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SUMMARY

Video has become one of the major media in our society, bringing considerable inter-

ests in the development of video analysis techniques for various applications. Temporal

Dynamics, which characterize how information changes along time, are the key compo-

nents for videos. However, it is still not clear how temporal dynamics benefit video tasks,

especially for the cross-domain case, which is close to real-world scenarios. Therefore, the

objective of this thesis is to effectively exploit temporal dynamics from videos to tackle

distributional discrepancy problems for video understanding.

To achieve this objective, firstly the benefits for exploiting temporal dynamics for

videos are investigated, by proposing Temporal Segment LSTM (TS-LSTM) and Inception-

style Temporal-ConvNet (Temporal-Inception) for general video understanding, and demon-

strating that temporal dynamics can help reduce temporal variations for cross-domain video

understanding. Since most previous work only evaluates the performance on small-scale

datasets with little domain discrepancy, two large-scale datasets for video domain adap-

tation, UCF-HMDBfull and Kinetics-Gameplay, are collected to facilitate cross-domain

video research, and Temporal Attentive Adversarial Adaptation Network (TA3N) is

proposed to simultaneously attend, align, and learn temporal dynamics across domains.

Finally, to utilize temporal dynamics from unlabeled videos for action segmentation, Self-

Supervised Temporal Domain Adaptation (SSTDA) is proposed to jointly align cross-

domain feature spaces embedded with local and global temporal dynamics by two self-

supervised auxiliary tasks, binary and sequential domain prediction, demonstrating the

usefulness of adapting to unlabeled videos across variations.

xiii



CHAPTER 1

INTRODUCTION

Video has become one of the major media in our society. The amount of videos is growing

rapidly with the recent increase in the availability of video recording devices (e.g. surveil-

lance cameras, mobile phones, etc.) and video sharing platforms (e.g. YouTube). There

are already more than one billion monthly active YouTube users and six billion hours of

videos are watched every month, which generates billions of views [1]. YouTube also be-

comes the world’s second-largest search engine in the world [2]. In our daily life, we watch

videos every day for many kinds of purposes, such as entertainment, communication, etc.

Therefore, there are more and more related products released nowadays, such as tablets,

TV, smart devices, etc. In addition to consumer products, video is also a critical component

for intelligent industrial development, such as transportation, health care, education, retail,

etc. All phenomena show our need for videos and this need motivates the development of

video processing and analysis techniques for various purposes.

Among all the tasks, Action Classification is the core technology with wide applica-

bility, including event detection, intelligent surveillance, sports video analysis, human-

computer interactions, etc. This is the task of determining the type of human actions

present in a given video, and the performance of video classification is positively corre-

lated to other related tasks [3]. Different from single-image classification, the temporal

correlations between image frames of a video provide additional motion information for

recognition. Since most video classification datasets include human actions, Video Classi-

fication also refers to the same task.

In addition to the classification task, Action Segmentation is another fundamental task

for video understanding. The goal of action segmentation is to simultaneously segment the

video by time and predict each segment with a corresponding action category. In another

1



“Making milk”

(a) Action Classification

background take cup spoon powder pour milk

(b) Action Segmentation

Figure 1.1: The overview of two main video tasks: (a) Classification and (b) Segmentation.

word, it is also a task of Temporal Segmentation in videos. While action classification has

shown great progress given the recent success of deep neural networks [4, 5, 6], temporally

locating and recognizing action segments in long untrimmed videos is still challenging.

The overview of the above two video tasks is illustrated in Figure 1.1. The output

of classification tasks for a single video is a single text label, such as Making milk in

Figure 1.1a. On the other hand, the output length of the segmentation task is the same

as the input length, and each frame has its own prediction, as shown in Figure 1.1b.

Video understanding is challenging due to the highly variable nature of human actions

in both spatial and temporal directions. The spatial variations imply the the reasons that

cause the difference in static information, such as illumination and viewpoint. The temporal

variations are closely related to movement or difference along the temporal direction, such

as motion velocity and direction. Under those variations, different actions may look similar,

and the same action may look differently, resulting in misunderstanding in videos. More

2



action start

add oiladd vinegar add pepperadd salt

mix dressing

peel cucumber

place cucumber into bowl

cut cucumbercut tomato place tomato into bowl

cut cheese place cheese into bowl cut lettuce place lettuce into bowl

mix ingredients

serve salad onto plate action end

(a)

(b)

Figure 1.2: A Making Salad example for intra-class variation.

specifically, there are two main challenges for video understanding: inter-class variation

and intra-class variation [7]. The problem of inter-class variations mainly comes from

the similarities existing in different action categories. For example, walking and jogging

contain similar motion patterns, which causes difficulty to distinguish classes from each

other, especially when the recently proposed datasets have more than a hundred classes [8,

9, 10]. On the other hand, for the same actions, different people may behave differently

in terms of styles of human motion, leading to the problem of intra-class variations. For

instance, given one recipe of “making salad”, different people have their own styles of

movements for both spatial and temporal directions even if following the same steps of

instruction. As shown in Figure 1.2, two different people are making the same salad in

video (a) and (b), respectively. Despite the same activity, there is a significant difference in

action labels along time. Moreover, videos in the same action can be captured from various

viewpoints, showing appearance variations in different views. Finally, the tasks for video

understanding are much more computationally demanding than image-based tasks since

each video contains hundreds of image frames that need to be processed individually.

3



Encouraged by the success of using Convolutional Neural Networks (ConvNets) on still

images, researchers have developed similar methods for action recognition [11, 12, 13, 14,

15, 16, 17, 18, 19, 5, 20, 21] for various video datasets [22, 23, 11, 24, 8, 9]. Most of the

recent methods were inspired by two-stream ConvNets proposed by Simonyan et al. [12],

which incorporate spatial and temporal information extracted from RGB and optical flow

images. These two image types are fed into two separate networks, and the prediction

scores from each of the streams are fused in the end. Another main research direction,

starting from C3D [14], is focusing on developing ConvNet architectures to effectively

extract spatio-temporal information from videos. Researchers in this direction aim to ex-

tend 2D ConvNets for videos with consideration of the trade-off between performance and

computational cost.

Action segmentation approaches can be factorized into extracting low-level features us-

ing ConvNets and applying high-level temporal models. Traditionally, the temporal mod-

els are mainly recurrent models [25, 26, 27]. However, the latent state at the time step t

is mainly determined by the data at t and hidden state and memory at t − 1, which lim-

its the capacity to learn long-range temporal dependencies. Moreover, recurrent models

are known for difficult to train [28]. Therefore, encouraged by the advances in speech

synthesis [29], recent approaches rely on temporal convolutions to capture long-range de-

pendencies across frames using a hierarchy of temporal convolutional filters [30, 31, 32,

33].

One of the key components that makes videos different from images is the Temporal

Information, which represents how information represents along the temporal direction.

Temporal information, which refers to the motion characteristics and temporal dynamics

for videos, is also one of the most critical factors that affect the performance of video anal-

ysis [3, 34, 7]. To exploit this critical component, several works have explored the strong

use of spatiotemporal information, typically by taking frame-level features and integrating

them using long short-term memory (LSTM) cells, temporal feature pooling [15, 16] and

4



Dataset A

Dataset B

Model A

Model B

Figure 1.3: An overview of Domain Adaptation.

temporal segments [17]. However, these works typically try individual methods with little

analysis of whether and how they can successfully use temporal information. Furthermore,

each individual work uses different networks for the baseline approach, with varied perfor-

mance depending on the training and testing procedure as well as the optical flow method

used. Therefore, it is unclear how much improvement resulted from different usage of

temporal information.

Another problem is that the majority of the performance gains come from the massive

amount of labeled data for fully-supervised learning, including action classification and

segmentation. One effective way to improve performance requires to exploit knowledge

from even larger-scale labeled data [18], aiming to include more data for training to reduce

the extent of inter- and intra-class variations. Since manually annotating data for the great

5



variety of applications and tasks is time-consuming and impractical, especially for video

data, it is important to develop methods capable of leveraging large-scale labeled datasets

to process unlabeled data in new domains. Unfortunately, the direct application of models

learned from source data to target tasks suffers from the distributional discrepancy, which is

also called dataset shift or domain shift [35, 36], causing that the models trained on source

labeled dataset do not generalize well to target datasets and tasks.

The term Domain means a group of data, including raw data or feature representations.

The data can be any kind of modality, such as images, videos, sound, text, etc. The learning

tasks play a major role to determine whether a group of data is within the same domain,

and the data share some characteristics in each defined domain. In most cases, each dataset

is regarded as a single domain since all the data in a dataset are collected under the same or

similar policies and protocols. There are even some datasets containing multiple domains

since there exist significant distributional discrepancy problems between training and test-

ing sets. Once a domain is defined, the domain shift simply indicates the differences across

domains. Let’s take Figure 1.3 as an example. In the dataset A (blue), if we want to clas-

sify two actions Basketball (upper) and Walk (lower), we can simply train a model (noted

as model A) to learn an effective discriminative classifier. However, this model is not guar-

anteed to work on another dataset, especially when the overall distribution is very different,

like dataset B (orange). And a model trained using dataset B may be far away from the first

one. This is a standard illustration for the domain shift problem.

The main reason to cause domain shift, which is also a distributional discrepancy prob-

lem, is that there exist various variations between domains. Learning a discriminative

model in the presence of dataset shift between training and testing distributions is known

as Domain Adaptation (DA) [37], which has been studied extensively in recent years [38],

especially after the rise of deep learning [39]. In this work, we focus on the harder unsu-

pervised DA problem, which requires training models that can generalize to target samples

without access to any target labels. While many DA approaches are able to diminish the
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Figure 1.4: An overview of Domain Adaptation for videos.

distribution gap between source and target domains while learning discriminative deep fea-

tures [40, 41, 42, 43, 44, 45, 46], most methods have been developed only for images and

not videos or actions. The domain shift problem in the temporal direction in videos is not

explicitly addressed using image-based DA methods, bringing the need for alignment for

embedded feature spaces along the temporal direction, as shown in Figure 1.4.

To investigate the domain shift problem in videos, ideally, we should select the datasets

that mainly suffer from intra-class variations. However, most datasets for classification

tasks are designed for investigating inter-class variations, which means most approaches

using these datasets focus on differentiating different classes. Some datasets claim that the

training and testing sets are divided according to spatio-temporal variations (e.g. UCF101 [23]),
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but the discrepancy problem is not significant enough so that the performance is already

saturated [18]. Thus, recently several cross-domain classification datasets are proposed,

focusing on the domain shift problem. However, unlike image-based DA works, which use

datasets such as Office [47], VisDA [36], etc., there do not exist well-organized datasets

to evaluate and benchmark the performance of DA algorithms for videos. The most com-

mon datasets are UCF-Olympic and UCF-HMDBsmall [48, 49, 50], which have only a few

overlapping categories between source and target domains. This introduces limited domain

discrepancy so that a deep ConvNet architecture can achieve nearly perfect performance

even without any DA method. In another word, the scales of those datasets are too small to

investigate domain shift problems in videos.

The goal of this work is to investigate the key factor, Temporal Dynamics, and how

it can benefit tackling distributional discrepancy problem for video understanding under

various conditions, including within- and cross-domain settings.

To achieve this goal, we first investigate the question: given the spatial and motion

features representations over time, what is the best way to exploit the temporal dynamics?

We thoroughly evaluate the design choices of the baseline two-stream ConvNet and two

proposed methods, TS-LSTM and Temporal-Inception. we clarify the contribution of

each decision and highlight their implication to fully exploit temporal dynamics without

manipulating its inputs. We show that both proposed methods can improve significantly

over baseline and achieve comparable state-of-the-art performance.

Secondly, in order to investigate the temporal domain shift problems, we propose two

cross-domain datasets for action classification: 1) UCF-HMDBfull: we collected 12 over-

lapping categories between UCF101 [23] and HMDB51 [22], which is around three times

larger than both the UCF-Olympic and UCF-HMDBsmall datasets. 2) Kinetics-Gameplay:

we collected from several currently popular video games with 30 overlapping categories

with Kinetics-600 [8, 9]. This dataset is much more challenging than UCF-HMDBfull due

to the significant domain shift between the distributions of virtual and real data.

8



With our proposed datasets, we investigate different DA integration methods for action

classification and show that: 1) aligning the features that encode temporal dynamics out-

performs aligning only spatial features. 2) to effectively align domains spatio-temporally,

which features to align is more important than what DA approaches to use. We also pro-

pose Temporal Attentive Adversarial Adaptation Network (TA3N) to explicitly attend

to the temporal dynamics by taking into account the domain distribution discrepancy. In

this way, the temporal dynamics which contribute more to the overall domain shift will be

focused on, leading to more effective temporal alignment. TA3N achieves state-of-the-art

performance on all four investigated video DA datasets.

Finally, different from most classification datasets, most action segmentation datasets

suffer from spatio-temporal intra-class variations of human actions across videos [7], es-

pecially when the training and validation splits are divided according to different people.

To address the variation problem, we propose to diminish the distributional discrepancy

caused by spatio-temporal variations by exploiting auxiliary unlabeled videos with the

same types of human activities performed by different people. More specifically, to ex-

tend the framework of the main video task for exploiting auxiliary data [51, 52], we re-

formulate our main task as an unsupervised DA problem with the transductive setting [37,

38], which aims to reduce the discrepancy between source and target domains without ac-

cess to the target labels. With the DA framework, we propose Self-Supervised Temporal

Domain Adaptation (SSTDA), containing two self-supervised auxiliary tasks: 1) binary

domain prediction, which predicts a single domain for each frame-level feature, and 2) se-

quential domain prediction, which predicts the permutation of domains for an untrimmed

video. Through adversarial training with both auxiliary tasks, SSTDA can jointly align

cross-domain feature spaces that embed local and global temporal dynamics, to address

the spatio-temporal variation problem for action segmentation, and outperforms the cur-

rent state-of-the-art methods on three popular datasets: GTEA [53], 50Salads [54], and

Breakfast [55].
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1.1 Contributions and Dissertation Organization

The contributions of this dissertation can be summarized as follows:

1. Chapter 3: We investigate and explore different ways to model the temporal dynam-

ics of activities with feature representations from image appearance and motion, and

propose two novel approaches: 1) Temporal Segment LSTM (TS-LSTM): We revisit

the use of LSTMs to fuse high-level spatial and temporal features to learn hidden

features across time, and show that directly using LSTM performed only similar to

naive temporal pooling methods, e.g. mean or max pooling, due to the limited of tem-

poral dynamics from feature representations obtained from deep ConvNet. We fur-

ther demonstrate that the integration of temporal pooling methods and LSTM yields

significantly better performance. 2) Inception-style Temporal-ConvNet (Temporal-

Inception): We propose to use stacked temporal convolution kernels to explore tem-

poral information at multiple scales with an Inception-style design. We show that by

properly exploiting the temporal information, Temporal-Inception can also achieve

comparable state-of-the-art performance even when taking feature vectors as inputs

(i.e. without using feature maps).

2. Chapter 4: We investigate the domain shift problem across videos under the classifi-

cation task. First, we organize and select videos from UCF101 and HMDB51 to form

the UCF-HMDBfull dataset. In addition, we also collect gameplay videos to obtain

the Gameplay dataset by following the protocol of existing video datasets, and then

combine with Kinetics-600 to form the Kinetics-Gameplay dataset. To the best of our

knowledge, they are by far the largest datasets for cross-domain action classification.

And then we investigate different DA integration approaches and provide a strat-

egy to effectively align domains spatio-temporally for videos. Finally, We propose

Temporal Attentive Adversarial Adaptation Network (TA3N), which simultaneously

aligns domains, encodes temporal dynamics into video representations, and attends
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to representations with domain distribution discrepancy, achieving achieves state-of-

the-art performance on both small- and large-scale cross-domain video datasets.

3. Chapter 5: we reformulate the action segmentation as an unsupervised DA prob-

lem with the transductive setting, to focus on addressing the problem of intra-class

variations. With the DA framework, we propose Self-Supervised Temporal Do-

main Adaptation (SSTDA), containing two self-supervised auxiliary tasks, binary

and sequential domain prediction, which predicts domains for an untrimmed video

in multiple temporal scales. Through adversarial training with both auxiliary tasks,

SSTDA can jointly align local and global embedded feature spaces across domains,

outperforming other DA methods. Moreover, by integrating SSTDA for action seg-

mentation, our approach outperforms the current state-of-the-art approach by large

margins, and achieve comparable performance by using only 65% of labeled train-

ing data. To the best of our knowledge, SSTDA is the first self-supervised method

designed for cross-domain action segmentation.

The rest of this dissertation is organized as follows: following the motivational intro-

duction and problem statement, we provide a literature survey discussing action classifica-

tion, segmentation, and machine learning approaches beyond fully-supervised learning in

Chapter 2 , aiming to provide the necessary background knowledge in this field. The novel

contributions of this dissertation are introduced in Chapters 3, 4, and 5. Chapter 3 is com-

posed of the two proposed approaches modeling the temporal dynamics: TS-LSTM and

Temporal-Inception. The proposed two datasets and the novel method, TA3N, are described

in Chapter 4. In Chapter 5, we reformulate the action segmentation as an unsupervised DA

problem, and propose a novel approach, SSTDA, which combines the advantage of domain

adaptation and self-supervised learning, and can be integrated with action segmentation to

tackle the spatio-temporal intra-class variation problem. Finally, the conclusion and future

directions of this work are described in Chapter 6.
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CHAPTER 2

LITERATURE SURVEY

In the dissertation, we aim to investigate temporal information for video understanding

under various conditions, including fully-supervised and cross-domain settings. Therefore,

we provide an overview and a thorough literature survey for two main research areas: Video

Understanding and Cross-Domain Representation Learning.

2.1 Video Understanding

As mentioned in Chapter 1, most videos that people are interested in contain human ac-

tions, so we mainly focus on Human Action Understanding in this work. Among all the

related tasks, Classification and Segmentation are the two core techniques and fundamental

research directions for video understanding. Thus, we first provide the necessary back-

ground information and prior arts for these two tasks.

2.1.1 Action Classification

This is the task of determining the type of human actions present in a given video. Many of

the action classification methods extract high-dimensional features that can be used within

a classifier. These frame-level features can be hand-crafted or learned, and then combined

in some form to represent videos. A common concept among these methods is that the key

is how we exploit the temporal dynamics in videos [34].

