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Abstract—Segmentation involves separating an object from the background in a given image. The use of image information alone

often leads to poor segmentation results due to the presence of noise, clutter, or occlusion. The introduction of shape priors in the

geometric active contour (GAC) framework has proven to be an effective way to ameliorate some of these problems. In this work, we

propose a novel segmentation method combining image information with prior shape knowledge using level sets. Following the work of

Leventon et al., we propose revisiting the use of principal component analysis (PCA) to introduce prior knowledge about shapes in a

more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes

that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into

two energy functionals entirely described in terms of shapes. This consistent description permits us to fully take advantage of the

KPCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the

simultaneous encoding of multiple types of shapes and offers a convincing level of robustness with respect to noise, occlusions, or

smearing.

Index Terms—Kernel methods, shape priors, active contours, principal component analysis, level sets.

Ç

1 INTRODUCTION

SEGMENTATION consists of extracting an object from an
image, a ubiquitous task in computer vision applica-

tions. It is quite useful in applications ranging from finding
special features in medical images to tracking deformable
objects; see [1], [2], [3], [4], and the references therein. The
active contour methodology has proven to be very effective
for performing this task. However, the use of image
information alone often leads to poor segmentation results
in the presence of noise, clutter, or occlusion. The introduc-
tion of shape priors in the contour evolution process has
been shown to be an effective way to address this issue,
leading to more robust segmentation performances.

A number of methods that use a parameterized or an
explicit representation for contours have been proposed [5],
[6], [7] for active contour segmentation. In [8], the authors
use the B-spline parameterization to build shape models in
the kernel space [9]. The distribution of shapes in kernel
space was assumed to be Gaussian and a Mahalanobis
distance was minimized during the segmentation process to
provide a shape prior.

The geometric active contour (GAC) framework (see [10]
and the references therein) involves a parameter-free

representation of contours, that is, a contour is represented
implicitly by the zero level set of a higher dimensional
function, typically a signed distance function [11]. In [1], the
authors obtain the shape statistics by performing linear
principal component analysis (PCA) on a training set of
signed distance functions (SDFs). This approach was shown
to be able to convincingly capture small variations in the
shape of an object. It inspired other schemes to obtain the
shape prior described in [2], [12], notably where SDFs were
used to learn the shape variations.

However, when the object considered for learning
undergoes complex or nonlinear deformations, linear PCA
can lead to unrealistic shape priors by allowing linear
combinations of the learned shapes that are unfaithful to the
true shape of the object. Cremers et al. [13] successfully
pioneered the use of kernel methods to address this issue
within the GAC framework using a Parzen estimator to
model the shape distribution in kernel space.

The present work builds on the methods and results
outlined by the authors in [14]. We propose using kernel
PCA (KPCA) to introduce shape priors for GACs. KPCA
was proposed by Mika et al. [9] and allows one to combine
the precision of kernel methods with the reduction of
dimension in training sets. This is the first time, to our
knowledge, that KPCA has been explicitly used to intro-
duce shape priors in the GAC framework. We also propose
a novel intensity-based segmentation method specifically
tailored to meaningfully allow for the inclusion of a shape
prior. Image and shape information are described in a
consistent fashion that allows us to combine energies to
realize meaningful trade-offs.

We now outline the contents of this paper. In Section 2,
we briefly recall generalities concerning active contours
using level sets. In Section 3, we propose a consistent
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method to introduce shape priors within the GAC frame-
work, using linear PCA and KPCA. Next, in Section 4, we
propose a novel intensity-based energy functional separat-
ing an object from the background in an image. This energy
functional has a strong shape interpretation. Then, in
Section 5, we present a robust segmentation framework,
combining image cues and shape knowledge in a consistent
fashion. The performances of linear PCA and KPCA are
compared and the performance and robustness of our
segmentation method are demonstrated on various challen-
ging examples in Section 6. Finally, in Section 7, we make
our conclusions and describe possible future research
directions.

2 LEVEL-SET EVOLUTION

Level-set representations were introduced by Osher and
Sethian [15], [16] to model interface motion and became a
popular tool in the fields of image processing and computer
vision. The idea consists of representing a contour by the
zero-level set of a smooth Lipschitz continuous function. A
common choice is to use an SDF for embedding the contour.
The contour is propagated implicitly by evolving the
embedding function to decrease a chosen energy functional.
Implicit representations present the advantage of avoiding
dealing with complex resampling schemes of control points.
Moreover, the contour represented implicitly can naturally
undergo topological changes such as splitting and merging.

In what follows, the SDF representing the contour of
interest will be denoted by �. The SDF � is a function � :
� 7!R and the contour corresponds to the zero-level set of �,
that is, fðx; yÞ 2 �=�ðx; yÞ ¼ 0g. The convention �ðx; yÞ � 0
will be taken for points ðx; yÞ belonging to the interior of the
contour.

Typically, the energy functional is minimized via a
gradient descent approach. Accordingly, one defines an
energy functional in terms of �, namely, Eð�Þ (see, for
example, [17], [16], [15], and references therein), and, then,
the contour evolution is derived via the following gradient
descent flow:

d�

dt
¼ �r�E: ð1Þ

This amounts to deforming the contour from an initial
contour �0 in order to minimize the energy Eð�Þ.

3 LINEAR AND KERNEL PCA FOR SHAPE PRIORS

In this section, we recall a general formulation allowing one
to perform linear PCA, as well as KPCA, on any data set
[18], [19]. Then, we present specific kernels allowing us to
perform linear or nonlinear PCA on training sets of shapes.
Finally, we propose an energy functional allowing us to
introduce shape priors obtained from either linear PCA or
KPCA within the GAC framework. Recent studies com-
pared other methods such as locally linear embedding
(LLE) or kernel LLE to perform shape analysis and learning
(with better results usually observed on the tested
sequences for kernel LLE as compared to LLE; see [20]).
Comparable levels of performance were observed for KPCA
and for kernel LLE. Although the present framework is

general enough to use other learning methods, we focus on
KPCA in what follows.

3.1 KPCA

KPCA can be considered to be a generalization of linear PCA.

This technique was introduced by Mika et al. [9] and has
proven to be a powerful method to extract nonlinear

structures from a data set. The idea behind KPCA consists
of mapping a data set from an input space I into a feature
spaceF via a nonlinear function’. Then, PCA is performed in

F to find the orthogonal directions (principal components)
corresponding to the largest variation in the mapped data set.

The first l principal components account for as much of the
variance in the data as possible by using l directions. In
addition, the error in representing any of the elements of the

training set by its projection onto the first l principal
components is minimal in the least squares sense.

The nonlinear map ’ : I ! F typically does not need to

be known through the use of Mercer kernels. A Mercer kernel

is a function kð�; �Þ such that, for all data points �i, the kernel

matrix Kði; jÞ ¼ kð�i; �jÞ is symmetric positive definite [9].

According to Mercer’s Theorem (see [21]), computing kð:; :Þ
as a function of I � I amounts to computing the inner

scalar product in F : kð�a; �bÞ ¼ ’ð�aÞ � ’ð�bÞð Þ, with

ð�a; �bÞ 2 I � I . This scalar product in F defines a distance

dF such as

d2
F ð’ð�aÞ; ’ð�bÞÞ ¼ k’ð�aÞ � ’ð�bÞk

2

¼ kð�a; �aÞ � 2kð�a; �bÞ þ kð�b; �bÞ:

We now briefly describe the KPCA method [9]. Let � ¼
f�1; �2; . . . ; �Ng be a set of training data. The centered
kernel matrix ~K corresponding to � is defined as

~K ¼ ð’ð�iÞ � �’Þ � ð’ð�jÞ � �’Þ
� �
¼ð~’ð�iÞ � ~’ð�jÞÞ ¼ ~kð�i; �jÞ; for i 2 ½j1; N j�;

ð2Þ

with �’ ¼ 1
N

PN
i¼1 ’ð�iÞ, ~’ð�iÞ ¼ ’ð�iÞ � �’ being the cen-

tered map corresponding to �i and ~kð:; :Þ denoting the
centered kernel function. Since ~K is symmetric, it can be

decomposed as

~K ¼ USUt; ð3Þ

where S ¼ diagð�1; . . . ; �NÞ is a diagonal matrix containing

the eigenvalues of ~K. U ¼ ½u1; . . . ;uN � is an orthonormal

matrix. The column vectors ui ¼ ½ui1; . . . ; uiN �t are the

eigenvectors corresponding to the eigenvalues �is. Be-

sides, it can easily be shown that ~K ¼ HKH, where

H ¼ I� 1
N 11t. 1 ¼ ½1; . . . ; 1�t is an N � 1 vector.

Let C denote the covariance matrix of the elements of the

training set mapped by ~’. Within the KPCA methodology,
the covariance matrix C, which is possibly of very high
dimension, does not need to be computed explicitly. Only
~K needs to be known to extract features from the training
set since the eigenvectors of C are simple functions of the

eigenvectors of ~K [18]. The subspace of the feature space F
spanned by the first l eigenvectors of C will be referred to as
the KPCA space in what follows: The KPCA space is the

subspace of F obtained from learning the training data.
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Let � be any element of the input space I . The projection
of � on the KPCA space will be denoted by Pl’ð�Þ.1 The
projection Pl’ð�Þ can be obtained as described in [9]. The
squared distance d2

F between a test point � mapped by ’
and its projection on the KPCA space is given by

d2
F ½’ð�Þ; P l’ð�Þ� ¼ k’ð�Þ � Pl’ð�Þk2;

¼ kð�; �Þ � 2 ’ð�Þ � Pl’ð�Þ
� �

þ Pl’ð�Þ � Pl’ð�Þ
� �

:

This distance measures the discrepancy between a
(mapped) element of I and the elements of the learned
space and will be minimized to introduce shape knowledge
in the contour evolution process in Section 3.3. Using some
matrix manipulations, this squared distance can be ex-
pressed only in terms of kernels as

d2
F ½’ð�Þ; P l’ð�Þ� ¼

kð�; �Þ þ 1

N2
1tK1� 2

N
1tk� þ ~kt�M

~KM~k� � 2~kt�M
~k�;

ð4Þ

where k� ¼ ½kð�; �1Þ kð�; �2Þ; . . . ; kð�; �NÞ�t, ~k� ¼ Hðk� �
1
N K1Þ, and M ¼

Pl
i¼1

1
�i

ui uti.

Fig. 1 recapitulates the KPCA methodology, as well as
the projection operation on the learned space.

3.2 Kernels for Linear and Nonlinear PCA

3.2.1 Linear PCA

In [1], a method is presented to learn shape variations by
performing PCA on a training set of shapes (closed curves)
represented as the zero level sets of SDFs. Using the following
kernel in the formulation of the KPCA presented above
amounts to performing linear PCA on the given SDFs:

kidð�i; �jÞ ¼ ð�i:�jÞ ¼
Z Z

�iðu; vÞ�jðu; vÞdu:dv ð5Þ

for all SDFs �i and �j : R2 ! R. The subscript id stands for
the identity function: When performing linear PCA, the
kernel used is the inner scalar product in the input space;
hence, the corresponding mapping function ’ ¼ id.

A different representation for shapes is based on the use
of binary maps, that is, one sets to 1 the pixels located inside
the shape and to 0 the pixels located outside (see Fig. 4).

One can change the shape representation from SDFs to
binary maps using the Heaviside function

Hð�Þ ¼ H� ¼ 1 if � � 0;
0 else:

�

Note that, in this case, the kernel allowing one to perform
linear PCA is given by

kidðH�i;H�jÞ ¼ ðH�i:H�jÞ: ð6Þ

In numerical applications, a smooth version H�� of H� can
be obtained by taking H�� ¼ 1

2þ 1
� arctanð��Þ for � small. The

derivative of H will be noted � in the rest of this paper. In
numerical applications, a smooth version ��� of �� can be
obtained by taking ��� ¼ 1

�
1

1þð��Þ
2 .

3.2.2 Nonlinear PCA

Choosing a nonlinear kernel function kð�; �Þ is the basis of
nonlinear PCA. The exponential kernel has been a popular
choice in the machine learning community and has proven
to nicely extract nonlinear structures from data sets; see, for
example, [19]. Using SDFs for representing shapes, this
kernel is given by

k’	ð�i; �jÞ ¼ e
�k�i��jk2

2	2 ; ð7Þ

where 	2 is a variance parameter estimated a priori and
k�i � �jk2 is the squared L2-distance between two SDFs �i
and �j. The subscript ’	 stands for the nonlinear mapping
corresponding to the exponential kernel; this mapping also
depends on the choice of 	. If the shapes are represented by
binary maps, the corresponding kernel is

k’	ðH�i;H�jÞ ¼ e
�kH�i�H�jk2

2	2 : ð8Þ

This exponential kernel is one among many possible choices
of Mercer kernels. Other kernels may be used to extract
other specific features from the training set; see [9].

3.3 Shape Prior for GAC

In order to include prior shape knowledge in the GAC
framework, we propose using the projection on the KPCA
space as a model and minimizing the following energy
functional:

EF
shapeð�Þ :¼ d2

F ½’ð�Þ; P l’ð�Þ�: ð9Þ
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1. In this notation, l refers to the first l eigenvectors of C used to build the
KPCA space.

Fig. 1. Kernel PCA methodology. A training set is mapped from input space I to feature space F via a nonlinear function ’. PCA is performed in F to

determine the principal directions defining the kernel PCA space (learned space): oval area. Any element of I can then be mapped to F and

projected on the kernel PCA space via P l’.
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The superscript F in EF
shape denotes the fact that the shape

knowledge is expressed as a distance in feature space. A
similar idea was presented in [22] for the purpose of pattern
recognition and denoising. In (9),� is a test shape represented
using either an SDF ð� ¼ �Þ or a binary map ð� ¼ H�Þ and ’
refers to either id (linear PCA) or ’	 (KPCA). Minimizing
EF

shape as in (1) amounts to driving the test shape � toward the
KPCA space computed a priori from a training set of shapes
using (3). This contour evolution involving only the mini-
mization of EF

shape (no image information) will be referred to
as “warping” in what follows.

A number of researchers have proposed minimizing the
distance between the current shape and the mean shape
obtained from a training set. The assumption is indeed
often made that the underlying distribution of familiar
“shapes,” in either the input or feature space is Gaussian
[1], [7], [8]. Following this assumption, driving the curve
toward the mean shape is a sensitive choice. Here, however,
we deliberately chose to use the projection of the (mapped)
current SDF to drive the evolution because we would like to
deal with objects of different geometry in the training set
(see, for example, Fig. 4c; a training set of four words was
used for the experiments). When dealing with objects of
very different shapes, the underlying distribution can be
quite non-Gaussian (for example, multimodal).

Thus, the average shape would not be meaningful in this
case since it would amount to mixing shapes belonging to
different clusters. As a consequence, driving the (mapped)
current shape toward its projection on the KPCA space
appears to be a more sensible choice for our purposes. In
addition, choosing the projection as a model of shape allows
for comparing the given learning methods without image
information, that is, by warping the same initial contour for
each method and comparing the final results in terms of
their resemblance to the elements of the training set. The
final shape obtained can be interpreted as “the most probable
shape of the initial contour given what is known from the
data” (see the warping experiments in Section 6.2). If the
mean shape is chosen as a shape model, warping would result
in the initial contour converging to this mean shape and no
comparison would be possible among learning methods.
Thus, in this latest case, image information must be included
and it is difficult to conclude whether differences between
segmentation results are due to differences in the perfor-
mances of the learning methods or simply to poor balancing
between image and shape information.

The gradient of Eshape can be computed by applying the
calculus of variations on (9), using the expression of
d2
F ð’ð
Þ; P l’ð
ÞÞ in (4). The energy EF

shapeð�Þ can be mini-
mized as follows:

d�

dt
¼ �r�E

F
shape ¼ �r�E

F
shape:

d�

d�
: ð10Þ

The minimization of Eshape for any arbitrary contour (no
image information) results in the deformation of the contour
toward a familiar shape (as presented in Section 6.2).

For the exponential kernel involving SDFs and given in
(7), the following result is obtained:

r�E
F
shape ¼ �

�N
i¼1gið�Þ:k’	ð�; �iÞ:½�� �i�

	2
ð11Þ

w i t h ½g1ð�Þ; . . . ; gNð�Þ� ¼ � 2
N 1t þ 2~kt�M

~KMH� 4~kt�MH

and ~k�, M, and ~K computed for k’	 .
For the exponential kernel involving binary maps and

given in (8), one derives that

r�E
F
shape ¼ �

�N
i¼1gið�Þ:k’	ðH�;H�iÞ:��:½H��H�i�

	2
; ð12Þ

where ~k�, M, and ~K are computed for the kernel
k’	ðH:;H:Þ.

For the kernel given in (5), corresponding to linear PCA
on SDFs, the following result is obtained:

r�E
linear
shape ¼ 2�þ �N

i¼1gið�Þ:�i; ð13Þ

where ~k�, M, and ~K are computed for the kernel kid.
Finally, for the kernel given in (6), corresponding to

linear PCA on binary maps, one finds that

r�E
linear
shape ¼ 2��þ �N

i¼1giðH�Þ:H�i:��; ð14Þ

where ~k�, M, and ~K are computed for the kernel
kidðH:;H:Þ.

4 INTENSITY-BASED SEGMENTATION

Different models [23], [24], [25], [26], [27] which incorporate
geometric and/or photometric (color, texture, intensity)
information have been proposed to perform region-based
segmentation using level sets. Other methods such as those
in [28], [29] use local information, that is, edges. Most of the
region-based models have been inspired by the region
competition technique proposed in [30] and usually offer a
higher level of robustness to noise than models based on
local information. Morel and Solimini’s book [31] is a nice
reference on the various variational segmentation methods.

We now formulate our region-based segmentation
approach aimed at separating an object from the back-
ground in a given image I. As with most region-based
approaches, we assume that the object and background are
characterized by statistical properties which are visually
consistent and distinct from each other. The main idea
behind the proposed method is to build an “image-shape
model” (denoted by G½I;�ðtÞ�) by extracting a binary map
from the image I, based on the estimates of the intensity
statistics of the object (and background) available at each
step t of the contour evolution.

Let PinðIðx; yÞÞ ¼ pðIðx; yÞjðx; yÞ 2 InsideÞ denote the
probability of the image intensity taking the value Iðx; yÞ,
knowing that ðx; yÞ belongs to the interior of the contour.
Similarly, let PoutðIðx; yÞÞ ¼ pðIðx; yÞjðx; yÞ 2 OutsideÞ de-
note the probability of the image intensity taking the value
Iðx; yÞ, knowing that ðx; yÞ belongs to the exterior of the
contour.2 Estimates of these probabilities can be computed
from the image intensities corresponding to pixels inside
and outside the contour at each step t of the contour
evolution. This will be detailed further in Sections 4.1 and
4.2. Given a meaningful initialization of the evolving
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2. PinðIðx; yÞÞ and PoutðIðx; yÞÞ obviously depend on t since these
densities respectively involve the “inside” and “outside” of the evolving
contour. However, we do not include this dependence in our notation for
simplicity.
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curve, these statistics provide valuable information about

the statistics of the object and the background. Intuitively,

the conditional densities Pin and Pout are, respectively, the

best available estimates of the unknown conditional

densities PO ¼ pððx; yÞ 2 ObjectjIðx; yÞÞ (density of the

pixel intensities belonging to the object) and PB ¼
pððx; yÞ 2 BackgroundjIðx; yÞÞ (density of the pixel intensi-

ties belonging to the background). The image-shape model

G½I; �ðtÞ� is built in the following manner:

G½I;�ðtÞ�ðx; yÞ ¼
1 if PinðIðx; yÞÞ � PoutðIðx; yÞÞ
0 if PinðIðx; yÞÞ < PoutðIðx; yÞÞ:

�
ð15Þ

Hence, the image-shape model G½I;�ðtÞ� can be interpreted as

the most likely shape of the object of interest based on these

statistics: Pixels set to 1 in G½I;�ðtÞ� correspond to pixels of the

image that are deemed to belong to the object of interest,

while pixels set to 0 are believed to not be part of the object.
To perform image segmentation, the contour at time t is

deformed toward this image-shape model by minimizing

the following energy:

Eimageð�; IÞ :¼kH��G½I;�ðtÞ�k2;

¼
Z

�

ðH��G½I;�ðtÞ�Þ2dxdy:
ð16Þ

This energy amounts to measuring the distance between

two binary maps, namely, H� and G½I;�ðtÞ�. This is quite

valuable in the present context, where shapes can be

represented using binary maps, as in earlier sections. Thus,

when the shape energy described in (9) is combined with

the image energy defined in (16), all of the elements can be
expressed in terms of shapes and meaningful trade-offs can

be realized. The gradient of Eimage can be computed,

assuming that the image-shape model G½I;�ðtÞ� undergoes

little variation during one step of the contour evolution:3

r�Eimage ¼ 2��:ðH��G½I;�ðtÞ�Þ: ð17Þ

Here, the gradient “points” in the direction of the image-
shape model, driving the contour toward it.

Fig. 2 offers a visualization of the proposed segmentation
algorithm: First, the image-shape model is built and, then,
the contour is evolved toward the shape model.

4.1 Object and Background with Different Mean
Intensities

When the object of interest is consistently darker (or
brighter) than the background, a reasonable segmentation
may be obtained by considering only the mean intensities of
the object and of the background; see [23] and [24]. Such
images can be treated within the proposed framework by
assuming that the intensities of the object and the back-
ground have a Gaussian distribution of different means and
identical variances.4 Following this assumption, at each
step t of the contour evolution, PinðIðx; yÞÞ and PoutðIðx; yÞÞ
can be approximated as

PinðIðx; yÞÞ ¼ �e
ðI��inÞ2

2	2
0 and PoutðIðx; yÞÞ ¼ �e

ðI��outÞ2

2	2
0 ; ð18Þ

with

�in ¼
R
Iðx; yÞH� dxdyR

H�dxdy
;

respectively,

�out ¼
R
Iðx; yÞð1�H�Þ dxdyR
ð1�H�Þdxdy ;

denoting the mean intensity of the pixels located inside
(respectively, outside) the contour and ð	0; �Þ 2 R�R. The
optimal threshold separating the object from the back-
ground based on the knowledge of the image statistics at
time t is �inþ�out

2 . Following the definition of G½I;�ðtÞ� in (15),
two cases need to be distinguished to compute the image-
shape model at time t:
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Fig. 2. Model phase: An image-shape model is built from the statistics of the image. Update phase: The contour is evolved to reduce the distance

between the shape it underlines and the image-shape model.

3. This amounts to supposing that the variation in the statistics of the
pixels inside and outside the contour varies slowly from one step of the
contour evolution to the other. Similar hypotheses were used in, for
example, [24], where mean intensities were assumed to be constant between
two successive evolution steps.

4. The case involving different variances can also be dealt with using the
proposed method, as presented in [14].
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if �in > �out; G½I;�ðtÞ�ðx; yÞ ¼
1 Iðx; yÞ � �inþ�out

2 ;

0 else;

(

if �in � �out; G½I;�ðtÞ�ðx; yÞ ¼
1 Iðx; yÞ � �inþ�out

2 ;

0 else:

(

Notice that G½I;�ðtÞ� is the image-shape model (binary map)

obtained from thresholding the image intensities so that

values closer to �in are classified as object (set to 1) and

others are classified as background (set to 0). For numerical

experiments, the function G½I;�ðtÞ� is calculated as follows:

if �in > �out;

G½I;�ðtÞ;"�ðx; yÞ ¼
1

2
þ 1

�
arctan

Iðx;yÞ��inþ�out
2

"

 !

else G½I;�ðtÞ;"�ðx; yÞ ¼
1

2
� 1

�
arctan

Iðx;yÞ��inþ�out
2

"

 !
;

where " is a parameter such that G½I;�ðtÞ;"� ! G½I;�ðtÞ� as

"! 0.

4.2 Object and Background with Different Global
Statistics

When the image statistics of the object of interest (or

background) have more complicated distributions than the

one alluded to above, a more involved scheme needs to be

applied to perform segmentation. A few methods were

recently presented aiming at performing segmentation

using global considerations about the statistics of both the

object and the background in an unsupervised fashion. For

instance, in [32], contour evolution is undertaken in order to

reduce the mutual information between the object and

background statistics, while, in [33], the Bhattacharyya

distance between the histograms of the object and back-

ground is minimized. Promising segmentation results were

obtained on a wide array of objects and backgrounds

having diverse intensity distributions.
The image-shape model approach presented above can be

generalized to take into account the global statistics of both

the image and the background. At each step t of the contour

evolution, the probability density functions PinðIðx; yÞÞ and

PoutðIðx; yÞÞ can be estimated, using Parzen windows [34],

in the following manner:

PinðIðx; yÞÞ ¼
R
KðIðx; yÞ � Iðx0; y0ÞÞH�ðx0; y0Þdx0dy0R

H�ðx; yÞdxdy and

PoutðIðx; yÞÞ ¼
R
KðIðx; yÞ � Iðx0; y0ÞÞ½1�H�ðx0; y0Þ�dx0dy0R

½1�H�ðx; yÞ�dxdy ;

where K can be chosen to be the Gaussian kernel with zero

mean and chosen variance.5

The image-shape model can be constructed by plugging

the estimates of Pin and Pout into (15). In numerical

applications, a smoothed version of G½I;�ðtÞ� may be

computed (for " small) as

G½I;�ðtÞ�ðx; yÞ ¼
1

2
þ 1

�
arctan

PinðIðx; yÞÞ � PoutðIðx; yÞÞ
"

� �
:

5 COMBINING SHAPE PRIOR AND INTENSITY

INFORMATION

5.1 Balancing Energy Functionals

In this section, we combine shape knowledge obtained by

performing nonlinear PCA on binary maps with image

information obtained by building an “image-shape model.”

Classically, image and shape information are combined by

defining a total energy Etotal:

EtotalðI; �Þ ¼ EF
shapeð�Þ þ �:EimageðI; �Þ: ð19Þ

Using Bayes’ formula, it can be shown that minimizing

the above energy functional amounts to maximizing the

posterior probability of the curve given current image

information and shape knowledge. The coefficient �

represents the level of trust given to image information

(higher �s result in emphasizing image information).

Considering �r�Etotal in (19), two forces are obtained:

One is the image force fimage ