faraday Soc. 1951, 11, 55. 

[35] Aylmore, M. G.; Muir, D. M. Miner. Eng. 2001, 14, 135. 

[36] Arslan, F.; Sayiner, B. Miner.l Process Extr. Metal. Rev. 2008, 39, 68. 

[37] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409. 

[38] Govorov, A. O.; Zhang, W.; Skeini, T.; Richardson, H.; Lee, J.; Kotov, N. A. 

Nanoscale Res. Lett. 2006, 1, 84. 

[39] Lee, K.-S.; El-Sayed, M. A. J. Phys. Chem. B 2005, 109, 20331. 

[40] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 

7238. 

 

 

 

 

 

 

 



 93 

CHAPTER 5 

BACTERIORHODOPSIN-BASED PHOTO-ELECTROCHEMICAL 

CELL 

Abstract 

 A simple solution-based electrochemical cell has been constructed and 

successfully employed in the detection of the photoelectric response upon photoexcitation 

of bacteriorhodopsin (bR) without external bias. Commercially-available indium tin 

oxide (ITO) glasses served as the optical windows and electrodes. Small amounts of bR 

suspensions  were utilized as the photovoltaic medium to generate the proton gradient 

between two half-cells separated by a molecular porous membrane. Continuous 

broadband visible light (λ > 380 nm) and a short-pulse 532-nm laser were employed for 

the photoexcitation of bR. Upon the modulated cw broadband irradiation, an 

instantaneous rise and decay of the current was observed. Our observations of the pH-

dependent photocurrent are consistent with previous reports in a bR thin film 

configuration, which also showed a polarity inversion at pH 5–6. This is due to the 

change of the priority of the proton release and proton uptake in the photocycle of bR. 

Studies on the ionic strength effect were also carried out at different KCl concentrations, 

which resulted in the acceleration of the rise and decay of the photoelectric response. 

This was accompanied by a decrease in the stationary photocurrent at higher KCl 

concentrations in the broadband excitation experiments. The solution-based 

electrochemical cell uses aqueous medium, which is required for the completion of the 

bR proton pumping function. Due to the generation of the stationary current, it is 

advantageous to convert solar energy into electricity without the need of film-based 

photovoltaic devices with external bias. 
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5.1 Introduction 

 

 Recently, the need for alternative and sustainable energy sources has been 

discussed widely. In terms of the natural photosynthesis systems, bacteriorhodopsin (bR) 

has been regarded as a candidate for solar energy conversion due to its proton pumping 

function upon photoexcitation in the visible region. Bacteriorhodopsin, the only protein 

in the purple membrane (PM) of Halobacterium salinarium, is composed of seven helices 

and one interior retinal chromophore in a two-dimensional hexagonal structure.
1-3

 The 

photoexcitation of bR initiates a photocycle, which involves a proton transport process 

and a series of intermediates that can be characterized spectrally.
4,5 

bR−h→K → L → M1 → M2 → N → O → bR                                                        (1) 

 The isomerization of the retinal occurs in the transition of bR→K upon 

photoexcitation. Following isomerization, a series of proton transport through the bR 

protein, involving several amino acid residues and internalH2O, has been reported.
4-6

 The 

proton release complex (PRC) is believed to be composed of Arg82, Glu204, Glu194, 

and internal H2O.
7,8

 The proton migration process has been investigated using a pH-

sensitive dye as an indicator, due to its transient absorption change in different protonated 

conditions 
9-12

 and time-resolved infrared spectroscopic methods.
6,8

 Recent studies 

showed that the PRC deprotonation, corresponding to the proton release from bR, does 

not take place in the L→M transition. The PRC deprotonation is delayed relatively to 

Asp85 protonation and occurred in the M substates also demonstrated that proton release 

occurred in the transition of M substates, followed by the proton reuptake, which 

occurred in the transition of N→O when the environmental pH is larger than the pKa of 

PRC.
6,11

 With an environmental pH smaller than the pKa of PRC, proton uptake occurred 

in the transition of N→O, which is prior to the proton release in the transition of O→bR. 
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 Upon photoexcitation of bR, the proton transport can bring about an electric 

response. In most bR-based photovoltaic devices, the photoelectric response has been 

investigated in a bR thin film configuration.
13

 The notion was to establish the anisotropy 

of bR between the reference and working electrodes, resulting in non-averaged signals. 

Miscellaneous methods, such as Langmuir–Blodgett deposition, electric field 

sedimentation, self-assembled monolayer by chemisorption layer-by-layer assembly, and 

antigen–antibody molecular recognition, have been employed to immobilize and orient 

bR on thin films.
14-17

 Due to the short distance between the bR thin film and electrode, 

the photo-induced electric signal can be recorded as an electromotive force or current. 

Three components make up this photoelectric response.
10,18

 Upon short-pulse irradiation, 

the first fast photoelectric response, B1 (1.7 ps), reflects the isomerization of the 

chromophore in the first event of the photocycle, coupled with Arg82 motion.
19-22

 A 

consequential B2 component is presumably attributed to the transition of L→M.
10

 The 

polarity of B1 and B2 are not affected by pH. Over longer times (milliseconds), the B3 

component has been observed.
23-26

 Upon long-duration modulated broadband irradiation, 

D1 and D2 have been observed when incident light is turned on and off, respectively.
23,24

 

B3 and D1 were believed to occur upon the net proton release and uptake through the 

protein.
27,28

 The polarity and rise of B3 and D1 components can be altered with changing 

the.
10,23,27

 It is well-correlated to the abovementioned mechanism that the proton release 

occurred prior to the proton reuptake at pH> 5.8, whereas the opposite proton transport 

priority at pH< 5.8.
11 

 
In most bR-based thin-film devices, the observed photovoltage values are in the 

range of 0.2–15mV per bR monolayer and stationary photocurrent values are less than 40 

pAcm
−2

 per bR monolayer, in the presence of an external bias.
13,29

 Horn et al developed a 

solid-supported, bR-deposited, black lipid membrane and obtained a relatively large 

stationary photocurrent density of 3 nA cm
−2

 (about 2% in comparison with the peak 

current) without applying an external bias.
30

 The photoexcitation of a polymer-
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immobilized bR film gave rise to an extremely high current density of 120 µAcm
−2

 in the 

presence of a 20V external bias.
31

 However, the dehydrated environment will result in the 

accumulation of M intermediate, which slows down or inhibits the proton pumping 

cycle.
32

 A possible bias-induced electron movement in the circuit can be attributed to the 

highly improved photoelectric response. 

 In this work, studies of the photo-induced electric response of bR have been 

carried out with an easily-constructed electrochemical cell in aqueous solution. The 

working half-cell is composed of PM suspensions, without defining the electrode polarity 

by applying an external bias. The indium tin oxide glasses served both as optical 

windows and electrodes. The pH-dependence and ionic strength effects on the 

photocurrent have been studied and found to be consistent with previous reports.
11,23,27

 

Our method is advantageous in utilizing bR for solar energy conversion due to the 

convenient method used to make the electrochemical cells. In addition, our design offers 

an appropriate tool to study the excitation of other photo-induced ionic pumping system, 

such as the chloride pump of halorhodopsin.
33 

 

5.2 Experimental Section 

Preparation of Bacteriorhodopsin 

A standard method for preparation of native bR in the purple membrane from H. 

salinarium was described by Oesterhelt et al.
34

 Strain S-9, with a higher PM yield and an 

absence of carotenoids, was chosen for these experiments.
35

 The concentrated PM 

suspension was stored at −10 ◦C for further use. Eight buffer solutions were used for 

subsequent mixing with bR: pH 9 (100mM, boric acid, BDH), pH 8 and 7(100mM, 

phosphate, BDH), pH 6 (100mM, citrate, TEKnova), pH 5, 4 and 3 (100mM, phthalate, 

BDH), and pH 2 (100mM, HCl/glycine, VWR). Concentrations were controlled such that 

the buffer solution and the bR suspension remained at 1mM and 26 µM, respectively, in 
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each sample. The mixtures were irradiated with white light to generate light-adapted bR. 

KCl (Fisher Scientific Co., laboratory grade) was used to study the ionic strength effect 

on the photocurrent. 

Design of bR-based Electrochemical Cell 

Modified from the electrochemical cell design by Horn et al
25

 and Robertson et 

al,
27

 a non-bR film configuration was constructed for the electrochemical cell, as shown 

in Fig. 5-1(A). The working electrodes are two pieces of 25mm×50mm×1.1mm soda–

lime glass, coated on one surface with transparent indium tin oxide (ITO) (150 nm 

thickness) exhibiting a surface resistance of 4–8Ω (CG-40IN-1115, Delta Technologies). 

An O-ring (7.6 mm inside diameter, 1.8 mm cross section), placed on the coating-up ITO 

glass (mounted on the bottom), was constructed to serve as the working half-cell, in 

which the mixture of bR and buffer solution was added (∼80 µL). A Teflon spacer (7 mm 

inside diameter, 2 mm thickness), adherent to a molecular porous membrane (MWCO: 

12,000–14,000, Spectrum Medical Industries) on one side, was used to separate the half-

cells and was placed in contact with the working half-cell. The buffer solution of 

equivalent concentration was added into the volume defined by the Teflon spacer (∼80 

µL) to serve as the reference half-cell and placed in contact with the coating-up ITO glass 

(placed on the top). No external bias was applied in any measurements. 
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Figure 5-1: (A) The components used in assembling the electrochemical cell. (B) The 

experimental setup for measuring the photocurrent produced by either modulated 

cw light (Xenon lamp) or 532-nm pulsed nanosecond laser. 

 

 

Photocurrent Measurements 

 The photocurrent measurements were carried out by using a pulsed laser and 

modulated cw broadband light as the excitation sources. The experimental setup is 

schemed in Fig. 5-1(B). Pulsed excitation was carried out using a frequency-doubled 

Nd:YAG laser (GCR-2, Spectral Physics) irradiating at 532 nm with a bandwidth of 

10 ns, a repetition rate of 10 Hz, and a flux of 2.5 mJ cm
−2

 within 5% energy fluctuation. 

The modulated broadband excitation was introduced from a cw xenon lamp (UXL-75X, 
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Ushio), powered externally (LPS-220, PTI), through an optical fiber (long-pass at � > 

380 nm), and modulated with an external shutter (04IES001, Melles Griot), actuated 

electronically at a 0.7 Hz repetition rate, a 2 ms full-slew time and a 0.47 s exposure time. 

The current signal generated by the electrochemical cell was further amplified by an 

external current amplifier (Model-428, Keithley Instruments Inc.). The scattering light 

was collected with a home-made photodiode, used for triggering the record and storage of 

the waveform by a 500-MHz transient digitizer (9350A, LeCroy). Generally, 300 rounds 

and 1500 shots were averaged in broadband and pulsed excitation, respectively. A power-

meter (30A, Ophir) was also equipped to monitor the instantaneous incident excitation 

energy. 

