
SUPPORTED CATALYSTS, FROM POLYMERS TO GOLD 
NANOPARTICLES SUPPORTS 

 

 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

William J. Sommer 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Chemistry and Biochemistry 

 
 
 
 
 
 
 

Georgia Institute of Technology 
August, 2007 

 
 

© Copyright 2007 by William J. Sommer 



SUPPORTED CATALYSTS, FROM POLYMERS TO GOLD 

NANOPARTICLES SUPPORTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
   
Dr. Marcus Weck, Advisor 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

 Dr. Christoph J. Fahrni 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

   
Dr. E. Kent Barefield 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

 Dr. Christopher W. Jones 
School of Chemical and Biochemical 
Engineering 
Georgia Institute of Technology 

   
Dr. Mostafa A. El-Sayed 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

  

   
  Date Approved:  May 21, 2007 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To Ofelia, Annie and my parents 
  
 
 
 
 
 



 

iv 

ACKNOWLEDGEMENTS 

 

 First, I would like to thank my wife, my daughter and my family. They were 

always here to support me and hear my complaints even though some months they did 

not see me very often.  Secondly, I want to thank several members of the Weck group 

who helped me “grow”. They not only help me become a better scientist but also a better 

person. They were only a few of these persons in the lab and they were very valuable to 

the group. The first person is Warren Gerhardt. He showed me other values in life and 

was always there to add a note of fun in the lab. He was also there through adversity. I 

will miss these long nights in the lab where we got to talk about everything and anything.  

I also want to thank Michael Holbach, an amazing person and talent who taught a lot of 

things. I also want to mention Paul Stubbs, Joe Carlise and Matija Crne. Finally, I will 

miss playing badminton with my good friend Alpay Kimyonok with whom I had a lot of 

discussion about life. I also want to thank my undergraduate research advisor Steve 

Nolan, for the chance he gave me to work in his lab. He gave me a taste of research in 

chemistry and trusted me enough to give me my own project! He is a very special adviser 

and a very special friend that I will never forget. Finally, the one without anything would 

have been possible, my advisor Marcus Weck. Even though I criticized him a lot I admire 

his drive to get where he is and his incredible knowledge in chemistry. Thank you for 

taking me in your group and believing in my abilities to accomplish something in the 

group. I would also like to thank my committee members, Dr. E. Kent Barefield, Dr. 

Mostapha A. El-Sayed and Christoph J. Fahrni for their great inputs and for allowing me 

to look at my research differently. Finally, a special thank to Dr. Christopher W. Jones 



 v

for reminding me that I did not know everything about my project. His inputs on a 

regular basis made me a better scientist. 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 



 vi

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS………………………………………………………………iv 

LIST OF TABLES………………………………………………………………………..ix 

LIST OF FIGURES……………………………………………………………………….x 

LIST OF SCHEMES……………………………………………………………………xiii 

LIST OF SYMBOLS AND ABBREVIATIONS……………………………………….xiv 

SUMMARY……………………………………………………………………………..xvi 

CHAPTER 

1 Supported Catalysts: an Overview  

1.1. Introduction……………………………………………………………….2 

1.2. Inorganic Supports………………………………………………………..4 

 1.2.1. Pd on Carbon………………………………………………………..5 

 1.2.2. Pd on Metal Oxides…………………………………………………5 

 1.2.3. Silica Supports……………………………………………………...5 

1.3. Organic Polymers…………………………………………………………7 

 1.3.1. Insoluble Organic Polymers………………………………………...8 

 1.3.2. Soluble Polymers………………………………………………….10 

1.4. Nanoparticles……………………………………………………………18 

1.5. Conclusion………………………………………………………………19 

1.6. References………………………………………………………….……20 

2 Organometallic Complexes Investigated in this Thesis  

2.1. Pincers…………………………………………………………………...24 

 2.1.1. Introduction………………………………………………….…….24 



 vii

 2.1.2. Coupling Chemistry Using Pincer Complexes……………………24 

 2.1.3. Supported Pincer Complexes……………………………………...28  

2.2. N-Heterocyclic Carbenes………………………………………………..32 

 2.2.1. Introduction………………………………………………………..32 

 2.2.2. Coupling Chemistry with N-heterocyclic Carbene Complexes…...32 

 2.2.3. Supported N-heterocyclic Carbene Complexes…………………...33 

2.3. Design Elements and Challenges………………………………………..36 

2.4. References……………………………………………………………….41 

3 Polymer and Silica Supported SCS-Pd Pincer Complexes  

3.1. Introduction……………………………………………………………...48 

3.2. Ether Linked SCS-Pd Pincer Complexes………………………………..49 

 3.2.1. Poisoning Studies………………………………………………….52 

3.3. Nitrogen Linked SCS-Pd Pincer Complexes……………………………56 

3.4. Conclusion………………………………………………………………60 

3.5. Experimental Section …………………………………………………...60 

3.6. References……………………………………………………………….66 

4 Polymer and Silica Supported PCP-Pd Pincer Complexes  

4.1. Introduction…………………………………………………………..69 

4.2. Results and Discussion……………………………………………….71 

4.3. Conclusion……………………………………………………………90 

4.4. Experimental Section………………………………………………...91 

4.5. References……………………………………………………………98 

5 Polymer Supported N-heterocyclic Carbene Complexes  

5.1. Introduction…………………………………………………………102 

5.2. Results and Discussion……………………………………………...103 



 viii

5.3. Conclusion…………………………………………………………..120 

5.4. Experimental Section……………………………………………….120 

5.5. References…………………………………………………………..137 

6 Gold Nanoparticles as a Support  

6.1. Introduction…………………………………………………………142 

6.2. Results and Discussion……………………………………………...143 

6.3. Conclusion……………………………………………………...…...155 

6.4. Experimental Section...……………………………………………..155 

6.5. References…………………………………………………………..169 

7 Summary and Next Steps……………………………………………………..156 

 7.1. Summary…………………………………………………………….173 

 7.2. Soluble Polystyrene as a Support……………………………………177 

 7.3. Cross-linked Polystyrene as a Support……………………………...178 

 7.4. Conclusion…………………………………………………………..179 

APPENDIX A: XAS Results…………………………………………………………181 

 



 ix

LIST OF TABLES 

Table Page 

Table 5.1: Catalytic Results for the Suzuki-Miyaura Coupling reactions……………...106 

Table 5.2: Leaching Test Results……………………………………………………….111 

Table 5.3: Catalytic Results for the Sonogashira Coupling Reactions…………………116 

Table 6.1: Optimization of 1,3 dipolar cycloaddition conditions for gold  

 nanoparticles functionalization……………………………………………..147 

Table 6.2: Yields of 1,3 dipolar cycloadditions on gold nanoparticles using the  

 library of alkynes…………………………………………………………...150 

Table 6.3: Catalytic Results for the Suzuki-Miyaura Coupling reactions……………...154 

 



 x

LIST OF FIGURES 

Figure                                                                                                                             Page 

Figure 1.1: Schematic of Supported Catalysts……………………………………………3 

Figure 1.2: Silica Supported Catalysts……………………………………………………6 

Figure 1.3: SBA-15 Tethered Pd Complex………………………………………………7 

Figure 1.4: Pd(II) Supported Complex Poly(styrene) resin………………………………9 

Figure 1.5: Crosslinkers with Salen and BINAP ligands………………………………..10 

Figure 1.6: Soluble Polymers used as Supports for Catalysts…………………………...11 

Figure 1.7: Schematic of the Removal of PEG Supported Catalysts…………………….12 

Figure 1.8: Butadiene Dimerization Reaction..………………………………………......12 

Figure 1.9: The Different Type of Dendrimer and Dendrons Supported Catalysts……....14 

Figure 1.10: G3 Poly(propylene imine) Dendrimer Functionalized with Diphenyl 
Phosphines at the Periphery………………………………………………...15 

Figure 1.13: Poly(styrene) Supported Salen-Co Complex………………………………16 

Figure 1.12: Hydrolytic Kinetic Resolution of Epichlorohydrin………………………...17 

Figure 1.13: Palladium Complex Supported on Superparamagnetic Maghemite………..19 

Figure 2.1: Pincer Ligands……………………………………………………………….25 

Figure 2.2. Catalytic Cycle of Heck-Mizoroki Reaction………………………………...26 

Figure 2.3. Catalytic Cycle of the Suzuki-Miyaura Reaction……………………………26  

Figure 2.4: Mechanism Proposed by Jensen and Morales-Morales for Pincer  

  Complexes……………………………………………………………………28 

Figure 2.5: Examples of Supported Pincer Complexes………………………………….30 

Figure 2.6: N-Heterocyclic Carbene Ligands……………………………………………32 

 



 xi

Figure 2.7: Examples of Highly Active N-Heterocyclic Carbene Complexes…………..33 

Figure 2.8: Merrifield Resin Supported Pd-NHC Complex……………………………..35 

Figure 2.9: Polymer Supported Pd-NHC Complex……………………………………...36 

Figure 2.10: Silica Supported Pd-NHC Complex…..……………………………………37 

Figure 2.11: Catalytic Cycle of the Sonogashira Reaction.……………………………...40 

Figure 3.1: Supported Pincer Complexes Synthesized…………………………………..49 

Figure 3.2: Recycling of Silica Supported O-SCS-Pd Pincer…………...……………….51 

Figure 3.3: Three Phases Test……………………………………………………………52 

Figure 3.4: Poisoning Studies……………………………………………………………54 

Figure 3.5: Kinetic Plots of Poly(norbornene) Supported O-SCS-Pd Pincer…………....55 

Figure 3.6: Kinetic Plots of Poison Containing Catalysis for Poly(norbornene)  

 Supported O-SCS-Pd Pincer…………...…………………………………….55 

Figure 3.7: Supported SCS-Pd Pincer Complexes Synthesized by Bergbreiter et al……56 

Figure 3.8: Kinteic Plots of Poly(norbornene) Supported N-SCS-Pd Pincer…………....58 

Figure 3.9: Recycling Experiment Using SBA-15 Supported N-SCS-Pd Pincer (21)…..59 

Figure 4.1: Pd-PCP Pincer Studied by Eberhard…….…………………………………..70  

Figure 4.2: The Immobilized Palladated Pincer Complexes Evaluated in this Chapter....71 

Figure 4.3: Heck Reaction Conditions…………………………………………………...72 

Figure 4.4: Conversion vs. Time for Heck Coupling Using 1…………………………...73 

Figure 4.5: Conversion vs. Time for Heck Coupling Using 2…………………………...75 

Figure 4.6: Conversion vs. Time for Heck Coupling Using 3…………………………...77 

Figure 4.7: Conversion vs. Time for Heck Coupling Using 4…………………………...78 

Figure 4.8: Postulated Mechanism by Louie et al. for the Synthesis of  

       [Pd(0){P(o-Tol)3}2]. a) Deprotonation, b) β-H Elimination, c) Reductive  

       Elimination d) Disproportionation………………………………………….79 



 xii

Figure 4.9: Optimized Structures of the Calculated Exchange Pathway of Phosphine by a 

Trimethyl Amine Base of Palladated Pincer Complexes. A) Chemdraw 

Representation of Structures Used in Calculation, B) Fully Intact Complex, C) 

Removal of one Phosphine, D) Addition of the Amine Base, E) 

Rearrangement to a Distorted Square Planar Confirmation, and F) Exchange 

of the Second Phosphine by Another Amine Base…………..………………82 

Figure 4.10: Free energy diagram of the relevant minima for the initial steps of  

          the proposed decomposition pathway computed at the BP86/LAV3P/6-31G* 

 level of theory………………………………………………………………84 

Figure 5.1: Kinetic Study for a) the Suzuki-Miyaura Reaction with 6a ( ), b) the 

Sonogashira Reaction with 6a ( ), c) the Suzuki-Miyaura Reaction with 6a  

 in the Presence of QuadraPure® ( ), d) the Sonogashira Reaction with 6a in 

the Presence of QuadraPure® ( ), and e) the Suzuki-Miyaura Reaction with 

6a with the Addition of QuadraPure® after 20 minutes ( )………………..110 

 

 

 

 

 

 

 



 xiii

LIST OF SCHEMES 

 
Scheme          Page 

Scheme 3.1: Synthesis of Poly(norbornene) SCS-Pd Pincer…………………….……....50 

Scheme 3.2:  Synthesis of Amide Linked Supported SCS-Pd Pincer…..……………….57 

Scheme 4.1: Synthesis of Pd-Cl N-{3,5-bis[(diphenylphosphanyl)-methyl]-phenyl}-              

                    acetamide…………………………………………………………………...72 

Scheme 4.2: Synthesis of Polymer 2……………………………………………………..74 

Scheme 4.3: Synthesis of Polymer 3……………………………………………………..76 

Scheme 4.4: Proposed initial steps of the decomposition of the palladated complex…...80 

Scheme 4.5: Computational Explored Ligand Exchange Mechanism……..………….....81 

Scheme 4.6: Proposed Decomposition Pathway Generating the Amine…….…………..87 

Scheme 5.1: Synthesis of the Polymer Supported NHC-based Catalysts 6, 7 and 9  

          Utilized in this Study……………………………………………………..104 

Scheme 5.2: The Catalytic Reactions that have been Employed to Evaluate Catalysts  

          6, 7 and 9……………………………………………………………….....105 

Scheme 6.1: Synthesis of the Azide Functionalized Gold Nanoparticles..……………..145 

Scheme 6.2: Library of Alkynes Used as Substrates in the 1,3 Dipolar Cycloadditions  

 and the Functionalized Nanoparticles before and after the  

 Transformation…………………………………………………………...149 

Scheme 6.3: Synthesis of the Palladium Complex Supported Gold Nanoparticles ...….153  

 



 xiv

LIST OF SYMBOLS AND ABBREVIATIONS 

 

Ar  aryl  

Bn  benzene 

Bu  butyl 

ºC  degrees Celcius 

cat.  catalytic 

CDCl3  deuterated chloroform 

CHCl3  chloroform 

δ  chemical shift 

DMF  N,N-dimethylformamide 

DMSO  dimethylsulfoxide 

EI  electron ionization 

ESI  electron spray ionization 

EtOAc  ethyl acetate 

equiv  equivalent 

g  gram 

h  hour 

HRMS  high-resolution mass spectrometry 

Hz  Hertz 

IR  infra red 

J  coupling constant 

λ wavelength 



 xv

M molar 

MeOH methanol 

Mes mesithyl benzene 

mg milligram 

MHZ megahertz  

min  minute 

mL  milliliter 

mmol  millimole 

mole  mole 

mol%  mole percent 

NHC  N-heterocyclic carbene 

nm  nanometer 

NMR  nuclear magnetic resonance 

Ph  phenyl 

ppm  part per million 

s  second 

TEM  transmission electron microscopy 

THF  tetrahydrofuran 

 

 

 

 

 

 



 xvi

SUMMARY 

 

In today’s world, the need to limit the use of nonrenewable resources and the 

importance of recycling has been recognized.  One important contribution of chemists 

toward the general goal of limiting their use is to find catalysts that can be reused and 

recycled thereby limiting the need for expensive metal precursors and metal waste.  

Strategies to recycle catalysts are multifold and range from the employment of soluble 

polymers as catalyst supports to the use of membrane-encapsulated catalyst. The use of 

soluble polymers as a support not only offers the advantage of being soluble under the 

catalytic reaction conditions but also, to be removable by changing the conditions of the 

surrounding media. Despite the great potential of these soluble supported catalysts, their 

use is very limited in today’s synthesis. In addition, no set of rules have been established 

to guide the synthesis of efficient supported catalysts. In order to establish a “tool box” 

for the synthesis of supported catalysts, the study of several parameters such as the choice 

of the support and the choice and the stability of the catalyst are necessary. To establish 

this set of rules, a limited number of catalytic transformations, were studied. These 

catalytic reactions are the Heck-Mizoroki, Suzuki-Miyaura and Sonogashira coupling 

reactions. These transformations became fundamental for the synthesis of drugs and 

materials. The first and second chapters provide background information by describing 

and evaluating the main supports that were previously used for catalysts and the two main 

catalysts that are used in this thesis, the palladium pincer complex and the palladium N-

heterocyclic complex. In chapter 3, the synthesis of a soluble polymer supported catalyst 

is described. The polymer chosen for the study is poly(norbornene), and the catalyst is a 



 xvii

1,3-disubstituted benzene ligand with sulfurs in the side-chains able to chelate to the 

metal center, better known as pincer ligand. These ligands are abbreviated by the three 

atoms that coordinate to the metal center, in this study, SCS. The metal used for the 

investigation of the activity of this supported pincer is palladium. The importance of the 

nature of the linkage on the stability of the Pd-SCS pincer complex has been reported in 

the literature, leading to the synthesis of Pd-SCS pincer complex tethered to the polymer 

via an ether and an amide linkage. The synthesized poly(norbornene) supported Pd-SCS 

pincer complexes were evaluated using the Heck transformation of iodobenzene with n-

butyl acrylate. Kinetic studies and leaching tests using poly(vinyl pyridine) and mercury 

were carried out resulting in the conclusion that the active species during the catalysis is 

not the palladium pincer complex but a leached palladium (0) species. In chapter 4, Pd-

PCP pincer complexes with the ether and amide tether were synthesized. Kinetic and 

poisoning studies were carried out resulting in a similar conclusion. Furthermore, 31P 

NMR experiments were conducted to investigate the unstability of the complex. 

Following this study, in-situ XAS as well as computational calculations were carried out. 

The conclusion from this sinvestigation argues that triethylamine is a key ingredient for 

the decomposition of the Pd-PCP complex. The overall conclusion from these two 

different studies is thta Pd(II) pincer complexes decomposes during the Heck reaction 

when triethylamine is used for the coupling of iodobenzene to n-butyl acrylate in DMF at 

120 ºC. Stemming from this investigation, a reported more stable complex, Pd-NHC, was 

tethered onto poly(norbornene). The system was evaluated using Suzuki-Miyaura, Heck 

and Sonogashira reactions. Similar poisoning and kinetic studies were utilized to 

investigate the stability of the supported NHC Pd complexes. The result of this 



 xviii

investigation suggests that supported Pd-NHC complexes are stable under Suzuki-

Miyaura and Sonogashira but decompose under Heck conditions. However, when the 

system was recycled, a decrease in activity for the Suzuki-Miyaura transformation and 

solubility was observed. In chapter 6, gold monolayer protected clusters (MPC) were 

investigated as potential candidates as supports. To examine the potential of MPC as a 

support, a NHC-Pd complex was graphted onto the particles. To functionalize the gold 

nanoparticles, a new method was developed. Using azide moieties added to the gold 

nanoparticles, the catalyst was added via microwave assisted 1,3 dipolar cycloaddition. 

The system was evaluated using Suzuki-Miyaura transformations under microwave 

conditions. The system exhibited quantitative conversions for a variety of substrates. 

However, when the system was recycled, aggregation of the particles and decrease in 

catalytic activity was observed. In summary, this thesis describes the synthesis and 

evaluation of poly(norbornene) supported Pd-pincer and Pd-NHC complexes and of gold 

nanoparticles supported Pd-NHC complex. It also detail the combination of kinetic and 

poisoning studies developed to evaluate a potential supported catalyst. 

 

 

 



 

1 

CHAPTER 1 

SUPPORTED CATALYSTS: AN OVERVIEW 

 

Abstract 

 In this chapter, an overview of supported catalysts is presented. A brief 

description of diverse inorganic support with a focus on palladium is given. The 

inorganic supports discussed include Pd/C, Pd on metal oxides and Pd complexes 

supported on silica. The importance of these supports resides in the easiness to remove 

them from solution after the completion of the reaction. Organic polymer supports are 

discussed. Two main families are identified for these supports, the insoluble and soluble 

polymers. Insoluble polymers are evaluated using poly(styrene) supported Pd complexes 

and Co-salen complex used as a cross-linker as examples of the versatility of these 

supports. The soluble polymer section discusses the increase catalytic activity provided 

by these systems. Soluble polystyrene with Co-salen complex and poly(ethylene glycol) 

supported palladacycles. This last example became the basis on my research on the 

poly(norbornene) supported Pd-pincer complexes. Furthermore, the choice and design of 

the different supports is reviewed. The different catalysts selected to be supported are 

evaluated with a special attention for catalyst activities. The design principles for the 

catalytic systems are evaluated. Finally, an overall appraisal of the different systems 

reviewed is presented. Stemming from these reports, several questions stayed unanswered 

such as what is the effect of the support on the catalyst, what is the effect of the tethered 

on the stability of the metal complex, what kind of support should be used and what 

studies are necessary to evaluate the activity of the new synthesized systems. 
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1.1. Introduction 

The increasing strain put on our natural resources leads scientists to devise 

different ways to limit the pollution and waste generation. Chemists addressed these 

issues by designing catalysts that can be recovered and recycled several times as another 

way to save resources and limit waste.[1-3] A catalyst is defined often as a substance that 

increases the rate of a reaction without being consumed in the process.[4] A more rigorous 

and precise definition was formulated by the UK Science Research Council in 1975 by: 

“A system is said to be ‘catalyzed’ when the rate of change from state I to state II is 

increased by contact with a specific material agent which is not a component of the 

system in either state, and when the magnitude of the effect is such as to correspond to 

one or more of the following descriptions: 

(a) Essentially, measurable change from state I to state II occurs only in the 

presence of the agent. 

(b) A similarly enhanced rate of change is found with the same sample of agent in 

repeated experiments using fresh reactants. 

(c) The quantity of matter changed is many times greater than that of the agent.” 

 Scientists have devised general ways to remove and recycle a given catalyst.[2, 3]  

In the late 60s, early experiments using solid supports to reuse reagents and catalysts 

were reported.[5] The interest in this new field grew considerably in the late 70s and early 

80s.[4, 6-9] The range of catalysts supported increased exponentially from enzymes to Pd 

complexes.[2, 10] Furthermore, the range of supports expanded from solid polymers to 

silica and soluble polymers.[6, 7, 10-12] In these systems three parts can be tuned, the 
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support, the linker and the catalyst (Figure 1.1). Any changes of any of these parameters 

can influence the behavior of the system during the reaction.[2, 4] 

 

 

 

Figure 1.1. Schematic of the tunable variables of a supported catalyst 

 

What are the advantages of supporting catalysts? 

One of the main advantages of supported catalysts is the easiness to separate the 

catalyst from the reaction mixture.[2, 4] In contrast to molecular catalysts, the separation of 

the often costly catalyst from the products after complete reaction is very difficult. By 

using supported catalysts, the separation can be achieved via a variety of methods 

ragining from coarse filtration to precipitation. 

 However, some disadvantages of using supported catalysts subsist, such as the 

low efficiencies of the catalysts and the low reproducibility of the catalysis due to the 

variation on the structure of the support.[4] Furthermore, the lack of specificity is a major 

drawback of supported catalysts. Generally, supported catalysts are not as selective and 
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efficient as their homogeneous counterparts. Nevertheless, scientists have actively 

worked to overcome these drawbacks by identifying new supports to be used and by 

modifying well known catalysts to develop supported catalysts with better selectivity, 

reproducibility and efficiencies.[4, 6-9]  

Three different types of supports can be identified: organic polymers, inorganic 

solids and nanoparticles. 

In this chapter, inorganic solid supports will be discussed, followed by organic 

polymer support and nanoparticles used as a support. An emphasis on supported 

palladium catalyst for coupling reactions will be given. The core of this thesis rests on the 

use of supported Pd complexes for a variety of coupling reactions. Following the 

evaluation of the carefully chosen examples, that illustrate the advantages and 

disadvantages of each type of support, the choice of supports that I investigated for my 

thesis will be discussed.  

 

1.2. Inorganic Supports 

 Inorganic supports have been used in science for more than a century. They 

encompass a wide variety of materials from silica to zeolites. In this section, Pd on 

carbon (Pd/C) and Pd on metal oxides used for the Heck-Mizoroki reaction will be briefly 

reviewed. Pd on mesoporous materials for the oxidation of alcohols will be discussed 

more in details.  
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1.2.1. Pd on Carbon 

 Pd/C has been used since the early 70s for a wide variety of coupling reactions 

such as Suzuki-Miyaura and Heck-Mizoroki.[13] The reaction of interest for this thesis is 

the Heck transformation because of its importance and its efficiency. The Heck-Mizoroki 

reaction consists of the coupling of an α-olefin with a halogenated aryl. Pd/C has been 

used extensively for the Heck-Mizoroki transformation.[9] Numerous reports 

demonstrated the versatility of this heterogeneous catalyst with a variety of substrates 

such as activated aryl chloride, aryliodides, iodopyrimidines or diazonium salts reacting 

with vinyl ethers, acrylates or styrenes.[9, 14-18] It is important to note that these reactions 

are performed without the addition of extra ligands. 

 

1.2.2. Pd on Metal Oxides 

 The use of Pd on metal oxides started in the 90s with MgO for the coupling of 

chlorobenzene with styrene.[19] Since this report, numerous oxides have been used such as 

Al2O3, SiO2, TiO2, or ZrO2 for the coupling of aryl halides with acrylates,[20-22] 

acrylonitrile,[23] alkene[24] or styrene.[25, 26] 

 

1.2.3. Silica Supports  

  Mesoporous silica is widely used as a heterogeneous support for catalysts.[11, 12, 27] 

This material comes in a variety of forms with different pore sizes and functionalities. 

The functionalization of these supports is usually accomplished by grafting a silica 

terminated functionality of a catalyst on the surface (Figure 1.2).[11] These silica supports 

such as MCM-41 or SBA-15 have highly ordered channels and monodisperse pore 
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channels. They also have a high surface area allowing for a higher density of the 

functionality in the pores of the solid. Silica offers the advantage of having better 

mechanical and thermal stability than their homogeneous analogues. It also allows for 

easy removal of the catalyst by simple filtration. 

 

 

 

Figure 1.2. Schematic of Silica supported catalysts 

 

 A recent example illustrating the use of SBA-15 as a support shows the surface 

functionalization of the solid support with a bipyridylamide ligand complexed with 

Pd(OAc)2 (Figure 1.3).[28] This example is very relevant to my thesis because the authors 

grafted a Pd complex on the support and evaluated the nature of the catalyst by 

conducting careful kinetic studies and leaching tests which are corner stones of my thesis 

investigations. This catalytic system was used for the aerobic oxidation of a variety of 

alcohols.  
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Figure 1.3. SBA-15 tethered Pd complex 

 

 The authors reported the use of this support up to twelve times without any losses 

in catalytic performance or purity of the product. Furthermore, the supported catalyst was 

tested for any leaching, and it was shown that the catalytically active species was the 

organometallic complex. The authors noted that because of the properties of SBA-15, 

catalyst aggregation was impossible in the ports contributing to the high stability of this 

catalyst. 

 

1.3. Organic Polymers 

  Organic polymers have seen an increase in interest as support in catalysis in the 

past 20 years.[4, 6, 8] The interest sparks from the different advantages that polymers offer 

over inorganic supports. They can be functionalized easily allowing for the tunability of 

the supports toward the chemical environment and are often chemically inert, assuring no 

interference with the catalyst.[2] Organic polymers can be organized into two distinct 

categories, insoluble polymers and soluble polymers. 
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1.3.1. Insoluble organic polymers  

The advantages offered by solid supports such as insoluble polymers are multiple, 

including mechanical stability, chemical inertness under reaction condition and easy 

removal from the reaction.[3] The most common polymer used for solid phase synthesis is 

cross-linked poly(styrene).[2, 3] It offers the advantage of being easy to synthesize and to 

functionalize. Furthermore, several type of poly(styrene) are commercially available with 

a choice of functionalities, different loading values, different diameter sizes and different 

degrees of cross-linking. The syntheses of poly(styrene) as a support consist of reacting 

crosslinkers, such as divinylbenzene as a comonomer, with styrene, resulting into a cross 

linked matrix.[3] These newly synthesized resins are microporous when a cross-linking 

ration of 0.2% to 2% is used and macroporous for a crosslinking ratio of more than 10%. 

In this section, microporous solid supported catalyst will be discussed.  

 Poly(styrene) supported phosphine-based transition metal complexes received a 

lot of attention early on.[29] Phosphines are known to coordinate to a variety of transition 

metal such as Pd or Pt.[3] Direct substitution of halogenated poly(styrene) by the desired 

phosphines is a straight forward way to obtain the desired moiety on the support.[3] 

Following this substitution the metal can be introduced by ligand exchange. One of the 

most interesting use of these supported phosphine ligands is the introduction of Pd 

complexes for coupling reactions such as the Heck transformation. In the following 

example, a Pd(II) complex with a bidentate phosphine ligand was supported onto 

poly(styrene) (Figure 1.4).[30] I chose this example because it is a perfect illustration of 

the use of solid supported catalyst for the Heck transformation and its added advantages 

over homogeneous Pd complexes. In this report the authors noted the high activity of 
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their catalyst toward the coupling of methyl acrylate with iodobenzene. Furthermore, the 

supported catalyst had a higher turnover number than its solution analogue. It was 

suggested that the solution analogue could aggregate and be deactivated, which is 

prevented when the catalyst is bound to a solid support. Finally, the catalyst was recycled 

5 times without any substantial loss of activity. This article reports the successful support 

of a Pd(II) complex on a poly(styrene) resin for the Heck catalysis. 

 

P Pd(Cl)2

P

 

 

Figure 1.4. Pd(II) complex supported poly(styrene) resin 

 

Another clever way to tether a catalyst on the support was introduced by Seebach 

et al.  in 1999.[31] The authors grafted complex chiral ligands such as BINAP or salen into 

the matrix of cross-linked poly(styrene). These ligands are introduced through the 

crosslinker by substituting both sides of the ligand with terminal alkenes (Figure 1.5). 

The crosslinker is then polymerized with styrene to yield the resin supported catalyst. 

Seebach et al. indicated that these newly supported catalysts performed as well as their 

small molecules analogues. The authors were able to recycle the catalyst several times 

with only small loss in activities and stereoselectivity. However, one of the major 

drawbacks of these different supported catalysts was the poor catalyst loading, of about 

0.13-0.2 mmol/g, on the support.  
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Figure 1.5. Crosslinkers with salen and BINAP ligands 

 

 In summary, catalysts supported on resins offer several major advantages such as 

easy removal and mechanical strength, however, the disadvantages associated with these 

supports outweigh their advantages. These disadvantages include poor catalyst loadings, 

slower reaction rates, challenging characterization of the system and in most cases loss in 

catalytic performance. 

  

1.3.2. Soluble polymers 

 In contrast to insoluble polymer supports, soluble polymers offer a good handle 

on the loading of the catalyst with better selectivity and better rates, and the ability to use 

a multitude of analytical techniques to characterize the systems. Soluble polymers 

became very popular in the last 20 years starting with the use of poly(ethylene glycol).[4] 

The emergence of the use of other soluble supports started a few years later with the 

functionalization of a variety of polymers and macromolecules such as dendrimers and 
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linear poly(styrene) (For an extensive list of polymers used as supports see Figure 1.6). In 

this section, a few examples of the PEG, dendrimers and linear poly(styrene) supported 

systems with their advantages and their drawbacks will be described.These systems are 

the most performants and gives a good idea of the different soluble polymers currently 

used by scientists. 

 

N
HOH

O

O O

OHO

NH2O

O

HO OH
O

HO

poly(styrene)

poly(vinyl alcohol) poly(ethylene imine) poly(methylene oxide) poly(acrylic aicd)

poly(ethylene glycol) poly(propylene oxide) poly(norbornene)
poly(acrylamide)

cellulose
 

   

Figure 1.6. Soluble polymers used as a support for catalysts 

 

1.3.2.1. Poly(ethylene glycol) 

 Poly(ethylene glycol) offers the advantage of being cheap, easy to produce and 

easy to modify. Furthermore, its intrinsic properties, such as the selective solubility, 

makes it the polymer of choice as a support for reusable catalyst.[4] Poly(ethylene glycol) 

is not soluble at room temperature and needs to be heated to get into solution, as much as 

1g of polymer in 10 mL of solvent can be dissolved, offering an easy way to remove the 

polymer after the reaction. After the catalysis, the reaction is cooled inducing the 

precipitation of the polymer (Figure 1.7). The polymer is then removed via centrifugation 
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or filtration. An abundance of publications show the close to quantitative removal of a 

variety of catalysts supported onto poly(ethylene glycol). [4] 

 

 

 

Figure 1.7. Schematic of the removal of PEG supported catalyst 

 

 An example of the efficiency of PEG as a support is the synthesis of 

diphenylphosphines terminated PEG.[32] The authors determined that about 0.6 mol 

equivalent of PPh2 were present per gram of oligomer. The phosphines were complexed 

with Pd(OAc)2 to give the active catalyst. This system was used for the dimerization of 

butadiene (Figure 1.8). 

 

 

 

Figure 1.8. Butadiene dimerization reaction 

 

 The supported catalyst showed high efficiency and very good recyclibility. Using 

the technique described above to remove the supported catalyst, the catalyst was reused 

up to five times without any noticeable loss of activity. This report is one of the first 
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examples of a supported Pd complex that can be reused several times. Stemming from 

this report, Bergbreiter et al. supported on PEG a 1,3-disubstituted benzene ligand with 

heteroatoms in the side-chains able to chelate to palladium, known as Pd-pincer 

complexes.[33] 

 Poly(ethylene glycol) offers a good alternative to solid support by being soluble 

during the catalysis and solid at room temperature. However, one of the drawbacks of this 

system is its low catalyst loading. 

 

1.3.2.2. Dendrimers 

 Dendrimers are macromolecules with perfectly branched repeat units emanating 

from a central core.[8] These well-defined molecules can enable the precise control of the 

catalyst structure. They offer the advantage of being not only soluble in a variety of 

solvents but also recoverable by simple filtration or precipitation. These macromolecules 

can have selectivity and kinetics similar to their small molecules analogues. Furthermore, 

the highly controlled architecture of these systems allows for fine-tuning of the catalyst.[8] 

There are two main ways that a dendrimer can be functionalized with a catalyst. It can be 

either functionalized on the periphery or in the core (Figure 1.9). Each method offers 

advantages and drawbacks. The periphery functionalized dendrimers offer the advantage 

of being highly functionalized, therefore having performance similar to their small 

molecule counterparts. These periphery functionalized systems have multiple reaction 

sites, being favorable for catalysis involving bimetallic mechanism. However, for 

catalysts having bimetallic mechanism deactivation, the periphery functionalized 

dendrimer can accelerate the deactivation process. The core functionalized dendrimers 
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can be more selective and more able to stop the bimetallic deactivation process. 