Hand-crafted features: One of the main-stream hand-crafted approaches is using trajec-

tory features (e.g. dense trajectory) [56, 57, 58] to model the motion in videos. Suppress-

ing the noise in optical flow images has also been proven to help in action recognition [57,

58]. Fisher vectors are also adopted to generate more compact features [59, 60]. Another

method is generating histogram-like features by dictionary learning [61, 62, 63]. In addi-
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tion, because of the recent success of convolutional neural network, integrating learned and

hand-crafted features becomes another main-stream. For example, Zhang et al. [64] mod-

eled temporal structures with pre-trained CNN features using a linear dynamical system.

Banerjee and Murino [65] used Objectness to extract local features. Conventional hand-

crafted features have been undoubtedly successful in human action recognition. These

approaches are able to capture local and global video descriptors and encode them in dif-

ferent ways to achieve state-of-the-art performance on several standard datasets[57, 58, 61,

56].

ConvNets with temporal dimension: The early work from Karpathy et al. [11] stacks

consecutive video frames and extends the first convolution layer to learn the compact spa-

tiotemporal features by designing various architectures to exploit temporal dynamics, in-

cluding early fusion and slow fusion. Another proposed method, C3D [14], takes this idea

one step further by replacing all of the 2D convolutional kernels with 3D kernels at the

expense of GPU memory. Carreira et al. [18] further boost the accuracy by applying this

idea to GoogleNet [66] instead of AlexNet [67] as in C3D [14]. To avoid high complexity

when training 3D convolutional kernels, Sun et al. [68] factorize the original 3D kernels

into 2D spatial and 1D temporal kernels and achieve comparable performance. Instead of

using only one layer like [68], we demonstrate that multiple layers can extract temporal

correlations at different time scales and provide better capabilities to distinguish different

types of actions.

Recently, there are some other works proposing different CNN architectures to encode

the spatiotemporal representations with consideration of the trade-off between performance

and computational cost [19, 20]. Qiu et al. [19] modify 3D ResNet by factorizing 3D con-

volution kernel into 2D convolution (for spatial) and 1D convolution (for temporal), and

integrate several residual blocks which have different arrangements of spatial and tempo-

ral convolution kernels into the final architecture P3D, showing better accuracy and less

computation cost than 3D ResNet. Tran et al. [20] adopt similar factorization concepts as
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P3D but use a single type of spatio-temporal residual block. With a careful choice of di-

mensionality, their proposed R(2+1)D outperforms P3D significantly (around 8% in video

accuracy on the Sports-1M dataset). Different from the above end-to-end approaches, this

dissertation mainly focuses on investigating temporal information so we separate the en-

coding process of the spatial and temporal information. In this way, it is more clear to see

the contribution of our work for exploiting temporal information for video tasks.

ConvNets with RNNs: On the other hand, Recurrent Neural Networks (RNNs) can also

be used to learn how the representations change over time for activities. Donahue et al. [13]

feed spatial features extracted from each time step to a recurrent neural network with LSTM

cells. In contrast to the traditional models which can only take a fixed number of temporal

inputs and have limited spatiotemporal receptive fields, the proposed Long-term Recurrent

Convolutional Networks (LRCN) can directly take variable-length inputs and learn long-

term dependencies. Yan et al. [69] propose Hierarchical Multi-scale Attention Network

(HM-AN) which incorporates the attention mechanism into hierarchical multi-scale RNN.

Pan et al. [70] propose Hierarchical Recurrent Neural Encoder (HRNE) which combines

the concept of temporal segments and hierarchical RNNs. They, however, validate the

proposed method on video captioning tasks.

Two-stream ConvNets: Another branch of research in action recognition extracts tempo-

ral information from traditional optical flow images. This approach was pioneered by [12].

The proposed two-stream ConvNets demonstrate that the stacked optical flow images solely

can achieve comparable performance despite the limited training data. Currently, the two-

stream ConvNet is the most popular and effective approach for action classification since

it can be further extended and combined with all the previously mentioned approaches. Ng

et al. [15] take advantage of both two-stream ConvNets and LRCN, in which not only the

spatial features are fed into the LSTM but also the temporal features from optical flow im-

ages. Wang et al. [71] use hand-crafted motion features, such as HOF and MBH, instead of

optical flow features to boost the performance. Feichtenhofer et al. [16] investigate differ-
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ent ways to fuse the spatial and temporal streams, and find that fusing the streams in the last

convolutional layer using 3D convolutional kernels and 3D pooling can achieve good per-

formance with less parameter requirement. Different from them, we show that by properly

leveraging temporal information, the proposed Temporal-Inception can achieve compara-

ble state-of-the-art results only using feature vector representations, instead of feature maps

as in [16]. The work in this dissertation also shows that combining a ConvNet with vanilla

LSTM results in limited performance improvement when data does not contain sufficient

temporal variances.

More recent work: Similar to the above works, many other approaches exist. Wang et

al. [17] propose the temporal segment network (TSN), which divides the input video into

several segments and extracts two-stream features from randomly selected snippets. The

authors also emphasize the importance of using pre-trained models for the temporal net-

work to help prevent over-fitting. Wang et al. [72] incorporate semantic information into

the two-stream ConvNets. Specifically, the authors incorporate ROIs (scene and person)

separately into the spatial and temporal ConvNets. Each of the scene and person cues are

analyzed and systematically studied. The evaluation demonstrated how each of the cues

can enhance the robustness within different action types. Zhu et al. [73] propose a key

volume mining deep framework to identify key volumes that are associated with discrim-

inative actions. Wang et al. [74] propose to use a two-stream Siamese network to model

the transformation of the state of the environment. Zhao et al. [75] add frame difference

as the third stream and adopted VLAD [76] to encode the final features. Recently, some

researchers incorporate the concepts of video object relationship [5] and video frame rela-

tionships [21] into action recognition and improve the performance. Ma et al. [5] propose

to efficiently learn interactions across multiple objects for fine-grained video understand-

ing, demonstrating that modeling object interactions significantly improves accuracy for

both video classification and captioning. Zhou et al. [21] adopt the concept that human can

link meaningful transformations of entities over time to propose Temporal Relation Net-
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work (TRN), which learns the temporal dependencies between video frames in multiple

time scales.

In this work, we aim to create a common and strong baseline two-stream ConvNet and

extend the two-stream ConvNet to provide in-depth analysis of design decisions for both

RNN and Temporal-ConvNet. We demonstrate that both methods can achieve comparable

state-of-the-art performance but proper care must be given. For instance, LSTMs require

pre-segmented data to fully exploit temporal information. The analysis in this work identi-

fies specific limitations for each method that could form the basis of future work.

2.1.2 Action Segmentation

The goal of this task is to simultaneously segment the video by time and predict each

segment with a corresponding action category. In another word, action segmentation con-

tains both action classification and temporal segmentation. In addition to correct per-frame

action classification, the correct happening time for each action segment is also critical

to determine the task performance. In general, action segmentation is done by extract-

ing low-level features using convolutional neural networks and then applying high-level

temporal models. According to the types of annotation used for training, action segmen-

tation approaches can be mainly categorized into two classes: 1) fully-supervised methods

require that the training videos are all densely-annotated for all the frames, while 2) weakly-

supervised methods do not need annotations for all the frames.

Fully-Supervised Approaches: Encouraged by the advances in speech synthesis [29], re-

cent approaches rely on temporal convolutions to capture long-range dependencies across

frames using a hierarchy of temporal convolutional filters [30, 31, 32, 33]. ED-TCN [30]

follows an encoder-decoder architecture with a temporal convolution and pooling in the

encoder, and upsampling followed by deconvolution in the decoder. However, the use of

temporal pooling might result in a loss of fine-grained information that is necessary for ac-

tion segmentation. TricorNet [31] replaces the convolutional decoder in the ED-TCN with

16



a bi-directional LSTM (Bi-LSTM). However, their network contains a temporal recurrent

network, and thus inherits the limitations of recurrent models including limited attention

span [25]. TDRN [32] builds on top of ED-TCN [30], using deformable convolutions in-

stead of the normal convolution and adding a residual stream to the encoder-decoder model.

MS-TCN [33] stacks multiple stages of temporal convolutional networks (TCNs) where

each TCN consists of multiple temporal convolutional layers performing acausal dilated

1D convolution. With the multi-stage architecture, each stage takes an initial prediction

from the previous stage and refines it. We build our approach on top of MS-TCN, focus-

ing on developing methods to effectively exploit unlabeled videos instead of modifying the

architecture.

Weakly-Supervised Approaches: Because of the difficulty of obtaining dense annotation

for action segmentation, there is an increasing attention on the weakly-supervised setting

where the ground truth data for training is weakly-annotated, which is much easier to ob-

tain. HTK [77] and GRU [78] train the models in an iterative procedure starting from

a linear alignment based on action transcripts. TCFPN [79] further improves the perfor-

mance with a temporal convolutional feature pyramid network and a soft labeling mecha-

nism at the boundaries. We adopt the similar concept of utilizing easy-to-obtain data focus

on different goal. Instead of tackling within-domain action segmentation problems using

weakly-annotated labels, we exploit unlabeled videos to adapt models to new domains with

a cross-domain setting.

2.2 Cross-Domain Representation Learning

Although there is a great amount of work mentioned above showing significant progress

for exploiting temporal information, those methods are evaluated on the same domain as

training. The domain shift problem is not considered, which makes it challenging to apply

those approaches to real-world problems. The performance of the trained models drops sig-

nificantly across different domains, which is also shown in Chapter 4. Therefore, Domain
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Adaptation (DA) techniques are needed to diminish this issue, achieving Cross-Domain

Representation Learning.

In DA problems, there exist at least two domains: Source and Target [38]. We have full

access to the source domain including data and ground truths, while we have only partial

access to the target domain. In most cases, we don’t have all the target ground truths. The

goal of DA is to transfer the model learned with all the source data and part of target data

to target domains, and aim to approach the performance of the model learned with all the

target data. The DA settings are categorized in terms of the availability of annotations

in the target training data. Unsupervised DA implies that the target data is completely

unlabeled, while Semi-supervised DA means the target domain still has a small amount

of labeled data. In this work, we focus on the harder unsupervised DA problem, which

requires constructing a model that can generalize to target samples without access to any

target labels during training.

Most DA approaches follow the two-branch architecture, representing the source and

target branches, and aim to find the common space between the source and target domains.

The models are therefore optimized with a combination of classification loss and a set of

domain loss functions, which are the core techniques for different DA approaches [38].

2.2.1 Image-based Domain Adaptation

In recent years, most DA approaches are based on deep learning architectures designed

for addressing the domain shift problems given the fact that deep convolutional represen-

tations significantly outperform hand-crafted features on DA problems [39]. Most visual

DA approaches are evaluated and benchmarked using well-organized cross-domain image

classification datasets, such as Office [47], VisDA [36], etc., and can be categorized into

the following major categories:

1. Discrepancy-based DA: This is one of the main classes of DA methods. The metrics

are designed to measure the distance between the source and target feature distri-
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butions, such as variations of maximum mean discrepancy (MMD) [80, 40, 81, 82,

83, 41] and the CORAL function [84]. By diminishing the distance of distributions,

discrepancy-based DA methods reduce the gap between source and target domains.

Tzeng et al. [80] propose the first method, Deep Domain Confusion (DDC), which

integrates deep network with MMD, to confuse source and target domains. Long

et al. improve this method by proposing the following methods: 1) Deep Adapta-

tion Network (DAN) [40], which applies MMD to all the domain-specific layers, 2)

Residual Transfer Network (RTN) [81], which adds residual connections to source

classifier and introduces target entropy minimization to improve classifier adaptation,

and 3) Joint Adaptation Network (JAN) [41], which aligns the joint distributions of

multiple domain-specific layers by proposing the Joint MMD (JMMD) metric. In

addition, Zellinger et al. [82] propose to match the higher-order central moments of

probability distributions by defining a new distance function, Central Moment Dis-

crepancy (CMD). Yan et al. [83] introduce class-specific auxiliary weights into the

original MMD to tackle the class imbalance problem. Different from MMD-based

approaches, Sun et al. [84] aligns the second-order statistics of the source and target

distributions by the CORAL function.

2. Adversarial-based DA: This is another common class that adopts a similar concept as

GANs [85] by integrating domain discriminators into the architectures. Through the

adversarial objectives, the discriminators are optimized to classify different domains,

while the feature extractors are optimized in the opposite direction. ADDA [86]

uses an inverted label GAN loss to split the optimization into two parts: one for

the discriminator and the other for the generator. In contrast, the gradient reversal

layer (GRL) is used in some work [42, 43, 87] to invert the gradients so that the

optimization can be done in one step.

Ganin et al. propose to insert domain discriminators equipped with GRL into the
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deep architecture for the main learning task. With the help of GRL during train-

ing, the main model will be optimized to maximize domain losses, and gradually

confused by source and target domains. Their approach is called RevGrad [42] or

DANN [43]. Zhang et al. add several domain classifiers to multiple layers and pro-

pose to select reliable pseudo-labels for target data in their final approach iCAN [87].

3. Normalization-based DA: It adapts Batch Normalization (BN) [88], which is also a

technique that controls the distribution of feature representations, to DA problems

by calculating two separate statistics, representing source and target, for normaliza-

tion [44, 45, 89].

Li et al. [44] propose AdaBN to calculate two separate sets of mean and variance for

source and target domains in all Batch Normalization layers, achieving adaptation

effects for DA tasks without introducing additional parameters. Carlucci et al. [89]

improve AdaBN by fusing the statistics from source and target domains and auto-

matically learning the fusing ratio to achieve more effective DA.

4. Ensemble-based DA: This method builds a target branch ensemble by incorporating

multiple target branches in order to learn a domain-invariant feature generator under

controlled variations [90, 91, 46, 92].

French et al. [90] adopt the idea of mean teacher variant of temporal ensembling

to achieve the consistency of the target branch under stochastic data augmentation.

Saito et al. propose to push target data to task-specific decision boundaries by max-

imizing the discrepancy between two classifiers’ outputs, with two variants of ap-

proaches, Adversarial Dropout Regularization (ADR) [91] and Maximum Classifier

Discrepancy (MCD) [46]. Lee et al. [92] improve MCD by replacing the L1 distance

metric with sliced Wasserstein discrepancy (SWD), which provides a geometrically

meaningful guidance to detect target samples that are far from the support of the

source and enables efficient distribution alignment.
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5. Attention-based DA: Recently there are several methods adopting the attention mech-

anism to focus on different regions of images for more effective DA [93, 94].

Wang et al. [93] propose Transferable Attention for Domain Adaptation (TADA),

which contains 1) local attention for region-level domain discriminators to highlight

transferable regions, and 2) global attention for image-level domain discriminator to

highlight transferable images. Kurmi et al. [94] propose Certainty Attention-based

Domain Adaption (CADA), which incorporates the probabilistic certainty of the dis-

criminator from various regions while training the classifier.

Different from the above methods, we design the attention mechanism for spatio-

temporal domains, aiming to attend to the important parts of temporal dynamics for

domain adaptation.

2.2.2 Video-based Domain Adaptation

Unlike image-based DA, video-based DA is still an under-explored area. Only a few works

focus on cross-dataset evaluation between small-scale datasets [48, 49, 50]. Sultani et

al. [48] improve the generalizability between domains by decreasing the effect of the back-

ground. More specifically, the authors propose to measure the confidence for being a fore-

ground region in each pixel by using motion, appearance, and saliency together. Xu et

al. [49] map source and target features to a common feature space using a dual many-to-

one encoder architecture which is a shallow neural network. Jamal et al. [50] first propose

AMLS to adapt pre-extracted C3D [14] features on a Grassmann manifold obtained by

PCA, and then extend their method to a deep learning framework DAAA by utilizing GRL.

However, the datasets used in these works are too small to have enough domain shift to

fairly evaluate DA performance. Therefore, we propose two larger cross-domain datasets

UCF-HMDBfull and Kinetics-Gameplay, and provide benchmarks with different baseline

and the proposed approaches. We also investigate DA integration approaches for videos

and show that it performs better to simultaneously attends, aligns, and encodes temporal

21



dynamics into video features.

Moreover, some authors also proposed novel frameworks to utilize auxiliary data for

other video tasks, including object detection [52] and action localization [51]. Lahiri et

al. [52] adopt the concept of unsupervised adversarial image-to-image translation to trans-

form static images to be visually confused by video frames, and use those transformed

images to train video object detectors. Zhang et al. [51] propose TSRNet to transfer the

knowledge from trimmed videos for improving the accuracy of untrimmed action localiza-

tion using MMD. These works differ from our work by either different video tasks [52] or

access to the labels of auxiliary data [51].

2.2.3 Self-Supervised Representation Learning

The goal for cross-domain representation learning is learning to adapt feature representa-

tions from one domain to others without full supervision. This goal is partially overlapped

with Self-supervised learning, which has become popular in recent years for images and

videos given the ability to learn informative feature representations without human super-

vision. The key is to design an auxiliary task (also noted as pretext task) that is related to

the main task and the labels can be self-annotated.

Image-based Self-Supervised Learning: Image-based self-supervised learning approaches

learn spatial information from images by predicting spatial characteristics within images,

regarding spatial context as a source of free and plentiful supervisory signal for training [95,

96, 97].

Doersch et al. [95] predict the spatial relation between random pairs of patches from

each image. The learned visual similarity from within-image context helps to enrich the

feature representation for the main task. Noroozi et al. [96] predict the order of images

patches after spatial shuffling, which is a Jigsaw puzzle problem. In this way, the feature

mapping of object parts and their spatial arrangement are learned. Gidaris et al. [97] predict

the 2D rotation angles after randomly rotating input images. By properly considering the
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complexity of the auxiliary rotation prediction task, this simple approach outperforms other

self-supervised methods.

Video-based Self-Supervised Learning: Most of the recent works for videos design

auxiliary tasks based on spatio-temporal orders of videos [98, 99, 100, 101, 102]. These

methods mainly learn spatio-temporal information by predicting the order after shuffling

frames or video clips in spatio-temporal directions.

Lee et al. [98] formulate representation learning as a temporal sequence sorting task.

More specifically, the authors take temporally shuffled frames as inputs and train a con-

volutional neural network called Order Prediction Network (OPN) to sort the shuffled se-

quences. Wei et al. [99] design Temporal Class-Activation Map Network (T-CAM) to learn

the arrow of time, which indicates that a video is playing forward or backward. Kim et

al. [100] combine both spatial and temporal shuffling and propose Space-Time Cubic Puz-

zles (ST-puzzle) to predict the spatio-temporal arrangement of 3D crops. With this task,

the network can learn the spatial appearance and temporal relations simultaneously. Ahsan

et al. [101] also adopt the concept of spatio-temporal puzzle but separate the process of

spatial and temporal shuffling to reduce the computational and memory requirement. Xu

et al. [102] extend the concept of OPN [98] using video clips instead of frames since clips

are more consistent with the video dynamics. By predicting temporal orders of video clips,

this approach achieves the current state-of-the-art accuracy for self-supervised video tasks.

