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SUMMARY

This study is concerned with a method for calculating the appar-
ent mass of a body accelerating in an incompressible potential flow while
confilned to a finite fluid field. To facilitate dealing in specifics,
the problem i1s reduced to attempting to make an analytic determination
of the apparent mass of a two-dimensional slotfed piston accelerating in
incompressible potential flow in a closed cylinder. The ultimate objec-
tive of the study is to determine if apparent mass is a function of pis-
ton position in the cylinder.

An outline of the concept of apparent mass of a body moving in
an incompressible potential flow is presented. The kinetic energy rela-
tions required to derive an analytic expression for the apparent mass of
such a body are presented, and from these relations, an analytic expres-
glon for apparent mass is developed.

The equations used to describe the flow conditions in the e¢ylin-
der are developed from the Law of Blot and Savart, and the boundary con-
ditions applicable to potential flow and the chosen problem are discussed
and applied to these equations.

In using the Law of Biot and Savart, 1t is necessary to replace
velocity discontinuities in the cylinder with vortex sheets. In order
not to exceed the capacity of the available computing equipment, a finite
number of vortex fillaments are placed in the cylinder in place of the
vortex sheets. These filaments approximate the vortex sheets which they

replace.



ix

A discussion and analysis of the results to be expected and a
method for arriving at these results are presented. Some possible in-
dications of having arrived at solutions other than the desired solution
are discussed, and it is pointed out that an analogy may be drawn between
this problem and the classic thin airfoil problem.

The results of some calculations using the procedure cutlined
in the paper are presented and are used to show that the procedure is a
reasonable one and that further computations using the procedure are
Justified.

Recommendations are made as to suggested further calculations
using the method outlined in the paper. A possible method for altering

the plan of attack is suggested.



CHAPTER T
INTRODUCTION

It has been experimentally observed that when a piston with an
orifice operates in a closed cylinder, the time required for the piston
to translate a certain distance in the cylinder when subjected to a u-
niform acceleration is affected by whether or not there is a vibratory
motion imposed on the piston in addition to the uniform acceleration.
This phenomenon is difficult to explain analytically, and it is consid-
ered that the difficulty may lie at least partially in the fact that a-
vailable theory does not account for the apparent mass of the piston.
Since apparent mass is a quantity that does not exist physically, but
acts as though it does, a few words to explain the concept appear to be
in order.

As a body moves at a constant velocity through a void, there is
no force to hinder its motion. Further, should the body be immersed in
a perfect, incompressible fluid, there is no force exerted to hinder its
motion, once the motion has been started. This fact is derivable from
Bernoullits Equation, which, when properly integrated, shows that while
a body moving in a perfect incompressible flow will in general have a
resultant couple acting on it, there is in no case a resultant force.
This fact is provable for all simply connected finite bodles, and 1s

o i
frequently referred to as D'Alemberts' Paradox

1. Von Mises, Theory of Flight, p. 22k.
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However, should this same body be accelerating in the fluid,
there will be a reguirement for a net force acting on the body in crier
to sustaln the acceleration. The force required to sustain the aczzel-
eration is that needed Lo accelerate the mass of the body plus some mass
of affected fluid. It is the determination of this mass (solid mass
rlus mass of affected fluid) that‘is the subject of this investigaticn.

Since each element of fluid is not necessarily accelerated in
the direction of motion of the body, the mass of fluid affected need not
necessarily be equal to the mass of fluid displaced. As an example, the
apparent additional mass of a sphere is only one-half the mass of the

; o2
displaced fluid

2. Towsley, Apparent Additional Mass, p. 1.




CHAPTER IX

KINETIC ENERGY EQUATIONS

As a starting point, 1t appears appropriate to prasent a devel-
opment cf the basic equation that will be used in thils paper *o desw=r-
mine the spparent mass of the body in question. In order T2 give zn
insight into the phaysical mechanisms involved, the development will b=
presented using a form of dimensional analysis.

As a body moves through an incompressible fluid, the flow pat-
tzrn aboulb it is established as if by impulse. This behavior is an out-
growth of the flow being incompressible, where an incompressible Tfluid
is defined as one in which the speed of sound is Infinite. Thus, any
change of boundary conditions is transmitted instantanecusly throughoas
the field tc all fluid particles. An impulse is imparted to the fluid
by each increment of surface area, and the direction cof this Impulse 1is
normal to the surface imparting it. Further, as the body moves through
the field, it pushes fluid particles out of its way, and, as each cf thess
fluid particles has mass, work is thereby done on each fluid particle.

From a consideration of the units of the quantities invelved,
it can be seen that the impulse and the momentum of a fluid particle are

equatable, or,

FeAT =M (1)

Equstion (1) can be seen to be dimensionally correst.



