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SUMMARY

This dissertation focuses on solving a train re-routing problem in a near real-time

context for a freight train carrier operating over a large network. When rail terminal

operations of a freight carrier are disrupted, one of the levers available to mitigate the

disruption is changing the destination of a select subset of trains. Traditionally, the

decision of whether and how to re-route the trains under these conditions has been

solved in practice using high-level analysis and business judgement. This is partially

due to the real-time nature of the problem, and the need to enact a solution quickly.

The challenge with this approach is two-fold: (1) it does not take into account the

holistic impact of the real-time decisions being made on the traffic patterns of the

rail network; and (2) it does not account for the implications of each train re-routing

decision on the cost-benefit dynamic of the remaining re-routing decisions being made.

Note that scientific methods have been developed to solve service network design

problems such as train scheduling and railcar-to-block assignment. However, the chal-

lenge of applying scientific rigor to the real-time context of the problem explored in

this dissertation is whether one can do so while still allowing decisions to be made with

the desired speed. In this study we address the challenges discussed above:

1. We develop a solution evaluation framework that allows us to evaluate the holistic

impact of any decision on the rail network.

2. We ensure train re-routing decisions are considered jointly.

3. We ensure the methodologies proposed are capable of providing solutions in near

real-time.

Chapter II develops the holistic solution evaluation framework discussed above

using an event-based time-space network model. Key contributions include (1) devel-

oping and using this framework to objectively determine the problem instances where

the optimal joint decision can be made in real-time using systematic enumeration, and

(2) determining the best answer that can be provided in real-time using systematic

x



enumeration methods. Computational results using data from Union Pacific Railroad,

a class I carrier in the United States, are presented to demonstrate solution time and

solution quality for a variety of problem instances. The computational results show at

least 2000 railcar-hours of delay beyond expected customer arrival times eliminated if

the decision must be made within 15 minutes, and at least 5000 railcar-hours of delay

eliminated if the decision must be made within one hour.

In Chapter III we explore methods to find improved solutions for problem in-

stances where systematic enumeration does not provide the optimal answer in real-time.

Key contributions include the development and testing of two solution methodologies:

an arc-based multi-commodity network design problem approach and a Tabu search

heuristic approach. Both approaches use the time-space network developed in Chapter

II. Computational results allow a comparison between the two approaches, as well as a

comparison between each approach and the baseline approach presented in Chapter II.

We show that the advantage of the Tabu search heuristic approach is the robustness of

the solution time under scenarios where network traffic increases are pressure-tested.

By contrast, we show the advantage of the optimization-based approach is relative

improvement in solution objective as the number of trains to re-route increases.

In Chapter IV we modify the train re-routing problem from the previous two chap-

ters by introducing an additional complexity that is often involved in the operations

of a large-scale freight carrier: the impact of rail terminal traffic on rail terminal

throughput. Key contributions include (1) the introduction of the problem variant and

extending the solution evaluation framework from Chapter II to address the problem

variant, (2) extending the two solution methodologies from Chapter III to solve the

modified train re-routing problem, and (3) demonstrating that a linear relationship

between rail terminal traffic and rail terminal throughput allows us to preserve the

linearity of the optimization-based approach from Chapter III. Computational results

show that (1) the extended optimization-based approach is solvable in practice, with

the exception of a subset of problem instances where increases in network traffic is

pressure-tested; and (2) the optimization-based heuristic approach solution objective

xi



shows relative improvement compared to the Tabu search heuristic approach as the

number of trains to re-route increases.
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Chapter I : Introduction to Freight Rail Operations

Founded more than 185 years ago, the freight rail industry is one of the largest industries

in the United States, generating over $65.8 billion in revenue in 2016 alone and employing

approximately 170,000 employees. Railroads with a 2015 revenue of over $457.9 million are

referred to as Class I railroads, seven of which exist in the United States as of 2016. Together

Class I railroads account for 69% of freight rail mileage, the remainder of which is accounted

for by short-line railroads and regional railroads [25].

The physical network supporting the freight rail industry consists of rail terminals,

sometimes called railyards or rail stations. Generally each rail terminal consists of three key

internal components [22] [30]:

1. Arrival yard, a collection of tracks where incoming trains are gathered and await pro-

cessing.

2. Classification section, where the railcars on the arrival tracks are sorted according to

the next train they are to join and sent to the departure tracks where departing trains

are formed.

3. Departure yard, a collection of tracks where departing trains are formed and await

departure.

The terminals are connected via rail-lines or connections. The railroad operates based

on a train schedule, which specifies a set of trains to be run over a specified time period,

generally a week. Each train is specified with the following attributes:

• Train origin, the rail terminal where the train originates.

• Train destination, the rail terminal for which the train is destined.

• Capacity of the train, the maximum number of railcars allowed on the train.
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• The set of intermediate terminals the train passes through. Although the majority of

the railcars on the train generally stay on the train, each intermediate terminal allows

the train to pick up a number of additional railcars and set out a number of its railcars.

• The departure time of the train at each of the above terminals except the terminal for

which the train is destined.

• The arrival time at each of the above terminals except the terminal from which the

train originates.

• Cut-off time which is always prior to departure time, the point of time after which the

train will stop accepting new railcars at train origin.

The three main types of trains operated by Class I railroads are unit trains, intermodal

trains, and manifest trains.

Unit trains transport a single commodity. Examples in the United States include coal

trains, which deliver 70% of coal delivered to power plants [25]. These trains carry one bulk

commodity directly from a shipper to a consignee. They are through trains, which means

they do not have pick-ups or set-outs, and are generally not altered as they travel through

intermediate railyards on the way to their final destination.

Intermodal trains use flat railcars, onto which containers or truck trailers are loaded. The

name intermodal reflects the fact that the loaded containers also travel via other modes of

transportation such as trailer trucks or cargo ships before and after being transported in the

rail network. A key advantage of using intermodal trains is the efficiency gained by removing

the need to load/unload containers when modes of transportation are changed. Unlike unit

trains, intermodals trains perform pick-ups and/or set-outs at consolidation terminals for a

transport leg [25].

Manifest trains, the focus of this study, contain mixed freight. These trains contain

cargo from multiple customers. Railcars on these trains are introduced into the service

network as shipments, which in this study we refer to as commodities. Each commodity is

2



a group of railcars sharing the same origin and destination terminal, entering the system

together and due at the destination at the same time. Typically each commodity belongs to

one particular customer of the railroad. Note that the origin and destination terminals of

a commodity do not need to match those of any one particular train, and this is generally

the case. Instead, each commodity is associated with a trip plan, which is the (inclusive)

sequence of rail terminals the commodity is to pass through between the commodity origin

terminal and the commodity destination terminal. The trip plan is analogous to an itinerary

in the passenger airline industry. Any railcar in a given commodity is said to have the same

trip plan as the commodity.

The movement between each consecutive pair of rail terminals in a commodity’s trip

plan is referred to as a leg of the trip plan. The initial and final legs are typically handled by

a local train possibly operated by a regional railroad. The remainder of the legs are usually

handled by a Class I railroad, with two notable exceptions:

1. Short-line shipments, which can be entirely handled by a regional railroad.

2. The subset of long-line shipments whose path cannot be covered by the physical rail

network of a single Class I railroad. For instance, commodities traveling from Los

Angeles to New York need to pass through the physical rail network of at least two

Class I railroads.

The two rail terminals in each leg of the trip plan for a given commodity k generally

correspond to the origin and destination of a train in the train schedule. The exception to

this rule is if a leg of the trip plan is to be completed via a pickup or setout, which would

mean the leg is a subset of the path travelled by the train fulfilling the leg. We shall refer to

such trip plan legs as pick-up/set-out legs. Note that in order for a trip plan to be feasible

for k, the following condition must be true: for each leg of the trip plan, there must exist a

train scheduled to travel between the origin and destination of that leg.

Once a train arrives at its final destination terminal, it stops in the arrival yard. The

3



train is then broken apart in the following manner: the railcars on the train are separated

and sorted as they are moved through the classification section of the rail terminal and into

the departure yard where departing trains are assembled. The next leg of each commodity’s

trip plan is a key attribute in determining how commodities are grouped together in the

departure yard. Locally destined commodities are sorted into local trains.

The sheer volume of commodities serviced by a Class I railroad creates opportunities

to create operational efficiencies by organizing commodities into blocks. This is typically

done for commodities that share common attributes such as commodity type, commodity

origin, and commodity destination. Furthermore commodities which have significant overlap

in their trip plans may also be assigned to the same block for the corresponding portion of

the trip plans [4].

Let us next discuss the relevant literature in the freight transportation and freight rail

industry, followed by an overview of the focus of this thesis.

1.1 Literature Review

There are three broad planning levels in the freight transportation industry: strategic plan-

ning, tactical planning, and operational planning. Strategic planning problems have the

highest impact on the overall direction of the carrier. These types of problems typically

involve long-term decisions and are typically made at the firm level. Examples of strategic

planning problems in the rail industry include determining the placement and size of rail-

yards to be built, as well as one-time rolling stock purchases and rail track expansion routes

to new regions. In other words, strategic planning problems typically involve the design of

the physical network operated by the railroad [11].

An example of a strategic planning problem related to the freight rail industry is the

intermodal terminal location problem, which can more generally be thought of as an industry-

specific example of the facility location problem. Intermodal terminals are where intermodal

trains pick up and drop off standard-size containers from or to a different mode of transporta-
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tion, such as road or sea transportation [33]. The problem definition formalized in Arnold

et al. [3] starts with a set of candidate intermodal terminals and a set of shipments. There

is a fixed cost to opening each intermodal terminal, and the cost of sending each shipment

through any pairs of terminals is known, as well as the cost of sending each shipment di-

rectly without switching modes of transportation. Arnold et al. [3] proposes a mixed integer

programming formulation that minimizes the overall incurred cost, the decision variables of

which dictate which facilities to open and how to route the shipments through the induced

network.

By contrast, tactical planning problems involve medium-term decisions that define the

operating rules of the service network [35]. The service network refers to the set of services

provided by a carrier and their schedules. Service network design problems normally assume

the strategic planning problems related to the design of the physical network have been

solved; instead the focus is on building services using the limited fixed and mobile resources

comprising the physical network. This class of problems is commonly studied for the rail,

airline, and trucking industries, as well as for intermodal services. For instance, in the context

of the airline industry service network design can involve determining the set of flights a

carrier provides and the schedule for those flights. For Class I railroads the equivalent class

of problems involves determining the train routes and the policy of how commodities are

blocked together as they are moved through the physical network [20][11].

Finally, operational planning problems, including the one this thesis studies, are typically

decided at the mid-management level (e.g. dispatch or railyard operations management

teams). Solving this class of problems determines the day-to-day operations of the service

network. Service network operational planning problems are thus short-term in scope and

dynamic in nature, where time is generally modelled at a highly granular level. Examples

of operational planning problems in freight rail include crew scheduling, train scheduling,

deadhead scheduling, and scheduling of maintenance activities [11].

An example of a service network design problem in the freight rail industry is studied
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in Zhu et al. [35]. The paper develops a model that addresses several aspects of designing

the service network of a freight rail carrier including train selection and scheduling, railcar

blocking selection and shipment routing. While the scope of the tactical planning problem in

this paper is indeed ambitious, one challenge faced by freight rail carriers in implementing the

solution is implementing the cross-organizational software system required to do so. However,

the modeling framework and solution methodology used are interesting and relevant to the

techniques used in this study, and they are investigated further in the literature review

sections of subsequent chapters.

Another interesting application of network design in the rail industry is the blocking

problem. Barnhart et al. [4] model the blocking problem using a network design framework

with maximum degree and flow constraints on the graph nodes. The paper proposes a mixed

integer programming formulation, which is solved using a Lagrangian relaxation heuristic.

Bodin et al. [6] attempt to solve a railroad blocking problem using a non-linear mixed integer

programming formulation. One significant simplification made in the paper is the absence of

explicit modeling of time: it is simply assumed that the number of shipments with any given

origin-destination pair is independent of time. The presented formulation views customer

demand in terms of number of shipments demanded between any given ordered pair of rail

terminals, and is structured as a multi-commodity network flow problem with additional side

constraints.

It is worth noting that this dissertation involves a significant number of computational

experiments in each of the three chapters, setting up the data for which utilizes solving the

shortest path problem induced on the graph of a railroad’s physical network. In particular,

the shipment trip plan data is generated by finding the shortest path between the shipment

origin and shipment destination. Finding a solution to the shortest path problem is treated

as a trivial problem in this dissertation since:

1. Theoretically it can be solved in polynomial time, for instance with Dijkstra’s algorithm

[15].
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2. Using efficient data structures such as Fibonacci heaps it can be solved very efficiently,

with complexity O[m+ nlog(n)] or better [1].

1.2 Overview of Thesis

This dissertation offers a comprehensive study of a specific operational problem for the

freight transportation industry. The problem of interest involves re-routing a subset of

trains in the event of large-scale disruptions to the rail network in order to minimize the

impact on network performance. In chapter II we discuss a framework for assessing the

performance of a typical train network in this context. We do this by using a simulation-

based methodology which explicitly models railcar movement through the network over time

using rule-based railcar routing and handling logic. The methodology can be adapted to

simulate any particular railroad’s physical network, train schedule, and standard operating

procedures for railcar handling at rail terminals. It allows us to explicitly account for the

impact of joint decisions on railcar traffic patterns throughout the rail network. We will

demonstrate that this framework enables us to solve certain problem instances to optimality

through a systematic enumeration procedure.

In chapter III we extend the framework of chapter II to larger problem instances.

First we show that the railcar movement model enables us to develop a linear, arc-based

exact-optimization solution approach that uses an extended multi-commodity network design

methodology and utilizes the unique structure of the problem to ensure tractability and

reasonable solution time. Second we show that the framework from chapter II also enables us

to develop a Tabu search heuristic solution approach that can generate reasonable solutions

in a real-time context. The two solution approaches are then compared.

In chapter IV we consider the impact on the problem if rail terminals cannot be modeled

as standard queues. We extend the arc-based optimization solution approach from chapter

III to a more general solution approach capable of handling more flexible assumptions on po-

tentially non-independent rail terminal processing capacity. We also extend the Tabu search
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heuristic solution approach from chapter III to handle the flexible new set of assumptions.

We then make a comparison of the two approaches under the new assumptions.
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Chapter II : A Framework for Evaluating Dynamic

Freight Train Re-Routing Decisions to Mitigate Large-

Scale Disruption Scenarios

2.1 Introduction

The sheer scale of the $65.8 billion rail industry in the United States inevitably invites

operational challenges of different kinds for Class I railroads. One such challenge is that of

finding ways to mitigate the impact of unusual congestion and/or disruption at rail terminals.

Disruptions at a rail terminal can be related to severe weather, workforce-related issues such

as strikes, equipment or track issues at the rail terminal, etc. These events can disrupt the

ability of the rail terminal to process railcars. Specifically, a disruption may temporarily

reduce the processing capacity at the rail terminal, potentially down to zero. In order to

mitigate the consequences of this impact, two approaches may be pursued by the railroad to

remedy the problem, potentially in tandem. The first approach is to alter the operational

schedule within the disrupted rail terminal to minimize the impact of the disruption. This

problem has been studied in the literature, see Lusby et al. [24] and Caprara et al. [7] for

examples.

The second approach, and the focus of our research, is to re-route a subset of trains to

alternate rail terminals. When the disruption is imminent the operations management of the

impacted rail terminal(s) would request that dispatch re-route one or more trains that will

be impacted by the disruption — trains typically destined for the disrupted rail terminal.

We shall refer to such trains in consideration as candidate trains and use L to represent

the set of candidate trains. Dispatch would consider potentially altering the rail terminal

to which a number of the candidate trains are destined. The expectation for making the

re-route decision for candidate trains can be anywhere from a few hours to within an hour,

with the latter scenario arising in cases where one or more candidate trains may have already

been dispatched to the disrupted terminal. As such this problem needs to be solved in a

9



real-time context. Prior to this study the re-routing decisions were made as follows.