However, the synthesis of these systems is costly and their performance reduced due to 

site accessibility.     

  

 

 

Figure 1.9. The different type of dendrimers and dendrons supported catalysts  

 

 One example of periphery functionalized dendrimers is the functionalization of 

G3 poly(propylene imine) with diphenyl phosphines (Figure 1.10).[34] With diphenyl 

phosphines at the periphery of the dendrimer, Brinkmann et al. synthesized a variety of 

metal complexes using Ni, Ir, Pd or Rh precursors. In this example, the complex of 

interest is bis(diphenyl-phosphine)PdCl2. The functionalization of this dendrimer with a 

Pd complex for Heck catalysis provides another example of a soluble supported Pd 

complex to be compared to the supported system of intent.  
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Figure 1.10. G3 poly(propylene imine) dendrimer functionalized with diphenyl 

phosphines at the periphery 

 

 The authors used the dendrimer supported Pd complex to catalyze the Heck 

reaction of iodobenzene with styrene. Using sodium acetate as the base and 

dimethylformamide as the solvent, they observed a conversion of 90%. The synthesized 

dendrimer system allowed them to recover the catalyst by simply adding diethyl ether to 

the mixture. Using this recovery process, the authors were able to recover the catalyst up 

to 98% after catalysis. Furthermore, they were able to reuse their catalyst at least three 

times without any significant loss of conversion for each consecutive catalysis. The 

authors also noted an increase of thermal stability compared to the low molecular weight 

analogues.  
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 Dendrimers used as a support offers the advantages of being highly controllable 

and tunable. However, the prohibitive cost to synthesize or buy these macromolecules is 

a major drawback. 

 

1.3.2.3. Poly(styrene) 

 Linear poly(styrene) used as a support benefits from the extensive work that has 

been carried out with this polymer and its cross-linked analogues. The monomer is easily 

modified with the desired functionality. Linear poly(styrene) can also be 

chloromethylated followed by the addition of the desired functionality.[35] 

 Despite the widespread applications of poly(styrene) derivatives, only a few 

examples of catalysts supported on linear poly(styrene) have been reported.[35] A very 

interesting example illustrating the stability of the poly(styrene) and the activity  of the 

functionality is the grafting of the Co(II)-salen complex onto the polymer (Figure 

1.11).[36] The unique feature of this supported catalyst was the synthesis of an 

asymmetrical salen ligand to be attached on poly(styrene). The styrene salen monomer 

was synthesized and polymerized to 12mers and 24mers.  

 

 

 

Figure 1.11. Poly(styrene) supported salen-Co complex 
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 This supported Co(II)-salen catalyst was innovative by the way the salen was 

attached to the support. In earlier examples, the salen was tethered to the support from 

both sides of the ligand. Having this salen-Co catalyst in a pendant fashion is believed to 

be the contributing factor to the higher performance of this supported catalyst compared 

to previously reported systems. Furthermore, it offered the possibility to tune the loading 

of the catalyst by copolymerizing simple styrene unit with the ligand bound monomer. 

The supported salen-Co complex exhibited very similar catalytic performance for the 

hydrolytic kinetic resolution of epichlorohydrin (Figure 1.12) to its small molecule 

analogue. The reaction was completed in 2 hours with >99% ee. Furthermore, this system 

was recycled up to four times without any significant decreases in yields or 

enantioselectivity. 

 

 

 

Figure 1.12. Hydrolytic kinetic resolution of epychlorohydrin 

 

 This example illustrates the versatility of linear poly(styrene) as a support and the 

ability to recycle this system without any significant losses in selectivity and conversions. 

However, one of the drawbacks of this method was the inability to introduce the Co metal 

to the monomer. It was noticed that the free radical polymerization could not occur with 

the metallated ligand. This problem adds uncertainties to the system and introduces 
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questions about the role non-coordinated salen can have during the catalysis, and the role 

of non-coordinated Co that can be trapped in the polymer matrix on catalyst performance.  

 

1.4. Nanoparticles 

 Over the past few years, nanoparticles have emerged in the literature as a good 

alternative to the more common solid and polymer supports.[37] The ability to easily 

functionalize these particles made these new systems attractive.[38] Furthermore, their 

intrinsic properties depended on the type of particles synthesized and their capacity to be 

monodisperse, ranging from nanometer to micrometer scale, offering to scientists the 

ability to explore a new area that showed promising results.[37]  

One of the most interesting examples is the first silica coated nanoparticle 

supported Pd-NHC. In this study, the authors synthesized superparamagnetic maghemite 

(γ-Fe2O3) to support the palladium complex (Figure 1.13).[39] The small size of these 

nanoparticles (~ 11 nm) allowed them to be partially soluble in organic solvents, making 

them homogeneous under reaction conditions. The authors carried out Suzuki, Heck and 

Sonogashira reactions with common reagents. The different coupling reactions yielded 

close to quantitative conversions with iodo and bromo-aryls. Furthermore, the 

nanoparticles could be removed from the reaction vessel using a small permanent 

magnet. When performing recycling experiments, the conversions for each coupling 

reactions slightly declined after each cycle yielding 93%, 92% and 89% for the Suzuki, 

Heck and Sonogashira coupling respectively for the fifth cycle.  
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Figure 1.13. Palladium complex supported on superparamagnetic maghemite 

 

1.5. Conclusion 

 The different supports described herein offer advantages and drawbacks. In our 

quest to find a good support, I chose a soluble polymer that we were very familiar with, 

poly(norbornene). Poly(norbornene) supports have the unique advantage that a) the 

support is often soluble during the catalytic reaction but can be removed from the 

reaction media and reused by simple precipitation methods, b) poly(norbornene)s can be 

synthesized via ring-opening metathesis polymerization (ROMP), a highly controlled, 

functional group tolerant and often living polymerization method that allows for the 

formation of controlled architectures such as random and block copolymers thereby 

allowing to control catalyst density,[40-45] and c) as a result of its functional group 

tolerance, ROMP can be carried out on fully functional and characterized monomers 

thereby eliminating low yielding post-polymerization reactions. Another support that 

sparked our curiosity was gold nanoparticles. They offer unique properties such as being 

monodisperse and tunable. Furthermore, they are easy to synthesize and to functionalize. 

However, one of the most attractive features of these particles is the nearly infinite ability 

to solubilize them and precipitate them without any alteration or aggregation. 

 Stemming from these reviews, three supports were chosen, silica support for our 

heterogeneous catalysis, poly(norbornene) and gold nanoparticles for homogeneous 

catalysis. The next step for this project was to choose relevant catalyst to be supported 
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and studied. The next section will discuss the different catalysts that we chose and the 

antecedent in the literature supporting them. 
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 CHAPTER 2 

ORGANOMETALLIC COMPLEXES INVESTIGATED IN THIS 

THESIS 

 

Abstract 

 This chapter describes the different organometallic complexes that are studied in 

this thesis. A particular emphasis is given to palladium complexes catalyzing C-C 

coupling reactions, in particular, the Heck-Mizoroki, the Suzuki-Miyaura and the 

Sonogashira reactions. Pd-pincer complexes are described in depth giving background 

information about its performance as catalysts and its efficiencies when tethered on a 

support. A descrition of the work done by Morales-Morales and Jensen is given with their 

controversial mechanism of their catalytic Pd(II)/Pd(IV) cycle for Pd-pincer complexes. 

The depiction of the high stability and catalytic versatility of these palladacycle is given. 

It is followed by a description of the work Bergbreiter et al. have published describing 

poly(ethylene glycol) supported Pd-SCS pincer complexes. A review of N-heterocyclic 

carbene (NHC) complexes with the reaction it can catalyze is also given. Several 

examples of supported Pd-NHC complexes is described illustrating the stability of these 

organometallic complexes and their catalytic versatility. Following the presentation of 

both complexes, the key catalytic reactions investigated in this thesis is presented. A 

more in depth review is given about Heck catalysis using pincer complexes and Suzuki-

Miyaura and Sonogashira coupling using NHC based metal complexes.  
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2.1. Pincer Complexes 

2.1.1. Introduction 

 Metallated pincer complexes are defined as complexes containing a monoanionic 

tridentate ligands with an anionic core flanked by two neutral two electron donors on 

each side of the metal.[1]  These ligands are usually named after the three atoms that 

coordinate to the metal center, e.g. SCS, PCP, NCN, CNC, and CCC (Figure 2.1).  These 

ligands can be complexed with a vast library of metals ranging from common metals such 

as palladium[2]  to exotic ones such as uranium.[3]  The resulting complexes can be 

employed in a variety of catalytic transformations.[4] Palladated pincer complexes have 

been used widely not only for reactions such as the Heck, Suzuki or Sonogashira 

couplings,[2, 5-11]  but also for Michael additions,[12, 13]  boronations of allyl alcohols[14]  

and asymmetric allylations.[15]  Iridium pincer complexes have been studied extensively 

as dehydrogenation catalysts.[4, 16]  Rhodium and ruthenium pincer complexes have also 

been reported but only few studies have been carried out to investigate their catalytic 

activities.[17, 18]  The second area of intense research activity using metallated pincer 

complexes is the employment of these pincer complexes as tunable metal coordination 

recognition units in self-assembly.[19-21] 
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Figure 2.1. Metallated Pincer Complex 

  

2.1.2. Coupling chemistry using pincers complexes 

 The perceived stability of pincer complexes, made them perfect suitors for 

reactions such as Heck or Suzuki couplings. The Heck-Mizoroki reaction consists of the 

coupling of an α-olefin with a halogenated aryl. The mechanism of this reaction involves 

an oxidative addition of an aryl halide to the Pd complex, followed by a 1,2-insertion of 

the alkene cosubstrate to yield the desired product after a β-elimination (Figure 2.2). 
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Figure 2.2. Catalytic cycle of Heck-Mizoroki reaction 

 

The Suzuki-Miyaura coupling involves the coupling of an aryl boronic acid with an aryl 

halide. The mechanism of this reaction involves the oxidative addition of the aryl boronic 

acid, followed by the transmetallation of the boronate substrate to finally generate the 

desired product via reductive elimination (Figure 2.3). 

 

 

Figure 2.3. Catalytic cycle of the Suzuki-Miyaura reaction  
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These reactions became corner stones of organic chemistry for their contribution in the 

synthesis of drugs and materials.[4]  

Taking PCP pincers, Milstein et al. reported a high turnover of up to 500,000, for 

the coupling of iodobenzene with methylacrylate at 140 ºC with no sign of 

decomposition.[2] Stemming from these reports, several groups developed better 

performing PCP pincers for the Heck-Mizoroki reaction.[22-24] While these complexes 

showed great promise, speculations were raised about the mechanism of the catalysis.[23, 

24] The typical mechanism for Heck catalysis involves a Pd(0)/Pd(II) cycle,[25] however, 

the PCP pincer complex has a Pd(II) center. Jensen and Morales-Morales proposed a new 

catalytic cycle involving Pd(II)/Pd(IV) species (Figure 2.4).[23, 24] This mechanism is still 

under debate and has not been proven so far. At the same time, several groups 

investigated the activity of these pincer complexes for the Suzuki-Miyaura coupling.[26, 27] 

The results confirmed the high activity of these complexes, with a turnover of up to 

92,000 for the coupling of phenyl boronic acids with bromobenzene, and their stability 

under reaction conditions.[26] 
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Figure 2.4. Heck reaction mechanism using Pd(II) pincer complexes proposed by Jensen 

and Morales-Morales 

 

2.1.3. Supported pincer complexes 

 With the wide variety of transformations that metallated pincer complexes are 

able to catalyze and the stability of metallated pincer complexes under wide reaction 

conditions, several groups started to investigate the activity of such complexes on 

supports (some examples of supported pincer complexes are presented in Figure 2.5).[2, 8]  

The goal of these studies was to synthesize highly stable, recoverable and recyclable 

catalysts.  To accomplish this goal, metallated pincer complexes, in particular palladated 

complexes were immobilized on different supports ranging from polymers to clays.[9, 28, 

29]  Bergbreiter and coworkers immobilized Pd-SCS pincer complexes onto poly(ethylene 

glycol) and investigated their catalytic activities in the Heck coupling of iodobenzene 

with methyl acrylate and styrene.[5, 6, 30-32]  In general, the authors found that the activities 
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of these supported complexes are comparable to their small molecule analogous.  

Furthermore, they were able to show that the supported complexes could be recycled by 

simple precipitation of the polymer and reused.[5, 6, 30-32]  It was noted that some 

decomposition was occurring for some supported Pd-SCS pincer complexes.[5]  However, 

Bergbreiter et al. seemed to circumvent this problem by modifying the tether of the 

ligand to the polymer.[5, 6, 30-32]  A similar system was reported by Pollino and Weck using 

poly(norbornene) to support Pd-SCS type pincer complexes.[9]  They demonstrated that a 

reaction mixture containing poly(norbornene)-supported Pd-SCS type pincer complexes 

was highly active in the Heck coupling of iodobenzene with a variety of acrylates, 

affording near quantitative conversions for each reaction.[33] 
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Figure 2.5. Examples of supported pincer complexes 

 

Using a modified approach toward supported pincer complexes, Dijkstra et al. 

synthesized different generations of metallo dendrimers with Pd-NCN pincer complexes 

as peripheral groups.[34, 35]  The authors studied the activity of their second generation 

dendrimers containing twelve palladated pincer complexes in a running continuous 

nanofiltration membrane in the Michael addition of methyl vinyl ketone with α-

cyanoacetate.  Only slight decreases in conversions after five cycles were observed.[34, 35]  

Silica immobilized second generation PAMAM dendrimers with Pd-PCP pincer 

complexes at the periphery were also employed as supported catalyst.  Chanthateyanonth 
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et al. investigated the cyclocarbonylation of 2-allylphenol using these supported 

complexes.[36]  Conversions ranging from 87% to 99% after three catalytic cycles were 

obtained.[36]  A similar support was used by Giménez et al. to support dinuclear Pd-SCS 

pincer complexes.[28]  In this work, the authors studied the activity of their catalysts in the 

aldol reaction of methylisocyanoacetate.  They found similar activities for their system in 

comparison to the small molecule analogous.[28]  A less common support was used by 

Poyatos et al. who supported Pd-CNC pincer complexes onto montmorillonite K-10 clay 

and investigated the activity of these complexes in the Heck coupling reaction of 

bromobenzene with styrene.[29]  They were able to recycle their catalyst up to ten times 

without noticing any significant decrease in conversions.[29, 37]  Another example in this 

field came from Atlava et al. who supported Pd-CCC pincer complexes onto Merrifield 

resins as potential catalysts for the Heck reaction between aryl halides and various 

alkenes.[38]  Quantitative conversions for several supported complexes within 24 hours 

were obtained. 

These different reports evaluated the activities and stabilities of supported pincer 

complexes and concluded that these organometallic complexes were highly stable under 

reaction conditions and very active for a wide range of catalytic reactions. Furthermore, 

our group had good expertise on the SCS pincer synthesis having worked extensively 

with this complex. Therefore, metallated pincer complexes were chosen as catalysts of 

choice to be supported on poly(norbornene) and on silica. 
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2.2. N-Heterocyclic carbenes 

2.2.1. Introduction 

N-Heterocyclic carbenes, first synthesized by Arduengo, have been studied 

extensively over the past decade (Figure 2.6).[39-44] This class of ligands has several 

advantages over the closely related phosphine ligands including their increased stability 

to high temperatures and air.[43-49]  Over the past decade, metal complexes containing 

NHC ligands have been utilized as catalysts for a variety of transformations.[44, 50-52]  The 

vast majority of all reports employ NHC-containing ruthenium complexes as catalysts in 

olefin metathesis, with RCM getting the most attention.[52-58]  Olefin metathesis catalysts 

based on NHC ligands have the highest activities reported to date.[52, 56]  Furthermore, 

they are able to catalyze RCM reactions of sterically demanding compounds and are 

tolerant to a wide variety of functional groups resulting in the transformation of adducts 

that were unreactive to earlier olefin metathesis catalysts.[52, 59] 

 

 

 

Figure 2.6. N-Heterocyclic carbene ligand 

 

2.2.2. Coupling chemistry with N-heterocyclic carbenes 

 N-Heterocyclic carbenes were metallated with Pd and used as catalysts in Heck 

catalysis.[49] The coupling of aryl bromides and aryl chlorides with α-olefin was reported 

with yields >99% and low catalyst loading of 0.1-1 mol%.[44] Following this report, 

several research groups used this new ligand for the Suzuki coupling of aryl chlorides 
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with aryl boronic acids. It was reported as being the most active agent for aryl chlorides 

coupling with aryl boronic acids.[44] The advantages of these systems were the user-

friendly procedure that was developed and the ease of synthesizing N-heterocyclic 

carbenes. A new type of unsymmetrical NHC ligands was developed a few years later 

showing great activity for Suzuki, Heck and Sonogashira couplings (Figure 2.7).[60, 61] 

The authors reported turnover numbers of 1.7×106 for the Heck coupling of 

bromoacetophenone with butyl acrylate and 1.1×105 for the Suzuki coupling of 

bromoacetophenone with phenylboronic acid.[60, 61] 

 

 

 

Figure 2.7. Examples of highly active Pd-N-heterocyclic complex and ligand 

 

2.2.3. Supported N-heterocyclic carbenes 

 Since organometallic NHC complexes have shown great performances in a wide 

variety of reactions, demonstrating their utility in the synthesis of complex molecules that 

have applications ranging from drug precursors to polymers, they are perfect candidates 

to be supported. Several research groups have made significant contributions towards the 

synthesis of supported NHC complexes and shown that the catalytic activity is indeed 
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maintained.[62-65]  Over the past five years, NHCs have been grafted onto different 

supports ranging from monolithic supports to soluble poly(styrene)s.[62, 66, 67] The 

following examples illustrate important advantages and disadvantages of supporting 

NHC complexes.  

 The first report of a polymer supported NHC-Pd complexe was provided by 

Herrmann and coworkers in 2000.[68]  They used a di-NHC chelate ligand coordinated to 

a palladium halide complex (Figure 2.8).  The authors anchored this complex through the 

NHC ligand onto an insoluble poly(styrene)-based Wang resin.  They studied the 

catalytic activity of their system for the Heck reaction.  By carrying out several coupling 

reactions with activated and non-activated arylbromides, they were able to get 

quantitative conversions for most of the substrates tested.  Furthermore, the authors also 

conducted recycling experiments for the coupling reaction of 1-(4-bromo-phenyl)-

ethanone with styrene yielding near quantitative conversions for up to fifteen cycles.  

However, Herrmann et al. noticed small amounts of palladium leaching after each cycle 

suggesting, at least, partial decomposition. 
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Figure 2.8. Merrifield resin supported Pd-NHC complex 

 

 In close analogy to their report of a supported olefin metathesis catalyst onto 

poly(2-oxazoline), Weberskirch and coworkers presented a supported Pd-NHC complex 

onto the same support (Figure 2.9).[69]  Again, this water soluble amphiphilic polymer 

with hydrophobic pendant chains, containing the Pd-NHC complexes, forms micelles.  

Weberskirch et al. investigated the activity of their catalyst for the Suzuki and Heck 

coupling reactions in water.  For the Heck transformation, they optimized their system for 

each polymer by screening different bases and different reaction temperatures for the 

coupling of styrene with iodobenzene.  The authors reported the highest TOF (2700 h-1) 

with quantitative conversions for the Heck catalysis of iodobenzene with styrene using 

K2CO3 at 110 °C in water.  A similar process has been implemented for the Suzuki 

transformation of activated and non-activated aryl iodides and bromides with phenyl 

boronic acid.  TOF up to 5200 h-1 were obtained with quantitative conversions for the 

Suzuki reaction in water at 110 °C.  Following this report, Weberskirch et al. fully 

characterized the system using gel-permeation chromatography, TEM and dynamic light 
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scattering.[69]  They determined the size of the micelle aggregates to be 10-30 nm.  

Finally, they conducted recycling experiments for the Heck catalysis of iodobenzene with 

styrene at 90 °C with K2CO3 as the base.  Decreased conversions from 89% for the first 

cycle to 76% for the third one were obtained.  The authors argued that the separation of 

the micelles from the product might play a role in the lower conversions for the later 

cycles. 

 

 

 

Figure 2.9. Polymer supported Pd-NHC complex 

 

A more recent report on Pd-NHC complexes supported on insoluble supports 

comes from Karim and Enders who described the immobilization of an NHC-Pd 

complex/ionic liquid matrix onto silica (Figure 2.10).[70]  They studied the activity of the 

catalytic system towards the Heck catalysis of aryl iodide with alkyl acrylates and 

showed that their catalytic system was highly active with nearly quantitative conversions 
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for most of the Heck transformations studied.  They finally recycled their catalyst three 

times yielding up to 89% conversions after 26 hours for the third cycle. 

 

 

 

Figure 2.10. Silica supported Pd-NHC complex 

 

These specific reports illustrate the stability and versatility of the NHC ligand. Its 

stability to reaction condition as well as its easy to be synthesis made this ligand an ideal 

candidate to be supported on poly(norbornene). Furthermore, the highly controlled ring-

opening metathesis polymerization (ROMP) of palladium functionalized norbornenes 

will allow us to tune the catalyst loading and the solubility of our system. 

 

2.3. Design Elements and challenges 

The major goal of this thesis is to develop a set of tools to guide the synthesis of 

supported catalysts. To achieve this goal, we need to understand the impact of each 

component of our supported catalyst on our catalysis. These factors are the support, the 
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tether of the catalyst to the support and the catalyst. Several objectives are essential to the 

achievement of our goal. 

These objectives include, 

•  The evaluation of the catalyst to be supported. We need to choose a stable 

system that is efficient and that catalyzes important transformation. The 

palladated pincer and N-Heterocyclic carbene are prime candidates to the 

different key criteria that were identified. At the start of my thesis 

research, palladated pincer complexes had been widely studied and 

showed high activity toward a wide variety of catalytic transformations. 

Palladated pincer complexes had been reported to be stable under reaction 

conditions and they catalyze one of the most prominent transformations, 

the carbon coupling transformation. 

•  The evaluation of the support to be used. The supports of interest have to 

meet several characteristics: i) they need to be removable from the 

reaction, ii) they need to be easily modifiable; and iii) they need to be 

tunable. The supports chosen are the poly(norbornene) and gold 

nanoparticles. Poly(norbornene) was chosen for its highly controlled 

polymerization using the Grubbs catalyst. The norbornene monomer also 

allows for easy functionalization and the polymerization catalyst tolerates 

a wide array of functionalities. The functionalities that will be added are 

Pd-SCS complex, Pd-PCP complex, Pd-NHC and Ru-NHC complexes. 

Gold nanoparticles are easily synthesized and can be functionalized with 

different functionalities.  
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•  The design, synthesis and evaluation of the newly synthesized system. The 

chosen catalysts, Pd-SCS, Pd-PCP, Pd-NHC and Ru-NHC, need to be 

modified to be tethered on the different support. Pd-SCS pincer complexes 

have been studied by the Weck group for their self assembly abilities. The 

studies were conducted using poly(norbornene) as a support. The synthesis 

for the supported Pd-SCS complex has been previously reported. The 

modification of Pd-PCP complexes for its tethering on the polymers, has 

not been reported. The synthesis of this complex will have to be 

determined. Pd-NHC complex has a limited history on supports. However, 

the synthesis and modifications of the NHC ligand is straightforward. The 

Pd-pincer complexes and Pd-NHC complexes were carefully chosen for 

their tolerability to modifications causing minimal impacts on their 

activities. 

•  The catalysis tethered on the different supports will have to be evaluated 

using a set of well-known catalytic reaction, the Heck-Mizoroki, the 

Suzuki-Miyaura, and the Sonogashira transformations. The Heck-

Mizoroki has been described in chapter 1, this is the coupling of usually an 

halogenated aryl with a terminal olefin. The Suzuki-Miyaura reaction is 

the cross- coupling between a halogenated aryl and an organoboronic acid 

aryl. The Sonogashira coupling, consist on the coupling of aryl or vinyl 

halides with terminal alkynes. The mechanism of this reaction starts with 

the oxidative addition of the halogenated substrate onto the Pd complex, 
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followed by the transmetallation of the copper acetylide and finally, the 

generation of the desired product by reductive elimination (Figure 2.11). 

 

 

 

Figure 2.11. Catalytic cycle of the Sonogashira reaction 

 

•  The stability of the Pd complexes for each system. Each supported catalyst 

will go through different tests to evaluate if the catalytic species is actually 

the organometallic complex tethered on the support. The test will consist 

on adding molecules that can trap any leached Pd, such as mercury, 

poly(vinyl pyridine) or quadrapure. These tests will help to determine if 
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the supported catalyst act as well as palladium reservoirs or if the 

supported complex is the actual catalyst. These studies are crucial to 

determine if the catalytic complexes that were chosen are actually stable. 

 

This thesis will address the different objectives aforementioned. The progress 

toward achieving our goal follows four major achievements. The design and the synthesis 

of palladated SCS pincers with different tethers on a variety of supports conducted us to 

design different test to evaluate the active catalytic species under reaction conditions 

(Chapter 3), the design and synthesis of a believed to be more stable pincer complex, the 

PCP-Pd pincer, with a thorough study of the catalysis and the decomposition of the 

complex (Chapter 4), the synthesis and evaluation of a new candidate, the N-Heterocyclic 

carbene palladium complex supported on poly(norbornene) (Chapter 5), the synthesis of 

salen-Co and N-Heterocyclic carbene palladium complexes on gold nanoparticles 

(Chapter 6), and will conclude with Chapter 7 describing new perspectives that this work 

brought and the new support and catalyst that can be studied to add new data in our “tool 

box”. 
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 CHAPTER 3 

POLYMER AND SILICA SUPPORTED SCS-Pd PINCER 

 

Abstract 

 This chapter compiles the results obtained with different supported SCS-Pd pincer 

complexes. SCS-Pd(II) pincer complexes were covalently bound to silica (SBA-15), 

poly(norbornene) and merrifield resin via either ether, amide or urea linkages. Stemming 

from previous results reported in the literature on the role of the functional group linking 

the complex to the support on the stability of the Pd-SCS pincer complex, the different 

systems synthesized were evaluated in the Heck coupling of iodobenzene with n-butyl 

acrylate. Kinetic experiments for each system were conducted to determine the kinetic 

order of the catalytic reaction. From these studies, induction time was observed, hinting 

that the Pd complex had to go through some transfortmation before being catalytically 

active. To sustain this hypothesis, poisoning studies using poly(vinyl pyridine) and 

mercury as trap to any leached out palladium were conducted for each system. The 

results showed total quenching of the catalytic activity when either poison was used. 

These results confirmed our hypothesis of a chemical transformation of the complex 

before the catalysis. The overall results of the kinetic and poisoning studies indicates that 

the SCS-Pd(II) pincer complexes decompose when triethylamine is used as a base in 

DMF at 120 ºC for the Heck coupling of n-butyl acrylate with iodobenzene, 

independently of the nature of the linkage between the catalyst and the support. The 

supported complexes acts solely as reservoir of catalytically active palladium(0), 
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responsible for the catalysis. Contrary to literature reports, no evidence of catalysis by the 

SCS-Pd(II) pincer complex was found. 

 

The research described in this chapter was highly collaborative. All research on silica was 

performed by the research group of Professor Christopher Jones. 

 

3.1. Introduction 

 As described in chapter 2, pincer complexes with palladium have been touted as 

one of the most promising, well defined catalyst for Heck and Suzuki coupling 

reactions.[1-5] The reported stability and activity of the pincer complexes made it a perfect 

catalyst to be immobilized. The pincer complexes were immobilized onto 

poly(norbornene) and silica (Figure 3.1).[6, 7] Two basic classes of supports were 

investigated: supports that are soluble under reaction conditions and insoluble supports.  

Poly(norbornene) was the chosen as the soluble support.  The ring-opening metathesis 

polymerization (ROMP) of functionalized norbornenes is a demonstrated living 

polymerization that permits good control of catalyst loading and the incorporation of 

other functionalized co-monomers.[8-15]  Finally, because of its solubility under reaction 

conditions, the catalysis can be carried out under homogeneous conditions while having 

the ability to recover the polymer supported catalysts through simple precipitation 

methods.[6, 7, 13, 16-18]  Additionally, the use of nanoporous silica SBA-15 as a solid support 

was also investigated.  The advantage of heterogeneous silica supported catalysts is their 

easy recovery.[6, 7, 18]  
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Figure 3.1. Supported pincer complexes synthesized. 

 

3.2. Ether linked SCS-Pd Pincers 

The first metallated pincer complexes that we, in collaboration with the Jones group, 

investigated for their stability under reaction conditions were Pd(II)-SCS pincer 

complexes supported on SBA-15 (100 Ǻ pore size) and poly(norbornene) (Figure 3.1). 
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Scheme 3.1. Synthesis of poly(norbornene) supported SCS-Pd pincer. 

 

The poly(norbornene) supported SCS-Pd pincer complex was synthesized following 

previously reported procedures (Scheme 3.1).20 

 The stability of all catalysts was investigated through a series of kinetic studies as 

well as poisoning experiments.  In the leaching studies, activation times of up to 20 

minutes were observed for the poly(norbornene) and silica supported catalyst. 

Furthermore, when the silica supported catalysts were recycled, a decline in conversions 

after each run was detected. (Figure 3.2)  
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Figure 3.2. Recycling of silica supported O-SCS-Pd pincer. 

 

To strengthen our findings further, a three-phase test was conducted.  This test, 

proposed by Lipshutz et al. consists of anchoring one of the reagents onto a solid support 

while using a solid supported catalyst.[19]  Catalysis can not occur unless the catalyst 

leaches from the support to interact with the anchored substrate.  Dr. Yu, from the Jones 

group, immobilized iodobenzene onto nanoporous silica and added, SCS-Pd pincer 

complexes tethered via an ether linkage to nanoporous silica (20), as the catalyst (Figure 

3.3).  
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Figure 3.3. Three phase test. 

 

Under the Heck reaction conditions conversions of the anchored iodobenzene were 

observed.  These results suggested that some Pd was leaching out of the Pd-pincer 

complexes.  To verify this hypothesis, a filtration test was carried out by removing the 

silica supported catalyst from the reaction mixture, followed by the addition of new 

reagents to the filtrate.  Conversions of the newly added reagents were observed, 

confirming our hypothesis that leached Pd species were at least partially responsible for 

the catalysis. 

 

3.2.1. Poisoning Studies 

 To further investigate if catalysis occurred on the supported Pd-pincer complexes, a 

variety of poisoning studies were carried out.  These poisons were selected to bind 

selectively to ‘unprotected’ Pd(0) sources, i.e. Pd(0) species that are not protected by a 
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well-defined ligand. These poisons were designed to remove any unprotected Pd(0) 

species from the reaction solution, thereby shutting down any catalytic activity arising 

from them.  If the supported Pd(II) pincer complexes were responsible for the catalysis, 

conversions should be observed even in the presence of the poisons.  The first poison that 

was employed was poly(vinyl pyridine) (PVPy). PVPy is heterogeneous under reaction 

conditions and is known to coordinate to Pd(0).[6, 7, 20, 21]  The second poison was mercury 

which is able to form an amalgam with Pd(0) thereby removing the palladium from the 

reaction solution (Figure 3.4). It has been demonstrated that mercury (0) only binds to 

heterogeneous metal particles and not to homogeneous ligand protected molecular metal. 

To probe this, a reaction was setup where the Pd-SCS pincer complex is known to remain 

bound to the ligand during the transformation. The Weck group has done extensive 

studies with SCS-Pd pincer complexes as recognition unit for self-assembly of pyridines. 

The reaction consisted of reacting 10 with an equimolar amount of pyridine in the 

presence of a three hundred fold excess of mercury. The self assembly event can easily be 

monitored via 1H NMR. The reaction showed quantitative self-assembly of the pyridine 

with the Pd-SCS complex in the presence of mercury, confirming that mercury could not 

interact with the molecular homogeneous SCS-Pd pincer complex. 
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Figure 3.4. Poisoning Studies. 

 

Both poisoning methods terminate any catalytic activity of unprotected Pd(0) species 

by sequestration and removal from the reaction medium.[20, 22, 23]  Again, it is important to 

note that both of these poisons have no effect on molecular organometallic catalysts. The 

PVPy tests were carried out with all supported Pd(II)-SCS-O-pincer complexes by adding 

the poison at the beginning of the reaction and, in a different reaction, after 40% 

conversion was achieved.  If PVPy was added at the beginning of the Heck reaction 

containing either 10 or 20, no conversions were observed.  When adding the PVPy poison 

after 40% conversions, catalysis was completely quenched (Figure 3.5). 
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Figure 3.5. Kinetic plots of poly(norbornene) supported O-SCS-Pd pincer. 

 

  Addition of Hg(0) to a reaction mixture containing either 10 or 20 resulted in 

negligible conversions in all case (Figure 3.6). 
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Figure 3.6. Kinetic plot of poison containing catalysis for poly(norbornene) supported O-

SCS-Pd pincer. 
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The combination of these kinetic investigations, three-phase test and poisoning 

studies proved that Pd(II)-SCS pincer complexes tethered with an ether linkage onto 

supports such as mesoporous silica or onto poly(norbornene) are not catalytically active 

in the Heck reaction but act solely as a Pd reservoir.  This conclusion was not fully 

unexpected since Bergbreiter et al. evocated a decrease in activity when they examined 

Pd(II)-SCS pincer complexes tethered to poly(ethylene glycol) (22) via an ether linkage 

in the Heck reaction (Figure 3.7).[7]  In the same contribution, supported Pd(II)-SCS 

pincer complexes attached to the poly(ethylene glycol) support via an amide linkage (23) 

instead of the ether linkage were suggested as fully stable catalysts since no decrease in 

activity was observed when carrying out recycling experiments.[6, 7]  

 

 

 

Figure 3.7. Supported SCS-Pd pincer complexes synthesized by Bergbreiter et al.. 

 

3.3. Nitrogen linked SCS-Pd Pincer complexes 

To investigate these potentially stable complexes, supported Pd(II)-SCS pincer 

complexes tethered to their respective support via an amide linkage were synthesized 

(Scheme 3.2).  
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Scheme 3.2. Synthesis of amide linked supported SCS-Pd pincer. 