Different from these works, our proposed auxiliary task predicts temporal permutation

for cross-domain videos, aiming to address the problem of spatio-temporal variations for

action segmentation. More importantly, our method generates self-annotated data across

different domains to tackle domain shift problems whereas previous self-supervised learn-

ing methods only learn within-domain information.
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CHAPTER 3

TEMPORAL DYNAMICS IN VIDEOS

We build on the traditional two-stream ConvNet and explore the correlations between spa-

tial and temporal streams by using two different proposed fusion frameworks. We specifi-

cally focus on two models that can be used to process temporal data by leveraging recurrent

and convolutional neural networks over temporally-constructed feature matrices: Tempo-

ral Segment LSTM (TS-LSTM) and Temporal-Inception. Both methods achieve comparable

state-of-the-art performance, and we perform rigorous experimentation to elucidate which

design decisions are important. Figure 3.1 schematically illustrates the proposed methods.

By thoroughly exploring the space of architectural designs within each method, we can clar-

ify the contribution of each decision and highlight its implication to fully exploit temporal

information without manipulating its inputs. The work is implemented using Torch7 [103]

and is publicly available1. For more details, please check the published paper [6].

3.1 Approaches: Temporal Segment LSTM and Temporal-ConvNet

3.1.1 Two-stream ConvNets Baseline

The two-stream ConvNets are constructed by two individual spatial-stream and temporal-

stream ConvNets. The spatial-stream network takes RGB images as input, while the

temporal-stream network takes stacked optical flow images as inputs. The two ConvNets

are trained separately, and the probabilities estimated from the two ConvNets are fused di-

rectly for final video classification. A great deal of literature has shown that using deeper

ConvNets can improve overall performance for two-stream methods. In particular, the per-

formance from VGG-16 [104], GoogLeNet [66], and BN-Inception [88] on both spatial

1https://github.com/chihyaoma/Activity-Recognition-with-CNN-and-RNN
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Figure 3.1: Overview of the proposed framework to learn temporal dynamics for videos.

and temporal streams are reported [17, 15]. Since ResNet [105] has demonstrated its capa-

bility in capturing still image features, we chose ResNet as the backbone ConvNet for both

the spatial and temporal streams. We demonstrate that this can result in a strong baseline,

as shown in Section 3.2. Feichtenhofer et al. [16] experiment with different fusion stages

for the spatial and temporal ConvNets. Their results indicate that fusion can achieve the

best performance using late fusions. For this reason, we aim at exploring feature fusion

using the last layer from both spatial-stream and temporal-stream ConvNets. In the pro-

posed framework, the two-stream ResNets serve as high-dimensional feature extractors.

The output feature vectors at time step t from the spatial-stream and temporal-stream Con-

vNets can be represented as fSt ∈ RnS and fTt ∈ RnT , respectively. The input feature

vector xt ∈ RnS+nT for the proposed temporal segment LSTM and Temporal-ConvNet is

the concatenation of fSt and fTt . In our case, nS and nT are both 2048.

Spatial stream: Using a single RGB image for the spatial stream has been shown to

achieve fairly good performance. The ResNet-101 spatial-stream ConvNet is pre-trained

on ImageNet and fine-tuned on RGB images extracted from UCF101 dataset with classifi-

cation loss for predicting activities.

Temporal stream: Stacking 10 optical flow images for the temporal stream has been

considered as a standard for two-stream ConvNets [12, 16, 15, 17, 72]. We follow the

standard to show how each of our framework design and training practices can improve
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the classification accuracy. In particular, using a pre-trained network and fine-tuning has

been confirmed to be extremely helpful despite differences in the data distributions between

RGB and optical flow. We follow the same pre-train procedure shown by Wang et al. [17].

by averaging the weights across RGB channels and replicating to the number of input

channels for the temporal stream, the network can generalize better. The effectiveness of

the pre-trained model on temporal-stream ConvNet is in Table 3.1 in Section 3.1.4.

3.1.2 Temporal Segment LSTM (TS-LSTM)

The variations between each of the image frames within a video may contain temporal in-

formation that could be useful in determining the human action in the whole video. One

of the most straightforward ways to learn temporal dynamics from a sequence of inputs is

through a Recurrent Neural Network (RNN), which maps the inputs to hidden states, and

from hidden states to outputs. The objective of using RNNs is to learn how the represen-

tations change over time for actions. However, several previous works have shown limited

ability of directly using a ConvNet and RNN [13, 15, 106, 24]. We conjecture that this is

due to the fact that, within the same video, the sampled video frame features have similar

representations. Thus, the RNNs fail to learn temporal reasoning because of the majority

of the videos have similar feature representations over time, as shown in Figure 3.2. by

normalizing the values of output features from the two-stream ConvNets to [0, 255], we

visualize the feature representation from RGB and optical flow video frames horizontally

and show how feature representation changes through time (vertical axis). As we observe

from these representations, the clear vertical stripes in these three examples show that the

feature representations are similar over time. We observed that the majority of the video

representations in each action class in both UCF101 and HMDB51 have similar charac-

teristics. This demonstrates the inherent lack of temporal dynamics and is the reason why

vanilla RNNs show limited improvement as we discussed in Section 3.2.

Therefore, we propose to divide the sequence of inputs into several temporal segments
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Figure 3.2: RGB and optical flow feature representations through time.

and learn their distinct feature representations. First, we concatenate the spatial and tem-

poral features to form a high-level feature representation xt ∈ R4096 for each time step.

And then the concatenated features xt are pooled within each segment through temporal

pooling layers, e.g. mean- or max-pooling. The temporal pooling layer takes the feature

vectors concatenated from spatial and temporal streams and extracts distinguishing feature

elements. In practice, the temporal mean pooling performed similarly with max pooling.

We use max pooling in our experiments. The temporally pooled features are then used as

input to the recurrent LSTM module, which learns the final embedded features for the en-

tire video. The proposed TS-LSTM module essentially serves as a mechanism that learns

the non-linear feature combination and its segmental representation over time, as shown in

Figure 3.3. We discuss implications of the success of TS-LSTM in Section 3.2. In prac-

tice, we evenly sampled 25 frames per video regardless the length of the video, and each

temporal segment is a fixed size with 25/N , where N is the number of temporal segments.

The number of N is a hyper-parameter we chose, and we show how different N influences

the overall performance in Table 3.4.

The proposed TS-LSTM share some similarity with TSN [17] in that, both of the

method use temporal segments. However, the goals in utilizing temporal segments are

different. While TSN use temporal segments as a way for temporal data augmentation (se-

lecting short random snippets), we aim at using temporal segments with pooling methods

to increase temporal variances, and these increased temporal variances can largely ben-
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Figure 3.3: The overview of TS-LSTM.

efit standard LSTM in modeling temporal information for videos, as we demonstrate in

Section 3.2.

3.1.3 Temporal-Inception

One of the main drawbacks of baseline two-stream ConvNets is that the network only

learns the spatial correlation within a single frame instead of leveraging the temporal re-

lation across different frames. To address this issue, we propose an efficient architecture

with multiple convolution layers to exploit the temporal information only using frame-level

feature vectors.

To address this issue, prior approaches adopted the concept of 3D kernels to exploit the

pixel-wise correlation between spatial and temporal feature maps [68, 16]. However, these

methods applied convolution kernels of one scale to extract the temporal features with fixed

temporal receptive fields, and they did so on the full feature maps which results in more

than ten times needed parameters compared to using feature vectors. In contrast to these

approaches, we focus on designing a more efficient architecture with multiple convolution

layers to explore the temporal information only using feature vectors (see Section 3.2.4 for

more details).
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In addition to using RNNs to learn the temporal dynamics, we adopt the ConvNet ar-

chitecture on feature matrices x = {x1, x2, ..., xt, ..., xN} ∈ R(nS+nT )×N , where N is the

number of sampled frames in one video, and t is the time step. Different from natural im-

ages, the elements in each xt have little spatial dependency but have temporal correlation

across different xt. With the ConvNet architecture, we explore the temporal correlation of

the feature elements, and then distinguish different categories of actions. To achieve this

goal, we apply multiple 1D convolution kernels to specifically encode temporal informa-

tion in different scales and reduce the temporal dimension. Applying convolution along the

spatial direction may alter the learned spatial characteristics since the spatial information

is already encoded from the two-stream ConvNets.

The overall architecture of Temporal-ConvNet is shown in Figure 3.4. We refer to

a sequential layer that consists of a convolution layer, batch-normalization layer, ReLU

activation layer and a pooling layer as a Temporal-ConvNet Layer (TCL), which is the

basic unit throughout the whole architecture. TCL can be expressed as follows:

TCL(x;W) = fpool(σ(fBN(x ∗ hW + bW ))) (3.1)

where hW and bW are weights and biases of the convolutional kernel, and fpool, σ, fBN

are pooling, ReLU and batch normalization functions, respectively.

We further effectively exploit temporal information by adapting the inception module

[66] into the architecture and note it as the multi-flow module, which consists of differ-

ent convolution kernel sizes, as shown in Figure 3.4 (each flow corresponds to one row

of TCLs). A stack of multi-flow modules is used to hierarchically encode temporal infor-

mation and reduce the temporal dimension. The rationale behind multi-flow modules is

that different types of actions have different temporal characteristics, and each kernel with

different size essentially searches different actions by exploiting different receptive fields

to encode the temporal characteristics. With the multi-flow modules, the proposed archi-

tecture can capture actions with different scales. The overall multi-flow module can be
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Figure 3.4: The overview of Temporal-Inception.

expressed as follows:

Fi(x) = TCL1(x;Wi1) || TCL2(x;Wi2) || ... (3.2)

where || is the concatenation along the filter dimension, and i is the layer index. Note

that in the same layer, the weights in different TCLs are learned from filters of different

kernel sizes.

In the proposed architecture, we stack multiple multi-flow modules to reduce the tem-

poral dimension to one (N is the number of the multi-flow modules):

fMF (x) = FN(FN−1(...(F2(F1(x))))) (3.3)

However, the filter dimension gradually increases because of the concatenation along

filter dimension in each multi-flow module. To avoid potential over-fitting issues, we apply

Conv Fusion to gradually reduce the filter dimension by convolving with a set of filters
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hD2
D1
∈ R1×1×D1×D2(D2 < D1) and biases b ∈ RD2:

fRD(x) = f 1
dM

(fdMdM−1
(...(fd3d2 (f

d2
d1
(x))))) (3.4)

where fdjdi (x) = x ∗hdj

di
+ bdj is used to reduce the filter dimension of inputs from di to

dj . M is the size of the filter set.

To encode the feature vectors, we feed-forward the output of Conv Fusion to an 1024-

dimensional fully-connected layer with the weight hfc and bias bfc, followed by a batch

normalization layer and a ReLU layer:

f cls(x) = σ(fBN(xhfc + bfc)) (3.5)

Finally, by combining Equations (3.1) to (3.3), we can express the whole architecture

as follows:

TemIncep(x) = ρ(f cls(fRD(fMF (x)))) (3.6)

where ρ is the softmax function. We denote this architecture as Temporal-Inception, and

show it in Figure 3.4.

The well-known state-of-the-art method from TSN [17] and the proposed Temporal-

Inception both explore the temporal information but with different perspectives. However,

TSN [17] focuses on designing novel and effective sampling approaches for temporal infor-

mation exploration, while we focus on using the Temporal-Inception architecture to extract

the temporal convolutional features given the sampled frames. We show that even with

evenly-sampled frames, Temporal-Inception has the capability to exploit temporal dynam-

ics between frames.

3.1.4 Implementation

Two-stream inputs: We use both RGB and optical flow images as inputs to two-stream

ConvNets. For generating the optical flow images, literature have different choices for
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Table 3.1: Optical flow algorithms and Temporal-stream ConvNet performance comparison
on UCF101 split 1.

Optical flow ConvNet Fine-tune Accuracy
Two-stream [12] Brox CNN M 2048 N 81.0

Convolutional
Two-stream [16]

Brox
[-20,20] VGG-M Y 82.3

TV-L1
[-20,20] VGG-16 Y 86.3

Deep Two-Sream [107] TV-L1 GoogleNet Y 83.9

TSN [17] TV-L1
VGG-16 Y 85.7

BN-Inception Y 87.2
SR-CNNs [72] TV-L1 VGG-16 Y 85.3

Ours
TV-L1

[-20,20] ResNet-101 Y 86.2

Ours Brox ResNet-101 Y 84.9

optical flow algorithms. Although most of the works used either Brox [108] or TV-L1

[109], within each of the different optical flow algorithms there are still some variations in

how the optical flow images are thresholded and normalized. We summarize the prediction

accuracy of different optical flow methods from recent works in Table 3.1. Note that we

thresholded the absolute value of motion magnitude to 20 and rescale the horizontal and

vertical components of the optical flow to the range [0, 255] for TV-L1. From Table 3.1,

we can conclude that both Brox and TV-L1 can achieve state-of-the-art performance, but

from our experiments TV-L1 is slightly better than Brox. Thus, unless specified we use

TV-L1 as input for the temporal-stream ConvNet.

Hyper-parameter optimization: The learning rate of the spatial-stream ConvNet is ini-

tially set to 5× 10−6, and divided by 10 when the accuracy is saturated. The weight decay

is set to be 1× 10−4, and momentum is 0.9. On the other hand, the learning rate of the

temporal-stream ConvNet is initially set to 5× 10−3, and divided by 10 when the accuracy

is saturated. The weight decay and momentum are the same as the spatial-stream ConvNet.

The batch sizes for both ConvNets are 64. Both TS-LSTM and Temporal-ConvNets are

trained with ADAM optimizer. The learning rate is set to 5× 10−5 for training TS-LSTM.

For Temporal-ConvNets, we use 1× 10−4 for learning rate and 1× 10−1 for weight decay.
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Data augmentation: Data augmentation has been very helpful especially when the train-

ing data are limited. During training, a sub-image with size 256 × 256 is first randomly

cropped using a smaller image region (between 0.08 to 1 of the original image area). Sec-

ond, the cropped image was randomly scaled between 3/4 and 4/3 of its size. Finally, the

cropped and scaled image will be scaled again to 224 x 224. The same data augmentation

is applied when training both spatial- and temporal-stream ConvNets. Note that we use ad-

ditional color jittering for the spatial-stream ConvNet, but not temporal-stream ConvNet.

Wang et al. [17] argued that a corner cropping strategy, which only crops 4 corners and

center of the image, can prevent over-fitting. However, empirically, we found out that the

corner cropping strategy can make the ConvNet converge faster and leads to over-fitting.

Testing: We followed the work from Simonyan and Zisserman [12] to use 25 frames for

testing. Each of the 25 frames is sampled equally across each of the videos. During testing,

many works averaged predictions from the RNN on all 25 frames. We did not average the

prediction because it will be biased towards the average representation of the video and

neglect the temporal dynamics learned by LSTM cells. However, without temporal seg-

ments, since LSTM cells fail to learn the temporal dynamics, it will benefit from averaging

the predictions. Yet, the final prediction accuracy is significantly worse than TS-LSTM

without averaging prediction.

3.2 Experiments and Discussions

We validate the proposed models on two of the most widely used action recognition bench-

marks: UCF101 [23] and HMDB51 [22]. We use the first split of UCF101 to validate

the proposed models, and then keep the same parameters for the other two splits. For fair

comparison, we uniformly sample 25 frames for each video.
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3.2.1 Datasets

UCF101 contains 13320 videos from 101 action categories. The videos have spatial resolu-

tion of 320× 240 pixels and the average length of 7 seconds, which implies a total of 2.4M

frames in the whole dataset. Videos in each action category are grouped into 25 groups.

Each group consists of 4 to 7 videos of a particular action. The videos from the same group

are similar in terms of some characteristics, such as environments, camera movement, etc.

Therefore, the intra-class variations across the videos in the same group are smaller than

the variations between different groups. Thus, the dataset is separated into three different

train/test splits. In each split, 18 groups are used for training, and the rest 7 groups are used

for testing.

HMDB51 contains 6849 videos, which are divided into 51 action categories, each contain-

ing a minimum of 101 videos. The videos are extracted from a variety of sources ranging

from digitized movies to YouTube. The model pre-trained on UCF101 is fine-tuned for the

HMDB51 dataset.

3.2.2 Experimental Results: Two-stream ConvNets Baseline

It is important to have a fair comparison with other methods which share the same baseline

or similar baseline performance. Therefore, we explicitly show, in Table 3.2, our baseline

performance for the spatial-stream, temporal-streams, and two-stream on three different

splits in the UCF101 and HMDB51 datasets. Our performance on the two-stream model

is obtained by taking the mean values of the prediction probabilities from both spatial and

temporal-stream ConvNets. For comparison of our baseline method with others, please

refer to Table 3.2.

Using this baseline, we will then demonstrate how each of the proposed method lever-

ages the baseline two-stream ConvNet and show significant improvement by modeling tem-

poral dynamics. We also study the effectiveness of the length of the videos on the baseline

performance and the two proposed methods. For further details, please see Section 3.2.6.
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Table 3.2: Performance from spatial and temporal-stream ConvNets, and two-stream Con-
vNet on three different splits of the UCF101 and HMDB51 datasets.

Spilit 1 Split 2 Split 3 Mean
Spatial-stream

UCF101 86.1 83.6 85.3 85.0
HMDB51 51.9 49.7 49.7 50.4

Temporal-stream
UCF101 86.2 87.0 88.4 87.2

HMDB51 60.3 59.0 60.0 59.7
Two-stream

UCF101 92.6 92.2 92.9 92.6
HMDB51 66.4 64.8 62.6 64.6

Table 3.3: Two-stream ConvNet comparison on the UCF101 dataset (split 1).

Spatial Temporal Two-stream
GoogLeNet [107] 77.1 83.9 89.0

VGG-16 [107] 79.8 85.7 90.9
BN-Inception [17] 84.5 87.2 92.0

ResNet-101 86.1 86.2 92.6

Baseline Comparison on UCF101: A great deal of literature has shown that using deeper

ConvNets can improve overall performance for two-stream methods. However, to our best

knowledge, there is no comparison of how different ConvNets perform as the baseline.