It can now be shown that the kinetic energy of the particle is
proportional to the product of the veloeity of the particle in ths di-
rection of motion (which is normsl to the solid surface) and the im-

pulge. Checking units:

.
ML
2 eC

T

R

T

Ml

(=]

(Kinetic Bnergy) (Velocity) (Force) (Time}

s

5 mve, where m is tke

However, the kinetic energy of the body is
body mass and V the body velocity. If this expression for the kinetic
energy is set equal to the product of the velocity times an impulse, and
the resulting equaticn divided by % VE, the equation will have units cf
mass. This mass then, is the apparent mass which this paper seeks to
determine. It is now desirable to find an analytic expression whereby
this apparent mass may be calculated.

As a starting point, the intuitive relation equating the kinetic
energy to the product of a normal veloclty and an impulsive pressure

will be used.

L = (F)- (aT)- (V) (2)

1
2
Ar analytic expression will be determined for the right hand side cf
this equation.
Iﬂmbj peints out that any actual state of moticn of a fluid for

which there exists a single valued velocity potential can be produceld

instantaneously from rest by a properly chosen system of impulsive

3, Lamb, Hydrodynamics, p. 18.
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pressures, and that this system is pf, where p is the fluid mass density
and @ the velocity potential. 0@ can be shown %o be an impulsive pres-
sure by examining the units. The impulsive force may thus be found by
multiplying od by an increment of surface area, As,

The normal velocity reguired in the right hand side of Equation
(2} may be found from the velocity potential @ defining the flow. This
is acoomplished by differentisting the veloecity potential with respsch
o The diresction normal to the body surfasce. That this will yield a
veloclty can be seen by analyzing the units of any simple problem.

A proposition in dynamics4 states that the work done by an im-
pulse 1s equal to the impulse times one-halfl the sum of the initial and
final veloecities. Since for this case, the motion was prodgced in a
fluid initially at rest, the average velocity will be % g% , and from
Equation (2) the kinetic energy MK.E. imparted to the fluid by an in-

crement of surface area is

A= (MX% §§> o )

The A K,E.'s due to all the increments of surface area may be summa-

rized by taking the surface integral of Equation (5)

- _ P og
K.E--—Eff;ﬁgﬁ ds (ii.)

where the minus sign is used to designate the inner normal to the sur-

face.

Y. TLamb, Hydrodynamics, p. 46.




Substituting Equation (4) into Equation (2) and rearranging:

w o= BEED 4 g (5)
E V2 b :

where Ma is the spparent mass of the body accelerating in the fluid,
and K.E. is the kinetic energy of the fluid particles.

T+ should be noted at this point that while Equation (4) has
besn derived on an intuitive bagis, it can be derived in a completely
methematical fashion., The method c¢f athack in this case is to uss
: . . ] 2
Gres=n's Theorem and combine it with Leplace's Eguation V @ = C. Using
the proper notation, the result is idential to Equation (4). The procf
1s given in detail by Lamb5.

This derivation presupposes the fluild to ke inltially at r=si
and the body to be moving through the fluid. Although the apparent mass
wonld be the same for the case of the body being at rest and an infinite
field of fluid flowing past it, the kinetic energy of such a field i3
cbvicusly infinite and the same approach as used above could not be used
to determine the apparent mass of the body. For such a case, the key
we finding the apparent mass is recognition of the fact that introducing
the body into the fluid produces a change of kinetic energy in the fluid
field, and it is the calculation of this change of kinetle energy that
leads to an expression for the apparent mass.

Some excellent examples of the aspplication of Equation (&) are

given in Reference 3.

5. Lamb, Hydrodynamics, art. 4h.




CHAPTER ITT

FLOW EQUATIONS

Problem Qutline

Consider a piston orifice cperation in a closed circular cylin-

der (see Figure 1).

Figure 1. Piston Qrifice in a (Closed Cylinder

The piston is free to slide in the horizontal direchion and the

cylinder is filled with an incompressible fluid. A device such
is useful as an acceleration integrator, and might also be us=d a3 a
switching mechanism. When this device is subjected to & uniform accsel-
eration, the time reguired for the piston teo clogse on the end wall of

the eylinder is predictable. However, when in addition %o the wnifcom

acceleration the piston is subjected to a vibratory moti:

for the piston to c¢lose on the end wall has been observed Lo vary
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significantly from that predictad by avallable theory. It 1s tkis, a%

rrasent unexplained; deviation from the computed ftime w0 close whilch

sent investlgation.

ey Ll L

has led o The

i
i)
i
w
i

Zroblem Analysis

The first step of the aralysis is 40 attempt te bullld a maitle.-
matical model of the pisbon whick will lend itself to soluabion ard whizh

shows promiss of giviug some insight into the naturs of the mecharism
causing this time deviation. Analyses to date have neple =i apparent
mess, and it is felt that this may be a serious omission.

