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Abstract—Robotics has been considered as one of the five 

key technology areas for defense against attacks with weapons 

of mass destruction (WMD). However, due to the mass impact 

nature of WMD, failures of counter-WMD (C-WMD) missions 

can have catastrophic consequences. To ensure robots’ success 

in carrying out C-WMD missions, we have developed a novel 

verification framework in providing performance guarantees 

for behavior-based and probabilistic robot algorithms in 

complex real-world environments. This paper describes the 

system architecture and discusses how the verification 

framework can be used to provide pre-mission performance 

guarantees for robots in executing C-WMD missions. 
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I. INTRODUCTION 

After the attack of the World Trade Center on September 
11, 2001, Al-Qaeda spokesman Abu Gheith wrote that they 
have “the right to kill 4 million Americans” [1]. The recent 
bombing at the 2013 Boston marathon in the United States 
painfully reminded us that the safety and security of our 
society is under constant threats from terrorist attacks. This 
event reiterated the belief held by the United States military 
that terrorist attacks using weapons of mass destruction 
(WMDs) is not a question of “if” but “when” [2]. However, 
the resilience of human nature has fueled a history of 
innovation that turned tragic events into technological and 
scientific developments to prevent future tragic events and 
mitigate their effects [3]. 

The robotics community has been active in efforts in 
developing technology for use in countering terrorist threats 
and responding to natural disasters. The Kobe earthquake 
and Oklahoma City bombing motivated the development of 
robots for humanitarian efforts in search and rescue of 
trapped victims and propelled the emergence of urban search 
and rescue (USAR) as an important area of research for 
robotics [3, 4]. These efforts led to the first use of robots for 
search and rescue at the World Trade Center disaster in 2001 
[5]. And most recently, robots were used for the Fukushima 
nuclear plant disaster in Japan, where the high radiation 
posed a substantial risk for humans to enter [6]. 

WMD include chemical, biological, radiological, nuclear, 
and high-yield explosives (CBRNE) [7]. These weapons are 
aimed to inflict mass casualties on a society. Thus the 
development of countermeasures to these weapons is 
imperative for safeguarding the security and safety of 
societies under the threat of terrorism. Typical C-WMD 

missions include searching, identifying, and neutralizing 
lethal chemical/biological agents. The time critical nature of 
these missions may not permit a second attempt of the 
mission. More importantly, with the potential mass impact of 
WMDs, failures to counter them effectively could have dire 
consequences. A C-WMD mission‟s success has to be 
ensured before execution. 

As part of the United States Defense Threat Reduction 
Agency‟s (DTRA) effort to safeguard “America and its allies 
from weapons of mass destruction (WMD) and provide 
capabilities to reduce, eliminate and counter the threat and 
effects from chemical, biological, radiological, nuclear, and 
high yield explosives”, our research addresses the 
challenging problem of providing performance guarantee or 
assurance for robots in accomplishing C-WMD missions in a 
real world environment. We have developed a verification-
based framework to provide such guarantees for C-WMD 
robot missions, where a failure can have catastrophic 
consequences [8, 9]. The core of the framework is a 
verification module that conducts performance analysis of 
robot missions. 

The verification method is based on Process Algebra 
[10], a mathematical tool for reasoning on process 
representations of robot missions. The advantage of Process 
Algebra is its ability to express complex robot missions and 
to deal with the state combinatorial explosion incurred by the 
robot‟s interaction with the environment [8]. The output of 
the verifier includes information beyond a simple „yes/no‟ 
for the operator, in order to permit improvement of mission 
performance by modifying the control program or use of a 
different robot or sensors. This effectively forms a feedback 
loop that supports iterative improvement in the predicted 
mission performance. 

This paper describes the verification framework and 
presents a C-WMD mission to illustrate how the framework 
can be used to verify robot mission success and its ability in 
dealing with complex robot missions in realistic 
environments. Robotic experiments of the mission are also 
conducted to validate the performance guarantee provided by 
the verification framework. 