Thus, we summarize their baseline performance in Table 3.3. In particular, the performance

of VGG-16 [104], GoogLeNet [66], and BN-Inception [88] on both spatial and temporal

streams are reported [17, 15]. In this particular experiment, we demonstrate a slightly

better baseline performance using ResNet-101 [105]. Using this baseline, we will then

demonstrate how each of the proposed methods leverages the baseline two-stream ConvNet

and show significant improvement by modeling temporal dynamics.

3.2.3 Experimental Results: TS-LSTM

Through rigorous experiments, we conclude that: (i) using temporal segments performs

better than no segments. (ii) LSTMs effectively learn the spatial and temporal feature in-

tegration with temporal segments while reducing the feature dimension. (iii) deep LSTM
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layers do not necessarily help and often lead to over-fitting. These experiments lead us

to conclude that despite their theoretical ability to extract temporal patterns over multiple

scales and lengths, in this case, their inputs must be pre-segmented, demonstrating a limi-

tation of the current usage of LSTMs. The summarization of the experiments on TS-LSTM

is shown in Table 3.4.

Temporal segments and pooling: Temporal segments have been shown to be useful with

temporal augmentation in end-to-end frameworks [17]. In the experiments, we demonstrate

that even with pre-extracted feature vectors from equally sampled frames in a video, tem-

poral segments can help in improving the classification accuracy. The difference between

using three or five segments is statistically insignificant and may highly depend on the type

of action performed in the video.

Spatial and temporal feature integration: Since the features from each segment are

concatenated together, the model suffers from over-fitting when the number of segments

increases, as can be seen from Table 3.4 with five segments. By adding an FC layer be-

fore the temporal max pooling layer, we can effectively control the dimensionality of the

embedded features, exploit the spatial and temporal correlation, and mitigate over-fitting.

Vanilla LSTM: LSTM cells have the ability to model temporal dynamics, but only shown

limited improvement from previous works. The experimental results show that there is

only a 0.2% improvement over two-stream ConvNet, which is consistent with [15] (88.0%

to 88.6%) and [13] (69.0% to 71.1% on RGB, 72.2% to 77.0% on flow), and [24] (63.3%

to 64.5%). The performance gained from LSTM cells decreases when the baseline two-

stream ConvNet is stronger in robustly representing video frames. Thus, we observe only

0.2% improvement when using a baseline two-stream ConvNet achieving 92.6% accuracy,

as opposed to 2%-5% improvement from a baseline of 70% accuracy [13]. Note that using

vanilla LSTM performs only similar to naive temporal max-pooling.

To further understand why using vanilla LSTM only has limited improvement, we an-

alyze the variance of feature representations across time from both RGB and optical flow
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Figure 3.5: Temporal variance of feature representations across time in UCF101.

modalities as shown in Figure 3.5. As we can see that, the majority of the video represen-

tations have low variance across time. This is significantly different from how we typically

used RNNs to encode or decode signals for speech and natural language processing.

TS-LSTM: By combining the temporal segments and LSTM cells, we can leverage the

temporal dynamics across each temporal segment, and significantly boost the prediction

accuracy. The experimental results also indicate that using deeper LSTM layers is prone

to overfitting. This is probably because the features generated from spatial and temporal-

stream ConvNets were fine-tuned to identify video classes at the frame level. The dynamics

of feature representations over time is not complicated enough for LSTM. Thus, increasing

the number of stacked LSTM layers results in overfitting. Our experimental results indicate

that using deeper LSTM layers is prone to overfitting on the UCF101 dataset. This is prob-

ably because our features generated from spatial and temporal ConvNets were fine-tuned to

identify video classes at the frame level. The dynamics of feature representations over time

is not as complicated as other sequential data, e.g. speech and text. Thus, increasing the

number of stacked LSTM layers tends to overfit the data in UCF101. Our experiments on

HMDB51 also confirm this hypothesis. The prediction accuracy on the HMDB51 dataset

using two-layer LSTM increased from 68.7% to 69.0% over single LSTM layer, since the
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Table 3.4: Complete Performance of different architecture choices for TS-LSTM.

TS BN Temporal Pooling BN FC Acc
LSTM

1 BN 512 BN 101 92.8
1 BN (512,512) BN 101 92.5
1 BN (512,512,512) BN 101 92.1

Temporal segment & Batch normalization
1 BN Max BN 101 92.8
3 BN Max BN 101 93.4
5 BN Max BN 101 93.2

Temporal Segment LSTM
3 BN Max + 512 BN 101 94.3
3 BN Max + (512,512) BN 101 94.2
3 BN Max + (512,512,512) BN 101 93.9

baseline model has not yet learned to robustly identify video classes at the frame level.

The above findings suggest that carefully re-thinking and understanding how LSTMs

model temporal information is necessary.

Note that Pan et al. [70] proposed Hierarchical Recurrent Neural Encoder (HRNE)

which combines the concept of temporal segments and hierarchical RNNs. Both of their

method and the proposed TS-LSTM share the merit of having hierarchical structure for the

RNN. However, using LSTM as first layer is still unable to extract distinct features from the

repetitive sequence representation. To verify our hypothesis, we further adapted HRNE on

UCF101, yet the results are only comparable when introducing FC layer within temporal

segments.

Overall, among the 15 classes in UCF101 with highest temporal variance for both RGB

and optical flow feature representations (see Figure 3.6), we demonstrate significant top-1

accuracy improvement particularly in HighJump (62% to 97%) and PizzaTossing (67% to

91%). This is mainly because our TS-LSTM is able to summarize the video representations

for each temporal segment, and the following LSTM is thus able to reason through time.
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Figure 3.6: 15 classes in UCF101 with highest temporal variance. The numbers are calcu-
lated from normalized features to emphasize the difference between classes and sorted in
an ascending order.

3.2.4 Experimental Results: Temporal-Inception

Here we discuss different factors for designing the architecture of the Temporal-ConvNet.

We conclude that: (i) applying multiple TCLs performs better than using single or dou-

ble TCLs. (ii) concatenating the outputs of each multi-flow module is the better way to

fuse different flows. (iii) with proper fusion methods, the multi-flow architecture has better

capability to explore the temporal information than the single-flow architecture. The sum-

marization of the experiments on Temporal-ConvNet is shown in Table 3.6. In the column

“Architecture”, “T” is denoted as one TCL. {} denotes as the stacked architecture, while ()

denotes as the wide (parallel) architecture. Based on these experiments, we can conclude

that convolution across time can effectively extract temporal patterns, but as with other ap-

plications the specific architecture is crucial and lessons learned from other architectures

and tasks can inform successful designs.

Temporal-ConvNet layer: One of the most important components in the Temporal-

ConvNet is the TCL, and the number of TCLs plays an important role, because the TCLs are
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Figure 3.7: Comparison of three different architectures of Temporal-ConvNet.

used to gradually reduce the dimension in the temporal direction, i.e., map the feature ma-

trices to a feature vector. Applying only single or double TCLs will still leave the temporal

direction to have a high dimensionality, and thus result in larger numbers of parameters and

cause over-fitting. We use multiple TCLs to avoid this issue, so the performance boosts as

expected.

Multi-flow architecture: There are three main questions in optimizing the multi-flow

architecture: 1) How to combine multiple flows? 2) How many flows should we have? 3)

What are the best kernel sizes?

For the first question, we propose two approaches. One is the proposed Temporal-

Inception, and the other one is the multi-flow version of Temporal-VGG. The difference

between these two approaches is where we place the concatenation layers, as shown in

Figure 3.7. We show that Temporal-Inception can effectively exploit and combine temporal

information obtained through various temporal receptive fields, and properly increases the

accuracy. The illustration of Temporal-VGG, Multi-flow Temporal-VGG, and Temporal-

Inception are shown in Figure 3.7.

Regarding the second question, increasing the flow number provides a better capability

to describe actions with different temporal scales, but it also greatly increases the chance

to overfit the data. Finally, the sizes of the temporal convolutional kernels are critical

since they directly affect how the network learns the temporal correlation. The different

kernel sizes essentially correspond to actions with different temporal duration and period.

In Temporal-Inception, kernel sizes of 5 and 7 achieve the best prediction accuracy.
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Table 3.5: Dimension reduction methods for Temporal-ConvNet. The performance is
shown on UCF101 split1. Conv1, n: convolution with the kernel size 1×1 and the out-
put filter dimension is n.

Reduce the dimension for each multi-flow module
Average pooling 92.8

Max pooling 92.9
Conv fusion (Conv1, 1) 92.8

Reduce the dimension after all the multi-flow modules
Average pooling 93.0

Max pooling 93.1
Conv fusion (Conv1, 4 - Conv1, 2 - Conv1, 1) 94.2

As shown in Table 3.6. Temporal-Inception has better performance than the multi-

flow version of Temporal-VGG, since Temporal-Inception effectively exploits and com-

bines temporal information obtained through various temporal receptive fields.

Filter dimension reduction: Although TCLs can reduce the temporal dimension, the filter

dimension will increase because of the concatenation of multi-flow modules. There are two

different approaches to reduce the filter dimension: (i) reduce the dimension for each multi-

flow module (ii) reduce the dimension after all the multi-flow modules. Average pooling,

max pooling and Conv fusion (convolve with a set of filters to reduce the filter dimension.)

are used as the dimension-reduction methods. Table 3.5 shows the experiment results.

The accuracy drops dramatically if applying the above methods for each module because

we partially lose information for each dimension-reduction process. We also found that

using multiple convolution layers to gradually reduce the dimension is better than directly

applying average or max pooling.

Feature map vs. feature vector: To address the issue of ignoring temporal correlation,

prior approaches adopted the concept of 3D kernels to exploit the pixel-wise correlation

between spatial and temporal feature maps [68, 16]. However, these methods mapped high-

dimensional feature maps to fully-connected layers, which cause large parameter numbers.

[68] mapped 5× 5×T (frame number) ×2× 32 feature maps to 4096-dimensional feature

vectors, and then forwarded to another two 2048-dim fully-connected layers. [16] applied
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Table 3.6: Complete Performance of different architecture choices for Temporal-ConvNet.

Architecture BN Dropout FC Accuracy
single TCL

T BN Dropout 1024 93.6
(T,T) BN Dropout 1024 92.6

double TCLs
{T,T} BN Dropout 1024 93.1

{(T,T),(T,T)} BN Dropout 1024 92.7
Temporal-VGG

{T,T,T,T} BN Dropout 1024 94.0
Multi-flow Temporal-VGG

({T,T,T,T},{T,T,T,T}) BN Dropout 1024 93.4
Temporal-Inception

{(T,T),(T,T),(T,T),(T,T)} BN Dropout 1024 94.2

the 3 × 3 × 3 max-pooling layer to 7 × 7 × T × 512 feature maps, and then mapped to

512-dimensional feature vectors. There are also another two fully-connected layers before

the final output. On the contrary, we only map 4096-dimensional feature vectors to 1024

dimension, which results in much less parameters needed. While [16] has totally 97M

parameters, our architecture only needs 4M parameters.

3.2.5 Final Performance

We summarize the results from the proposed TS-LSTM and Temporal-Inception on both

UCF101 and HMDB51 in Table 3.7. Our proposed methods achieved comparable state-of-

the-art performance by modeling the temporal dynamics extracted at only 25 video frame

feature representations obtained from each video. We have proven that even training with

consistent high-level abstract feature representations can still achieve comparable state-of-

the-art performance. Specifically, our TS-LSTM explore temporal segments and demon-

strate that, a simple temporal pooling layer and LSTM cells trained on a fixed and sam-

pled video frame representations can perform comparably with other state of the arts, even

when they were trained in an end-to-end fashion, e.g. TSN [17], ST-Multiplier [110], ST-

Pyramid Network [111], and TLE [112]. Note that we consider our method complementary
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to TSN [17] and might be further improved if we adapt temporal random sampling.

3.2.6 Ablation Study and Analysis

Modeling Temporal Dynamics: To further validate that our methods can model the tem-

poral dynamics, we train both TS-LSTM and Temporal-Inception using only a maximum

of the first 10 seconds of videos, e.g. 250 frames per video. Note that the number of frames

in the UCF101 dataset ranges from 30 to 1700. About 21% of videos are longer than 10

seconds.

Our experiments in Table 3.8 show that by only using the first 10 seconds of the video,

the baseline two-stream ConvNets achieve 92.9% accuracy which is slightly better than

when using the full length of the videos. On the other hand, when the proposed methods

see more frames of each video, both of the methods achieved better prediction accuracy

(TS-LSTM: 93.7 to 94.1%; Temporal-Inception: 93.2 to 93.9%). This verifies that our

proposed methods can successfully leverage the temporal information.

t-SNE Visualization: In addition to the prediction accuracy, we can also visualize the

distance between each of the video feature representation before the last fully-connected

layer. Ideally, the feature representations for videos belong to the same action class should

be very closed to each other compared to feature representations from other action classes.

We thus visualize the feature vectors from baseline two-stream ConvNet, TS-LSTM,

and Temporal-Inception methods using t-SNE visualization method. From Figure 3.8, we

can see that both of the proposed methods are able to group the test samples into more

distinct clusters. Thus, after the last fully-connected layer, both the proposed methods can

achieve better classification results.

To demonstrate how the proposed method improved upon the baseline method on spe-

cific action classes, we identify the two action classes in UCF101, which have significant

difference in prediction accuracy. We qualitatively show how they were misclassified by

the baseline approach but correctly predicted by the two proposed methods. Specifically,
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Figure 3.8: t-SNE visualization of the last feature vector representation.
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the two action classes are HighJump and PizzaTossing, both with 30% improved prediction

accuracy by the proposed methods.

By superimpose the snap image from each of the video on the data points optimized

from t-SNE and zoom-in these figures, as shown in Figure 3.9, it is clear that the proposed

TS-LSTM and Temporal-Inception further pushed the data points belong to the same class

toward each other in the high-dimensional space. For example, both HighJump and Piz-

zaTossing videos were originally scattered around the center of the figures, but were able

to grouped together by the two proposed methods. Specifically, the accuracy of individ-

ual methods are: 62.2% (baseline), 97.3% (TS-LSTM), and 94.6% (Temporal-Inception)

for HighJump; 66.7% (baseline), 90.9% (TS-LSTM), and 97.0% (Temporal-Inception) for

PizzaTossing.

Qualitative Analysis on UCF101: To further demonstrate how the proposed method

improves upon the baseline method, we use the action class HighJump to qualitatively

show how they were misclassified by the baseline approach but correctly predicted by the

two proposed methods.

For HighJump, all the videos in this category can be divided into two parts: running and

jumping. By applying the baseline approach, some videos are misclassified as other cate-

gories including running and jumping. In Figure 3.10, four “HighJump” example videos

are shown in the upper row. The baseline approach misclassifies Figures 3.10a and 3.10b

as JavelinThrow and LongJump, respectively. Figures 3.10c and 3.10d are misclassified as

FloorGymnastics and PoleVault, respectively. Examples from these incorrectly predicted

actions are shown in the lower row. However, those examples are correctly classified by

TS-LSTM and Temporal-Inception. This shows both proposed approaches can effectively

extract the temporal information.

In Figure 3.11, we show three different variations of this category. Figure 3.11(a) is

misclassified as Punch since both videos include two people and their arm motion are also

similar. Figure 3.11(b) is misclassified as Nunchucks because the people in both videos are
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1

(a) Baseline (b) Baseline

(c) TS-LSTM (d) TS-LSTM

(e) Temporal-Inception (f) Temporal-Inception

Figure 3.9: The t-SNE visualization of baseline two-stream ConvNet, TS-LSTM, and
Temporal-Inception on UCF101 split 1 (HighJump: (a)(c)(e), PizzaTossing: (b)(d)(f),).
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(a) HighJump (b) HighJump (c) HighJump (d) HighJump

(e) JavelinThrow (f) LongJump (g) FloorGymnastics (h) PoleVault

Figure 3.10: The category (HighJump) that is misclassified by the baseline approach but
correctly classified by TS-LSTM and Temporal-Inception.

making an object spinning. Finally, Figure 3.11(c) is misclassified as SalsaSpin since in

both videos, there are two objects spinning quickly. Those three examples are also correctly

classified by both of our approaches because we take the spatial and temporal correlation

into account to distinguish different categories.

(a) PizzaTossing (type 1)(b) PizzaTossing (type 2)(c) PizzaTossing (type 3)

(d) Punch (e) Nunchucks (f) SalsaSpin

Figure 3.11: Another category (PizzaTossing) that is misclassified by the baseline approach
but correctly classified by TS-LSTM and Temporal-Inception.

Learnable Pooling Methods: In the proposed TS-LSTM, we demonstrate that how a
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simple max or mean pooling method combined with LSTM can further improve the video

classification accuracy. On the other hand, there have been recent work shown a learn-

able pooling layer can be used for various image or video understanding tasks [121, 122,

123, 5, 124]. For instance, Ma et. al [5] compared the use of self-attention mechanism

with traditional LSTM and shown that learnable self-attention mechanism performs bet-

ter than directly using LSTM on video classification task. On the other hand, Long et

al. [124] thoroughly investigated various attention mechanisms and their integration with

a multi-modalities model. Certainly, the integration of attention methods with RNN is

an open-research problem as recently be investigated in the Natural Language Processing

field [125].

End-to-end Architecture: In addition to using pre-extracted feature vectors as the inputs,

we also demonstrate our proposed TS-LSTM and Temporal-Inception in an end-to-end

fashion. We use ResNet-50 as the backbone architecture and test the performance using

the first split of RGB stream on the HMDB51 dataset. We show that both our proposed

approaches also outperform the baseline approach and Temporal Segment Networks [17]

in an end-to-end fashion, as shown in Table 3.9,
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Table 3.7: State-of-the-art action recognition comparison on the UCF101 [23] and
HMDB51 [22] datasets.

Methods UCF101 HMDB51
LCRN [13] 82.9 -

LSTM composite [113] 84.3 -
FstCN [68] 88.1 59.1

Pairwise trajectory [60] 88.1 63.3
C3D [114] 86.7 -

Two-stream [12] 88.0 59.4
Two-stream dictionary [62] - 59.5

Salient trajectory [115] 88.2 60.0
MIDDL [59] - 60.3

Pyramid pooling [71] - 60.8
LSTM [15] 88.6 -
TDD [116] 91.5 65.9

Trajectory pooling [75] 92.1 65.6
Tube ConvNet [117] 92.3 -

Saliency Context [118] 92.4 -
Transformation [74] 92.4 63.4

Convolutional Two-stream [16] 92.5 65.4
Multi-stream [119] 92.6 -

SR-CNN [72] 92.6 -
Key volume [73] 93.1 67.2

Action-vector [63] 93.0 -
ST-ResNet [120] 93.4 -

TSN (2 modalities) [17] 94.0 68.5
ST-Multiplier [110] 94.2 68.9

ST-Pyramid Network [111] 94.6 68.9
TLE [112] 95.6 71.1
TS-LSTM 94.1 69.0

Temporal-Inception 93.9 67.5

Table 3.8: Action recognition using a maximum of 10 seconds (250 frames) of each video
in UCF101.

UCF101 [23] 10 seconds Full video
Two-stream ConvNet 92.9 92.6

TS-LSTM 93.7 94.1
Temporal-ConvNet 93.2 93.9

Table 3.9: End-to-end network comparison on the HMDB51 dataset (RGB split 1).

Baseline TSN [17] (3 segments) TS-LSTM (3 segments) Temporal-Inception
53.9 54.4 57.5 59.1
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CHAPTER 4

CROSS-DOMAIN VIDEO CLASSIFICATION

The objective of the proposed research is to address the domain shift problems in videos,

including spatial and temporal domain adaptation, as illustrated in Figure 1.4. To achieve

this goal, we present two large datasets for video domain adaptation, UCF-HMDBfull and

Kinetics-Gameplay, including both real and virtual domains. We use these datasets to

investigate the spatial and temporal domain shift problems across videos, and show that

aligning the features that encode temporal dynamics can improve the overall performance

compared to only aligning spatial features. We also propose Temporal Attentive Adver-

sarial Adaptation Network (TA3N) to simultaneously attend, align, and learn temporal

dynamics across domains, which shows state-of-the-art performance on all of the cross-

domain datasets investigated. The work is implemented using PyTorch [126, 127] and is

publicly available1. For more details, please check the published paper [128].

4.1 Technical Approach

We first introduce our baseline model which simply extends image-base DA for videos

using the temporal pooling mechanism (Section 4.1.1). And then we investigate better

ways to incorporate temporal dynamics for video DA (Section 4.1.2), and describe our

final proposed method with the domain attention mechanism (Section 4.1.3).

4.1.1 Baseline Model

Given the recent success of large-scale video classification using CNNs [11], we build our

baseline on such architectures, as shown in the lower part of Figure 4.1.

1https://github.com/cmhungsteve/TA3N

50

https://github.com/cmhungsteve/TA3N


ConvNetRaw 
video

…

Frame
features 

ℒ𝑦𝐺𝑠𝑓 𝐺𝑦

Te
m

p
o

ral 
p

o
o

lin
g

G
R

L 𝐺𝑠𝑑
ℒ𝑡𝑑

ℒ𝑠𝑑
𝐺𝑠𝑑

𝐺𝑡𝑑

domain 
pred.

class 
pred.

𝐺𝑡𝑓

Figure 4.1: Baseline architecture (TemPooling) with the adversarial discriminators Ĝsd and
Ĝtd.

We first feed the input video Xi = {x1i , x2i , ..., xKi } extracted from ResNet [129] pre-

trained on ImageNet into our model, where xji is the jth frame-level feature representation

of the ith video. The model can be divided into two parts: 1) Spatial module Gsf (.; θsf ),

which consists of multilayer perceptrons (MLP) that aims to convert the general-purpose

feature vectors into task-driven feature vectors, where the task is video classification in this

paper; 2) Temporal module Gtf (.; θtf ) aggregates the frame-level feature vectors to form a

single video-level feature vector for each video. In our baseline architecture, we conduct

mean-pooling along the temporal direction to generate video-level feature vectors, and note

it as TemPooling. Finally, another fully-connected layer Gy(.; θy) converts the video-level

features into the final predictions, which are used to calculate the class prediction loss Ly.

Similar to image-based DA problems, the baseline approach is not able to generalize

to data from different domains due to domain shift. Therefore, we integrate TemPool-

ing with the unsupervised DA method inspired by one of the most popular adversarial-

based approaches, DANN [42, 43]. The main idea is to add additional domain classifiers

Gd(.; θd), to discriminate whether the data is from the source or target domain. Before

back-propagating the gradients to the main model, a gradient reversal layer (GRL) is in-

serted between Gd and the main model to invert the gradient, as shown in Figure 4.1.

During adversarial training, the parameters θsf are learned by maximizing the domain dis-

crimination loss Ld, and parameters θd are learned by minimizing Ld with the domain label

51



d. Therefore, the feature generator Gf will be optimized to gradually align the feature

distributions between the two domains.

In this paper, we note the Adversarial Discriminator Ĝd as the combination of a gradient

reversal layer (GRL) and a domain classifier, and insert Ĝd into TemPooling in two ways:

1) Ĝsd: show how directly applying image-based DA approaches can benefit video DA; 2)

Ĝtd: indicate how DA on temporal-dynamics-encoded features benefits video DA.

The prediction loss Ly, spatial domain loss Lsd and temporal domain loss Ltd can be

expressed as follows (ignoring all the parameter symbols through the paper to save space):

Liy = Ly(Gy(Gtf (Gsf (Xi))), yi) (4.1)

Lisd =
1

K

K∑
j=1

Ld(Gsd(Gsf (x
j
i )), di) (4.2)

Litd = Ld(Gtd(Gtf (Gsf (Xi))), di) (4.3)

where K is the number of frames sampled from each video. L is the cross entropy loss

function.

The overall loss can be expressed as follows:

L =
1

NS

NS∑
i=1

Liy −
1

NS∪T

NS∪T∑
i=1

(λsLisd + λtLitd) (4.4)

where NS equals the number of source data, and NS∪T equals the number of all data. λs

and λt is the trade-off weighting for spatial and temporal domain loss.

4.1.2 Integration of Temporal Dynamics with DA

One main drawback of directly integrating image-based DA approaches into our baseline

architecture is that the feature representations learned in the model are mainly from the

spatial features. Although we implicitly encode the temporal information by the temporal

pooling mechanism, the relation between frames is still missing. Therefore, we would like
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to address two questions: 1) Does the video DA problem benefit from encoding temporal

dynamics into features? 2) Instead of only modifying feature encoding methods, how can

DA be further integrated while encoding temporal dynamics into features?

To answer the first question, given the fact that humans can recognize actions by rea-

soning the observations across time, we propose the TemRelation architecture by replacing

the temporal pooling mechanism with the Temporal Relation module, which is modified

from [130, 21], as shown in Figure 4.3.

The n-frame temporal relation is defined by the function:

Rn(Vi) =
∑
m

gφ(n)((V n
i )m) (4.5)

where (V n
i )m = {vai , vbi , ...}m is themth set of frame-level representations from n temporal-

ordered sampled frames. a and b are the frame indices. We fuse the feature vectors that are

time-ordered with the function gφ(n) , which is an MLP with parameters φ(n). To capture

temporal relations at multiple time scales, we sum up all the n-frame relation features into

the final video representation. In this way, the temporal dynamics are explicitly encoded

into features. We then insert Ĝd into TemRelation as we did for TemPooling.

Although aligning temporal-dynamic-encoded features benefits video DA, feature en-

coding and DA are still two separate processes, leading to sub-optimal DA performance.

Therefore, we address the second question by proposing Temporal Adversarial Adapta-

tion Network (TA2N), which explicitly integrates Ĝd inside the Temporal module to align

the model across domains while learning temporal dynamics. Specifically, we integrate

each n-frame relation with a corresponding relation discriminator Ĝn
rd because different n-

frame relations represent different temporal characteristics, which correspond to different

parts of actions. The relation domain loss Lrd can be expressed as follows:

Lird =
1

K − 1

K∑
n=2

Ld(G
n
rd(Rn(Gsf (Xi))), di) (4.6)

The experimental results show that our integration strategy can effectively align domains

spatio-temporally for videos, and outperform those which are extended from sophisticated
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Figure 4.2: The domain attention mechanism in TA3N. Thicker arrows correspond to larger
attention weights.

DA approaches although TA2N is adopted from a simpler DA method (DANN) (see details

in Tables 4.5 to 4.7).

4.1.3 Temporal Attentive Alignment for Videos

The final video representation of TA2N is generated by aggregating multiple local tempo-

ral features. Although aligning temporal features across domains benefits video DA, not

all the features are equally important to align. In order to effectively align overall temporal

dynamics, we want to focus more on aligning the local temporal features which have larger

domain discrepancy. Therefore, we represent the final video representation as a combina-

tion of local temporal features with different attention weighting, as shown in Figure 4.2,

and aim to attend to features of interest that are domain discriminative so that the DA

mechanism can focus on aligning those features. The main question becomes: How to

incorporate domain discrepancy for attention?

To address this, we propose Temporal Attentive Adversarial Adaptation Network

(TA3N), as shown in Figure 4.3, by introducing the domain attention mechanism, which

utilize the entropy criterion to generate the domain attention value for each n-frame relation
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feature as below:

wni = 1−H(d̂ni ) (4.7)

where d̂ni is the output of Gn
rd for the ith video. H(p) = −

∑
k pk · log(pk) is the entropy

function to measure uncertainty. wni increases when H(d̂ni ) decreases, which means the

domains can be distinguished well. We also add a residual connection for more stable opti-

mization. Therefore, the final video feature representation hi generated from attended local

temporal features, which are learned by local temporal modules G(n)
tf , can be expressed as:

hi =
K∑
n=2

(wni + 1) ·G(n)
tf (Gsf (Xi)) (4.8)

Finally, we add the minimum entropy regularization to refine the classifier adaptation.

However, we only want to minimize the entropy for the videos that are similar across

domains. Therefore, we attend to the videos which have low domain discrepancy, so that

we can focus more on minimizing the entropy for these videos. The attentive entropy loss

Lae can be expressed as follows:

Liae = (1 +H(d̂i)) ·H(ŷi) (4.9)

where d̂i and ŷi is the output of Gtd and Gy, respectively. We also adopt the residual

connection for stability.

By combining Equations (4.1) to (4.3), (4.6) and (4.9), and replacing Gsf and Gtf with

hi by Equation (4.8), the overall loss of TA3N can be expressed as follows:

L =
1

NS

NS∑
i=1

Liy +
1

NS∪T

NS∪T∑
i=1

γLiae

− 1

NS∪T

NS∪T∑
i=1

(λsLisd + λrLird + λtLitd)

(4.10)

where λs, λr and λt is the trade-off weighting for each domain loss. γ is the weighting for

the attentive entropy loss. All the weightings are chosen via grid search.

Our proposed TA3N and TADA [93] both utilize entropy functions for attention but

with different perspectives. TADA aims to focus on the foreground objects for image DA,
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Figure 4.3: The overall architecture of the proposed Temporal Attentive Adversarial Adap-
tation Network (TA3N) (rotated for clarity).

while TA3N aims to find important and discriminative parts of temporal dynamics to align

for video DA.

4.2 Datasets

There are very few benchmark datasets for video DA, and only small-scale datasets have

been widely used [48, 49, 50]. Therefore, we specifically create two cross-domain datasets,

56



Table 4.1: The summary of the cross-domain video datasets.

UCF-HMDBsmall UCF-Olympic UCF-HMDBfull Kinetics-Gameplay
length (sec.) 1 - 21 1 - 39 1 - 33 1 - 10

class # 5 6 12 30

resolution
UCF: 320× 240 / Olympic: vary / HMDB: vary×240

Kinetics: vary / Gameplay: 1280× 720

frame rate
UCF: 25 / Olympic: 30 / HMDB: 30

Kinetics: vary / Gameplay: 30

training video #
UCF: 482 UCF: 601 UCF: 1438 Kinetics: 43378

HMDB: 350 Olympic: 250 HMDB: 840 Gameplay: 2625

validation video #
UCF: 189 UCF: 240 UCF: 571 Kinetics: 3246

HMDB: 150 Olympic: 54 HMDB: 360 Gameplay: 749

UCF-HMDBfull and Kinetics-Gameplay, to evaluate the proposed approaches for the

video DA problem, as shown in Table 4.1.

4.2.1 UCF-HMDBfull

We extend UCF-HMDBsmall [48], which only selects 5 visually highly similar categories,

by collecting all of the relevant and overlapping categories between UCF101 [23] and

HMDB51 [22], which results in 12 categories: climb, fencing, golf, kick ball, pullup,

punch, pushup, ride bike, ride horse, shoot ball, shoot bow, and walk. Each category may

correspond to multiple categories in the original UCF101 or HMDB51 dataset, as shown

in Table 4.2. This dataset, UCF-HMDBfull, includes 1438 training videos and 571 vali-

dation videos from UCF, and 840 training videos and 360 validation videos from HMDB,

as shown in Table 4.1. Most videos in UCF are from certain scenarios or similar envi-

ronments, while videos in HMDB are in unconstrained environments and different camera

angles, as shown in Figure 4.4. We follow the official split method to separate training and

validation sets. This dataset, UCF-HMDBfull, includes more than 3000 video clips, which

is around 3 times larger than UCF-HMDBsmall and UCF-Olympic.
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Table 4.2: The lists of all collected categories in UCF and HMDB.

UCF-HMDBfull UCF HMDB
climb RockClimbingIndoor, climb

RopeClimbing
fencing Fencing fencing

golf GolfSwing golf
kick ball SoccerPenalty kick ball

pullup PullUps pullup
punch Punch, punch

BoxingPunchingBag,
BoxingSpeedBag

pushup PushUps pushup
ride bike Biking ride bike
ride horse HorseRiding ride horse
shoot ball Basketball shoot ball
shoot bow Archery shoot bow

walk WalkingWithDog walk

4.2.2 Kinetics-Gameplay

In addition to real-world videos, we are also interested in virtual-world videos for DA.

While there are more than ten real-world video datasets, there is a limited number of virtual-

world datasets for video classification. It is mainly because rendering realistic human ac-

tions using game engines requires gaming graphics expertise which is time-consuming.

Therefore, we create the Gameplay dataset by collecting gameplay videos from currently

popular video games, Detroit: Become Human and Fortnite, to build our own video dataset

for the virtual domain. The total length of the videos is 5 hours and 41 minutes. We

segment all of the raw, untrimmed videos into video clips according to human annotations,

which results in 91 categories: argue, arrange object, assemble object, break, bump, carry,

carve, chop wood, clap, climb, close door, close others, crawl, cross arm, crouch, crum-

ple, cry, cut, dance, draw, drink, drive, eat, fall down, fight, fix hair, fly helicopter, get off,

grab, haircut, hit, hit break, hold, hug, juggle coin, jump, kick, kiss, kneel, knock, lick,

lie down, lift, light up, listen, make bed, mop floor, news anchor, open door, open others,

paint brush, pass object, pet, poke, pour, press, pull, punch, push, push object, put object,
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(a) fencing

(b) kick ball

(c) walk

Figure 4.4: Snapshots of some example categories on UCF-HMDBfull.

raise hand, read, row boat, run, shake hand, shiver, shoot gun, sit, sit down, slap, sleep,

slide, smile, stand, stand up, stare, strangle, swim, switch, take off, talk, talk phone, think,

throw, touch, walk, wash dishes, water plant, wave hand, and weld. The maximum length

for each video clip is 10 seconds, and the minimum is 1 second. We also split the dataset

into training, validation, and testing sets by randomly selecting videos in each category

with the ratio 7:2:1.
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For the real domain, we use one of the largest public video datasets Kinetics-600 [8, 9].

We follow the closed-set DA setting [36] to select 30 overlapping categories between the

Kinetics-600 and Gameplay datasets to build the Kinetics-Gameplay dataset with both do-

mains: break, carry, clean floor, climb, crawl, crouch, cry, dance, drink, drive, fall down,

fight, hug, jump, kick, light up, news anchor, open door, paint brush, paraglide, pour, push,

read, run, shoot gun, stare, talk, throw, walk, and wash dishes. Each category may also cor-

respond to multiple categories in both datasets, as shown in Table 4.3. Kinetics-Gameplay

includes 43378 training videos and 3246 validation videos from Kinetics, and 2625 train-

ing videos and 749 validation videos from Gameplay, as shown in Table 4.1. Kinetics-

Gameplay is much more challenging than UCF-HMDBfull due to the significant domain

shift between the distributions of virtual and real data. Furthermore, The alignment be-

tween imbalanced-scaled source and target data is also another challenge. Some example

snapshots are shown in Figure 4.5.

Figure 4.5: Some example screenshots from YouTube videos in Kinetics-Gameplay (left
two: Gameplay, right two: Kinetics)

4.3 Experiments

We therefore evaluate DA approaches on four datasets: UCF-Olympic, UCF-HMDBsmall,

UCF-HMDBfull and Kinetics-Gameplay.
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Table 4.3: The lists of all collected categories in Kinetics and Gameplay.

Kinetics-Gameplay Kinetics Gameplay

break breaking boards, smashing
break, bump,
hit break

carry carrying baby carry
clean floor mopping floor mop floor
climb climbing a rope, climbing ladder, climbing tree, climb

ice climbing, rock climbing
crawl crawling baby crawl
crouch squat, lunge crouch, kneel
cry crying cry
dance belly dancing, krumping, robot dancing dance
drink drinking shots, tasting beer drink
drive driving car, driving tractor drive
fall down falling off bike, falling off chair, faceplanting fall down
fight pillow fight, capoeira, wrestling, fight, strangle,

punching bag, punching person (boxing) punch, hit
hug hugging (not baby), hugging baby hug
jump high jump, jumping into pool, jump

parkour
kick drop kicking, side kick kick
light up lighting fire light fire
news anchor news anchoring news anchor
open door opening door, opening refrigerator open door
paint brush brush painting paint brush
paraglide paragliding paraglide
pour pouring beer pour
push pushing car, pushing cart, pushing wheelbarrow, push,

pushing wheelchair, push up push object
read reading book, reading newspaper read
run running on treadmill, jogging run
shoot gun playing laser tag, playing paintball shoot gun
stare staring stare

talk talking on cell phone, arguing, testifying
talk, argue,
talk phone

throw
throwing axe, throwing ball (not baseball or
American football),

throw

throwing knife, throwing water balloon

walk
walking the dog, walking through snow, jaywalk-
ing

walk

wash dishes washing dishes wash dishes
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4.3.1 Experimental Setup

UCF-Olympic and UCF-HMDBsmall: First, we evaluate our approaches on UCF-

Olympic and UCF-HMDBsmall, and compare with all other works that also evaluate on

these two datasets [48, 49, 50]. We follow the default settings, but the method to split the

UCF video clips into training and validations sets is not specified in these papers, so we

follow the official split method from UCF101 [23].