This preoblem is basically three-dimensicnal. However, for rea-
gong of simplification whose details will become apparent throughout the
development,, the initdial simplifying assumption that will be made In
this analysis is to reduce the problem to two dimensious. Thig is an=
complished mathematically by imagining the cylinder of Figure 1 tn ex-
tend to infinity in beth directions in the plane normal to the paper.

L5 iz usual for this type of simplification, whenever a volume caloi-
laticn is needed in the analysis, a unit depth will be taken in this
direction.

A second simplification to be introduced at this point is that
classic potential fiow theory will be used in the analysis. The v
cipal restrictions of this assumption are the relaxation of the 'z
i

glio

condition at the solid surfaces and the disregarding of auy vis-
zoslity effects within the fiuid itself. At first, this might appe=r
tn bhe a severe rYestricticn on the physical interpretation of tha rasalis

ohtadined, but it should be remembered that for small amplitudes and High



: ST - ) i 5 )
frequency the Tlow aboud an osclillabting body approaches potential ilow .

2% e

Birther, use cf potential theory will permit the replacemant of velsei.

ty digcontinuities along sollid surfaces with vortex sheats. As will be
s=en, vortex theory is ong of the principal tools used te sclve the
problem.

A third assumphion will be tThat there is no fricgtion beiween
the wall and the pisgton. This is the most easily relaxed of fthe assump-
tionsg, as the simplification dnvoived is only one of calculation, and
not of thecry.

Using these three principal assumptions, the scope of the pro-
blem for this paper will be to make an analytic determination of the an-
parent mass of g two-dimensional slotted frictionless piston in a closed
cylinder accelerafting in incompressible potential flow. The objective
1s to determine if there is a variation of apparent mass as the piston
translates iIn the cylinder.

Two factors in this analysis are of interest. First, an analy-
tic determination of the apparent mass of a body moving in a finite
fluid field is an infreguent calculation. Becond, the use of classic
vortex theory in the determination of apparent mass is apparently littls
used.. Althought the thewry of vortices as used In this paper 1s nobt dif-
ficult, the computations are lengthy and require the use of digital com-
puting techniques.

The two-dimensicnal model constructed with the listed assume-

tions ie showm in Figure 2.

6. Towsley, Apparens Additicnal Mass, p. 42.
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Figure 2. Model Piston Orifice Arrangement

X, diztance of piston from cylinder end wall
1 piston length

I rylinder length

D cylinder helgh

d piston slot height

In order to derive equations describing the flow conditions with-
in the eylinder, the velocity discontinuities existing along the solid
surfaces will be replaced with vortex sheets whose filamen? ax=s are
normal to the plane ol the paper. The strength distribution and the
slope of the strength distribution may be specificd in order tc meet
+the boundary conditicns associated with the problem.

A5 noted below, the limiftations imposed on this analysis by the

avallable computing equipment require the replacement of ths wvort
hests with a finite number of filaments. PFor this reason, the devel-

crment which follows will be based on the velocity Induced at a polnh
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by & vortex filament of finite StrengthT. The strength of certain cf
these fllaments will be specified in order to meet certaln bounliary
conditions of the system.

Using the Law of Biot and Bavaert we can compute the: velozliles
that exist anywhere in the field due to one of these vortex fllaments.

-

tne form of this law is

where V is the velocity induced in the field by the vortex filamert, ¥
the strength of the filament, and R the distance from the filasment to

the point at which the velocity is induced (See Figure 3).

v

(XJ' .V)

P E ey )

Figure 3. Law of Biot and Savart

T. The extension of the analysis to a vortex sheet is Immediabe.
To accomplish this, the differential form of the TLaw of Biot and Savar-®
is used. THis relation iIs

yds
7 = e—
av o
where dV is the induced velocity at a point due to an increment of shse®

width ds. The sheet strength is ¥y and R the distance from the incre-
mental length to the point. The remainder of the development follows as
in the main analysis, with an integration process replacing the summabion.

8. Prandtl and Tietjens, Fundamentals of Hydrc- and Asromechani:zs,

Do 208



(x'; ¥v') are the coordinates of a vortex filament of strerabh 7,
ard (%, y), the coordinates of any point in the field, and V , the velc-
aity Induced by y at (x, y). Rslations for u and v may be derived from

the geometry cf the situabtion.

i e A
4 = Vesind = 7 B - I
21 [(x - x") + (y - Y')g] 2
¥ cosb

v o= =V 2088 = -

no
=
— 1
e
1
”
N
re
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1
S
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Also from the geometry of Figure 3,

_ (x - x")
cosf =
T
[(X “x)? (5 - y‘)gJ 2
Sl = o -y") -
-y - |

Substituting these relations into Eguations (7):

L= %;_{ y by -y') > }, (8)
T (x - )

x)* + (y - !

i 1 7 o = =xt)
V=T o D B
(x-x")"+ (@ -vy")

If there ars r such filaments in g fileld, the induced weloslly
at any point in the field may be found by summing the conbribvuticra of

+re Individual vertex filaments.