 

Three supports were investigated: poly(norbornene) (19), nanoporous silica (21) and 

Merrifield resin.  The activities of all amide linked Pd-pincer complexes in the Heck 
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catalysis of iodobenzene and n-butyl acrylate were faster with no induction times 

observed (Figure 3.8). 
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Figure 3.8. Kinetic plots of poly(norbornene) supported N-SCS-Pd pincer. 

 

However, when 21 was recycled and reused, an induction time of up to ten minutes 

was observed after the first run and the activity decreased for each additional run (Figure 

3.9). 
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Figure 3.9. Recycling experiment using SBA-15 supported N-SCS-Pd pincer (21). 

 

Kinetic and poisoning tests as outlined for the Pd(II)-SCS-O-pincer complexes were 

carried out to test the true active species of these catalysts.  The use of PVPy or Hg(0) 

yielded negligible reactivities with any of the amide linked supported catalysts (Figure 

3.8).  

When the solid supported Pd(II) pincer complexes were removed by filtration, the 

filtrate was still able to convert freshly added reagents.  Clearly, the amide tethered 

Pd(II)-SCS complexes are not stable under Heck reaction conditions.  At the same time, 

Bergbreiter et al. conducted leaching studies on their supported Pd(II) SCS pincer 

complexes 22 and 23.[24]  They conducted kinetic experiments where significant 

induction times were observed, which were dependent on the amount of reactants, water 

and other additives present.  Additionally, a series of “competition” reactions by adding 

phosphines to the Heck reaction was carried out.  Bergbreiter et al. observed a reduction 

in activity when phosphines were added suggesting that Pd(0) was trapped by the 
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phosphine ligands.  They also carried out a filtration test by removing their polymer from 

the reaction mixture and adding fresh reagents to the filtrate.  They noticed significant 

conversions from the “catalyst free” solution.  The overall conclusions from their studies 

were similar to ours, confirming that supported SCS-Pd pincer complexes are not the 

actual catalysts during the Heck reaction.[6, 7, 24]   

 

3.4. Conclusion 

The presented results suggest that all investigated supported Pd(II)-SCS pincer 

complexes are not stable under Heck reaction conditions and the actual catalytic species 

is a leached Pd(0) species following the well-known basic Pd(0)-Pd(II) catalytic cycle.  

Following these conclusive results that SCS-Pd pincers are not stable, I decided to carry 

out similar studies with PCP-Pd pincers. 

 

3.5. Experimental section 

 All reactions with air- and moisture sensitive compounds were carried out under 

dry nitrogen/argon atmosphere using an MBraun UniLab 2000 dry box and/or standard 

Schlenk line techniques. DMF, n-butyl acrylate, and NEt3 were distilled over calcium 

hydride. 5-amino-isophthalic acid dimethyl ester, poly(4-vinylpyridine), 3-

isocyanatopropyltriethoxysilane and all bases were obtained from commercial sources 

and generally used without further purification. Gas chromatographic analyses were 

performed on a Shimadzu GC 14-A gas chromatograph equipped with a flame-ionization 

detector and with a HP-5 column (length = 30 m, inner diameter = 0.25 mm, and film 

thickness = 0.25 µm). The temperature program for GC analysis was the following: 
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heating from 50 °C to 140 °C at 30K/min and heating from 140 °C to 300 °C at 40 K/min 

under constant pressure with inlet and detector temperatures kept constant at 330 °C. 1H 

(300 MHz) and 13C NMR (75 MHz) spectra were recorded on a Varian Mercury VX 

instrument. All spectra were referenced to residual proton solvent. Mass spectral analyses 

were provided by the Georgia Tech MassSpectrometry Facility using a VG-70se 

spectrometer. Gel-permeation Chromatography (GPC) analyses were carried out using a 

Waters 1525 binary pump coupled to a Waters 2414 refractive index detector. The GPC 

was calibrated using poly(styrene) standards on a Styragel® HR 4 and HR 5E column set 

with CH2Cl2 as an eluent. FT-Raman spectra were obtained on a Bruker FRA-106. At 

least 128 scans were collected for each spectrum, with a resolution of 2-4 cm-1. Elemental 

analyses were carried out by either Atlantic Microlabs, Norcross GA (CHN analyses) or 

Galbraith Laboratories, Inc., TN (determination of the palladium loadings of the silica 

precatalysts). The poly(norbornene)-SCS-Pd pincer was synthesized following previously 

reported procedures.[16] Compound 14 was synthesized in three steps following a 

previously reported procedure.[25]  

 

Synthesis of 5-(11-bromoundecyl)bicycle[2.2.1]hept-2-ene (15) 

 

 

 

 To a stirred solution of THF (50 mL) an Mg (1.652 g, 67 mmol) was added 

norbornene methyl bromide (9.35 g, 50 mmol). The solution was refluxed for 10 h before 

being slowly added to a mixture of 1,10-dibromodecane (10 g, 100 mmol) and Li2CuCl4 
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(9 mL, 0.1 M in THF) in THF (100 mL) at -10 ºC. The solution was allowed to stir for 24 

h at room temperature, at which point it was then washed with ammonium chloride, 

extracted with diethyl ether (3 × 100 mL), dried over MgSO4 and the solvent was 

removed under vacuum. The product was further purified by column chromatography 

(hexanes); yield: 7.48 g (50%). 1H NMR (CDCl3, 300 MHz): δ = 6.08-6.05 (m, 2H, 

CH=CH), 3.37 (t, J = 6.9 Hz, 2H, CH2Br), 2.72 (t, J = 3.2 Hz, 2H), 1.93 (m, 1H), 1.83 

(m, 2H), 1.82 (m, 19H), 1.03 (m, 1H), 0.46 (m, 1H); 13C NMR (CDCl3, 300 MHz): δ = 

136.6, 135.9, 132.3, 49.5, 46.3, 45.4, 42.5, 41.8, 38.7, 36.6, 34.8, 33.9, 32.8, 32.4, 29.9, 

29.6, 29.5, 28.8, 28.7, 28.2. HRMS (EI): m/z = 327.1; anal. calcd. for C18H31Br: C, 66.04; 

H, 9.54; found: C, 66.33; H, 9.59. 

 

Synthesis of 12-bicyclo[2.2.1]hept-5-en-2-yl-dodecanoic acid (16) 

 

 

 

 Magnesium (474 mg, 19.5 mmol) and THF (8 mL) were added to a flame-dried 

flask. Species 15 (5.8 g, 17.7 mmol) was then added in portions of 1 g each. A catalytic 

amount of 1,2-dibromoethane (1 mL) was added to activate the reaction. The reaction 

mixture was then refluxed for 12 h under argon. Then CO2 gas was bubbled into the 

solution for 15 minutes and the color of the solution turned off-white. At this point, the 

solution was cooled to room temperature, the unreacted magnesium was filtered off and 

the solvent was removed under vacuum. The product was further purified using column 

chromatography (CH2Cl2) to yield a orange oil; yield: 3.1 g (60%). 1H NMR (CDCl3, 300 
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MHz): δ = 9.05 (br, 1H, OH), 6.06-5.88 (m, 2H, CH=CH), 2.71 (m, 2H), 2.30 (m, 2H), 

1.93 (m, 1H), 1.89 (m, 1H), 1.79 (m, 1H), 1.59 (m, 2H), 1.22 (br, 19H), 0.47 (m, 1H); 13C 

NMR (CDCl3, 300 MHz): δ = 179.7, 136.6, 135.9, 132.3, 49.5, 46.3, 45.4, 45.2, 42.5, 

41.8, 38.7, 36.6, 34.8, 34.4, 33.1, 32.4, 29.9, 29.7, 29.5, 29.3, 29.1, 28.9, 28.7, 24.8; 

HRMS (ESI): m/z = 291.0. anal. calcd. for C19H32O2: C, 78.03; H, 11.03; found: C, 

77.94; H, 11.12. 

 

Synthesis of 12-(bicyclo[2.2.1]hept-5-en-2-yl)-N-(3,5 

bis(phenylthiomethyl)phenyl)dodecanamide (17) 

 

 

 

 Compound 16 (242 mg, 0.83 mmol) and 1-hydroxybenzotriazole (112 mg, 0.83 

mmol) were stirred in a mixture of methylene chloride (10 mL) and dimethyl formamide 

(0.5 mL) until complete dissolution of the benzotriazole was observed. N,N’-

Dicyclohexylcarbodiimide (171 mg, 0.83 mmol) was then added to the solution followed 

by the addition of 14. The reaction mixture was stirred for 9 h at room temperature. A 

precipitate was observed and filtered through a pad of celite. The solvent of the filtrate 

was removed under vacuum. The product was further purified by column 

chromatography (1:10 ethyl acetate:hexanes) to yield a yellow oil; yield: 330 mg (65%). 

1H NMR (CDCl3, 300 MHz): δ = 7.39 (s, 2H, ArH), 7.31-7.13 (m, 10H, SPh), 6.97 (s, 

1H, ArH), 6.11-5.89 (m, 2H, CH=CH), 4.01 (s, 4H), 2.7 (m, 2H), 2.32-2.27 (t, J = 7.4 Hz, 
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2H), 1.97-1.93 (m, 1H), 1.86-1.78 (m, 1H), 1.73-1.66 (m, 2H), 1.39-1.15 (br m, 19H), 

1.08-1.00 (m, 1H), 0.92-0.83 (m, 1H), 0.51-0.45 (m, 1H); 13C NMR (CDCl3, 300 MHz): 

δ = 171.2, 138.4, 138.1, 136.7, 136.6, 136.0, 132.2, 129.4, 128.7, 126.1, 124.7, 118.7, 

49.5, 46.3, 45.4, 45.2, 42.5, 41.8, 38.7, 37.7, 36.6, 34.8, 33.1, 32.8, 32.4, 32.0, 29.9, 29.7, 

29.5, 29.4, 29.3, 28.7, 25.6; HRMS (ESI): m/z = 612.3. anal. calcd. for C39H49NOS2: C, 

76.55; H, 8.07; found C, 76.62; H, 8.15. 

 

Synthesis of Pd-Cl, 12-(bicyclo[2.2.1]hept-5-en-2-yl)-N-(3,5 

bis(phenylthiomethyl)phenyl)dodecanamide (18) 

 

 

 

 Pd(PhCN)2Cl2 (92 mg, 0.24 mmol) was added to a stirred solution of 17 (150 mg, 

0.24 mmol) in 15 mL CH2Cl2/CH3CN (1:2). The solution was stirred for 30 minutes 

before the addition of AgBF4 (119 mg, 0.61 mmol) in one portion. After being stirred for 

another 30 minutes, the mixture was added to a brine solution (200 mL) and stirred for 

another 6h. The organic layer was separated, dried over MgSO4 and the solvent removed 

under vacuum and was further purified by column chromatography (9:1 methylene 

chloride:methanol) to yield a yellow powder; yield: 138 mg (59%). 1H NMR (CDCl3, 300 

MHz): δ = 8.17 (s, 1H, ArH), 7.72 (d, J = 9.2 Hz, 4H, SPh), 7.29 (m, 8H), 6.08-5.88 (m, 

2H, CH=CH), 4.37 (br s, 4H), 2.71 (s, 2H), 2.29-2.24 (t, J = 7.3 Hz, 2H), 1.95-1.75 (m, 

1H), 1.32 (t, J = 6.1 Hz, 2H), 1.31-1.15 (br m, 19H), 1.08-1.00 (m, 1H), 0.92-0.83 (m, 
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1H), 0.51-0.45 (m, 1H); 13C NMR (CDCl3, 300 MHz): δ = 171.9, 149.3, 136.6, 136.0, 

132.2, 131.8, 130.9, 129.4, 113.8, 51.3, 49.5, 45.3, 42.4, 38.7, 37.5, 34.7, 32.4, 29.9, 29.6, 

29.5, 29.3, 28.6, 25.7; HRMS (ESI): m/z = 782.9; anal. calcd. for C40H50ClNO2PdS2: C, 

61.37; H, 6.44; N, 1.79; found: C, 61.09; H, 6.48; N, 1.84. 

 

Polymerization of Pd-Cl 12-(bicyclo[2.2.1]hept-5-en-2-yl)-N-(3,5 

bis(phenylthiomethyl)phenyl)dodecanamide (19) 

 

 

 

 Monomer 18 (85 mg, 0.11 mmol) was dissolved in CDCl3 and stirred before the 

addition of the third generation Grubbs catalyst (2 mg, 0.002 mmol). The polymerization 

was monitored via 1H NMR. After completion of the polymerization, ethyl vinyl ether 

was added (2 drops). The polymer was precipitated at least three times and washed with 

methanol to yield an orange solid; yield: 70 mg (82%). 1H NMR (DMSO-d6, 300 MHz): 

δ = 9.63 (br s, 1H, NH), 7.73 (br s, 5H), 7.32 (br m, 8H), 5.41-5.10 (br m, 2H), 4.51 (br 

m, 4H), 3.31 (s, 4H), 2.13 (br m, 2H), 1.45-0.88 (br m, 23H); 13C NMR (DMSO-d6, 300 

MHz): δ = 170.3, 149.4, 136.2, 131.9, 130.4, 129.3, 113.0, 50.0, 36.4, 30.8, 29.7, 29.4, 

25.2. 
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CHAPTER 4 

POLYMER AND SILICA SUPPORTED PCP-Pd PINCER 

COMPLEXES 

 

Abstract 

 Following the results reported in chapter 2, a variety of palladated PCP pincer 

complexes, reported as more stable than their Pd-SCS analoguesm, were synthesized. The 

different palladacycles were covalently tethered onto polymeric and silica supports via 

either amide or ether linkages. The role of the nature of the linkages with the Pd-SCS 

pincer proved to be minimal for the stability of the complexes. To investigate if these 

findings can be attributed to Pd-PCP complexes, the catalysts were tethered to their 

respective support using ether and amide linkages. The different catalysts were evaluated 

in the Heck reaction of iodobenzene and n-butyl acrylate in DMF at 120 ºC using 

triethylamine as a base. The stability of the different Pd-PCP complexes was evaluated 

using kinetic and poisoning studies. The kinetic studies yielded very similar results as the 

one described in chapter 2, which are the presence of induction time and the decrease in 

conversion after being recycled. Furthermore, poisoning studies using poly(vinyl 

pyridine) and mercury added a the beginning of the catalysis resulted in no conversion. 

To understand the results of the kinetic and poisoning studies, the decomposition under 

reaction conditions of all complexes studied was investigated using 13P NMR, mass 

spectrometry, XAS and computational methods. The NMR studies indicated the 

predominant role of the triethylamine in the decomposition of the complex. Furthermore, 

XAS showed the presence of palladium iodide species, indicating the decomposition of 
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the Pd-PCP complex into a different species known to distill Pd. In addition, the initial 

steps of the decomposition pathway of PCP as well as SCS pincer Pd(II) complexes were 

studied using mass spectroscopy and computational calculations. The first step of this 

decomposition pathway involves the binding of triethylamine to the Pd while an arm of 

the pincer is off. These findings together with our previous reports strongly suggest that 

all Pd(II) pincer complexes are simply precatalysts during the Heck reaction that 

decompose to form catalytically active Pd(0) species. 

 

 This was a highly collaborative study between four research groups: the Jones, 

Sherill and Davis groups as well as ours. All the work carried out using silica supported 

Pd-pincer complexes was performed by Dr. Kunquan Yu from Professor Christopher W. 

Jones’ group, the XAS experiments was performed in collaboration with Yaying Ji from 

Professor Robert J. Davis’ lab and the computational simulations were performed in 

collaboration with John S. Sears of the Sherrill group. 

 
4.1. Introduction 

With the work described in chapter 2 on supported SCS-Pd pincer complexes, the 

demonstration that these complexes leach unidentified Pd(0) species into solution that are 

catalytically active was done. Furthermore, no catalytic activity could be attributed to any 

intact pincer species. In view of these results, the investigation of palladated PCP 

complexes that are reported in the literature to be significantly more stable was carried 

out.[1-3]  The literature concerning these species in the Heck reaction is somewhat 

muddled. Eberhard[4]  has demonstrated that palladated PCP pincer complexes with 

oxygen atoms in place of carbons in the arms are not stable during Heck catalysis (Figure 
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4.1), Frech [5] has shown recently that the palladated pincer ligand could be reduced by 

sodium to form a binuclear metal complex, whereas there are other reports where 

immobilized PCP pincers are reported as “recyclable catalysts”.[6] 

 

 

 

Figure 4.1. Pd-PCP pincer studied by Eberhard. 

 

This chapter describes the results, obtained by myself and my collaborators, on a 

variety of supported PCP-Pd-pincer complexes. I prepared the small molecule Pd(II) PCP 

pincer (1), that was used as a baseline measurement of catalytic activity, and compared its 

performance in the Heck reaction with Pd(II)-PCP complexes tethered to a variety of 

supports ranging from soluble polymers (2 and 3) to nanoporous silica, SBA-15 (4) 

(Figure 4.2). Using a variety of techniques such as in situ NMR, in-situ X-ray Absorption 

Spectroscopy (XAS) and the poisoning studies described in chapter 3, I investigated the 

stability of the supported Pd-pincer complexes. Furthermore, other techniques such as 

mass spectroscopy and computational experiments were used to explore the first steps of 

the decomposition pathway. 
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Figure 4.2. The immobilized palladated pincer complexes evaluated in this chapter. 

 

4.2. Results and Discussion. 

The investigation was conducted using four different catalysts with similar 

structures. Complex 1 was used as the standard for all catalytic reactions for comparison 

with the supported systems. The polymer-supported catalysts 2 and 3 were synthesized to 

study the effect of the linker attachment on the catalytic activity. It has been suggested in 

the literature that ether derivatives of pincer complexes are less stable than their amide 

counterparts.[7]  Therefore, two polymeric catalysts that are identical except for the 

heteroatom functionality that attaches the pincer complex to the support were prepared. 

For 2, the catalyst was attached to the polymer backbone via an ether linkage while in the 

case of 3, an amide linkage was employed. Both polymers are highly soluble under 

reaction conditions allowing a close comparison with 1. The silica-supported catalyst 4 
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was synthesized to study the influence of a heterogeneous reaction mixture on the 

catalysis and to compare the catalytic activity of a solid supported system to the soluble 

polymer catalysts and the small molecule analog.   

 

 

 

Figure 4.3. Heck reaction conditions. 

 

The standard Heck reaction conditions are outlined in Figure 4.3. The catalysis 

was carried out using 1.5 equivalents of distilled triethylamine, one equivalent of 

iodobenzene and 1.25 equivalents of n-butyl acrylate in DMF at 120 ˚C. The catalyst 

loading was 10 mol% for the polymer supported pincer and 0.3 mol% for the SBA-15 

supported pincer. 

 

 

 

Scheme 4.1. Synthesis of Pd-Cl N-{3,5-bis-[(diphenylphosphanyl)-methyl]-phenyl}-

acetamide 1. 

 

The synthesis of 1 was carried out by reacting 5 (synthesized according to 

literature procedures9) with potassium diphenylphosphide in THF under reflux for three 
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hours to yield 6, which was used without further purification. Compound 6 was then 

dissolved in a mixture of CH2Cl2/ MeCN (1:2) followed by the addition of PdCl2(NCPh)2 

and AgBF4 to yield 1, after purification, as a yellow solid (Scheme 4.1). 
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Figure 4.4. Conversion vs. time for Heck coupling using 1. 

 

The use of 1 in Heck catalysis was investigated by monitoring the disappearance 

of iodobenzene via gas chromatography (GC). I observed quantitative conversion using 1 

as catalyst within 20 minutes (Figure 4.4). To examine the catalytic behavior in more 

detail, poisoning studies were carried out. As demonstrated in chapter 3, highly cross-

linked poly(vinylpyridine) (PVPy) traps soluble Pd species by coordinating to the metal 

center and removing it from solution77  while leaving support-tethered Pd-species 

untouched.56-57,77  For the poisoning test, 300 equivalents of PVPy were added to the 

catalytic reaction, resulting in less than 2% conversion of iodobenzene after three hours. 

A second poisoning test was carried out by adding mercury. Hg(0) is known to react with 
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Pd(0), forming an amalgamate, thereby quenching the activity of the leached palladium.[8-

10]  When adding 100 equivalents of mercury to the catalytic reaction, again, less than 2% 

conversion of iodobenzene was observed after three hours. These results clearly suggest 

that 1 decomposes under reaction conditions.[7, 11, 12]  

 

 

 

Scheme 4.2. Synthesis of polymer 2. 

 

The synthesis of polymer 2 was accomplished by adding potassium 

diphenylphosphide to 7, which was synthesized using a literature procedure,[13]  followed 

by the oxidation of the phosphorus using an aqueous solution of 10% H2O2. The tert-

butyl dimethyl silyl group was then removed using TBAF to yield 8 as a white solid, 
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which was reacted with the cyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-bromo-undecyl 

ester using potassium carbonate in DMF to yield a brown oil. The oil was immediately 

reacted with trichlorosilane and triethylamine in xylenes to deprotect the phosphines. The 

deprotected pincer was then reacted with PdCl2(NCPh)2 and AgBF4 to yield monomer 10 

as an orange solid. The monomer was polymerized using the third generation Grubbs 

catalyst at room temperature under air (Scheme 4.2).[14]  Quantitative conversion was 

obtained in 20 minutes. 
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Figure 4.5. Conversion vs. time for Heck coupling using 2. 

 

Again, the use of polymer 2 under Heck conditions was measured using GC by 

following the disappearance of iodobenzene (Figure 4.5). I observed quantitative 

conversion within 90 minutes. In analogy to the experiments outlined above for 1, 

poisoning studies were carried out. The addition of 300 equivalents of PVPy resulted in 

the retardation of the reaction with only 1% conversion observed after 24 hours. 

Furthermore, the addition of 100 equivalents of mercury to the Heck reaction mixture 
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yielded similar results. Again, these experiments suggest that the active species for the 

Heck reaction is not a well-defined palladium species but a leached Pd moiety that 

contains Pd(0) in the catalytic cycle.  

 

 

 

Scheme 4.3. Synthesis of polymer 3. 

 

Polymer 3 was synthesized starting with the coupling of complex 12 and 12-

bicyclo[2.2.1]hept-5-en-2-yl-dodecanoic acid using dicyclohexylcarbodiimide and 1-

hydoxybenzotriazole to yield 13. Reduction of the phosphorus using trichlorosilane and 

triethylamine in xylenes, followed by the addition of the PdCl2(NCPh)2 and AgBF4, 

yielded monomer 14 (Scheme 4.3). The monomer was polymerized using the third 

generation Grubbs catalyst 11 in a 50:1 monomer to catalyst ratio. 
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Figure 4.6. Conversion vs. time for Heck coupling using 3. 

 

The same reactivity experiments as outlined above for 1 and 2 were carried out. 

While quantitative conversion without the addition of poison was observed within 60 

minutes (Figure 4.6), the two poisoning tests using 300 equivalents of PVPy and 100 

equivalents of mercury resulted into the near total quenching of the catalytic reaction. 

Both reactions yielded less than 1% conversion after 24 hours. These results showed that 

the leaching of the palladium is independent of the tether group of the immobilized pincer 

complex, and correlates well with the other experiments discussed above.  
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Figure 4.7. Conversion vs. time for Heck coupling using 4. 

 

Using 4 as Heck catalyst resulted in the quantitative conversion of iodobenzene 

within two hours (Figure 4.7). The PVPy and mercury leaching tests were carried out and 

no conversions were observed in the presence of either poison. 

 These reactivity experiments clearly demonstrate that palladated PCP complexes 

decompose under the reaction conditions studied. Furthermore, the decomposition is 

independent of the support or the linker attachment. While small differences in the 

kinetics of the reactions were observed for the different supports, poisoning studies for all 

systems studied demonstrate that no catalytic activity stems from a support-tethered 

Pd(II) species; rather, leached Pd species are the active moieties. These results are 

analogous to our recent reported study on supported SCS pincer complexes, clearly 

demonstrating that the added stability of the PCP ligand system is not enough to prevent 

decomposition.[11, 12]   
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Investigations into the decomposition pathway.  

A variety of decomposition pathways of these complexes during reaction 

conditions are imaginable. The most likely decomposition pathway of palladacycles starts 

with the exchange of one ligand of the pincer ligand (arm off) by the nitrogen-containing 

base. As outlined in the literature, the high strain of palladated pincer complexes as a 

result of their distorted square planar configuration makes them likely to de-chelate under 

appropriate reaction conditions thereby relieving the strain.[15]  After base or solvent 

coordination, the resulting complex resembles a half-pincer complex. Hartwig and Louie 

have shown that half pincer complexes containing an amine base as ligand are able to 

undergo β-hydride elimination, a common reaction pathway of palladium amides with β-

hydrogens, resulting in a palladium hydride species (Figure 4.8).[15]  

 

 

 

Figure 4.8. Postulated mechanism by Louie et al. for the synthesis of [Pd(0){P(o-

Tol)3}2]. a) deprotonation, b) β-H elimination, c) reductive elimination, d) 

disproportionation. 
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My collaborators and I proposed that the second step of the catalyst 

decomposition may follow the same pathway of β-hydrogen elimination as outlined in 

Scheme 4.4, creating a charged palladium hydride species with the imminium ion as a 

counterion. 

 

 

 

Scheme 4.4. Proposed initial steps of the decomposition of the palladated pincer 

complex. 

  

To investigate this proposed decomposition pathway, I carried out a variety of in 

situ low and high temperature NMR experiments and mass spectroscopy experiments, 

supported by electronic structure computations and XAS studies. The hypothesis that the 

palladated PCP pincer is in an equilibrium between an arm-on configuration, i.e. a 

phosphine, bound to the palladium via a dative bond, and an open coordination site as a 

result of the breakage of this dative bond (arm-off configuration) is essential to most 

potential decomposition mechanisms.[16-18]  Therefore, initially I concentrated my 

research efforts to evaluate this hypothesis.  
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Scheme 4.5. Computational explored ligand exchange mechanism. 

 

Electronic structure computations were carried out to establish the energetics of 

the replacement of the phosphine ligands by the amine base (Scheme 4.5).  

 

A 

 

B 

 

C 
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D 

 

Figure 4.9. Optimized structures of the calculated exchange pathway of phosphine by a 

trimethyl amine base of palladated pincer complexes. A) Chemdraw representation of 

structures used in calculation, B) fully intact complex, C) removal of one phosphine, D) 

addition of the amine base, E) rearrangement to a distorted square planar confirmation, 

and F) exchange of the second phosphine by another amine base. 
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Optimized geometries (computed using the BP86 density functional method with 

a LAV3P/6-31G* basis, see below) are presented in Figure 4.9 and relative energies for 

the PCP system are depicted in Figure 4.10. 
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Figure 4.10. Free energy diagram of the relevant minima for the initial steps of the 

proposed decomposition pathway computed at the BP86/LAV3P/6-31G* level of theory. 

 

 These calculations suggested that the 'one arm off configuration' of palladated 

PCP complexes requires about 21 kcal/mol in the presence of a coordinating ligand such 
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as the amine, an uphill reaction energy that could be overcome at high temperatures such 

as the reaction conditions (preliminary computations for the simpler SCS system indicate 

that the transition state for this associative displacement is only an additional 2-3 

kcal/mol beyond the reaction energy). Removal of the second arm and replacing it with 

another ligand such as the solvent and/or the amine base is estimated to cost an additional 

13 kcal/mol relative to the 'one arm-off configuration'. After the initial removal of the 

first arm, the coordination sphere around the palladium is a highly distorted square planar 

one (Figure 8C), which is highly unfavorable. However, this can be overcome during the 

second phosphine removal that converts the metal complex back into a square planar 

configuration (Figure 8D), which explains why the second ligand exchange is less 

unfavorable than the first one. Based on these calculations, we hypothesize that the high 

temperatures during the reaction conditions allow the phosphorus ligands to come off of 

the metal center and to be replaced by other ligands such as the amine base. To support 

this hypothesis a series of 31P NMR experiment using 1 was carried out.  

If an arm on/off equilibrium would take place in the absence of additional ligands, 

one might expect to freeze out these states leading to two distinct 31P NMR signals at low 

temperatures that should coalesce at higher temperatures. However, only a single 

phosphorus signal at 15.7 ppm at -70 ˚C was detected in a variety of solvents clearly 

demonstrating the stability of the Pd-P bonds at low temperatures. To investigate the role 

of the reactants towards the decomposition of the catalyst, we carried out a series of 

NMR experiments with triethylamine and/or iodobenzene present in the catalyst solution. 

Initially, equimolar ratios of 1, triethylamine and iodobenzene were observed in-situ at 

120 ˚C in DMF. Over a period of several hours, only one phosphorus signal was detected. 
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However, addition of three more equivalents of triethylamine resulted in the formation of 

two new signals in the phosphorus NMR at 7.7 and -4.2 ppm. Furthermore, palladium 

black formation was visible confirming the decomposition of the metal complex. While I 

was not able to assign these two new signals in the NMR unequivocally, they are clearly 

indicative of a new phosphorus species.  

To further investigate if both iodobenzene and triethyl amine are needed for 

decomposition, or if the decomposition pathway might follow the one outlined in Scheme 

5, i.e. only the amine base is needed, additional experiments were carried out to verify the 

role of each reactant. Addition of iodobenzene to the metal complex at 120 ˚C in DMF 

resulted in no changes in the NMR over a period of 24 hours and no palladium black 

formation was observed, even when 20 equivalents of iodobenzene were added. In 

contrast, the addition of seven equivalents of triethylamine without the presence of an 

aryliodide species resulted in the formation of a new signal, 19 ppm upfield from the 

original signal. These results suggest that triethylamine plays an essential role in the 

decomposition of the palladium/pincer complex.  

Theoretical investigations of the second step of the proposed decomposition 

pathway, the β-hydride elimination, would be very challenging and beyond the scope of 

the present study. Nevertheless, initial computations of subsequent steps for the simpler 

SCS system indicated that hydride transfer to the aromatic carbon and concomitant 

cleavage of the carbon-palladium bond was energetically downhill by at least 20 kcal/mol 

relative to the intact palladacycle. To probe the proposed β-hydride elimination step of 

the decomposition pathway, I carried out a series of mass spectroscopy experiments. 

Based on the work of Hartwig and Louie,[15]  the amine base will exist, after β-hydride 
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elimination, as an imminium ion that can be hydrolyzed to yield a secondary amine, and 

aldehyde. The presence of this secondary amine can be easily characterized using mass 

spectroscopy. Therefore, characterization of a reaction mixture using mass spectroscopy-

ESI gives a facile method to evaluate the proposed β-hydride elimination decomposition 

step. For ease of characterization, N,N-dicyclohexyl-N-methyl amine was employed in 

the mass spectroscopy studies instead of the otherwise used triethyl amine (Scheme 4.6). 

 

 

 

Scheme 4.6. Proposed decomposition pathway generating the amine 

  

 The experiments were carried out by dissolving a mixture of catalyst 1 and N,N-

dicyclohexyl N-methyl amine in DMF and heating it at 120 ˚C for several hours. Every 

hour, an aliquot was taken from the reaction mixture and analyzed by mass spectroscopy. 

All aliquots analyzed via mass spec (ESI) spectra showed molecular ion signals at 182.3. 

This molecular ion signal is indicative of the presence of N,N-dicyclohexyl amine. This 

result strongly supports the hypothesis that the decomposition pathway goes through a β–

hydrogen elimination step before the palladium (0) leaches out.  

In chapter 3, the decomposition of palladated SCS pincer complexes during Heck 

catalysis was described.[11, 12] To investigate whether these palladated SCS pincer 

catalysts also follow the decomposition pathway identified for their PCP analogous, 
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Yaying Ji, from Professor Davis group, carried out XAS experiments and John Sears 

from Professor Sherrill group, the computational studies. The electronic structure 

computations of the palladated SCS pincer complex suggested that the one arm off 

configuration is only 7.0 kcal/mol higher in energy than the palladated SCS pincer 

complex in the presence of an amine base. Furthermore, removal of the second arm is 

calculated to be downhill relative to the ‘one arm off configuration’ by 0.6 kcal/mol. 

These calculations were supported by the observation of palladium black formation in the 

reaction vessel when adding only a single equivalent of triethyl amine to a 

poly(norbornene) supported SCS Pd(II) pincer complex. This is in stark contrast to the 

required seven equivalents of triethylamine required for the visible decomposition of the 

PCP analogue, 1, and can be explained by the known lesser stability of SCS complexes.[7, 

19] 

The in-situ XAS data on both the polymeric and silica immobilized palladated 

SCS pincer complexes during Heck reaction conditions, show the formation of palladium 

iodide species while no metallic palladium was found under reaction conditions (for a 

detailed description of the XAS data, see Appendix A). It has been reported in the 

literature that soluble palladium species are stored as palladium halides such as the 

bridged [Pd2I6]2- anion.[20]  Our XAS study clearly validates these reports. It is important 

to note that the majority of the computational and NMR studies, in contrast to all XAS 

experiments, were carried out in the absence of an aryl iodide. When no aryl iodide was 

present during the NMR experiments, palladium black formation was observed 

suggesting the formation of metallic palladium. However, when NMR experiments were 

carried out in the presence of aryl iodide, palladium black formation was significantly 



 89

less pronounced, suggesting the storage of the majority of palladium in a form other than 

Pd(0). Based on the XAS results, palladium iodide species are therefore the likely storage 

species. Overall, the XAS results clearly demonstrated that the SCS pincer complexes are 

altered under reaction conditions, thereby substantiating the NMR and computational 

studies while suggesting that the most abundant soluble palladium species under reaction 

conditions are palladium iodides. 