UCF-HMDBfull and Kinetics-Gameplay: For the self-collected datasets, we follow the

common experimental protocol of unsupervised DA [36]: the training data consists of la-

beled data from the source domain and unlabeled data from the target domain, and the val-

idation data is all from the target domain. However, unlike most of the image DA settings,

our training and validation data in both domains are separate to avoid potentially overfit-

ting while aligning different domains. To compare with image-based DA approaches, we

extend several state-of-the-art methods [43, 41, 45, 46] for video DA with our TemPooling

and TemRelation architectures, which are shown as follows:

1. DANN [43]: we add one adversarial discriminator Ĝsd right after the spatial module

and add another one Ĝtd right after the temporal module. We do not add one more

discriminator for relation features for the fair comparison between TemPooling and

TemRelation.

2. JAN [41]: we add Joint Maximum Mean Discrepancy (JMMD) to the final video

representation and the class prediction.

3. AdaBN [45]: we integrate an adaptive batch-normalization layer into the feature gen-

erator Gsf . In the adaptive batch-normalization layer, the statistics (mean and vari-

ance) for both source and target domains are calculated, but only the target statistics

are used for validating the target data.

4. MCD [46]: we add another classifier G′y and follow the adversarial training proce-
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dure of Maximum Classifier Discrepancy to iteratively optimize the generators (Gsf

and Gtf ) and the classifier (Gy).

The results are shown in Tables 4.5 to 4.7. The difference between the “Target only”

and “Source only” settings is the domain used for training. The “Target only” setting can be

regarded as the upper bound without domain shift while the “Source only” setting shows

the lower bound which directly applies the model trained with source data to the target

domain without modification.

4.3.2 Implementation Details

Detailed Architectures: The architecture with detailed notations for the baseline is shown

in Figure 4.6. For our proposed TA3N, after generating the n-frame relation features Rn by

the temporal relation module, we calculate the domain attention value wn using the domain

prediction d̂ from the relation discriminator Gn
rd, and then attend to Rn using wn with a

residual connection. To calculate the attentive entropy loss Lae, since the videos with low

domain discrepancy are what we only want to focus on, we attend to the class entropy loss

H(ŷ) using the domain entropy H(d̂) as the attention value with a residual connection, as

shown in Figure 4.7.

ConvNetRaw 
video

…

Frame-level 
feature 
vectors

Video model

C
lass 

p
red

ictio
n

Spatial 
module

Temporal 
module

ℒ𝑦𝐺𝑠𝑓 𝐺𝑦

Te
m

p
o

ral 
p

o
o

lin
g

G
R

L

Domain 
classifier

D
o

m
ain

 
p

red
ictio

n

𝐺𝑠𝑑 ℒ𝑡𝑑

ℒ𝑠𝑑
𝐺𝑠𝑑

𝐺𝑡𝑑

Figure 4.6: The detailed baseline architecture (TemPooling) with the adversarial discrimi-
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Optimization: Our implementation is based on the PyTorch [126, 127] framework. We

utilize the ResNet-101 model pre-trained on ImageNet as the frame-level feature extractor.

We sample a fixed number K of frame-level feature vectors with equal spacing in the

temporal direction for each video (K is equal to 5 in our setting to limit computational

resource requirements). For optimization, the initial learning rate is 0.03, and we follow

one of the commonly used learning-rate-decreasing strategies shown in DANN [43]. We

use stochastic gradient descent (SGD) as the optimizer with the momentum and weight

decay as 0.9 and 1× 10−4, respectively. The ratio between the source and target batch size

is proportional to the scale between the source and target datasets. The source batch size

depends on the scale of the dataset, which is 32 for UCF-Olympic and UCF-HMDBsmall,

128 for UCF-HMDBfull and 512 for Kinetics-Gameplay. The optimized values of λs, λr

and λt are found using the coarse-to-fine grid-search approach. We first search using a

coarse-grid with the geometric sequence [0, 10−3, 10−2, ..., 100, 101]. After finding the

optimized range of values, [0, 1], we search again using a fine-grid with the arithmetic

sequence [0, 0.25, ..., 1]. The final values are 0.75 for λs, 0.5 for λr and 0.75 for λt,

respectively. We search γ only by a coarse-grid, and the best value is 0.3.

4.3.3 Experimental Results

UCF-Olympic and UCF-HMDBsmall: In these two datasets, our approach outperforms

all the previous methods by at least 6.5% absolute difference (98.15% - 91.60%) on the “U

→ O” setting, and 9% difference (99.33% - 90.25%) on the “U→ H” setting, as shown in

Table 4.4.

These results also show that the performance on these datasets is saturated. With a

strong CNN as the backbone architecture, even our baseline architecture TemPooling can

achieve high accuracy without any DA method (e.g. 96.3% for “U→ O”). This suggests

that these two datasets are not enough to evaluate more sophisticated DA approaches, so

larger-scale datasets for video DA are needed.
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Table 4.4: The accuracy (%) for the state-of-the-art work on UCF-Olympic and UCF-
HMDBsmall (U: UCF, O: Olympic, H: HMDB).

Source→ Target U→ O O→ U U→ H H→ U
W. Sultani et al. [48] 33.33 47.91 68.70 68.67

T. Xu et al. [49] 87.00 75.00 82.00 82.00
AMLS (GFK) [50]† 84.65 86.44 89.53 95.36
AMLS (SA) [50]† 83.92 86.07 90.25 94.40

DAAA [50]†‡ 91.60 89.96 - -
TemPooling 96.30 87.08 98.67 97.35

TemPooling + DANN [43] 98.15 90.00 99.33 98.41
Ours (TA2N) 98.15 91.67 99.33 99.47
Ours (TA3N) 98.15 92.92 99.33 99.47

UCF-HMDBfull: We then evaluate our approaches and compare with other image-based

DA approaches on the UCF-HMDBfull dataset, as shown in Tables 4.5 and 4.6. The accu-

racy difference between “Target only” and “Source only” indicates the domain gap. The

gaps for the HMDB dataset are 11.11% for TemRelation and 10.28% for TemPooling (see

Table 4.5), and the gaps for the UCF dataset are 21.01% for TemRelation and 17.16% for

TemPooling (see Table 4.6). It is worth noting that the “Source only” accuracy of our base-

line architecture (TemPooling) on UCF-HMDBfull is much lower than UCF-HMDBsmall

(e.g. 28.39 lower for “U→ H”), which implies that UCF-HMDBfull contains much larger

domain discrepancy than UCF-HMDBsmall. The value “Gain” is the difference from the

“Source only” accuracy, which directly indicates the effectiveness of the DA approaches.

We now answer the two questions for video DA in Section 4.1.2 (see Tables 4.5 and 4.6):

1. Does the video DA problem benefit from encoding temporal dynamics into features?

From Tables 4.5 and 4.6, we see that for the same DA method, TemRelation out-

performs TemPooling in most cases, especially for the gain value. For example,

“TemPooling+DANN” reaches 0.83% absolute accuracy gain on the “U → H” set-

ting and 0.17% gain on the “H→ U” setting while “TemRelation+DANN” reaches

3.61% gain on “U → H” and 2.45% gain on “H → U”. This means that applying

DA approaches to the video representations which encode the temporal dynamics
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Table 4.5: The comparison of accuracy (%) with other approaches on UCF-HMDBfull (U
→ H).

Temporal Module TemPooling TemRelation
Acc. Gain Acc. Gain

Target only 80.56 - 82.78 -
Source only 70.28 - 71.67 -
DANN [43] 71.11 0.83 75.28 3.61

JAN [41] 71.39 1.11 74.72 3.05
AdaBN [45] 75.56 5.28 72.22 0.55
MCD [46] 71.67 1.39 73.89 2.22

Ours (TA2N) N/A - 77.22 5.55
Ours (TA3N) N/A - 78.33 6.66

improves the overall performance for cross-domain video classification.

2. How to further integrate DA while encoding temporal dynamics into features?

Although integrating TemRelation with image-based DA approaches generally has

better alignment performance than the baseline (TemPooling), feature encoding and

DA are still two separate processes. The alignment happens only before and after

the temporal dynamics are encoded in features. In order to explicitly force alignment

of the temporal dynamics across domains, we propose TA2N, which reaches 77.22%

(5.55% gain) on “U→ H” and 80.56% (6.66% gain) on “H→ U”. Tables 4.5 and 4.6

show that although TA2N is adopted from a simple DA method (DANN), it still out-

performs other approaches which are extended from more sophisticated DA methods

but do not follow our strategy.

Finally, with the domain attention mechanism, our proposed TA3N reaches 78.33%

(6.66% gain) on “U→ H” and 81.79% (7.88% gain) on “H→ U”, achieving state-of-the-

art performance on UCF-HMDBfull in terms of accuracy and gain, as shown in Tables 4.5

and 4.6.

Kinetics-Gameplay: Kinetics-Gameplay is much more challenging than UCF-HMDBfull

because the data is from real and virtual domains, which have more severe domain shifts.

Here we only utilize TemRelation as our backbone architecture since it is proved to out-
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Table 4.6: The comparison of accuracy (%) with other approaches on UCF-HMDBfull (H
→ U).

Temporal Module TemPooling TemRelation
Acc. Gain Acc. Gain

Target only 92.12 - 94.92 -
Source only 74.96 - 73.91 -
DANN [43] 75.13 0.17 76.36 2.45

JAN [41] 80.04 5.08 79.69 5.79
AdaBN [45] 76.36 1.40 77.41 3.51
MCD [46] 76.18 1.23 79.34 5.44

Ours (TA2N) N/A - 80.56 6.66
Ours (TA3N) N/A - 81.79 7.88

perform TemPooling on UCF-HMDBfull. Table 4.7 shows that the accuracy gap between

“Source only” and “Target only” is 47.27%, which is more than twice the number in UCF-

HMDBfull. In this dataset, TA3N also outperforms all the other DA approaches by increas-

ing the “Source only ” accuracy from 17.22% to 27.50%.

JAN [41] does not perform well on Kinetics-Gameplay compared to the performance

on UCF-HMDBfull. The main reason is the imbalanced size between the source and tar-

get data in Kinetics-Gameplay. The discrepancy loss MMD is calculated using the same

number of source and target data (not the case for other types of DA approaches). There-

fore, in each iteration, MMD is calculated using parts of the source batch and the whole

target batch. This means that the domain discrepancy is reduced only between part of

source data and target data during training, so the learned model is still overfitted to the

source domain. The discrepancy loss MMD works well when the source and target data

are balanced, which is the case for most image DA datasets and UCF-HMDBfull, but not

for Kinetics-Gameplay.

4.3.4 Ablation Study and Analysis

Integration of Ĝd: We use UCF-HMDBfull to investigate the performance for integrating

Ĝd in different positions. There are three ways to insert the adversarial discriminator into

our architectures, where each corresponds to different feature representations, leading to
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Table 4.7: The comparison of accuracy (%) with other approaches on Kinetics-Gameplay.

Acc. Gain
Target only 64.49 -
Source only 17.22 -
DANN [43] 20.56 3.34

JAN [41] 18.16 0.94
AdaBN [45] 20.29 3.07
MCD [46] 19.76 2.54

Ours (TA2N) 24.30 7.08
Ours (TA3N) 27.50 10.28

Table 4.8: The full evaluation of accuracy (%) for integrating Ĝd in different positions
without the attention mechanism.

S→ T UCF→ HMDB HMDB→ UCF
Temporal

TemPooling TemRelation TemPooling TemRelation
Module

Target only 80.56 (-) 82.78 (-) 92.12 (-) 94.92 (-)
Source only 70.28 (-) 71.67 (-) 74.96 (-) 73.91 (-)

Ĝsd 71.11 (0.83) 74.44 (2.77) 75.13 (0.17) 74.44 (1.05)
Ĝtd 71.11 (0.83) 74.72 (3.05) 75.13 (0.17) 75.83 (1.93)
Ĝrd - (-) 76.11 (4.44) - (-) 75.13 (1.23)

All Ĝd 71.11 (0.83) 77.22 (5.55) 75.13 (0.17) 80.56 (6.66)

three types of discriminators Ĝsd, Ĝtd and Ĝrd, which are shown in Figure 4.3 and the full

experimental results are shown in Table 4.8. For the TemRelation architecture, the accuracy

of utilizing Ĝtd shows better performance than utilizing Ĝsd (averagely 0.58% absolute

gain improvement across two tasks), while the accuracies are the same for TemPooling.

This means that the temporal relation module can encode temporal dynamics that help

the video DA problem, but temporal pooling cannot. Utilizing the relation discriminator

Ĝrd can further improve the performance (0.92% improvement) since we simultaneously

align and learn the temporal dynamics across domains. Finally, by combining all three

discriminators, TA2N improves even more (4.20% improvement).

Domain Attention Mechanism: We also apply the domain attention mechanism to Tem-

Pooling by attending to the raw frame features, as shown in Figure 4.8. Tables 4.9 and 4.10

show that the domain attention mechanism improves the performance for both TemPool-
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ing and TemRelation architectures, including all types of adversarial discriminators. This

implies that video DA can benefit from domain attention even if the backbone architecture

does not encode temporal dynamics.
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Table 4.9: The evaluation of accuracy (%) for integrating Ĝd in different positions on “U
→ H”.

Temporal
TemPooling

TemPooling
TemRelation

TemRelation
Module + Attn. + Attn.

Target only 80.56 (-) 82.78 (-)
Source only 70.28 (-) 71.67 (-)

Ĝsd 71.11 (0.83) 71.94 (1.66) 74.44 (2.77) 75.00 (3.33)
Ĝtd 71.11 (0.83) 72.78 (2.50) 74.72 (3.05) 76.94 (5.27)
Ĝrd - (-) - (-) 76.11 (4.44) 76.94 (5.27)

All Ĝd 71.11 (0.83) 73.06 (2.78) 77.22 (5.55) 78.33 (6.66)

We also compare the domain attention module with the general attention module, which

calculates the attention weights via the FC-Tanh-FC-Softmax architecture. However, it per-

forms worse since the weights are computed within one domain, lacking of the considera-

tion of domain discrepancy, as shown in Table 4.11.
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Table 4.10: The evaluation of accuracy (%) for integrating Ĝd in different positions on “H
→ U”.

Temporal
TemPooling

TemPooling
TemRelation

TemRelation
Module + Attn. + Attn.

Target only 92.12 (-) 94.92 (-)
Source only 74.96 (-) 73.91 (-)

Ĝsd 75.13 (0.17) 77.58 (2.62) 74.44 (1.05) 78.63 (4.72)
Ĝtd 75.13 (0.17) 78.46 (3.50) 75.83 (1.93) 81.44 (7.53)
Ĝrd - (-) - (-) 75.13 (1.23) 78.98 (5.07)

All Ĝd 75.13 (0.17) 78.46 (3.50) 80.56 (6.66) 81.79 (7.88)

Table 4.11: The comparison of different attention methods.

S→ T UCF→ HMDB HMDB→ UCF
Target only 82.78 (-) 94.92 (-)
Source only 71.67 (-) 73.91 (-)
No Attention 77.22 (5.55) 80.56 (6.66)

General Attention 77.22 (5.55) 80.91 (7.00)
Domain Attention 78.33 (6.66) 81.79 (7.88)

Visualization of Distribution: To investigate how our approaches bridge the gap between

source and target domains, we visualize the distribution of both domains using t-SNE [131].

Figures 4.9a and 4.9b show that the models using the TemPooling architecture poorly align

the distribution between different domains, even with the integration of image-based DA

approaches. Figure 4.9c shows the temporal relation module helps to group source data

(blue) into denser clusters but is still not able to generalize the distribution into the target

domains (orange). Finally, with TA3N, data from both domains are clustered and aligned

with each other (Figure 4.9d).

Domain Discrepancy Measure: To measure the alignment between different domains, we

use Maximum Mean Discrepancy (MMD) and domain loss, which are calculated using the

final video representations. Lower MMD values and higher domain loss both imply smaller

domain gap. TA3N reaches lower discrepancy loss (0.0842) compared to the TemPooling

baseline (0.184), and shows great improvement in terms of the domain loss (from 1.116 to

1.9286), as shown in Table 4.12.

71



(a) TemPooling (b) TemPooling + DANN [43]

(c) TemRelation (d) TA3N

Figure 4.9: The comparison of t-SNE visualization with source (blue) and target (orange)
distributions.

Table 4.12: The discrepancy loss (MMD), domain loss and validation accuracy of our
baselines and proposed approaches.

Discrepancy Domain Validation
loss loss accuracy

TemPooling 0.1840 1.1163 70.28
TemPooling + DANN [43] 0.1604 1.2023 71.11

TemRelation 0.2626 1.7588 71.67
TA3N 0.0842 1.9286 78.33
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More Comparison:

1. Other backbone architectures: 3D ConvNets [14] have also been used for extracting

video-level feature representations. However, 3D ConvNets consume a great deal

of GPU memory, and [20] also shows that 3D ConvNets are limited by efficiency

and effectiveness issues when extracting temporal information. Optical-flow extracts

the motion characteristics between neighbor frames to compensate for the lack of

temporal information in raw RGB frames. In this paper, we focus on attending to

the temporal dynamics to effectively align domains even with only RGB frames. We

consider optical-flow to be complementary to our method..

2. Cycle-consistency: Some papers related to cycle-consistency [132, 133] introduce

self-supervised methods for learning visual correspondence between images or videos

from unlabeled videos. They use cycle-consistency as free supervision to learn video

representations. The main difference from our approach is that we explicitly align

the feature spaces between source and target domains, while these self-supervised

methods aim to learn general representations using only the source domain. We see

cycle-consistency as a complementary method that can be integrated into our ap-

proach to achieve more effective domain alignment.

3. Robotics: In Robotics, it is a common trend to transfer the models trained in sim-

ulation to real world. One of the effective method to bridge the domain gap is ran-

domizing the dynamics of the simulator during training to improve the robustness for

different environments [134]. The setting is different from our task because we focus

on feature learning rather than policy learning, and we see domain randomization

as a complementary technique that can extend our approach to a more generalized

version.

More Comparison:
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1. Testing time concern for TA3N: Different from TA2N, TA3N passes data to all the

domain discriminators during testing. However, since all our domain discriminators

are shallow, the testing time is similar. In our experiment, TA3N only computes 10%

more time than TA2N.

2. Failure cases for TemRelation: Despite the significant overall improvement over

TemPooling, TemRelation shows limited improvement for some categories with con-

sistency across time. For example, with the same DA method (DANN), TemRelation

has the same accuracy with TemPooling for ride bike (97%), and has lower accuracy

for ride horse (93% and 97%). The possible reason is that temporal pooling can al-

ready model temporally consistent actions well, and it may be redundant to model

these actions with multiple timescales like TemRelation.
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CHAPTER 5

CROSS-DOMAIN VIDEO SEGMENTATION

Despite the recent progress of fully-supervised action segmentation techniques, the perfor-

mance is still not fully satisfactory. One main challenge is the problem of spatio-temporal

variations (e.g. different people may perform the same activity in various ways). Therefore,

we exploit unlabeled videos to address this problem by reformulating the action segmen-

tation task as a cross-domain problem with domain discrepancy caused by spatio-temporal

variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain

Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and se-

quential domain prediction) to jointly align cross-domain feature spaces embedded with lo-

cal and global temporal dynamics, achieving better performance than other Domain Adap-

tation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and

Breakfast), SSTDA outperforms the current state-of-the-art method by large margins, and

requires much less labeled training data for comparable performance, demonstrating the

usefulness of adapting to unlabeled target videos across variations. Figure 5.1 schemati-

cally illustrates the proposed framework for integrating SSTDA into the action segmenta-

tion pipeline. The work is implemented using PyTorch [126, 127] and is publicly available1.

For more details, please check the published paper [135].

5.1 Technical Approach

In this section, the baseline model which is the current state-of-the-art for action segmen-

tation, MS-TCN [33], is reviewed first (Section 5.1.1). Then the novel temporal domain

adaptation scheme consisting of two self-supervised auxiliary tasks, binary domain predic-

tion (Section 5.1.2) and sequential domain prediction (Section 5.1.2), is proposed, followed

1https://github.com/cmhungsteve/SSTDA
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Figure 5.1: An overview of the proposed Self-Supervised Temporal Domain Adaptation
(SSTDA) for action segmentation.
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Figure 5.2: Illustration of the baseline model and the integration with our proposed SSTDA.
Here we only show one stage in our multi-stage model.

by the final action segmentation model.
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5.1.1 Baseline Model

Our work is built on the current state-of-the-art model for action segmentation, multi-stage

temporal convolutional network (MS-TCN) [33]. For each stage, a single-stage TCN (SS-

TCN) applies a multi-layer TCN,Gf , to derive the frame-level features f = {f1, f2, ..., fT},

and makes the corresponding predictions ŷ = {ŷ1, ŷ2, ..., ŷT} using a fully-connected layer

Gy. By following [33], the prediction loss Ly is calculated based on the predictions ŷ, as

shown in the left part of Figure 5.2. Finally, multiple stages of SS-TCNs are stacked to en-

hance the temporal receptive fields, constructing the final baseline model, MS-TCN, where

each stage takes the predictions from the previous stage as inputs, and makes predictions

for the next stage.

The overall prediction loss function at each stage is designed as an integration of a

classification loss and a smoothing loss [33] with the following form:

Ly = Lcls + αLT−MSE (5.1)

where Lcls is a standard cross-entropy loss, LT−MSE is a truncated mean squared error

for reduction of the discrepancy among neighboring frame-level predictions to enhance

the smoothness, and α represents the trade-off coefficient for the smoothness loss. Mini-

mization of the summary of the loss in Eq.5.1 on all stages will be derived for the whole

model.

5.1.2 Self-Supervised Temporal Domain Adaptation

Despite the promising performance of MS-TCN on action segmentation over previous

methods, there is still a large room for improvement. One main challenge is the prob-

lem of spatio-temporal variations of human actions [7], causing the distributional dis-

crepancy across domains [38]. For example, different subjects may perform the same

action completely differently due to personalized spatio-temporal styles. Moreover, col-

lecting annotated data for action segmentation is challenging and time-consuming. Thus,
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such challenges motivate the need to learn domain-invariant feature representations with-

out full supervision. Inspired by the recent progress of self-supervised learning, which

learns informative features that can be transferred to the main target tasks without exter-

nal supervision (e.g. human annotation), we propose Self-Supervised Temporal Domain

Adaptation (SSTDA) to diminish cross-domain discrepancy by designing self-supervised

auxiliary tasks using unlabeled videos.

To effectively transfer knowledge, the self-supervised auxiliary tasks should be closely

related to the main task, which is cross-domain action segmentation in this paper. Recently,

adversarial-based DA approaches [42, 43] show progress in addressing cross-domain im-

age problems using a domain discriminator with adversarial training where domain dis-

crimination can be regarded as a self-supervised auxiliary task since domain labels are

self-annotated. However, directly applying image-based DA for video tasks results in sub-

optimal performance due to the temporal information being ignored [128]. Therefore,

the question becomes: How should we design the self-supervised auxiliary tasks to ben-

efit cross-domain action segmentation? More specifically, the answer should address both

cross-domain and action segmentation problems.

To address this question, we first apply an auxiliary task binary domain prediction

to predict the domain for each frame where the frame-level features are embedded with

local temporal dynamics, aiming to address the cross-domain problems for videos in local

scales. Then we propose a novel auxiliary task sequential domain prediction to temporally

segment domains for untrimmed videos where the video-level features are embedded with

global temporal dynamics, aiming to fully address the above question. Finally, SSTDA is

achieved locally and globally by jointly applying these two auxiliary tasks, as illustrated in

Figure 5.3.

In practice, since the key for effective video DA is to simultaneously align and learn

temporal dynamics, instead of separating the two processes [128], we integrate SSTDA

modules to multiple stages instead of the last stage only, and the single-stage integration is
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Figure 5.3: The two self-supervised auxiliary tasks in SSTDA: binary domain prediction
and sequential domain prediction.

illustrated in Figure 5.2.

Local SSTDA: The main goal of action segmentation is to learn frame-level feature rep-

resentations that encode spatio-temporal information so that the model can exploit infor-

mation from multiple frames to predict the action for each frame. Therefore, we first learn

domain-invariant frame-level features with the auxiliary task Binary Domain Prediction

(Figure 5.3 left).

For a single stage, we feed the frame-level features from source and target domains fS

and fT , respectively, to an additional shallow binary domain classifier Gld, to discriminate

which domain the features come from. Since temporal convolution from previous lay-

ers encodes information from multiple adjacent frames to each frame-level feature, those

frames contribute to the binary domain prediction for each frame. Through adversarial

training with a gradient reversal layer (GRL) [42, 43], which reverses the gradient signs

during back-propagation, Gf will be optimized to gradually align the feature distributions

between the two domains. Here we note Ĝld as Gld equipped with GRL, as shown in
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Figure 5.4.

Since this work is built on MS-TCN, integrating Ĝld with proper stages is critical for ef-

fective DA. From our investigation, the best performance happens when Ĝlds are integrated

into middle stages. See Section 5.2.4 for details.

The overall loss function becomes a combination of the baseline prediction loss Ly and

the local domain loss Lld, which can be expressed as follows:

L =

Ns∑
Ly −

Ñs∑
βlLld (5.2)

Lld =
1

T

T∑
j=1

Lld(Gld(fj), dj) (5.3)

where Ns is the total stage number in MS-TCN, Ñs is the number of stages integrated with

Ĝld, and T is the total frame number of a video. Lld is a binary cross-entropy loss function,

and βl is the trade-off weight for local domain loss Lld, obtained by following the common

strategy as [42, 43].

Global SSTDA: Although frame-level features f is learned using the context and depen-

dencies from neighbor frames, the temporal receptive fields of f are still limited, unable

to represent full videos. Solely integrating DA into f cannot fully address spatio-temporal

variations for untrimmed long videos. Therefore, in addition to binary domain prediction

for frame-level features, we propose the second self-supervised auxiliary task for video-

level features: Sequential Domain Prediction, which predicts a sequence of domains for

video clips, as shown in the right part of Figure 5.3. This task is a temporal domain seg-

mentation problem, aiming to predict the correct permutation of domains for long videos

consisting of shuffled video clips from both source and target domains. Since this goal is

related to both cross-domain and action segmentation problems, sequential domain predic-

tion can effectively benefit our main task.

More specifically, we first divide fS and fT into two sets of segments F S = {fS
a ,f

S
b , ...}

and F T = {fT
a ,f

T
b , ...}, respectively, and then learn the corresponding two sets of segment-
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Figure 5.4: The overview of the proposed Self-Supervised Temporal Domain Adaptation
(SSTDA).

level feature representations V S = {vSa , vSb , ...} and V T = {vTa , vTb , ...} with Domain

Attentive Temporal Pooling (DATP). All features v are then shuffled and combined in

random order and fed to a sequential domain classifier Ggd equipped with GRL (noted as

Ĝgd) to predict the permutation of domains, as shown in Figure 5.4.

The details of two main modules in global SSTDA are shown as follows:

1. Domain Attentive Temporal Pooling (DATP): Temporal pooling is one of the most

common methods to aggregate frame-level features into video-level features for each

video. However, not all the frame-level features contribute the same to the overall

domain discrepancy. Therefore, inspired by [128], we assign larger attention weights

to the features which have larger domain discrepancy so that we can focus more on

aligning those features, achieving more effective domain adaptation.

More specifically, we utilize the entropy criterion to generate the domain attention
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value for each frame-level feature fj as below:

ŵj = 1−H(d̂j) (5.4)

where d̂j is the domain prediction from Ĝld. H(p) = −
∑

k pk · log(pk) is the entropy

function to measure uncertainty. ŵj increases when H(d̂j) decreases, which means

the domains can be distinguished well. We also add a residual connection for more

stable optimization. Finally, we aggregate the attended frame-level features with

temporal pooling to generate the video-level feature v, which is noted as Domain

Attentive Temporal Pooling (DATP), as illustrated in the left part of Figure 5.5 and

can be expressed as:

v =
1

T ′

T ′∑
j=1

(ŵj + 1) · fj =
1

T ′

T ′∑
j=1

wj · fj (5.5)

where +1 refers to the residual connection, and the attention weights wj equal to

ŵj + 1. T ′ is the number of frames used to generate a video-level feature.

2. Sequential Domain Prediction: By separately applying DATP to both source and

target segments, respectively, a set of segment-level feature representations V =

{vSa , vSb , ..., vTa , vTb , ...} are obtained. We then shuffle all the features in V and con-

catenate them into a feature to represent a long and untrimmed video V ′, which

contains video segments from both domains in random order. Finally, V ′ is fed

into a sequential domain classifier Ggd to predict the permutation of domains for the

video segments. For example, if V ′ = [vSa , v
T
a , v

T
b , v

S
b ], the goal of Ggd is to predict

the permutation as [0, 1, 1, 0]. Ggd is a multi-class classifier where the class num-

ber corresponds to the total number of all possible permutations of domains, and the

complexity of Ggd is determined by the segment number for each video (more analy-

ses in Section 5.2.4). The outputs of Ggd are used to calculate the global domain loss

Lgd as below:

Lgd = Lgd(Ggd(V
′)), yd) (5.6)
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Figure 5.5: The details of DATP (left) and DAE (right).

where Lgd is also a standard cross-entropy loss function where the class number is de-

termined by the segment number. Through adversarial training with GRL, sequential

domain prediction also contributes to optimizing Gf to align the feature distributions

between the two domains.

There are some self-supervised learning works also proposing the concepts of temporal

shuffling [98, 102]. However, they predict temporal orders within one domain, aiming to

learn general temporal information for video features. Instead, our method predicts tempo-

ral permutation for cross-domain videos, which are shown with a dual-branch pipeline in

Figure 5.4, and integrate with binary domain prediction to effectively address both cross-

domain and action segmentation problems.

5.1.3 Full Architecture

In addition to the local and global domain losses, we also add a domain attentive entropy

(DAE) loss Lae as follows: Domain Attentive Entropy (DAE): Minimum entropy reg-

ularization is a common strategy to perform more refined classifier adaptation. However,

we only want to minimize class entropy for the frames that are similar across domains.

Therefore, inspired by [93], we attend to the frames which have low domain discrepancy,
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pipeline.

corresponding to high domain entropy H(d̂j). More specifically, we adopt the Domain

Attentive Entropy (DAE) module to calculate the attentive entropy loss Lae, which can be

expressed as follows:

Lae =
1

T

T∑
j=1

(H(d̂j) + 1) ·H(ŷj) (5.7)

where d̂ and ŷ is the output of Ĝld and Gy, respectively. T is the total frame number of

a video. We also apply the residual connection for stability, as shown in the right part of

Figure 5.5.

Our method is built upon the state-of-the-art action segmentation model, MS-TCN [33],

which takes input frame-level feature representations and generates the corresponding out-

put frame-level class predictions by four stages of SS-TCN. In our implementation, we con-

vert the second and third stages into Domain Adaptive TCN (DA-TCN) by integrating each

SS-TCN with the following three parts: 1) Ĝld (for binary domain prediction), 2) DATP

and Ĝgd (for sequential domain prediction), and 3) DAE, bringing three corresponding loss

functions, Lld, Lgd and Lae, respectively, as illustrated in Figure 5.6. The overall loss func-

tion of our final proposed Self-Supervised Temporal Domain Adaptation (SSTDA) can
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Table 5.1: The statistics of action segmentation datasets.

GTEA 50Salads Breakfast
subject # 4 25 52
class # 11 17 48
video # 28 50 1712

avg. length (min.) 1 6.4 2.7
avg. action #/video 20 20 6

cross-validation 4-fold 5-fold 4-fold
leave-#-subject-out 1 5 13

be formulated as below:

L =

Ns∑
Ly −

Ñs∑
(βlLld + βgLgd − µLae) (5.8)

where βl, βg and µ are the weights for Lld, Lgd and Lae, respectively, obtained by the

methods described in Section 5.2.2. s is the stage index in MS-TCN. Ns is the total stage

number, while Ñs is the stage number of DA-TCN.

5.2 Experiments

To validate the effectiveness of the proposed methods in reducing spatial-temporal discrep-

ancy for action segmentation, we choose three challenging datasets: GTEA [53], 50Sal-

ads [54], and Breakfast [55], which separate the training and testing sets by different people

(noted as subjects), resulting in high spatio-temporal variations.

5.2.1 Datasets and Evaluation Metrics

The three evaluated datasets are shown as follows:

1. The GTEA dataset has 28 videos with 7 kitchen activities (e.g. making coffee) per-

formed by 4 subjects. It contains 11 actions including background, and each video

has 20 action instances with the length of around one minute. We apply 4-fold cross-

validation by leaving one subject out in evaluation.
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2. The 50Salads dataset includes 50 videos for salad preparation activities performed

by 25 subjects. There are 17 action classes in total. Each video averagely contains

20 action instances with an average length of 6.4 minutes. For evaluation, we utilize

5-fold cross-validation by leaving five subjects out.

3. The Breakfast dataset is the largest dataset with 1712 videos for breakfast prepa-

ration activities done by 52 subjects. All videos were taken in 18 different kitchens

with 48 action classes where each video contains 6 action instances on average and is

around 2.7 minutes long. For evaluation, we use the standard 4-fold cross-validation

by leaving 13 subjects out.

The overall statistics and the evaluation protocols of the three datasets are listed in

Table 5.1. We follow [30] to use the following three metrics for evaluation:

1. Frame-wise accuracy (Acc): Acc is one of the most typical evaluation metrics for

action segmentation, but it does not consider the temporal dependencies of the pre-

diction, causing the inconsistency between qualitative assessment and frame-wise

accuracy. Besides, long action classes have higher impact on this metric than shorter

action classes, making it not able to reflect over-segmentation errors.

2. Segmental edit score (Edit): The edit score penalizes over-segmentation errors by

measuring the ordering of predicted action segments independent of slight temporal

shifts.

3. Segmental F1 score at the IoU threshold k% (F1@k): F1@k also penalizes over-

segmentation errors while ignoring minor temporal shifts between the predictions

and ground truth. The scores are determined by the total number of actions but do

not depend on the duration of each action instance, which is similar to mean average

precision (mAP) with intersection-over-union (IoU) overlap criteria. F1@k becomes

popular recently since it better reflects the qualitative results.
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5.2.2 Implementation and Optimization

Our implementation is based on the PyTorch [126, 127] framework. We extract I3D [18]

features for the video frames and use these features as inputs to our model. The video

frame rates are the same as [33]. For GTEA and Breakfast datasets we use a video temporal

resolution of 15 frames per second (fps), while for 50Salads we downsampled the features

from 30 fps to 15 fps to be consistent with the other datasets. For fair comparison, we adopt

the same architecture design choices of MS-TCN [33] as our baseline model. The whole

model consists of four stages where each stage contains ten dilated convolution layers.

We set the number of filters to 64 in all the layers of the model and the filter size is 3.

For optimization, we utilize the Adam optimizer and a batch size equal to 1, following

the official implementation of MS-TCN [33]. Since the target data size is smaller than

the source data, each target data is loaded randomly multiple times in each epoch during

training. For the weighting of loss functions, we follow the common strategy as [42, 43] to

gradually increase βl and βg from 0 to 1. The weighting α for smoothness loss is 0.15 as in

[33] and µ is chosen as 1× 10−2 via the grid-search.

5.2.3 Experimental Results

We first investigate the effectiveness of our approaches in utilizing unlabeled target videos

for action segmentation. “Source only” means the model is trained only with source labeled

videos, i.e., MS-TCN [33]. And then our approach is compared to other DA methods

with the same setting. Finally, we compare the proposed approach to the state-of-the-art

methods on all three datasets, and investigate how our method can reduce the reliance on

source labeled data.

Self-Supervised Temporal Domain Adaptation: First we investigate the performance

of local SSTDA by integrating the auxiliary task binary domain prediction with the base-

line model. The results on all three datasets with respect to all the metrics are improved

significantly, as shown in Table 5.2. For example, on the GTEA dataset, our approach
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Table 5.2: The experimental results for our approaches on three benchmark datasets.

GTEA F1@{10, 25, 50} Edit Acc
Source only (MS-TCN)† 86.5 83.6 71.9 81.3 76.5

Local SSTDA 89.6 87.9 74.4 84.5 80.1
SSTDA‡ 90.0 89.1 78.0 86.2 79.8
50Salads F1@{10, 25, 50} Edit Acc

Source only (MS-TCN)† 75.4 73.4 65.2 68.9 82.1
Local SSTDA 79.2 77.8 70.3 72.0 82.8

SSTDA‡ 83.0 81.5 73.8 75.8 83.2
Breakfast F1@{10, 25, 50} Edit Acc

Source only (MS-TCN)† 65.3 59.6 47.2 65.7 64.7
Local SSTDA 72.8 67.8 55.1 71.7 70.3

SSTDA‡ 75.0 69.1 55.2 73.7 70.2

outperforms the baseline by 4.3% for F1@25, 3.2% for the edit score and 3.6% for the

frame-wise accuracy. Although local SSTDA mainly works on the frame-level features,

the temporal information is still encoded using the context from neighbor frames, helping

address the variation problem for videos across domains.

Despite the improvement from local SSTDA, integrating DA into frame-level features

cannot fully address the problem of spatio-temporal variations for long videos. There-

fore, we integrate our second proposed auxiliary task sequential domain prediction for

untrimmed long videos. By jointly training with both auxiliary tasks, SSTDA can jointly

align cross-domain feature spaces embedding with local and global temporal dynamics, and

further improve over local SSTDA with significant margins. For example, on the 50Sal-

ads dataset, it outperforms local SSTDA by 3.8% for F1@10, 3.7% for F1@25, 3.5% for

F1@50, and 3.8% for the edit score, as shown in Table 5.2.

One interesting finding is that local SSTDA contributes to most of the frame-wise accu-

racy improvement for SSTDA because it focuses on aligning frame-level feature spaces. On

the other hand, sequential domain prediction benefits aligning video-level feature spaces,

contributing to further improvement for the other two metrics, which consider temporal

relation for evaluation.

Learning from Unlabeled Target Videos: We first compare SSTDA with other pop-
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ular DA approaches [43, 41, 136, 137, 46, 92] to validate the effectiveness of reducing

spatio-temporal discrepancy with the same amount of unlabeled target videos. Table 5.3

shows that our proposed SSTDA outperforms all the other investigated DA methods in

terms of the two metrics that consider temporal relation. We conjecture the main reason

is that all these DA approaches are designed for cross-domain image problems. Although

they are integrated with frame-level features which encode local temporal dynamics, the

limited temporal receptive fields prevent them from fully addressing temporal domain dis-

crepancy. Instead, the sequential domain prediction in SSTDA is directly applied to the

whole untrimmed video, helping to globally align the cross-domain feature spaces that

embed longer temporal dynamics, so that spatio-temporal variations can be reduced more

effectively.

We also compare with the most recent video-based self-supervised learning method,

[102], which can also learn temporal dynamics from unlabeled target videos. However, the

performance is even worse than other DA methods, implying that temporal shuffling within

single domain does not effectively benefit cross-domain action segmentation, resulting in

worse performance than other DA methods. Instead, our proposed self-supervised auxiliary

tasks make predictions on cross-domain data, achieving significant improvement in the

performance of our main task, action segmentation.

For the fair comparison, we integrate all these methods with the same baseline model,

where the single-stage integration methods are described as follows:

1. DANN [43]: We add one discriminator, which is the same asGld, equipped a gradient

reversal layer (GRL) to the final frame-level features f .

2. JAN [41]: We integrate Joint Maximum Mean Discrepancy (JMMD) to the final

frame-level features f and the class prediction ŷ.

3. MADA [136]: Instead of a single discriminator, we add multiple discriminators ac-

cording to the class number to calculate the domain loss for each class. All the class-
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based domain losses are weighted with prediction probabilities and then summed up

to obtain the final domain loss.

4. MSTN [137]: We utilize pseudo-labels to cluster the data from the source and target

domains, and calculate the class centroids for the source and target domain sepa-

rately. Then we compute the semantic loss by calculating mean squared error (MSE)

between the source and target centroids. The final loss contains the prediction loss,

the semantic loss, and the domain loss as DANN [43].

5. MCD [46]: We apply another classifier G′y and follow the adversarial training pro-

cedure of Maximum Classifier Discrepancy to iteratively optimize the generator (Gf

in our case) and the classifier (Gy). The L1-distance is used as the discrepancy loss.

6. SWD [92]: The framework is similar to MCD, but we replace the L1-distance with

the Wasserstein distance as the discrepancy loss.

7. VCOP [102]: We divide f into three segments and compute the segment-level fea-

tures with temporal pooling. After temporal shuffling the segment-level features,

pairwise features are computed and concatenated into the final feature representing

the video clip order. The final features are then fed into a shallow classifier to predict

the order.

.

Less Training Labeled Data: Given the significant improvement by exploiting unlabeled

target videos, it implies the potential to train with fewer number of labeled frames using

SSTDA. In this setting, we drop labeled frames from source domains with uniform sam-

pling for training, and evaluate on the same length of validation data. Our experiment on

the 50Salads dataset shows that by integrating with SSTDA, the performance does not drop

significantly with the decrease in labeled training data, indicating the alleviation of reliance

on labeled training data. Finally, only 65% of labeled training data are required to achieve
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Table 5.3: The comparison of different methods that can learn information from unlabeled
target videos.

GTEA F1@{10, 25, 50} Edit
Source only (MS-TCN) 86.5 83.6 71.9 81.3

VCOP [102] 87.3 85.9 70.1 82.2
DANN [43] 89.6 87.9 74.4 84.5

JAN [41] 88.7 87.6 73.1 83.1
MADA [136] 88.6 86.7 75.8 83.5
MSTN [137] 89.9 88.2 75.9 84.7
MCD [46] 88.1 86.3 73.4 82.7
SWD [92] 89.0 87.3 73.8 84.4
SSTDA 90.0 89.1 78.0 86.2

50Salads F1@{10, 25, 50} Edit
Source only (MS-TCN) 75.4 73.4 65.2 68.9

VCOP [102] 75.8 73.8 65.9 68.4
DANN [43] 79.2 77.8 70.3 72.0

JAN [41] 80.9 79.4 72.4 73.5
MADA [136] 79.6 77.4 70.0 72.4
MSTN [137] 79.3 77.6 71.5 72.1
MCD [46] 78.2 75.5 67.1 70.8
SWD [92] 78.2 76.2 67.4 71.6
SSTDA 83.0 81.5 73.8 75.8

Breakfast F1@{10, 25, 50} Edit
Source only (MS-TCN) 65.3 59.6 47.2 65.7

VCOP [102] 68.5 62.9 50.1 67.9
DANN [43] 72.8 67.8 55.1 71.7

JAN [41] 70.2 64.7 52.0 70.0
MADA [136] 71.0 65.4 52.8 71.2
MSTN [137] 69.6 63.6 51.5 69.2
MCD [46] 70.4 65.1 52.4 69.7
SWD [92] 68.6 63.2 50.6 69.1
SSTDA 75.0 69.1 55.2 73.7

comparable performance with MS-TCN, as shown in Table 5.4. We then evaluate the pro-

posed SSTDA on GTEA and Breakfast with the same percentage of labeled training data,

and also get comparable or better performance.

Comparison with the State of the Art: Finally, we compare the recent state of the art to

SSTDA trained with the common fully-source-supervision settings.

This setting means we have labels for all the frames in source videos, and SSTDA
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Table 5.4: The comparison of SSTDA trained with less labeled training data. m in the first
row indicates the percentage of labeled training data used to train a model.

50Salads m% F1@{10, 25, 50} Edit Acc

SSTDA

100% 83.0 81.5 73.8 75.8 83.2
95% 81.6 80.0 73.1 75.6 83.2
85% 81.0 78.9 70.9 73.8 82.1
75% 78.9 76.5 68.6 71.7 81.1
65% 77.7 75.0 66.2 69.3 80.7

MS-TCN 100% 75.4 73.4 65.2 68.9 82.1
GTEA m% F1@{10, 25, 50} Edit Acc

SSTDA
100% 90.0 89.1 78.0 86.2 79.8
65% 85.2 82.6 69.3 79.6 75.7

MS-TCN 100% 86.5 83.6 71.9 81.3 76.5
Breakfast m% F1@{10, 25, 50} Edit Acc

SSTDA
100% 75.0 69.1 55.2 73.7 70.2
65% 69.3 62.9 49.4 69.0 65.8

MS-TCN 100% 65.3 59.6 47.2 65.7 64.7

outperforms all the previous methods on the three datasets with respect to all evaluation

metrics. For example, SSTDA outperforms currently the state-of-the-art fully-supervised

method, MS-TCN [33], by large margins e.g. 8.1% for F1@25, 8.6% for F1@50, and

6.9% for the edit score on 50Salads; 9.5% for F1@25, 8.0% for F1@50, and 8.0% for the

edit score on Breakfast), as demonstrated in Table 5.5. Since no additional labeled data is

used, these results indicate how our proposed SSTDA address the spatio-temporal variation

problem with unlabeled videos to improve the action segmentation performance.

5.2.4 Ablation Study and Analysis

Design Choice for Local SSTDA: Since we develop our approaches upon MS-TCN [33],

it raises the question: How to effectively integrate binary domain prediction to a multi-

stage architecture? To answer this, we first integrate Ĝld into each stage and the results

show that the best performance happens when the Ĝld is integrated into middle stages, such

as S2 or S3, as shown in Table 5.6. S1 is not a good choice for DA because it corresponds

to low-level features with less discriminability where DA shows limited effects [40], and
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Table 5.5: Comparison with the state of the art on GTEA, 50Salads, and the Breakfast
dataset.

GTEA F1@{10, 25, 50} Edit Acc
ST-CNN [138] 58.7 54.4 41.9 49.1 60.6
Bi-LSTM [25] 66.5 59.0 43.6 - 55.5
ED-TCN [30] 72.2 69.3 56.0 - 64.0
LCDC [139] 75.4 - - 72.8 65.3

TricorNet [31] 76.0 71.1 59.2 - 64.8
TDRN [32] 79.2 74.4 62.7 74.1 70.1

MS-TCN [33]† 86.5 83.6 71.9 81.3 76.5
SSTDA (65%) 85.2 82.6 69.3 79.6 75.7

SSTDA 90.0 89.1 78.0 86.2 79.8
50Salads F1@{10, 25, 50} Edit Acc

ST-CNN [138] 55.9 49.6 37.1 45.9 59.4
ED-TCN [30] 68.0 63.9 52.6 59.8 64.7
TricorNet [31] 70.1 67.2 56.6 62.8 67.5

TDRN [32] 72.9 68.5 57.2 66.0 68.1
LCDC [139] 73.8 - - 66.9 72.1

MS-TCN [33]† 75.4 73.4 65.2 68.9 82.1
SSTDA (65%) 77.7 75.0 66.2 69.3 80.7

SSTDA 83.0 81.5 73.8 75.8 83.2
Breakfast F1@{10, 25, 50} Edit Acc

ED-TCN [30] - - - - 43.3
HTK [77] - - - - 50.7

TCFPN [79] - - - - 52.0
HTK (64) [140] - - - - 56.3

GRU [78] - - - - 60.6
MS-TCN [33]† 65.3 59.6 47.2 65.7 64.7
SSTDA (65%) 69.3 62.9 49.4 69.0 65.8

SSTDA 75.0 69.1 55.2 73.7 70.2

Table 5.6: The experimental results of design choice for local SSTDA (on GTEA).

F1@{10, 25, 50} Edit Acc
Source only 86.5 83.6 71.9 81.3 76.5
{S1} 88.6 86.2 73.6 84.2 78.7
{S2} 89.1 87.2 74.4 84.3 79.1
{S3} 89.2 87.3 72.3 83.8 78.9
{S4} 88.1 86.4 73.0 83.0 78.8
{S1, S2} 89.0 85.8 73.5 84.8 79.5
{S2, S3} 89.6 87.9 74.4 84.5 80.1
{S3, S4} 88.3 86.8 73.9 83.6 78.6
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Table 5.7: The experimental results for different segment numbers of sequential domain
prediction (on GTEA).

Segment # F1@{10, 25, 50} Edit Acc
1 89.4 87.7 75.4 85.3 79.2
2 90.0 89.1 78.0 86.2 79.8
3 89.7 87.6 75.4 85.2 79.2

represents less temporal receptive fields for videos. However, higher stages (e.g. S4) are

not always better. We conjecture that it is because the model fits more to the source data,

causing difficulty for DA. In our case, integrating Ĝld into S2 provides the best overall

performance.

We also integrate binary domain prediction with multiple stages. However, multi-stage

DA does not always guarantee improved performance. For example, {S1, S2} has worse

results than {S2} in terms of F1@{10, 25, 50}. Since {S2} and {S3} provide the best

single-stage DA performance, we use {S2, S3}, which performs the best, as the final model

for all our approaches in all the experiments.

Design Choice for Global SSTDA: The most critical design decision for the sequential

domain prediction is the segment number for each video. In our implementation, we divide

one source video into m segments and do so for one target video, and then apply Ggd to

predict the permutation of domains for these 2m video segments. Therefore, the category

number of Ggd equals the number of all permutations (2m)!/(m!)2. In other words, the

segment number m determine the complexity of the self-supervised auxiliary task. For

example, m = 3 leads to a 20-way classifier, and m = 4 results in a 70-way classifier.

Since a good self-supervised task should be neither naive nor over complicated [96], we

choose m = 2 as our final decision, which is supported by our experiments as shown in

Table 5.7.

Segmentation Visualization: It is also common to evaluate the qualitative performance

to ensure that the prediction results are aligned with human vision. First, we compare our

approaches with the baseline model MS-TCN [33] and the ground truth, as shown in Fig-
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ures 5.7 to 5.9. For example, local SSTDA falsely detects the pour action in Figure 5.7b,

falsely classifies cheese-related actions as cucumber-related actions in Figure 5.8b, and

falsely detects the stir milk action in Figure 5.9b. However, by jointly aligning local and

global temporal dynamics with SSTDA, the model is effectively adapted to the target do-

main, reducing the above mentioned incorrect predictions and achieving better segmenta-

tion.

We then compare SSTDA with other DA methods, and Figure 5.10 shows that our

result is the closest to the ground truth. The others either fail to detect some actions, falsely

predict some actions that do not exist, or make incorrect classification.
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Ground Truth

MS-TCN

Local SSTDA

SSTDA

stirtakebackground open pour close putscoop

(a) Make coffee

stirtakebackground open pour close putscoop

Ground Truth

MS-TCN

Local SSTDA

SSTDA

(b) Make honey coffee

Figure 5.7: The visualization of temporal action segmentation for our methods with color-
coding on GTEA.
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Ground Truth

MS-TCN

Local SSTDA

SSTDA

action start

add oiladd vinegar add pepperadd salt

mix dressing

peel cucumber

place cucumber into bowl

cut cucumbercut tomato place tomato into bowl

cut cheese place cheese into bowl cut lettuce place lettuce into bowl

mix ingredients

serve salad onto plate action end

(a) Subject 02

action start

add oil add vinegar add peppermix dressing

peel cucumber place cucumber into bowlcut cucumber cut tomato

place tomato into bowl cut cheese place cheese into bowlcut lettuce place lettuce into bowl

mix ingredients

serve salad onto plate add dressing action end

Ground Truth

MS-TCN

Local SSTDA

SSTDA

(b) Subject 04

Figure 5.8: The visualization of temporal action segmentation for our methods with color-
coding on 50Salads.
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background

Ground Truth

MS-TCN

Local SSTDA

SSTDA

take bowl pour cereals pour milk stir cereals

(a) Make Cereal

background

Ground Truth

MS-TCN

Local SSTDA

SSTDA

take cup spoon powder pour milk stir milk

(b) Make milk

Figure 5.9: The visualization of temporal action segmentation for our methods with color-
coding on Breakfast.
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stirtakebackground open pour close putscoop

Ground Truth

Source Only

DANN

SSTDA

JAN

MADA

MSTN

MCD

SWD

Figure 5.10: The visualization of temporal action segmentation for different DA methods.
(input example: Make coffee from GTEA)
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation investigates several methods to exploit temporal information for video un-

derstanding under full-supervised and cross-domain settings. We start by comprehensive

background information about video understanding and cross-domain learning. We then

explore the importance of temporal information and develop novel approaches that inte-

grating temporal information to tackle various video tasks. The contributions of this thesis

are three-fold. Firstly, we focus on the general video classification task, and thoroughly

explore two methods to model dynamic temporal information: Temporal Segment LSTM

and Temporal-Inception. We show that naive temporal max-pooling performed similar to

the vanilla LSTM. By integrating temporal segments and LSTM, the proposed method can

exploit temporal information more effectively. On the other hand, our proposed Temporal-

Inception performs convolutions on temporally-constructed feature vectors to learn global

video-level representations. Both approaches achieve comparable state-of-the-art accuracy

on both the UCF101 and HMDB51 datasets using only high-level feature vector repre-

sentations equally sampled from each of the videos, demonstrating that both RNNs and

convolutions across time are able to model temporal dynamics. With systematic analyses,

we identify the key components for each method that contribute to performance improve-

ment, facilitating research in this field. Secondly, we investigate how temporal information

can help address domain shift problem in the cross-domain action classification task. we

propose two large-scale cross-domain datasets for action classification, UCF-HMDBfull

and Kinetics-Gameplay, including both real and virtual domains. We use these datasets to

investigate the domain shift problem across videos, and show that simultaneously aligning

and learning temporal dynamics achieves effective alignment without the need for sophis-

ticated DA methods. By building upon the above finding, we propose Temporal Attentive
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Adversarial Adaptation Network (TA3N) to simultaneously attend, align and learn tem-

poral dynamics across domains, achieving state-of-the-art performance on all of the cross-

domain video datasets investigated. Finally, we investigate how temporal information can

address the problem of spatio-temporal intra-class variations in a more challenging task,

action segmentation. To effectively exploit the temporal information in unlabeled videos

without labels, we propose Self-Supervised Temporal Domain Adaptation (SSTDA) to

jointly align cross-domain feature spaces embedded with local and global temporal dynam-

ics by two self-supervised auxiliary tasks, binary and sequential domain prediction. Our

experiments indicate that SSTDA outperforms other DA approaches by aligning temporal

dynamics more effectively. We also validate the proposed SSTDA on three challenging

datasets (GTEA, 50Salads, and Breakfast), and show that SSTDA outperforms the cur-

rent state-of-the-art method by large margins and only requires 65% of the labeled training

data to achieve the comparable performance, demonstrating the usefulness of adapting to

unlabeled videos across variations.

6.1 Future Research Directions

Video understanding has been researched for years, including a variety of tasks. We believe

that temporal information is the key factor that we can exploit to benefit various tasks.

This work will continue investigating different video tasks, such as spatio-temporal action

localization [141], which requires locating action regions along time, and video object

segmentation [142], which requires to segment objects along time in videos.

In this work, we mainly investigate the RGB data of videos, which is one of the infor-

mation that humans utilize to understand videos. Therefore, we will investigate temporal

information under different types of data (i.e. modalities), such as sound, text, etc., fa-

cilitating the understanding of how humans integrate different modalities to understand

videos.

Finally, since the ultimate goal of our research is to solve real-world problems, we

101



would like to extend this work to different experimental settings which are closer to real-

world scenarios, such as the open-set setting [143, 144, 36, 145], and multi-source domain

adaptation [146, 147], etc.
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