(x - X'n)2 + (v - y’n)e

Equations (9) are the basic relations which will be used %o
ietermine the flow ratiern about the mathematical model described In
Figurs 2.

Before proceeding with the solution, Equations (9) will be non-
iimensionalized. To accomplish this, the following non-dimensional

quantities ars defined:

T oy B ~ .
T v
- = < = = =
v D ® 2
1 T
= . L T ow b
yn D] n L
X
- o s d - 1
5 " 5 i =5 1 =~ 5

whore ¥ o and er are at pressnt defined only as a characteristic vorhax

o

o

trength and a characterigtic velocity associated with the flow and
used hers for non-dimensional purposes.

Substituting these relations into Equation (9) and rearranging,

the equations becoms
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=
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(=] 7
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D I I

5
—{ 24—

Figure 4. Non-Dimensional Piston Orifice Arrangement

From an examination of Equations (10) and Figure 4, it is appa-
rent, that the flow pattern existing in any closed cylinder for which
this mathematical model is a fair representation 1s completely defined

in terms of three geometrical parameters, 1, 4, and 5’ and. one dynamic
yw

similarity parameter, —— 5
2xDU

In order to determine numerlical rasults

using these equations, it will be necessary to select values fur the

geometrical parameters involved. The values selected for use in Fhis

anslysis will be discussed later in the paper.



Boundary Conditions

The boundary coanditions to be imposed on Equations (1) in order
“o determine the flow pattern will be applied by specifying the strenghh
of certain of the vortex filaments to be placed in the matrematical mod-
el. In general, the conditions imposed will be:

(1) No velocity component normal to any cylinder wall at the
wall.

(2) The flow in the orifice must satisfy continuity.

(3) The fluid velocity component normal to the vertical piston
surface must equal the piston velocity.

To satisfy these listed conditions, the distribution of the
strength of the sheet along the vertical cylinder walls (Figure 5 -
eurfaces 1 and 7) must have zero strength and zero slope in the corners
of the cylinder. These conditions are necessary to provids for po flow
in the corner (point C) and to permit a smooth tramnsition in the strength
distribution from the vertical o the horizontal walls. Further, at the
mid point (point A) of the vertical walls, the strengbh and slope of the
distribution must be zero by reason of symmetry. This in effect makes
this point a stagnation point in the flow.

Along the horizontal cylinder walls (surfaces 2, 6, 8, 12) at
the cylinder ends, the strength and slope of the distributicn must be
zero. This follows direectly from the argument of the preceding para-
graph. At the piston (peint B), this distribution should merge conbin-
uously into the constant sheet strength distribution between the pishton

and the wall (surfaces 1% and 14).
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AMlong the verticsal piston faces (surfaces 3, 5, 9, Li), tke
strength and slope cf the shest must vanish at the wall {point B) sine
the fiuid velocity In the piston-wall corner must be squal aand parallel
to the plston veloclty.

Along the horizontal piston surfaces (surfaces 4, 10), the
strength of the shest must be a constant and egual in magrituds o fthe
velogity discontinuity across the piston surface.

If the corners between surfaces 3 and 4. 4 and 5, 9 and 1D, ari
10 and 1L are assumed to be slightly rounded, then the vortex shest

2
strength on the piston surfaces %, 5, 9, and 11l should merge continucus-
2 2 2
Ly into the vortex sheet strength along surfaces 4 and 10. Making use
T

of this requlrement and the discussion of the previous paragraphs, the

fellowling relationships between the strengths of the finite vortex fila-

ments which approximate the vortex sheet may be obtained.

5 =
= fa)® 74
= 0
z_’}.xn
n=. )
e
b n
>_-I w l) 7.[1 g ~ J_I
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o ri
25
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— + i’
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A last requirement is that of Kelvin” who showed that the kine-
tic energy for the irrotational motion of a fluld occupying a =imply-
connected reglon was less than that of any other motion cousisten' with
the same normal motion of the boundary. Thus the one sclubion cf the

many possible solutions ig that one which makes the kinetic energy a

minimum, and permits the use of Equation (h) Tor calculating purpnses.

9. Lemb, Hydrodynamics, p. 47




CHAPTER IV

PROBLEM SETIE

.

Due *+o compubing eguipment limitations. the sclid surfa-ez f
the modeld will be replaced with a finite number of vortex filamentfs,

me hindred and sSixtsen fllaments will be arrzanged in the zy

exact locaticng of these fllaments are shown in Table 1. They have been
arbitrarily placed in their locstions, with an effort belng made to kest

the actual numbers describing their coordinates as exact as possible.