• Step 1: ∀ ` ∈ L, a score was determined for each potential destination s ∈ S`, and the

re-route options for ` were sorted from best to worst. The primary objective is reduce

delays, and this heavily impacts the score. Other factors contributing to the score

include the impact of each re-route option on crew and other resource requirements.

• Step 2: Based on the ` sorted lists a judgement call is made about how many trains

to re-route and where to re-route each one of those trains.

The above approach is myopic in two ways since it ignores the following two considerations:

1. Holistic Impact of Re-Routing on the Service Network: Changing the destina-

tion of any given train has a direct impact on the congestion patterns at the original

destination terminal as well as the new destination terminal. This impact is propagated

throughout the network as other railcards are impacted since the re-routing decision

creates new congestion patterns.

2. Joint Re-Routing Decisions: The optimal decision for one candidate train in the

absence of other candidate trains is not necessarily part of the optimal overall decision

when other candidate trains are present.

We address both of the above challenges by introducing a decision support methodology

which provides dispatch with visibility into the holistic impact of joint re-routing decisions —

thus allowing a non-myopic solution to the problem. We are interested in problem instances

where thousands of railcars enter the network daily and will test our ideas using data from one

of the largest railroad companies in the United States. In this chapter we limit the discussion

to the subset of such problem instances where the solution space,
∏
`∈L
|S`|, is reasonably small

in size. In subsequent chapters we remove this artificial constraint. Let us next discuss the

related literature prior to introducing the details of our modeling approach to the problem.
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2.2 Literature Review

There have been a number of studies that focus on improving train operations within a rail

terminal. Caprara et al. [8] discuss train routing within a rail terminal by formulating an

integer linear programming model which is solved using a branch-and-cut-and-price method.

Caprara et al. [7] expand on this work by considering the impact of train delays and the re-

sulting re-routing implications by developing a robust optimization model. Potential changes

to the rail terminal operations in the event of a schedule disruption are studied by Lusby

et al. [24], where a set-packing-inspired formulation is developed and solved using a branch-

and-price based solution method. Petersen [28] models the operations at a rail terminal as

a queueing system and makes the assumption that the arrival and departure processes are

statistically independent Poisson processes. Using this model Petersen [28] calculates the

probability distribution of put-through times and compares the model results with empirical

data and finds that the exponential service time assumption works reasonably well for the

prediction.

The research in our study aims to enable a decision support system for a freight train

operator in the United States. Such systems have been implemented and studied in the

transportation industry before. For example, de Matos and Powell [13] discuss requirements

of such a system in the airline industry and address the issues of integrating such an au-

tomated support system into existing air traffic management systems. Rosenberger et al.

[31] model the daily operations of an airline as a stochastic process. They implement the

stochastic model as a simulation with modular components, each of which can be changed

to reflect the specific policies of a given airline. The simulation implementation of the model

allows the airline to evaluate crew scheduling plans and recovery policies when flights are

delayed. Rosenberger et al. [32] build on this work by developing an optimization model to

make decisions to re-route aircraft in order to minimize re-routing and cancellation costs.

In order to keep computational time manageable, the paper develops an aircraft selection
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heuristic which determines the subset of all aircraft to be considered for re-routing, while

ensuring this subset remains a superset of all delayed aircraft. The impact of the re-routing

decisions is evaluated using the comprehensive simulation model developed by Rosenberger

et al. [31]. Argüello et al. [2] take a different approach, solving the aircraft re-routing problem

with an overall greedy randomized adaptive search procedure (GRASP) heuristic solution,

which solves in polynomial time.

The methodology we develop in this study includes using a time-space network. For a few

decades, time-space networks have been used as a methodology for modeling transportation

routing problems. Jarvis and Ratliff [19] demonstrate the ability to formulate three classic

routing problem objectives using a time-space network model. They use a discretized time-

space network, where time is discretized by creating nodes at pre-determined intervals which

are generally regularly spaced. By contrast, Kliewer et al. [21] formulate an event-based

time-space network, where nodes correspond to specific events at the various locations. The

event-based time-space network is then applied to efficiently solve a multi-depot multi-vehicle

type vehicle routing problem. The time-space network we develop in this paper is of the

latter type.

The flexibility of the time-space network formulation is further demonstrated in the

work of Zhu et al. [35]. They develop a three-dimensional time-space network consisting

of three two-dimensional time-space sub-networks corresponding to trains, blocks, and indi-

vidual railcars respectively. This framework for modeling the movement of railcars allows

incorporating the train selection logic, blocking logic, and individual railcar routing to be

incorporated as decision variables in a mixed integer programming math model. Since the

mathematical model cannot be reasonably solved for realistic problem instance sizes, Zhu

et al. [35] develop a metaheuristic solution approach that applies a dynamic block generation

mechanism and a search intensification mechanism.
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2.3 Problem Definition

As the candidate trains selected for re-routing are generally manifest trains we limit the focus

of this dissertation to the manifest train network. The manifest train network excludes local

train connections into and out of the rail terminals serviced by manifest and other non-local

trains. Railcars are considered to enter the manifest train network when they are dropped

off by a local train; similarly railcars are considered to leave the manifest train network when

they arrive at the rail terminal from which they are picked up by a local train.

The railroad operates a physical network consisting of rail terminals and manifest train

connections between terminals. Figure 1 shows an example of a simple manifest freight

train network as such. A connection between rail terminals sm and sn means there exists a

manifest train route from sm to sn. Note that the connections do not necessarily need to be

bi-directional in the general case, though this is the case in this illustration.

Figure 1: Small example of a manifest rail network

The manifest service network of the railroad uses this physical infrastructure and involves

running manifest trains between terminals, for which an a priori train schedule is set. Table

1 illustrates part of a weekly train schedule summary for the physical network in Figure 1.

Each commodity has an a priori trip plan, which specifies the sequence of rail terminals

it will traverse during its trip through the manifest network. Figure 2 depicts the trip plan of
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Table 1: Weekly manifest train schedule sample

Train Origin Train Destination Departure - Arrival Times Capacity

s1 s2 Mon 10:00 - 17:00 100
s4 s3 Wed 3:30 - 16:15 100
s2 s′′2 Thu 13:30 - 16:30 100

one particular commodity in the manifest network illustrated by Figure 1. The commodity

in question has origin terminal s1 and destination terminal s5. Note that a commodity’s

trip plan is, among other factors, a function of the origin and destination terminals for

that commodity (though it is determined as such a priori). The trip plan assigned to the

commodity in question is s1 → s2 → s3 → s4 → s5. Each arc in the trip plan is referred to as

a leg of the trip plan. It is assumed that for each leg of the trip plan, there must exist a train

in the schedule whose origin and destination match the origin and destination of that leg,

respectively. The origin terminal of the commodity is the terminal in the manifest network

into which the commodity is brought by a local train. Similarly the destination terminal of

the commodity is the terminal in the manifest network out of which the commodity is taken

with a local train.

Figure 2: Illustration of one particular commodity’s trip plan in the network

Any rail terminal in the manifest network s has a set of arrival tracks, a classification

section which carries out the railcar processing, and a set of departure tracks, as shown in
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Figure 3. Railcars that arrive at the terminal are positioned on the arrival tracks until they

are processed at the classification section, at which point they are moved onto departure

tracks and are ready to leave with the next applicable train. The processing rate of each

rail terminal in the physical network is known a priori. We will let µt1,t2s denote the average

processing rate for railcars at rail terminal s during the time period starting at t1 and ending

at t2 (i.e. processing capacity in terminal s between t1 and t2 will be (t2 − t1)µt1,t2s ).

Figure 3: Rail terminal as it is modeled in this paper

Recall that the railroad is considering re-routing one or more candidate trains, regardless

of whether already dispatched or not, due to unusual congestion at the original rail terminal

for which the candidate train(s) are bound. In this section we define the details of this

problem.

Consider a set of candidate trains, L, where each ` ∈ L starts from rail terminal o`

and ends at rail terminal s`. The problem is to choose new destination rail terminals s′`

from a feasible subset of rail terminals, S`. In the previous chapter we described the process

of picking up and setting out railcars at intermediate stops between train origin and train

destination. One simplifying assumption made in our problem definition is the absence of

15



pick-ups and set-outs: each train ` ∈ L carries a subset of commodities starting from o` and

ending at s`.

Once ` reaches its destination the commodities that comprised ` are processed via the

sort operation at s`, and each commodity k is sent to the appropriate departure tracks at s`

for the next leg of the trip plan of k. If the destination of ` is changed to s′`, all commodities

carried by ` will go through this process at s′` instead of at s`. Thus the decision to re-

route train ` will alter the individual trip plan of every commodity k on `. The new trip

plan of commodity k describes how k will traverse the physical network from s′` to the final

destination of k. Figures 4 and 5 illustrate this visually for one commodity.

Figure 4: Train ` goes from s1 to s2, train destination s2 is experiencing unusual congestion:
S` = {s′2, s′′2} is the set of re-route options for `.
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Figure 5: New trip plan for one specific commodity on ` for each re-route decision, commod-
ity’s final manifest destination is s5.

The problem is formulated using the following data:

Train Data:

• Most recent train schedule prior to the re-route decision. This is generally (but not

necessarily) a weekly schedule. The origin and destination terminals of all scheduled

trains are known, as well as departure and arrival times.

• The capacity of each train, measured in terms of number of railcars.

Commodity Data: status and location of all manifest commodities currently in the net-

work.

• Time of entry and manifest terminal of entry for all commodities entering the manifest

network in the near future.

• The trip plan of each commodity in the manifest network (Note: the first and last rail

terminals in the trip plan are the origin and destination terminals, respectively).

• The time at which each commodity is due at its destination terminal.
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• The number of railcars in each commodity.

Rail Terminal Data:

• Processing capacity of each rail terminal in terms of number of railcars per unit of time

which can be processed from the arrival tracks and sent to the departure tracks.

Disruption Data:

• The rail terminal(s) at which the disruption occurs.

• The duration of the disruption at each terminal.

• The reduced processing capacity of each terminal during the disruption, as a function

of time.

Re-Route Options Data:

• The set of candidate trains, L.

• The set of available destination terminals, S`, ∀ ` ∈ L. S` may include the original

destination of `, choosing which would represent not altering the destination of `.

• The new trip plan of any commodity k if candidate train ` carrying k is re-routed to

s′`, ∀ ` ∈ L, s′` ∈ S`.

The above information defines the specific instance of the problem to be solved. The

decision variables of the problem are s`,∀` ∈ L, as defined earlier. The railroad’s primary

objective in solving the re-routing problem is to improve network performance. In this study

our focus is to improve network performance by reducing railcar delay. The delay associated

with railcar c is defined as follows:

δc = max(0, Ac −Dc) (1)
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, where Ac denotes the time of arrival of railcar c at its final destination rail terminal and

Dc denotes the time railcar c is due at that rail terminal.

As such the objective statement of the problem is defined as:

min
∑

c∈Cp
⋃
Cf

δc (2)

, where Cp represents the set of railcars in the rail network at the time the re-route

decision needs to be made, and Cf represents the set of railcars coming into the rail network

in the near future.

Let us discuss the constraints of the problem and how they impact the above objective.

The constraints can be divided into two categories:

Solution Space Constraints: These are direct constraints on the decision variables.

1. The set of candidate trains, L is pre-specified.

2. Each candidate train has a pre-specified set of possible destinations: S`,∀` ∈ L.

The feasibility of all members of S` is guaranteed for train `. This is realistic since the

existing process for figuring out the re-routing destinations assumes the same. Specifically,

a subset of the alternate destinations may require additional resources such as an additional

crew shift if the train travels a significantly longer distance. It is assumed that this subset

is included in S` only if the additional crew can be feasibly obtained.

Railcar Flow Constraints: These can be divided into four subcategories: schedule con-

straints, capacity constraints, standard operating procedure constraints, and trip plan con-

straints.

Trip Plan Constraints:

• A commodity must travel through the physical network according to its assigned trip

plan, which ends with the railcar’s final destination rail terminal.

19



• No commodity is cancelled: once it enters the service network, it will be taken to its

final destination by traversing the terminals specified in its trip plan.

• It is known a priori how any feasible re-route decision will impact each re-routed

railcar’s trip plan.

• The decision to re-route train ` modifies the assigned trip plan of each commodity

travelling on `.

Train Schedule Constraints: A commodity can only travel through a leg of its trip s1 → s2

plan at a time when there is a train available from s1 to s2.

Capacity Constraints:

• Train Capacity: Each train in the schedule has a maximum number of railcars it can

carry. This is generally due to the power capacity of the locomotive(s) assigned to the

train, although there may be other factors in some instances. This is specified as part

of the a priori train schedule. This type of capacity is measured in terms of the number

of railcars.

• Rail Terminal Processing Capacity: The classification section of each rail terminal has

a finite processing capacity. This type of capacity is measured in terms of the number

of railcars per unit time. If a terminal is congested over a given time period, this value

is updated to reflect the reduced processing capacity for the specified period of time.

Standard Operating Procedure Constraints:

• The railroad operates based on rules that dictate how railcars are prioritized for pro-

cessing at rail terminals. These rules must be followed.

• The three network resources discussed under capacity constraints operate below their

effective physical capacity at any given time if and only if there is no additional railcars

for them to feasibly process.
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The four railcar flow constraints above dictate when and where railcars move through

the physical network.

2.4 Model

The decision to re-route any train originally scheduled to go from s → s′ to a new rail

terminal, s′′, modifies the traffic patterns in the network, increasing railcar volume at s′′ and

reducing railcar volume at s′. This has a potential impact on a much wider set of railcars than

just the set on the re-routed train. This impact is then propagated through the network as

railcars move based on their trip plans. To account for this inherent dynamic, in this section

we develop a methodology to explicitly quantify the impact of re-routing decisions on the

movement of each individual railcar in the rail network. We do this in two sequential steps:

1. Build a time-space network that codifies the schedule constraints and capacity con-

straints introduced in section 2.3.

2. Using the time-space network, build a railcar movement model which, given the trip

plan constraints and standard operating procedure constraints defined in section 2.3,

evaluates the network’s performance given any re-routing decision for an individual

train or joint re-routing decision for multiple trains at once.

2.4.1 Event-based Time-Space Network Framework

In general a time-space network is a specific type of graph, where each node corresponds

to: (1) a location, (2) a point in time. Figure 6 illustrates a generic small example. In this

case the time-space network is discretized along the time dimension, since nodes are placed

at pre-determined points in time for each location. Three locations and four time periods

are modeled. The horizontal arcs are referred to as waiting arcs ; any flow along a waiting

arc models storing or staging goods at the corresponding location. The arcs connecting

21



nodes corresponding to different locations are referred to as movement arcs ; any flow along

a movement arc models the transportation of goods from one location to another.

Figure 6: Generic discretized time-space network

For our modeling purposes we use an event-based time-space networking model instead of

a discretized one. In an event-based time-space network the waiting arcs are not necessarily of

uniform size. Instead, nodes are placed at key points in time for each location and connected

to create the waiting arcs. We determine such key points in time using the train schedule

as input. The nodes are created to correspond to train arrival and departure times: the

movement arcs in the time-space network correspond to trains (henceforth known as train

arcs) and the waiting arcs correspond to the storage of railcars at rail terminals (henceforth

known as terminal storage arcs). The tail node of a train arc is referred to as the train

departure node. The head node of a train arc is referred to as the train arrival node, which

allows us to model when train cars have moved to a terminal’s arrival tracks for processing.

Figure 7 depicts an example, where we see a subset of the event-based time-space network

which includes:

• An s1 → s2 train with cutoff time 11:00 and arrival time 16:15.

• An s2 → s3 train with cutoff time 10:30 and arrival time 17:10.

• A train which departs from s1 with cutoff time 17:00.
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Figure 7: Time-space network set-up

This formulation allows us to represent potential train re-routing decisions with the

introduction of additional train arcs in the time-space network, as shown in Figure 8. Thus,

a non-candidate train induces one train arc in the time-space network, while a candidate

train ` induces a set of train arcs equal in cardinality to the number of re-route options

available to `, plus one for the original schedule and route if it remains feasible.

Figure 8: Time-space network with re-route option for train s2 → s3 added.