 

 

5.3 Results and Discussions 

 

Excitation with Different Light Sources 

 Upon pulsed 532-nm laser excitation of bR at pH 7, a transient photoelectric 

response is observed (Fig. 5-2A). An immediate photocurrent reaches a maximum in 

about 2ms decaying to the opposite polarity, followed by a slow recovery to zero. Upon 

irradiation of bR with a modulated cw broadband source, the photocurrent waveforms are 

recorded (Fig. 5-2B). The black and red traces represent the current upon irradiation with 

incident wavelengths 410–900 nm and 530–900 nm, respectively. When the light is 

switched on, an instantaneous electric response was observed, which reaches a maximum 

in about 7ms, followed by a stationary offset which retains ∼6% intensity. When the light 

is switched off, an opposite current polarity is observed, followed by a slow recovery 

back to zero. It should be noted that the transient maximum current is larger when 

exciting bR with incident wavelengths including the blue region. Inset (i) of Fig. 5-2B 
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shows the normalized current temporal profiles and no significant difference was 

observed. 

 

Figure 5-2: Photocurrent upon excitation of bR either with 532-nm ns-laser irradiation 

(A) and modulated cw broadband light (B). Inset (i) represents the normalized current 

signal in (B). Inset (ii) is a re-plot of the absorption spectra of bR and the M intermediate. 

The color blocks indicate the different incident broadband excitations. 
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 Upon excitation of bR, the proton release and reuptake of the PRC occurring in 

the working half-cell results in the proton gradient difference between the two half-cells. 

Non-P-V work (W) is assumed to pour into the system and can be expressed as: 

)2(
][

.][
ln

.cellrefH

cellbrH
RTnFGW





   

where F, E, R, and T represent Faraday constant, electric potential, Avogadro constant, 

and ambient temperature, respectively. Protons serve as the carrier to generate the current 

signals. The bR electrochemical cell is regarded as the parallel connection of a transient 

battery and a resistance. In most conventional mechanism of the bR photocycle, the 

proton release occurs in the transition of M substates and the uptake from bR occurs in 

the transition of N→O at pH 7, respectively.
11

 In comparison with our observed 

photoelectric response, the pulsed irradiation initiated proton generation, corresponding 

to the positive polarity. Afterward, the proton reuptake by bR occurred and resulted in the 

reduction of the transient proton concentration, which corresponds to the observed 

current amplitude decrease. During the proton release and uptake, some ionic species also 

moved through the molecular porous membrane between the two half-cells in order to 

neutralize the local positive charge accumulation. A slight recovery current in opposite 

polarity was observed when the proton migration process finished. 

 A similar phenomenon was observed by exposing bR to long duration irradiation. 

An instantaneous rise and decay correlates to the proton release and uptake through the 

protein. A stationary current during broadband exposure was observed. The current 

amplitude is related to the transient proton concentration, which can be described as: 

)3(
,, 11 bRHhbR

uptakeprotonkreleaseprotonk
     

k1 and k−1 can be regarded as the simplified rate coefficients for proton release and 

uptake, respectively. The differential equation for proton concentration can be expressed 

as: 
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 Upon long duration exposure, the proton concentration can reach a steady-state. 

Applying the steady-state approximation, d[H
+
]/dt = 0, the steady-state proton 

concentration, [H
+
]ss, can be expressed as: 
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1

1 bR
k

k
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

   

 The steady-state proton concentration gives rise to the stationary photocurrent. 

This concept can be applied to long-term solar energy transfer materials. When the light 

is switched off, the oppositely-polar recovery current was observed afterward. This 

mechanism is discussed in next section. 

 Inset (ii) of Fig. 5-2B shows the spectra of the M state and bR, as well as the 

different incident broadband excitations used. Upon excitation with different broadband 

wavelengths, the current amplitudes are different, but the waveforms of the temporal 

profiles (inset i) did not show significant differences. The excitation wavelengths of 410–

900nm include photons that excite both bR (570 nm) and the M state (412 nm). It is 

known that strong absorption of M412 species can short-cut the photocycle by introducing 

the transition of the M intermediate back into bR, through a 13-cis to all-trans retinal 

isomerization, followed by reprotonation of the Schiff base from Asp85.
36

 The bypass 

will not change the net proton release and uptake profiles, but will increase the current 

amplitude. This short-cut of the photocycle makes the transition of bR→M412→bR more 

frequent and results in the increase of the rate constant k1, as well as the current 

amplitude. 
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Photocurrent upon excitation of bR with nanosecond pulse and modulated 

broadband light at different pHs 

 The photocurrent temporal profiles were recorded upon excitation of bR with a 

532-nm pulse laser (Fig. 5-3A) and modulated broadband light (λ > 380 nm, Fig. 5-3B) at 

different pHs, as plotted in three-dimension and contour. The peak current (Imax) versus 

pH is summarized in Fig. 5-3C. The corresponding rise time of the current to reach its 

maximum (τmax) is also summarized in Fig. 5-3D. The solid and open circles indicate the 

photoelectric signal generated upon excitation of bR with a 532-nm pulse and modulated 

broadband light, respectively. Upon both excitations, a significant current polarity 

inversion was observed at pH 5–6. This is consistent with previous reports.
24,27,37

 The 

polarity inversion is due to the protonated state of the proton release complex in the M 

intermediate.
11

 The priority of the proton release and uptake was altered at a medium pH 

of 5.8. This is the pKa of the proton release group complex involved in the proton 

pumping cycle. In addition, a significant difference of τmax is observed at high and low 

pH regions. Previous reports focused on the relationship of peak current and the 

surrounding pH; addressing the kinetics of the intermediate transition, τmax has rarely 

been discussed. As a result, the peak current and the corresponding duration will be 

discussed for different pH ranges. 
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Figure 5-3: pH-dependent photocurrent polarity inversion results: the photo-induced 

current upon pulsed laser excitation at 532nm (A) and modulated cw excitation (B) in the 

pH range 2–9. Left and right figures represent the 3-D plot and contour plot. The current 

maximum (Imax) in (C) and the time needed to reach the maximal current (τmax) in (D) 

show that the current polarity is inverted in the pH range between 5 and 6, which 

corresponds to the pKa value of the proton release complex. The solid and open circles 

indicate the photoelectric signal generated upon excitation of bR with a 532-nm pulse and 

modulated broadband light, respectively. The concentrations of buffer solutions of 

different pHs were kept at 1mM while the concentration of bR was kept at 26 µM. 

 



 105 

Environmental pH < 5.8 

 Zimányi et al. have demonstrated that the proton uptake occurred in the transition 

of N→O, which is prior to the proton release in the transition O→bR, at pH< 5.8.
11

 Upon 

long-duration irradiation, the analysis of the current transport is schemed in Fig. 5-4. 

The overall electric response is due to the proton chemical potential difference between 

the bR and the reference half-cells, as shown in purple line in the right half of Fig. 5-4A. 

In the half-cell containing bR at pH< 5.8 (right half of Fig. 5-4B), the proton uptake gave 

rise to the relatively negative polarity of the photoelectric response (dotted green line) 

when the cw light is switched on. Concurrent proton release occurred thereafter, 

contributing to the relatively positive polarity (dashed green line) and a resultant decrease 

of the transient proton concentration difference (red line). The slightly induced ion 

movement should be taken into consideration during the proton concentration modulation 

in the reference half-cell (right half of Fig. 5-4C).When the cw light is switched off, the 

proton uptake stopped, followed by a delayed proton release. The electric response show 

an opposite polarity, compared to the light-on event. The rise time and amplitude of the 

photoelectric response are dominated by environmental pH. Balashov et al. and Lu 

et al. have demonstrated that the rate of the N→O transition at pH< 6 is not dependent on 

the pH, whereas the rate of the O→bR transition decreased at low pH, leading to a 

transient accumulated population of the O intermediate.
37,38

 Upon the excitation of bR 

with modulated broadband light at pH< 6, the Imax increased when pH decreased (Fig. 5-

3C, open circles). In addition, the slow decay of O at low pH, corresponding to the slow 

proton release, also prolonged the �max (Fig. 5-3D). Our observation is consistent with 

the demonstrations from the kinetics viewpoint.
37,38

 As for the pulse excitation, similar 

results of Imax are observed, but the �max did not show significant difference at pH< 6, 

as shown in Fig. 5-3C and D, respectively. A possible explanation would be that small 

amounts of ions move between the two half-cells during the proton release to compensate 
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for the proton deficiency in the proton uptake event in the bR half-cell. The neutralization 

hampered information regarding τmax. 

 

Environmental pH > 5.8 

 When the environmental pH is higher than 5.8, the proton release to the 

extracellular side occurred in the interconversion of M substates, whereas the proton 

uptake in the transition of N→O.
11

 The overall electric response is opposite to that 

observed at pH< 5.8. The analysis of the photoelectric response of the bR upon long-

duration irradiation is shown in left half of Fig. 5-4A. In the half-cell containing bR, the 

proton release gave rise to a relatively positive polarity of the photoelectric response 

(dashed green line in the left half of Fig. 5-4B). After proton release, concurrent proton 

uptake occurred, contributing to the relatively negative polarity (dotted green line) and 

the net transient proton concentration (red line) decreases. The induced ion movement 

occurred simultaneously during the proton concentration modulation, as shown in the left 

half of Fig. 5-4C. When the cw light is switched off, proton release stops. A delayed 

proton uptake results in an electric response with opposite polarity, compared to the light-

on event. Balashov et al. have demonstrated that the transitions of M1→M2 and N→O 

are decelerated when the pH is higher than 8.
38

 Upon excitation of bR with modulated 

broadband light at pH> 5.8, the Imax increased with increasing pH, as shown in Fig. 5-

3C (open circles). In addition, the slower rise (M1→M2) and the decay (N→O), at higher 

pH, result in the increase of �max, as shown in Fig. 5-3D. As for pulse excitation, similar 

results for Imax (Fig. 5-3C, solid circles) and τmax (Fig. 5-3D, solid circles) were observed. 
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Figure 5-4: The decomposition of the observed photocurrent (A) into process occurring 

in the bR half-cell (B) and the reference half-cell (C) upon excitation of bR with 

modulated cw xenon lamp. Dashed and dotted lines represent the proton release and 

uptake in the proton pumping process upon photoexcitation of bR. The solid lines 

represent the net chemical potentials in two half-cells. The observed photocurrent results 

from the dynamic chemical potential difference between the bR and reference half-cells. 
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Ionic strength effects on photocurrent upon excitation of bR 

 Ionic strength studies have been carried out, using KCl as an electrolyte, in pulsed 

and modulated broadband excitation, as shown in Fig. 5-5A and B, respectively. Upon 

532 nm pulsed excitation, the amplitude of the instantaneous electric response increased 

with increasing KCl concentration. The inset represents the zoom-in plot, showing that an 

oscillation is observed at higher KCl concentrations for a prolonged period. Upon 

modulated broadband light irradiation, Imax increased by adding more KCl, as shown in 

Fig. 5-5B. At higher KCl concentrations, an oscillation in the recovery temporal duration 

was observed. The inset in Fig. 5-5B represents the normalized current, showing that the 

rise and decay of the instantaneous response were accelerated, while the offset was 

diminished at higher KCl concentration. The apparent rise time constants (reciprocal of) 

and Imax, in different KCl concentration, τmax are summarized in Fig. 5-5C and D, 

respectively. The solid and open circles represent results upon 532-nm pulsed and 

modulated broadband excitations, respectively. The apparent rate of the current rise is 

accelerated at higher KCl concentrations with both excitation methods. For a 

concentration of KCl > 100 mM, an asymptotic τmax
-1

 value is observed upon modulated 

broadband excitation. This might be due to the shutter response time, which is estimated 

to be about 2 ms (approximately 500 s
−1

). The effect of ionic strength has been previously 

considered in photocurrent experiments.
10,24

 According to the explanation by Wang et al. 

proton release from the membrane surface to the bulk is delayed in the bound water layer 

near the membrane under low ionic strength.
24

 By increasing the ionic strength, 

acceleration in the photoelectric response takes place. This explanation supported our 

observed enhancement of the rate of current generation. 