3 18 necessary as the available computing equipment is able to carry

only eight slgnificant figurss, and if the coordinate position number:z
ware excessively long, considerabls accuracy might be lost 1n solving

the system of forty simultanecus equations which will be develored.
In Table 1, the strength of certain of these filaments Las bes:
designated. This is an oubgrowth of the application of the boundary

zondltions previously notsd.

As an example of determining the strength of certain filaments,
censider the requirement that continulty must be satisfied wiitkin the

crifize:

)

I
Famn
=

o () () B

piston



fii.ame.rifs

Due to the flow being incompressible, the u componsnh of velenio

+y in the crifice will be everywheras consbant, and equal Lo the valos

£ ths velocihy diszontinuity whir bk It represents, so the strength of

)

the filaments placed in the orifice will be

where the second term is reguired because all points within the piston
beundary are moving with the veloeclty w . _, .
piston

The filaments nearest the horizontal center line (Figurs 5--
point A) have besen specified to have zero strength. This spe-ifiss no
flow aeross the end wall at this point, as well as specifying na zi”m
across the x axis, which is a requirement due to this axis being an
axis of symmetry.

The filaments nearest the cylinder corners (pcint C) have besn
specified to be of zero strength in order to meet the condition of no
flow in the corners. In order to meet the condition that the slope must
vanisgh, these filaments have besn spaced a finite distance from the cor-
ners

Filaments in the space bebwesn the wall and the piston (surfaces
13, 14) have been assigned a strength equal to the piston veiccity, rep-
resenting the velocity discontinuity between the wall and piston.

The filaments immedigtely fore and alft of the piston alone the

wylinder walls (surfaces 2, 6, 8, 12~--near polat B) have alcu been as-

signed a strenghh egual to the pisten veloecity, accounting for the faoth



e

that the fluid immediately adjacent to the piston must have a velosity
magnitude and direction egual to that of the piston. Alzo, the fils-
ment along “he vertical piston surfaces nearest the cylinder wall (sur-
faces 3, 5, 9, ll--near point B) iz fixed at zero strength, inaizariag
a zero fluid velocity relative to the plston. As may be noted from sx-
amining Table 1, this leaves eighty filaments of undetermined sfrerngth.
Iue to the symmetry of the problem, only forty magnitudes must be d=-

termined, since, as shown in Table 1,

1T sy
7o T g
758 T 716

It should also be noted that this specification has the effech
of making the circulation around the exterior of the model equal to ze-
ro, as one would naturally expect from the physical considerations in-
volved.

Tn order to determine the strengths of the unknown yn'g, the
piston will be "frozen™ in position instantaneously and the existing
flow pattern studied for varying distances of the piston from the wall.

At each piston position, or x_, selected, forty computing pcints will be

(4]

chogen on the various surfaces of the model and the equabion for The

velocity component normal to the surface at that point written™ . This

10. Computing points may not coincide with filament locabicns,
as this would yield infinite velocities. Table 2 contains the ~ooril-
nates of the computing points.



will yield a system of forty equations in forty unknowns which may be
solved simultanecusly to obtaln the unknown filament strenghths.

As noted in Chapter LIT, there are still seven conditions re-
maining that must be satisfied by the flow. These conditions are the
relations regarding the strengths of the unknown filaments, and the
condition that the kinetic energy of the flow must be a minimum. Once
the forty simultaneous eguations that have been written at the various
computing pointzs have been determined to be independent, these addition-
al relations may be taken into account by arbitrarily removing certain
of the computing point equations.

The form of the equations involving the unknown filament strengths
has been indicated in Chapter III, and the relation for the total circu-
lation about one-half of the symmetrical vortex system may be written

58
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where I is some arbitrary constant. Since the value of T’ for which the
kinetic energy of the flow is a minimum is unknown, it appears necessary
o make a trial and error sclution to determine this value.

The trial and error sclution to determine the value of T for
which the kinetic energy of the flow is a minimum may be accomplished
by ascuming a value of I'y solving the resulting equations, and then using
a numerical process to determine the kinetlc energy of the flow associa-
fed with that particular value of I After performing this task for
various values of I'y a plot of I' versus the kinetiec energy may be made

arnd the value of I' that minimizes the kinetic energy may be szleched.
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This value may then bs placed in the eguations describing the system,
and the unknown y's describing the physical flow msy be determined.