Next we use the time-space network to explicitly model the processing of railcars at rail
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terminals from the arrival tracks to the departure tracks. One can represent this process by

including two separate sets of terminal storage arcs along the space dimension to account for

the arrival and departure tracks at each rail terminal separately. This allows us to model the

processing of railcars from the arrival tracks to the departure tracks by including terminal

processing arcs, also referred to simply as processing arcs. For each train arc, two processing

arcs along with four auxiliary nodes are added using the following two steps:

1. The first and second auxiliary nodes are added along the terminal storage arcs which

correspond to the arrival and departure tracks of the train origin terminal, respectively,

at ε time units prior to the train departure node. They are connected, forming the

processing arc. Figure 9 shows this visually.

Figure 9: Processing arc added prior to train departure node

2. Along the terminal storage arcs which correspond to the arrival tracks of the train

destination terminal the third auxiliary node is added at ε time units prior to the train

arrival node. The fourth auxiliary node is added along the terminal storage arcs which

correspond to the departure tracks of the train destination terminal at the same point

in time as the third auxiliary node. Figure 10 depicts this.
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Figure 10: Processing arc added prior to train arrival node

Let s(i) and t(i) denote the rail terminal and point in time to which time-space node

i corresponds, respectively. The resulting time-space network is particularly useful since it

allows us to account for the processing rate of each terminal at all points in time by setting

the capacity, Uij of any processing arc (i, j) to the value:

Uij = [t(i)− t(i′)]µt(i
′),t(i)

s(i) (3)

, where node i′ denotes the predecessor of node i such that s(i′) = s(i). Figure 11 illustrates

the procedure for setting the capacity of processing arcs. In the depicted example t(i)−t(i′) =

360 minutes. Thus, if µ
t(i),t(i′)
s1 = 10 railcars per hour, the capacity of arc (i, j) in Figure 11

will be set to 3600 railcars.

Figure 11: Example of processing arc’s upper bound calculation.

Observe that, in a strictly literal sense, the proposed time-space framework assumes a

batch of railcars are processed from the arrival yard to the departure yard simultaneously

in one instance. For example, in Figure 11, a batch of Uij railcars or less can be processed

25



instantaneously at time t(i). This is of course not the case in reality, where railcars are

processed continuously. However, given the assumption of constant processing rate of µ
t(i),t(i′)
s1

between t(i′) and t(i), we assert that the proposed time-space framework is sufficient for

modeling this reality.

Consider a more literal representation of the processing of railcars between time-points

t(i′) and t(i), where there are Uij processing arcs between these time-points, each with upper

bound U = 1. Since the processing rate between time-points t(i′) and t(i) is constant, the

processing arcs will be placed after equal intervals, 1

µ
t(i),t(i′)
s1

apart. This is represented in the

alternate time-space network formulation shown in Figure 12. Note that:

• Figure 12 is more expensive to formulate than Figure 11, since it uses more nodes and

arcs to represent processing.

• Figure 11 allows correct modeling of physical storage capacity at the arrival and de-

parture yards at the time of train arrival and train departure.

Figure 12: Continuous processing modeled in time-space paradigm

Hence we use the event-based time-space framework in Figure 11 instead of the dis-

cretized time-space framework in Figure 12. the addition of the resulting auxiliary nodes

and processing arcs to the example time-space network of Figure 7 results in the time-space

network shown in Figure 13.
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Figure 13: Time-space network including processing arcs

In addition to representing the movement, storage, and processing of railcars, we also

need to model the exit of railcars from the network once they reach their final destination.

To do this we add one sink node, isink, to the time-space network. This allows us to connect

each train arrival node to the sink, creating exit arcs, which represent commodities leaving

the system. This is shown in Figure 14. Furthermore, a time horizon must be selected

beyond which no arcs are to be created. For the arrival tracks of each rail-yard, we connect

the node i which has the latest t(i) along the nodes at that arrival track to the sink node.

An arc is similarly created for the departure tracks of each rail-yard. Let us refer to this

class of arcs as feasibility arcs.

27



Figure 14: Illustration of sink node and an exit arc example in time-space network

Let G = (V,A) represent the final time-space network formed as described in this section,

where V is the set of nodes and A is the set of arcs in the graph. We note that any node

i ∈ V corresponds to: either the arrival yard of rail terminal s(i) or the departure yard of

rail terminal s(i). The exception is the sink node isink, for which s(isink) and t(isink) are not

defined.

In order to accurately represent the operations of the railroad, we set the arc capacities

as described below. All arc capacities are measured in number of railcars.

• The capacity of any train arc is set to the capacity of the corresponding train in the
train schedule.

• The capacity of any processing arc, (i, j) ∈ A, is set using Equation (3).

• The capacity of any terminal storage arc, exit arc, or feasibility arc is set to ∞.

In the next section we will assert that this directed, capacitated time-space network can be

used as an accurate simulator of railcar movement through the physical network. We will

show that this simulation capability allows us to solve the problem defined in section 2.3 for

reasonably small problem instances by running a separate simulation of railcar movement

for each potential solution.
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2.4.2 Simulation of Railcar Movements

Evaluating any re-route decision requires estimating the resulting railcar movements in the

network and consequent aggregate delay accrued by commodities en route to final destina-

tions. Note that a given feasible flow on the time-space network specifies:

• How railcars move through the physical network.

• The timing of all such movements.

As such, in this study we characterize railcar flow solutions in the physical network using

railcar flows on the time-space network. In this section we introduce an algorithm that

creates a feasible flow on the time-space network that is a good simulator of actual railcar

movements in the physical network. The algorithm requires the following five inputs:

1. G = (V,A), The time-space network.

2. Cp, the current set of railcars in the network, including the time due, current location,

and remaining trip plan for each railcar c ∈ Cp.

3. Cf , the set of railcars projected to arrive into the network in the near future, including

the time due and trip plan for each railcar c ∈ Cf . The near future is defined as the

time horizon covered by the time-space network.

4. τ(c), the time at which railcar c is introduced to the physical network. If c ∈ Cf , c

is available for movement at the arrival tracks of so(c) into the network at time τ(c),

where so(c) is the first rail terminal in the trip plan of c. If c ∈ Cp, c is available for

movement at the section (arrival or departure) of the current rail terminal where it is

currently stationed and τ(c) is assumed to be the start of the time horizon. Note that

any railcars on a moving train at the current time can be included in Cf and assumed

to arrive into the network at the train destination and at the time of train arrival with

a truncated trip plan, without loss of generality.
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5. Operating rules regarding the order of routing and processing of railcars in Cp ∪ Cf

through the physical network. Operating rules reflect the standard operating proce-

dure constraints for any specific railroad in question. As an example, we model the

application of a first-in-first-out (FIFO) railcar processing rule at its rail terminals.

Such a rule would state that railcars are to be processed at a rail terminal in the order

in which they have arrived at the arrival tracks. It would further require that trains are

to be loaded with applicable railcars at the departure tracks in the order the railcars

have been received at the departure tracks1.

An example of a FIFO violation is shown in Figure 15, where one railcar bypasses another

at the classification section. Note that railcar #2, which takes the red path, bypasses railcar

#1 at terminal s1, violating the first-in-first-out rule.

Figure 15: Example of FIFO violation by railcar with red path over railcar with green path.

In order to evaluate the performance of the network in terms of the objective function

defined in section 2.3, Equation 2, one needs to create a feasible flow on the time-space

network that is a good simulator of actual railcar movements in the physical network. Algo-

rithm 1 accomplishes this using the assumptions regarding the railroad’s standard operating

procedures discussed above, and outputs the flow of railcars through the time-space network.

We represent this output with the following variables:

1Note that the operating procedure modeled here is one example of such rule. For instance, a potential
alternative operating rule may assume that each arriving track in the arrival yard is processed FIFO. It is
furthermore possible to create a more complex time-space network with multiple sets of terminal storage
arcs, each set representing one of the tracks in the arrival or departure yard.
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xcij =


1 if railcar c ∈ Cp ∪ Cf is to flow on arc (i, j) ∈ A;

0 otherwise.

The algorithm is described in detail below.
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Algorithm 1 Railcar movement model applied to network with FIFO rule.

Require: G = (V,A), Cp, Cf , Uij∀(i, j) ∈ A.

Require: t(i), s(i) ∀i ∈ V .

Require: τ(c) ∀c ∈ Cp ∪ Cf .
Step 0 - Initialization:

For each rail terminal s, initialize QA(s) and QD(s) as two sorted sequences or queues

of railcars, each starting with no elements.

For each train arc (i, j), Initialize an empty sorted sequence Q(i,j) as the queue of railcars

to traverse (i, j).

Set xcij = 0 ∀(i, j) ∈ A, ∀c ∈ Cp ∪ Cf .
Step 1 - Add current railcars to queue

Step 1a: Sort the railcars in Cp into sequence Cp in non-decreasing order of τ(c).

Step 1b: Remove the first railcar c in Cp and note both its rail terminal, s, and whether

it is on the arrival or departure tracks.

Step 1c: If c is on the arrival tracks of s:

Add c to the end of QA(s).

If c is on the departure tracks of s:

Add c to the end of QD(s).

Step 1d: If Cp is empty:

Go to Step 2.

Else:

Go to Step 1b.

Step 2 - Create sequences for near-future railcars: For each rail terminal s:

Place the subset of railcars in Cf that come into the network at s into sequence Cf (s).

Sort cars in Cf (s) in non-decreasing order of τ(c).

Step 3 - Sort nodes by point in time: Sort the nodes in V into sequence Vsorted in

order of non-decreasing t(i). Break ties by placing nodes that correspond to arrival tracks

prior to nodes that correspond to departure tracks.

Step 4 - Pick next node: If there are no remaining nodes in Vsorted:

Terminate the algorithm.

Else:

Remove the first node i from Vsorted.

If i corresponds to the arrival tracks of s(i):

Go to Step 5.

If i corresponds to the departure tracks of s(i):

Go to Step 6.

Continued on next page
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Step 5 - Arrival node steps

Step 5a: If Cf [s(i)] is empty or the first railcar c in Cf [s(i)] has τ(c) > t(i), skip to

Step 5b. Otherwise, remove c from Cf [s(i)], add it to the end of QA[s(i)], and repeat

Step 5a.

Step 5b: For all nodes i′ ∈ V such that ∃ a train arc (i′, i) ∈ A: Add all railcars in

Q(i′, i) to the end of QA[s(i)].

Step 5c: If QA[s(i)] is an empty sequence, go to Step 4.

Step 5d: If processing arc (i, j) departs i:

Set n = max(Uij, |QA[s(i)]|), where |QA[s(i)]| is the number of cars in QA[s(i)].

For each of the the first n cars from QA[s(i)], denoted c:

Remove c from QA[s(i)].

Set xcij = 1.

Add c to the end of QD[s(i)].

Step 5e: Let (i, j) denote the rail terminal storage arc or feasibility arc leaving node i.

Set xcij = 1 ∀c such that c is in sequence QA[s(i)].

Step 6 - Departure node steps

Step 6a: If QD[s(i)] is an empty sequence, go to Step 4.

Step 6b: If ∃j ∈ V such that (i, j) is a train arc, let Q
(i,j)
D represent the ordered

sub-queue of railcars in QD[s(i)] whose trip plan includes s(i)→ s(j) as a leg.

Set n = max(Uij, |Q(i,j)
D |).

Remove up to n railcars from Q
(i,j)
D . Remove the same set of railcars from QD[s(i)].

For railcar c removed from QD[s(i)]:

Set xcij = 1.

If s(j) is the final rail terminal in the trip plan of c:

Set xjisink
= 1.

Else:

Add c to Q(i,j).

Step 6c: Let (i, j) now denote the rail terminal storage arc or feasibility arc leaving

node i. Set xcij = 1 ∀c where c is in sequence QD[s(i)].

The algorithm eventually terminates in Step 4 when there are no nodes left in sequence

Vsorted at the end of the time horizon.

Recall from section 2.3 the definition of railcar delay in Equation 1. If the problem is

feasible, the delay incurred by each railcar at the time of arrival into its final destination
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can be calculated based on the values of xcij determined by Algorithm 1. To do so, for each

railcar c ∈ Cp ∪ Cf we associate a delay cost, ρcij to each arc (i, j) ∈ A as follows:

• If (i, j) is an exit arc, set ρcij = max[t(i) −Dc, 0], where Dc is the due time of railcar

c. Note that t(i) and Dc correspond to two points in time. We define t(i)−Dc as the

amount of time, measured in minutes, between the two timepoints.

• If (i, j) is a feasibility arc, the delay cost must reflect two components:

– Future Delay: The objective function needs to also account for the delay railcar

c may incur in the future. We penalize future delay by setting a sufficiently large

penalty term, P , and calculating a penalty ratio for railcar c as follows:

pc =
q
s(i)
c

qc
(4)

, where qc is the number of legs in the trip plan of railcar c, and q
s(i)
c is the

remaining number of legs in the trip plan of c after rail terminal s(i).

– Incurred Delay: If Dc is an earlier time than t(i), an additional delay of t(i)−Dc

is already incurred.

To account for both components, we set ρcij = max[t(i)−Dc, 0] + pc{P − [max(0, Dc−

t(i)]}. Note that in this equation future delay is reduced if Dc is after t(i), since that

allows more time beyond the end of the horizon for railcar c to reach its destination

without incurring a delay. Furthermore, the penalty ratio incentivizes railcar c to move

towards its final destination through the legs of its trip plan, even if it may not reach

the final destination by the end of the horizon.

• If (i, j) is neither an exit arc nor a feasibility arc: set ρcij = 0.

Based on the above data, the delay for railcar c ∈ Cp ∪ Cf is calculated below.
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δc =
∑

(i,j)∈A

ρcijx
c
ij (5)

As such, the objective function z can be calculated upon the completion of the algorithm as

follows:

z =
∑
c∈Cp

∑
(i,j)∈A

ρcijx
c
ij (6)

2.4.3 Systematic Enumeration

In the previous section we developed an algorithm to simulate railcar flow in the time-space

network. In this section we describe the final component of the overall solution approach of

Chapter I : systematic enumeration of the potential solutions to the train re-routing problem.

Let Φ denote the sequence (ordered set) of all possible candidate train re-route solutions

and note that |Φ| =
∏
`∈L
|S`|. Any particular solution φ ∈ Φ is characterized by specifying a

destination terminal for each candidate train: φ = (φ1, φ2, ..., φ|L|). Let us discuss how an

instance of the railcar movement simulation can be run for each φ ∈ Φ.

We have shown that, by design, each scheduled train induces a train arc in the time-space

network. Furthermore each potential re-route option for any candidate train (including the

“do-nothing” option) also induces a train arc in the same network. Thus any candidate train

` ∈ L with corresponding set of re-route options S` induces |S`| train arcs in the time-space

network. Let A` ⊂ A represent the set of such arcs. Recall from subsection 2.4.2 that the

time-space network G = (V,A) is one of the five required inputs for running the railcar

movement simulation. The railcar movement simulation can be run for any particular φ ∈ Φ

by altering the capacities of the train arcs which correspond to candidate trains:
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Algorithm 2 Running railcar movement simulation for scenario characterized by φ ∈ Φ

Require: G = (V,A), φ = (φ1, φ2, ..., φ|L|), A` ∀` ∈ L.
Step 1: Modify G = (V,A), the original time-space network.
For ` in (1, 2, ..., |L|):

For each (i, j) ∈ A`:
If s(j) == φ`:

Set Uij to the capacity of train `.
Else:

Set Uij = 0.
Step 2: Run Algorithm 1 using the modified time-space network.

Furthermore, let us use z(φ) to denote the objective function value (i.e. aggregate railcar

delay measured in railcar-minutes) obtained using Equation 6 after running Algorithm 1 for

the scenario represented by φ.

We begin our attempt to solve the train re-routing problem by articulating the simplest

way to find the solution with the smallest amount of resulting aggregate railcar delay: sys-

tematically enumerating each solution. Algorithm 3 accomplishes this using one possible

method of sorting the solutions in the solution space for enumeration. The computational

limitations of this method are studied in this chapter. More advanced methods are discussed

in the next chapter.
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Algorithm 3 Systematic Enumeration Algorithm

Initializations:
Initialize φ0 = (φ0

1, φ
0
2, ..., φ

0
|L|), where φ0

` is the original destination terminal ∀ ` ∈ L.