II. RELATED WORK 

WMD is an extensive category, including chemical, 
biological, radiological, nuclear, and high-yield explosives 
(CBRNE) [7]. Of the WMD, biological weapons have been 
considered the most likely weapons of choice for terrorists 
[11]. Many characteristics of biological weapons make them 
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attractive for use in terrorist attacks. Bio-weapons are 
colorless and odorless, which make them hard to detect. Bio-
weapons are also easy to access. In 1996, an Ohio man with 
connections to an extremist group was able to obtain bubonic 
plague cultures through the postal service [12]. Recipes for 
making biological weapons are even available online [12]. 
Bio-weapons are also characterized by easy delivery, low 
production cost, lethal in low dose, easy transportation, and 
potentially contagious (e.g., smallpox) [13]. 

Robotics has been considered as one of the five key 
technology areas for defense against attacks with weapons of 
mass destruction (WMD) [14]. Humphrey [15] had identified 
eight C-WMD tasks for robots, which include survey, 
identification, scene observation/object tracking, medical 
initial assessment, medical victim transportation, 
decontamination, hazard disposal, and resource hauling. 
However, to successfully deploy robots to accomplish these 
tasks autonomously or semi-autonomously in a real-world 
environment still remains a great challenge for robotics. As 
tasks increase in complexity, so do the robotic systems that 
are designed to do these tasks. When coupled with the 
environment, increased complexity in both the task and 
robotic systems increase the number of ways the systems can 
fail [16]. 

The time-critical and mass impact nature of C-WMD 
missions does not tolerate failures. Poor judgments of the 
robot‟s abilities to operate in the real world have caused the 
failures of many robotic systems [16]. Thus, it is the goal of 
our research to develop tools that can be used to generate 
performance guarantees of robotic systems for these tasks 
and to aid the mission commander/robot operator in decision 
making regarding the usage of robots. This paper presents 
our software framework, based on formal methods, in 
providing performance guarantees for behavior-based and 
probabilistic robot algorithms in complex real-world 
environments. 

Formal methods for robots have recently emerged as an 
important area of research in robotics. This is driven by the 
increasing need to guarantee the safety and correct behavior 
of robotic systems (e.g., surgical robots). Formal methods are 
mathematical tools for verification and synthesis of software 
and hardware systems [17]. Major progress has been made in 
tools for verification of software and hardware systems. 
However, robotics presents new challenges for formal 
methods due to the fact that robots have to continuously 
interact with the environment, which can be unstructured, 
uncertain, and dynamic. 

Formal verification methods for robotics can be generally 
classified into two major categories: synthesis and 
verification. Synthesis deals with the problem of 
automatically generating correct-by-construction controller 
for a robot or team of robots, given a model for the robot and 
its specification expressed in a formal language, such that the 
robot is guaranteed to satisfy the given specification [17, 18]. 
Most synthesis approaches use Linear Temporal Logic 
(LTL) as the formal specification language [16, 19-23]. 
However, it is not clear that LTL is the right specification 
language [24]. Other specification languages such as 

Computational Tree Logic (CTL) [25] and Interval Temporal 
Logic (ITL) [26] can be viable alternatives to LTL. 

Verification addresses the problem of proving the 
correctness of a control system with respect to a formal 
specification or property using formal methods [16, 27]. 
Model checking has been a widely used technique for this 
purpose [16, 27-30]. In model checking, the system is 
represented as a finite state automaton (FSA) and formal 
specifications are verified by exhaustive exploration of the 
system‟s reachable states [16, 28]. However, these methods 
suffer from the well-known combinatorial explosion 
problem. Model checking has been extended to deal with 
stochastic systems using statistical sampling methods [31-
33]. Statistical methods reduce the cost of probabilistic 
model checking by replacing numerical computation of 
probabilities with sampling and require minimum memory 
by avoiding model construction. However, with sampling, 
there is no guarantee that the verification procedure always 
produces the correct answer [32]. 

Our ongoing research in formal verification of robotic 
systems focuses on verifying performance guarantees for a 
robot or a team of robots in carrying out C-WMD missions 
in real environments. The fundamental problem for verifying 
robot behavior is the interaction between the robot and the 
environment, which might cause unpredictable behaviors to 
emerge. Thus, to verify performance guarantees about the 
robot behavior, we have to model the interactions between 
the environment and the robot to the extent to which it is 
known. We have developed a verification framework, 
VIPARS (Verification In Process Algebra Robot Schemas), 
to represent robots, sensors, the control programs, and the 
operating environments [8, 9]. Process algebra enables 
verification of the system behavior (i.e., composition of 
processes) through automated algebraic reasoning as 
described in the following section. 