With these values of Pt the flow for the particular pishon po-
sltion is completely determined, within the limivations that asre impored
by the derivation of Equations (10) and the Tact that, due to the use
of a finite number of vortex fillaments, the equaftions describing the
flow can be made to satisfy the boundary conditions at caly a finits
number of points, rather than at all points 1in the flowll

OCnce the equations of the flow are obtained, the velocity poten-

tial of the flow may be obtained by simple integration arocund the sur-

face of the piston:

g = L/; (udx + vay)

This integration ylelds the velocity potential as the product
of some constant times the instantaneous piston velocity Eﬁjsfmr'

Having the velecity potential now determined, use may be made

of Equation (4).

&E.=-—%fﬁﬁ-%§ds (4)

11. There appears to be a valid criticism of this last mentionsd
limitation, and it is certainly a point which should be kept foremost in
the mind when interpreting this paper. In defense of the limitaticon, it
can be pointed ont that sny errors introduced by 1t will quite probably
be of the same magnitude for each piston position, since the various na-
tios used in the computations remaln the same for each piston position.
Iff each piston position has the same error, the effects of the error
should be self canczlling insofar as defermining a variation of apparent
mass with varying piston position.
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This equation can be integrated over the surface of the piston,
and thus the kinetic energy of the flow is determined. For this speci-
fic problem, the instantansous piston velocity is treated as a constant.

%% is the piston veloecity, u , dlong the vertical piston surfacess,

piston
and is zero elsewhere,
. . . . ; 1 2 .
As expected, when this expression is set equal to 5 mL, the ir-
stantaneous kinetic energy of the piston, the veloecities divide out, and
what remains 1s a number having the units of mass. This is exactly ar
predicted by Equation (5). This process is repeated for each piston po-

sition selected, and a plot of apparent mass versus piston position may

be made from the data thus cobtained.
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CHAPTER V

CONCLTDING REMARKS

Magnitude Analysis

In order to demonstrate that the magnitude of the apparent mags
is an appreciable quantity, it is possible to compute the kinetic ener-
gy of the fluid in the orifice. As noted previocusly, the wvelccity in

the orifice may be expressed as follows:

_ (1 -3)

Wy w .
orifice I piston

The contribution of this velocity to the veloeity potential may

be found and used in Equation (4). TUpon carrying out the indicated in-

tegration, it is seen that the ratio appears in the final =x-

a

pression for the kinetlic energy of the fluid. Negleecting the contribu-
tion of the vertical piston faces to the kinetic energy, whlch can only
add to the total kinetie energy, it is clearly seen that, for small ori-
fice openings, the apparert mass efflfects are considerable. For arrang=-
ments where the fluid density and the pilston density are of the same or-
der of magnitude, the apparent mass of the piston can be many times its
actual mass. These conclusions are borne out by Lamb. In sciving the
problem of determining the motion produced in a fluid contained betweern
a moving solld sphere and s filxed concentrlic spherical boundary, he

points out that the introduction of the finite external boundary “acts
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: ; . . . . I -2
as & constraint increasing the kinetic energy" of the fiuld[ :

Physical Insight

In the piston and cylinder arrangement analyzed in this study,
the streamlines of the flow in the top half of the cylinder would be

expected to have the general shape shown in Figure 6.

i)

S

Figure 6. Streamline Shapes

From a study of these streamline shapes, it can be seen that the
slope of the streamlines as they intersect the piston is indicative of
the relative magnitude and sign of the filament located on the wall atb
the point of intersection. Intuitively, then, it would appear that all
the Tilamente along the vertical piston faces should have the same sign
and. should increase in magnitude as the distance from the horizontal wall
increases. Were the slopes of the streamlines to be of varying sign in
thie region, & rotational flow would be indicated. Any solution to the
problem which displayed a condition of this type would not be the desired
solution, since it would not be the desi}ed minimum energy sclution. By
way of analogy, this problem might be compared to the classic thin alr-

folil problem, where a possible sclution exists for each value of circu-

12. Lamb, Hydrodynamics, p. 125
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lation about the airfoil. To obtain the physical sclution to the prob-
lem, it is neczessary teo fix the value of the circulation at the trail-
ing edge at zerc, and to prescribe a value of the eirculaticon about the

entire airfoll that insures a stagnation point at the tralling edge.

Computations

In order to establish that the ocutlined procedure is reasconable,
some calculations have been performed on the Burroughs 220 Elecfronic
Tats Processing System.

Initially, the equations describing the flow and satisfylng the
boundary conditions as outlined in Table 2 of the Appendix were pro-
grammed for solution. After some initial programming errors were cor-
rected, 1t was found that the forty equations as posed were independent
and could be made to yield a sclution. From an analysis of the program
and accuracy checks described in the Appendix, it was determined that
the solutions obtained were accurate to three significant figures. As
the machine is capable of carrying only eight significant figures, it is
felt that the loss of accuracy in the solution must be attributed to the
round-of f error accumulated in the machine during the inversion and mul-
tiplication routines. Further, it is felt that this order of aciuracy
is within engineering tolerance, and that further computations are jus-
tified.

Having determined that the equations were independent, the six
=gquations developed in Chapter III relating the unknown filaments were
used to replace six of the computing-point equations. When it was at-

tempted to solve this set of eguations, it was found that the matrix of



the coeffizients could not be lnverted. After careful examination, it

appzared that the equations should be independent, and the failure to

i

inver® was attributed tc the large mamber of zeroes which appeared
the matrix when the six equations relating the unknowns were used. Al-
though this presents no theoretical difficulty to matrix inversion, it
does present some practicai difficulties in the numerical process uz=d
by the machine to Invert the matrix of coefficients.

o overcome the problem of the large number of zerces in the
matrix, the six equations relating the unknowns were added tc form one
=quation, and five of the original computing-point equatiocns were re-
stored, thus maintaining a system of forty equations in forty unknowns.
These eguations were then solved and it was noted that while the equa-
tion obtained by adding the six equations relating the unknowns was sa-
tizfied to the same degree of accuracy of three significant figures, the
individual equations of which it was composed could not be satisfied
with the values determined for the unknowns. Further, the predicted
filament strengths along the pliston faces were of varying sign. These
Two facts would seem to indicate that the previous analysis is correct
and that the eguations must be examined for varying values of the sum
of the unknowns in arder to determine the one for which the kinetlic en-
ergy of the system is a minimum and thus determine the potential flow

solution.
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CHAPTER VI

REJOMMENDATIONS

1. As computer facilities become available, it is feli +hat
further calculations to establish the value of T' for which the kinetie
energy cf the flow is a minimum are justified and should be made. Tris
will require considerable machine time, since wilth the computing equip-
ment now available, the time necessary to determine the unknowns for
Just one value of T' is thirty-three minutes. Add to this the task of
then computing the kinetic energy of the flow for that value of I', and
it is readily seen that the project is time consuming.

2. As a possible alternative to the approach used in this shudy,
a method of attack which appears to offer promise in the solution of
this problem is tc place a vortex sheet of unknown strength along the
various surfaces of the cylinder and then assume a Fourier Series dis-
fribution of the sheet strength. Using this spproach, it would ncht be
necessary to replace the vortex sheet with finite veortex filaments. In-
stead, it would be possible to gelve for the unknown coefficients of the
Fourier Series. Depending on the number of terms chosen in the serieasz
distribution, this would permit the boundary conditions impozed on fthe

[Low to be met more exactly.
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APPENDIX

PROCEDTEE FOR NUMERICAIL CALCILATIONS

In order to compute numerical examples using the derived rela-
*lons, 1t 1s necessary to select numbers for the geometric parameters
inyolved in Equations (10). Although once these selections are made
The computations are straightforward, they are cumbersome and Time con-
suming, even with the aid of high-speed computing equipment. For this
reason 1t 1s Inconvenient to caleculate numbers for large ranges of the
varlous geometric parameters. For the numerical example to be computed
here, the values of the geometric parameters are taken from a device In
which the effects discussed in the problem cutline have been noted.

Theze values are:

B o

5 = 25
d = .05
I = .20

'sing these values, the Tlow conditions may be complstely deter-

mined in terms of the instantaneous piston velocity,
7o
2nDlJ ‘
(=]

a 3 Fill
upiston’ and the
dynamic similaxity parameter,

Once these values of the geometric parameters were ssiscted., The

equations were programmed for solution with the Burroughs 220 Electroni:

Data Prccessing System. This programming consizted of the three hasio



stieps oubtlinsd here.

Zhep 1. Compute the coefflcients associated with each umknown.

Step 2. Invert the matrix of the coefficients,

Step 3. Multiply the invers= obtained by a column vechor in
order to obtain the unknowns.

In addition to these steps, additions were made to the program
to multiply the matrix of coefficients by 1ts inverse. This step shoula
yiseld a unit matrix and serves as a check on the accuracy of the dnvers-
sloa. A further check made in the program was to multiply the matrix
of coeffilcients by the solution veetor. This should yield the original

column vector 1f the operations have been performed accurately.
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Table 1. Filament Coordinates
‘g X" ¥ _5 value
?1 (59) 0 (-} + .05 6]
s (50) 0 (-) + .10
;5 (61) 0 (-) + .20
Ty (62) 0 (-) + .30
s (63) 0 (-) + .ho 0
74 (64) 05 x, (=) + .50 0
Y7 (65) 15 X (<) + .50
8 (¢6) 25 x (-) + .50
s  (67) 35 X, (-) + .50
s (68) A5 x (-) + .50
711 (69) 5%, (-) +.50
15 (70) 65K (=) + .50
Y15 (71) 15 X (-) + .50
T (72) 85 %, (<) + .20
715 (73) 195 X (od ¥ 20 TS;J;: 255 Ypiebon
;ié (7%) E; (-) + .485 0
Y17 (15) % (<] + 53

The subscript In parentheses denotes the corresponding anhi-
symmetric filement in the lower half of the model. The sign of its y!
coordingt= and the sign of the ¥  are noted in parenthesss. The X!
coordinate and ¥ value are the same.