By combining the experimental and computational data on the decomposition of 

palladated PCP and SCS pincer complexes, it is obvious that the amine base plays the key 

role in the decomposition pathway. Based on the above outlined data, it was suggested 

that catalyst decomposition could occur through exchange of a phosphorus or sulfur 

ligand (one arm of the pincer ligand) with triethyl amine followed by a β-hydrogen 

elimination of the base and a rapid second ligand exchange thereby changing the pincer 

ligands from tridentate ligands to monodentate ones. Furthermore, the calculations follow 

the reported trend of PCP-based complexes being significantly more stable than their 

SCS counterpart.[19]  However, at the commonly employed reaction temperatures, both 

complexes decompose, thereby releasing soluble palladium species. Although the XAS 

studies clearly indicated that the primary Pd species in solution was a Pd(II) moiety, the 

Hg(0) poisoning studies unequivocally showed that the catalytic cycle contains a Pd(0) 

intermediate, as Hg(0) addition quenches essentially all activity.  As noted in chapter 3, 

however, the nature of the true zero valent catalyst can not be conclusively determined 

with the data here (Pd(0) colloid[21] or molecular Pd(0) species[20, 22, 23]), as it is expected 

that Hg(0) would poison either type of species.  Nonetheless, a number of observations 

imply that molecular species could be important in the Heck reaction, including the 
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observed reactivity and the high concentration of [Pd2I6]2- species in ligand-free Pd 

catalysts,[19], [24]  the XAS observations here, kinetic and other data presented in the 

literature,[22, 23]  and the fact that enantioselective Heck reactions are possible with chiral 

ligands.[25]  None of these observations would be expected if Pd(0) colloids were the 

primary active species.  

 

4.3. Conclusion 

It has been demonstrated using a variety of leaching experiments and kinetic studies that 

palladated PCP pincer complexes (homogeneous species as well as complexes 

immobilized on soluble and insoluble supports), which have been identified in the 

literature as stable entities,[6, 26]  decompose under Heck reaction conditions. Through the 

employment of computational methods, X-ray absorption spectroscopy, mass 

spectroscopy, and in situ NMR spectroscopy, the initial steps of the decomposition 

pathway of these PCP as well as SCS pincer complexes were proposed. It is important to 

note that these conclusions are limited to the organic bases used in this paper. Heck 

catalysis using palladated-pincer ligands have also been carried out using inorganic bases 

such as K2CO3. The combined data outlined in this contribution with recent reports from 

the literature[4, 11, 12, 27]  calls into question whether any palladated pincer complexes that 

have a palladium (II) metal center are truly stable under the reaction conditions for 

carbon-carbon bond formations such as Heck or Suzuki couplings.  Rather, these species 

should be referred to as precatalysts, and supported analogues as recyclable precatalyst 

sources. Stemming from these findings, a ligand, identified as more stable in the 

literature, was investigated. This research led me to the N-heterocyclic carbene ligand. 
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This ligand has been reported to be versatile for a wide variety of catalytical 

transformation and to be very stable. In chapter 4, my investigations using this ligand is 

described.  

 

4.5. Experimental Section 

 All reactions with air- and moisture sensitive compounds were carried out under 

dry nitrogen/argon atmosphere using an MBraun UniLab 2000 dry box and/or standard 

Schlenk line techniques. DMF, n-butyl acrylate, and NEt3 were distilled over calcium 

hydride. 5-amino-isophthalic acid dimethyl ester, poly(4-vinylpyridine) and all bases 

were obtained from commercial sources and generally used without further purification. 

Gas chromatographic analyses were performed on a Shimadzu GC 14-A gas 

chromatograph equipped with a flame-ionization detector with a HP-5 column (length = 

30 m, inner diameter = 0.25 mm, and film thickness = 0.25 um). The temperature 

program for GC analysis was the following: heating from 50 °C to 140 °C at 30K/min 

and heating from 140 °C to 300 °C at 40 K/min under constant pressure with inlet and 

detector temperatures kept constant at 330 °C. 1H (300 MHz) and 13C NMR (75 MHz) 

spectra were recorded on a Varian Mercury VX instrument. 31P NMR (162 MHz) spectra 

were recorded on a Bruker AMX 400 MHz instrument using H3PO4 as a calibration 

standard. All spectra were referenced to residual proton solvent. Mass spectral analyses 

were provided by the Georgia Tech MassSpectrometry Facility using a VG-70se 

spectrometer. Gel permeation Chromatography analyses were carried out using a Waters 

1525 binary pump coupled to a Waters 2414 refractive index detector. The GPC was 

calibrated using polystyrene standards on a Styragel® HR 4 and HR 5E column set with 
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CH2Cl2 as an eluent. FT-Raman spectra were obtained on a Bruker FRA-106. At least 

128 scans were collected for each spectrum, with a resolution of 2-4 cm-1. Elemental 

analyses were carried out by either Atlantic Microlabs, Norcross GA (CHN analyses) or 

Galbraith Laboratories, Inc., TN. 

 

Synthesis of Pd-Cl N-{3,5-Bis-[(diphenylphosphanyl)-methyl]-phenyl}-acetamide 

(1). 

 

 

 

Inside a nitrogen filled dry box, KPPh2 (4.1 mL, 0.5 M in THF) was slowly added 

to a THF solution (20 mL) of 5 (220 mg, 0.94 mmol). The reaction mixture was removed 

from the dry box, refluxed for three hours, and cooled to room temperature. The solvent 

was removed under vacuum and dry CH2Cl2 (50 mL) was added. The solution was 

washed with degassed H2O (2 x 20 mL), dried over anhydrous Na2SO4 and the solvent 

removed. The crude product was re-dissolved in 15 mL CH2Cl2/CH3CN (v/v: 1:2) and 

Pd(PhCN)2Cl2 (320 mg, 0.83 mmol) was added. The reaction mixture was stirred at room 

temperature for 30 min followed by the addition of AgBF4 (485 mg, 2.49 mmol). After 

stirring for an additional 30 min, the mixture was diluted with CH2Cl2 (250 mL) and 

stirred with a saturated brine solution (200 mL) for five hours. The organic layer was then 

separated, dried over Na2SO4 and passed through a short silica gel column. Solvent 

removal and recrystallization from CH2Cl2/Et2O yielded 1 as a yellow powder. Yield: 
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340 mg (61%). 1H NMR (d6-DMSO, 300MHz): δ = 9.86 (s, 1H), 8.21-7.77 (m, 10H), 

7.48-7.37 (m, 10H, Ph), 7.28 (s, 2H), 4.09 (bs, 4H), 1.96 (s, 3H). Anal. Calcd for 

C34H30ClNOP2Pd: C, 60.73; H, 4.50; N, 2.08. Found: C, 60.34; H, 4.32; N, 1.94.  

 

Synthesis of Pd-Cl bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-{3,5-bis-[(diphenyl 

phosphanyl)-methyl]-phenoxy}-undecyl ester (10). 

 

 

 

Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-bromo-undecyl ester (767 mg, 

2.06 mmol) was slowly added over a period of 15 minutes to a stirred solution of 8 (1.08 

g, 2.06 mmol), and potassium carbonate (571 mg, 4.1 mmol)in DMF. The mixture was 

heated to 90 °C and allowed to stir for 12 hours. The DMF was removed in vacuo and the 

crude product dissolved in methylene chloride (100 mL) and washed with 1N HCl (50 

mL), sodium bicarbonate (50 mL) and brine (50 mL). The organic layers were dried over 

magnesium sulfate and the solvent removed under vacuum to yield 9 as a viscous brown 

oil which was partially purified via column chromatography (eluent: Ethyl Acetate 

followed by Methanol), and then used without further purification. Compound 9 (1.37 g, 

1.7 mmol) was dissolved in degassed m-xylenes (50 mL) and trietylamine (5.7 mL, 40.5 

mmol) was slowly added followed by the dropwise addition of trichlorosilane (4.1 mL, 

40.5 mmol). The reaction was heated to 120 °C for ten hours. After the mixture was 

cooled to room temperature, it was poured into a degassed solution of sodium hydroxide 
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(500 mL). The product was then extracted from the aqueous reaction mixture with 

toluene (2 x 100 mL), dried over magnesium sulfate and the solvent removed under 

vacuum to yield a yellow oil. The oil was dissolved in CH2Cl2/CH3CN (5 mL/ 10 mL) 

and PdCl2(NCPh)2 (652 mg, 1.7 mmol) was added. The solution was stirred for 30 

minutes before the addition of the AgBF4 (823 mg, 4.2 mmol). The mixture turned 

yellow and was stirred for another 30 minutes, diluted with CH2Cl2 (200 mL), poured 

into a concentrated brine solution (500 mL) and stirred vigorously for five hours. The 

organic layer was separated, dried over MgSO4 and the solvent removed under vacuum to 

yield an orange oil that was purified via column chromatography (1:1 Ethyl 

Acetate/Hexanes) to yield 2 as an orange solid. Yield 62%. 1H NMR (CDCl3, 300 MHz): 

δ = 7.91 - 7.83 (m, 10H), 7.52 – 7.34 (m, 12H), 6.7 (s, 4H), 6.08 - 5.88 (m, 2H), 4.23 (br 

s, 4H), 3.83 (t, 2H, J = 6.2 Hz), 3.20 – 3.13 (m, 1H), 3.00 – 2.99 (m, 1H), 2.94 – 2.82 (m, 

4H), 2.22 – 2.13 (m, 1H), 1.92 – 1.82 (m, 2H), 1.78 – 1.64 (m, 4H), 1.63 – 1.50 (m, 4H), 

1.42 – 1.31 (m, 5H), 1.32 – 1.20 (m, 28H). HRMS (ESI): m/z = 885.2534. Anal. Calcd 

for C51H57ClO3P2Pd: C, 66.45; H, 6.23; found C, 66.82; H, 6.11. 

 

Synthesis of Pd-Cl 12-Bicyclo[2.2.1]hept-5-en-2-yl-dodecanoic acid {3,5-bis-

[(diphenylphosphanyl)-methyl]-phenyl}-amide (14). 
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To a solution of 12-bicyclo[2.2.1]hept-5-en-2-yl-dodecanoic acid (120 mg, 0.4 

mmol) in CH2Cl2 1-hydroxybenzotriazole (55 mg, 0.4 mmol) and 

dicyclohexylcarbodiimide (85 mg, 0.4 mmol) were added with a few drops of DMF. To 

the reaction mixture, complex 12 (214 mg, 0.4 mmol) was added and stirred for 12 hours. 

The reaction mixture was then filtered through a small patch of silica and the solvent 

removed under vacuum. Without further purification, compound 13 was dissolved in 

degassed xylenes (50 mL) followed by the addition of triethylamine (0.56 mL, 4 mmol) 

and drop wise addition of trichlorosilanes (0.56 mL, 4 mmol). The reaction mixture was 

heated to 120 ˚C for 12 hours, cooled down to room temperature and transferred into a 

glove box where the reaction was poured into a degassed solution of sodium hydroxide 

(2M, 50 mL). The product was then extracted from the aqueous reaction mixture with 

toluene (2 x 50 mL), dried over MgSO4 and the solvent removed to yield an off-white oil 

which was dissolved into CH2Cl2/CH3CN (5 mL/ 10 mL) followed by the addition of 

PdCl2(NCPh)2 (154 mg, 0.4 mmol). The reaction mixture was stirred for 30 minutes 

before the addition of AgBF4 (195 mg, 1 mmol). The mixture was stirred for another 30 

minutes, diluted with CH2Cl2 (200 mL), poured into a saturated brine solution and stirred 

for 12 hours. The organic phase was then separated, dried over MgSO4 and the solvent 

removed to yield an orange oil that was purified via chromatography column (1:1 Ethyl 

Acetate/Hexanes). Yield 34%. 1H NMR (CDCl3, 300 MHz): δ = 7.92 - 7.84 (m, 10H, 

PPh2), 7.51 – 7.34 (m, 12H), 6.4 (s, 4H), 6.06 - 5.89 (m, 2H), 4.37 (br s, 4H), 2.71 (s, 

2H), 2.29- 2.24 (t, J = 7.3 Hz, 2H), 1.95- 1.75 (m, 1H), 1.324 (t, J = 6.1 Hz, 2H), 1.324- 

1.15 (br m, 19H), 1.08- 1.00 (m, 1H), 0.92- 0.83 (m, 1H), 0.51- 0.45 (m, 1H). 13C NMR 

(CDCl3, 300 MHz): δ = 171.9, 158.0, 149.8, 148.8, 133.9, 133.9, 131.9, 133.8, 132.4, 
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132.3, 132.2, 131.5, 131.4, 129.9, 129.7, 129.6, 128.1, 127.9, 113.8, 51.3, 49.5, 45.3, 

42.4, 38.7, 37.5, 34.7, 32.4, 29.9, 29.6, 29.5, 29.3, 28.6, 25.7. HRMS (ESI): m/z = 

905.3275. Anal. Calcd for C51H58ClNOP2Pd : C, 67.70; H, 6.46; N, 1.55; found C, 67.52; 

H, 6.42; N, 1.67. 

 

General procedure for the synthesis of polymer 2 and 3. 

The respective monomers were dissolved in CDCl3 followed by the addition of 

the desired amount of catalyst. The polymerization was monitored via NMR. After 

completion of the polymerization a few drops of ethyl vinyl ether were added. The 

polymer was then purified by reprecipitation from chloroform into cold methanol. The 

purification procedure was repeated until the resulting methanol solution became 

colorless. The methanol was the decanted and the resulting polymer dried in vacuo. 

 

Polymer 2. 
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  1H NMR (CDCl3, 300 MHz): δ = 7.8 (m, 10H), 7.34 (m, 12H), 6.49 (br s, 4H), 5.50 -

5.17 (br m, 2H), 4.23 (br s, 4H), 4.00 – 3.85 (m, 2H), 3.19 – 2.28 (br m, 3H), 2.01 – 1.55 

(br m, 8H), 1.53 – 1.02 (m, 14H). 13C NMR (CDCl3, 300 MHz): δ 158.0, 149.8, 148.8, 

133.9, 133.9, 131.9, 133.8, 132.4, 132.3, 132.2, 131.5, 131.4, 129.9, 129.7, 129.6, 128.1, 

127.9. 

 

Polymer 3.  

 

 

 

1H NMR (DMSO, 300 MHz): δ = 7.7 (m, 10H), 7.4 (m, 12H), 6.6 (br s, 4H), 5.53 -5.14 

(br m, 2H), 4.5 (br m, 4H), 3.31 (s, 4H), 2.13 (br m, 2H), 1.45- 0.88 (br m, 23H). 13C 

NMR (DMSO, 300 MHz): δ = 170.3, 158.0, 149.8, 148.8, 133.9, 133.9, 131.9, 133.8, 

132.4, 132.3, 132.2, 131.5, 131.4, 129.9, 129.7, 129.6, 128.1, 127.9, 118.9, 113.7, 50.0, 

36.4, 30.8, 29.7, 29.4, 25.2.  

 

General procedure for the catalysis. 

The reaction was carried under an inert atmosphere using freshly distilled NEt3 

and DMF. A vial was loaded with the catalyst, n-butyl acrylate, iodobenzene and DMF. 
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The solution was heated to 120 °C. When reaching 120 °C, triethylamine was added in 

one portion to the solution at which point time 0 was taken for the kinetic data analysis. 

 

Mass spectroscopy. 

 In a reaction flask, catalyst 1 (23.5 mg, 0.035 mmol) and N,N-dicyclohexyl-N-

methyl amine (13.6 mg, 0.07 mmol) were dissolved in DMF. The reaction mixture was 

heated to 120 ˚C and stirred for one hour before an aliquot (0.007 mL) of the reaction 

mixture was removed from the vessel and analyzed via ESI mass spectroscopy (MS-ESI). 

Another two equivalents (based on 1) of N,N-dicyclohexyl-N-methyl amine were added 

to the reaction and stirred for an additional hour before another aliquot was taken and 

analyzed by MS-ESI. The same operation was repeated for 24 hours. ESI mass 

spectroscopy spectra of all aliquots showed molecular ion signals at 182.3. 
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[24] It has been argued that precursor complexes such as palladacycles decompose to 

give active Pd(0) nanoparticles.  This is because previous Hg test results where 

Hg(0) poisons catalysis have been interpreted as proof for catalysis by 

heterogeneous catalysts (colloids in this case).  We hypothesize here that Hg(0) 

will also extinguish catalysis by molecular Pd(0) “naked” species86-88 that are 

not protected by strongly-bound ligands.  Unfortunately, at times, the historic 

literature is interpreted as saying that the Hg test distinguishes between 

homogeneous and heterogeneous catalysis.  This is often the case in the context of 

the original studies.  Indeed, the historic literature104,105 with the Hg(0) test 

focuses on hydrogenation reactions with metal complexes in elevated formal 

oxidation states bound by protective ligands.  Certainly, these catalysts are not 

affected by Hg(0), as they are not M(0) species and they are protected by strong 

ligands.  We have also shown that Pd(II) pincers are also unaffected by Hg(0) 

when carrying out stoichiometric reactions where the ligand remains intact and 

the complex is in a Pd(II) state57.  However, we hypothesize that “naked” 

molecular Pd(0) species86-88 that have been postulated to be the true active 

catalytic species in some cases are an example of homogeneous catalysts that 

should be affected by Hg(0), as a consequence of their lack of protecting strong 

ligands and their M(0) state.  
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CHAPTER 5 

POLYMER SUPPORTED N-HETEROCYCLIC CARBENE 

 

Abstract 

 A variety of Pd-N-heterocyclic carbenes (NHC) tethered to poly(norbornene) 

were synthesized. These functionalized norbornenes were then polymerized via ring-

opening metathesis polymerization in a controlled fashion either before or after 

metalation with a variety of palladium and ruthenium precursors resulting in the 

formation of polymer-supported NHC-based metal catalysts. The activities of the 

palladium-based catalysts in the Suzuki-Miyaura, Sonogashira and Heck coupling 

reactions were studied in detail. In all cases, the polymeric catalysts demonstrated the 

same activity as their small molecule analogues. Furthermore, preliminary investigations 

into the stability of these catalysts using poisoning studies were carried out. A clear 

dependance of the stability of the polymer-supported catalysts on their palladium 

precursor was observed with palladium acetate-based polymeric NHC catalysts being the 

most stable. Finally, the reactivity of the supported NHC ruthenium complexes as 

catalysts for ring-closing metathesis was studied. Again, in all cases good conversions 

were observed with comparable activities to other supported NHC-ruthenium catalysts. 

Lastly, the ruthenium catalyst was removed from the solution quantitatively 

demonstrating the possibility of metal removal. 
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5.1. Introduction 

Following the results reported in chapters 3 and 4 demonstrating the instability of 

supported Pd-pincer complexes, different organometallic complexes reported to be stable 

and performant during catalysis were evaluated. Some of the most stable complexes that 

were found are Pd-NHC and Ru-NHC complexes. Furthermore, organometallic NHC 

complexes have shown great performances in a wide variety of reactions, demonstrating 

their usefulness in the synthesis of complex molecules that have applications ranging 

from drug precursors to polymers.  These vital applications make the NHC ligand a 

perfect candidate to be supported.  However, it must be demonstrated that the catalytic 

activity of the supported NHC complexes does not change with the nature of the support.  

Several research groups have made significant contributions towards the synthesis of 

supported NHC complexes and shown that the catalytic activity is indeed maintained.[1-4]  

Over the past five years, NHCs have been grafted onto different supports ranging from 

monolithic supports to soluble poly(styrene)s.[1, 2, 4-15] While often successful, metal 

leaching and low metal loadings remain a major shortcoming for most supported 

catalysts.  In particular the use of a soluble polymer support to immobilize N-

Heterocyclic carbene metal complexes has often been limited to one catalytic moiety per 

polymer chain.[6, 14, 16-18]  One exception to this is the work by Buchmeiser et al., whose 

group reported the functionalization of insoluble monolithic polymer discs with a variety 

of ruthenium catalysts using elegant postpolymerization functionalization.[19]  In this 

chapter, the synthesis of supported NHCs using poly(norbornene) as soluble polymer 

support is reported. 
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5.2. Results and Discussion  

To demonstrate the versatility of this strategy for preparing supported catalysts, I 

investigated the catalytic activity of this novel polymer supported catalysts in i) the 

Suzuki-Miyaura coupling of a library of aryl halides with phenylboronic acid, ii) the 

Sonogashira coupling of ethynyl trimethyl silane or 1-phenyl-trimethylacetylene with 

bromo-benzenes, iii) the Heck reaction of n-butyl acrylate with benzyl halides and iv) the 

ring-closing metathesis of diethyldiallyl malonate. 
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Scheme 5.1.  Synthesis of the polymer supported NHC-based catalysts 6, 7 and 9 utilized 

in this study. 

 

The synthesis of the four supported catalysts (Scheme 5.1) commences with the 

formation of 2 that was synthesized by reacting 1 with N-mesityl imidazole. The 

poly(norbornene)-supported Pd-NHC catalysts (6 and 7) were synthesized by treating 2 

with silver oxide yielding 3, followed by the addition of either Pd(OAc)2, Pd2dba3, or 

Pd2allyl2chloride2 to yield 5a – c.  Monomers 5a – c and 4 were then co-polymerized in 
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ratios of 1:4 and 1:0 respectively using the first generation Grubbs catalyst 10 to yield 

copolymers 6a – c and 7a – c respectively. For the synthesis of the poly(norbornene)-

supported catalysts 9, 2 and 4 were co-polymerized in ratios of 1:9 with 10. A ruthenium 

monomer precursor for 9 could not be synthesized since the ring-opening metathesis 

polymerization would dominate when mixing the deprotonated form of 2 with 10.  

All catalytic reactions (Scheme 5.2) were carried out under an inert atmosphere 

using screw-cap vials and were repeated at least three times. The products were 

characterized by GC-MS and 1H and 13C NMR spectroscopy.  

 

 

 

Scheme 5.2. The catalytic reactions that have been employed to evaluate catalysts 6, 7 

and 9.  
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First, the activity of the palladium-supported catalysts in the Suzuki-Miyaura 

transformation was investigated. The Suzuki-Miyaura transformation is an important tool 

for the synthesis of complex molecules with applications ranging from supramolecular 

chemistry[20] to natural product synthesis.[21, 22] To evaluate the generality of the 

supported catalysts, aryl chlorides with electron-donating or electron-withdrawing groups 

as well as sterically hindered aryl chlorides were employed as reactants and coupled to 

phenylboronic acid. Suzuki-Miyaura coupling reactions were carried out with all six 

different supported palladium catalysts (6a – c and 7a – c) using a variety of reaction 

conditions to evaluate the different catalysts and to optimize reaction conditions.   

The first system investigated consisted of a mixture of Pd2(dba)3 and 8, with the 

carbene and ultimately the catalyst generated in-situ. Cs2CO3 was used as the base and 

the reaction was carried out in dioxane at 80 °C using 4-chlorotoluene and phenylboronic 

acid as reactants. For all substrates, the Suzuki-Miyaura catalysis was complete within 

three hours with greater than 85 % of products isolated for all transformations, 

demonstrating the catalytic activity of our in-situ generated catalyst. Control experiments 

using the same reaction conditions in the absence of either the palladium precursor or 8 

did not result in the formation of any product. 
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Table 5.1. Results for the catalytic Suzuki-Miyaura coupling reaction. 

Entry Substrates Product 
Catalyst Time 

(min) 

Yield (%) 

6a 30 99 

6b 30 97 

6c 30 99 

7a 45 99 

7b 45 94 

1   

7c 45 97 

6a 30 100 

6b 30 99 

6c 30 99 

7a 30 95 

7b 30 97 

2  

7c 30 98 

6a  130 93 

6b 130 88 

6c 130 84 
3 

  

7a 130 90 
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Table 5.1. continued 

7b 130 88 

7c 130 81 

6a 120 92 

6b 120 88 

6c 120 85 

7a 120 92 

7b 120 86 

4  

7c 120 85 

5   6b 180 84 

 

The second Suzuki-Miyaura system studied employed the fully palladated and 

characterized polymers 6 and 7.  I investigated these supported catalysts in the coupling 

of phenyl boronic acid to a small library of chloro-aryl compounds.  The chloro-aryl 

compounds were chosen to investigate the influence of electron-donating/withdrawing 

groups as well as bulky substrates on the catalytic activity of 6 and 7.  Initially, potassium 

tert-butoxide was used as the base and isopropanol as the solvent.  When the reactions 

were carried out at room temperature, 70% conversion was observed after 24 hours.  

Switching to cesium carbonate as the base and dioxane as the solvent and increasing the 

reaction temperature to 80º C allowed me to optimize the isolated yields.  The catalytic 

results of these transformations are compiled in Table 5.1.  For all substrates, isolated 
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yields of 80-99% with the vast majority of reactions above 90% yields were obtained 

within hours.   

The different functional groups on the phenyl chlorides affect the conversions 

only slightly.  Substrates containing electron-withdrawing groups such as CN have 

slightly faster conversions.  In contrast, electron-donating groups such as methoxy on the 

substrates slow down the conversions.  Nevertheless, even with substrates containing 

electron-donating groups, quantitative conversions were still obtained within two to three 

hours.  The sterically bulky substrates such as dimethyl bromobenzene slowed down the 

reaction and quantitative conversions could not be obtained with any of the catalytic 

species.   

Reactions using copolymers 7 yielded very similar results to the homopolymers 

suggesting that the spacing of the metal complex does not affect its activity.  Overall the 

different polymer supported catalysts showed very similar conversions compared to their 

small molecules analogues with catalysts 6a and 6b being the most active. 
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Figure 5.1. Kinetic Study for a) the Suzuki-Miyaura reaction with 6a ( ), b) the 

Sonogashira reaction with 6a ( ), c) the Suzuki-Miyaura reaction with 6a in the presence 

of QuadraPure® ( ), d) the Sonogashira reaction with 6a in the presence of QuadraPure® 

( ), and e) the Suzuki-Miyaura reaction with 6a with the addition of QuadraPure® after 

20 minutes ( ). 

 

To investigate the catalytic system further, I performed kinetic studies of the most 

active polymer supported catalyst, 6a, using chlorotoluene and phenyl boronic acid as 

substrates.  Samples of the reaction mixtures were taken every five minutes until 

complete conversion.  The kinetic data are outlined in Figure 5.1.  The data clearly show 

that no induction period is present. 
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Table 5.2. Leaching test results. 

Entry Substrates Products Catalyst Poison Yield 

(%) 

1 
 

6a PVPy 

(500 mol%) 

<15 

2 
 

6a Poly(styrene) 

(500 mol%) 

<15 

3 
  

6a Mercury 

(500 mol%) 

95 

 

4 
  

None Mercury 

(500 mol%) 

0 

5 
  

Pd(0) Mercury 

(500 mol%) 

0 

6 
  

6a Mercury 

(500 mol%) 

98 

7 
 

6a Quadra-Pure 

2 eq 

89 

8 
 

6b Quadra-Pure 

2 eq 

79 

9 
 

6c Quadra-Pure 

2 eq 

0 
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Over the past two years, a variety of supported palladium catalysts have been 

shown to leach palladium during the catalysis.[12, 23-26]  Chapter 3 and 4 demonstrated that 

the supported palladium species does not catalyze any carbon-carbon bond formations 

but that the leached palladium species are the sole catalytically active species.[23-26]  To 

identify if the same restrictions are true for the poly(norbornene)-supported NHC 

palladium complexes, I investigated whether or not palladium leaches during the reaction 

and if the polymer supported species is active during the catalysis.  To identify the nature 

of the catalytic species, three catalyst poisons were used: a) highly cross-linked insoluble 

poly(vinyl pyridine) (PVPy), b) Quadra-Pure®, a microporous resin metal scavenger that 

is especially sensitive to palladium, and c) mercury(0).[61-63]   

Leaching test for the Suzuki couplings was carried out using the same reaction 

conditions as outlined above.  When carrying out the PVPy poisoning test (a ratio of 

1:500 of Pd to PVPy was used) with catalyst 6a, a decrease in activity was observed, with 

only 15% conversion after 24 hours (Table 5.2, Entry 1).  Nevertheless, the catalyst 

stayed active during the whole experiment.  To test if this decrease was due to palladium 

leaching off the supported NHC ligands or due to the lack of accessibility of the reactants 

to the catalyst sites, the same reaction using cross-linked poly(styrene) (MW = 25,000) 

was carried out.  Poly(styrene) is not able to coordinate to leached palladium and should 

therefore not inhibit the catalysis from leached metal species.  When carrying out the 

catalysis in the presence of 500 equivalents of poly(styrene) for each catalytic moiety, a 

dramatic drop in catalyst activity was observed, with a conversion of approximately 15 % 

after 24 hours (Table 5.2, Entry 2), i.e. the same drop in activity was observed as 

described above for the poly(vinyl pyridine) poisoning experiment. This result suggests 
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that the reduced activity in the poly(vinyl pyridine) leaching test is most likely not due to 

metal leaching during the catalysis but reduced accessibility of the active sites in this 

case.   

When carrying out the mercury test with the polymer supported palladium NHC 

catalyst 6a, 90% conversion of the phenylboronic acid to the corresponding biphenyl, the 

homocoupling product, was observed (Table 5.2, Entry 3).  To investigate this result, a 

series of control experiments were carried out.  First, the reaction without the supported 

palladium complex was carried out, i.e. only the reactants and the mercury (Table 5.2, 

Entry 4) were added to the reaction flask.  No conversions were observed.  When using a 

non-supported Pd(0) source as catalyst, either Pd on carbon or Pd2(dba)3, and mercury 

(Table 5.2, Entry 5) no conversion was observed.  This proves that Pd(0) metal is not 

active in the presence of mercury.  In the literature a variety of reductants including 

mercury(0) are described to catalyze the homocouplings of aryl boronic acids as well as 

aryl iodides or bromides.[27-30]  To investigate if the mercury acts as a reductant in the 

poisoning tests, I carried out the catalytic reaction without the addition of chlorotoluene, 

i.e. only phenyl boronic acid, the supported catalyst and mercury were present during the 

reaction.  This experiment resulted in 95% conversion (Table 5.2, Entry 6) of the phenyl 

boronic acid to the corresponding biphenyl.  These results suggest that the mercury acts 

as a reductant in our poisoning tests but also that the supported palladium catalyst seems 

to be stable during the poisoning test and that no palladium leaches out.  If leaching 

would have occurred and the catalysis (homocoupling) would have been due to a leached 

Pd species, the Hg should have amalgamized the leached Pd species resulting in no 

catalysis.  Based on the PVPy and Hg(0) poisoning tests, no definite conclusions can be 
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drawn regarding the stability and the potential palladium leaching of the polymer 

supported catalyst 6a.  Following these results no further PVPy or Hg(0) leaching tests 

were carried out on any other supported catalysts 6b, c or 7a-c. 

The next leaching tests that were carried out used QuadraPure® to trap leached 

palladium.  QuadraPure® is a microporous resin that scavenges different metals and is 

especially efficient for trapping palladium.[31]  When carrying out the Suzuki-Miyaura 

coupling reaction in the presence of QuadraPure®, 89% and 79% conversions were 

observed after 120 minutes (in comparison, the reactions without the addition of 

QuadraPure® gave 99% yields after 30 minutes) with 6a and 6b respectively while no 

conversions were obtained when using 6c as catalyst.  Kinetic studies using 6a and 

QuadraPure® (Figure 5.1 blue squares and stars) showed that the presence of QuadraPure 

slows the reaction but does not inhibit conversion.  The conversion obtained was 86% 

within 120 minutes.  The presence of QuadraPure® slowed down the conversion but the 

kinetic curve looks very similar to the one without the poison present.  By comparing the 

kinetic data with and without QuadraPure® present during the catalysis, one can clearly 

see that the poison, while slowing down the catalysis, does not prevent the catalytic 

transformation, suggesting that the active species for the catalysis is, at least in part, the 

polymer-supported palladium complex.   

In summary, the poisoning studies show that 6c leaches under the Suzuki-Miyaura 

reaction conditions and that the polymer supported 6c is not catalytically active.  Rather 

the catalytic species is a leached palladium species.  In contrast, while these leaching 

studies cannot exclude small amounts of leached species for 6a and 6b, they show that 
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QuadraPure® does not shut down the catalysis proving that both polymers are 

catalytically active in the Suzuki-Miyaura coupling.   

Recycling experiment were carried out for the Suzuki-Miyaura coupling of 

chloro-benzene with phenyl-boronic acid using similar conditions as described above.  

After complete reaction (confirmed by GC), the reactants and products were distilled off 

and the resulting polymeric residue dried.  The polymeric residue was then reused for the 

same catalytic transformation using the exact same reaction conditions.  The polymer 

became less soluble after this first cycle yielding 80% conversion after 90 minutes.  

Following the same isolation procedure after the second cycle, the polymer became only 

slightly soluble in DMF for the third reuse and yielded only 44% conversion after 90 

minutes.  I have observed the same solubility problems with other poly(norbornene)-

based catalyst supports[32]  and investigations are currently being carried out to 

characterize the reason for the decrease in solubility.  
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Table 5.3. Catalytic results for the Sonogashira coupling reaction. 

Entry Substrates Products Catalyst Time 

(min) 

Yield 

(%) 

1 
  

6a 150 100 

2 
 

6a 120 100 

3 
  

6a 150 83 

4 
  

6a 45 96 

5 6a 25 99 

6 
  

6a 60 95 

 

To expand the scope of the catalysts, the Sonogashira coupling using the most 

active polymeric catalysts 6a was investigated. Because of the importance of alkyne 

functionalities for a wide range of natural compounds as well as in the synthesis of highly 

conducting materials,[33-37]  the Sonogashira reaction between an alkylhalide and a 

terminal alkyne is the method of choice to incorporate alkyne functionalities in aromatic 

systems.  The reaction was developed in 1975 by Sonogashira using a mixture of 

palladium and copper iodide as the catalyst and has been improved steadily over the past 

30 years.[38-41]  In this chapter, two types of Sonogashira reactions were investigated.  The 
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first one consisted of the coupling of a silyl terminated acetylene to an aryl bromide.  As 

reactants, I employed a silane protected acetylene and a small library of aryl bromides.  

Diisopropylamine (ten equivalents) was used as the base and tetrahydrofuran as the 

solvent.  The base, solvent and CuI (10 mol%) were added to the reaction vessel at room 

temperature.  When subjected to these conditions, all aryl halides were converted to the 

corresponding products in 83-100% isolated yields in 120-150 minutes (Table 5.2).  As 

expected, the reaction using bromobenzaldehyde as reactant was the fastest with 100% 

conversion in 120 minutes.  The more sterically hindered 2-bromotoluene reacted in 83% 

conversion within 150 minutes compared to the non-hindered bromobenzene which had 

quantitative conversion within the same time.  