III. SYSTEM ARCHITECTURE 

Inserting robots into the C-WMD team not only changes 
the nature of the countermeasure mission, but also the team 
dynamics and its decision making (e.g., task allocation). One 
critical decision that the mission commander needs to make 
is whether robots should be used for a particular C-WMD 
mission, where the failure of the mission can be catastrophic. 
Such a decision hinges upon the predicted performance of 
the robot in carrying out the mission. It is the objective of our 
research to assist the mission commander in making this 
decision by providing information regarding performance 
guarantees using robots in accomplishing C-WMD missions 
in the real world. This section describes the framework for 
providing such a guarantee. 

A. Overview of the Framework 

The verification-based system for providing performance 
guarantee is built upon MissionLab, a behavior-based robot 
programming environment [34] (Fig. 1). The front-end of the 
MissionLab programming environment is a usability-tested 
graphical robot behavior programming interface, where the 
robot program is created as a finite state automaton (FSA). 
MissionLab provides a library of primitive behaviors (e.g., 



obstacle avoidance, go to goal, etc) that can be assembled 
into higher-level complex behaviors (e.g., a biohazard search 
behavior) in the form of FSAs. The newly added verification 
system is intended to provide the robot operator with the 
additional capability of verifying the performance of the 
robot program she constructed for the mission at hand prior 
to deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. System Architecture 

The core of the proposed system in Fig. 1 is the process 
algebra-based verification module named VIPARS 
(Verification in Process Algebra Robot Schemas) [8]. To 
obtain the performance guarantee for a mission, the robot 
program is translated to PARS (Process Algebra Robot 
Schemas), the specification language of VIPARS. The robot 
operator also needs to provide VIPARS with models of the 
robot, the sensors it is equipped with, and the operating 
environment of the mission, typically from a pre-existing 
library. Lastly, the performance criteria that the mission is 
required to meet need to be specified as well. VIPARS then 
provides the operator with the performance guarantee for the 
mission based on how well the provided performance criteria 
are satisfied by the given control algorithm, robot, and the 
operating environment. 

Based on the output of VIPARS, the robot operator can 
decide whether to abort the mission due to low confidence on 
success or to modify elements of the mission to improve 
performance (e.g., use a different robot or modify the control 
algorithm). The performance guarantee of a mission‟s 
success is quantified as a probability distribution that 
describes the likelihood of a robot successfully carrying out 
the mission by satisfying all specified performance criteria 
[35], which can be thresholded to provide a binary „yes/no‟ 
answer to the operator if desired. Additionally, the 
verification module provides the human operator with other 
information that is useful for iterative improvement of the 
mission performance (e.g., unsatisfied constraints, 
probabilities of meeting each criterion). 

 The verification module effectively forms a feedback 
loop that the human operator can iteratively improve the 
predicted performance of a robot in executing a mission. By 
providing pre-mission performance analysis of robots in 
carrying out C-WMD missions, the verification system under 
development can assist a human robot operator in making 
critical decisions regarding the deployment of robots. With 
the knowledge of what would work and what would fail, the 
mission commander/robot operator could save valuable time 
and avoid catastrophic consequences by avoiding mission 
attempts that can lead to failure. 

B. VIPARS 

Previously, as a technique for general-purpose software 
verification, model checking has had very good results [36]. 
A program is converted to a state transition system in which 
each state is labeled by a set of propositions on program 
variable values. For robot program verification, however, we 
must not only analyze the robot program but also the 
variables associated with the model of the physical 
environment. The combination of environmental model and 
program (both of which have concurrency, uncertainty and 
continuous-valued variables) renders a state-space 
prohibitively large to use reachability (and thus traditional 
model checking) as a practical verification paradigm. 

A standard approach to deal with this state-space 
explosion is to search for state regularities that can be 
leveraged to reduce the size of the space: for example, 
counterexample guided predicate abstraction [37] and 
abstract interpretation [38]. In its interaction with the 
physical environment, a behavior-based robot will regularly 
respond to a fixed set of sensory percepts. This induces a 
periodic regularity in the combined state-space of program 
and environment. While the robot may transition to another 
behavioral state with its own sets of percepts (behaviorally-
relevant sensor abstractions), thereby adding complexity to 
the interaction between robot and environment, it is this 
repeated handling of a specific set of percepts that is 
leveraged to make the verification problem tractable. This 
notion of periodic regularity will be more precise after a brief 
introduction to PARS. 

In PARS, a process P with initial parameter values u1, u2 
… input ports/connections i1, i2 ... output ports/connections 
o1, o2 ... and final result values v1, v2 ... is written as: 

Pu1, u2 ... (i1, i2 ...) (o1, o2 ...) <v1, v2 ...> (1) 

If there are parts of a process description that are empty, they 
are typically omitted. Processes that are defined only in 
terms of a port-automaton are the atomic units, or basic 
processes, from which the programs are built. Examples of 
basic processes are shown in Table I.  

TABLE I.  EXAMPLES OF BASIC PROCESSES 

Process Stop Abort 

Delayt After time t If forced 

RanФ<v> 
returns a random sample v 

from a distribution  Ф 
If forced 

Inc<y>, Outc,x 
perform input and output, 

respectively, on port c 
If forced 

Eqa,b, Neqa,b, Gtra,b, etc a=b, a!=b, a>b, etc Otherwise 

Robot 

Operator 

PARS VIPARS 

Performance 

Criteria 

Models 
(Robot, Sensors, 

Environment) 

 

 

 
 

MissionLab 
Programming 

Environment 

 

 

Robot(s) 



 Non-basic processes are defined in terms of compositions 
of other processes. For example, a process T that inputs a 
value on port c1 and then outputs it on port c2 is defined: 

T = Inc1<x> ; Outc2,x (2) 

, where ';' denotes sequential and conditional composition. 
Other composition operations include parallel-max (|) and 
parallel-min or disabling (#). The iterative construct in PARS 
is recursion. A tail-recursive (TR) process is written as: 

Ta = Pa<b>; Tf(a,b) (3) 

This describes a process that repeats P until it aborts. Any 
language that implements sequence, condition and loop 
constructs is sufficient to represent any program [39]; thus, 
we are confident that PARS can represent any robot 
program. 

In [9], we introduced the System Period as a state 
regularity to address the significant combinatorial problems 
of a state-based approach. The System Period can be roughly 
described as follows: given a System that is the concurrent, 
communicating composition of robot controller and 
environment (which is expressed in PARS as a parallel 
composition of TR processes: Sys = P1 | P2 | ... | Pn), we 
would like to rewrite it in TR form for the purposes of 
verification. First, we define the 'period' (Pi') of a TR 
process, P, as the section of the definition between the equal 
sign and the tail-recursive call.  This yields an expression of 
the form Pi = Pi' ; Pi. If all of the periods in the component 
processes of Sys (P1', P2', ..., Pn') contain port 
communication and all of the input and output 
communications can be matched (some periods will need to 
be unrolled), then we can specify a period for the entire 
System : Sys = Sys' ; Sys. The above requirement that all 
input and output communication can be matched solves the 
classical deadlock problem. A second constraint that we 
place on the communications between component processes 
is that no more than two processes are ready to communicate 
on the same port at the same time; hence starvation is a non-
issue as no competing processes are being denied their voice 
on an input-output channel, for example. This is done to 
simplify the computational complexity of the generation of 
the System Period without compromising the 
representational ability - multiple inputs on a port just need 
to be explicitly sequenced now. Under these constraints, the 
isolation of this period turns out to be the formal 
identification of the regularity in behavior-based programs. 

Taking advantage of the behavioral system period, the 
VIPARS verification module generates the System Period 
[9] by analyzing the recurrent structure of the concurrent 
composition of the robot mission controller and an 
environment model. VIPARS analyzes the port connectivity 
of processes within the period to determine the way in which 
process variables are transformed, thereby producing a set of 
recurrent functions we call flow-functions. VIPARS then, 
upon specification of initial variable values and goal variable 
values, attempts to solve these flow-functions with these 
boundary conditions using a Dynamic Bayesian Network 
approach [40]. 

VIPARS verifies a performance guarantee for a given 
robot mission where the models of the robot, sensors, and the 
environment are specified by the robot operator. For 
example, consider a single-waypoint mission, where the 
robot controller attempts to move the robot from point P0 to a 
goal point G. Capturing the uncertainty associated with 
sensor and actuator performance, the process parameter for 
robot position is represented as a distribution of positions. At 
each time-step through the Bayesian network, VIPARS 
evaluates sensor and actuator performance probabilities and 
calculates the probability that mission criteria are met. The 
robot operator needs to specify Tmax and Pmin as performance 
criteria; that is, the measure for success is that the robot must 
be at the goal point G after some time t<Tmax with a 
probability p>Pmin.  

The output of VIPARS is two-fold: 1) a Boolean answer 
to whether the mission can be successful and 2) a detailed 
record of the values of variables and distributions through 
successive time steps. From this output, a feedback loop is 
created which gives the robot operator the ability to refine 
the robot program until they are sufficiently confident to 
deploy the robot.  

IV. VERIFICATION OF A C-WMD MISSION 

A typical scenario that motivates the development of our 
C-WMD missions is the sarin gas attack of the Japanese 
subway system [12]. On March 20, 1995, members of the 
Japanese cult Aum Shinrikyo released sarin gas, a lethal 
nerve agent, on the subway trains in Tokyo. This attack 
resulted in 13 deaths and thousands of injuries. Sarin is 
colorless and odorless, which made it undetected by victims 
until symptoms started to appear. Some injuries were 
preventable, but delays in identifying the responsible agent 
allowed contamination to spread to hospitals, where staff 
failed to put on protective clothing and gas masks [12]. This 
event highlights the need to develop effective 
countermeasures for this type of attack. 

The key element of a countermeasure to a biological 
attack is the rapid identification of the biological agent used 
before the agent is widely disseminated [11]. Only after the 
nature of the biohazard is identified, can the first responders 
proceed to decontaminate the hot zone area and administer 
appropriate treatment for victims. In this section, we present 
a Biohazard Search mission where a robot is tasked to search 
an area for biohazard, Fig. 2. 

 
Fig. 2. Indoor Biohazard Search 

The control program of the robot for the mission, as 
shown in Fig. 3, is constructed in MissionLab as a behavioral 
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assemblage in the form of a FSA. The FSA consisted of three 
behaviors (Wander, MoveToward, and Stop) and three 
triggers (Detect, NotDetected, and Near). With this 
behavioral assemblage, the robot starts with random 
exploration of the environment.  However, when Detect is 
triggered, the robot switches from random exploration to 
moving toward the detected biohazard. This mission is 
completed once the robot is within a certain distance of the 
biohazard. While we adopted a simple search strategy (i.e., 
Wander behavior) for this mission, more sophisticated search 
strategies can be employed as well. VIPARS can potentially 
be used by the human operator to verify which search 
strategy would be most effective.  

 

 

Fig. 3. FSA of the Biohazard Search Mission 

When the robot operator is finished with the design of the 
robot behavior, the control program is then translated into 
PARS, the language of the VIPARS, for verification. The 
PARS representation of the Biohazard Search behavior in 
Fig. 3 is expressed as 

Behavior = NotDetected ; (Detected # Wander) | 

Detected ; (Near # MoveToward) | Near 

; Stop 

(4) 

The above can be described as the concurrent composition of 
the following behaviors: 1) if not detected, wander until 
found, 2) if detected, move until near and 3) if near, stop.  
The Behavior process models the high-level Biohazard 
Search behavior. The Behavior process consists of a 
hierarchically nested process network.  The lower-level 
processes in the network are PARS models of primitive 
behaviors, which are translated offline to PARS and stored in 
a library. This follows the spirit of behavior-based robotics 
[41] and simplifies the representation of complex behaviors 
in PARS. 

Different missions have different requirements that the 
robot has to meet. For the Biohazard Search mission, we are 
interested in time performance, successful detection of 
biohazard, and correct identification of the biohazard. These 
performance criteria are expressed in PARS as a 
performance specification network: 

Criteria = Delayt ; ( Atp | Biohazardp ) (5) 

The Atp process indicates the robot is at location p, the 

Biohazardp process indicates the location of the biohazard, 
and the Delayt process indicates a time t has passed. In 
verification we ask whether the mission will achieve this 
liveness condition for t<Tmax with at least probability Pmin. 
The Criteria process is a property specification process 
network, which differs from a process network in that it is 
actually a process network constraint expression, a 
specification of a set of possible networks [9]. 

A robot model generally includes the kinematic model of 
the robot platform. More complex robot models would 
include robot dynamics, battery life, tire properties, etc. The 
robot to be used for this mission is a Pioneer 3-AT, Fig. 4, 
and it is modeled in PARS as: 

Robot = (Delayt# Odor # Atr) ; Ranz ; 

Invu ; Robotr+(u+z)t  

(6) 

Odo = Rane ; Outp,r+e; Odor (7) 

The process Atr represents the robot at location r. The 
process Odo (short for Odometry sensor) transmits the robot 
location in a loop until terminated by the Delay. In our 
results, we use a multivariate normal distribution for these 
distributions. The sensor noise is characterized by the 

distribution  ~ N(s,s) and actuator noise by  ~ 

N(m,m). 

 

Fig. 4. Pioneer 3-AT 

We chose to separate some sensor models from robot 
model because the same robot platform can be equipped with 
different external sensors. By separating certain sensor 
models from robot models, it allows the addition/change of 
sensors without modifying the robot models. For this 
mission, the Pioneer 3-AT robot is equipped with a camera 
for biohazard detection and a SICK laser scanner for obstacle 
avoidance. The sensor model is a composite model of these 
sensors, which can be expressed in PARS as:   

Sensor = Camera | Laser (8) 

Camera = Out<s,sv> ; Camera (9) 

Laser = Out<o,svo> ; Laser (10) 

The Out<s,sv> and Out<o,svo>processes output current target 
sensor information and current obstacles respectively. 

The fundamental problem for the verification of robot 
behavior is the interaction between the robot and the 



environment, which can be uncertain, unstructured, and 
dynamic. Undesirable robot behaviors might emerge through 
this interaction, which might not have been foreseen by the 
robot programmer/operator. Thus, it is important for a 
verification language to be expressive enough to represent 
complex real-world environments. The targeted environment 
for the Biohazard Search mission is an indoor environment, 
Fig. 2. The PARS model of the environment is expressed as: 

Environment = (Outpi,qi # Outpo,qo #Inpq) ; 

(Condinside,qqi | 

Condoutside,qqo) ; 

Environmentqi,qo 

(11) 

Random variable values, such as the robot position, are 
represented in PARS as Gaussian Mixtures [40].The 
Environment process tests the robot position probability 
distribution and separates into two mixtures: on representing 
the portion of the distribution that is inside the room (qi), and 
one that represents the portion that would collide with the 
room walls (qo). That portion will be channeled to the 
Camera and Laser sensor processes to return information 
back to the control strategy. 

The PARS models of the control program, robot, sensors, 
and the environment form the System process, which is the 
concurrent, communicating composition of component 
processes 

System = Behavior | Environment | Robot | Sensor (12) 

The System process is then analyzed by VIPARS to 
determine if it satisfies all the constraints specified by the 
property specification process network (i.e., the Criteria 
process). 

V. RESULTS 

This section presents the result of the verification system 
for the Biohazard Search mission, which tasks a robot to 
search a room for a potential biohazard within a certain time 
limit. Experimental validation of the mission is also 
conducted to show the validity of the verification result. 
Validation basically consists of running the mission on a 
physical robot in the real environment and measuring the 
robot‟s performance. Validation and verification results are 
compared using a z-statistic proportion test to determine if 
any statistical significant difference exists between these 
results. 

A. Verification of Biohazard Search Missions 

VIPARS performed the verification of the Biohazard 
Search mission to provide a performance guarantee of the 
mission for the robot operator in a given environment. The 
mission is verified against two performance criteria: 1) locate 
the biohazard successfully and 2) complete the mission 
within 60 seconds. The biohazard is successfully located by 
the robot when it is within 1.0 meter of the biohazard. The 
mission is completed when the biohazard is located by the 
robot; however, the mission is only successful when the 
biohazard is located within 60 seconds since the start of the 
mission. The operating environment of the mission is 
assumed to be a medium-sized room (i.e., 10m x 10m) for 
verification. Another assumption made for verification is that 

the biohazard is assumed to be in the room and its probability 
of being at any point in the room is considered to be 
uniformly distributed. The environment is also assumed to be 
free of obstacles. However, the experiment can be extended 
to study a clustered environment where the biohazard might 
be hidden behind some obstacles. Introducing obstacles into 
the environment is expected to increase the search time and 
decrease the probability of mission success. 

With the mission represented by the System process (12), 
VIPARS first generates the system period and flow functions 
for the process with the SysGen and FloGen algorithms we 
developed in prior work [8, 42]. A parameter flow function is 
a mapping f : ⅅm → ⅅm that relates the values of m 
parameters (i.e., process variables) in the nth and (n+1)th 
iterations of the system period [9]. For example, the robot‟s 
position is updated at each iteration of the recursive process 
using the flow function:  

f(pt+1) = pt + vt (13) 

where p is the robot position, v is the robot velocity, and t is 
the time step. We have shown that verification then consists 
of solving these flow functions for the initial variable values 
and the goal variable values as boundary conditions [42]. We 
also developed a Dynamic Bayesian Network (DBN) 
approach for solving these flow functions [42]. 

Our approach of evaluating the mission success consists 
of two stages, in which first one is to determine the 
probability that the robot will detect the target given the 
camera sensitivity data. The second stage is basically simply 
evaluating the probability of success of the robot moving 
toward the target, within the time left in the time constraint 
that has not been used up in the first stage. The camera 
calibration model was given as a probability of target 
detection given the target was y meters from the robot for y = 
1m to 10m; we write this as 𝑃(𝑠|𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑡𝑦

, 𝑟𝑜𝑏𝑜𝑡𝑎𝑡0
). Only 

the mean data was used and a Gaussian was fit to the data 
based on minimizing the error between the Gaussian and the 
calibration data in the range 1m to 10m. Target detection 
probability at time t was expressed as  

𝑃 𝑠 =   𝑃  𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑡𝑥+𝑦
 𝑃 𝑟𝑜𝑏𝑜𝑡𝑎𝑡𝑥

 𝑃  𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑡𝑦
 

𝑦𝑥
 (14) 

where 𝑃  𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑡𝑦
  is the same at every point (i.e., the target 

can be located anywhere in the room) and sums to 1 for the 

room. The robot position distribution P robotatx
  is 

convolved with the zero-mean camera calibration 

P(s|targetaty
, robotat0

)  to get P  s targetatx +y
 P robotatx

  

and this is numerically integrated over the room to get the 
probability of detection at this discrete time. The probability 
of detection on each time step is also assumed independent. 

The performance guarantee of a mission is the 
quantification of the ability of the specified mission to be 
completed successfully in the given environment [35]. 
Currently, we represent this quantity as the probability of 
mission success with respect to the specified performance 
criteria. The result of the verification is summarized in Table 
II. The result indicates that the verifier predicted an 85% 



success probability for the Biohazard Search mission with 
the robot operating in the environment with respect to the 
performance criteria specified earlier. This result can be 
thresholded to get a „yes/no‟ answer for the robot operator 
regarding whether the mission will be successful. This 
information can then be used by the operator to make the 
decision of whether to deploy the robot or not. 

TABLE II.  VERIFICATION RESULT
1
 

Mission Performance 

Biohazard Search 85.0 % 

 

B. Validation 

Rigorous experimental validation needs to be conducted 
to validate the predicted performance generated by 
verification. For the Biohazard Search mission, validation 
experiments were carried out to obtain the actual 
performances of the robot in the real environment. For the 
validation experiment, the operating environment of the 
robot is a room with a dimension of approximately 10m x 
12m, Fig. 2. The room is covered with tile flooring and is 
well lit by florescent lights. The major area of the room is 
empty except some standard items along the walls (e.g., 
cabinets, storage crates). 

The robot that was used for this mission is a Pioneer 3-
AT, Fig. 4. The robot is equipped with a laser scanner for 
obstacle avoidance and a forward-facing camera for 
biohazard detection. The camera has a field of view of 39.6 
degrees. The biohazard is represented by a red biohazard 
bucket, Fig. 4. The bucket is 0.38m in height and 0.3m in 
diameter. Color feature of the biohazard bucket is used for 
biohazard detection. 

The complete validation experiment consists of 106 trial 
runs of the Biohazard Search mission. For each trial, the 
robot starts at the entrance of the room and proceeds to 
search the room with the control program described in Fig. 3. 
For all the trials, the location of the biohazard is uniformly 
distributed with respect to the room. Each trial is completed 
when the robot locates the biohazard. Mission success is 
defined by the performance criteria. For this mission, the 
criterion is that the robot needs to find the biohazard in 60 
seconds. Thus, the time it takes for the robot to locate the 
biohazard is recorded for each trial. The result of the 
validation experiment is shown in Table III. 

TABLE III.  VALIDATION RESULT 

Mission # Trials # Successes Performance 

Biohazard Search 106 88 83.0 % 

 

                                                           
1  The initial verification result was reported blindly as 79% 

without the knowledge of the validation result, which resulted in z 

= 1.01 and P(Z<1.01) = 0.16 > 0.05. However, it was discovered 

that this initial result used a stopping radius of 0.75m rather than 

1.0m. The verification was rerun with the correct condition, after 

the initial comparison between verification and validation results, 

which resulted in the corrected 85% value. 

C. Comparison of Verification and Validation Resutls 

Verification of Biohazard Search mission predicted an 
85% mission success probability, while the validation 
experiments showed an actual robot succeeds 83% of the 
time based on 106 trials with 18 failures. Validation and 
verification results are compared using a z-statistic 
proportion test to determine if any statistical significant 
difference exists between these results. The null hypothesis is 
H0: psucc=0.85, and the alternative hypothesis is Ha: 
Psucc<0.85. The z-statistic for the results is calculated in (15).  

𝑧 =
𝑝1 − 𝑝0

 𝑝0(1 − 𝑝0)
𝑛

=
0.83 − 0.85

 0.85(1 − 0.85)
106

= −0.58 (15) 

We obtained a z-statistic as z = -0.58, which resulted in 
P(Z<-0.58)= 0.28 from the standard distribution table. Since 
0.28>0.05, we fail to find any statistically significant 
difference between the verifier‟s performance prediction and 
the actual performance from the validation experiments. We 
are then safe to conclude that the VIPARS‟ performance 
guarantee, the 85% probability of mission success with 
respect to the performance criteria, for the Biohazard Search 
mission is a valid prediction. 

VI. CONCLUSION 

The goal of our research is to develop a tool for 
automatic verification of performance guarantees of a robot 
or a team of robots for critical C-WMD missions in complex 
real-world environments. To this end, we have been 
developing a formal verification framework, named 
VIPARS, based on process algebra, which allows algebraic 
reasoning over the PARS models of the system. Given the 
performance criteria for a C-WMD mission, VIPARS 
verifies whether the combination of control program, robot, 
sensor, and environment models will satisfy the mission 
criteria. The output of VIPARS is also designed to provide 
guidance to an operator to improve mission performance if 
the initial predicted performance is not satisfactory. This 
paper also presented a C-WMD mission that was used to 
illustrate how the verification framework can be used to 
provide performance guarantees of robots operating in real-
world environments. Experimental validation of the 
Biohazard Search mission was conducted to obtain the actual 
performances of the robots. A comparison between the 
verification and validation results showed the proposed 
system‟s ability in providing valid performance guarantee for 
time-critical missions.  

Future work includes verification of additional C-WMD 
missions such as multi-robot coordination, outdoor building 
approach, and simultaneous localization and mapping 
(SLAM) in unknown environments. More extensive 
verification and validation of robot performance will also be 
conducted at the USAR test facility at the National Institute 
of Standards and Technology (NIST) [43]. 
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