Table 1 (continued)

. . - " et
n
- T (-) + .385
718 (76) ; (=) + 4335
19 (77) ; (=) +.285
Y20 (78) ; (-) + .2%5
721 (19) ; (=) + .18
722 (80) ; (-) + .135
7z3 (8L) }-EO (-) + .085
Tou (82) ; (=) + .035
ies (83) -, Oi (-) + .025 'g%‘f;”; r
27 (85) _ 2) + .02 500 Ypiston
;28 452 x, + .12 (=) + j E_J u-—.. y
: o B (-) + .025 2zD “plsten
729 (87) ; . o (-) + .035
750 (88) o v (<) + .08
:’:-_61 (89) ° —— (-) + .135
752 (90) ; . (=) + .185
':55 (91) ; . (<) + .235
::ﬁ: ,9.| go 4. S5 (=) + .335
;. (9?: Ec g (-) + .385
'_Fj (95) = 4 .20 (=) + .435
728 (96) ; . (=) + 485 ?
Y39 (97) -




Table 1 (continued)

Al

_1'1 x! y! _In vaile
740 (98) X+ .0k (=) + .50 S
‘;]*-'1 (99) ;;0 + 09 (=} + 30 2?&6JL Yuiston
Tie (100) %, + 12 (=) + .50 L?E“ “piston
;’ﬁ 101) }?o +.516 (=1 + 430 5?{%% Ypiston
I-;LI']- (102) Eo B ol - }?o) =+ 30 l_O;—O- %upisﬂ'm
7&5 (10%) _o .2 + .15(.8 - EO) (=) + .50 '
;%; (104) 550 .2+ .25(.8 - i—o) (=) + .50
?7147 (105) X, +2+.35(.8 - x) (+) + .50
"7'48 (106) 550 2+ .45(.8 - :‘EOJ (-) + .50
77:49 (107) X, +.2+.55(.8-x) (-)+.50
:?50 (108) X, 42+ 6508 -x) (-)+ .50
- (109) X, +2+.75(.8 -x) (=) +.%0
Y52 (110) X, +.2+.85(.8-%) (-)+.5
Y55 (111) X, +.2+.9(.8 %) (-)+.50 0
Tsh (112) 2 (<) + .o 0
795 (113) = e D
Y56 (11k) E (-) + .20
77 (115) L (=) + .10
758 (116) - (-) + .05 0
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Table 2. Computing Point Coordinates
Foint % Sf- Action
I 0 025 Set 0
2y d Q75 Set €
2, 0 A5 Set . 0
b, 0 .25 Set u ¢
B 0 35 Bet 1 0
é. 10 ?;O .50 Set v 0
7 .30 EO S50 Set v 0
8. .50 EO .50 Set v 0
9. .70 EO .50 Set v @
£ o 2 .90 E’O .50 Set v 0
1L X .60 Set u AL
o] pilston
18, ¥ : : - ;
- %5 560 L J‘pif;'ton
1% x . 260 Set u U,
a] piston
Rt X .160 Set u -
8] pilston
15 X 060 Set u %
O pizton
6. EO + .02 .025 Set v 0
LT, ‘ig + .06 .025 Set v O
18 EO + .10 025 Set v 0
18, SEO + .1 .025 Set v o
20. x 4+ .18 025 Set v 0
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Table 2. (continued)
Paint X ; Action
21 X .20 .060 Set u e g g
o platon
22 X .20 .160 Set u s
o} piston
27 X 20 .260 Set wu U,
o} piston
2l iacs A e, \
2 X, 0 360 Set u B tbon
P . .20 460 Set u Ui sbon
26. ;EO .02 % Set v O
a7, ;?O .06 N Set v o)
28, EO .10 5 Set v 0
29. E’O B 1) 5 Set v 0
30 X .18 .5 Set v 0
21, X 3 B s ; Set
A1, X 10( xo) 2 Set v 0
32 X 2+ .30(.8 - %) .5 Set v 0
O (0]
2%, EZO .2 + .50(.8 - :TEO) .5 Set v 0
zh = ~ - n ey i 5 ;
o J(_O = .TU(.G L }&O) . S Set v 0
X 2+ 8 o« x ’ b q
%) X 2 90 ( x,) 5 Set v )
%6 25 Set u 0
T L <25 Set u 0
28, L5 Set u O
39. 75 Set, i
ho, .025 Set u a
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