The second Sonogashira reaction consisted of the in-situ deprotection of a silane 

protected acetylene and the coupling of the resulting acetylene with different aryl 

bromide.[42]  Cesium carbonate (two equivalents) which was employed as the base and 

deprotection agent, dimethylacetate, and CuI (2 mol%) were added to a screw cap vial 

and stirred at 80 ºC.  Similar yields but faster reaction rates compared to method A were 

obtained.  The 4-bromo benzaldehyde showed quantitative conversions within 25 minutes 

while the bromo-benzene and the 2-bromotoluene had 96% and 95% conversion within 

45 and 60 minutes respectively.  These results compare favorably with those reported by 

Nolan et al. using the small molecule analog to 6a.[42] 

To verify the robustness of our catalysts in the Sonogashira coupling reactions, 

leaching tests were carried out using 6a and QuadraPure® as the poison. I employed 

benzylbromide and silane protected acetylene as reactants, CuI (10 mol%), 

diisopropylamine (ten equivalents) as the base and THF as solvent.  After 24 hours, 100% 
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conversion was observed.  The second Sonogashira reaction tested consisted of 

bromobenzene and trimethyl(phenylethynyl) silane as reactants, cesium carbonate (2 

equivalents) as a base, CuI (2 mol%) and dimethylacetate.  Again, the reaction yielded 

100% conversion after 24 hours.  To determine the activity of 6a in the presence of 

QuadraPure® in more detail, I carried out kinetic studies with and without the poison.  

The results are shown in Figure 5.1.  As it was the case for the Suzuki coupling poisoning 

studies, the Sonogashira reaction slows down slightly in the presence of QuadraPure®.  

The transformation takes 35 minutes to reach 80% conversion without the poison while 

in the presence of the poison the same conversions are obtained after 50 minutes.  

Therefore, in analogy to the Suzuki studies outlined above, the Sonogashira poisoning 

studies demonstrate the stability of our catalyst under Sonogashira reaction and suggest 

that the active species for the catalysis is at least partially the polymer-tethered palladium 

complex.   

The third palladium-catalyzed transformation studied was the Heck coupling 

reaction.  This reaction has been widely studied since its first report in the early 70’s.[43, 

44]  Again, I employed the best catalyst, 6a (2 mol%), for all studies.  I used triethylamine 

(two equivalents) as base and iodobenzene (one equivalent) and n-butylacrylate (1.5 

equivalents) as substrates.  At 120 °C, the catalysis proceeded in 30 minutes with 99% 

conversions.  However, after the reaction, some palladium black was observed at the 

bottom of the flask indicating leaching of palladium from the complex.  As these results 

clearly showed metal leaching, I wanted to investigate if the polymer-supported catalyst 

is catalytically active or if all activity stems from the leached palladium species.  I carried 

out a Heck catalysis experiment in the presence of the QuadraPure® poison.  The reaction 
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conditions were: iodobenzene and n-butylacrylate as reactants, triethylamine (two 

equivalents) as the base and DMF as solvent.  The reaction yielded 44% conversion after 

24 hours.  While this result is inconclusive, the observed palladium black formation 

during the catalysis in combination with the lower conversions suggests that the vast 

majority of catalytic activity stems from leached palladium species and not from 6a.   

 The second metal that was supported on the poly(norbornene) NHC polymers was 

ruthenium.  The resulting polymer supported ruthenium complex (9) was investigated as 

active catalysts for olefin metathesis, in particular ring-closing metathesis (RCM).[45]  To 

study the activity of these supported catalysts, the RCM of diethyl diallyl malonate in 

methylene chloride at 45 °C was investigated.[10, 46, 47]  Under these reaction conditions, 

diethyl diallyl malonate was converted in 95% yield to its corresponding RCM product, 

cyclopent-3-ene-1,1-dicarboxylic acid diethyl ester, within 20 minutes using 5.0 mol% of 

9 (Table 5.1, Entry 15).  This activity is comparable to other supported Grubbs catalyst 

analogues of 10 that convert diethyl diallyl malonate using similar catalyst loadings with 

the same conversions in the same time frame,[10, 46, 47]  demonstrating that the supported 

catalyst is an active olefin metathesis catalyst.  

The polymeric catalyst 9 can be removed from the reaction mixture after complete 

catalysis using basic precipitation methods.  To elucidate whether any ruthenium leached 

into the reaction solution and if the polymeric catalysts can be removed quantitatively, 

ICP-MS and elemental analyses of the reaction solutions after the removal of the 

polymeric catalysts were carried out.  The analyses showed no traces of ruthenium in the 

reaction solution demonstrating the quantitative recovery of the polymer and thereby the 

quantitative removal of the metal species from the reaction mixture.  
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5.3. Conclusion  

 This chapter describes the synthesis of a new class of polymer-supported N-

heterocyclic carbene ligands, their metalation, before and after polymerization, and their 

use as supported catalysts for a variety of carbon-carbon bond formations.  I 

demonstrated the versatility of our supported catalysts by investigating the catalytic 

activity of all complexes in a wide array of reactions ranging from RCM to Suzuki 

couplings.  For all transformations studied, the catalysts showed high activities that were 

comparable to their small molecule analogous.  We have shown by using poisoning 

studies that the stability of the palladium-based polymeric catalysts depended on the 

ligands around the palladium center.  While for the polymer supported palladium acetate-

based NHC complexes the catalytic activity in the Suzuki and Sonogashira couplings 

stems mainly from the polymer-tethered complexes, palladium dba-based NHC 

complexes decompose under these reaction conditions.  Finally, for the ring-closing 

metathesis I demonstrated the ability to remove the polymeric catalysts from the reaction 

mixture thereby ensuring the removal of any undesirable metal species from the product 

obviating extensive purification steps.  

 

5.4. Experimental section 

General Experimental Conditions.  All reactions with air- and moisture sensitive 

compounds were carried out under a dry nitrogen/argon atmosphere using an MBraun 

UniLab 2000 dry box and/or standard Schlenk line techniques.  THF, CH2Cl2, toluene, 1-

4 dioxane and hexanes were distilled from sodium and benzophenone.  Benzyl alcohol 

and methyl acetate were distilled from calcium hydride.  Pd(OAc)2, first generation 
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Grubbs catalyst, and all bases were obtained from commercial sources and generally used 

without further purification.  The syntheses of mesityl imidazole and 1 were carried out 

following published procedures.[48, 49]  Gas-chromatographic analyses were performed on 

a Hewlett Packard G1800A GCD system GC-MS.  1H (300 MHz) and 13C NMR (75 

MHz) spectra were recorded on a Varian Mercury VX instrument.  All spectra were 

referenced to residual proton solvent.  Mass spectral analyses were provided by the 

Georgia Tech MassSpectrometry Facility using a VG-70se spectrometer.  Gel-permeation 

chromatography (GPC) analyses were carried out using a Waters 1525 binary pump 

coupled to a Waters 2414 refractive index detector.  The GPC was calibrated using 

poly(styrene) standards on a Styragel® HR 4 and HR 5E column set with CH2Cl2 as an 

eluent.  All GPC experiments were carried out with a flow rate of 1 mL/min.  Elemental 

analyses were carried out by either Atlantic Microlabs, Norcross GA (CHN analyses) or 

Galbraith Laboratories, Inc., TN (determination of the metal content). 

 

 

 

Synthesis of exo-1-[11-(bicyclo[2.2.1]hept-5-ene-2-carbonyloxy)-undecyl]-3-(2,4,6-

trimethyl-phenyl)-3H-imidazol-1-ium (2) 

 

 

 

 In a round bottom flask equipped with a condenser, mesityl imidazole (950 mg, 

5.1 mmol), 1 (1.9 g, 5.1 mmol) and toluene (50 mL) were added.  The reaction was 
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refluxed for 72 hours.  The solvent was removed yielding a brown oil which was purified 

using column chromatography (eluent: 1:20  1:1 ethanol : hexanes) to yield a yellow 

oil (1.6 g, 68%).  1H NMR (CDCl3): δ = 10.57 (s, 1H), 7.47 (s, 1H), 7.12 (s, 1H), 6.99 (s, 

2H), 6.10 (m, 2H), 4.07 (t, J = 6.6 Hz, 2H), 3.03 (m, 1H), 2.33 (s, 5H), 2.07 (s, 9H), 1.91 

(m, 1H), 1.75-1.58 (m, 5H), 1.54 (m, 1H), 1.51 (m, 1H), 1.46-1.19 (m, 14H).  13C NMR 

(CDCl3): δ = 176.2, 139.4, 138.6, 135.2, 134.5, 129.2, 64.5, 51.7, 46.2, 43.0, 41.9, 31.2, 

30.3, 29.5, 28.8, 26.0, 25.5, 21.2, 17.0.  MS (ESI): m/z = 477.53 (M+, calcd 477.35).  

Anal. Calcd for C31H45BrN2O2: C, 66.77; H, 8.13; N, 5.02. Found: C, 66.69; H, 8.15; N, 

5.11. 

 

Synthesis of exo-Ag-di-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-[3-(2,4,6-

trimethyl-phenyl)-2,3-dihydro-imidazol-1-yl]-undecyl ester silver dibromide (3) 

 

 

 

 In a screw cap vial 2 (306 mg, 0.54 mmol), silver oxide (64 mg, 0.27 mmol) and 

CH2Cl2 (10 mL) were combined.  The solution was stirred for three hours during which a 

white precipitate formed.  The solution was then filtered through celite and the solvent 

removed in vacuo to yield a brown oil.  Yield 320 mg (89%).  1H (CDCl3): δ = 7.12 (m, 

2H), 6.99 (s, 2H), 6.10 (m, 2H), 4.07 (t, J = 6.6 Hz, 2H), 3.03 (m, 1H), 2.33 (s, 5H), 2.07 

(s, 9H), 1.91 (m, 1H), 1.75-1.58 (m, 5H), 1.54 (m, 1H), 1.51 (m, 1H), 1.46-1.19 (m, 
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14H).  13C NMR (CDCl3): δ = 177.2, 139.4, 138.6, 135.5, 134.4, 129.2, 64.2, 51.1, 46.9, 

43.5, 41.7, 31.4, 30.4, 29.0, 28.3, 26.6, 25.0, 23.5, 21.1, 17.1.  MS (ESI): m/z = 1061.92 

(M+, calcd 1061.65).  Anal calcd for C62H90Ag2Br2N4O4: C, 55.95; H, 6.82; N, 4.21. 

Found: C, 56.03, H, 6.85; N, 4.42. 

 

Synthesis of exo-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid octyl ester (4) 

 

 

 

 In a round bottom flask equipped with a condenser, exo-bicyclo[2.2.1]hept-5-ene-

2-carboxylic acid (2.44 g, 17.6 mmol), 1-octanol (2.8 mL, 17.6 mmol), dicyclohexyl 

diamine (3.6 g, 17.6 mmol), a catalytic amount of diaminopyridine (100 mg) and CH2Cl2 

(20 mL) were combined and refluxed overnight.  The solution was then filtered through 

celite and the solvent removed under vacuum to yield a yellow solution which was 

further purified using column chromatography (eluent: hexanes) to yield 3.74 g of a 

colorless oil (85%).  1H NMR (CDCl3): δ = 6.12 (m, 2H), 4.07 (t, 2H, J = 6.6 Hz), 3.03 

(m, 1H), 2.92 (m, 1H), 2.21 (m, 1H), 1.68-1.49 (m, 3H), 1.41-1.24 (m, 12H), 0.88 (t, 3H, 

J = 7.1 Hz).  13C NMR (CDCl3): δ = 176.2, 137.8, 135.6, 46.8, 46.2, 43.2, 41.5, 33.9, 

29.2, 28.9, 28.5.  MS (ESI): m/z = 250.20 (M+, calcd 250.38).  Anal. Calcd for C16H26O2: 

C, 76.75; H, 10.47; Found: C, 76.69; H, 10.51. 
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Synthesis of exo-Pd(OAc)2-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-[3-(2,4,6-

trimethyl-phenyl)-2,3-dihydro-imidazol-1-yl]-undecyl ester (5a) 

 

 

 

 Under inert atmosphere, in a screw cap vial, 3 (200 mg, 0.4 mmol), Pd(OAc)2 

(141 mg, 0.6 mmol) and CH2Cl2 (10 mL) were added.  The solution was stirred overnight 

yielding a silver solid.  The reaction mixture was filtered through celite to yield a yellow 

solution.  The solvent was removed and the resulting yellow oil was further purified via 

column chromatography (eluent 1:1 hexanes:ethylacetate) to yield a yellow solid.  Yield 

190 mg (60%).  1H NMR (CDCl3): δ = 6.88 (s, 2H), 6.10 (m, 2H), 4.07 (t, J = 6.6 Hz, 

2H), 3.03 (m, 1H), 2.33 (s, 5H), 2.07 (s, 9H), 1.91 (m, 1H), 1.75-1.58 (m, 5H), 1.54 (m, 

1H), 1.51 (m, 1H), 1.46-1.19 (m, 20H).  13C NMR (CDCl3): δ = 220.2, 176.2, 139.7, 

137.9, 135.1, 134.4, 129.6, 64.1, 51.2, 46.7, 43.4, 41.5, 31.6, 30.5, 29.9, 28.2, 26.4, 25.6, 

21.5, 17.0.  MS (ESI): m/z = 701.3 (M+, calcd 700.27).  Anal. Calcd for C35H50N2O6Pd: 

C, 59.95; H, 7.19; N, 4.00. Found C 60.21; H, 7.23; N, 3.92. 
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Synthesis of exo-Pd(allyl)Cl-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-[3-(2,4,6-

trimethyl-phenyl)-2,3-dihydro-imidazol-1-yl]-undecyl ester (5b) 

 

 

 

 Under inert atmosphere, in a screw cap vial, 3 (57 mg, 0.04 mmol), Pd2(allyl)2Cl2 

(16 mg, 0.04 mmol) and THF (5 mL) were combined.  The solution was stirred for five 

hours forming a silver precipitate.  The reaction mixture was filtered through celite to 

yield a yellow solution.  The solvent was removed in vacuo to yield yellow oil.  The oil 

was washed three times with hexanes and dried under vacuo forming yellow foam.  Yield 

16 mg (64%).  1H NMR (CDCl3): δ = 7.06 (d, 2H), 6.85 (m, 2H), 6.12 (m, 2H), 4.52 (m, 

4H), 4.06 (t, J = 6.5 Hz, 2H), 3.71 (m, 1H), 3.06 (d, 1H), 3.02 (m, 1H), 2.72 (d, 1H), 2.33 

(s, 5H), 2.07 (s, 9H), 1.91 (m, 1H), 1.75-1.55 (m, 6H), 1.54 (m, 1H), 1.51 (m, 1H), 1.46-

1.16 (m, 14H).  13C NMR (CDCl3): δ = 180.1, 174.5, 139.8, 136.7, 135.2, 132.6, 122.4, 

121.5, 114.8, 68.5, 64.3, 49.5, 43.2, 42.4, 30.9, 29.4, 29.1, 28.5, 26.3, 25.9, 25.8, 25.5, 

21.0.  MS (ESI): m/z: 660.35 (M+, calcd 660.27).  Anal. Calcd for C34H51ClN2O2Pd: C, 

61.72; H, 7.77; N, 4.23. Found C 61.03; H 7.74; N 4.95. 
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Synthesis of exo-Pddba-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 11-[3-(2,4,6-

trimethyl-phenyl)-2,3-dihydro-imidazol-1-yl]-undecyl ester (5c) 

 

 

 

 Under inert atmosphere, in a screw cap vial, 3 (76 mg, 0.06 mmol), Pd2dba3 (52 

mg, 0.06 mmol) and THF (5 mL) were combined.  The solution was stirred for five hours 

forming a black precipitate.  The reaction mixture was filtered through celite to yield a 

black solution.  The solvent was removed in vacuo to yield a black solid.  The solid was 

washed three times with hexanes and dried under vacuo to yield a brown solid.  Yield 21 

mg (45%).  1H NMR (CDCl3): δ = 7.65 (d, 4H), 7.31 (m, 6H), 7.12 (d, 2H), 6.95 (m, 2H), 

6.86 (m, 2H), 6.82 (m, 2H), 6.11 (m, 2H), 4.08 (t, J = 6.4 Hz, 2H), 3.05 (m, 1H), 2.33 (s, 

5H), 2.07 (s, 9H), 1.93 (m, 1H), 1.75-1.58 (m, 5H), 1.55 (m, 1H), 1.51 (m, 1H), 1.46-1.20 

(m, 14H).  13C NMR (CDCl3): δ = 189.1, 179.7, 145.8, 139.3, 136.2, 135.8, 135.3, 132.1, 

129.5, 127.9, 125.3, 122.1, 115.4, 71.8, 50.8, 46.9, 43.2, 39.8, 36.3, 30.8, 30.0, 29.6, 25.3, 

24.1.  MS (ESI): m/z 818.30 (M+, calcd 818.41).  Anal. Calcd for C48H59N2O3Pd: C, 

70.44; H, 7.27; N, 3.42. Found C, 70.33; H 7.32; N, 3.15. 

 

General polymerization procedure for the synthesis of polymers 5 - 9 

 The respective monomer was dissolved in CDCl3 followed by the addition of the 

desired amount of catalyst.  The polymerization was monitored by NMR spectroscopy.  

After complete polymerization a few drops of ethyl vinyl ether were added to terminate 
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the polymerization.  The polymer was purified by repeated precipitations into cold 

methanol followed by centrifugation at 400 rpm for ten minutes.  The purification 

procedure was repeated until the resulting methanol solution became colorless.  The 

methanol was the decanted and the resulting polymer dried in vacuo. 

 

Polymer 6a.  

 

 

 

 1H NMR (CDCl3): δ = 6.89-6.85 (br s, 2H), 5.53-5.21 (br m, 2H), 4.07-3.99 (br m, 2H), 

3.03 (m, 1H), 2.33-2.30 (br s, 5H), 2.07-1.99 (br s, 9H), 1.91 (m, 1H), 1.75-1.58 (br m, 

5H), 1.54 (m, 1H), 1.51 (m, 1H), 1.46-1.19 (br m, 20H).  13C NMR (CDCl3): δ = 184.0, 

175.2, 175.0, 169.2, 145.5, 143.9, 137.4, 136.2, 128.4, 126.3, 126.0, 122.2, 114.4, 104.5, 

50.2, 47.1, 43.1, 40.9, 36.4, 30.8, 29.7, 29.4, 25.2, 14.4, 9.2.  
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Polymer 6b.  

 

 

 

 1H NMR (CDCl3): δ = 7.06-7.03 (br m, 2H), 6.88-6.83 (br m, 2H) 5.55-5.20 (br m, 2H), 

4.52-4.50 (br m, 4H), 4.07-4.02 (m, 2H), 3.71 (m, 1H), 3.07-3.05 (m, 1H), 3.02 (m, 1H), 

2.74 (m, 1H), 2.33-2.28 (br s, 5H), 2.05 (br s, 9H), 1.91 (m, 1H), 1.75-1.53 (m, 6H), 1.52 

(m, 1H), 1.50-1.48 (br m, 1H), 1.44-1.13 (br m, 14H).  13C NMR (CDCl3): δ = 180.1, 

139.0, 136.4, 135.8, 135.5, 132.1, 128.9, 122.0, 121.1, 114.4, 73.2, 50.3, 47.4, 43.4, 40.2, 

36.4, 30.2, 29.8, 29.4, 25.4, 14.3, 8.9. 
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Polymer 6c. 

 

 

 

1H NMR (CDCl3): δ = 7.67-7.64 (br m, 4H), 7.34-7.30 (br m, 6H), 7.12-7.10 (br m, 2H), 

6.95 (m, 2H), 6.86 (m, 2H), 6.84-6.81 (br m, 2H), 5.61-5.54 (br m, 2H) 4.10 (m, 2H), 

3.05 (m, 1H), 2.33-2.29 (br s, 5H), 2.09-2.06 (br s, 9H), 1.95-1.93 (br m, 1H), 1.75-1.58 

(m, 5H), 1.55-1.53 (m, 1H), 1.51-1.49 (m, 1H), 1.45-1.16 (m, 14H).  13C NMR (CDCl3): 

δ = 189.1, 179.8, 145.8, 139.2, 136.8, 135.8, 135.3, 132.1, 129.5, 128.9, 125.3, 122.1, 

114.4, 71.2, 50.8, 46.9, 43.2, 39.8, 36.3, 30.8, 30.0, 29.6, 25.3, 13.5, 8.9. 
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Polymer 7a. 

 

 

 

1H NMR (CDCl3): δ = 6.89-6.85 (br s, 2H), 5.53-5.21 (br m, 10H), 4.07-3.99 (br m, 

10H), 3.03 (m, 5H), 2.33-2.26 (br s, 25H), 2.07-1.92 (br s, 45H), 1.91 (m, 4H), 1.75-1.58 

(br m, 5H), 1.56-1.52 (m, 5H), 1.51-1.49 (m, 5H), 1.46-0.63 (br m, 100H).  13C NMR 

(CDCl3): δ = 184.0, 175.2, 175.0, 169.2, 151.8, 145.5, 143.9, 137.4, 136.2, 128.4, 126.5, 

126.2, 122.2, 114.4, 104.8, 113.7, 64.8, 50.0, 48.7, 47.1, 43.1, 40.9, 36.4, 30.8, 29.7, 29.4, 

26.3, 25.2, 14.4, 9.1.  
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Polymer 7b. 

 

 

 

1H NMR (CDCl3): δ = 7.08-7.03 (br m, 2H), 6.89-6.80 (br m, 2H) 5.55-5.22 (br m, 2H), 

4.52-4.50 (br m, 4H), 4.07-4.02 (m, 10H), 3.71 (m, 1H), 3.07-3.03 (m, 5H), 2.33-2.23 (br 

m, 25H), 2.05-1.89 (br m, 49H), 1.75-1.49 (br m, 6H), 1.48-1.43 (br m, 5H), 1.41-0.59 

(br m, 100H).  13C NMR (CDCl3): δ = 180.1, 139.0, 136.4, 135.8, 135.5, 132.1, 128.9, 

122.0, 121.1, 114.4, 73.2, 50.3, 48.3, 47.4, 43.4, 40.8, 40.2, 36.4, 31.1, 30.2, 29.8, 29.4, 

26.7, 25.4, 14.3, 8.9, 8.6. 
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Polymer 7c. 

 

 

 

1H NMR (CDCl3): δ = 7.67-7.64 (br m, 4H), 7.35-7.30 (br m, 6H), 7.12-7.10 (br m, 2H), 

6.98-6.94 (br m, 2H), 6.86 (m, 2H), 6.84-6.81 (br m, 2H), 5.61-5.54 (br m, 2H) 4.10-4.01 

(br m, 11H), 2.33-2.21 (br s, 25H), 2.09-1.98 (br s, 49H), 1.75-1.52 (m, 7H), 1.45-0.86 

(m, 100H).  13C NMR (CDCl3): δ = 189.1, 179.8, 145.8, 139.2, 136.8, 135.8, 135.3, 

132.1, 129.5, 128.9, 125.3, 122.1, 114.4, 71.2, 50.8, 46.9, 42.1, 43.2, 39.8, 37.3, 36.3, 

35.2, 32.1, 31.4, 30.8, 30.0, 29.6, 28.4, 27.6, 25.3, 20.1, 13.5, 9.2, 8.7. 
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Polymer 9. 

 

 

 

1H NMR (CDCl3): δ = 7.20-7.03 (br m, 4H), 6.86-6.82 (br m, 2H) 5.53-5.21 (br m, 2H), 

4.55-4.50 (br m, 4H), 4.10-4.02 (m, 10H), 3.71 (m, 1H), 3.12-3.05 (m, 5H), 2.45-2.23 (br 

m, 25H), 2.04-0.59 (br m, 184H).  13C NMR (CDCl3): δ = 190.4, 150.1,139.0, 136.4, 

135.8, 135.5, 132.1, 128.9, 126.4, 123.4, 122.2, 121.1, 114.4, 73.1, 52.3, 49.1, 47.3, 42.7, 

40.5, 40.1, 31.5, 30.1, 29.9, 29.4, 28.7, 25.1, 11.3, 9.3, 8.2. 

 

Characterization of the products from table 5.1 

Product 1: 1H NMR (CDCl3): δ = 7.76 (m, 2H, o-CH3), 7.67 (m, 2H, m-CH3), 7.54 (m, 

2H, o-Bn), 7.45 (m, 2H, m-Bn), 7.34 (m, 1H, p-Bn), 2.37 (s, 3H, CH3). 

Product 2: 1H NMR (CDCl3): δ = 7.75 (m, 2H, o-CN), 7.53 (m, 2H, o-Bn), 7.46 (m, 2H, 

m-CN), 7.40 (m, 2H, m-Bn), 7.37 (m, 1H, p-Bn). 

Product 3: 1H NMR (CDCl3): δ = 7.52 (m, 1H, p-Mes), 7.31 (m, 2H, m-Mes), 7.22 (m, 

1H, p-Bn), 7.18 (m, 2H, o-Mes), 7.12 (m, 2H, m-Bn), 2.71 (s, 6H, CH3). 

Product 4: 1H NMR (CDCl3): δ = 7.58 (m, 2H, p-OMe),7.55 (m, 2H, o-Bn), 7.36 (m, 2H, 

m-Bn), 7.32 (m, 1H, p-Bn), 6.98 (m, 2H, o-OMe), 3.88 (s, 3H, O-CH3).  
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Product 5: 1H NMR (CDCl3): δ = 8.56 (m, 1H, CH-N), 7.98 (m, 2H, o-Py), 7.55 (m, 1H, 

N=C-CH), 7.48 (m, 1H, Py), 7.34 (m, 2H, m-Py), 7.26 (m, 1H, p-Py), 6.99 (m, 1H, Py). 

Characterization of the products from table 5.2 

Product 1: See table 5.1 product 1 

Product 2: 1H NMR (CDCl3): δ = 7.52 (m, 4H, 0-Bn), 7.34 (m, 4H, m-Bn), 7.25 (m, 2H, 

p-Bn) 

 

Characterization of the products from table 5.3 

Product 1: 1H NMR (CDCl3): δ = 7.47 (m, 2H, m), 7.38 (m, 2H, o), 7.26 (m, 1H, p), 0.22 

(s, 9H, Si(CH3)3). 

Product 2: 1H NMR (CDCl3): δ = 9.82 (s, 1H, O=C-H), 7.96 (m, 2H, o-aldehyde), 7.61 

(m, 2H, o-Si), 0.24 (s, 9H, Si(CH3)3). 

Product 3: 1H NMR (CDCl3): δ = 7.42 (m, 1H, o-Si), 7.28 (m, 1H, p-Si), 7.26 (m, 1H, o-

CH3), 7.24 (m, 1H, p-CH3), 2.34 (s, 3H, CH3), 0.29 (s, 9H, Si(CH3)3). 

Product 4: 1H NMR (CDCl3): δ = 7.48 (m, 4H, o), 7.23-7.20 (m, 6H). 

Product 5: 1H NMR (CDCl3): δ = 10.01 (s, 1H, O=C-H), 7.85 (m, 2H, o-aldehyde), 7.62 

(m, 2H, m-aldehyde), 7.48 (m, 2H, o), 7.23 (m, 2H, m), 7.20 (m, 1H, p). 

Product 6: 1H NMR (CDCl3): δ = 7.60 (m, 1H, o-alkyne), 7.46 (m, 2H, o), 7.37 (m, 1H, 

p-CH3), 7.32 (m, 1H, m-CH3), 7.24 (m, 2H, m), 7.20 (m, 1H, p), 7.14 (m, 1H, o-CH3), 

2.33 (s, 3H, CH3). 

 

General procedure for the Suzuki-Miyaura reaction 
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Under an atmosphere of nitrogen, a screw cap vial was loaded with the desired catalyst, 

phenylboronic acid, chlorotoluene and DMF.  After stirring for ten minutes, the cesium 

carbonate was added in one portion.  The solution was heated to 80 °C until completion 

of the reaction.  The product was then purified via column chromatography. 

 

General procedure for the Sonogashira reaction (A) 

Under an inert atmosphere, a screw cap vial was loaded with the desired catalyst, 

bromobenzene, ethynyltrimethyl silane, CuI, diisopropylamine and THF.  The solution 

was stirred at room temperature until completion of the reaction.  The product was 

purified via column chromatography. 

 

General procedure for the Sonogashira reaction (B) 

Under an inert atmosphere, a screw cap vial was loaded with the desired catalyst, 

bromobenzene, trimethyl(phenylethynyl)silane, CuI, cesium carbonate and 

dimethylacetate.  The solution was stirred at 80 °C until completion of the reaction.  The 

product was purified via column chromatography. 

 

General procedure for the Heck reaction 

Under an inert atmosphere, a screw cap vial was loaded with the desired catalyst, 

iodobenzene, n-butylacrylate, triethylamine and DMF.  The solution was stirred at 120 °C 

until completion of the reaction.  The product was purified via column chromatography. 

 

General procedure for the ring-closing metathesis reaction 
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Under an inert atmosphere, a screw cap vial was loaded with 9, diethyldiallyl malonate 

and CH2Cl2.  The solution was stirred at 45 °C until completion of the reaction.  The 

product was purified via column chromatography. 

 

General procedure for the leaching tests using QuadraPure®.  Example: Suzuki-

Miyaura reaction.  

Under an inert atmosphere, a screw cap vial was loaded with the desired catalyst (1 

mol%), phenylboronic acid (1.2 equivalent), chlorotoluene (1 equivalent), QuadraPure® 

(2 mol%) and DMF.  After stirring for 10 minutes, the cesium carbonate (1.5 equivalents) 

was added in one portion to the reaction mixture.  The solution was heated to 80 °C and 

samples for GC analysis were taken every 5 minutes for the first 60 minutes, then every 

30 minutes for the next 120 minutes. 

 

General procedure for the leaching tests using PVPy or mercury.  Example: Suzuki-

Miyaura reaction.  

Under an inert atmosphere, a screw cap vial was loaded with the desired catalyst (1 

mol%), phenylboronic acid (1.2 equivalent), chlorotoluene (1 equivalent), poison (500 

equivalent) and DMF.  After stirring for 10 minutes, the cesium carbonate (1.5 

equivalents) was added in one portion to the reaction mixture.  The solution was heated to 

80 °C and samples for GC analysis were taken every 5 minutes for the first 60 minutes, 

then every 30 minutes for the next 120 minutes. 

 

General procedure for precipitation process 
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The precipitation of the polymer consists on reducing the amount of solvent to a 

minimum and adding cold methanol.  The formed precipitate is then centrifuged for 10 

minutes and the remaining solution decanted. 
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CHAPTER 6 

GOLD NANOPARTICLES AS A SUPPORT 

 

Abstract 

 A new synthetic method was introduced allowing for the functionalization of gold 

nanoparticles. This new method allows for the introduction of a wide variety of functions 

that were not available before due to the synthetic challenges of making terminated thiol 

compounds. This functionalization method uses “click” chemistry to add the desired 

functions onto the gold nanoparticles. It consist on using 5-40 mol% of CuSO4 and 10-40 

mol% of sodium ascorbate along with the terminated alkyne function and the alkyl azide 

coated MPC. The reactants are combined and reacted in a microwave resulting in 80-

100% conversion of the azide. This facile functionalization of gold nanoparticles opens 

new opportunities to scientist to add functionalities that were not available before. 

 Using this newly developed method, the introduction of catalysts was 

investigated. Gold nanoparticles were functionalized with N-heterocyclic carbene 

palladated complex. These palladium complexes have proved to be very efficient catalyst 

for a wide variety of catalytic reactions, one of interest in particular, the Suzuki-Miyaura 

coupling. To investigate the newly synthesized system, a variety of functionalized aryl 

chlorides were reacted with phenylboronic acid. The functions included electron donating 

as well as electron withdrawing functions. The reaction was setup in a microwave reactor 

and yielded 85%-100% conversion of the aryl chloride. The role of the base was also 

investigated, with a variety of inorganic and organic bases. The results of this screening 

resulted in NatOBu as being the best base for our coupling reaction. The first gold 
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nanoparticles supported palladium complex for Suzuki coupling chemistry was 

synthesized. The conversions obtained with this new system were similar to the one 

obtain with the small molecule analogues. 

 

6.1. Introduction 

The investigations of polymer supported Pd-pincer complexes and Pd N-

Heterocyclic carbene complexes lead me to examine other supports. This new support 

should be soluble under reaction condition but also easily recoverable. It should also be 

modifiable and easy to synthesize. A potential support that meets several of the described 

criteria was identified, gold nanoparticles. Gold nanoparticles are among the most studied 

metallic nanoparticles since they have the potential to play a key role in catalysis, 

imaging, disease diagnostics, and gene expression.[1-7]  For example, gold nanoparticles 

have been identified as key materials is bionanotechnology.[1, 4, 5, 8-10]  One example is the 

grafting of carcinoembryonic antigen antibodies onto gold nanoparticles followed by the 

immobilization of the functionalized particles to a gold electrode thereby enhancing the 

selectivity of immunoassay electrodes.[11]  A second application is in catalysis.  One 

interesting report in this area describes the use of N-imidazole functionalized thiolate 

gold nanoparticles for the cleavage of 2,4-dinitrophenyl acetate.[12]  The underlying 

methodology that is crucial to these applications is the easy and high yielding 

functionalization of gold nanoparticles with any compound of interest.  Unfortunately, 

such modification methodologies for gold nanoparticles are scarce and remain a 

challenge for scientists presenting a roadblock for further research.  Herein, a 
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straightforward functionalization strategy to overcome these shortcomings using 1,3 

dipolar cycloadditions is presented. 

 

6.2. Results and discussion 

This methodology is based on the synthesis of alkylthiol protected gold 

nanocluster using phase transfer chemistry developed by Brust et al.[13]  The Brust 

strategy allows for full control over the size and the solubility of the particles and has 

been employed in the synthesis of alkylthiol monolayer protected gold clusters using a 

library of alkanethiolates.[2, 6, 7, 14-17]  Furthermore, it was demonstrated that alkyl thiols 

can be exchanged on the gold cluster allowing for the introduction of functionalized 

thiols into the alkythiol monolayer of gold clusters[14]  by simply stirring a solution of the 

desired functionalized thiols with the gold nanoparticles for extended periods.[18-21]  

Unfortunately, this method lacks any control during the exchange process.  The ideal 

functionalization strategy should allow for full control during the functionalization step 

without the tedious synthesis of thiolated ligands.  The employment of 1,3-dipolar 

cycloaddition is suggested as a key synthetic step fulfills this requirement.   

