

Advanced Continuous Descent Approach Activities at Nottingham East Midlands Airport, UK

Dr. Tom G. Reynolds University of Cambridge, UK

Prof. John-Paul Clarke and Liling Ren Georgia Institute of Technology/MIT

CDA Workshop, Georgia Institute of Technology 6-7 September 2006

The Silent Aircraft Initiative (SAI)

Research project of

- Funded by **dti** Department for Trade and Industry
- Goal: Develop concept aircraft designs and procedures to reduce noise to below ambient levels at the perimeter of a typical urban airport
- 2025 timeframe

The Silent Aircraft Initiative (SAI)

- Five internal SAI teams:
 - Airframe
 - □ Engine
 - Integration
 - Operations
 - □ **U**K economy

Over 30 researchers & over 20 partners, including:

- □ Academia (Cranfield, GATech)
- Government (CAA, DfT, NASA)
- Manufacturers (Boeing, Rolls Royce, ITP, Messier Dowty)
- Operators (Airports, Airlines, ATC)
- □ Suppliers (B&K, Met Office, Wyle Labs)

Operations Team Goals

- Support development of Silent Aircraft
 - Operations-driven design requirements
- Simulation and analysis tool development
 - Flyability, Noise, Fuel burn, Emissions, Capacity
- Develop & analyze noise abatement approach procedures
 - Silent Aircraft (long term)
 - Steep, slow, displaced threshold, delayed gear deployment
 - Existing aircraft (short term)

Location for Short Term Operations Activities

- Assessment of numerous UK airports...
 - Gatwick
 - Heathrow
 - Luton
 - Manchester

- Nottingham East Midlands Airport (NEMA)
- Newcastle
- Stansted

- …against key criteria
 - □ Airspace/ATC context
 - Other noise abatement activities
 - Potential benefits (local population, traffic, etc.)
 - Potential problems
 - Political context
 - Regulator advice
- Collaboration with NEMA resulted

NEMA Facts & Figures

- 11th biggest regional airport in UK
- Passenger flights to over 100 destinations in 2006
 - Catchment of 10.6 million people within a 90 min drive
- Largest "pure freight" airport in UK
 - □ UK center for Royal Mail, DHL, UPS
 - 89% mainland England & Wales within 4 hrs trucking time
- First UK airport to achieve ISO14001 accreditation (international environment management standard)

Source: NEMA Draft Master Plan, Feb. 2006

6

NEMA ATC Context

NEMA Procedure Development/Trial Objectives

Develop approach procedures for reduced noise and fuel burn across range of aircraft types combining:

- Continuous Descent Approach (CDA)
 - Keep aircraft higher and lower thrust for longer
- Precision Area Navigation (P-RNAV)
 - □ Flight Management System control
- Low Power/Low Drag (LP/LD)
 - Clean aerodynamic configuration

Flight trial procedures to examine:

- Achievement of LP/LD P-RNAV CDAs
- Environmental impacts (Noise, Fuel burn & Emissions)
- Operational impacts (Controller, Pilot, Aircraft)

Strong Collaboration

Multiple Aircraft Types & Technologies

B757-200F, Honeywell Legacy FMS

MD11F, Honeywell Pegasus FMS

B767-300F, Honeywell Pegasus FMS

A319, Thales/Honeywell Pegasus FMS

"NEMAX" Trial Procedures

NEMAX1A Detail

- Lateral profile for consultation zone compliance and low population exposure
- Vertical constraints for airspace compliance & assist CDA vertical profile
- Speed constraints to assist low power/low drag

Vertical Profile: Controlled Airspace Interactions

Vertical Profiles: Airspace Challenges

MIT Sim Results – NEMAX1A – Zero Wind

©2006 CMI - Silent Aircraft Initiative

7 September, 2006

Airline Simulator Studies

- Performed well with largely idle thrust and no speedbrakes
- Minor tweaks resulted

- A320 (easyJet) & 767 (UPS)
- Flew both procedures under variety of wind and pressure environments

NEMAX Flight Trials

- Procedures published as AIP supplement March 2006
- Trials started May 2006, expected to continue for 6 mths
- Participation to 31 Aug: 67 flights

Operator	Type	NEMAX1A	NEMAX1B
PHL:	B757-200F	37	2
		19	7
ups	B767-300F	3	0
easyJet	A319	0*	0*

*Awaiting P-RNAV approval

- Data collection:
 - □ Radar data (lat/long/alt)
- □ FDR data (20 states inc. N1 & FF)
- □ Pilot/controller report forms
- □ Noise monitors (3 sites)

Flight Trial Ground Tracks

B752F NEMAX1A/Baseline Ground Tracks

B752F Actual Vertical Profiles

B752F Average Vertical Profiles

B752F/MD11F Actual Vertical Profiles

B752F/MD11F Average Vertical Profiles

B752F Average Speed Profiles

B752F/MD11 Average Speed Profiles

B752F Average N1 Profiles

B752F/MD11 Average N1 Profiles

NEMAX1A Noise Monitoring

Preliminary NMSim Analysis @ NXS11

NEMAX1A Fuel Burn

30

Preliminary Conclusions

- NEMA P-RNAV noise abatement approach procedures successfully developed & introduced
- Lateral path concentration as expected
- Vertical path keeps aircraft higher & reduces level flight
 - □ Performance dependent on aircraft type/equipage
- Overall impacts on noise, fuel burn & emissions ongoing but initial results look promising
 - □ Lateral concentration reduces no. of people exposed to noise
 - Higher altitudes should reduce noise impacts on ground
 - □ LP/LD and flight idle metrics need more data & analysis
- Capacity: up to 30% of traffic could use trial approach

Need for Definition of Advanced CDA

- Current UK industry standard criteria for CDA compliance:
 - "An arrival is classified as a CDA if it contains, at or below 6000 ft, no level flight OR one phase of level flight not longer than 2.5 nm"
 - □ Level flight = any flight segment with an altitude change of not more than 50 ft over 2 nm as measured in the NTK system
- Propose need for modified definition for advanced CDAs:
 - □ "An arrival is an *advanced CDA* if it contains, at or below *9000 ft*, no level flight OR one phase of level flight not longer than *1 nm*"

	Average level segments below 9000 ft	Current CDA definition compliance	Proposed new CDA definition compliance
B752F base	5.9 nm/flight	67%	8%
B752F trial	1.3 nm/flight	93%	60%
MD11F trial	0.8 nm/flight	100%	83%

Institute for Aviation and the Environment (IAE)

- New inter-disciplinary institute at University of Cambridge
 - □ Involving 7 depts/centres
- "Fosters a close alliance between academia, industry and government to facilitate the transfer of knowledge by aligning world-leading research with end-user needs"
- Aviation Integrated Modelling (AIM)
 - Integrate economics, technology and atmospheric science (on both local and global scales) into a single model system
- Opportunities for Meeting Envtl Challenges of Growth in Aviation (OMEGA)
 - □ Combine academic capability with knowledge exchange between academia, industry & policymakers to develop future strategies for sustainable aviation