Set φ∗ → φ0, z∗ → z(φ0), Φ̂→ {φ0}, Φ̂new → {φ0}
Initialize ` = 1.
Procedure:
While ` ≤ |L|:

For each φ ∈ Φ̂:
For each s ∈ S`:

Set φnew → φ.
Set φnew` → s.
Add φnew to the end of Φ̂new.
If time elapsed has passed time threshold:

Exit all three loops.
Compute z(φ) using Algorithm 2.
If z(φ) < z∗:

Set φ∗ = φ and z∗ = z(φ).
Set Φ̂→ Φ̂new.
`++.

Return φ∗ and z∗.

2.5 Computational Experiments

In this section we test the optimization by systematic enumeration approach using computa-

tional experiments. The physical network and weekly train schedule data from Union Pacific

Railroad, a Class I railroad in the United States, is used to set up the experiments. Ship-

ment data is simulated to reflect realistic volume in the same network. Different examples

of network disruptions are tested, as well as different candidate train sets, L, and candidate

destinations, S`∀`. Variations in the number of candidate trains, |L| are of particular sig-

nificance since the size of the solution space increases exponentially as |L| increases. We

further motivate the use of the two metrics used to evaluate the effectiveness of systematic

enumeration for different types of problem instances: the time required to exhaust the solu-

tion space and the quality of the solution retrieved in realistic time windows. This allows us

to establish two things:
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1. Which problem instances are reasonably small for systematic enumeration to suffice as

a solution method.

2. The motivation behind the subsequent chapter, which tackles the problem instances

that do not fall into the above category.

As a practical matter it is crucial for the railroad to understand under what circum-

stances a more complex solution methodology is required. This informs the prioritization

decision of the investment in the organizational system required to execute the more complex

methodology.

We begin by discussing the specific data inputs used to set up the computational exper-

iments.

2.5.1 Physical Network

The physical network data obtained from the railroad indicates the presence of 152 rail termi-

nals across a significant portion of the continental United States, and 2625 trains scheduled

weekly between these rail terminals. This data is used to construct the relevant instance of

the time-space network G = (V,A) as described in section 2.4.1.

2.5.2 Simulation Horizon and Traffic Instances

Since most disruptions do not last beyond one or two days and the impact of a disruption

is most acutely felt during and immediately after the fact, we consider a timeline of 14 days

sufficient to evaluate the effectiveness of a given solution. In order to have comprehensive

results, we generate 15 independent instances of manifest commodity traffic in the railroad’s

network. For each traffic instance a subset of commodities is generated as the manifest

network traffic. Each such commodity is assigned the following attributes.

Number of Railcars: As discussed previously, a commodity may have one or more railcars

— we refer to the number of railcars in a commodity as the size of the commodity. For
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Table 2: Volume type and λ values for each traffic instance

Volume Type
λ Regular Heavy Light

1.0 Traffic instance #1 Traffic instance #6 Traffic instance #11
1.2 Traffic instance #2 Traffic instance #7 Traffic instance #12
1.3 Traffic instance #3 Traffic instance #8 Traffic instance #13
1.4 Traffic instance #4 Traffic instance #9 Traffic instance #14
1.5 Traffic instance #5 Traffic instance #10 Traffic instance #15

each traffic instance we use a specific probability mass function f(n) to determine the size

of each commodity. Since the scope is limited to manifest trains, we assert it is reasonable

to assume that commodity sizes are between 1 and 10 railcars, with frequency of commodity

size inversely proportional to commodity size. Therefore we use the following exponentially

decreasing probability mass function to generate the size of each commodity:

f(n) =
λ10−n∑10

n′=1 λ
10−n′

(7)

, where λ is an input parameter we vary across traffic instances. Table 2 summarizes the

values of λ used for each specific traffic instance.

For the remaining commodity attributes, we define the same for each individual railcar

c in the commodity.

Time of Entry to System (τc): Let us define two useful quantities below.

• R0: the number of railcars present in the rail network at the beginning of the simulation.
Note that R0 = |Cp|.

• Rd: the average additional daily number of railcars coming into the rail network. Note
that Rd ∗ 14 = |Cf |.

Based on data provided in 2013 by one of the Class I railroads in the United States, we

have determined reasonable estimates, R̂d = 1850 and R̂0 = 6500. For traffic instances 1

through 5 we generate times of entry into system for each commodity accordingly. Specifi-

cally:
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Table 3: Volume of railcar traffic in different traffic instances

Volume Type R̂0 R̂d

Regular 6500 1850
Heavy 7800 2220
Light 5200 1480

1. For the number of commodities equivalent to R̂0 railcars, set the time of entry into the
system at the beginning of the horizon.

2. For the number of commodities equivalent to R̂d railcars, set the time of entry into the
system to a random time in day 1 of the horizon. Repeat for all 14 days in the horizon.

Note that since each traffic instance from #1 through #5 assumes a different λ the

number of commodities equivalent to an a priori number of railcars varies across traffic

instances.

For the remaining ten traffic instances we tweak R̂d and R̂0 in order to avoid over-reliance

on our estimates in the experiments. For traffic instances #6 through #10, we increase each

estimator by 20%, setting R̂d = 2220 and R̂0 = 7800. For traffic instances #11 through

#15, we decrease each estimator by 20%, setting R̂d = 1480 and R̂0 = 5200. The traffic

instances thus simulate 5 regular, 5 heavy, and 5 light examples of network traffic. Table 3

summarizes this setup.

The remaining commodity attributes below are determined independently of the number

of railcars and time of entry into system.

Origin and Destination: In order to generate reasonably realistic origin-destination pairs

for each commodity, we use the train schedule to inform the probability of any given terminal

s being a commodity origin or commodity destination in the following way. Let porgs represent

the probability that the commodity’s origin is at s, and pdests represent the probability that

the commodity’s destination is at s. Also let nis represent the weekly number of inbound

trains scheduled to s and nos represent the weekly number of outbound trains from s. Note

that nos and nis are deterministic functions of the weekly train schedule.

We set porgs = no
s∑

s′ n
o
s′
∀s and pdests = ni

s∑
s′ n

i
s′
∀s. We reason that the higher the number
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of inbound trains to s, the more reasonable it is to expect s to be the destination of any

given shipment; similar logic is applied to the number of outbound trains from s and the

probability of s being the origin of any given shipment.

Trip Plan: We assert that given the origin-destination pair of a commodity and the physical

network of the railroad, a reasonable trip plan can be determined by solving a shortest path

problem from the origin to the destination using the physical network of the railroad, as

follows.

• Let G0 = (V0, A0) represent the original manifest network, where:

– V0 is the set of all rail terminals in the manifest network.

– ∃ a directed arc (i, j) ∈ A0 iff ∃ a manifest train in the schedule with train origin

i and train destination j.

• Consider any manifest commodity, k. Let ok ∈ V0 and dk ∈ V0 represent the origin and

destination of k, respectively.

Set the trip plan of commodity k to the shortest directed path between ok and dk in

the physical network, G0. Recall from section 1.1 that solving this shortest-path problem is

trivial.

Due Date: We assert that the due date of a shipment is dependent on the specific shipment’s

origin, destination, trip plan, and how long one can reasonably expect the trip to take in the

rail network. Thus we generate a due date for each shipment as follows:

For each shipment, the simulation is run with that shipment only in the rail network. This

provides the hypothetical minimum trip time. We then multiply the minimum trip time by

a factor decided a priori; in this case we used a factor of three as a reasonable estimate of

the leeway allowed for the shipment’s due date. Hence

Dk = τk + 3mk (8)

, where Dk is the due date for shipment k, τk is the time at which shipment k enters

into the network via its origin terminal, mk is the minimum time required for shipment k to
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reach its final destination. Note that Equation 8 adds τk, a variable representing a timepoint

with 3mk, a variable representing an amount of time. In this context addition is assumed to

produce the timepoint mk units of to the future of τk.

Each railcar c in shipment k is said to have due date Dc , Dk.

2.5.3 Disruption Instances

Let us now discuss the process used to generate a number of disruption instances, similar

to the different traffic instances discussed in section 2.5.2. Our strategy is to generate the

disruption instances independently of the 15 traffic instances discussed in section 2.5.2, and

run the simulation for all combinations of traffic instances and disruption instances.

Disrupted Stations:

We consider three different stations to disrupt, one of which is disrupted in each disrup-

tion instance. In order to obtain comprehensive results, we select one station from each of

the Southern, Northern, and Western regions of the rail network; the stations are outlined

below.

1. Fort Worth yard, TX

2. Englewood yard, IL

3. Roseville yard, CA

Each station is disrupted for 48 hours toward the beginning of the time horizon, during

which time the station processing rate is assumed to drop to zero. Let t1 and t2 represent

the start and end of the disruption period. Recall that G = (V,A) represents the graph of

the time-space network and Uij represents the upper bound of capacity of (i, j) ∈ A. We

model the disruption by overriding the Uij of all processing arcs which fall in the disruption

period and for the disrupted station. Specifically, we set Uij using Equation (9) ∀(i, j) ∈ A,

where t(i) = t(j), and s(i) and s(j) correspond to the disrupted terminal:
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Uij =


[t1 − t(i′)]µt(i

′),t1
s(i) , t(i′) < t1 & t1 ≤ t(i) ≤ t2

0, t1 ≤ t(i′) ≤ t2, & t1 ≤ t(i) ≤ t2

[t(i)− t2]µt2,t(i)s(i) , t1 ≤ t(i′) ≤ t2 & t2 < t(i)

(9)

, where i′ ∈ V denotes the predecessor of i ∈ V such that s(i′) = s(i).

Setting Uij in this manner ensures the upper bound of capacity of processing arc (i, j) ∈

A reflects the realistic processing capacity of the corresponding terminal prior to, during,

and after the disruption.

Candidate Trains:

Recall that we use L to refer to the set of candidate trains. In reality, the number of

trains to consider re-routing in the event of a disruption is typically decided by the operations

manager on the ground. To avoid over-reliance of the computational experiments on one

particular such decision, we alter the number of candidate trains, |L|, across disruption

instances. Specifically, for each disrupted terminal we generate 12 disruption instances which

vary only by |L|. We do this by considering 13 incoming trains, `1 through `13, which are due

to arrive at the disrupted station s during the disruption period. Each of the 12 disruption

instances corresponds to a value of i, where we set Li = {`j|1 ≤ j ≤ i} ∀ 2 ≤ i ≤ 13.

We repeat the above process for each of the three disrupted terminals, resulting in a total

of 36 disruption instances. Considering all combinations of traffic instances and disruption

instances, we thus produce 15×36 = 540 overall problem instances to simulate. Furthermore,

let S` represent the set of stations to which train ` can be re-routed. Given any problem

instance, we ensure |S`| = 9 (one of these options is the original destination of `), which

we assert is a reasonable number of destinations to consider. In reality, the average number

of pragmatic options per train is typically smaller than 9, which would result in a smaller

problem instance set size.
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2.5.4 Results

In this section, we determine the limits of systematic enumeration. In doing so we need to

consider the pragmatic requirements of the original problem. In reality, the decision to re-

route trains may need to be made quickly due to the inherent real-time nature of the decision.

We assert that in some cases the decision may need to be made as quickly as 15 minutes to

1 hour; therefore in this section we characterize the limitation of systematic enumeration by

defining the problem sizes which can be optimally solved within the 15-minute and 1-hour

time frames. However, there may also be cases where there is more advance notice regarding

significant rail network disruptions. Thus we further examine the impact of having up to 10

hours of time (picked arbitrarily) on the performance of systematic enumeration.

Specifically, we attempt the 540 problem instances defined in Sections 2.5.2 and 2.5.3

using systematic enumeration with 15-minute, 1-hour, and 10-hour computation time cut-

offs. The experiments are run on machines with 12-core Xeon E5645 CPUs and 48 GBs of

RAM. Given each problem instance, the solutions in the solution space are searched in the

(arbitrarily selected) order defined by Algorithm 3.

As motivated above, the following two metrics are used for determining the limits of

systematic enumeration:

1. Time Required: The range of problem sizes which can feasibly be solved in a rea-
sonable amount of time.

2. Solution Quality: The improvement in the objective function value given within
reasonable time limits.

Note that the order of solution evaluation specified in Algorithm 3 does not impact the

time required, but could potentially impact the solution quality.

Time Required

Note that the average time it takes to solve the problem by systematic enumeration has

a linear relationship with the number of solutions in the solution space. Further, the average

run time of a single simulation instance can depend on the traffic volume. Recall that traffic
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Table 4: Average simulation runtime by traffic volume

Volume Traffic # Average Simulation Runtime (seconds)
Regular 1 – 5 16.4
Heavy 6 – 10 17.1
Light 11 – 15 15.0

volume is defined by the number of railcars in the simulation in Table 3. Therefore we find

the average simulation runtime for each of the three traffic volumes. Since 180 problem

instances are run for each traffic volume, and solving each problem instance involves running∏
`∈L
|S`| simulations, we assert that the calculation for the average simulation runtime is stable

enough for a conclusion about the general limitations of systematic enumeration. Table 4

illustrates the resulting average simulation runtimes for light, regular, and heavy traffic

volumes. Based on the values in Table 4, we can infer the problem sizes which are solvable

by systematic enumeration within the allowable time, which we illustrate in Figure 16.

Each table in Figure 16 illustrates the problem sizes for which the solution space is

small enough for a particular traffic volume. Each cell corresponds to a particular problem

size, defined by |L| and |S`|, assuming |S`| does not vary ∀` ∈ L. The cells in the table

are color-coded based on the required time to fully enumerate the solution space. Note the

similar color pattern in the three tables suggests that changes in traffic volume within the

expected range of ±20% do not have a significant impact on the limitations of systematic

enumeration. It is worth calling out that the runtimes in Figure 16 are estimates, calculated

by multiplying the size of the solution space for each cell with the relevant average runtime

from Table 4.

Solution Quality

Figure 17 visualizes the improvement, in railcar-hours, by traffic instance and |L|, av-

eraged across the three different disrupted terminal instances. Note that even a 15-minute

time-limit for the decision will result in at least an average of 2000 rail-car hours of reduced

delay in the network, with all but one data point indicating over 4000 railcar-hours of reduced

delay. While allowing up to an hour of time for the decision does show an improvement in
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solution quality, the solution quality seems to stay within the same order of magnitude. This

is also true of the results given a 10-hour cutoff, which we show in Figure 18.
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10 25    250  2,500  25,000  250,000  2,500,000  25,000,000 250,000,000  2,500,000,000  25,000,000,000   250,000,000,000  2,500,000,000,000   

9 20    182  1,640  14,762  132,860  1,195,742  10,761,680 96,855,122    871,696,100     7,845,264,902     70,607,384,120    635,466,457,082      

8 16    128  1,024  8,192    65,536    524,288     4,194,304   33,554,432    268,435,456     2,147,483,648     17,179,869,184    137,438,953,472      

7 12    86    600     4,202    29,412    205,886     1,441,200   10,088,402    70,618,812       494,331,686        3,460,321,800      24,222,252,602        

6 9.0   54    324     1,944    11,664    69,984       419,904      2,519,424      15,116,544       90,699,264          544,195,584         3,265,173,504          

5 6.3   31    156     781       3,906      19,531       97,656        488,281         2,441,406         12,207,031          61,035,156           305,175,781             

4 4.0   16    64       256       1,024      4,096         16,384        65,536           262,144            1,048,576            4,194,304             16,777,216               

3 2.3   6.8   20       61         182         547            1,640          4,921             14,762              44,287                 132,860                398,581                    

2 1.0   2.0   4.0      8.0        16           32              64               128                256                   512                      1,024                    2,048                        

1 0.25 0.25 0.25    0.25      0.25        0.25           0.25            0.25               0.25                  0.25                     0.25                      0.25                          

2 3 4 5 6 7 8 9 10 11 12 13

Total Runtime <= 15 mins 1 hour < Total Runtime <= 10 hours

15 mins < Total Runtime <= 1 hour Total Runtime > 10 hours

10 27    273  2,733  27,333  273,333  2,733,333  27,333,333 273,333,333  2,733,333,333  27,333,333,333   273,333,333,333  2,733,333,333,333   

9 22    199  1,793  16,140  145,261  1,307,345  11,766,104 105,894,934  953,054,403     8,577,489,626     77,197,406,638    694,776,659,743      

8 17    140  1,120  8,957    71,653    573,222     4,585,772   36,686,179    293,489,432     2,347,915,455     18,783,323,641    150,266,589,129      

7 13    94    656     4,594    32,157    225,102     1,575,712   11,029,986    77,209,901       540,469,310        3,783,285,168      26,482,996,178        

6 9.8   59    354     2,125    12,753    76,516       459,095      2,754,570      16,527,421       99,164,529          594,987,172         3,569,923,031          

5 6.8   34    171     854       4,271      21,354       106,771      533,854         2,669,271         13,346,354          66,731,771           333,658,854             

4 4.4   17    70       280       1,120      4,478         17,913        71,653           286,611            1,146,443            4,585,772             18,343,089               

3 2.5   7.4   22       66         199         598            1,793          5,380             16,140              48,420                 145,261                435,782                    

2 1.1   2.2   4.4      8.7        17           35              70               140                280                   560                      1,120                    2,239                        

1 0.27 0.27 0.27    0.27      0.27        0.27           0.27            0.27               0.27                  0.27                     0.27                      0.27                          

2 3 4 5 6 7 8 9 10 11 12 13

Total Runtime <= 15 mins 1 hour < Total Runtime <= 10 hours

15 mins < Total Runtime <= 1 hour Total Runtime > 10 hours

10 29    285  2,850  28,500  285,000  2,850,000  28,500,000 285,000,000  2,850,000,000  28,500,000,000   285,000,000,000  2,850,000,000,000   

9 23    208  1,870  16,829  151,461  1,363,146  12,268,315 110,414,839  993,733,554     8,943,601,989     80,492,417,897    724,431,761,074      

8 18    146  1,167  9,339    74,711    597,688     4,781,507   38,252,052    306,016,420     2,448,131,359     19,585,050,870    156,680,406,958      

7 14    98    684     4,790    33,530    234,710     1,642,968   11,500,778    80,505,446       563,538,122        3,944,766,852      27,613,367,966        

6 10    62    369     2,216    13,297    79,782       478,691      2,872,143      17,232,860       103,397,161        620,382,966         3,722,297,795          

5 7.1   36    178     891       4,453      22,266       111,328      556,641         2,783,203         13,916,016          69,580,078           347,900,391             

4 4.6   18    73       292       1,167      4,669         18,678        74,711           298,844            1,195,377            4,781,507             19,126,026               

3 2.6   7.7   23       69         208         623            1,870          5,610             16,829              50,487                 151,461                454,382                    

2 1.1   2.3   4.6      9.1        18           36              73               146                292                   584                      1,167                    2,335                        

1 0.29 0.29 0.29    0.29      0.29        0.29           0.29            0.29               0.29                  0.29                     0.29                      0.29                          

2 3 4 5 6 7 8 9 10 11 12 13

Total Runtime <= 15 mins 1 hour < Total Runtime <= 10 hours

15 mins < Total Runtime <= 1 hour Total Runtime > 10 hours
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Figure 16: Time limitation of systematic enumeration by problem instance size
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Improvement of Systematic Enumeration with 15-Minute Cutoff Over “Do-Nothing” Solution 

 

------------------------------------------------------------------------------------------------------------------------------------ 

Improvement of Systematic Enumeration with 1-Hour Cutoff Over “Do-Nothing” Solution  

Figure 17: Improvement in objective value of best systematic enumeration solution compared
to the original option of re-routing no candidate trains
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Figure 18: Improvement in objective value of best systematic enumeration solution compared
with the original option of re-routing no candidate trains

2.6 Conclusion

We have introduced a time-space network modeling approach and a railcar movement simula-

tion framework as a way to mathematically evaluate the operational policies of a commercial

railroad. This has allowed us to quantify the limitations of using systematic enumeration

to solve the problem of dynamically re-routing freight trains in the event of a significant

disruption to the rail network. The limitations we have quantified motivate the next chap-

ter, which explores novel approaches using the methodologies introduced in this chapter as

a building block.
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2.7 Future Work

The systematic enumeration procedure described in Algorithm 3 uses a specific search order.

Exploring variations in the search order would be an interesting area of further computational

experimentation. Possible search strategies to attempt can include randomized sampling or

techniques such as latin hypercube sampling, one variance of which is explored by Florian

[16].
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Chapter III : Quantitative Methods for Modeling Freight

Train Re-Routing Problems with Large Solution Space

3.1 Introduction

Recall the train re-routing problem from Chapter II : Given a set of candidate trains L, we

are to determine a potentially new destination rail terminal for each ` ∈ L. In Chapter II, we

demonstrated the ability to solve problem instances with a reasonably small solution space

using the developed framework. In this chapter we shift our focus to real-world problem

instances, where there may be several candidate trains in L and several re-route options for

each candidate train. Note that the solution space increases exponentially in size with the

number of candidate trains: If S` is the set of potential re-route rail terminals for train `, the

solution space contains
∏
`∈L
|S`| potential joint decisions. This warrants an extended solution

methodology that remains tractable given the potential problem instances of interest. In

this chapter we extend the work of the previous chapter in two ways:

1. We develop an exact-optimization approach that uses the time-space network developed

in Chapter II. The approach we develop exploits the a priori nature of the commodity

trip plans in order to maintain tractability.

2. We develop a search-based heuristic approach that uses the railcar movement simula-

tion framework developed in Chapter II.

3.2 Literature Review

A significant part of our work in this chapter involves formulating a special minimum-cost

multi-commodity network flow problem that we combine with a network design problem

methodology. Both problems have previously received attention in the existing literature.

The minimum-cost multi-commodity network flow problem has been studied for decades.

Tomlin [34] formulates the general problem as a large integer program whose special structure
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permits efficient solution computation. Foulds [17] studies a minimum-cost multi-commodity

network design problem where any set of arcs can be removed from the network. He presents

a solution procedure based on a branch-and-bound enumeration methodology with which he

is able to determine a set of arcs to remove from the network in order to ensure all feasible

flows are minimal.

A network design formulation problem can be thought of as a multi-commodity network

flow problem with additional binary variables introduced to represent design decisions: Given

a graph G = (V,A), where V is the set of nodes and A is the set of arcs, a set of commodities

K, and bki units supply of commodity k ∈ K entering at node i ∈ V :

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij +

∑
(i,j)∈A

fijyij

s.t.
∑
j∈V

xkij −
∑
j∈V

xkji = bki ∀ i ∈ V, k ∈ K∑
k∈K

xkij ≤ uijyij ∀ (i, j) ∈ A

yij ∈ 0, 1 ∀ (i, j) ∈ A

xkij ≥ 0 ∀ (i, j) ∈ A, k ∈ K

, where ckij is the cost of flowing one unit of commodity k ∈ K along arc (i, j) ∈ A, fij

is the fixed cost of opening arc (i, j) ∈ A for flow of commodities.

Crainic discusses an extension of the above formulation where there is a finite budget

for the aggregate fixed costs of opening arcs with the following additional constraint:

∑
(i,j)∈A

fijyij ≤ B.

He furthermore discusses the generalization of the problem where yij ∈ N , where each

non-zero value represents a different level of service offered at arc (i, j) ∈ A [10].
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In addition, in this chapter we explore an alternate solution methodology using a variant

of the combinatorial local search called Tabu search. In the most canonical form, combinato-

rial local search begins by selecting an initial feasible solution to the problem x ∈ X, where

X represents the feasible region. The algorithm then iteratively defines a neighborhood for

the selected solution, N(x), and looks for a new solution to select in the neighborhood [23]

– as described in algorithm 4.

Algorithm 4 Simple local search procedure

Requires: Neighborhood definition N .

Step 1: Generate and select x ∈ X.

Step 2: Select some x′ ∈ N(x) such that z(x′) < z(x), where z(x) represents the objective

function value corresponding to x.

If @ such x′, stop and report x as the local optimum.

Step 3: Set x← x′ and go to Step 2.

In Chapter I we discussed the intermodal terminal location problem formulated by

Arnold et al. [3]. Sorensen et al. [33] uses local search to propose two metaheuristics for

solving the mixed-integer programming model of Arnold et al. [3]. Each metaheuristic first

constructs a set of initial solutions, which are subsequently perturbed in search of a better

solution using local search. The first metaheuristic constructs the initial solutions using

greedy randomized adaptive search procedure (GRASP), while the second metaheuristic

does the same using an attribute-based hill climber method.

Glover [18] studies the Tabu search variant of local search in detail. The primary moti-

vation behind the technique is continuing the search beyond a local optimum and avoiding

coming back to that optimum in subsequent iterations. The stopping criteria is typically set

to one or both of the following:

1. A fixed number of iterations is completed.

2. No improvement compared to the best solution so far has been found after a fixed

number of iterations.
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The simple Tabu search algorithm is thus summarized in algorithm 5.

Algorithm 5 Simple Tabu search procedure

Requires:

Neighborhood definition N

Maximum iterations allowed M

Step 1: Generate and select x ∈ X.

Step 2: Initialize the following.

The best solution found x∗ ← x.

Iteration counter i← 0.

The Tabu set T ← {}.
Step 3: If N(x)− T = {} or i = M :

Stop and report x∗ as the best solution found.

Else:

i← i+ 1.

Select x′ such that z(x′) <= z(y) ∀ y ∈ N(x)− T .

Update T according to the Tabu rule.

If z(x′) < z(x∗), then set x∗ ← x′.

Go back to the beginning of Step 3.

Glover [18] introduces an example of Tabu rule where a constant t is selected and the

Tabu set T is chosen such that the changes in the solution made in the previous t iterations

cannot to be reversed.

There have been examples in the literature of both network design optimization and

Tabu search being applied to service network design problems. For instance, Pedersen et al.

[27] use a discretized time-space network formulation to model a service network design

problem as an arc-based formulation of a multi-commodity network design problem with

additional design balance constraints of the form:

∑
j∈V

yij −
∑
j∈V

yji = 0 ∀ i ∈ V

They then solve the problem using Tabu search. The initial solution is obtained by solving

the linear relaxation of the multi-commodity network design problem and rounding up the
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design variables, thus removing the guarantee that the initial solution will be feasible. In

contrast to Glover [18], which sets the maximum number of iterations as the stopping criteria,

Pedersen et al. [27] set a time limit for that purpose.

Crainic et al. [12] develops a simplex-based Tabu search method for solving the path-

based formulation of the capacitated multi-commodity network design problem. The study

notes that the set of feasible path flows forms a path-based minimum-cost network flow

polygon, one of the extreme points of which is the optimal solution. Noting the difficulty of

solving large or moderate problem sizes, the paper introduces a Tabu search method where

the neighbors of an extreme point are defined as the set of adjacent extreme points reachable

by one simplex pivot. The algorithm also performs an a priori number of diversification

moves, and retries the Tabu search algorithm after each diversification move.

3.3 Methods: Optimization-based Solution Approach

Recall the time-space network developed in Chapter II. In this section we introduce an

optimization-based solution method that solves a relaxation of the train re-routing problem

using a service network design optimization framework. The re-routing solution proposed

by the optimization framework is then evaluated using the railcar movement simulation

methodology introduced in Chapter II (Algorithm 1); the evaluation step ensures the objec-

tive function of the proposed re-routing solution reflects realistic railcar flows following the

re-routing decision. The following steps describe the approach:

1. Solving a Relaxation Problem: Using the time-space network allows we frame

an arc-based, linear multi-commodity network flow problem with a network design

extension to solve for the re-routing decisions as well as the optimal railcar flow in

the time-space network. We refer to this framework as a multi-commodity network

design problem. Using the structure of the re-routing problem we can ensure the

multi-commodity network design problem is tractable for realistic problem instances.
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2. Solving the Train Re-Routing Problem for the Proposed Solution: Since

optimizing the rules of how railcars are processed is outside the scope of this problem,

we evaluate the re-routing decisions recommended by the previous step using the railcar

movement simulation, which calculates the resulting aggregate delay of the proposed

re-routing solution under the set of rules used by the railroad.

Subsections 3.3.1, 3.3.2, and 3.3.3 describe the multi-commodity network design formulation

which is used to solve the relaxation problem. Subsection 3.3.4 describes how the relaxation

solution is evaluated for the original train re-routing problem.

3.3.1 Definitions

In order to describe a multi-commodity network design problem on the time-space network,

we will use the following:

G: the directed time-space network, as defined in Chapter II.

V : the set of nodes in G

A: the set of arcs in G

K: the set of all commodities in the network during the selected time horizon

bki : supply, measured in number of railcars, of commodity k at node i ∈ V
δout(i): set of directed arcs leaving i ∈ V
δin(i): set of directed arcs entering i ∈ V
Lp: set of dispatched trains to be re-routed

Lf : set of trains not yet dispatched to be re-routed

S`: set of terminals to which train ` can be re-routed

ok: time-space node where commodity k originates in the train network

i(`): time-space train departure node for train `

j(`, s): time-space train arrival node for train ` given it is re-routed to rail terminal s ∈ Sl
Ak: the subset of arcs in G “relevant” to commodity k ∈ K, determined by Algorithm 6.

K(i,j): the subset of commodities “relevant” to arc (i, j) ∈ A
ckij: cost of flowing one railcar of commodity k ∈ K along arc (i, j) ∈ Ak

t(i): the point of time that corresponds to time-space node i ∈ V
τ(k): the time at which commodity k is introduced to the physical network

The decision variables for the integer programming model are as follows.
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xkij: number of railcars of commodity k flowing along time-space arc (i, j) ∈ Ak

y`s: binary variable that indicates whether train ` is to be re-routed to rail terminal s

y`s =

1 if train ` is re-routed to rail terminal s;

0 otherwise.

Note that each y`s corresponds to a unique train arc.

3.3.2 Use of Subsets

To manage the problem size we use Ak ⊂ A or the relevant subset of time-space arcs for

commodity k. This helps ensure tractability by creating the xkij variables only for (i, j) ∈

Ak ∀k ∈ K. For each k ∈ K, we determine Ak by utilizing the a priori nature of the trip

plan of k, detailed in the following algorithm.

Algorithm 6 Determining the relevant time-space arc set for commodity k.

Require: Set of time-space arcs A.

Require: Trip plan of commodity k.

Require: If k is on a candidate train, potential alternate trip plans of k for each re-route

option.

Step 0: Define Φk as the union set of trip plan legs for commodity k, including legs from

potential alternate trip plans.

Step 1: Set Ak = A. Mark all (i, j) ∈ Ak as unchecked.

Step 2: Pick an unchecked arc (i, j) ∈ Ak. If there is none, terminate the algorithm and

output Ak.

Step 3: If (i, j) is not a train arc skip this step. If (i, j) is a train arc and [s(i)→ s(j)] ∈
Φk, mark (i, j) as checked. Otherwise remove (i, j) from Ak. Go to Step 2.

Step 4: If (i, j) is not an exit arc skip this step. If (i, j) is an exit arc and s(i) is the final

rail terminal in the trip plan of k, mark (i, j) as checked. Otherwise remove (i, j) from

Ak. Go to Step 2.

Step 5: If s(i) is a rail terminal in any leg in Φk, mark (i, j) as checked. Otherwise remove

(i, j) from Ak. Go to Step 2.

Furthermore, for each (i, j) ∈ A, we set K(i,j) to the set of commodities for which the

relevant arc-set involves (i, j). Using Ak and K(i,j) instead of A and K as appropriate in
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the multi-commodity network design problem significantly reduces the number of integer

variables in the optimization model.

3.3.3 Data and Optimization Formulation

Prior to formulating the integer program, we will discuss the data it uses.

Let Ck denote the set of cars in commodity k. Set bki as follows:

bki =


|Ck| if original rail terminal in trip plan of k is s(i), τ(k) ≤ t(i), and τ(k) > t(i′);

0 otherwise,

i′ is the predecessor node of i that corresponds to the same physical location.

Furthermore, for each time-space arc (i, j), set ckij as follows:

• If (i, j) is an exit arc, set ckij = max[0, t(i) − Dk], where Dk is the time at which

commodity k is due at its final destination rail terminal.

• If (i, j) is a feasibility arc, the delay cost must reflect two components:

– Future Delay: A reasonable approximation is needed for the delay commodity k

can be expected to incur in the future. Let P represent a reasonable penalty for

the average commodity time through the network. We approximate future delay

by calculating a penalty ratio for railcar c as follows:

pc =
qs(i)
q

(10)

, where q is the number of legs in the trip plan of commodity k, and qs(i) is the

number of legs in the trip plan of k up to rail terminal s(i).

– Incurred Delay: If Dk is an earlier time than t(i), an additional delay of t(i)−Dk

is already incurred.
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To account for both components, we set ρkij = max[t(i)−Dk, 0] + pkP .

• If (i, j) is a terminal storage arc, train arc, or processing arc, set ckij = 0.

We now formulate the mixed integer program (MIP) as follows:

max
∑
k∈K

∑
(i,j)∈Ak

ckijx
k
ij (11)

s.t.
∑
s∈S`

y`s = 1 ∀ ` ∈ Lf ∪ Lp (12)

xki(`)j(`,s) ≤ bkoky`s ∀l ∈ Lf ,∀s ∈ S`,∀k ∈ K (13)

xki(`)j(`,s) = bkoky`s ∀l ∈ Lp,∀s ∈ S`,∀k ∈ K (14)∑
k∈K(i,j)

xkij ≤ Uij ∀(i, j) ∈ A (15)

∑
j∈δout(i)

xkij −
∑

j∈δin(i)

xkij = bki ∀k ∈ K, ∀i ∈ V (16)

xkij ≥ 0 ∀k ∈ K, ∀(i, j) ∈ Ak (17)

y`s ∈ {0, 1} ∀` ∈ L,∀s ∈ S` (18)

(1) is the objective function, which minimizes aggregate railcar delay. (2) ensures exactly

one re-route option is selected for each train `. (3) and (4) ensure the flow variables xkij

are only allowed to be non-zero for a re-route option which is selected; (3) does this for

candidate trains that are not yet dispatched, while (4) forces this for candidate trains that

are already dispatched. The difference is that if a train is already dispatched, the flow of

the commodities on the train given a re-route decision is forced with an equality constraint;

however, if a train is to be dispatched in the future we do not force any particular commodity

on the train to allow the IP to decide which commodities to load onto the train for optimal

network performance. (5) outlines the bundling constraints. (6) outlines the flow-balance

constraints.
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3.3.4 Re-Route Solution Evaluation

Once a re-route solution is determined using the multi-commodity network design relaxation

problem, it is to be evaluated by running the railcar movement simulation methodology

introduced in Chapter II. In this subsection we describe how the simulation parameters are

set to achieve this goal. Recall the binary variables in the multi-commodity network design

formulation which specify the selected re-route options:

y`s =


1 if train ` is re-routed to rail terminal s;

0 otherwise.

Solving the relaxation problem obtains solution values for these re-route variables. The

next step is to evaluate the re-route solution by solving the corresponding railcar move-

ment simulation introduced in Chapter II. We do this by running Algorithm 2 from the

previous chapter, which, given a specified solution to the train re-routing problem, φ =

(φ1, φ2, ..., φ|L|), sets the corresponding arc capacities in the time-space network and exe-

cutes the corresponding simulation.

Algorithm 7 Setting φ based on the output of the optimization model

Require: y`,s ∀` ∈ L,∀s ∈ S`.
Step 1: Set φ.
For each ` in (1, 2, ..., |L|):

Set φ` = s if y`,s = 1.
Step 2: Run Algorithm 2 using the constructed φ as input.

Algorithm 2, which is called in the second step sets the upper bounds of the train re-

routing arcs in the time-space network to correspond to the solution prescribed by the y

output variables, and subsequently calls the simulation algorithm.
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3.4 Methods: Search-Based Heuristic Approach

In this section we introduce an alternative methodology to solve the large-scale re-routing

problem introduced in this chapter. Recall that L is the set of candidate trains and S`

denotes the set of terminals to which train ` ∈ L can be re-routed. Let Φ denote the set

of all possible solutions and note that |Φ| =
∏
`∈L
|S`|. Recall from subsection 3.3.4 that

any particular solution φ ∈ Φ is characterized by specifying a destination terminal for each

candidate train: φ = (φ1, φ2, ..., φ|L|). We also define the distance between two solutions,

ν(φ1, φ2) to represent the number of trains that are routed to different rail terminals under

φ1 and φ2. Note that ν(φ, φ) = 0, ∀φ ∈ Φ.

We now discuss a heuristic solution procedure that applies a Tabu search algorithm

using the railcar simulation framework introduced in Chapter II.

3.4.1 Neighborhood Definition and Tabu Rule

Given solution φ ∈ Φ, define the neighborhood of φ as follows:

N(φ) = {φ̃|ν(φ̃, φ) = 1}. (19)

Using this neighborhood definition, we apply the following local search algorithm with

a Tabu rule added:

Algorithm 8 Tabu Local Search Algorithm

Step 1: Set φ0 = (φ0
1, φ

0
2, ..φ

0
|L|), where φ0

` is the original destination terminal for train `.

Set T = ∅, φ∗local = φ0, φ∗global = φ0, and z∗global = z(φ0).
Step 2: Set z∗local =∞ and φprev = φ∗local. For each φ ∈ N(φ∗local)\T :

• Compute z(φ) using Algorithm 2.

• If z(φ) < z(φ∗local), set φ∗local = φ and z∗local = z(φ).

• If z(φ) < z(φ∗global), set φ∗global = φ and z∗global = z(φ).

Step 3: Set T = {φ|ν(φ, φprev) ≤ 1} ∩ {φ|ν(φ, φ∗local) = 1}
Step 4: If time elapsed has passed time threshold, stop. Otherwise, go to step 2.
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Note that setting z∗local =∞ in Step 2 ensures the search heuristic continues even if the

best solution found in the neighborhood results in a worse objective function value.

3.5 Computational Results

So far in this chapter we have introduced two methods for solving the problem originally

introduced in Chapter II. In this section we examine the efficacy of each approach. In order

to maintain consistent evaluation criteria, the 540 problem instances introduced in Sections

2.5.2 and 2.5.3 of Chapter II and solved in Section 2.5.4 are used again in this section.

Furthermore, recall that the results shown in Section 2.5.4 were obtained by running the

experiments on machines with 12-core Xeon E5645 CPUs and 48 GBs of RAM. The same

machines are used to obtain the results in this section.

3.5.1 Results for Optimization-Based Approach

In Chapter II we used the following two metrics to evaluate the efficacy of the proposed

approach: (1) time required, and (2) solution quality. We will evaluate the optimization-

based approach using the same criteria.

Time Required

Note that, unlike systematic enumeration in Chapter II, the solution time of the opti-

mization formulation is highly sensitive to the number of commodities in the network over

the time horizon of interest. This is because the optimization formulation assigns a flow

decision variable xkij per (i, j) ∈ A and k ∈ K. The variation of problem size across the

15 traffic instances in Figure 19 illustrates the sensitivity of problem size to the number of

commodities in the network.
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Figure 19: Average number of variables in optimization formulation (millions)

The variability observed in problem size in turn creates variability in the required time

to solve the problem using the optimization-based approach. Figure 20 reports the solve

time for each traffic instance and |L|. The results indicate that despite the relatively large

problem sizes at hand, the problem is solvable well within an hour, while the majority of the

problem instances are solvable within 30 minutes.

Figure 20: Optimization problem solve time (minutes) heatmap

Note that since the developed IP assigns flow variables to commodities instead of indi-
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vidual railcars, the number of commodities (and not necessarily the number of railcars) has

a direct impact on solution time. Given a fixed number of railcars, the IP size is bigger if

the average commodity size is smaller, with 1 being the worst-case scenario. The impact on

solution time seems to be particularly great if average commodity size is set to 1 for com-

modities on candidate trains. Also note that the solution time given this set-up increases

significantly when increasing solution space size from 103 to 104. However, it drops signifi-

cantly when the “worst-case scenario” assumption of average commodity size 1 on candidate

trains is removed.

Solution Quality

Recall that for problem instances where |L| ≤ 3, the systematic enumeration algorithm

described in Chapter II completes prior to the 10-hour cutoff time. Thus, from Chapter II

results we know the optimal solution for such problem instances and can assess the optimality

gap for any other proposed solution. Figure 21 illustrates the optimality gap associated with

the solution obtained from the optimization-based approach where |L| ≤ 3.
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Average Optimality Gap for Optimization-Based Approach: 2 - 3 Candidate Trains  

Figure 21: Difference between solution of optimization-based approach and optimal solution:
|L| ≤ 3

In addition to comparing to the optimal solution, let us compare the results of the

optimization-based approach with those of systematic enumeration. Since the optimization

solution time is within an hour we assert that the systematic enumeration solution obtained

at the 1-hour cutoff should be used for the comparison. Figure 22 provides this comparison.

Notice that the optimization-based approach provides the better-quality solution for prob-

lem instances with higher |L|. This is reasonable to see, since as |L| increases systematic

enumeration is able to search an exponentially smaller subset of the solution space.

65



 

Improvement in Average Aggregate Delay from Using Optimization-Based Approach  

Figure 22: Objective function improvement of optimization-based approach, with systematic
enumeration solution after 1 hour as baseline

Figure 23 further illustrates the increasingly superior performance of the optimization-

based approach as |L| increases. In addition, we notice that |L| ≥ 5 seems to be the “breaking

point” where systematic enumeration is no longer the recommended method for solving the

problem.
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Improvement in Average Aggregate Delay Using Optimization-Based Approach: 3 - 4 Candidate Trains 

 

---------------------------------------------------------------------------------------------------------------------------------------------- 

Improvement in Average Aggregate Delay Using Optimization-Based Approach: 5 - 13 Candidate Trains 

Figure 23: Impact of |L| on improvement of optimization-based approach compared to sys-
tematic enumeration after 1 hour
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Note that since the developed IP assigns flow variables to commodities instead of indi-

vidual railcars, the number of commodities (and not necessarily the number of railcars) has

direct impact on solution time. Given a fixed number of railcars, the IP size is bigger if the

average commodity size is smaller, with 1 being the worst-case scenario.

3.5.2 Results for Tabu Search

Note the following similarities between the Tabu search method proposed in Algorithm 8

and systematic enumeration proposed in Algorithm 3 of Chapter II :

1. Both methods rely primarily on the railcar movement simulation described in Algo-
rithm 1.

2. Both methods are run with an a priori maximum time threshold.

This allows us to compare the performance of Tabu search against that of systematic

enumeration for identical time cutoffs. In Chapter II we asserted the usefulness of the 15-

minute, 1-hour, and 10-hour cutoffs, which we will also use in this section. Specifically,

Figures 24 and 25 depict the improvement in the objective function value obtained by using

Tabu search instead of systematic enumeration for the problem instances described in detail

in Section 2.5. Figure 24 reveals a significant improvement in the solution quality attributed

to the use of Tabu search.
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Improvement of Tabu Search Solution over Systematic Enumeration Solution 

10-hour Cutoff 

 
 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 

Improvement of Tabu Search Solution over Systematic Enumeration Solution 

1-hour Cutoff 

 

Figure 24: Objective function improvement of Tabu search solution, with systematic enu-
meration solution as baseline: 10-hour cuttoff (above), 1-hour cutoff (below)
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Improvement of Tabu Search Solution over Systematic Enumeration Solution 

15-mins Cutoff: |𝐿| ≤ 6 

 
 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 

Improvement of Tabu Search Solution over Systematic Enumeration Solution 

15-mins Cutoff: 7 ≤ |𝐿| 

 

Figure 25: Objective function improvement of Tabu search solution, with systematic enu-
meration solution as baseline (15-minute cutoff): |L| ≤ 6 above, |L| ≥ 7 below.
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Note from Figure 24 that if a 10-hour cutoff is allowed, the improvement introduced

by Tabu search becomes particularly significant as |L| increases. This does not seem to

be the case for the 1-hour cutoff. In the case of a 15-minute cutoff illustrated in Figure

25 the relative performance of Tabu search seems to depend on the number of candidate

trains: It may or may not be beneficial to perform the Tabu search as an alternative to

systematic enumeration. Specifically the results indicate |L| = 7 is the breaking point, since

it is generally preferable to use systematic enumeration for |L| ≥ 7.

To understand these phenomena note that based on Algorithm 8 the size of the neigh-

borhood in the first iteration of the algorithm will be
∑

`∈L(|S`| − 1). Consider again the

average simulation runtimes detailed in Table 4 from Chapter II. Based on this information

we construct Table 5, which details the approximate time required to complete the first it-

eration of Tabu search. Observe that for |L| ≥ 7 the Tabu search algorithm is generally not

expected to complete the first iteration. Thus for problem instances with |L| ≥ 7, running

Algorithm 8 with a 15-minute time cutoff is effectively equivalent to running a systematic

enumeration algorithm, though with a different order of searching the solution space than

we apply in Chapter II. The effective search order here can be thought of as “broad” or

“shallow” search, where all solutions φ with distance ν(φ, φ0) = 1 are evaluated first. This

is in contrast to the systematic enumeration algorithm in Chapter II where a “deep” search

is used which allows further deviations from φ0 earlier on. As such, the empirical advantage

of systematic enumeration under a 15-minute time cutoff when |L| ≥ 7 suggests the po-

tential superiority of deep search over broad search in extremely time-constrained real-time

applications. In the future work section we discuss how this can be used to motivate future

research.

Furthermore, notice that as |L| → 13, the time to complete the first iteration approaches

the 1-hour mark. This explains the relative degradation in the performance of Tabu search

in comparison with systematic enumeration when comparing the two graphs of Figure 24.
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Table 5: Time Required to Complete First Iteration of Tabu Search (Minutes)

|L| Size of Neighborhood - Iteration #1 Time (Light Traffic) Time (Regular Traffic) Time (Heavy Traffic)
2 16 4 4.4 4.6
3 24 6 6.6 6.8
4 32 8 8.7 9.1
5 40 10 10.9 11.4
6 48 12 13.1 13.7
7 56 14 15.3 16
8 64 16 17.5 18.2
9 72 18 19.7 20.5
10 80 20 21.9 22.8
11 88 22 24.1 25.1
12 96 24 26.2 27.4
13 104 26 28.4 29.6

72



So far we have compared the performance of Tabu search to systematic enumeration

from Chapter II. Let us also explicitly visualize and compare the best objective value found

by Tabu across the various problem instances and the impact of having additional time on

solution quality. Figure 26 illustrates the objective function value for the best Tabu search

solution for the 10-hour and 1-hour time cutoffs. Recall from Chapter II that, by design,

if two of the 540 problem instances at hand vary only by |L|, the optimal solution for the

problem instance with larger |L| dominates that of the problem instance with the smaller

|L|. With a 10-hour time cutoff, the best solution found follows this pattern as |L| increases;

however, the increase seems to be more significant for smaller values of |L|. Also note that

the advantage of having more candidate trains does not necessarily translate to better Tabu

outcomes when the decision must be made within an hour. Furthermore, the trend observed

in the 10-hour graph is reversed in Figure 27, which allows for a 15-minute time cutoff. In

general, as we noted previously, if only one iteration of search is feasible given the time

constraint at hand, the “deep search” of systematic enumeration is the preferred method to

solve the problem, which occurs for |L| ≥ 7 in this particular set of experiments.
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 Impact of Number of Candidate Trains on Aggregate Delay of Tabu Search Solution  

10-hour Cutoff 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 

Impact of Number of Candidate Trains on Aggregate Delay of Tabu Search Solution 

(1-hour Cutoff) 

Figure 26: Impact of number of candidate trains on aggregate delay of Tabu search solution
with 10-hour cutoff (above) and 1-hour cutoff (below)
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Impact of Number of Candidate Trains on Aggregate Delay of Tabu Search Solution  

15-min Cutoff 

 

Figure 27: Impact of number of candidate trains on aggregate delay of Tabu search solution
with 15-minute cutoff

Figure 28 explicitly illustrates the impact of allowing more time on the quality of the

Tabu search solution. In particular, the results show the significance of having more time as

|L| increases on the solution quality.
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Figure 28: Tabu search results by cutoff time

3.5.3 Direct Comparison of the Two Approaches

So far each of the two proposed methods in this chapter has been validated against the

benchmark set in Chapter II. In this section we present a direct comparison between the

results of the two approaches.

Recall from Figure 20 that the optimization-based approach completes within 1 hour for

all problem instances being run. Therefore, comparing the results of the optimization-based

approach with those of Tabu search with a 1-hour time cutoff allows us to understand the

circumstances where the optimization-based approach dominates in terms of both solution

time and solution quality. Furthermore, Figure 20 shows that for traffic instances with
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the lowest number of commodities (i.e. #1, #11, #12, #13) the optimization-based method

completes within 15 minutes; it is thus useful to compare optimization results to Tabu results

with a 15-minute cutoff for this particular subset of traffic instances.

Figure 29 illustrates the improvement obtained by running Tabu search in comparison

with the optimization-based solution as the benchmark. The graph at the top of the figure

illustrates this result with a 1-hour Tabu search time cutoff for traffic instances other than

the four mentioned above. The graph at the bottom of the figure illustrates this result

with a 15-minute Tabu search cutoff for the four traffic instances mentioned above. Both

figures (and the top figure in particular) generally show the relative improvement in the

optimization-based solution as |L| increases; this finding is consistent with the limitations of

Tabu discussed in Section 3.5.2. While this pattern is helpful to understand in general, it is

further helpful to study the |L|-value that can be considered as the “breaking point”, after

which the optimization-based method is preferable to Tabu search.

Figures 30 splits the graph at the top of Figure 29 into two graphs, each filtered by

restricting |L| to one side of the breaking point value. Figure 31 does the same for the graph

at the bottom of Figure 29. These figures illustrate breaking points of |L| = 8 in the case

of a 1-hour time cutoff and |L| = 4 in the case of a 15-minute time cutoff for the instances

that are small enough to solve using the optimization-based method within 15 minutes.
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1-Hour Tabu Search Objective Value Improvement over Optimization-Based Approach 

 

---------------------------------------------------------------------------------------------------------------------------------------------- 
 

15-Min Tabu Search Objective Value Improvement over Optimization-Based Approach 

Figure 29: Objective function improvement of Tabu search approach, with the solution of
optimization-based approach as basesline: 1-hour time cutoff (above), and 15-minute time
cutoff (below)
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Improvement in Average Aggregate Delay Using Tabu Search Approach: 2 - 7 Candidate Trains 

 

---------------------------------------------------------------------------------------------------------------------------------------------- 
 

Improvement in Average Aggregate Delay Using Tabu Search Approach: 9 - 13 Candidate Trains 

 

Figure 30: Impact of |L| on performance of Tabu search approach (1-hour cutoff), with
optimization-based approach as baseline
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Improvement in Average Aggregate Delay Using Tabu Search Approach: 2 – 4 Candidate Trains 

 

---------------------------------------------------------------------------------------------------------------------------------------------- 
 

 Improvement in Average Aggregate Delay Using Tabu Search Approach: 5 - 13 Candidate Trains 

Figure 31: Impact of |L| on performance of Tabu search approach (15-minute cutoff), with
optimization-based approach as baseline
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3.6 Conclusion

Having used the framework developed in the previous chapter as a building block, we have

introduced two methods for modeling and solving bigger instances of the train re-routing

problem. We have tested both approaches using real data from the physical rail network

of a Class I railroad in the United States. Furthermore, we have presented comprehensive

comparisons between the performance of each approach and that of systematic enumeration

introduced in Chapter II. The results can be summarized as follows:

1. The Tabu search heuristic approach is superior to systematic enumeration if the deci-

sion timeline allows more than one iteration of Tabu search to complete. If that is not

the case the search order of systematic enumeration is preferable to the search order

of the first iteration of Tabu search.

2. The optimization-based approach is superior to systematic enumeration unless the

solution space is small enough for systematic enumeration to find the optimal solution,

or search the majority of the solution space within the decision timeline.

3. The optimization-based solution has better objective function value compared to the

Tabu search solution as the number of candidate trains increases. However, the solution

time of the Tabu search approach is more robust against increases in network traffic,

while the optimization-based approach slows considerably under scenarios where we

pressure-test increases in network traffic.

3.7 Future Work

Based on the results in this chapter the recommended extension to the Tabu search method

presented in this chapter is a time-threshold-aware Tabu search algorithm. Specifically for

problem instances with a very narrow time cutoff it will be interesting to see the impact of

prematurely stopping the neighborhood search in order to ensure that the algorithm runs a
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minimum number of iterations. Recall that if only one iteration is practically doable in the

allotted time, then the algorithm reduces to systematic enumeration with a different search

order. An example of a time-threshold-aware algorithm could be Algorithm 9:

Algorithm 9 Tabu Local Search Algorithm Extension

Definitions
Let τ represent time elapsed since start of algorithm.
Let τ ′ represent the time threshold.
Let m represent the minimum acceptable number of iterations.
Procedure
Step 1: Set φ0 = (φ0

1, φ
0
2, ..φ

0
|L|), where φ0

` is the original destination terminal for train `.

Set T = ∅, φ∗local = φ0, φ∗global = φ0, z∗global = z(φ0), and iteration counter i = 1.
Step 2: Set z∗local =∞ and φprev = φ∗local.
For each φ ∈ N(φ∗local)\T :

Compute z(φ) using algorithm 1.
If z(φ) < z(φ∗local):

set φ∗local = φ and z∗local = z(φ).
If z(φ) < z(φ∗global):

set φ∗global = φ and z∗global = z(φ).

If τ ≥ iτ ′

m
:

Break loop.
i++
Step 3: Set T = {φ|ν(φ, φprev) ≤ 1} ∩ {φ|ν(φ, φ∗local) = 1}
Step 4: If τ ≥ τ ′, stop. Otherwise, go to step 2.

In addition, the results in section 3.5.2 showed an empirical advantage for performing

deep neighborhood search as opposed to broad neighborhood search in real-time applications

with extremely tight time cutoffs. This should be further explored in a broader context

since, as shown, extremely short time cutoffs have the potential to render sophisticated

search heuristics less advantageous to systematic solution enumeration. This complication

can inspire research into optimizing overall search strategy in situations where smart phase

changes in the search strategy are rendered ineffective due to the time cutoff constraint.
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Chapter IV : A Study of Freight Train Re-Routing

Problems Under Traffic-Dependent Railyard Process-

ing Rate Assumptions

4.1 Introduction

The models developed in Chapters II and III have treated the classification section of a

rail terminal as a queue where the server rate is independent of the queue length. In the

particular context of this research, the items in the queue are railcars stationed on the rail

terminal arrival tracks. As discussed in Chapter I, these railcars are eventually moved from

the arrival tracks through the classification section, then to the departure tracks of the same

rail-yard. Depending on the detailed structure of an individual rail terminal, it is conceivable

that the presence of more railcars on the arrival tracks may potentially reduce the speed with

which railcars are processed. The main reason for such reduced processing rate is the added

difficulty in handling railcars when there is higher congestion.

In this chapter we generalize the train re-routing problem by relaxing the assumption

that all rail terminals have a processing rate that is a constant linear function of the number

of cars awaiting processing. We extend the railcar movement simulation algorithm from

Chapter II to handle the generalized train re-routing problem. Using this, we extend the

heuristic solution method developed in Chapter III to address the problem variant. We

further show that the optimization-based solution method developed in Chapter III can

be extended to address the problem variant without losing the linearity of the constraints

and objective function in the case that rail terminal processing rate is a linear function of

the number of railcars awaiting processing. The results of these extensions are furthermore

tested computationally on problem instances that reflect the size of operations of a Class I

railroad in the United States.
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4.2 Literature Review

Queuing models with non-independent service rate have been studied in the literature. Pos-

ner [29] considers a single-server queueing system where server rate is dependent on waiting

time, particularly the case where service time is exponential with its parameter dependent on

waiting time and where that dependence is characterized as a step-function. Bekker et al. [5]

develop the steady-state waiting time for an “initially single-server” queueing system where

a second server is added as soon as there is a customer whose wait time exceeds a given

threshold.

Part of our work in this chapter involves generalizing the bundling constraints of the

multi-commodity network design methodology developed in Chapter III to address an ex-

tension of the original problem definition. Current academic literature does contain other

examples of similar extensions to multi-commodity network flow problems being applied to

realistic problem instances. For instance, Castro [9] implements a multi-commodity network

flow problem with generalized bundling constraints, where multiple arcs can have joint up-

per or lower bounds [9]. As will be shown in section 4.4.2, we will also need to generalize

the bundling constraints in our multi-commodity network design formulation in order to

correctly model the problem variant.

Desaulniers et al. [14] studies another interesting application of the multi-commodity

network flow problem. It formulates the crew pairing problem at Air France as a multi-

commodity network flow problem with non-linearity in both the objective and the con-

straints. The objective of the model is creating the min-cost set of crew pairings across all

flight legs. The constraints arise from regulatory and other rules the airline must follow in

its schedule. The paper extends the Dantzig-Wolf decomposition to construct a branch-and-

bound solution methodology for the formulation [14].

In addition to the supply chain and transportation industry, there are examples in the

literature of extensions to the multi-commodity network flow problem to routing problems
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in other contexts. For instance, Ouorou et al. [26] surveys convex multi-commodity network

flow problems and studies their application to the message routing problem. It studies

and tests four solution methods which leverage the linearity of the constraints to solve the

problem, and compares the results from each method [26].

4.3 Problem Definition

In Chapter I, section 2.3 we defined the train re-routing problem: Given a set of candidate

trains L, the problem is to determine a potential new destination terminal for each ` ∈ L.

We now define the modified train re-routing problem as an extension of the train re-routing

problem, where a key assumption about railcar processing at rail terminals is modified.

Recall how we view the operations of a rail terminal as they pertain to this study,

illustrated again in Figure 32. Any rail terminal s has an arrival yard, classification section,

and departure yard. The railcars in the arrival yard are processed per an a priori rate, µs

and sent to the departure yard, where each railcar k joins the train which will carry k along

the next leg of its trip plan.

Figure 32: Rail terminal as it is modeled in this paper
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In the previous two chapters, independence was assumed between µs and the number

of railcars awaiting processing in the arrival yard of s. In other words, µs could have been

thought of as a constant linear function of the number of railcars in the arrival yard, as. In

this chapter we examine the train re-routing problem defined in Chapter I, section 2.3, but

with the following generalized assumption:

µs = gs(as) (20)

, where gs is a monotonically non-increasing function. This generalization reflects the fact

that excess traffic may slow down or partially impede the processing operations of the ter-

minal.

Figure 33: Monotonically Non-Increasing processing rate

4.4 Model

Given the modified problem definition, let us revisit both modeling approaches introduced

in Chapter III and discuss the necessary modifications to each to solve the modified train

re-routing problem. We will show that:

1. The optimization-based approach can be extended to the train re-routing problem

without losing the linear structure if gs is a linear function ∀s, and
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2. We can extend the railcar movement simulation model and search-based solution

method to solve the train re-routing problem, without the need to assume gs is linear.

Recall the time-space network we created in Chapter II, a portion of which is re-

illustrated in Figure 34. Using the time-space network we developed a railcar movement

simulation in Chapter II as a framework to evaluate the performance of any solution to the

train re-routing problem (algorithm 1), which we used as the building block for the Tabu

search algorithm introduced in Chapter III (algorithm 8).

Let us recall a few definitions from chapter II :

G = (V,A): The mathematical representation of the time-space network.

Uij: upper bound, measured in number of railcars, of arc (i, j) ∈ A.

xkij: number of railcars from commodity k to flow on arc (i, j) ∈ A.

K: Set of all commodities present in the rail network over the intended horizon.

t(i): Value of time associated with time-space node i ∈ V .

In Chapters II and III Uij was set a priori of running the railcar simulation model ∀(i, j) ∈ A.

For the modified train re-routing problem characterized with the addition of Equation 20, Uij

cannot be determined a priori to running the railcar movement simulation model if (i, j) ∈ A

is a processing arc. We will now go over how to set Uij in this scenario.
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Figure 34: Time-space network with processing arcs

Figure 35: Small portion of time-space network with processing arc (i, j) ∈ A

Consider any processing arc (i, j) such as the one in Figure 35. Recall from Chapter

II, Equation 3 that our model uses Uij to account for railcar processing capacity between

time t(i′) and time t(i), where i′ ∈ V is the predecessor node of i ∈ V . Note the following

observations:

1. Let t(i′) + dt denote the time an infinitesimal unit of time after t(i′). The number of

railcars at the arrival yard at time t(i′) + dt is represented by the flow on arc (i′, i),

which we denote with
∑

k∈K x
k
i′,i.
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2. If more than
∑

k∈K x
k
i′,i can be processed between time t(i′) and time t(i), setting

Uij =
∑

k∈K x
k
i′,i is sufficient for allowing the processing of all cars in the arrival yard

by time t(i).

Based on the above observations, for our modeling purposes Uij can be treated as math-

ematically equivalent to the number of railcars processed between time t(i′) and time t(i).

As railcars are processed during this time period, the effective processing rate increases from

µ0 toward µmax, the theoretical highest processing rate when the terminal is empty. This

dynamic is shown in Figure 36:

• At time t(i′), point (
∑

k∈K x
k
i′,i, µ0) represents the situation in the rail terminal.

• At time t(i), point (
∑

k∈K x
k
i′,i−Uij, µt(i)) represents the situation in the rail terminal.

Figure 36: Illustration of Uij calculation. Quantities enclosed in golden boxes are known
a-priori; quantities enclosed in red boxes are not.

For simplicity, we define t(i′, i) , t(i)− t(i′). Note that Uij can be calculated as a function

of
∑

k∈K x
k
i′,i, t(i

′, i), and gs(i). Since t(i′, i) and gs(i) are known a-priori in the context of

the modified train re-routing problem, the challenge in setting Uij is the fact that it is a

function of
∑

k∈K x
k
i′,i:
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Uij = fij(
∑
k∈K

xki′,i) (21)

Claim 1: The following differential equation characterizes the relationship between Uij and

µ0.

dUij
dt(i′, i)

=


µt(i), Uij <

∑
k∈K x

k
i′,i

0, Uij ≥
∑

k∈K x
k
i′,i

(22)

The top case in Equation 22 reflects the scenario where not all railcars present at the arrival

yard of s(i) at t(i′) can be processed by t(i). Note from Figure 36 that in this case, at time

t(i) we will have
∑

k∈K x
k
i′,i − Uij railcars in the arrival yard of s(i) and our processing rate

will be µt(i).

The bottom case in Equation 22 reflects the scenario where the arrival yard of s(i) is

emptied before t(i). In this case having had more time between i′ and i does not contribute

to the ability to process more railcars during that time.

Combining Equations 20 and 22 we can write:

dUij
dt(i′, i)

=


gs(i)(

∑
k∈K x

k
i′,i − Uij), Uij <

∑
k∈K x

k
i′,i

0, Uij ≥
∑

k∈K x
k
i′,i

(23)

Thus, fij in Equation 21 is the solution to the differential equation above.

Claim 2: Consider Equation 24 below.

dUij
dt(i′, i)

= gs(i)(
∑
k∈K

xki′,i − Uij) (24)

Given the same initial condition, let UA
ij refer to the solution to Equation 23 and UB

ij refer to

the solution to Equation 24. Then Equation 25 holds so long as gs(i)(as(i)) ≥ 0 ∀ as(i) holds.

Note that this is not an onerous assumption since in the context of the train re-routing
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problem it is not meaningful for the processing rate at a terminal is to fall below zero.

UA
ij ≤ UB

ij (25)

Claim 3: Given that Uij ≥
∑

k∈K x
k
i′,i, then the set of possible feasible flows for the con-

structed time-space network G remains unchanged regardless of the particular value of Uij.

Based on the above three claims, we can solve Equation 24 in place of Equation 23

without impacting the set of possible feasible flows of G. Since the theoretical number of

railcars that can be processed in zero time is zero, the initial condition for solving Equation

24 is as follows:

Uij(0) = 0 (26)

Lemma: fij is a linear function if gs(i) is a linear function.

Proof of Lemma:

Consider a linear relationship between µs(i) and the number of railcars in the arrival yard,

as(i).

µs(i) = −mas(i) + µmax (27)

, where m is the absolute value of the slope of the linear relationship and µmax is the fastest

theoretical processing rate, when the arrival yard is empty.

This relationship is illustrated in Figure 37. Let µ0 denote the processing rate at s(i) at time

t(i′), and note the simple linear relationship between µ0 and
∑

k∈K x
k
i′,i:

µ0 = µmax −m
∑
k∈K

xki′,i (28)

It is therefore sufficient to proof there exists a linear relationship between Uij and µ0,

which we focus on for the remainder of the proof.
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Figure 37: Processing rate µ0 at timepoint t(i′) corresponding to i′ ∈ V

Recall the dynamic described using Figure 36. Figure 38 illustrates the same dynamic under

the case where gs(i) is a linear function, in which case Equation 24 can be simplified as

follows:

dUij
dt(i′, i)

= mUij + µ0 (29)

Figure 38: Illustration of Uij for linearly declining processing rate

Solving Equation 29, we get:
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Uij =


emt(i′,i)−1

m
µ0 ,m 6= 0;

t(i′, i)µ0 ,m = 0.

(30)

Note that the m = 0 case simply represents instances where processing rate is independent of

the number of cars at the arrival tracks, which were explored in Chapter III. For the m 6= 0

case, we combine Equations 28 and 30 to write:

Uij = µmax
emt(i

′,i) − 1

m
− (emt(i

′,i) − 1)
∑
k∈K

xkij (31)

Since m, t(i′, i), and µmax are determined by the characteristics of the associated rail terminal

they can be known a priori. As such, ∃ a linear relationship between Uij and
∑
k∈K

xkij.

Uij = α− β
∑
k∈K

xki′i (32)

, where α = µmax
emt(i′,i)−1

m
and β = (emt(i

′,i) − 1) are constants. QED

4.4.1 Modification of Railcar Movement Simulation

Recall that in Chapter II we introduced a railcar movement simulation method (Algorithm

1) to evaluate the objective function value (aggregate railcar delay) in the network. We now

extend the algorithm as needed in order to accomplish the same thing given the additional

assumption characterized by Equation 20.

Algorithm 1 in Chapter II required the inputs in the following list:

1. The constructed time-space network G, including Uij∀(i, j) ∈ A.

2. The set of railcars presently in the network Cp.

3. The set of railcars entering the network in the future and during the planning horizon

Cf .

4. The deadline of each railcar τc.
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5. The operating rules of the rail network (e.g. FIFO).

In effect, the algorithm gives us the capability to simulate future railcar movements in the

time-space network given a situation characterized by the above set of inputs. Having this

same capability for the modified train re-routing problem requires us to modify Algorithm

1 to accurately simulate railcar movements given the modified problem definition. In the

previous section we showed that, for the modified problem definition, Uij cannot be set

a-priori of running the simulation since the relationship between the upper bound of any

processing arc (i, j) ∈ A and the flow on the terminal storage arc leading to i ∈ V is captured

by Equation 21. As such, the equivalent algorithm for the modified train re-routing problem

must dynamically set Uij for any (i, j) ∈ A which is a processing arc. Since the railcar flow

along processing arcs is determined in Step 5d of 1, we have modified this step to make the

dynamic Uij calculation using Equation 21. Algorithm 10 is the formal result of making this

change.
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Algorithm 10 Railcar movement model applied to network with FIFO rule and non-linear
processing rate

Require: G = (V,A), Cp, Cf .

Require: t(i), s(i) ∀i ∈ V .

Require: τ(c) ∀c ∈ Cp ∪ Cf .
Require: The set of functions gs∀s from Equation 20.

Step 0 - Initialization:

For each rail terminal s, initialize QA(s) and QD(s) as two sorted sequences or queues

of railcars, each starting with no elements.

For each train arc (i, j), Initialize an empty sorted sequence Q(i,j) as the queue of railcars

to traverse (i, j).

Set xcij = 0 ∀(i, j) ∈ A, ∀c ∈ Cp ∪ Cf .
Step 1 - Add current railcars to queue

Step 1a: Sort the railcars in Cp into sequence Cp in non-decreasing order of τ(c).

Step 1b: Remove the first railcar c in Cp and note both its rail terminal, s, and whether

it is on the arrival or departure tracks.

Step 1c: If c is on the arrival tracks of s:

Add c to the end of QA(s).

If c is on the departure tracks of s:

Add c to the end of QD(s).

Step 1d: If Cp is empty:

Go to Step 2.

Else:

Go to Step 1b.

Step 2 - Create sequences for near-future railcars: For each rail terminal s:

Place the subset of railcars in Cf that come into the network at s into sequence Cf (s).

Sort cars in Cf (s) in non-decreasing order of τ(c).

Step 3 - Sort nodes by point in time: Sort the nodes in V into sequence Vsorted in

order of non-decreasing t(i). Break ties by placing nodes that correspond to arrival tracks

prior to nodes that correspond to departure tracks.

Step 4 - Pick next node: If there are no remaining nodes in Vsorted:

Terminate the algorithm.

Else:

Remove the first node i from Vsorted.

If i corresponds to the arrival tracks of s(i):

Go to Step 5.

Continued on next page
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If i corresponds to the departure tracks of s(i):

Go to Step 6.

Step 5 - Arrival node steps

Step 5a: If Cf [s(i)] is empty or the first railcar c in Cf [s(i)] has τ(c) > t(i), skip to

Step 5b. Otherwise, remove c from Cf [s(i)], add it to the end of QA[s(i)], and repeat

Step 5a.

Step 5b: For all nodes î ∈ V such that ∃ a train arc (̂i, i) ∈ A: Add all railcars in Q(̂i, i)

to the end of QA[s(i)].

Step 5c: If QA[s(i)] is an empty sequence, go to Step 4.

Step 5d: If processing arc (i, j) departs i:

Let i′ ∈ V represent the predecessor node of i ∈ V s.t. (i′, i) is a terminal storage arc.

Let |QA[s(i)]| represent the number of railcars in QA[s(i)].

Compute Uij by solving
dUij

dt(i′,i)
= gs(i)(|QA[s(i)]| − Uij), Uij(0) = 0.

If gs(i) is linear, gs(i)(as) = −mas + µmax:

Setting Uij simplifies to Uij = µmax
em[t(i)−t(i′)]−1

m
− (em[t(i)−t(i′)] − 1)|QA[s(i)]|.

Set n = max(Uij, |QA[s(i)]|).
For each of the first n cars from QA[s(i)], denoted c:

Remove c from QA[s(i)].

Set xcij = 1.

Add c to the end of QD[s(i)].

Step 5e: Let (i, j) denote the rail terminal storage arc or feasibility arc leaving node i.

Set xcij = 1 ∀c such that c is in sequence QA[s(i)].

Step 6 - Departure node steps

Step 6a: If QD[s(i)] is an empty sequence, go to Step 4.

Step 6b: If ∃j ∈ V such that (i, j) is a train arc, let Q
(i,j)
D represent the ordered

sub-queue of railcars in QD[s(i)] whose trip plan includes s(i)→ s(j) as a leg.

Set n = max(Uij, |Q(i,j)
D |).

Remove up to n railcars from Q
(i,j)
D . Remove the same set of railcars from QD[s(i)].

For railcar c removed from QD[s(i)]:

Set xcij = 1.

If s(j) is the final rail terminal in the trip plan of c:

Set xjisink
= 1.

Else:

Add c to Q(i,j).

Step 6c: Let (i, j) now denote the rail terminal storage arc or feasibility arc leaving

node i. Set xcij = 1 ∀c where c is in sequence QD[s(i)].
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Similarly to Algorithm 1 in section 2.4.2, once Algorithm 10 is run to simulate railcar

delay, xcij is determined ∀(i, j) ∈ A, c ∈ Cp ∪ Cf . The remainder of the solution method is

unchanged, and is completed by following the below sequential steps:

1. Set ρcij in the same manner as section 2.4.2 and, for a given simulation run with

corresponding xcij ∀(i, j) ∈ A, calculate the delay, δc for any railcar c using Equation

5.

2. Run Algorithm 2: in Step 2, call Algorithm 10 instead of Algorithm 1.

3. If solving using systematic enumeration, run Algorithm 3.

4. If solving using Tabu search, run Algorithm 8.

4.4.2 Modification of Optimization-Based Approach

Recall the arc-based multi-commodity flow optimization model we introduced in section 3.3

of Chapter III, equations 11-18. In this section we extend the model to solve the modified

train rerouting problem. First we add a few necessary definitions:

• Let Amod ⊂ A represent the set of processing arcs that are associated with rail termi-
nals where processing has a decreasing linear relationship with the number of railcars
present in the arrival yard.

• Let s(i) represent the terminal corresponding to time-space node i ∈ V .

• Let µmax,s represent the theoretical maximum processing rate at terminal s.

• Let ms represent the absolute value of the slope of the linear relationship between
processing rate and number of railcars in arrival yard, for terminal s.

In section 4.4 we explained the changes to Uij for any processing arc (i, j) ∈ Amod. Since

Uij was part of the bundling constraint formulation, for any such arc (i, j) we will introduce

constraint 33 in lieu of constraint 16 in the original optimization formulation:

∑
k∈K(i,j)

xkij ≤ αs(i) − βs(i)
∑
k∈K

xki′i ∀(i, j) ∈ Amod (33)

, where αs(i) = µmax,s(i)
e
ms(i)t(i

′,i)−1
ms(i)

and βs(i) = (ems(i)t(i
′,i) − 1).
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The new constraint class shown in Equation 33 can be thought of as a modified bundling

constraint where there is an upper bound on the sum of the total flow on (i, j) ∈ A and an

a priori fraction of the total flow on (i′, i) ∈ A. Since the multi-commodity network flow

problem is NP-hard, so is this extended formulation.

Solving the modified optimization formulation, we obtain the network design variables,

y`,s ∀` ∈ L, s ∈ S`. We then evaluate the corresponding re-routing solution by simulating

it in the same manner as in section 3.3.4. The only difference is that Algorithm 2 calls the

modified simulation Algorithm 10 instead of the original simulation algorithm in Chapter II.

4.5 Computational Results

Recall that in section 2.5 we defined a 540 problem instances characterized by crossing 15

traffic instances, 12 instances where the set of candidate trains L contains anywhere from 2

to 13 trains, and 3 disrupted terminals. We have solved the above instances using methods

developed in Chapters II and III. In this chapter we slightly alter the 540 problem instances

to reflect linearly declining railcar processing rates at each of the terminals in the network,

thus creating 540 modified problem instances. Specifically, for any terminal s in the physical

network, we use µmax = 60 and m = 0.02.

We have independently employed each of the two methods discussed in the previous

section to solve the modified problem instances using computers with 12-core Xeon E5645

CPUs and 48 GBs of RAM. Here we discuss the advantages and disadvantages of each method

and directly compare the results obtained using each for identical problem instances.

Let us begin by discussing the solve time of the optimization-based approach. Figure

39 outlines the amount of time the optimization-based approach required for each traffic

instance and value of |L|. Similarly to the results obtained in Chapter III that the number of

commodities, defined by traffic instance, we see that the solution time is heavily influenced

by the traffic instance number, which dictates the number of commodities in the system

during the horizon of interest. In particular:
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• Traffic instances with less commodities (#1, #11, #12, #13) solve relatively rapidly.

• The heaviest traffic instances 9 and 10 are not solvable using the given amount of RAM.

Furthermore traffic instance 5 seems to run into the same problem for sufficiently large

values of |L|.

Figure 39: Solve time (minutes) for optimization-based approach

Next we compare the performance of the solution presented by the optimization-based

method with that of the heuristic. Given the solve times outlined in Figure 39 we assert

that for traffic instances with fewer commodities (#1, #11, #12, #13) the optimization-

based results should be compared with the results of the heuristic obtained at the 15-min

time cutoff. We present these results in Figures 40 and 41; Figure 40 illustrates the cases

where the heuristic method performs better while Figure 41 illustrates the cases where the

optimization-based method generally performs better. The results indicate that increasing

|L| to 5 or more trains favors the optimization-based method for these “light-commodity”

instances. A similar result was obtained in Chapter III, where we asserted that 15 minutes
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is too little time for the heuristic to move beyond its first iteration, during which it is simply

a systematic enumeration method.

Figure 40: Objective function improvement of Tabu search heuristic solution with 15-minute
cutoff, with optimization-based solution as baseline: |L| ≤ 4
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Figure 41: Objective function improvement of Tabu search heuristic solution with 15-minute
cutoff, with optimization-based solution as baseline: |L| ≥ 5

Let us now produce similar graphs for the “heavy-commodity” traffic instances where

the heuristic takes considerably more than 15 minutes. Here we compare the results of the

optimization-based method with those of the heuristic method with a 1-hour time cutoff,

detailed in Figures 42, 43, and 44.

In these graphs we once again see the pattern where the optimization-based method

is favored for its performance as |L| increases. As the cutoff time increases however, the

additional time allows for the heuristic to produce better results for values of |L| up to 8.
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Figure 42: Objective function improvement of Tabu search heuristic solution with 1-hour
cutoff, with optimization-based solution as baseline: |L| ≤ 7

Figure 43: Objective function improvement of Tabu search heuristic solution with 1-hour
cutoff, with optimization-based solution as baseline: |L| = 8
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Figure 44: Objective function improvement of Tabu search heuristic solution with 1-hour
cutoff, with optimization-based solution as baseline: |L| ≥ 9

4.6 Conclusion

Having challenged the constant processing rate assumptions of the previous two chapters,

we have extended the flexibility of the problem definition and adapted our solution method-

ologies to solve the modified train re-routing problem. We have established that the lin-

early decreasing terminal processing rate allows us to maintain the linear structure of the

optimization-based solution methodology. Having modified the railcar movement simulation

algorithm to reflect the non-constant processing rate has allowed us to apply the Tabu search

heuristic to the modified train re-routing problem. The results showed that although the

optimization method can be applied to the modified train re-routing problem, the efficacy

of this approach is dependent on the shipment volume in the network in the horizon of in-

terest. The optimization proved too cumbersome for the worst-case scenarios of traffic that

were constructed. By contrast, the Tabu search heuristic method does not pose this prob-

lem. However, for cases where the commodity traffic in the rail network is not particularly
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high but the number of candidate trains is higher, the optimization-based method shows

significant promise.

4.7 Future Work

Recall that, having derived Equation 32 enabled us to maintain the linear structure of the

optimization-based solution methodology as it was extended to solve the train re-routing

problem. This was possible since Equation 32 showed the bundling constraints can be

generalized with a linear structure, since there is a linear relationship between the upper

bound of any processing arc (i, j) ∈ A and the number of railcars flowing on the terminal

storage arc (i′, i) ∈ A. This linear relationship cannot be assumed if the railcar processing

rate at terminal s(i) declines non-linearly as the number of railcars in the arrival yard

increases, which is reflected in the more general case by Equation 20. The reason is two-fold:

1. Recall the linear differential equation quantifying the relationship between number of

railcars processed and time available:
dUij

dt(i′,i)
= mUij + µ0. This equation is linear only

when processing rate decreases linearly with number of railcars in the arrival yard.

2. The solution to the above equation established a linear relationship between Uij and

µ0. This implies a linear relationship between Uij and
∑

k∈K x
k
i′,i when processing rate

decreases linearly with number of railcars in the arrival yard.

As such, when the processing rate declines non-linearly, the optimization-based method loses

its linear structure. Further work is required to explore whether the approach can be viable

in the non-linear case under certain conditions.
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