  Imax is also positively dependent on the KCl concentration, as shown in Fig. 5-

5D. The electromotive force has been determined by the proton chemical potential 

difference in Eq. (2). By increasing the KCl concentration, the resistance of the bulk 

solution can be reduced, thus enhancing the current amplitude. However, the current 
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enhancement vanishes and an oscillation is observed at very high KCl concentrations. A 

possible explanation of this observation might be due to the bilayer (or multilayer) of the 

ionic species that exists around the purple membrane, which neutralizes the proton 

gradient in the vicinity of bR. The current oscillation could also be induced between 

different ionic layers. Moreover, the offset current is neutralized by abundant KCl around 

the purple membrane such that the net proton concentration difference will not be 

retained in long-duration exposure. 
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Figure 5-5: Effects of ionic strength (KCl concentration) on the observed photocurrent 

signals of bR upon 532-nm nanosecond laser irradiation (A) and modulated broadband 

cw excitation (B). The effects of ionic strength on the apparent time constant (defined as 

the reciprocal of τmax) (C) and the photocurrent maximum (Imax) (D) for two types of 

excitation. Open circles and solid circles represent the excitation sources by modulated 

cw xenon lamp and 532-nm pulse laser, respectively. The concentrations of buffer 

solution (pH 7) and bR were kept at 1mM and 26 µM, respectively. 
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5.4 Conclusions 

 

 An electrochemical cell, constructed by two indium tin oxide (ITO) glasses 

(optical windows and electrodes) and bR suspensions (photovoltaic media), has been 

utilized in the detection of the photoelectric response upon photoexcitation of bR. The 

photo-induced proton gradient difference between the two half-cells results in an 

electromotive force, which drives the proton transport to serve as the carrier. 

 Excitation of bR at different pHs with broadband visible light (λ > 380 nm) and a 

short-pulse 532-nm laser brought about similar results that are consistent with previous 

reports. The priority of the proton release and uptake from bR was altered at pH 5–6, 

resulting in the corresponding current polarity change. Combining previous investigations 

of rate coefficients for the conversions of the intermediates in the photocycle, we 

successfully explained our observed pH-dependent τmax and Imax in terms of kinetics 

models. Ionic strength effects were also investigated in the presence of different KCl 

concentrations. The rise and decay rates of the instantaneous photoelectric response are 

accelerated along with a current oscillation that is observed with higher KCl 

concentrations. The concept of the ionic bilayer supported this observation. In addition, 

the low ionic-strength environment is demonstrated to be beneficial to retaining 

stationary photocurrent upon long-duration broadband irradiation. Our easily-processed 

electrochemical cell offers an appropriate tool for biomolecule-based photovoltaic 

devices and is proposed as a candidate for the conversion of solar to electrical energy, 

without the need for manufacturing of film-based photovoltaic devices and external bias. 

Studies aimed at increasing the proton current efficiency are now in progress. 
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CHAPTER 6 

PLASMONIC FIELD ENHANCEMENT OF THE 

BACTERIORHODOPSIN PHOTOCURRENT DURING ITS 

PROTON PUMP PHOTOCYCLE 

Abstract 

 The proton pump photocycle of bacteriorhodopsin (bR) produces photocurrent on 

a micro-second time scale which is assigned to the deprotonation step forming the M412 

intermediate. The return of the M412 intermediate to the bR ground state (bR570) has two 

pathways: 1) thermally via multiple intermediates (which takes 15 ms) or 2) by a more 

rapid and direct process by absorbing blue light (which takes hundreds of ns). By using 

nanoparticles (Ag, Ag-Au, and Au NPs) having different surface plasmon resonance 

extinction spectra, it is found that Ag NPs whose spectrum overlaps best with the M412 

absorption regions enhance the stationary photocurrent 15 times. This large enhancement 

is proposed to be due to the accelerated photoexcitation rate of the M412 (in the presence 

of plasmon field of the light in this region) as well as short-circuiting of the photocycle, 

increasing its duty cycles. We proposed a mechanism based on the plasmonic field 

enhancement of the blue light effect which bypasses the slow part of the photocycle and 

increases the rate of proton production and thus the observed photocurrent. We studied 

the AgNPs plasmonic field effect on the spectroscopy and kinetics of the bR proton 

pumping photocycle. We examined the blue light effect on both the recovery rate of bR 

and the decay rate of the M intermediate by using 532-nm short-pulsed laser excitation of 

bR in the presence of AgNPs and continuous-wave blue light exposure. Our observation 

showed that the recovery of bR and the decay of the M intermediate are both greatly 

accelerated in the presence of both AgNPs and blue light simultaneously. This gives 

support of the proposed mechanism of the enhanced proton current in the presence of 
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AgNPs with a plasmon band in the blue region. It was found experimentally that the 40 

nm-AgNPs enhancement of the blue light effect on the decay rate is around 400 times 

larger than that of 8 nm-AgNPs. This is found to be in agreement with the known 

dependence of the plasmonic field on size and the overlap of the plasmonic extinction 

band with the absorption band of the M intermediates. 

 

6.1 Introduction 

 Bacteriorhodopsin (bR) is the other photosynthetic system in nature and is the 

transmembrane protein found in Halobacterium Salinarium. It has been widely 

investigated due to its unique structural, optical, biochemical and biophysical properties 

and is the best studied proton pump system in biology.
1-17

 The purple membrane (PM) is 

composed mainly of protein (75% by wt.), with the remaining 25% being composed of 

lipids.
1
 The lattice parameters of crystallized PM have been investigated extensively and 

is found to be composed of seven helices and one interior retinal chromophore per bR in 

the two-dimensional hexagonal structure.
2-6

  

 The light-adapted bR exhibits an intense characteristic retinal absorption band 

centered at 568 nm with a corresponding extinction constant  568=62,700 M
–1

 cm
1

.
7
 

Upon photoexcitation of bR, the corresponding transition from a 
1
Bu-like  S0 state of 

the retinal chromophore gives rise to the isomerization from its all-trans conformation to 

the 13-cis conformation.
8
 This is followed by the thermal formation of a series of 

spectrally distinguishable intermediates given by (Equation 1).
9
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Following retinal isomerization, the proton translocation from the protonated 

Schiff base to Asp85 gives rise to the generation of the early M state (labeled M1). 
10-12

 

The structures of the initial state and the early intermediates (K, L and M1) are proposed 

to have one protein conformation in which the Schiff base has extracellular 
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accessibility.
13

 A consequential proton release to the extracellular side of the protein, via 

Glu194, Glu204 and structure chain of water molecules, occurs during the conversion of 

M1 to M2 (labeled late M).
14,15

 M1 and M2 are spectrally characterized by absorption at 

410 nm with a corresponding extinction constant of 48,800 M
–1

 cm
1

.
16

  

A sequential reprotonation of the Schiff base from Asp96 results in the generation 

of the N intermediate followed by the generation of the O intermediate involving the 13-

cis to all-trans isomerization of the retinal.
17

 The transition of O  bR occurs via the 

geometry of the protein structure to give bR568 and completes the photocycle (Equation 1).  
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When the photocycle is exposed to blue light, the long-lived blue light absorbing 

M412 intermediate is converted to bR568 in hundreds of nanoseconds (Equation 2). This 

shortcut greatly reduces the conventional photocycle period which takes 15 ms.
18

  

bRMorMLKbR nshvhv
 

200,

21                  (2) 

Hessling et al. have demonstrated that the depletion of the M intermediate occurs 

upon exposure of the photocycle to an additional blue-flash light resulting in the retinal 

isomerization from 13-cis to all-trans in picoseconds followed by the reprotonation of the 

Schiff base returning to its bR state by FT-IR study.
18

 Our recent study on the 

photocurrent from bR has indicated that the photocurrent density is greatly enhanced 

when the electrochemical cell is exposed to blue light in the presence of the plasmonic 

AgNPs in the bR solutions. The photovoltaic response is due to the change in the proton 

gradient. We have proposed that the plasmonic field of AgNPs greatly enhances the flux 

of blue photons which shortcut the photocycle by bypassing the slow paths of the 

conventional photocycle. This leads to a decrease in the photocycle period and increase in 

the rate of the proton release, resulting in the enhanced steady-state proton concentration 

and photocurrent.
19 

 

The proposed mechanism for the photocurrent enhancement suggest that the blue 
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light effect generated by the plasmonic field of AgNPs greatly perturbs the kinetics of the 

photocycle.
19

 If this is indeed correct, the rates of the bR ground state recovery and that 

of the M intermediate decay should both be greatly accelerated by enhancing the blue 

light absorption rate by the plasmonic field of AgNPs. The kinetics can be studied by 

using time-resolved spectroscopic technique and these results can help to quantify the 

degree of enhanced blue light effect of the acceleration of bR photocurrent by the 

plasmonic field of AgNPs. 

Upon the resonant excitation of the metallic nanoparticles, an intense plasmonic 

field is generated. The plasmonic field effect on radiative properties have been observed 

in many systems.
20-22

 Previous publications on the plasmonic field effects on bR 

processes has also been investigated.
 23,24

 The previous reports showed that the retinal 

isomerization of bR in the IJ transition can be decelerated and the reprotonation of the 

Schiff base in the MN transition can be accelerated in the presence of a plasmonic field 

upon excitation of gold nanoparticles and gold nanorods, respectively.
23,24

 

In the present work, a time-resolved transient absorption technique was employed 

to study the plasmonic field of AgNPs with different sizes on the kinetics of bR 

photocycle. Due to the difference of the spectral overlap of their plasmonic resonance 

extinction and the M intermediate absorption, the plasmonic field enhancement of the 

blue photon effect will be different. These experiments can be carried out with 

continuous blue light exposure upon the photo-initiated bR photocycle with short-pulsed 

532-nm laser. Consistent with our proposed mechanism for the photocurrent 

enhancement, the acceleration of the rate of the bR recovery and the M decay can be a 

result of bypassing the slow part of the photocycle in the presence of AgNPs and external 

blue photon exposure simultaneously. The dependence of the observed change in rate on 

the size of AgNPs is found to be consistent with the dependence of the plasmonic field on 

size and the degree of overlap of the plasmonic extinction spectrum of each nanoparticle 

with the absorption spectrum of the M intermediate.  
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6.2 Experimental Section 

 

Preparation of Bacteriorhodopsin 

Native bR in the PM from Halobacterium salinarium was prepared by a standard 

method described by Oesterhelt and Stoeckenius in 1974.
25

 Strain S-9, with a higher PM 

yield and an absence of carotenoids, was chosen for these experiments. The PM 

suspension was stored at -10 ºC for further use. The bR solutions were light adapted 

before the measurements. 

 

Synthesis and Characterization of Silver Nanoparticles  

The synthesis of silver nanoparticles is carried out by the reduction of silver ions 

(from AgNO3) with sodium citrate or sodium borohydride to synthesize nanoparticles 

with sizes of 40 and 8 nm, respectively. Samples were freshly prepared by mixing fixed 

amounts of bR with different amounts of silver nanoparticle suspensions in pH=7 buffer 

solution (citrate, 10mM). Concentrations were controlled such that the buffer solution 

and bR suspension are 1.1 mM and 8.8 M, respectively, in each sample. The 

concentrations of 8-nm and 40-nm AgNPs were adjusted to 75-300 nM and 0.5-2.0 nM, 

respectively. UV-vis spectra for all samples were acquired using a steady-state 

spectrometer (HR4000VG-UV-NIR, Ocean Optics) before and after the time-resolved 

experiments.  

 

Photocurrent Measurement Setup 

The photocurrent measurement was carried out by using a modulated cw 

broadband light as the excitation source (140 mW / cm
2
, 10 mm). The modulated 

broadband excitation was introduced from a cw xenon lamp (UXL-75X, Ushio), powered 

externally (LPS-220, PTI), through an optical fiber (long-pass at λ>380nm), and 

modulated with an external shutter (04IES001, Melles Griot), actuated electronically 
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(04ISC001, Melles Griot), at 0.7 Hz repetition rate. Yellow long-pass optical filter 

(λ>500nm) is employed for excitation of bR. The current signal generated by the 

electrochemical cell is further amplified by an external current amplifier (Model-428, 

Keithley Instruments Inc.). The scattered light was collected by a home-made photodiode 

for triggering the record and storage by a 500-MHz transient digitizer (9350A, LeCroy). 

A powermeter (30A, Ophir) is also equipped to monitor the instantaneous incident 

excitation energy.   

 

Kinetic and Spectroscopic Experimental Setup 

The experimental setup of the short-pulsed laser excitation is drawn in Scheme 1. 

A frequency-doubled Nd:YAG laser (GCR-2, Spectral Physics) was employed for 

excitation at 532 nm with a bandwidth of 10 ns, repetition rate of 10 Hz, and a fluence of 

5.5 mJ cm
2

 within 5 % energy fluctuation. An optical fiber was employed to introduce 

the broadband light from a xenon lamp filtered in 350-500 nm for the excitation of silver 

nanoparticles, with corresponding power 0.12 W cm
-2

. The excitation laser beam and the 

continuous wavelength (cw) blue light passed through the sample cell in opposite 

directions and overlapped in the center of the sample cell. Partial xenon lamp luminosity 

was employed for continuous probing combined with optical filters and a monochrometer 

(SpectraPro-300i, Acton Research Corporation) to define the detection wavelength at 600 

or 450 nm for monitoring the bR and M intermediate, respectively. A photomultiplier 

tube (R1527, Hamamatsu) was utilized for collecting a photon signal and a 500-MHz 

transient digitizer (9350A, LeCroy) was used for data acquisition and storage. The 

temporal profiles of the bR recovery were recorded by probing the photon intensity 

modulation at 600 nm, and 3000 or 8000 laser shots were averaged depending on the 

signal-to-noise ratios. The intensity of the M intermediate at 450 nm is relatively weaker 

than that of bR state, thus the temporal profiles of the M intermediate were averaged in 

10,000 laser shot. The temporally-resolved absorbance change can be derived by the 
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equation, A=log(St/So), where St and So represent the dc-coupled voltage in the presence 

and absence of the excitation laser, respectively. 

 

Scheme 6-1: The experimental setup of the pulsed laser (532 nm) and cw blue light (350-

500 nm) photoexcitation of bR. 

 

 

6.3 Results and Discussions 

 

Plasmonic Field Enhancement of the Bacteriorhodopsin Photocurrent 

 The absorption of light by retinal of bR in the ground state (bR570) initiates a 

photocycle involving a number of intermediates and drives protons across the membrane 

from the internal cytoplasm to the external medium, resulting in proton gradients that are 

used for ATP synthesis in the cell.
26,27

 The protons are ejected from the cell at a rate 

comparable to that of the M412 intermediate formation.
28

 By CW illumination, bR can 

transform light energy into electrochemical energy stored in a proton gradient across the 

membrane and exhibit a stationary photocurrent amplitude. This unique characteristic of 

bR could make it promising for applications in alternative energy. However, the 

photocurrent density values reported so far are around 0.2-40 pA cm
-2

 monolayer
-1

 in thin 

film systems (Table 6-1).
29

 Recently, our group was able to build a solution-based 
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electrochemical cell that did not require bR film preparation and external bias (details can 

be found in chapter 5). In this section, plasmonic field enhancement of the stationary 

photocurrent, orders of magnitude higher than previous reports, was observed and the 

mechanism involved was revealed.   

 Surface plasmon resonance (SPR) is an interesting optical phenomenon induced 

by the coupling of the incident electromagnetic wave of light with the conduction band 

electrons in the metal. This induces a coherent electronic oscillation of the free electrons 

of the metal.
30

 There is a rich variety of applications utilizing the SPR property of 

metallic nanoparticles (NPs)
31

 and our group has previously reported that retinal 

photoisomerization in the primary step and proton pump process of the bacteriorhodopsin 

were both perturbed by plasmonic fields of gold nanoparticles.
23,24

 During the photocycle 

of bR, there are two important forms: the ground state of bacteriorhodopsin, bR570, with 

protonated Schiff base (λmax= 570 nm) and the long lived intermediate, M412, with 

deprotonated Schiff base (λmax= 412 nm).
32

 The M412 can be generated following the 

retinal isomerization (in 70 μs) and revert to the ground bR570 either thermally through a 

number of other intermediates (M412NObR570) in 15 ms or rapidly through 

photochemical process upon excitation with blue light in hundreds of nano-seconds (the 

known blue light effect).
33-34

 The results of our experiments suggest that the surface 

plasmon enhancement of the M412 absorption (i.e. of the blue light effect) results in 

increasing the rate of proton release and forcing the photocycle to follow the short time 

bypassed path rather than the conventional thermal photocycle path of bR. The stationary 

photocurrent upon cw excitation of bR could be associated with the steady-state 

concentration of M412 in the bR570M412bR570 photocycle.
35,36

 

 We synthesized Ag, Ag-Au alloy (Ag/Au=1/1), and Au NPs with similar sizes 

(around 30 nm) whose SPR absorption have maxima located at 425, 465, and 530 nm, 

respectively (Fig 6-1A). The spectral overlap between SPR band of NPs and that of M412 
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absorption band decreased as the gold amounts added to the NPs was increased. The 

photocurrent measurements were carried out by our recently developed techniques. 

 Figure 6-1 shows the photocurrent generation from solution of bR and of bR/NPs 

mixtures. CW broad band irradiation (incident> 380 nm) was used to ensure that we can 

excite bR at 570 nm to produce M412 and simultaneously excite Ag NPs at 420 nm to 

enhance the blue light intensity. During the light-on period, the photocurrent initially 

showed a sharp rise followed by decay to a near stationary photocurrent. During the light-

off period, the observed inverted photocurrent was attributed to the net proton uptake of 

bR photocycle.  

 Upon excitation of pure bR, the maximum of the instantaneous rise of 

photocurrent density was 19.8 nA/cm
3
 followed by a stationary offset of 1.6 nA /cm

3 
(Fig 

6-1B). When the bR solution was mixed with Ag NPs whose SPR band overlapped 

strongly with the M412 absorption band, the initial photocurrent density was increased to 

45 nA/cm
3 

(Fig 6-1B). The value of the stationary photocurrent density was 25 nA/cm
3
 

when bR was mixed with 1.2 nM of Ag NPs and it was 15 times higher than pure bR. 

The notable increase of photocurrent is due to the enhanced flux of blue photons by 

plasmonic field of Ag NPs. 

When Ag-Au alloy NPs with the similar sizes and concentrations as the Ag NPs 

were used (Fig 6-1C), the stationary photocurrents was 11.3 nA/ cm
3
 and increased by 6 

times compared with the value of pure bR. This smaller enhancement was probably due 

to the smaller spectral overlap between the plasmonic absorption of Ag-Au NPs and the 

M412 intermediates compared that of Ag NPs. By shifting the plasmon band more towards 

to bR570 absorption by using Au NPs, a negative plasmonic field effect was observed (Fig 

6-1D). There were two strong bands of Au NPs, the SPR band at long wavelength that 

overlapped with the bR570 absorption and another d-d nonplasmonic band in the blue 

region of the spectrum (Fig 6-1A). The bR570 absorption of the white light should 

increase as a result of its overlap with the SPR band from the Au NPs in this region; 
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however the blue light intensity was absorbed by the strong non plasmonic d-d absorption 

of the Au NPs, thus decreasing the blue light effect and the photocurrent. 

 

Figure 6-1: (A) Normalized SPR spectra of Ag NPs, Ag-Au alloy NPs (Ag/Au=1/1), and 

Au NPs was at 425 nm (green), 465 nm (orange), and 530 nm (red), respectively. The 

absorption contours of M state and bR state were represented by gray and violet shadows 

with corresponding maxima at 412 nm and 570 nm, respectively. The photocurrent 

density of bR observed by mixing different nanoparticles (B) Ag NPs, (C) Ag-Au alloy 

NPs (Ag/Au=1/1), and (D) Au NPs upon cw white light irradiation. 
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Figure 6-1: (E) The comparison of the 1.2 nM addition of Ag, Ag-Au alloy, and Au NPs. 

The Ag NP shows the greatest enhancement effect of photocurrent generation and the 

Au-Ag NP shows a mediocre effect of photocurrent enhancement. The negative effect 

was observed with Au NPs addition.  
 

 

It is found that the plasmonic enhancement effect of Ag NPs on the absorption of 

the intermediate (M412) is much more pronounced than that of the Au NPs on the ground 

state (bR570). This might be due to two reasons. One is the filter effect of the blue light by 

the d-d absorption of Au NPs which eliminates the enhancement of the bR570 absorption. 

The second reason may be the different time scale of photocycle path; bR follows the full 

conventional photocycle when exciting the bR570, but the blue light effect causes the bR 

to follow the much shorter bypass photocycle.
35,36

 Both factors might explain the 

importance of the plasmonic field enhancement of the blue light effect to the bR 

photocurrent. The comparison of three nanoparticles with same concentration (1.2 nM) 

was shown in Figure 6-1E. 

 The above conclusion can be supported by the results of the following two 

experiments. The first experiment showed that there was no observed photocurrent 

enhancement of bR when 30 nm Ag NPs were used under the same intensity of cw 
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illumination but the blue light was filtered out (λincident> 500 nm), resulting in the absence 

of plasmonic field (Fig 6-2A). This suggest that the enhancement of photocurrent density 

was due to the exciting plasmonic effect of NPs in the blue light region, and not due to 

the chemical environment or the ionic concentration change by the addition of NPs. The 

other experiment showed that the larger the overlap between the SPR band of Ag NPs 

and M412 absorption band, the greater the photocurrent enhancement (Fig 6-2B). Ag NPs 

of smaller particle sizes (8 nm) were prepared whose SPR band was much narrower than 

the SPR band of the larger Ag NPs (30 nm) (Fig 6-3). The difference in photocurrent 

amplitude and photoelectric profile between the two different sizes of Ag NPs can be 

explained by the difference in the width of the absorption band of the Ag NPs. The 

absorption band of 30 nm Ag NPs overlapped better with the absorption contour of M412 

than 8 nm Ag NPs (Fig 6-3) and the plasmonic-energy transfer was more efficient to the 

M412 under the same amount of light flux. The results of these above experiments 

strongly support the conclusion that the plasmonic effect of nanoparticles with extinction 

spectrum that overlap with the M412 absorption can excite M412 to rapidly form bR570 by 

bypassing of normal photocycle. This increases the duty cycles of the proton release and 

thus the photocurrent density. 
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Figure 6-2: (A) The disappearance of the plasmonic photocurrent enhancement of 30 nm 

Ag NPs if the blue wavelength of the exciting light is filtered out (λincident> 500 nm is 

used). (B) The effect of changing the overlap between the SPR extinction band in the 

blue region with the M412 absorption band (see Fig 6-3). As the overlap decreases (by 

using 8 nm Ag NPs), the weaker the observed photocurrent becomes.  

 

 

Figure 6-3: Normalized surface plasmon resonance (SPR) spectra of 8 nm (blue lines) 

and 30 nm Ag nanoparticles (green lines). The SPR band of 8 nm-Ag NPs is at 395 nm 

and the 425 nm for 30 nm Ag NPs. The contour of M state and bR state absorption region 

was represented by gray and violet shadows with corresponding maxima at 412 nm and 

570 nm.  
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Kinetic and Spectroscopic Study on the Plasmonic Field Enhancement of the Solar-

to-Electric Conversion by Bacteriorhodopsin 

  

The absorption contour and extinction band of the surface plasmon resonance 

regions of the AgNPs are adjustable by controlling their size distributions. Figure 6-4 

shows the normalized absorption contours of the bR (purple) and the M intermediate 

(blue). The 40-nm AgNPs (brown) whose corresponding extinction maximum at 430 nm 

exhibits greater spectral overlap with the M intermediate absorption band than the 8-nm 

particles (orange), whose maximum peak is at 397 nm.  

  

 

Figure 6-4: Normalized surface plasmon resonance spectra of 8 nm (orange) and 40 nm 

(brown) Ag NPs. The absorption contours of M and bR species are represented by blue 

and purple shadows with corresponding maxima at 412 nm and 570 nm, respectively. 

The bR photocycle is photo-initiated by the short-pulsed 532-nm laser and the continuous 

blue light exposure is between 350-550 nm (shown in blue dot lines). The monitor 

window of the recovery of bR and the decay of M intermediate are followed at 600 nm 

and 450 respectively to avoid the spectral overlap with AgNPs and laser scattering. 

 

  

The above spectra are obtained by decomposing the observed spectrum into a 

contribution from pure bR absorption and AgNPs extinction. The extinction of AgNPs is 

at wavelengths shorter than 600 nm, which eliminates the spectral overlap with the bR 

absorption and the interferce with the monitored temporal profile. Previous results shown 
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that the M intermediate absorbs one blue photon to return to the bR ground state without 

passing through the slow conventional photocycle.
18,41

 If this is the reason for our 

previously reported plasmonic enhancement of the bR photocurrent, then the cooperation 

of plasmonic field effect and the blue light effect on the kinetics of bR photocycle should 

be observed. Furthermore, the degree of perturbation of the different sizes of AgNPs on 

the kinetics of bR photocycle should be strongly correlated with the overlap between the 

extinction of the AgNPs and the M absorption band. 

The 532-nm pulsed laser and the cw blue light were collimated in opposite 

directions and overlapped at the center of the sample cell, as shown in Scheme 6-1. After 

the short pulsed irradiation from the 532-nm laser for 50 s, the dominant components of 

the modulation at 600 nm absorption (A600(t)) are the L decay and the bR recovery.
8
 

Although the N intermediate exhibits absorption at 600nm, the transient concentration of 

the N intermediate has been proven to be low in the photocycle when the pH is controlled 

at ~7.
42

 In addition to the observation of the recovery of bR, the light modulation at 450 

nm (A450(t)) reflects the kinetics of the M intermediate.  

 The recovery of bR upon 532-nm pulsed laser excitation was monitored at 600 

nm in the presence and the absence of exposure to the external blue light. Studies were 

carried out with addition of two sizes of AgNPs (8 and 40 nm). The dependence of the 

kinetics on the plasmonic field of these two sizes was compared. 

 Figure 6-5 represents the temporal profiles of the bR recovery in the presence and 

absence of blue light by adding AgNPs of 8-nm (A) and 40-nm (B), respectively. Upon 

excitation of the pure bR suspension, the simultaneous cw blue light exposure resulted in 

the acceleration of the recovery of the bR state. The addition of AgNPs (either 40 nm or 8 

nm AgNPs) accelerates the bR recovery rate even without introducing the blue light to 

the systems. However, when both conditions were achieved (the addition of AgNPs and 

cw blue light), the bR recovery rate was accelerated significantly.  
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Figure 6-5: The plasmonic field enhancement of the blue light effect on the bR recovery 

during its photocycle. Normalized temporal profiles of the modulation at 600 nm upon 

532-nm pulsed excitation of the mixtures of bR with (A) 8-nm AgNP and (B) 40-nm 

AgNP in the presence of cw blue photon (350-500 nm). The addition of AgNPs and 

exposure to the blue light accelerate the bR recovery. The concentration of buffer 

solution, bR, 8-nm AgNP and 40-nm AgNP are 1.1 mM, 8.8 M, 300 nM and 2.0 nM, 

respectively. The power of the cw blue irradiation (in 350-500 nm) is 0.12 W cm
-2

 and 

the fluence of the 532-nm pulsed laser is 5.5 mJ cm
-2

. 
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The blue light effect is shown to accelerate the recovery rate of bR. However, it is 

difficult to monitor the kinetics of the M intermediate at its absorption maximum by time-

resolved spectroscopy because of the large overlap between the spectral regions of the 40 

nm AgNPs and the M state. As a result, only 8 nm-AgNPs can be used with bR for 

observing the kinetics of the M intermediate. The monitoring window is set at 450 nm to 

avoid interference from the extinction of the 8 nm-AgNPs. The main component of the 

temporal profile at 450 nm is attributed to the M intermediate absorption (See Figure 1). 

On the basis of our proposed mechanism, the decay of the M intermediate can be 

described by single exponential curve. In Figure 6-6, the colored circles and their 

corresponding solid lines represent the observed and fitted data, respectively. The fitted 

data agree well with the observed temporal profiles. Similar to the results of the bR 

recovery rate, the decay of the M intermediate was accelerated by the addition of Ag NPs 

or by exposure to the blue light. A more pronounced acceleration of the M decay was 

observed by exposure to the blue light in the presence of AgNPs. The accelerated decay 

of the M intermediate was consistent with the recovery of bR when monitored at 600 nm. 
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Figure 6-6: Plasmonic field enhancement of the blue light effect on the decay of M 

intermediate during its photocycle. The effect on the decay of the M intermediate (black), 

in presence of blue light (red), and by plasomincally enhanced blue light effect (blue). 

Normalized temporal profiles of the modulation at 450 nm upon 532-nm pulsed 

excitation of the mixtures of bR with 8nm Ag NPs in the presence of continuous 

irradiation of blue photon (350-500 nm). The concentration of 8-nm AgNPs is 225 nM. 

The power of the cw blue light is 0.12 W cm
-2

 and the fluence of the 532-nm pulsed laser 

is 5.5 mJ cm
-2

, respectively. 

 

 

In order to illustrate the temporal behavior of the bR recovery, the following 

simplified mechanism is used: 

light)Blue(withcyclebypassedofconstantratethe:3
3

)lightBlue(Nocyclealconventionofconstantratethe:2
21)(

kbR
k

kbR
k

M
k

L
h

bR



  
      (3) 

A detailed mathematical expression of the time dependence of the bR concentration 

(A600(t)) and the time dependence of the M intermediate concentration (A450(t)) is 

developed in the Appendix. kII is the apparent rate constant of the conversion of M to bR. 
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In the absence of cw blue light exposure, only the conventional photocycle should be 

considered and kII is merely composed of k2 for the conventional photocycle (kII = k2). 

Upon the irradiation with the cw blue light, the bypassed photocycle is activated. Thus, 

kII is composed of both k2 and k3, which denotes the apparent rate constant of the 

conversion of M to bR through the bypassed process (kII = k2+k3). k1 and kII are derived 

by fitting the observed temporal profiles with two exponential components. The 

difference of kII in presence and absence of blue light is due to k3, which represents the 

rate constant of the bypassed cycle and measures blue light effect.  

The comparisons of the observed and fitted data are shown in Figure 6-7. The 

minor residual intensities, derived from the difference of the observed and fitted temporal 

profiles, are also shown in each figure. Due to the strong light scattering from the 40 nm-

Ag NPs, the signal to noise ratio is relatively smaller than that of the others (Figure 6-7). 

However, the observed agreement and the small residual intensity show that the proposed 

mechanism agrees well with the observed data.  
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Figure 6-7: The comparisons of the experimental (color traces) and the fitted data (black 

lines) of the 600-nm modulation (bR recovery) for pure bR or bR/Ag NPs mixture upon 

532-nm pulsed excitation in the absence or in the presence of blue photon. The 

differences of the observed and the fitted data (residual intensities) are also shown in 

black at the bottom traces in every figure. 
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Both sizes of Ag NPs show the ability to change the kinetics of the bR photocycle. 

However, the concentration of 8 nm-AgNPs was 100 times higher than that of the 40 nm 

particles (Figure 6-5). The rate constant of bR recovery in various concentrations of 

AgNPs are summarized in Figure 6-8a. Without exposure to blue light, the addition of 

AgNPs is also able to accelerate the rate of bR recovery slightly. With exposure to the cw 

blue light, the enhancement is much more significant. Moreover, this effect is more 

noticeable for AgNPs with large size (40 nm) than that for the small particles (8 nm). 

According to our proposed mechanism, the difference stands for the rate constant of the 

bypassed photocycle, denoted by k3, involving the photoexcitation of the M intermediate 

followed by the rapid reprotonation and isomerization of retinal converting to its initial 

bR state (Figure 6-8b).  

Although the concentration of the 40 nm Ag NPs is 100 times lower than that of 

the 8 nm Ag NPs, the larger Ag NPs still show more pronounced enhancement of the 

blue light effect. The broader absorption band of 40 nm Ag NPs can absorb more of blue 

light thus enhancing the flux of blue photons more than 8 nm particles under the same 

intensity of illumination.  

In order to get a quantitative experimental measurement of the relative plasmonic 

enhancement of the blue light effect of the 40 and the 8 nm AgNPs, the ratio of the k3 

value per particle needs to be determined. This can be determined from the ratios of the 

slopes of the lines in fig 6-8b. This ratio is found to be around 400. The value of 

enhancement factor of each particle depends on a number of factors: 1) the plasmonic 

field strength as it determines the enhancement of the M absorption. Su et al have shown 

that the field strength is proportional to the size of nanoparticle. Using the radii of the 40 

nm and the 8 nm of AgNPs, the ratio of their sizes is 125.
43,44

 2) The second factor is the 

transfer rate of the energy between the plasmonic field and the M intermediate which is 

proportional to the spectral overlap between the electromagnetic extinction band and the 

M absorption band. This ratio from the 40 nm and 8 nm AgNPs are determined to be 3 
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from Figure 6-4. These two factors alone suggest that the ratio of plasmon enhancement 

factor of the two nanoparticles used is around 375, which is close to that observed 

experimentally.  

 This agreement might suggest that the exact location of each nanoparticle is not 

critical. This is due to large size of the nanoparticles, even the small one compared to the 

size of the active site of retinal in the protein. Thus the retinals in the strongest regions of 

the field of each nanoparticle are the ones that show the observed enhancements.  
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Figure 6-8: (a) The rate constant kII in the presence and absence of blue light up upon 

excitation of bR with different concentrations of 8-nm and 40-nm AgNP. (b) The 

difference of the values of kII in the presence and absence of blue light. The difference 

can be attributed to k3, which represents the rate constant of the bypassed cycle, i.e., it 

represents the sensitivity of the plasmonic field enhancement of the blue light effect to 

the concentration and size of the nanoparticles used. 
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6.4 Conclusion 

 Bacteriorhodopsin’s exceptional stability makes it a potential biomaterial for 

various applications.
37 

The reported bR-based electrochemical cell used thin films and 

required external bias combination and laser irradiation source.
38

 In our system, cw light 

is used for the irradiation source and no external bias is needed. Moreover, NPs whose 

SPR band overlaps well with the M412 absorption also overlaps with the maximum 

intensity region of the solar light at 450 nm (Figure 6-9).
39

 Those factors make a bR-

based electrochemical cell using plasmonically enhanced photocurrent attractive for solar 

energy conversion.
40 

 

Figure 6-9: Solar irradiance spectrum above atmosphere and at surface 

 

Using time-resolved spectroscopic techniques we were able to study the 

plasmonic field enhancement of the observed blue light effect on the bR photocycle. The 

observed blue light enhancement of the bR recovery and of the M intermediates decay 

give strong support for the previously proposed mechanism of the blue light photocurrent 

enhancement.
19

 The bypassed photocycle can be activated by exposure to blue light and 

is greatly enhanced in the presence of AgNPs whose surface plasmon field is in the blue 

spectral region (and can thus greatly enhance the flux of blue light). It is found that the 
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40-nm AgNPs is about 400 times more efficient than the 8 nm because of the much larger 

field strength and better overlap between their extinction band and that of the M 

intermediate absorption band. 
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6.5 Appendix 

Expression of [L]t: 

Based on the report by R. R. Birge et al. (Ref. 8), the decay rate constant of the L 

intermediate is slower than that of the generation. Due to the temporal integration 

window of 10 s, which is slower than the L generation, the temporal behavior of L can 

be simplified in a decay component and described as follows, 

[L].1k
dt

d[L]
  

An assumption can be made that the initial concentration of L (denoted as [L]0) is 

proportional to the quantum yield of bR upon 532-nm pulsed excitation. 

bleachbRofyieldquantumtherepresentsobR  ,][oL][  

By means of Laplace transform (L), 

)1ks(

][
L][

][oL][L][)1k(s

L][1ko[L]-L][sL]'[ [L],1k
dt

d[L]










obR
L

obRL

LLL

 

As a result, the temporal profile of L can be expressed as  

t1k
][tL][


 eobR  

Expression of [M]t: 

 

Expression of [bR]t recovery: 
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Expression of A600(t): 
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The overall absorbance modulation at 600 nm (A600) should include L decay and bR 

recovery. Due to the different absorption constants, two weighting parameters (a and b 

for bR and L, respectively) should be introduced, 

)1(][600
tIIk

eb
tk

eaobRA





  

An equation is employed in fitting, 

ht
eg

dt
ecoyyA

 600 , d and h represent k1 and kII, respectively. 

Expression of A450(t): 

The absorbance modulation at 450 nm (A450) is merely composed of the M intermediate 

and can be expressed as 

)( 1

450

tktk
eeaA II 

  

When k1>>kII at later period, A450 can be expressed in a single exponential decay as 

tIIk
][450


 eobRA  
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CHAPTER 7 

BACTERIORHODOPSIN/TIO2 NANOTUBE ARRAYS HYBRID 

SYSTEM FOR ENHANCED PHOTOELECTROCHEMICAL WATER 

OXIDATION 

Abstract 

In recent years, considerable efforts have been made to improve the performance of 

photoactive nanostructured materials for water splitting applications. Herein, we report 

on the assembly and use of bacteriorhodopsin (bR)/TiO2 nanotube arrays hybrid electrode 

system. Photoanode materials composed of ~ 7µm long self-ordered and vertically 

oriented nanotube array of titanium dioxide films were fabricated via the anodization of 

Ti foil in electrolytes containing NH4F at room temperature followed by sensitization of 

the electrodes with bR. The stability of bR on the TiO2 surface was found to depend on 

the pretreatment process of the TiO2 films.  Our results demonstrate the opportunity to 

fabricate fairly stable bR/TiO2 hybrid electrodes that can be used as photoanodes for 

photoelectrochemical water splitting. Under AM 1.5 illumination (100 mW/cm
2
), the 

hybrid electrodes achieved a photocurrent density of 0.65 mA/cm
2
 which is a ~ 50% 

increase as compared to that measured for pure TiO2 nanotubes (0.43 mA/cm
2
) fabricated 

and tested under the same conditions. This enhancement in photocurrent can be related to 

the unique proton pumping ability of bR as well as to the novel structural properties of 

the fabricated nanotube arrays. In the presence of a redox electrolyte, bR can inject 

electrons into the conduction band of TiO2 and hence further enhance the resulting 

photocurrent density. To the best of our knowledge, this is the first report on the use of 

bR/TiO2 hybrid electrodes in photoelectrochemical water oxidation cells. We believe the 



 146 

proton pumping property of bR can be used in a variety of applications, especially those 

related to third generation photovoltaic cells.  

 

7.1 Introduction 

Researchers have been actively trying to transfer solar energy into a fuel for the 

last 40 years without a profound success despite the fact that nature was already been 

doing so for millions of years through photosynthesis. There are two distinct 

photosynthetic systems in nature: chlorophyll (using electron pump system) and 

bacteriorhodopsin (using proton pump system).
1
 Bacteriorhodopsin (bR), a natural light 

activated protein, is found in the purple membrane of Halobacterium salinarum.
2-4

 The 

exceptional stability of bR makes it a potential biomaterial for various applications. bR 

can absorb sun light and transform it into electricity which makes it promising for a 

plethora of applications especially those related to solar energy conversion.
5,6

 However, 

the photocurrent of bR-based photovoltaic cells is still limited to the pico-ampere range.
7
 

This is mainly due to the fact that the photocycle of bR takes 15 ms to finish. A short cut 

of the photocycle is expected to enhance the proton pumping effect of bR. Recently, we 

developed a new bR solution-based photoelectrochemical cell that takes advantage of the 

plasmonic field effect of nanoparticles to modify the photocycle of bR
8,9

 and thus 

increase the duty cycle of proton production by decreasing the time to 70 µs.
10-12

 Upon 

the addition of silver nanoparticles (with a resonance peak in the blue light region), the 

plasmonic field of the silver nanoparticles was found to significantly enhance the 

generated photocurrent density up to 25 nA/cm
3
, which is 15 times higher than that of 

pure bR.
9
 This mechanism was further verified by spectroscopic and kinetic studies.

13
 

Although the plasmonic field enhancement of bR produces a photocurrent that is orders 

of magnitude higher than the previous reports, it is still not sufficient for realistic 
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applications.  

Fujishima and Honda reported the generation of hydrogen gas via water splitting 

using TiO2 under UV light irradiation.
14

 Since then, H2 generation based on various 

semiconductors has been extensively studied.
15

 Of particular interest are anodically 

fabricated TiO2  nanotube arrays, which are being widely investigated  due to their 

advantageous properties such as low cost, abundance, stability and vectorial charge 

transfer.
16-18

 However, the wide bandgap of this material (3.0−3.2 eV) limits its spectral 

response to the UV region of the light spectrum, which accounts only for less than 5% of 

the full solar spectrum.
19

 More efficient visible light utilization would render this material 

quite attractive for solar energy conversion applications.  

The relatively low efficiencies and high costs of first and second generation 

photovoltaic cells, compared to traditional energy sources, has limited their mainstream 

use. The third-generation of such cells aims at decreasing the cost while achieving higher 

efficiency.
19

 The concept behind this new generation is to use materials which are both 

nontoxic and highly abundant. The abundant and environmentally friendly bio-

conjugated semiconductor hybrid systems seem to be promising as a third generation 

photoelectrochemical/photovoltaic technology.
20

 To this end, Grätzel developed 

chlorophyll-based dye-sensitized solar cells.
21,22

 In those devices, photo-excited 

chlorophyll injects electrons into the conduction band of a TiO2 photoanode to power an 

external load
 
which in turn are being re-introduced into the cell through the use of a redox 

electrolyte.
 21,22

 However, the majority of the bio-conjugated semiconductor hybrid 

systems treat biomaterials as dye molecules which can absorb visible light and transfer 

electrons to semiconductors. In addition to extending the absorption to the visible range 

(intense absorption peak in the range 500-600 nm) and transferring electrons to the 

photoanode, bR’s unique proton pumping characteristic can successfully be applied to 

solar-driven hydrogen production. 

In this work, we create the first bR/TiO2 nanotube hybrid photoanode to perform 



 148 

water-splitting and generate photocurrent. The bR/TiO2 hybrid photoanode shows a better 

photoelectrochemical performance than either of TiO2 or bR alone. A possible mechanism 

for the observed enhancement of photocurrent has been investigated. The electron 

transfer property of bR, in the presence of redox electrolyte, is also discussed.  

 

7.2 Experimental Section 

Fabrication and Characterization of TiO2 Nanotube Arrays 

  Prior to anodization, pure titanium foil samples (2.0 cm x 1.0 cm x 0.25 mm) 

were ultrasonically cleaned with acetone followed by a deionized (D.I.) water rinse.  The 

anodization was performed in a two-electrode electrochemical cell, with the titanium foil 

as the working electrode and platinum foil as the counter electrode, at room temperature 

(approximately 22°C) at 20V for 20h in a formamide-based electrolyte containing 0.2M 

NH4F, 0.1M H3PO4 and 3 vol.% H2O. Agilent E3612A DC power supply was used for 

potentiostatic anodization. After anodization, the samples were rinsed thoroughly with 

deionized water and isopropyl alcohol, then dried under a stream of nitrogen. The as-

anodized samples were crystallized by oxygen annealing at 500 °C with a heating and 

cooling rate of 1°C/min.  The morphology of the as-anodized samples was examined 

using a Zeiss SEM Ultra60 field emission scanning electron microscope (FESEM). X-ray 

photoelectron spectroscopy (XPS) experiments were performed on the TiO2 films using a 

Thermo Scientific K-alpha XPS with an Al anode. Spectra were charge referenced to O 

1s at 532 eV. The crystalline phases were detected and identified by a glancing angle x-

ray diffractometer (GAXRD) on an X’pert PRO MRD with Copper source.  

 

Sensitization of TiO2 with bR 

 Native bR in the purple membrane (PM) from Halobacterium Salinarium was 
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prepared by a standard method described by Oesterhelt and Stoeckenius.
23

 Strain S-9, 

with a higher PM yield and an absence of carotenoids, was chosen for these experiments. 

The PM suspension was stored at -10 °C for further use. The bR solutions were light 

adapted before the measurements. The photo-bleached bR was prepared following the 

method presented by Oestergel et al.
24,25

 Briefly, the purple bR was suspended in 1.0 M 

hydroxylamine (NH2OH) and the pH was adjusted to 8.0 by 1.0 M NaOH. It was then 

taken for light irradiation from a Xe lamp filtered through a Corning glass filter type 3-66 

and 3-67. The complete removal of retinal took 4-5 hours to accomplish. The bleached 

samples were ready to use after being washed with DI water and centrifuged three times 

at 19,000 g. Two methods were used to attach bR onto TiO2 surfaces: without a linker and 

with a linker. Attaching the bR onto the TiO2 without a linker was accomplished by 

simply immersing the TiO2 thin films into a bR solution (pH=7) and leaving them 

overnight. The excess solution on the TiO2 surface was then dried by nitrogen gas. In the 

other method, the linker chosen was 3-Mercaptopropionic acid. Here, the TiO2 electrode 

was first soaked in the 3-Mercaptopropionic acid solution overnight. Then it was cleaned 

under nitrogen gas, transferred into a bR solution and sonicated for 4 hours. The 

concentration of bR for both methods was 0.1 mM.  

 

Optical and Photoelectrochemical Characterization 

 The optical characterization of the bR/TiO2 films was performed using a 

Shimadzu UV-Vis-NIR spectrophotometer UV-3101PC. The photoelectrochemical 

properties were investigated in pH=7 solutions using a three-electrode configuration with 

TiO2 nanotubes as photoanode, saturated Ag/AgCl as a reference electrode, and platinum 

foil as the counter electrode (Scheme 7-1). The redox electrolyte (Iodolyte AN-50) was 

obtained from Solaronix, Inc. (Switzerland). A scanning potentiostat (Solartron, model 

1287) was used to measure dark and illuminated currents at a scan rate of 10 mV/s. A 150 

W ozone-free xenon arc lamp fitted with an AM 1.5G filter was used as the light source. 
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The incident power intensity of the radiation from the AM 1.5 light was set to 100 

mW/cm
2
 

 

 

 

Scheme 7-1: Experimental setup for photoelectrochemical water splitting. The three 

electrode configuration was used. The TiO2 or bR/TiO2 was as photoanode, platinum foil 

as counter electrode, and Ag/AgCl as reference electrode.  The irradiation source was Xe 

lamp with 1.5 AM filter (intensity: 100 mW/cm
2
).  
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7.3 Results and Discussion 

 

Synthesis and Structural Characterization 

Figure 7-1 shows the morphology of the anodically fabricated titania nanotube 

arrays. The tubular structure with nearly uniform wall thickness throughout the length of 

the tube is evident. The fabricated nanotubes were found to be approximately 7 ± 0.2 μm 

in length with outer diameters of 140 ± 2 nm and wall thicknesses of 20 ± 2 nm.  

 

2 µm

300 nm

2 µm

300 nm

 
Figure 7-1: FESEM top view image of the fabricated TiO2 nanotube arrays with the inset 

showing the cross-sectional view. 

 

After annealing at 500 °C for 4 hours in dry oxygen ambient, the pure anatase 

phase of TiO2 was formed as confirmed by GAXRD measurements (Figure 7-2a).  To 

further investigate the composition of the annealed nanotube arrays, XPS analysis was 

performed (Figure 7-2b and 7-2c). Note that the formation of oxide is evident from the 

O1s and Ti2p peaks with the molar ratio Ti/O being close to the stoichiometric proportion. 

Note also that both Ti 2p3/2 and 2p1/2 peaks are observed with a separation of 5.7 eV, 

which confirms the presence of Ti
4+

.
17,18

 The above characterizations confirm the 

synthesized TiO2 nanotubes to be highly crystalline anatase.  

http://pubs.acs.org.www.library.gatech.edu:2048/doi/full/10.1021/jp902140d?prevSearch=%2528Nageh%2BAllam%2529%2BNOT%2B%255Batype%253A%2Bad%255D%2BNOT%2B%255Batype%253A%2Bacs-toc%255D&searchHistoryKey=#fig1
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Figure 7-2: (a) Glancing angle x-ray diffraction patterns and (b), (c) XPS spectra of 7 μm 

long TiO2 nanotube arrays annealed at 500 
0
C for 4 hours in dry oxygen ambient 

 

  The main absorption range of native bR in solution phase is between 500-600 nm 

and the maximum absorption peak lies at 568 nm (Figure 7-3). Anchoring bR molecules 

onto a TiO2 surface effectively expands the absorption region of TiO2 from UV to visible 

light. Herein, we used two different protocols to attach bR to TiO2 and followed the 

treatment effect on the absorption properties of the resulting bR/ TiO2 assembly. In the 

first protocol, the TiO2 electrode was immersed in a solution containing bR. This method 

is expected to result in the physisorption of bR onto TiO2 surface where the binding force 

between bR molecules and TiO2 surface is weak. The random attachment of bR onto the 

surface of TiO2 results in a broad bR absorption peak which loses its characteristic band 

structure (peak 2, Figure 7-3). In the other protocol, 3-Mercaptopropionic acid was used 

as a linker to attach the bR molecules onto the surface of TiO2. In this case, a well-

established bR absorption peak was observed (peak 3, Figure 7-3). Note also that the 

absorption intensity of bR improves upon the use of linker molecules.  
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Figure 7-3: UV-Vis spectra of bR in the solution phase (black 1), and bR anchored to 

TiO2 without (red 2) and with (green 3) linker. 

 

Proton Pumping Effect of bR 

 Upon conducting the photoelectrochemical tests, almost 50% of the bR anchored 

onto the TiO2 surface without a linker were lost into the electrolyte solution after several 

electrochemical runs. However, no noticeable change for the bR molecules attached to 

TiO2 using linker was observed even after multiple runs. Therefore, the 

photoelectrochemical measurements were only done for the samples prepared via 

anchoring bR to TiO2 using linker. 

The photocurrent density-versus-potential measurements are shown in Figure 7-4. 

The maximum obtained photocurrent of pure TiO2 (shown in black) was 0.43 mA/cm
2
 

with an open-circuit voltage (VOC) of -0.49 V. When bR molecules were anchored to the 

TiO2 surface (shown in green), the maximum value of photocurrent jumped to 0.65 

mA/cm
2
 and the VOC was shifted to -0.56 V, i.e. the maximum photocurrent density 

increased by about 50%. The open-circuit voltage represents the contribution of light 
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toward the minimum voltage needed for the water-splitting potential (1.229V).
18

 

Therefore, it seems that the bR/TiO2 photoanode requires less voltage for water oxidation 

than pure TiO2 photoanode does. To explain how bR can enhance the photocurrent 

density of TiO2 and shift its open-circuit voltage, it will be necessary to describe the 

processes of photoelectrochemical water-splitting reactions using TiO2 photoanode
26
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Absorption of photons by the TiO2 photoanode results in the formation of 

electron-hole pairs (e
-
/h

+
). The photogenerated holes oxidize water and the resulting 

hydrogen ions migrate to the cathode through the electrolyte. On the other hand, the 

photogenerated electrons move from photoanode to cathode through the external circuit. 

Then, reduction of the hydrogen ions by the transferred electrons at the cathode occurs. In 

a typical TiO2-based photoelectrochemical cell, the only source of protons is the water 

oxidation via the photogenerated holes. However, when bR is anchored to the TiO2 

surface, bR can provide another channel for proton production as it is a well-known 

proton pump.
1
 In our designed cell, the proton pumping process of bR continued with 

light irradiation and the generated protons drifted from the photoanode to the cathode. 

The increased number of protons at the cathode acts as a driving force to attract more 

electrons from the external circuit leading to more hydrogen reduction and more 

photocurrent generation. Additionally, bR can function as a traditional dye in the same 

way dye molecules act in dye sensitized solar cells, i.e. absorb visible light and help 

extend the system's absorption capability. The enhanced proton generation and the 

extended absorption spectrum of bR/TiO2 cell improve both the water-oxidation 

performance and photocurrent density.  
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 It may be questioned whether the improvement of the performance of the bR/TiO2 

photoanode is due to a structural change or chemical modification of TiO2 during the 

sample preparation process instead of being due to the bR. Therefore, we designed two 

experiments to prove that the proton pumping characteristic and the extended absorption 

spectrum of bR are the main reasons for the observed enhancement. The first experiment 

uses the same bR/TiO2 sample under the same experimental conditions except a filter is 

used to cut off the light between 500 to 600 nm for sample irradiation. Note that the 

unique absorption band of bR lies between 500 and 600 nm (yellow light) and the light in 

this region is the source for initiating the bR photocycle, i.e. bR could not accomplish the 

proton pumping process in the absence of such light. The obtained photocurrent under 

these conditions is shown in red in Figure 7-4a. The maximum photocurrent density of 

bR/TiO2 in the absence of yellow light is 0.47 mA/cm
2
 and the open-circuit voltage is -

0.50 V. The performance of the bR/TiO2 photoanode in the absence of yellow light is as 

same as that of the pure TiO2 photoanode (0.43 mA/cm
2
, -0.49V) confirming the fact that 

proton pumping is a determinant factor in enhancing the photogenerated current.  

 In the other experiment, bleached bR was used instead of native bR (Figure 7-4b). 

Retinal is in the center of bR and is the component responsible for triggering the bR 

photocycle after retinal photo-excitation by yellow light. The retinal of bR can be 

extracted by photo-bleaching using hydroxylamine which is characterized by the absence 

of its absorption peak at 568 nm. The bleached bR is anchored, under the same conditions 

as the unbleached (native) one, to the TiO2 surface. No obvious absorption peak in the 

visible range of bleached bR/TiO2 was observed and the main absorption was shown only 

in the UV region, characteristic of TiO2. As bR could not accomplish proton pumping 

without retinal, the bleached bR on the TiO2 surface could not increase the concentration 

of protons even under full light irradiation. The maximum obtained photocurrent density 

of bleached bR/TiO2 is 0.47 mA/cm
2
 and the VOC is -0.49 V, compared to pure TiO2 

indicating no enhancement in photocurrent density or VOC. These two experiments 
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confirm that the increased photoelectrical performance of the bR/TiO2 hybrid system is 

due to the proton pumping effect of bR and not surface composition or structural change 

of TiO2 photoanode.  
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Figure 7-4: Photocurrent density versus potential (I-V) in pH=7 solution under AM 1.5 G 

illumination (100 mW/cm
2
). (a) (1) pure TiO2, (2) native bR/TiO2, with the yellow light 

for bR photoexcitaion is filtered out (cut off λincident 500-600 nm), (3) native bR/TiO2, and 

(4) native bR/TiO2 with redox molecules in the electrolyte. (b) I-V characteristics of (1) 

pure TiO2 and (2) bleached bR/TiO2 

 

 

As the stability of the hybrid electrode is critical, we also studied the change in 

the photocurrent response over time. The photocurrent response was almost identical over 

50 cycles which demonstrates the rigid structure of bR/TiO2 photoanode (Figure 7-5). 

These results show that bR/TiO2 hybrid electrodes can be used for many applications 

because of their high stability and performance. 
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Figure 7-5: Stability tests of bR/TiO2 photoanode (1) The 1
st
 scan for 

photoelectrochemical water oxidation, (2) The performance of water oxidation after 50
th

 

scan.  

 

Electron Transfer effect  

 Can bR inject electrons into TiO2 in the same way dyes do in dye-titania system? 

Recently, Thavasi et al used bR triple mutant E9Q/E194Q/E204Q (3Glu) to construct an 

excitonic solar cell and found the 3Glu could help transfer electrons from redox 

electrolyte to anode.
27

 Lu et al has also found the trans-membrane protein complex from 

non-sulfur bacteria (Rb. Sphaeroides) to have the same electron transfer effect.
28

 Herein, 

the electron transfer effect of bR has also been investigated in our system by introducing 

an additional source of electrons to the electrolyte system, i.e. redox electrolyte 

(iodide/tri-iodide). The lowest unoccupied molecular orbital (LUMO) and highest 

occupied molecular orbital (HOMO) of bR were previously determined by surface 

photovoltage spectroscopy (SPS) to be -3.8 eV and -5.2 eV.
29

 The energy diagram of bR 

and TiO2 is shown in scheme 1. The conduction band (CB) energy of TiO2 is located at -

4.2 eV and therefore the bR is energetically favorable for electron injection into TiO2, see 
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Scheme 1. In the presence of the redox electrolyte (I
-
/I3

-
), the electrons from the redox 

molecules can be caught by bR molecules which in turn is expected to inject them into 

the TiO2 surface. The I-V characteristic curve upon the addition of redox electrolyte is 

shown in Figure 4a. The maximum photocurrent density is found to be 0.87 mA/cm
2
 and 

the VOC is -0.64 V. Compared to the value of bR/TiO2 in the absence of redox electrolyte 

(maximum photocurrent of 0.65 mA/cm
2
 and VOC of -0.56V), a 33% increase in the 

photocurrent was obtained which can be mainly attributed to the electron transfer effect 

of bR. 

 

Scheme 7-2: Energy level diagram and a possible mechanism of charge carrier injection 

in the bR/TiO2 photoanode cell in the presence of redox electrolyte solution. 

 

7-4 Conclusion 

 Bacteriorhodopsin/TiO2 hybrid electrodes were fabricated by anchoring bR 

molecules onto the surface of anodically fabricated TiO2 nanotube arrays with and 

without linkers. When used as photoanodes to split water photoelectrochemically, the 

assembled bR/TiO2 electrodes showed better photoelectrochemical performance than that 

of pure TiO2 when bR is anchored using a linker.  A ~ 50% increase in the photocurrent 
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density was observed when TiO2 was sensitized with bR. It is proposed that the enhanced 

photocurrent generation comes from the proton pumping effect of bR. In the presence of 

a redox electrolyte, the bR/TiO2 photoanode achieved even higher photocurrent. This 

enhancement is based on the band alignment of the HUMO-LUMO levels of bR as 

related to the band edge positions of TiO2 in a similar way used in dye-titania systems. 

The photocurrent response after multiple measurements revealed the high stability of the 

fabricated hybrid electrode. We believe our bR/TiO2 hybrid photoanode provides a new 

perspective method for developing versatile bio-photoelectric devices for solar-to-fuel 

generation. We are very optimistic that optimization of this system and related assemblies 

could lead to a breakthrough in the field. 
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June 2004-May 2005 

Prof. Sow-Hsin Chen 

National Institute of Standards and Technology, Gaithersburg, MD 

 Analyzed the transition of supercooled water by neutron scattering 

 

Graduate (M. S.) Research                                                                                      
Aug 2003-May 2004 

Prof. Chung-Yuan Mou 

National Taiwan University, Taipei, Taiwan 

 Enhanced CO to CO2 conversion rate by using alloy nanoparticles and applied it 

into perform PROX reaction in the PEM system 

 Analyzed the alloy structure by XAFS experiments (X-ray Absorption Fine 

Structure) 

 

Award and Honors 

 3
rd

 Place, Georgia Tech Chemistry Graduate Student Awards Symposium 2010. 

 Travel Grant Award from Georgia Tech Research and Innovation Conference 

2010. 
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 Taiwan Merit Scholarship from National Science Council (Taiwan) 2006. 

 Dean’s Award for Graduate from College of Science, National Taiwan 

University, 2005  

 Excellent Dissertation Award, National Taiwan University 2005  

 

Skills 

Lab Skills: 

 metallic nanoparticles synthesis (Ag, Au-Ag alloy, Au spheres, and Au nanocages) 

 laser operation (employed Nd:YAG Laser for ultrafast spectroscopy measurement) 

 Materials Characterization: x-ray diffraction (XRD), scanning electron 

microscopy (SEM), scanning tunneling microscopy (STM), BET, transmission 

electron microscopy (TEM), Gas chromatograph (GC), Dynamic light scattering 

(DLS), and ICP AES 

 Spectrometric Characterization: UV-Vis, FT-IR, and Raman 

 Synchrotron Radiation Sources Technique: XAFS, in-situ XRD, and neutron 

scattering 

Software: 

 MS Office Suite, Origin, Photoshop, and ChemOffice Suite 

 

Publications (selected): 

 Chu, L.-K.; Yen, C. W.; El-Sayed, M. A. “Bacteriorhodopsin-based photo-

electrochemical cell” Biosens. Bioelectron. 2010, 26, 620. 

 Yen, C. W.; Chu, L.-K.; El-Sayed M. A. “Kinetic and spectroscopic study on the 

mechanism of the solar-to-electric energy conversion by the other photosynthetic 

system in nature: bacteriorhodopsin” J. Phys. Chem. C 2010, 114, 15358. 

 Yen, C. W.; Chu, L.-K.; El-Sayed, M. A. “Plasmonic field enhancement of the 

bacteriorhodopsin photocurrent during its proton pump photocycle” J. Am. Chem. 

Soc. 2010, 132, 7250. 

 Yen, C. W.; El-Sayed, M. A. “Plasmonic field effect on electron transfer catalytic 

reaction on gold nanoparticles” J. Phys. Chem. C 2009, 113, 19585. 

 Yen, C. W.; Mahmoud, M. A.; El-Sayed, M. A. “Photocatalysis in gold nanocage 

nanoreactors” J. Phys. Chem. A. 2009, 113, 4340. 

 Yen, C. W.; Lin, M. L.; Wang, A. Q.; Chen, S. A.; Chen, J. M.; Mou, C. Y. “CO 

oxidation catalyzed by Au-Ag bimetaliic nanoparticles confined in mesoporous 

silica” J. Phys. Chem C 2009, 113, 17831. 
 

Teaching Experiences: 

Teaching Assistant for General Chemistry                                    Aug 2006-May 2007   

Georgia Institute of Technology, Atlanta, GA 

 

Teaching Laboratory Assistant for Analytical Chemistry             Aug 2003-May 2004 

National Taiwan University, Taipei, Taiwan 

 

Extracurricular Activities 

Volunteer, Girls Inc.                                                                                          Jan 2011                                                                                     

Volunteer, National Nanotechnology Youth Outreach Program                      Jun 2010                       
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Member, World Vision Organization           Dec 2008-present 

 

Presentations 

2010 The 8
th

 Cross-Strait Workshop on Nanoscience and Technology, Hong Kong 

“Application of Nanotechnology in the Plasmonic Enhancement of the Solar-to-

Electric Energy Conversion by Bacteriorhodopsin” (oral) 

 

2010 Georgia Life Sciences Summit, Atlanta, GA 

 “Application of nanotechnology in the plasmonic enhancement of the solar-to-

electric energy conversion by Bacteriorhodopsin” (poster) 

 

2010 Georgia Tech Research and Innovation Conference, Atlanta, GA 

“Nanotechnology applications on environment, catalysis, and energy” (poster) 

 

2010 Spring American Chemical Society Meeting, San Francisco, CA  

“Photocatalysis in gold nanocage nanoreactors” (poster) 

 

 