The 1,3-dipolar cycloaddition combines an alkyne and an azide to form a triazole 

ring.[22, 23]  In 2001, Sharpless introduced a copper-catalyzed version that often results in 

quantitative yields at very mild reaction conditions.[24-26], [27]  Since then, copper-

catalyzed 1,3 dipolar cycloadditions have been reported as the key functionalization step 

for a variety of materials ranging from polymers to peptides.[26, 28]  It has also been 

recognized as an important tool for gold nanoparticle functionalization.  In 2006, Fleming 

et al. reported the functionalization of gold nanoparticles with thiols bearing azides.[29]  
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While this contribution was an important step forward, it was limited to the use of 

activated ethynyl compounds, required long reaction times (24 to 96 hours), and resulted 

in low yields.  Brennan et al. presented a similar method using the standard ‘Sharpless 

conditions’ to introduce lipases onto gold nanoparticles.[30]  However, long reaction times 

(96 hours), a 106 molar excess of catalysts in comparison to the azide, and extensive 

purifications to remove the excess alkyne and catalyst limited the applicability of the 

procedure.  While these contributions demonstrate the potential of 1,3-dipolar 

cycloadditions in nanoparticle functionalization, a general functionalization scheme that 

allows for fast and quantitative attachment of any compound onto gold nanoparticles in a 

modular fashion is still an unfulfilled goal.  Such a methodology is introduced by 

describing a general and high yielding recipe to react a library of alkynes with alkylthiol 

functionalized gold nanoparticles.  The yields are very high and the purification of the 

functionalized gold nanoparticles can be carried out via simple extraction and 

precipitation.  

The azide functionalized gold nanoparticle (5) is the key reagent to the strategy.  

The synthesis of 5 is described in Scheme 6.1.  11-Bromo-1-undecene (1) was reacted 

with thioacetic acid followed by the reaction with sodium azide to yield 11-azidoundecyl 

ethanethiolate (3).  Compound 3 was then reacted with HCl in MeOH to generate 11-

azidoundecane-1-thiol (4) which was mixed with the alkyl thiol protected gold 

nanoparticle[13]  to yield 5. 
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Scheme 6.1.  Synthesis of the azide functionalized gold nanoparticles.   

 

 The characterization of the azide-functionalized nanoparticles was carried out 

using TEM, UV, FT-IR and NMR spectroscopy.  TEM images showed that the gold 

nanoparticles are between 2 nm and 5 nm.  The presence of the azide functionality on the 

gold nanoparticles was confirmed by IR and NMR spectroscopies.  The FT-IR spectra 

displayed a stretch around 2100 cm-1
 characteristic of the azide functionality, while the 

NMR spectrum of 5 in CDCl3 showed a signal at 3.24 ppm characteristic of the CH2 

group adjacent to the azide.  Quantification of the azide loading on the nanoparticle was 

not possible using NMR spectroscopy because of the broadness of all signals and the 

subsequent problems with the integration of overlapping signals.  Therefore, the 

alkanethiols were cleaved off the gold nanoparticles by reacting the particles with I2.[31, 32]  

The resulting “free” alkyl thiols were then analyzed via NMR spectroscopy giving an 

azide loading of 38%. 

Next, the dipolar 1,3-cycloaddition of the azide functionalized nanoparticles with 

a library of alkynes was investigated.  First, to assure the stability of the gold 

nanoparticles under reaction conditions, we carried out a test reaction with 5 using the 
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standard 1,3 dipolar cycloaddition reaction conditions: a mixture of DMSO, tBuOH and 

H2O as solvents and a catalyst mixture of 20 mol% of CuSO4 and 40 mol% of sodium 

ascorbate.[24, 25, 28]  To minimize reaction times, a microwave reactor as reaction vessel 

was employed.  Several groups have reported on the use of microwave-assisted 1,3 

dipolar cycloadditions and have demonstrated that it shortens the reaction times to 5-10 

minutes while optimizing yields.[33-35]  The reaction was carried out for 10 minutes in the 

microwave reactor with a reaction vessel shut off temperature of 100 °C.  The treated 

functionalized gold nanoparticles were characterized using UV, IR, and NMR 

spectroscopies and TEM to investigate if any decomposition took place or if any 

undesired side reactions did occur.  The gold nanoparticles showed no changes when 

investigated by any of these characterization methods demonstrating the stability of gold 

nanoparticles to our reaction conditions.  Noticeable nanoparticle decomposition was 

observed when the particles were treated for periods of time in excess of 15 minutes.  

Next, the reaction protocol for the gold nanoparticle functionalization was 

optimized.  To determine the best reaction conditions for the functionalization of 5 via 

1,3 dipolar cycloadditions, we employed phenylacetylene as the alkyne of choice.  The 

catalyst loading, reaction time and temperature were varied during the optimization 

process (Table 6.1).  The solvent mixture of tBuOH and water, typically used for 1,3-

dipolar cycloadditions, was not the ideal choice for our studies due to limited solubility of 

the gold nanoparticles in these solvents and a variety of solvent mixtures were evaluated.  

The optimization experiments are described in detail in Table 6.1.  To characterize the 

yields of all reactions, the thiols were cleaved using I2 and analyzed via mass 

spectrometry and NMR spectroscopy by the disappearance of the signal at 3.24 ppm and 
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the appearance of a new signal at 4.2 ppm which is characteristic to the methylene group 

located next to the newly formed trizole ring.  The optimal conversions for 

phenylacetylene were determined to be: 10 mol% CuSO4, 20 mol% sodium ascorbate, 

either a mixture of dioxane and tBuOH or THF as solvents, and 10 equivalents of 

phenylacetylene (Entries 10 and 13, Table 6.1).  Purification of the functionalized gold 

nanoparticles was straightforward.  Addition of methylene chloride to the reaction 

mixture induced a phase separation between the organic layer and the water layer.  The 

organic layer was separated, the solvent evaporated and the gold nanoparticles residue 

precipitated several times into methanol to insure full removal of excess alkyne. 

 

 

Table 6.1.  Optimization of 1,3 dipolar cycloaddition conditions for gold nanoparticle 

functionalization. 

Entry CuSO4 
Loading 
(mol%) 

NaAsc 
Loading 
(mol%) 

Power 
Setting 

(W) 

Reaction 
Time 
(min) 

Shut-
off 

Temp. 
(°C) 

Solvent 
Mixture 

Yield 
(%) 

1 1 2 100 3 50 DMSO/tBuO
H/H2O:1/1/0.

5 

0 

2 5 10 100 3 50 DMSO/tBuO
H/H2O:1/1/0.

5 

45 

3 10 20 100 3 50 DMSO/tBuO
H/H2O:1/1/0.

5 

74 

4 5 10 100 5 50 DMSO/tBuO
H/H2O:1/1/0.

5 

77 
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Table 6.1. continued 

5 5 10 150 3 50 DMSO/tBuO
H/H2O:1/1/0.

5 

75 

6 5 10 150 5 50 DMSO/tBuO
H/H2O:1/1/0.

5 

75 

7 - - 100 3 100 DMSO/tBuO
H/H2O:1/1/0.

5 

0 

8 5 10 100 3 100 DMSO/tBuO
H/H2O:1/1/0.

5 

82 

9 10 20 100 3 100 DMSO/tBuO
H/H2O:1/1/0.

5 

88 

10 10 20 100 10 100 DMSO/tBuO
H/H2O:1/1/0.

5 

100 

11 1 2 100 10 100 THF 55 

12 5 10 100 10 100 THF 82 

13 10 20 100 10 100 THF 100 

14 5 10 100 20 100 THF 78 

15 5 10 100 20 100 THF 71 

 

 

After the determination of the optimal reaction conditions for the 

functionalization of gold nanoparticles, we investigated the versatility of the 

transformation using a library of alkynes.  The alkynes that were employed for this study 

are shown in Scheme 2 and include both activated and non-activated alkynes as well as 

aromatic and aliphatic ones.  
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Scheme 6.2.  Library of alkynes used as substrates in the 1,3 dipolar cycloadditions and 

the functionalized nanoparticles before and after the transformation. 

 

The results from the different nanoparticle functionalizations are described in 

Table 2.  In general, with yields ranging from 78% to 100%, activated alkynes are more 

reactive, requiring less catalyst loading and time than their non-activated analogues.  

While different catalyst loadings were needed for different alkynes, we were still able to 

determine a general recipe for each “family” of functionalities.  For aromatic non-

activated alkynes, 10 mol% of CuSO4 and 20 mol% of sodium ascorbate are required.  In 

contrast, for alkyl-based non-activated alkynes, only 5 mol% of CuSO4 and 10 mol% of 

sodium ascorbate are required for near quantitative conversions.  However, when 

heteroatoms such as oxygen are adjacent to the alkyne, higher catalyst loadings are 

needed while only moderate to good yields were observed.  In comparison, activated 
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alkynes, such as propiolamide, require only 5 mol% CuSO4 and 10 mol% of sodium 

ascorbate to yield quantitative conversions. 

 

Table 6.2.  Yields of 1,3 dipolar cycloadditions on gold nanoparticles using the library of 

alkynes. 

Entry Substrate Product CuSO4 
Loading 
(mol%) 

Yield 
(%) 

1 
 

N
N

N
10 100 

2 

Br  
N

N
N

Br  

5 98 

3 O
O

OH
 

N
N

N

O
O

OH

15 78 

4 

OH

O

 

N
N

N

HO
O

 

5 89 

5 

NH

O

 

N
N

N

HN
O

 

5 94 

 

 

 



 151

Table 6.2. continued 

6 

NH

O

 

N
N

N

HN
O

 

5 85 

7 

NH

O

(CH2)9  

N
N

N

HN
O

(CH2)9  

5 92 

8 

NH

O

F3C CF3  

N
N

N

HN
O

CF3F3C  

5 97 

9 
O

O
O

OH  

N
N

N

HN
O

O OH
O

10 81 

 

 Using this newly developed synthetic protocol, the possibility of using gold 

nanoparticles as support for homogeneous catalysis by adding an organometallic complex 

onto the gold nanoparticles as a proof of principle for the applicability of our 

methodology was investigated. The catalytic activities of several polymer-supported 

catalysts containing Pd-N-heterocyclic carbene complexes were previously 
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investigated.[36]  The intrinsic characteristic of gold nanoparticles, such as tunable (i) 

solubility in common organic and aqueous solvents and (ii) size of the particle, makes 

this system interesting as potential support in catalysis.  N-heterocyclic carbene (NHC) 

palladium complexes were grafted onto the gold nanoparticles and the catalytic activity 

of the resulting supported complexes was investigated.  Palladium NHC complexes are 

well-known catalysts for C-C coupling reactions, an important class of catalytic reactions 

with application in polymer science as well as fine chemical and pharmaceutical 

industries.[37, 38]  

 First, an alkyne containing a N-heterocyclic ligand was synthesized.  N-mesityl 

imidazole was refluxed with propargyl bromide in toluene for 16 hours to yield the 

desired alkyne containing NHC ligand (7).  1-Mesityl-3-(prop-2-ynyl)-1H-imidazol-3-

ium bromide was then reacted with silver oxide to form the silver complex 8 in close 

analogy to literature procedures[39]  which was then treated with palladium allyl chloride 

to form 9.  Finally, using the newly developed methodology, 9 was “clicked” onto the 

gold nanoparticles with a yield of 85 % using sodium ascorbate and CuSO4 as catalysts. 
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Scheme 6.3. Synthesis of the palladium complex supported gold nanoparticles 

 

 The newly supported Palladium complex 10 was then tested in the Suzuki 

coupling of a series of aryl chloride with phenyl boronic acid (Table 6.3). 
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Table 6.3.  Results of Suzuki-Miyaura reaction using 10. 

Entry Substrates Product Yield 

1 
  

99% 

2 99% 

3 

  

85% 

4 
  

88% 

 

 Due to the sensitivity of gold nanoparticles to heat the catalytic reactions were 

carried out in a microwave reactor.[40]  The power was set to 100W for 6 minutes.  The 

catalyst loading for all catalytic trabsformations was 0.5 mol% (based on palladium), the 

base NatOBu and the solvent dioxane.  Yields of 85-99% were observed for all four test 

reaction.  These values are very similar to the ones reported in the literature for the 

homogeneous palladium N-heterocyclic carbene analogue.[41]  These results demonstrate 

that our newly developed methodology can be employed as key step in the synthesis of 

supported catalysts and that the resulting catalysts retain their activity when compared to 

their small molecule analogues.  
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6.3. Conclusion 

 In summary, a synthetic protocol for the facile addition of different functionalities 

onto the gold nanoparticles in high yields within minutes was developed.  The versatility 

of the method was demonstrated with conversions of 80% or higher for the library of 

alkynes studied.  This methodology has a variety of advantages over current gold 

nanoparticles functionalization methods including (i) more synthetic flexibility for the 

synthesis of desired functionalities on gold nanoparticles (ii) reduced reaction times, and 

(iii) easy purification methods.  To demonstrate the versatility of the newly developed 

methodology as well as its applicability, we attached palladium NHC complexes to the 

gold nanoclusters and investigated their potential as catalysts for Suzuki couplings.  The 

yields obtained for the Suzuki couplings were comparable to the ones obtained with the 

small molecule analogues.  This example demonstrates the potential of this newly 

developed methodology.  

 

6.4. Experimental Section 

 All reactions with air- and moisture sensitive compounds were carried out under a 

dry nitrogen/argon atmosphere using an MBraun UniLab 2000 dry box and/or standard 

Schlenk line techniques.  CH2Cl2 and toluene were distilled from sodium and 

benzophenone.  Pd(allyl)2chloride and all bases were obtained from commercial sources 

and used without further purification.  The syntheses of mesityl imidazole and monolayer 

protected clusters with octanethiols were carried out following published procedures.[13, 

42] Gas-chromatographic analyses were performed on a Hewlett Packard G1800A GCD 
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system GC-MS.  1H (300 MHz) and 13C NMR (75 MHz) spectra were recorded on a 

Varian Mercury VX instrument.  All spectra were referenced to residual proton solvent.  

Mass spectral analyses were provided by the Georgia Tech MassSpectrometry Facility 

using a VG-70se spectrometer.  Elemental analyses were carried out by either Atlantic 

Microlabs, Norcross GA (CHN analyses) or Galbraith Laboratories, Inc., TN 

(determination of the metal content). 

 

Synthesis of S-10-bromodecyl ethanethioate (2) 

 

 

 

 In a round bottom flask, 11-bromo-1-undecene (2.12 mL, 8.5 mmol), thioacetic 

acid (3 mL, 42.8 mmol), AIBN (700 mg) and toluene (100 mL) were combined.  A flow 

of argon was bubbled through the reaction for 20 minutes before refluxing the reaction 

for 4 hours.  The reaction was then allowed to cool before the removal of the solvent 

under vacuum.  The resulting orange slurry was dissolved in CH2Cl2 (100 mL) and 

washed with NaHCO3 (50 mL) and NaCl (50 mL).  The organic layer was dried over 

MgSO4 and the solvent removed under vacuum to yield a yellow solid.  The product was 

further purified via column chromatography (1:2, CH2Cl2:Hexanes) to yield a colorless 

oil.  Yield: 9.36 g (95%).  1H NMR (CDCl3, 300 MHz): δ = 3.38 (t, 2H, J = 6.9 Hz, CH2-

Br), 2.84 (t, 2H, J = 7.2 Hz, CH2-S), 2.30 (s, 3H, CO-CH3), 1.83 (q of t, 2H, J = 7.8 Hz, 

Br-CH2-CH2), 1.55 (m, 2H, S-CH2-CH2), 1.25 (m, 14H). 13C (CDCl3, 300 MHz): δ = 

195.9, 33.8, 32.8, 30.4, 29.6, 29.3, 28.7, 28.5, 28.3, 28.2, 27.3. HRMS(ESI): m/z calcd for 
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C13H25BrOS 308.0809 found 308.0823.  Anal. Calcd for C13H25BrOS: C, 50.48; H, 8.15. 

Found C, 51.20; H, 8.01. 

 

Synthesis of S-10-azidodecyl ethanethioate (3) 

 

 

 

 In a round bottom flask, 2 (100 mg, 0.3 mmol), sodium azide (179 mg, 2.7 mmol) 

and DMF (5 mL) were combined.  The mixture was heated to 60 ºC for 10 hours.  The 

DMF was removed under vacuum and the resulting crude mixture was dissolved in 

CH2Cl2 and washed with water (3 × 50 mL) and brine (50 mL).  The organic layer was 

dried over MgSO4 and the solvent removed under vacuum to yield an off-white oil.  

Yield: 52 mg (73 %).  1H NMR (CDCl3, 300 MHz): δ = 3.24 (t, 2H, J = 8.8 Hz, CH2-N3), 

2.82 (t, 2H, J = 7.2 Hz, CH2-S), 3.29 (s, 3H, CO-CH3), 1.54 (m, 2H, CH2-CH2-S), 1.24 

(m, 16H). 13C (CDCl3, 300 MHz): δ = 196.0, 51.5, 30.6, 29.4, 29.3, 29.1, 29.0, 28.8, 28.7.  

HRMS(ESI): m/z calcd for C13H25N3OS 271.1718 found 271.1711. 

 

Synthesis of 10-azidodecane-1-thiol (4) 

 

 

 

 To an ice-cold solution of dry MeOH (50 mL) acetyl chloride was added 

dropwise.  The solution was stirred for 5 minutes before the addition of 3 (500 mg, 1.8 
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mmol).  The solution was stirred for 3 hours under Ar.  The reaction was then poured into 

degassed water and the organic layer extracted with hexanes (2 × 20 mL).  The combined 

organic layers were washed with water (2 × 50 mL), dried over MgSO4 and the solvent 

removed under vacuum to yield a colorless oil.  Yield 370 mg (90 %).  1H NMR (CDCl3, 

300 MHz): δ = 3.23 (t, 2H, J = 6.8 Hz, CH2-N3), 2.51 (q, 2H, J = 7.3 Hz, CH2-S), 1.54 

(m, 6H), 1.25 (m, 16H).  13C (CDCl3, 300 MHz): δ = 51.5, 34, 29.6, 29.5, 29.2, 28.6, 

28.2, 27.8, 27.1.   HRMS(ESI): m/z calcd for C11H23N3S  229.1613 found 229.1645. 

 

Synthesis of azide functionalized gold nanoparticles (5) 

 

 

 

 Compound 4 (150 mg) was added ta stirred solution of MPC containing an 

octanethiol monolayer (150 mg) in CH2Cl2 (5 mL).  The solution was stirred for 48 hours.  

The solvent was then reduced to 2 mL before the addition of MeOH (50 mL).  The 

solution was put in the freezer for 2 hours before being centrifuged.  The solvent was 

discarded and the solid dissolved in 3-4 mL of CH2Cl2 before the addition of MeOH (50 

mL).  The process was repeated two more times to yield a black solid.  1H NMR (CDCl3, 

300 MHz): δ = 3.26 (br m, 2H, CH2-N3),1.26 – 1.6 (br m, 18H), 0.9 (br m, 2H).  FTIR: 

3000, 2100, 1500. 
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Synthesis of 1-mesityl-3-(prop-2-ynyl)-1H-imidazol-3-ium bromide (7) 

 

 

 

 In a round bottom flask, 6 (200 mg, 1 mmol), propargyl bromide (192 mg, 1.6 

mmol) and toluene (100 mL) were combined and refluxed for 16 hours.  The solvent was 

removed under vacuum to yield a yellow solid.  The product was further purified using 

column chromatography (1:5 hexanes:CH2Cl2) to yield a white solid.  Yield 95 mg (32 

%).  1H NMR (CDCl3, 300 MHz): δ = 10.50 (s, 1H, N-CH=N), 7.79 (s, 1H, Mes-N-

CH=C), 7.15 (s, 1H, CH2-N-CH=C), 7.00 (s, 2H, ArH), 5.78 (s, 2H, N-CH2-C), 2.69 (s, 

1H, C≡CH), 2.34 (s, 3H, CH-CH3), 2.08 (s, 6H, CH-CH3).  13C (CDCl3, 300 MHz): δ = 

140.8, 139.0, 138.7, 135.1, 130.1, 127.1, 121.2, 84.9, 77.4, 46.2, 20.1, 15.3.  Anal. Calcd 

for C15H17BrN2: C, 59.03; H, 5.61. Found: C, 58.89; H, 5.57. 
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Synthesis of bis(1-mesityl-3-(prop-2-ynyl)-1H-imidazol-2(3H)-ylidene)silver (8) 

 

 

 

 In a round bottom flask, 7 (175 mg, 0.6 mmol) and silver oxide (66 mg, 0.3 

mmol) were dissolved in a 3:1 mixture of CH2Cl2 (6 mL) and DMF (2 mL).  The solution 

was stirred for 10 hours before filtering it through celite.  The solvent was removed under 

vacuum to yield an off-white solid.  The product was further purified by dissolving it in 

CHCl3 (2 mL) and precipitating it in an excess hexanes (20 mL).  This operation was 

repeated twice.  Yield: 157 mg (94 %).  1H NMR (CDCl3, 300 MHz): δ = 7.41 (s, 1H, N-

CH=C), 7.00 (m, 3H, ArH + N-CH=C), 5.12 (s, 2H, N-CH2-C), 2.63 (s, 1H, C≡CH), 

2.34 (s, 3H, CH-CH3), 1.98 (s, 6H, CH-CH3).  13C (CDCl3, 300 MHz): δ = 142.2, 141.2, 

134.9, 132.2, 130.0, 129.9, 119.3, 118.0, 113.5, 111.8, 86.1, 80.4, 79.6, 75.7, 74.6, 51.0, 

44.5, 20.8, 18.8. Anal. Calcd for C30H32Ag2Br2N4: C, 43.72; H, 3.91. Found: C, 43.51; H, 

3.74. 
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Synthesis of (1-mesityl-3-(prop-2-ynyl)-1H-imidazol-2(3H)-ylidene)(prop-1-en-2-

yl)palladium(II) chloride (9) 

 

 

 

 In a round bottom flask, 8 (120 mg, 0.1 mmol), palladium allyl chloride (53 mg, 

0.1 mmol) and THF (5 mL) were combined.  The solution was stirred for 8 hours, filtered 

through celite and the solvent removed under vacuum to yield an orange solid.  The 

product was further purified by passing it through a short plug of silica yielding a yellow 

solid.  Yield: 41.7 mg (73 %).  1H NMR (CDCl3, 300 MHz): δ = 7.58 (s, 2H, N-CH=C), 

6.85 (br m, 3H, ArH + N-CH=C), 5.22 (s, 2H, N-CH2-C),  5.15 (m, 2H, CH-CH2), 4.98 

(m, 1H, CH3-CH), 2.54 (s, 1H, C≡CH), 2.39 (s, 3H, CH-CH3), 2.21 (s, 3H, CH-CH3), 

2.12 (s, 6H, CH-CH3). 13C (CDCl3, 300 MHz): δ = 139.8, 138.3, 134.1, 131.1, 126.7, 

124.7, 117.1, 80.3, 75.8, 74.6, 43.5, 21.1, 18.6, 13.4. Anal. Calcd for C18H22ClN2Pd: C, 

52.96; H, 5.43. Found: C, 53.12; H, 5.51. 
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Synthesis of Pd(II) functionalized gold nanoparticles (10) 

 

 

 

 In a high-pressure tube, 5 (35 mg), 9 (10 mg), CuSO4 (10 mol%), sodium 

ascorbate (20 mol%) and THF (3 mL) were combined.  The mixture was placed in a 

microwave reactor.  The reactor was set to the power level 80W and reaction time 10 

minutes.  The product was then extracted by adding distilled water (5 mL).  The organic 

layer separated and the solvent was removed under vacuum.  The product was dissolved 

in 2 mL of CH2Cl2 before adding an excess of methanol (50 mL).  The solution was 

stored in the freezer for 2 hours before centrifugation.  The liquid layer was discarded.  

The operation was repeated twice to yield a black solid.  Yield (85% of Pd complex 

“clicked” (via NMR of decomposed gold nanoparticles)).  1H NMR (CDCl3, 300 MHz): δ 

= 7.47 (s, 1H), 7.05 (m, 3H), 5.23 (m, 1H), 5.01 (s, 2H), 2.64 (s, 1H), 2.36 (s, 3H), 1.92 

(s, 6H), 1.26 – 1.6 (br m, 18H), 0.9 (br m, 2H). 
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General procedure for the Suzuki-Miyaura reaction 

Under an atmosphere of nitrogen, a microwave high pressure tube was loaded 

with the Pd-NHC modified gold nanoparticles (0.5 mol% of Pd-NHC catalyst), 

phenylboronic acid (1.2 equivalent), the aryl chloride (1 equivalent), sodium t-butoxide 

(3 equivalents) and dioxane (2mL).  The microwave was setup to 100W for 6 minutes.  

At the end of the reaction, water (3 mL) and CH2Cl2 (3 mL) were added.  The organic 

layer was collected and the product purified via column chromatography. 

 

Particle decomposition 

 The gold nanoparticles were decomposed using the following recipe:  Addition of 

5 mg of I2 to a stirred methylene chloride solution of 40 mg of particles.  The solution 

was stirred for two hours.  The solution was centrifuged and the precipitate removed.  

The remaining solution was dried over MgSO4 and the solvent removed under vacuum to 

yield the desired disulfide. 

 

TEM preparation 

The TEM samples were prepared by drop casting a nanoparticles solution (5 mg 

in 2 mL of CH2Cl2) onto copper TEM grids coated with a layer of amorphous carbon.  

The images were taken on a Hitachi HF-2000 microscope.   
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TEM picture taken before the reaction 

 

 

TEM picture taken after the reaction: CuSO4, sodium ascorbate, in dioxane. 

 

Characterization of the products from table 2  

Characterization of product 1: 

1H NMR (CDCl3, 300 MHz): δ = 8.37-8.34 (br s, 1H, N-CH=C), 7.58-7.53 (br m, 2H, 

Ar), 7.45-7.42 (br m, 2H, Ar), 4.29 (m, 2H, CH2-CH2-N), 2.46-2.39 (br m, CH2-CH2-S), 

1.43-1.18 (br m). 

Characterization of product 2: 

1H NMR (CDCl3, 300 MHz): δ = 7.63-7.59 (s, 1H, N-CH=C), 4.68 (s, 2H, C-CH2-Br), 

4.36 (m, 2H, CH2-CH2-N), 2.43 (br m, CH2-CH2-S), 1.53-1.14 (br m). 
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Characterization of product 3: 

1H NMR (CDCl3, 300 MHz): δ = 6.98 (s, 1H, N-CH=C), 4.35 (m, 2H, CH2-CH2-N), 4.04 

(t, 2H, J = 8Hz, C-O-CH2-C), 3.96 (t, 2H, J = 8Hz, CH2-CH2-OH), 3.76-3.74 (m, 2H, O-

CH2-C), 3.65-3.62 (m, 2H, CH2-CH2-O), 2.47-2.42 (m, 2H, CH2-CH2-S), 1.57-1.14 (br 

m). 

Characterization of product 4: 

1H NMR (CDCl3, 300 MHz): δ = 8.42 (s, 1H, N-CH=C), 4.44 (t, 2H, J = 12 Hz, CH2-

CH2-N), 2.46-2.40 (m, 2H, CH2-CH2-S), 1.58-1.21 (br m). 

Characterization of product 5: 

1H NMR (CDCl3, 300 MHz): δ = 10.42 (s, 1H, N-CH=C), 7.95-7.92 (m, 2H, Ar), 7.39-

7.37 (m, 2H, Ar), 4.80 (m, 2H, CH2-CH2-N), 2.47-2.42 (q, 2H, J = 8 Hz, CH2-CH2-S), 

1.57-1.20 (br m, 2H).  

Characterization of product 6: 

1H NMR (CDCl3, 300 MHz): δ = 10.31 (s, 1H, N-CH=C), 6.81-6.78 (m, 2H, Ar), 4.83 

(m, 2H, CH2-CH2-N), 2.49 (s, 6H, Ar-CH3), 2.48-2.44 (m, 2H, CH2-CH2-S), 2.25 (s, 3H, 

Ar-CH3), 1.57-1.22 (br m).  

Characterization of product 7: 

1H NMR (CDCl3, 300 MHz): δ = 10.42 (s, 1H, N-CH=C), 7.73 (m, 2H, Ar), 7.13 (m, 2H, 

Ar), 4.82 (t, 2H, J = 8 Hz, CH2-CH2-N), 2.47-2.43 (m, 2H, CH2-CH2-S), 1.75-1.69 (m, 

2H, Ar-CH2-CH2-C), 1.64-0.92 (br m). 

Characterization of product 8: 

1H NMR (CDCl3, 300 MHz): δ = 10.21 (s, 1H, N-CH=C), 8.92 (m, 2H, Ar), 4.78 (t, 2H, 

J = 8 Hz, CH2-CH2-N), 2.47-2.44 (m, 2H, CH2-CH2-S), 1.57-1.20 (br m).  
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Characterization of product 9: 

1H NMR (CDCl3, 300 MHz): δ = 8.72 (s, 1H, N-CH=C), 4.45 (t, 2H, J = 10 Hz, CH2-

CH2-N), 4.33 (t, 2H, J = 4 Hz, O=C-O-CH2-C), 3.70 (m, 4H), 2.46-2.41 (m, 2H, CH2-

CH2-S), 1.61-1.24 (br m). 

 

Characterization of the products from table 2 after the decomposition of the MPC 

 The gold nanoparticle was decomposed using the particle decomposition 

procedure described herein. 

Characterization of product 1: 

1H NMR (CDCl3, 300 MHz): δ = 8.35 (s, 1H, N-CH=C), 7.56 (m, 2H, Ar), 7.51 (m, 1H, 

Ar), 7.45 (m, 2H, Ar), 4.29 (m, 2H, CH2-CH2-N), 2.42 (m, 2H, CH2-CH2-S), 1.90 (m, 

2H, CH2-CH2-CH2-N), 1.51 (m, 2H, CH2-CH2-CH2-S), 1.49 (m, 2H), 1.42 (m, 2H), 1.35-

1.20 (m, 10H). 13C (CDCl3, 75 MHz): δ = 146.2, 128.5, 128.3, 128.0, 126.0, 120.8, 50.1, 

34.0, 33.9, 29.6, 29.5, 28.9, 28.8, 28.6, 28.2, 22.2. 

Characterization of product 2: 

1H NMR (CDCl3, 300 MHz): δ = 7.61 (s, 1H, N-CH=C), 4.65 (s, 2H, C-CH2-Br), 4.36 

(m, 2H, CH2-CH2-N), 2.46 (m, 2H, CH2-CH2-S), 1.92 (m, 2H, CH2-CH2-CH2-N), 1.53 

(m, 2H, CH2-CH2-CH2-S), 1.49 (m, 2H), 1.41-1.20 (m, 12H). 13C (CDCl3, 75 MHz): δ = 

143.6, 124.4, 48.1, 34.0, 33.9, 29.6, 29.5, 28.8, 28.7, 28.1, 22.4, 21.2. 

Characterization of product 3: 

1H NMR (CDCl3, 300 MHz): δ = 6.98 (s, 1H, N-CH=C), 4.35 (m, 2H, CH2-CH2-N), 4.05 

(t, 2H, J = 8Hz, C-O-CH2-C), 3.96 (t, 2H, J = 8Hz, CH2-CH2-OH), 3.76-3.74 (m, 2H, O-

CH2-C), 3.65-3.62 (m, 2H, CH2-CH2-O), 2.47-2.42 (m, 2H, CH2-CH2-S), 1.94-1.92 (m, 
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2H, CH2-CH2-CH2-N), 1.57-1.53 (m, 2H, CH2-CH2-CH2-S), 1.47 (m, 2H), 1.41-1.20 (m, 

12H). 13C (CDCl3, 75 MHz): δ = 152.8, 116.2, 73.4, 72.8, 64.7, 61.3, 61.2, 50.1, 34.1, 

34.0, 29.6, 29.5, 28.9, 28.2, 26.7, 23.9. 

Characterization of product 4: 

1H NMR (CDCl3, 300 MHz): δ = 8.42 (s, 1H, N-CH=C), 4.44 (t, 2H, J = 12 Hz, CH2-

CH2-N), 2.46-2.40 (m, 2H, CH2-CH2-S), 1.91-1.88 (m, 2H, CH2-CH2-CH2-N), 1.56-1.53 

(m, 2H, CH2-CH2-CH2-S), 1.49 (m, 2H), 1.40-1.17 (m, 12H). 13C (CDCl3, 75 MHz): δ = 

164.1, 139.4, 131.7, 51.3, 34.0, 33.9, 29.6, 29.6, 29.5, 28.9, 28.6, 28.2, 22.2. 

Characterization of product 5: 

1H NMR (CDCl3, 300 MHz): δ = 11.42 (br s, 1H, C-NH-Ar) 10.42 (s, 1H, N-CH=C), 

7.95-7.92 (m, 2H, Ar), 7.39-7.37 (m, 2H, Ar), 7.16 (m, 1H, Ar), 4.80 (m, 2H, CH2-CH2-

N), 2.47-2.42 (q, 2H, J = 8 Hz, CH2-CH2-S), 1.95-1.89 (m, 2H, CH2-CH2-CH2-N), 1.57-

1.53 (m, 2H, CH2-CH2-CH2-S), 1.48 (m, 2H), 1.38-1.20 (m, 12H). 13C (CDCl3, 75 MHz): 

δ = 160.3, 139.4, 139.3, 129.6, 123.8, 122.4, 120.4, 48.2, 34.0, 33.9, 29.6, 29.5, 28.9, 

28.7, 28.1, 22.5. 

Characterization of product 6: 

1H NMR (CDCl3, 300 MHz): δ = 11.12 (br s, 1H, C-NH-Ar), 10.31 (s, 1H, N-CH=C), 

6.81-6.78 (m, 2H, Ar), 4.83 (m, 2H, CH2-CH2-N), 2.49 (s, 6H, Ar-CH3), 2.48-2.44 (m, 

2H, CH2-CH2-S), 2.25 (s, 3H, Ar-CH3), 1.93-1.89 (m, 2H, CH2-CH2-CH2-N), 1.57-1.54 

(m, 2H, CH2-CH2-CH2-S), 1.46 (m, 2H), 1.38-1.20 (m, 12H). 13C (CDCl3, 75 MHz): δ = 

163.5, 145.1, 140.0, 139.2, 137.3, 128.9, 124.1, 48.0, 33.9, 29.6, 29.5, 28.9, 28.7, 28.2, 

22.2, 21.1, 19.5. 

Characterization of product 7: 
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1H NMR (CDCl3, 300 MHz): δ = 10.83 (br s, 1H, C-NH-Ar), 10.42 (s, 1H, N-CH=C), 

7.73 (m, 2H, Ar), 7.13 (m, 2H, Ar), 4.82 (t, 2H, J = 8 Hz, CH2-CH2-N), 2.63 (m, 2H, Ar-

CH2-C), 2.47-2.43 (m, 2H, CH2-CH2-S), 1.94-1.90 (m, 2H, CH2-CH2-CH2-N), 1.75-1.69 

(m, 2H, Ar-CH2-CH2-C), 1.64-1.45 (m, 10H), 1.39-1.15 (m, 20H), 0.91 (m, 3H, CH2-

CH3). 13C (CDCl3, 75 MHz): δ = 162.1, 140.1, 139.0, 138.6, 131.1, 122.4, 119.9, 48.3, 

35.4, 34.0, 33.9, 32.1, 31.3, 29.9, 29.8, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.7, 28.2, 22.9, 

22.2, 14.2. 

Characterization of product 8: 

1H NMR (CDCl3, 300 MHz): δ = 10.71 (br s, 1H, C-NH-Ar), 10.21 (s, 1H, N-CH=C), 

8.92 (m, 2H, Ar), 7.42 (m, 1H, Ar), 4.78 (t, 2H, J = 8 Hz, CH2-CH2-N), 2.47-2.44 (m, 

2H, CH2-CH2-S), 1.93-1.89 (m, 2H, CH2-CH2-CH2-N), 1.57-1.53 (m, 2H, CH2-CH2-

CH2-S), 1.44 (m, 2H), 1.38-1.20 (m, 12H). 13C (CDCl3, 75 MHz): δ = 159.9, 141.3, 

139.8, 134.1, 133.8, 133.3, 132.7, 132.6, 132.5, 131.7, 131.3, 126.6, 121.9, 121.4, 121.3, 

120.0, 119.3, 112.6, 48.1, 34.0, 33.9, 30.0, 29.6, 29.5, 28.9, 28.6, 28.2, 22.6. 

Characterization of product 9: 

1H NMR (CDCl3, 300 MHz): δ = 8.72 (s, 1H, N-CH=C), 4.45 (t, 2H, J = 10 Hz, CH2-

CH2-N), 4.33 (t, 2H, J = 4 Hz, O=C-O-CH2-C), 3.74 (m, 2H), 3.70 (m, 4H), 2.46-2.41 

(m, 2H, CH2-CH2-S), 1.93-1.87 (m, 2H, CH2-CH2-CH2-N), 1.61-1.52 (m, 2H, CH2-CH2-

CH2-S), 1.46 (m, 2H), 1.42-1.20 (m, 12H). 13C (CDCl3, 75 MHz): δ = 159.9, 139.0, 

130.3, 72.8, 69.2, 64.3, 61.3, 49.5, 34.0, 33.9, 29.7, 29.6, 29.5, 28.8, 28.7, 28.3, 21.9. 

 

Characterization of the products from table 2 

Characterization of product 1: 
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1H NMR (CDCl3, 300 MHz): δ = 7.78 (m, 2H, CH-C(CH3)-CH), 7.68 (m, 2H, CH-C(C)-

CH), 7.53-7.52 (m, 2H, CH-C(C)-CH), 7.47-7.43 (m, 2H, CH-CH-CH), 7.34 (m, 1H, 

CH-CH-CH), 2.34 (s, 3H, C-CH3). 13C (CDCl3, 75 MHz): δ = 141.4, 138.5, 136.6, 129.5, 

128.7, 127.1, 21.0. 

Characterization of product 2: 

1H NMR (CDCl3, 300 MHz): δ = 7.59-7.54 (m, 4H), 7.41-7.37 (m, 2H), 7.31 (m, 1H), 

7.01-6.99 (m, 2H), 3.85 (s, 3H). 13C (CDCl3, 75 MHz): δ = 259.5, 142.3, 131.1, 129.6, 

128.9, 127.4, 127.3, 115.1, 55.5. 

Characterization of product 3: 

1H NMR (CDCl3, 300 MHz): δ = 7.55-7.49 (m, 1H), 7.31-7.27 (m, 2H), 7.24 (m, 1H), 

7.21-7.18 (m, 2H), 7.11 (m, 2H), 2.74 (s, 6H). 13C (CDCl3, 75 MHz): δ = 145.6, 140.0, 

132.3, 130.2, 127.8, 127.3, 125.0, 22.8. 

Characterization of product 4: 

 1H NMR (CDCl3, 300 MHz): δ = 7.78-7.68 (m, 4H), 7.63-7.60 (m, 2H), 7.50-7.42 (m, 

3H). 13C (CDCl3, 75 MHz): δ = 145.6, 139.2, 132.5, 129.0, 128.6, 127.6, 118.9, 110.9. 
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CHAPTER 7 

SUMMARY AND NEXT STEPS 

 

Abstract 

 This chapter commences with a summary of the work accomplished with the 

poly(norbornene) supported Pd-pincers and Pd-N-Heterocyclic carbene and the gold 

nanoparticles supported Pd-N-Heterocyclic carbene describe in the previous chapters. 

The different conclusion drawn from each chapter will be discussed. Stemming from 

these investigations, new proposed directions for this project will be outlined. A new 

support, poly(styrene), is considered. The advantages of this support will be discussed. 

The evaluation of this support using techniques that were discussed in this thesis is 

proposed. 

 

7.1. Summary 

 In chapter 3, poly(norbornene)-supported Pd-SCS pincer was described. The 

investigation on the activity of this system resulted in the discovery that the 

organometallic complex was not responsible for the catalysis. To establish this 

conclusion, different methods to probe if the organometallic complex was the actual 

catalyst were develloped. The unique combinations of kinetic and poisoning studies 

confirmed the hypothesis that the active species in the Heck-Mizoroki transformation is a 

leached Pd species. In the kinetic studies, the presence of induction times indicated that 

the Pd pincer complex had to go through some transformation to become active. 

Moreover, the recycling experiments indicated a significant loss of activity after each 
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consecutive run. Finally, the poisoning tests, consisting on adding PVPy or mercury to 

trap any leached Pd species from the Pd-SCS complex were conclusive, showing no 

activity.  

 In chapter 4, Pd-PCP pincer complex were tethered on poly(norbornene) and 

silica. The different complexes synthesized were evaluated using the tests that were 

developed previously in chpter 3. The results indicated that Pd(II)-PCP pincer complexes 

were also not stable under Heck reaction conditions. Furthermore, the presence of 

phosphorus atoms in the Pd-PCP complexes allowed the investigation of the 

decomposition pathway using 51P NMR. Results from this study showed that 

triethylamine is playing a key role in the decomposition of Pd-pincer complexes. To 

understand this role, mass spectroscopy experiments were carried out, mimicking a study 

done previously by Louie and Hartwig. The results suggest that triethylamine binds to the 

Pd when a binding site is free during the on-off equilibrium of the phosphorus arms. 

Finally, computational studies were carried out, showing the possibility of having 

triethylamine binding to the Pd complex. It was calculated that after the binding of one 

triethylamine, the energy required to bind a second one is negligeable. Overall, the 

investigations carried for supported Pd-pincer complexes resulted in the discard of Pd(II)-

pincer complexes to be used as catalyst.  

 In chapter 5, a new Pd complex was attached to poly(norbornene), Pd and Ru-N-

Heterocyclic carbene complexes. Three different Pd-NHC were grafted onto the polymer, 

NHC-Pd(OAc), NHC-Pd(dba) and NHC-Pd(allyl)Cl. The three poly(norbornene)-

supported Pd-NHC complexes were tested for any potential leaching using kinetic studies 

and poisoning tests. Resulting from this study was the unstability of NHC-Pd(dba) for the 
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Suzuki and Sonogashira transformations. In addition, each complex decomposes during 

the Heck reaction of iodobenzene with n-butyl acrylate in DMF at 120 ºC. Eventhough, 

two of the Pd-NHC complexes seemed to be stable for Suzuki and Sonogashira reactions, 

the system was not recyclable. The recycling of the system consisted on precipitating the 

polymer after the reaction. Unfortunately, the polymer was less and less soluble after 

each consecutive cycle. Furthermore, the yields for each consecutive reaction dropped 

drastically. This result suggested that the polymer support was reacting during the 

catalysis, making it unable to be used as a support for catalysis.  

 In chapter 6, a new methodology was developed to graft a variety of 

functionalities onto gold nanoparticles. Using the 1,3-cycloaddition of a terminal alkyne 

with an azide, a new “recipe” using a microwave reactor was developed. Utilizing this 

new method Pd-NHC complex odified with a terminal alkyne was grafted onto gold 

nanoparticles. The system showed great promises with good yields for the Suzuki-

Miyaura coupling of a variety of aryl chlorides with phenyl boronic acid. However, when 

the system was recycled, the gold nanoparticles became insoluble. Further investigations 

suggested that the support was reacting with the base used for the catalysis, changing its 

morphology. This last results lead to the formulation of new directions where this project 

should be taken.  

 Each chapters presented innovative ways to evaluate the catalyst that was 

supported. Utilizing the kinetic studies as well as poisoning, computational and NMR 

studies, several conclusions were drawn regarding the stability of the catalysts that were 

supported. Pincer complexed with Pd(II) decompose under reaction conditions to become 

Pd reservoirs, distilling a small amount of the active species during the catalysis. Pincer 
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complexes are not suitable to be supported. The Pd-N-heterocyclic carbene complexes 

proved to be stable for the Sonogashira and Suzuki transformations. Unfortunately, 

poly(norbornene) did not allow for recycling. After the precicpiation of the polymer to in 

order to reuse the catalyst, the polymer became unsoluble. The different studies 

conducted to understand what lead to this unsolubility were unconclusive. Overall, 

poly(norbornene) is not a suitable polymer to be use as a support for catalysts. In 

addition, the use of gold nanoparticles as a support leads to a similar conclusion. After 

precipitating the particles, they became unsoluble. Gold nanoparticles are not a suitable 

support for catalysts. 

 

 An alternative polymer that proved to be stable under various catalytic reactions is 

poly(styrene). The Weck group investigated this support with the Jacobson catalyst for 

the hydrolytic kinetic resolution of various epoxides. This polymer is easy to synthesize 

and should tolerate the Pd-NHC complex. One of the side phenyl of the NHC ligand can 

be modified to allow the polymerization of this new monomer. The advantages of 

poly(styrene) are multiple. Besides the stability of the polymer and the non-reactive 

moiety, the polymerization can be highly controlled, allowing for a variation in the 

loading of the catalyst. Poly(styrene) can also be cross-linked fairly easily by adding 

cross-linkers such as divinyl benzene. This advantage can be utilized to study the activity 

of the catalyst on a soluble support, and on a non-soluble support with the different stages 

of swellability and solubility in between. In this chapter, I proposed the synthesis of three 

different poly(styrene) supported Pd-NHC complexes. 
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7.2. Soluble poly(styrene) as a support 

 The synthesis of linear poly(styrene) functionalized with NHC-Pd complex can be 

accomplished via two methods. The Pd complex can be added to the styrene monomer 

before or after the polymerization. The solubility of the support and the ability to control 

the loading of the catalysts makes it an interesting system. Two different NHC ligands 

can be synthesized; one with the tether on the phenyl ring (Figure 7.1), and another one 

with the tether coming from the imidazole ring (Figure 7.2). With these two complexes in 

hand, the activity of the supported NHC-Pd can be investigated. 

 

 

 

Figure 7.1. Synthesis of poly(styrene) supported Pd-NHC complex tethered to the side 
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Figure 7.2. Synthesis of poly(styrene) supported Pd-NHC complex tethered to the back. 

 

 The influence of the tether can be investigated by comparing the activity of the 

two different systems. The poly(styrene) supported Pd-NHC tethered from the imidazole 

ring resembles most of the catalyst currently used. In addition, both systems can be tested 

for any potential palladium leaching. The battery of tests that were developed such as 

kinetic studies, recycling experiment and poisoning studies can be utilized. Both systems 

can be evaluated with the Suzuki-Miyaura and Heck-Mizoroki reactions. The latest 

transformation is the most demanding with high temperature and longer reaction times. 

This study can confirmed the hypothesis that the Heck-Mizoroki reaction conditions are 

too extreme for any palladium complexes to be stable.  

 

7.3. Cross-linked poly(styrene) as a support 

 Another possibility to introduce the Pd-NHC complex is through the cross-linker. 

Seebach et al. first reported a similar system using the Jacobson ligand with cobalt metal. 

The NHC ligand can be modified to have the styrene moieties on the side chains and can 

be cross-linked with styrene monomers. This system would allow an investigation of the 
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activity of a solid supported NHC-Pd. The amount of cross-linker added would offer an 

understanding of of the swellability behavior of this polymer and the effects on the 

catalytic activity. In addition, the pores of the resin can be tuned by varying the amount 

of cross-linker added, expanding the spectra of tests that can be performed to analyze the 

catalytically active species. Finally, the comparison between the lightly cross-linked with 

the highly cross-linked polymer should give an understanding on the affect of solubility 

on the activity of the supported catalyst. 

 

 

 

Figure 7.3. Synthesis of cross-linked supported Pd N-Heterocyclic carbene complexes 

 

7.4. Conclusion 

 Three different supported NHC-Pd complexes are proposed. Poly(styrene) offers 

opportunities to have a better understanding of the affect of the support on the 

catalysis.Using the different tests described in this thesis, the activity and the stability of 

the catalyst can be investigated. In addition, the physical properties of the polymer can be 

modified using a variety of cross-linkers. It can also help understand the factors that can 
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be responsible for the decomposition of the catalyst. Understanding these factors can help 

for the synthesis of better catalysts.  
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APPENDIX A 
 

X-ray Absorption Spectroscopy of Immobilized SCS Pd Pincer Compounds 

Experimental Methods 

X-ray absorption spectroscopy was conducted on beamlines X10C and X18B at 

the National Synchrotron Light Source, Brookhaven National Lab, Upton, NY. The Pd K 

edge spectra of catalysts and reference compounds were recorded at room temperature 

except those collected during the Heck reaction performed at 393 K. Spectra of samples 

in solvent or reaction medium were recorded in the fluorescence mode whereas other 

spectra were recorded in the transmission mode. For transmission measurements, ion-

chambers were filled with Ar to have an absorbance of 10% in the first chamber and 80% 

in the second. A Pd foil (Goodfellow) was placed between the second and third ion 

chambers for energy calibration. At least four spectra were averaged for each sample 

studied in the transmission mode. For the samples examined during the Heck reaction, an 

in-situ cell was constructed with Teflon as body material and Kapton as the window. The 

reaction slurry was continuously pumped from a heated, stirred reactor vessel to the in-

situ cell. To improve the signal-to-noise ratio during the measurement, at least ten scans 

were averaged. Two data analysis methods were used in this work, specifically, fitting of 

a linear combination of the edge spectra and fitting of standard multi-shell EXAFS data. 

The data analysis was performed with the WinXAS 2.1 program. The pre-edge 

background was removed with a linear function and the post-edge background was 

subtracted with a cubic spline method. According to the Nyquist theorem,1 the number of 

free parameters for EXAFS curve-fitting are determined by the available data range in k 
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space and R space : Npts = 2∆k*∆R/π + 2. Typically, 16 parameters can be determined 

from the data. 

 

Results and Discussion 

Reference Compounds 

The X-ray absorption near edge structure (XANES) associated with the Pd K edge of 

different reference materials is shown in Supplemental Figure 1. The zero valent Pd foil 

revealed a distinctly different edge shape compared to the other reference compounds 

having Pd in a higher oxidation state. The PdS and PdCl2 samples have very similar 

XANES spectra, and the quick decay of oscillations above the peak at ~ 24360 eV in 

Pd(NH3)4Cl2 was due to the presence of light N atoms as the nearest neighbor 

backscatterers. The Fourier transforms of the k3 weighted EXAFS data are shown in 

Supplemental Figure 2. The large peak in each transform results from the first shell 

backscatterer atoms. The position of the peak is related to the first shell interatomic 

distance, not corrected for phase shift, whereas the intensity of the peak is related to the 

number of nearest neighbor backscatterers, the atomic number of the backscatterer and 

the disorder in the sample. 

We used the program FEFF 8.20 to calculate theoretical reference files containing the 

appropriate backscattering amplitudes and phase shifts for various absorber-backscatterer 

pairs.2 We then used the EXAFS data from the reference spectra to calibrate the reference 

files calculated by FEFF. The known structural parameters for each standard compound 

listed in Table 1 were used in the calibration process. Curve-fitting of reference data with 

k3- weighting was performed in R-space to produce a set of parameters for the calibration 
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of theoretical FEFF reference files. Table 2 summarizes these parameters derived from 

curve fitting that were subsequently input to the revised theoretical FEFF reference files.3 

Since a reference compound having a Pd-C first shell was not available, we used the Pd-

N reference file as a substitute. 

 

Influence of immobilization 

Supplemental Figure 3 shows the XANES of immobilized SCS pincer compounds on 

SBA and polymer support. Although the spectra are similar, with an obvious white line 

present at the absorption threshold, a subtle difference in the XANES can still be 

observed. The k2 weighted Fourier transform of the EXAFS (Supplemental Figure 4) 

revealed that both samples have light backscatterers around Pd (at ~1.9 Å) associated 

with the pincer complex, but that a new peak was present at ~2.5 Å in the SBA-

immobilized compound. It is reasonable to assume that this long distance may be due to 

the presence of some Pd in the first coordination shell, presumably from a small amount 

of Pd metal. Assuming the spectrum can be decomposed into contributions from the SCS 

pincer complex and metallic Pd, we performed a fitting analysis utilizing a linear 

combination of the edge spectra for SBA immobilized SCS pincer Pd. This method has 

been used previously to study the local structure around an absorbing atom.4,5 The 

XANES fitting analysis was performed in a region up to 150 eV above the edge. The 

fitting parameters in Table 3 indicated that 6.5% of the Pd in SBA immobilized SCS 

pincer complex was metallic in nature whereas 93.3% of the Pd was present in the SCS 

pincer complex. The estimated coordination number of the Pd-Pd shell was only about 

0.8. 
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Curve-fitting of the EXAFS data with FEFF reference files utilizing k2 weighting in R 

space was performed on the spectra of SBA and polymer-immobilized SCS pincer 

complex with a fixed S0
2 value of 0.9. Since the number of free parameters in the fitting 

routine is so high (16), many are correlated, and the Nyquist theorem dictates only 16 can 

be independently fit, the coordination numbers and interatomic distances were fixed to a 

small region near the estimated values. In addition, the Debye-Waller factor was forced 

to be non-negative. Reasonable values of Debye-Waller factor and ∆Ε0 as shown in Table 

4 suggest that immobilization of the complex on the SBA support and the polymer did 

not cause a significant change in the atomic structure around Pd bound in the SCS pincer 

complex. However, curve-fitting for SBA immobilized SCS pincer Pd provided a 

coordination number of 1.4 and an interatomic distance of 2.71 Å for Pd-Pd shell as 

shown in Table 4. The Pd-Pd bond length is 0.04 Å shorter than that in bulk Pd, which 

suggests that the metallic particles must be nanometer size or less. Both fitting methods 

suggest that the new peak in Fourier transform of SBA-immobilized SCS pincer Pd can 

be assigned to the presence of small metallic Pd particles on the support, and most of Pd 

still remain bound in SCS pincer complex after immobilization on SBA support. It should 

be noted that if any O atoms were present on the Pd metal surface, they could not be 

distinguished from nearest neighbor C atoms associated with Pd in the pincer complex. 

 

In-situ X-ray Absorption Spectroscopy during Heck Reaction  

The influence of the solvent DMF on the structure of polymer-immobilized SCS 

pincer Pd was also investigated. As shown in Supplemental Figure 3, no change in 

XANES was observed between a sample in air and one dissolved in DMF. Likewise, the 
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Fourier transform of the EXAFS region showed the same backscattering contribution in 

both samples (not shown). The linear combination of XANES analysis showed only the 

contribution from SCS pincer complex after stirring in DMF. Apparently, there is little 

change in the local environment around Pd with solvent addition. 

To better understand the reaction mechanism of Heck catalysis, Evans et al. 

performed an in-situ X-ray absorption study of the Heck reaction with Pd acetate as 

catalyst.6 We also performed an in-situ study during the Heck reaction catalyzed by 

polymer immobilized SCS Pd in DMF, with iodobenzene and butylacrylate as substrates 

and triethylamine as base. The Heck reaction was first carried out in flask at 393 K. Then 

the reacted solution was pumped into an in-situ cell from the reactor. A uniform 

suspension of catalyst in solution was achieved by recirculation between the cell and the 

reactor. Supplemental Figure 5 shows k2-weighted Fourier transform of the EXAFS for a 

sample in air and a sample during Heck reaction. A new feature was observed at ~2.5 Å, 

which could arise from the backscattering contribution of a Pd-Pd or a Pd-I shell. In order 

to distinguish between them, we performed a fitting of the edge spectra involving SCS 

pincer complex on polymer, metallic Pd and PdI2. The fitting results presented in Table 3 

suggest that iodine was present in the first coordination shell of Pd. Although most of the 

Pd was associated with SCS pincer complex (85.5%), a Pd-I coordination number of ~ 

0.6 was derived from the fitting procedure. Interestingly, no evidence for metallic Pd was 

found in the XANES, as shown in Supplemental Figure 6. To further support this 

conclusion, a similar study was also performed with the SBA-immobilized SCS pincer 

complex, which was insoluble in DMF. In this case, the XANES fitting results also 

showed the presence of Pd-I in addition to a large amount of SCS pincer complex. A 
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small amount of metallic Pd determined by the XANES fitting results may have been 

formed in the process of the immobilization, as discussed above. The observation of Pd-I 

compounds during Heck catalysis is in a good agreement with the results reported by 

Evans et al..6 

The coordination number of Pd-I in Table 4 was about 1.2 as determined by EXAFS 

fitting in R space with k2 weighting, the experimental data are compared to the fitted 

results with k2-weighting in Supplemental Figure 7. The average Pd-I coordination 

number was slightly lower than those reported by Evans et al. (1.8 or 2.3) who studied Pd 

acetate as a catalyst for the Heck reaction.6 The Pd in our study remained mostly bound 

in the SCS pincer complex, which may be related to its higher stability during Heck 

catalysis compared to Pd acetate. In order to achieve a good fitting for the Pd-I 

contribution, the interatomic distance of Pd-I shell need be lengthened to 2.67 Å, which is 

somewhat longer than the value in PdI2. A long Pd-I bond was also observed by Evans et 

al. during their EXAFS study of [Pd2I6][NEt3H]2 dissolved in CH3CN.6  

 

Summary 

The X-ray absorption spectroscopic studies have provided the following 

information on the Pd(II) SCS-O system inn support of our previous results:7 

•  The Pd species are altered under reaction conditions, with a fraction of the 

pincer species supported on poly(norbornene) or silica decomposing to form 

new species. 

•  Heating the immobilized species in DMF did not result in any notable change 

in the Pd species as determined by spectroscopy. Previously, it was shown that 
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base and one of the reactants was required for generation of soluble catalytic 

species. Additionally, in this work, it has been shown that the addition of base 

if the key step that causes complex decomposition. 

Furthermore, additional information obtained during this study: 

•  Pd(II) SCS-O pincer species supported on silica have a small amount of Pd(0) 

that is formed during synthesis, most likely during the immobilization step. 

Pd(II) SCS-pincer species supported on poly(norbornene) look similar to the 

small molecule complex as determined by EXAFS.' 

•  Palladium(II) iodo species are hypothesized to be the primary species formed 

under reaction conditions based on EXAFS and XANES analysis.8 This is 

consistent with our works, which have found that Pd-iodo species are the 

primary resting state for Pd in the Heck reaction. This signal may also be 

enhanced in the EXAFS spectra by halide exchange under reaction conditions 

resulting from exchange of the HI formed in the reaction with the Pd-Cl bonds 

in the remaining unreacted pincer complexes (only a fraction decompose) to 

create Pd-I bonds and liberate HCl. 
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XYZ Coordinates in Ångstroms for Figures 9 and 10 

Figure 9b: 

  C            0.2017977411     -1.1573849355     -1.4332789682  

  C           -0.5108596459      0.0717572842     -1.6060191868  

  C           -1.8711902409      0.0419084322     -2.0079445296  

  C           -2.5368629910     -1.1786151565     -2.2135787896  

  C           -1.8545718818     -2.3887247739     -2.0006727131  

  C           -0.4942304515     -2.3972864156     -1.5981262983  

  H           -2.4050750587      0.9890765083     -2.1501325646  

  H           -3.5855319571     -1.1867717953     -2.5298596558  

  H           -2.3752538562     -3.3439882114     -2.1375613669  

  C           0.1488155890     -3.7394000215     -1.2939136427  

  H          -0.1270260903     -4.0789570547     -0.2753199423  

  H          -0.1658811647     -4.5269871989     -2.0015389573  

  C           0.1137063438      1.4245553454     -1.3110678386  

  H          -0.1731082167      1.7707393682     -0.2978809801  

  H          -0.2054435557      2.2008909764     -2.0292646288  

  P           2.0475396975     -3.5400266442     -1.2908361936  

  P           2.0142650949      1.2498866032     -1.2927167913  

  C           3.7617815144     -6.8698692220      1.5610891966  

  C           4.3542771977     -5.5912442005      1.5218517926  

  C           3.8327373335     -4.5925957457      0.6719407424  

  C           2.7159474733     -4.8785091170     -0.1468726573  
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  C           2.1232122924     -6.1641513845     -0.1110009029  

  C           2.6459362193     -7.1548234007      0.7451378577  

  H           4.1679195606     -7.6427168983      2.2227801443  

  H           5.2212980357     -5.3681741229      2.1529693912  

  H           4.2884821455     -3.5953457689      0.6353582242  

  H           1.2649622628     -6.4022152389     -0.7493592029  

  H           2.1849763194     -8.1481174710      0.7709807609  

  C           3.3856239081     -4.8565713726     -5.6188188363  

  C           2.3141583400     -3.9547285746     -5.4440028037  

  C           1.9200384239     -3.5655066616     -4.1483953485  

  C           2.5876163585     -4.0904365479     -3.0154865848  

  C           3.6657429156     -4.9868351338     -3.1928372452  

  C           4.0620587596     -5.3668908562     -4.4923341105  

  H           3.6938221995     -5.1538726127     -6.6268610649  

  H           1.7870925289     -3.5526653620     -6.3157747473  

  H           1.0970802468     -2.8528092994     -4.0236227082  

  H           4.1940378650     -5.3940116874     -2.3251574533  

  H           4.8974426089     -6.0637518928     -4.6201830186  

  C           3.6657467527      4.6084181088      1.5623767612  

  C           4.2685775435      3.3342794521      1.5389507751  

  C           3.7661478030      2.3264566638      0.6883268769  

  C           2.6576236826      2.5985013507     -0.1462291970  

  C           2.0550869717      3.8798652812     -0.1268778798  
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  C           2.5587271399      4.8797597644      0.7298872636  

  H           4.0570791684      5.3884760068      2.2244504602  

  H           5.1291152995      3.1220067221      2.1825157455  

  H           4.2314457990      1.3333796176      0.6622275998  

  H           1.2035497227      4.1070972337     -0.7779224333  

  H           2.0897718809      5.8695766626      0.7431340372  

  C           3.3806219345      2.5591754869     -5.6132365605  

  C           2.3022646994      1.6647234086     -5.4436175446  

  C           1.8972723203      1.2816345503     -4.1496602255  

  C           2.5627575407      1.8016010455     -3.0136222554  

  C           3.6484797140      2.6898974220     -3.1855068511  

  C           4.0542189316      3.0658611402     -4.4832589141  

  H           3.6964475379      2.8536598317     -6.6196954759  

  H           1.7769586560      1.2643818772     -6.3174060575  

  H           1.0666337455      0.5779819354     -4.0277250258  

  H           4.1757649517      3.0932342731     -2.3154537501  

  H           4.8949582305      3.7569433036     -4.6071778783  

  Pd          2.1828812231     -1.1428082415     -0.9734934968  

  Cl          4.6257788325     -1.1234243379     -0.2505141229  

 

Figure 9c: 

  C           0.1377908571     -0.9689989180     -1.7439967400  

  C          -0.4623285828      0.2251630874     -2.2165288019  
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  C          -1.7272918808      0.1356338258     -2.8528403605  

  C          -2.3548000874     -1.1124872933     -3.0066562143  

  C          -1.7220915269     -2.2900526594     -2.5573263499  

  C          -0.4534299416     -2.2449756149     -1.9298120603  

  H          -2.2083763347      1.0481327370     -3.2234121793  

  H          -3.3365187080     -1.1748388907     -3.4872084467  

  H          -2.2167201149     -3.2550417239     -2.7087176685  

  C           0.3044513693     -3.5025599762     -1.4965911032  

  H           1.1270112771     -3.7316881178     -2.2029676889  

  H           0.7764680463     -3.3626740857     -0.5012717969  

  C           0.2276831362      1.5588624886     -2.0390644484  

  H          -0.2810691184      2.1835192063     -1.2799270766  

  H           0.2802900360      2.1427652660     -2.9753694088  

  P          -0.7873846702     -5.0869007193     -1.2227906909  

  P           1.9944435556      1.1887203859     -1.3902187363  

  C          -1.8067350580     -6.8999576490     -5.4773978526  

  C          -2.3224809018     -7.4533337883     -4.2859352990  

  C          -1.9833291389     -6.8877750397     -3.0417209412  

  C          -1.1169727144     -5.7670021223     -2.9694893914  

  C          -0.5959384216     -5.2251598657     -4.1664586907  

  C          -0.9457939308     -5.7862396392     -5.4143078141  

  H          -2.0792781415     -7.3311713830     -6.4465064379  

  H          -2.9948811804     -8.3172856469     -4.3255146976  
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  H          -2.4035916528     -7.3137019715     -2.1221273352  

  H           0.0767805130     -4.3612707277     -4.1415652531  

  H          -0.5447506883     -5.3513045786     -6.3363075708  

  C           2.4902213889     -8.0680087572      0.4550162368  

  C           1.6216430541     -7.3753534074      1.3240078219  

  C           0.6546344442     -6.4919049700      0.8004873873  

  C           0.5551193501     -6.2871726887     -0.5970865936  

  C           1.4291569958     -6.9855825616     -1.4629825236  

  C           2.3914011930     -7.8731933512     -0.9389329535  

  H           3.2357743969     -8.7604423213      0.8604572392  

  H           1.6900254557     -7.5273590020      2.4069219298  

  H          -0.0307760156     -5.9727301352      1.4813397280  

  H           1.3493237100     -6.8502458645     -2.5469721896  

  H           3.0611672424     -8.4130695098     -1.6178811619  

  C           3.1546922241      4.5540706229      1.6775621181  

  C           3.7532202356      3.2797061551      1.7569872545  

  C           3.3893299597      2.2658573960      0.8483205860  

  C           2.4225552410      2.5324971616     -0.1490925879  

  C           1.8131809625      3.8085572683     -0.2262296561  

  C           2.1856137023      4.8163474616      0.6876941055  

  H           3.4400108522      5.3379635411      2.3868957441  

  H           4.5005274689      3.0703156596      2.5291914997  

  H           3.8386991206      1.2679564108      0.9234255257  
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  H           1.0661802913      4.0352816876     -0.9939192665  

  H           1.7169478855      5.8036265135      0.6216968337  

  C           4.9285738450      1.7578826355     -5.0164673450  

  C           4.3642378745      0.4898597275     -4.7631539568  

  C           3.4982123981      0.3113587056     -3.6654436916  

  C           3.1993196001      1.4071740790     -2.8276042970  

  C           3.7623749978      2.6804697644     -3.0726920563  

  C           4.6272739620      2.8493335778     -4.1742751456  

  H           5.6073480243      1.8929990816     -5.8651134818  

  H           4.6057033488     -0.3599015312     -5.4100843279  

  H           3.0722126615     -0.6758603771     -3.4511031304  

  H           3.5385606674      3.5306913865     -2.4214527986  

  H           5.0693344399      3.8321184887     -4.3685291142  

  Pd          1.7671594418     -1.0385931362     -0.6392539700  

  Cl          3.7670029662     -1.3163225884      0.8864932841  

 

Figure 9d: 

  C           0.3833021356     -0.9220123766     -0.2358184110  

  C           0.0072401933      0.3670955018      0.2333837565  

  C          -1.3211970749      0.5808702905      0.6764408645  

  C           -2.2626404458     -0.4616445110      0.5879090904  

  C          -1.9052418769     -1.6902720911      0.0000014241  

  C          -0.5801976880     -1.9439589209     -0.4415502142  
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  H          -1.6136019958      1.5651064637      1.0612192064  

  H          -3.2903514242     -0.3029378695      0.9325060145  

  H          -2.6678041947     -2.4636923256     -0.1425330176  

  C          -0.2123485192     -3.1972088868     -1.2398031806  

  H          -0.2286627419     -2.9312358682     -2.3152544855  

  H           0.8171948522     -3.5242564913     -1.0134655581  

  C           1.0039441315      1.5059546004      0.1003580965  

  H           1.7475019753      1.5430240228      0.9188464776  

  H           0.5245341195      2.4980911058      0.0278779030  

  P          -1.4503339252     -4.6914761431     -1.0863957524  

  P           2.0222679966      1.0571206334     -1.4793355734  

  C          -0.7621466221     -7.2893551648     -4.9856443207  

  C          -1.7256961728     -7.6341953245     -4.0131732314  

  C          -1.8669472599     -6.8497912534     -2.8528754266  

  C          -1.0406595336     -5.7154287614     -2.6341790435  

  C          -0.0704006642     -5.3849440252     -3.6089693355  

  C           0.0619501406     -6.1653525853     -4.7796999820  

  H          -0.6612116994     -7.8890448051     -5.8967422815  

  H          -2.3751916607     -8.5034121386     -4.1645502422  

  H          -2.6367987380     -7.1115604455     -2.1160945901  

  H           0.5933978974     -4.5238876387     -3.4745787202  

  H           0.8130672907     -5.8900431767     -5.5286223081  

  C           0.2594913760     -7.3249585645      2.4685269584  
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  C          -0.6308420067     -6.2573970664      2.7089842603  

  C          -1.1122653735     -5.4827353754      1.6330855656  

  C          -0.6970786283     -5.7567959067      0.3055966971  

  C           0.1950890664     -6.8298402512      0.0727813670  

  C           0.6679228307     -7.6110922481      1.1489643786  

  H           0.6244202462     -7.9354628478      3.3018925337  

  H          -0.9610327694     -6.0344892702      3.7298643125  

  H          -1.8274318728     -4.6741336728      1.8256333164  

  H           0.5151344098     -7.0619986530     -0.9480490647  

  H           1.3533876067     -8.4438827724      0.9543867463  

  C           5.6245651587      4.0942694428     -1.6379561693  

  C           5.7305877095      2.8931397127     -0.9072332253  

  C           4.6541547137      1.9828828022     -0.8768376005  

  C           3.4610190467      2.2779521065     -1.5756269599  

  C           3.3521372178      3.4865205819     -2.3035980332  

  C           4.4345904182      4.3892086600     -2.3353354493  

  H           6.4676012163      4.7926848350     -1.6713993338  

  H           6.6578025229      2.6539296098     -0.3758877432  

  H           4.7604318094      1.0206218566     -0.3657281740  

  H           2.4341456279      3.7218553877     -2.8504402407  

  H           4.3472107915      5.3194600274     -2.9069331414  

  C          -0.5882052723      2.1159118751     -5.2536808430  

  C          -1.1520106764      2.2469775378     -3.9689324924  
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  C          -0.3890469318      1.9432625820     -2.8223664274  

  C           0.9473456673      1.5052515037     -2.9579222573  

  C           1.5090098587      1.3670254678     -4.2514821310  

  C           0.7441671411      1.6734300870     -5.3930156933  

  H          -1.1834253140      2.3524361766     -6.1417621298  

  H          -2.1866970298      2.5870688874     -3.8536575810  

  H          -0.8467594027      2.0442989769     -1.8347104310  

  H           2.5420396470      1.0211392416     -4.3706879058  

  H           1.1879606269      1.5653222083     -6.3883070445  

  Pd          2.3135035377     -1.2055791930     -0.5855761538  

  Cl          4.8419994745     -1.4716150077     -1.2015266858  

  N           2.6051711405     -2.6440585787      1.1832949323  

  C           3.6522099908     -1.9203728352      1.9848127100  

  H           4.5242828686     -1.7325809721      1.3427737321  

  H           3.2391845936     -0.9628578559      2.3409223435  

  H           3.9498700767     -2.5349433482      2.8621995618  

  C           3.1660911218     -3.9426530479      0.6809028525  

  H           4.0042396788     -3.7237060161      0.0026130677  

  H           3.5203404772     -4.5655843302      1.5299193078  

  H           2.3840562932     -4.4996630335      0.1420974754  

  C           1.4170927603     -2.8950579239      2.0564476800  

  H           1.7154437779     -3.5008663634      2.9384894234  

  H           1.0035583879     -1.9337986964      2.3971704086  
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  H           0.6450646941     -3.4415785453      1.4985701130  

 

Figure 9e: 

  C          -0.6584098148     -1.0120719894     -1.3910233240  

  C          -0.8882638310      0.3664149890     -1.1587298153  

  C          -2.2095937152      0.7545369493     -0.8106196279  

  C          -3.2401260846     -0.1954200577     -0.7080269563  

  C          -2.9743556117     -1.5525599513     -0.9525133457  

  C          -1.6656593708     -2.0047890499     -1.2905068746  

  H          -2.4215507548      1.8137001137     -0.6292614002  

  H          -4.2538896654      0.1248512535     -0.4458410577  

  H          -3.7831441308     -2.2892580179     -0.9028067361  

  C          -1.4662801069     -3.4761982341     -1.5994763980  

  H          -2.3761459172     -3.8831960492     -2.0771540291  

  H          -0.6226082428     -3.6277402363     -2.2984818106  

  C           0.2081128410      1.4168382528     -1.2976257415  

  H           0.0975766775      1.9925057079     -2.2379122897  

  H           1.2044338044      0.9386763846     -1.3411072779  

  P          -0.9636253241     -4.6817927729     -0.1101161930  

  P           0.2873323555      2.6566688988      0.2078104040  

  C          -4.5906397810     -5.0388081945      2.9169070345  

  C          -4.0895194871     -6.1936378726      2.2835524975  

  C          -3.0589349680     -6.0887554581      1.3265399184  



 198

  C          -2.5091130079     -4.8266671204      0.9929149357  

  C          -3.0088391033     -3.6728553370      1.6477645469  

  C          -4.0477196507     -3.7787449752      2.5939573330  

  H          -5.3878395438     -5.1209290830      3.6629472902  

  H          -4.4973784555     -7.1794007195      2.5332506904  

  H          -2.6785261532     -6.9946540993      0.8466446409  

  H          -2.5823802145     -2.6877477948      1.4339038520  

  H          -4.4225397532     -2.8759170847      3.0884908032  

  C          -0.9379475769     -8.7540067350     -2.5412762249  

  C           0.2020787004     -8.3286789265     -1.8253326370  

  C           0.1642991639     -7.1149143996     -1.1011353556  

  C          -1.0116396043     -6.3173621186     -1.0851302248  

  C          -2.1528986943     -6.7536878853     -1.8046332033  

  C          -2.1162013937     -7.9657501890     -2.5280601866  

  H          -0.9110509019     -9.6948314144     -3.1054149431  

  H           1.1185762816     -8.9369085927     -1.8331479346  

  H           1.0509441210     -6.7920554303     -0.5410895869  

  H          -3.0780452184     -6.1587153832     -1.7914372977  

  H          -3.0050388409     -8.2947052343     -3.0804154052  

  C          -2.2117556692      6.4888497856     -1.0413762004  

  C          -1.5075821743      6.4208969094      0.1833487873  

  C          -0.7647971587      5.2681677106      0.5073900783  

  C          -0.7034339602      4.1697757375     -0.3926838236  
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  C          -1.4109198836      4.2451748348     -1.6156431317  

  C          -2.1632271459      5.3992781976     -1.9365012868  

  H          -2.7972838031      7.3816752966     -1.2906056899  

  H          -1.5437801707      7.2612244601      0.8880342022  

  H          -0.2330116415      5.2217611013      1.4675106666  

  H          -1.3909139896      3.4132562561     -2.3308511192  

  H          -2.7078666447      5.4410234694     -2.8881254936  

  C           4.7580881659      4.2061679792     -0.1244144898  

  C           4.3766266203      3.2780388657      0.8660187677  

  C           3.0374274553      2.8369847840      0.9407413410  

  C           2.0712787479      3.3105819833      0.0193643880  

  C           2.4605285059      4.2483895426     -0.9644287776  

  C           3.7975743066      4.6934789985     -1.0361713968  

  H           5.7957403284      4.5551716688     -0.1807503316  

  H           5.1144410672      2.9070301446      1.5856566372  

  H           2.7381310644      2.1416420042      1.7343362352  

  H           1.7195026821      4.6390865503     -1.6698256710  

  H           4.0883667149      5.4213028295     -1.8021842013  

  Pd          1.0589469942     -1.4644147440     -2.1208730467  

  Cl          3.3246423468     -1.9409657604     -3.3132769568  

  N           1.9899801633     -1.7412125529     -0.1045009554  

  C           3.1503919807     -0.7834675724     -0.0613986831  

  H           3.7535182262     -0.9173327410     -0.9706829586  
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  H           2.7809451193      0.2516739025     -0.0046673458  

  H           3.7640473749     -0.9921299819      0.8380152390  

  C           2.5194383994     -3.1541609635     -0.1274448842  

  H           3.1320155120     -3.2900059957     -1.0308580934  

  H           3.1388127604     -3.3249337610      0.7767308435  

  H           1.6727968369     -3.8559173276     -0.1208240745  

  C           1.1205633486     -1.5499797141      1.1039290578  

  H           1.7259709135     -1.7050963914      2.0217580633  

  H           0.7018869595     -0.5323159767      1.1135696446  

  H           0.3077557590     -2.2871793889      1.0815458608  

 

Figure 9f: 

  C            0.0905360263     -1.0055609575     -1.6998211445  

  C           -0.4197644953      0.3123982371     -1.5519618439  

  C           -1.7919566936      0.5339508057     -1.8421641926  

  C           -2.6195320653     -0.5173669256     -2.2731042252  

  C           -2.0886841222     -1.8104504743     -2.4323512318  

  C           -0.7238842605     -2.0798654253     -2.1530227969  

  H           -2.1992935727      1.5455582853     -1.7360078043  

  H           -3.6762076100     -0.3297334959     -2.4928667848  

  H           -2.7310089115     -2.6249565687     -2.7867340071  

  C          -0.1845901199     -3.5048580715     -2.2529667344  

  H           0.9194633136     -3.5055826238     -2.2884502820  
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  H          -0.4836408757     -4.0902204219     -1.3626742634  

  C           0.4592672302      1.4838736123     -1.1451827297  

  H           0.4080349827      2.3047204737     -1.8845759828  

  H           1.5109115247      1.1530126261     -1.0795382124  

  P          -0.8582128895     -4.5509536354     -3.7695183402  

  P           0.0893382619      2.2228022042      0.6290757702  

  C           2.8885378777     -4.9463167567     -6.6405884282  

  C           1.6810567819     -4.3731537495     -7.0884792817  

  C           0.5811595714     -4.2669580798     -6.2101350949  

  C          0.6837217714     -4.7235747813     -4.8742263791  

  C           1.9013570686     -5.2962181045     -4.4327126803  

  C           2.9967786694     -5.4118518065     -5.3123769353  

  H           3.7412656292     -5.0349348864     -7.3226388911  

  H           1.5911776627     -4.0126510158     -8.1192875881  

  H          -0.3605576662     -3.8321361087     -6.5648522110  

  H           1.9899284352     -5.6655828550     -3.4058351272  

  H           3.9314287584     -5.8643224476     -4.9631957790  

  C          -1.3913653135     -8.8502313692     -1.8187801955  

  C          -1.9201289432     -7.7012752278     -1.1937857162  

  C          -1.7159744267     -6.4277020383     -1.7626013554  

  C          -0.9672264787     -6.2785912888     -2.9581239726  

  C          -0.4507861265     -7.4390915494     -3.5836563016  

  C          -0.6614329606     -8.7145330364     -3.0175619693  
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  H          -1.5516298829     -9.8404671011     -1.3785077718  

  H          -2.4959271959     -7.7930447626     -0.2653154895  

  H          -2.1631999005     -5.5540929929     -1.2724999984  

  H           0.1204356171     -7.3532491968     -4.5138261073  

  H          -0.2501309047     -9.6007760506     -3.5144339706  

  C          -3.5299971869      5.2253162613      0.0814756732  

  C          -3.3699582647      4.4722302998      1.2631123259  

  C          -2.2884382272      3.5741603598      1.3834986818  

  C          -1.3539033354      3.4274843428      0.3294483711  

  C          -1.5174173226      4.1943036986     -0.8497401964  

  C          -2.6045864982      5.0838665249     -0.9755770882  

  H          -4.3714245387      5.9203096710     -0.0155315149  

  H          -4.0841140310      4.5791134714      2.0883090003  

  H          -2.1710847354      2.9814316478      2.2993974767  

  H          -0.7977444907      4.1117866868     -1.6735317489  

  H          -2.7246946060      5.6696363317     -1.8945056620  

  C           3.7980223803      5.1595338047      1.1188993486  

  C           3.9864416398      3.7749964834      0.9269369673  

  C           2.8744075633      2.9256034276      0.7569869552  

  C           1.5558279465      3.4460607241      0.7612848653  

  C           1.3787190798      4.8367129599      0.9529845774  

  C           2.4909248255      5.6856282498      1.1358030269  

  H           4.6608245646      5.8191428510      1.2584490463  
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  H           4.9981662780      3.3577746715      0.9120239034  

  H           3.0417845847      1.8501125491      0.6308554330  

  H           0.3715905717      5.2632260979      0.9614500317  

  H           2.3330013606      6.7590023854      1.2873684959  

  Pd          1.9459176804     -1.4028306370     -1.2389688252  

  Cl          4.4083955856     -2.1807308783     -0.7060149781  

  N           1.3347685505     -2.0617122459      0.8288820038  

  C           2.1928988402     -1.2532249388      1.7634569302  

  H           3.2448065635     -1.3785900312      1.4716024489  

  H           1.9007650779     -0.1933476860      1.6928796670  

  H           2.0410956358     -1.5970325600      2.8092576713  

  C           1.6991996514     -3.5144806641      0.9554011271  

  H           2.7533687584     -3.6385111440      0.6692276982  

  H           1.5434267015     -3.8547059224      2.0007626737  

  H           1.0620921905     -4.1115562050      0.2875529894  

  C          -0.1056528466     -1.8748300303      1.2154879761  

  H          -0.2619422063     -2.2278902003      2.2565711484  

  H          -0.3676730900     -0.8085295396      1.1477802731  

  H          -0.7533836184     -2.4489761358      0.5387007633  

  N           2.6186716811     -0.7142020942     -3.2625993430  

  C           3.6265531249      0.3723808466     -2.9845313479  

  H           4.3581920586     -0.0052237132     -2.2562729178  

  H           4.1458494568      0.6587218199     -3.9237461158  
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  H           3.1077868122      1.2559064071     -2.5826267925  

  C           1.5915783543     -0.1948791731     -4.2254597120  

  H           1.0711771313      0.6700734860     -3.7923248787  

  H           2.0895059195      0.1154753087     -5.1681477290  

  H           0.8575546851     -0.9841108149     -4.4427324882  

  C           3.3154469763     -1.8889710931     -3.8918220541  

  H           3.8105045801     -1.5698286620     -4.8332990087  

  H           4.0632242928     -2.2754755275     -3.1867498239  

  H           2.5771597877     -2.6721340755     -4.1165475357  

 

Figure 10b: 

C          -3.8606025642      4.0655574811      3.1879171373  

C          -3.0675179066      3.9954922288      2.0160572903  

C          -3.2824915498      2.9937682740      1.0374039603  

C          -4.2961814558      2.0339121061      1.2655711625  

C          -5.0813187487      2.0826598048      2.4269844142  

C          -4.8642081211      3.0871709020      3.3816416776  

Pd         -1.5981291090      5.2644286651      1.7747363266  

H          -4.4562803749      1.2430882165      0.5225617329  

H          -5.8530452470      1.3239074580      2.5969405201  

H          -5.4685413311      3.1200634533      4.2963150886  

C          -3.6669576656      5.1428569405      4.2213093528  

H          -4.1079667904      6.1094835718      3.9273454980  
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H          -4.0296280813      4.8546283569      5.2200211821  

C          -2.4662762618      2.9250423651     -0.2260608732  

H          -2.7709934850      3.6676435636     -0.9813824066  

H          -2.4494893788      1.9199623605     -0.6751308188  

S          -0.6683683269      3.3949997181      0.2937456792  

S          -1.7613055159      5.4347115920      4.3244112819  

C          -1.0264832529      9.3977369979      6.6438034210  

C          -1.1542509488      9.4328458129      5.2430936890  

C          -1.4106552995      8.2512538595      4.5228530765  

C          -1.5409704039      7.0428549357      5.2266956393  

C          -1.4032874382      6.9896243994      6.6268610337  

C          -1.1496610003      8.1778756377      7.3342609514  

H          -0.8171117630     10.3197867267      7.1982891737  

H          -1.0432053545     10.3800913512      4.7031375707  

H          -1.4629697150      8.2592974231      3.4296510339  

H          -1.4750984941      6.0329987570      7.1568146545  

H          -1.0375358363      8.1445083936      8.4241542000  

C           1.7901634296      4.1172294803     -3.5884506907 

 

Figure 10c: 

  C          -2.2087376257      9.0060827825      4.5171749623  

  C          -1.9683975861      8.0581899428      3.4866687611  

  C          -2.6503498636      8.1028170096      2.2524869930  
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  C          -3.5934353791      9.1488935525      2.0838418150  

  C          -3.8382943644     10.1065350348      3.0709190444  

  C          -3.1400721217     10.0400750076      4.2825500760  

  Pd         -0.5617807627      6.7786516812      3.8124519870  

  H          -4.1205913527      9.2023803617      1.1235890151  

  H          -4.5637055767     10.9081778351      2.8923284597  

  H          -3.3045330909     10.7908390967      5.0655669567  

  C          -1.5372232029      8.9408420281      5.8562423632  

  H          -1.4992523025      9.9136254424      6.3708249405  

  H          -1.9954764201      8.1897256571      6.5211858249  

  C          -2.5068357361      7.0736440637      1.1476870487  

  H          -3.3761551716      6.3955855143      1.1301016944  

  H          -1.6079937075      6.4596409629      1.2684046321  

  S          -2.4231789327      7.8301868239     -0.6158066414  

  S           0.2678491647      8.3515782360      5.5738731883  

  C           1.1382478996      5.8709895182      9.4145168833  

  C          -0.0401882920      5.6194095056      8.6877008957  

  C          -0.3154405015      6.3462307025      7.5173684769  

  C           0.5911696832      7.3334864399      7.0952434250  

  C           1.7727388502      7.5961553963      7.8093976728  

  C           2.0428546611      6.8523375927      8.9728721367  

  H           1.3499709809      5.2996732574     10.3258587867  

  H          -0.7456526003      4.8509034142      9.0238526452  
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  H          -1.2186821580      6.1294512243      6.9353655827  

  H           2.4655187925      8.3751822034      7.4726460825  

  H           2.9601412754      7.0516017103      9.5389973678  

  C          -5.8128465998      5.8061181569     -3.0910797165  

  C          -4.5015781639      5.8935035899     -3.5912449239  

  C          -3.4814751454      6.4676388015     -2.8120236777  

  C          -3.7798198651      6.9658394996     -1.5293919023  

  C          -5.0939756630      6.8963945073     -1.0285822642  

  C          -6.1032514462      6.3040467754     -1.8075921551  

  H          -6.6058063746      5.3540361466     -3.6982612423  

  H          -4.2626623919      5.5043039643     -4.5885401773  

  H          -2.4552629235      6.5162544180     -3.1940994563  

  H          -5.3403664682      7.3058045078     -0.0418553767  

  H          -7.1253792712      6.2509463545     -1.4130499149  

  Cl         -1.4155396936      4.6250678966      2.9485765001  

 

Figure 10d: 

  C          -2.7288883663      7.5999481450      4.8107769736  

  C          -2.1371416982      7.1585849399      3.6017553457  

  C          -2.2380595906      7.9196914079      2.4166794951  

  C          -3.0007813044      9.1073810764      2.4582459124  

  C          -3.6196004326      9.5428535037      3.6380175792  

  C          -3.4699536295      8.8018190743      4.8167784281  
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  Pd         -1.0191089219      5.5540362786      3.6848582278  

  H          -3.0910772300      9.7013126628      1.5406158372  

  H          -4.2004373994     10.4728803843      3.6403194807  

  H          -3.9171537253      9.1526700110      5.7560523826  

  C          -2.5384723179      6.8340688864      6.0867296384  

  H          -2.6874887029      7.4400190956      6.9949687829  

  H          -3.1644768012      5.9260127195      6.1572504862  

  C          -1.5551278114      7.4498948772      1.1380329672  

  H          -2.0041018972      6.5094770209      0.7780449167  

  H          -0.4857353681      7.2372554989      1.3188310940  

  S          -1.4866232608      8.6590212919     -0.3133280210  

  S          -0.7572538191      6.0932923590      6.1466116228  

  C           2.0704725236      9.6337290008      7.1756528456  

  C           1.6526050089      9.4575596729      5.8444051200  

  C           0.7791566305      8.4078250966      5.5114742944  

  C           0.3264020704      7.5475542319      6.5253300466  

  C           0.7415604034      7.7085235568      7.8595123619  

  C           1.6157307071      8.7614792555      8.1804717881  

  H           2.7588433172     10.4487559749      7.4288530340  

  H           2.0117877917     10.1330766955      5.0587999253  

  H           0.4544017266      8.2541020555      4.4769428289  

  H           0.3887752653      7.0204029450      8.6358883802  

  H           1.9442723849      8.8939732778      9.2181780678  
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  C          -5.5435671288      8.5290855790     -2.5919002536  

  C          -4.4138731620      9.1790737409     -3.1221312070  

  C          -3.2032563518      9.1912696207     -2.4123508636  

  C          -3.1196157740      8.5459038115     -1.1604637928  

  C          -4.2419011057      7.8922426853     -0.6229072065  

  C          -5.4504591334      7.8901140786     -1.3447802578  

  H          -6.4884611336      8.5217426449     -3.1477170767  

  H          -4.4698381656      9.6792746951     -4.0968650306  

  H          -2.3248424254      9.6944042996     -2.8355637412  

  H          -4.1887827491      7.3922437501      0.3494046539  

  H          -6.3254715596      7.3829594870     -0.9205743743  

  Cl         -2.4233333632      4.3941410859      1.9702254651  

  N           0.4314200326      3.7074019517      3.7605467086  

  C           1.5775272358      3.9275276542      4.6699890038  

  H           1.2159839330      4.0313183170      5.7062687212  

  H           2.1109990013      4.8495090659      4.3815492018  

  H           2.2943861954      3.0771192967      4.6301607680  

  C           0.9342728909      3.5194153335      2.3805393518  

  H           0.0797428836      3.3726885170      1.7014932129  

  H           1.6154540102      2.6416528322      2.3159963569  

  H           1.4906526471      4.4205812675      2.0681012564  

  C          -0.3303063134      2.5126671911      4.1878292557  

  H          -0.6951770944      2.6590847593      5.2192025871  
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  H           0.3000709646      1.5961276628      4.1603725621  

  H          -1.1949976578      2.3831297594      3.5175221037  

  

Figure 10e: 

  C           -1.3037735766      9.1540532907      2.1401083953  

  C           -2.0346001994      7.9724604322      2.3803185366  

  C           -3.4374090523      7.8911892261      2.2453970568  

  C           -4.1023999702      9.0260863691      1.7214475666  

  C           -3.4012257414     10.1944689565      1.3932299839  

  C           -2.0206100961     10.2611594133      1.6214203361  

  Pd          -1.0999686483      6.3985859409      2.9256272998  

  H           -5.1909890743      8.9797383441      1.5834340248  

  H           -3.9352689536     11.0616263101      0.9871968875  

  H          -1.4686505518     11.1866051845      1.4119873400  

  C           0.1602022694      9.3345736078      2.4696912901  

  H           0.3237101121     10.3032551329      2.9710436117  

  H           0.5382662920      8.5196868769      3.1036473622  

  C          -4.2510468768      6.7059179698      2.6921716519  

  H          -3.7082871687      5.7549956293      2.5967695244  

  H          -5.2121069136      6.6400450000      2.1573407802  

  S          -4.7059189530      6.8384283085      4.5767781281  

  S           1.2088513642      9.4078962460      0.8628152275  

  C           5.0367931546     11.8594990607      1.8808282002  
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  C           4.5224062051     11.8058495083      0.5737404873  

  C           3.3519661629     11.0797418194      0.2998954298  

  C           2.6979570862     10.3861928110      1.3383168834  

  C           3.2124135937     10.4253430855      2.6466247164  

  C           4.3763916599     11.1720571353      2.9116930538  

  H           5.9464744102     12.4337009834      2.0930334268  

  H           5.0256144644     12.3418093322     -0.2388072145  

  H           2.9424687403     11.0605457524     -0.7160685920  

  H           2.7291494569      9.8738051228      3.4588386489  

  H           4.7701981050     11.2044554079      3.9335510459  

  C          -9.2845840362      6.1606736217      5.0606886835  

  C          -8.3586201704      5.3575504801      5.7465644063  

  C          -6.9800494234      5.5329230993      5.5358006559  

  C          -6.5253735605      6.5332136218      4.6539004648  

  C          -7.4488009652      7.3482293686      3.9732182662  

  C          -8.8260416863      7.1489944289      4.1684130798  

  H         -10.3594646885      6.0231773871      5.2253925105  

  H          -8.7051436652      4.5855737472      6.4455193613  

  H          -6.2570751782      4.9005403119      6.0624825769  

  H          -7.0992612843      8.1495139427      3.3113206720  

  H          -9.5421535610      7.7868206716      3.6385798852  

  N          -0.9454409221      5.3876352876      0.9695506078  

  C          -2.0972958992      4.4879011714      0.7058213089  
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  H          -2.2747245665      3.8423858490      1.5818140727  

  H          -1.8915098357      3.8434192317     -0.1753600883  

  H          -2.9964446651      5.0893954520      0.4994653973  

  C           0.2694688134      4.5736229533      1.2460740633  

  H           1.1357848405      5.2387143728      1.3860598548  

  H           0.4824692901      3.8788399518      0.4064049374  

  H           0.1168136978      3.9727364765      2.1601052065  

  C          -0.7148389703      6.2591598987     -0.2103875843  

  H           0.1594399340      6.9026406775     -0.0275247347  

  H          -1.6028030889      6.8896756078     -0.3759603562  

  H          -0.5285244066      5.6449578158     -1.1186519449  

  Cl         -0.9533809750      7.2443293723      5.1969766779  

 

Figure 10f: 

C           9.0071685921      3.6139669067      3.6853289169  

C           8.3293833954      4.8072617420      3.9712222362  

C           6.9571230818      4.9579142224      3.6611977479  

C           6.2778167357      3.8663940503      3.0705021469  

C           6.9554250284      2.6712827225      2.7317068171  

C           8.3274760565      2.5602471368      3.0586103566  

H          10.0706681450      3.5133189739      3.9322356563  

H           8.8630012581      5.6464058506      4.4364724607  

H           8.8595557472      1.6335185015      2.8066599242  
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Pd          4.4013620451      4.0426971606      2.6221381423  

Cl          1.8417555661      4.2955026169      1.9944199788  

N           3.8145677873      3.2314439144      4.6194205452  

C           2.9627183851      4.2809827060      5.2527507298  

H           2.5071482436      3.8849923457      6.1858710780  

H           3.5936248448      5.1500591164      5.5026665815  

H           2.1731320833      4.5720982248      4.5446829569  

C           2.9839692429      2.0249342054      4.3305971269  

H           3.6324833959      1.2381201799      3.9103368769  

H           2.5240354158      1.6491505417      5.2698417355  

H           2.1968978081      2.2984876142      3.6125731600  

C           4.8775352845      2.8465673199      5.5887734259  

H           5.4922541301      3.7240653188      5.8393702474  

H           4.4078485495      2.4580169214      6.5177712129  

H           5.5159320066      2.0621054293      5.1553359115  

N           4.9708210536      4.8230341036      0.5972497597  

C           4.3430989130      6.1733135795      0.4893158626  

H           4.4563523141      6.5635626986     -0.5444057686  

H           3.2766379732      6.0886460469      0.7456638609  

H           4.8424254723      6.8650376771      1.1869507280  

C           4.3242835217      3.9040699976     -0.3859462498  

H           4.8100633049      2.9163949981     -0.3344272655  

H           3.2576886112      3.8084740261     -0.1345674858  
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H           4.4390164113      4.3059112675     -1.4152600509  

C           6.4122645432      4.9478806581      0.2431621211  

H           6.9128078414      5.6337780192      0.9429459893  

H           6.8987321172      3.9626878381      0.2976988998  

H           6.5103408358      5.3444466376     -0.7888329330  

C           6.2855537613      1.5493403259      1.9718163918  

H           5.2469047470      1.8010818277      1.7077210884  

H           6.8517988128      1.2641989682      1.0697100455  

S           6.2100362841     -0.0588755734      3.0521144139  

C           4.7559210535     -3.4042947894      0.1541622690  

C           6.1285178440     -3.2394627055      0.4111557077  

C           6.5705843890     -2.2040953868      1.2543506073  

C           5.6309312026     -1.3377202862      1.8439813346  

C           4.2555397190     -1.4999703474      1.5918915153  

C           3.8214439897     -2.5330469960      0.7424537541  

H           4.4130153264     -4.2149252508     -0.4998250509  

H           6.8595721876     -3.9204145996     -0.0406133300  

H           7.6384591705     -2.0762300228      1.4643644320  

H           3.5257756261     -0.8345812968      2.0662048645  

H           2.7493100846     -2.6621250306      0.5508613502  

C           6.2912153861      6.2909574981      3.9168694088  

H           6.8686435576      7.1306830864      3.4965214778  

H           5.2584774814      6.3063095461      3.5356195767  
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S           6.2072314891      6.6336297950      5.8251050838  

C           4.5747254675     10.9768251113      6.2637304378  

C           3.8055510177     10.0103324201      5.5907540281  

C           4.2935848173      8.7024399856      5.4265164719  

C           5.5659853732      8.3657758601      5.9262821993  

C           6.3453746360      9.3326360284      6.5898474543  

C           5.8421116962     10.6342900249      6.7661438122  

H           4.1829565777     11.9919417435      6.3989190177  

H           2.8123227359     10.2689729771      5.2046258853  

H           3.6794815685      7.9442038528      4.9286455087  

H           7.3364349551      9.0649229058      6.9735934521  

H           6.4487194185     11.3813366185      7.2921567516  
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CHAPTER ISupplemental Figure 1.  Pd K edge spectra of standard compounds 
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CHAPTER IISupplemental Figure 2.  k3-weighted Fourier transform of EXAFS for 
standard compounds 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IIISupplemental Figure 3.  Pd K edge spectra of SCS pincer compounds 
 

 

 

 

 

 

 

 

 

 

24.3 24.4 24.5 24.6

N
or

m
al

iz
ed

 a
bs

or
pt

io
n

E (keV)

Poly-O-SCS (in air)

Poly-O-SCS (in DMF)

SBA-O-SCS (in air)

R (Å) 

0.000

0.004

0.008

0.012

0.016

0.00 1.00 2.00 3.00 4.00

FT
 (k

2 χ)



 219

 

Supplemental Figure 4.  k2-weighted Fourier transform of EXAFS for immobilized SCS 
pincer Pd measured in air at RT   (  — : Poly-O-SCS;   …  :  SBA-O-SCS  )-O- 
 

 

 

 

 

 

 

 

 

Supplemental Figure 5.  k2-weighted Fourier transform of EXAFS for polymer 

immobilized SCS pincer Pd compound   (  — : in air at RT;   …  : during Heck reaction 

at 120oC ) 
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Supplemental Figure 6.  Pd K edge spectrum of polymer immobilized SCS pincer 
compound during Heck reaction (circles), linear combination XANES (thick solid line) 
and single component XANES spectra (thin solid lines) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 7.  Pd K edge k2 -weighted EXAFS and Fourier transform 
(magnitude and imaginary part) for polymer immobilized SCS pincer Pd during Heck 
reaction (         experimental;     fitted) 
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Table 1.  Structural parameters assigned to standard compounds. 

 

 

 

 

 

 

 

 

 

Table 2.  Parameters used for calibration of theoretical FEFF references derived 

from fits to standard compounds. 

 

 

 

 

 

Standard Atom pair CN R(Å) 
Pd foil Pd-Pd 12 2.75 
PdI2 Pd-I 4 2.61 
PdCl2 Pd-Cl 4 2.31 
PdS Pd-S 4 2.33 
Pd(NH3)4Cl2 Pd-N 4 2.05 
 

Atom pair σ2 (Å2) S0
2  Vr (eV) Vi (eV) ∆k (Å-1) ∆R (Å) 

Pd-Pd 0.00550 1.00 -5.5 3.0 3.0-15.0 1.5-3.2 
Pd-I 0.00385 0.92 2.5 3.0 3.0-15.0 1.5-3.0 
Pd-Cl 0.00303 0.90 2.7 3.0 2.5-14.0 1.5-2.8 
Pd-S 0.00337 0.87 1.5 3.0 2.5-12.7 1.5-3.0 
Pd-N 0.00008 0.90 0.8 3.0 2.5-12.8 1.0-2.5 
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Table 3.  Fitting results from linear combination of XANES  (∆E = 24.20-24.50 keV ). 

 

Pincer 

Compound 

Measurement 

condition 

SCS Pincer Pd 

(%) 

Metallic Pd 

(%) 

PdI2 

(%) 

Residual factor 

(%) 

Poly-O-SCS In DMF at RT 100 0 --- 0.31 

SBA-O-SCS In air at RT 93.3 6.5 (0.8) --- 0.36 

Poly-O-SCS During Heck reaction 

at 393 K 

85.5 0 14.5 (0.6) 0.41 

SBA-O-SCS During Heck reaction 

at 393 K 

81.7 2.4 (0.3) 15.7 (0.6) 0.44 

* The value in parentheses is the estimated coordination number for Pd-Pd or Pd-I. 

 

Table 4.  Pd K edge EXAFS curve-fitting results for polymer and SBA immobilized SCS 

pincer compounds. 

 

 

 

 

 

 

 

 

Catalyst Measurement 
condition 

Scatterer CN R (Å) σ2(10 -3Å) ∆E0 (eV) 

S 2.1 2.29 1.4 -0.45 
Cl 1.0 2.37 5.0 4.53 
C 1.1 1.99 4.0 0.56 

 
SBA-O-SCS 

 
In air at RT 

Pd 1.4 2.71 5.4 -4.73 
S 2.3 2.29 2.1 -3.17 
Cl 1.1 2.40 1.0 6.27 

 
Poly-O-SCS 

 
In air at RT 

C 1.2 1.99 3.7 1.73 
S 2.0 2.28 1.9 2.84 
Cl 1.1 2.39 4.0 6.99 
C 1.1 1.98 1.0 2.32 

 
Poly-O-SCS 

 
During Heck 
reaction at 393 K 

I 1.2 2.67 3.6 -1.92 
R-space fit, k2 weighting, ∆k = 2.5-12.0 Å-1, ∆R = 0.8 – 3.2 Å 
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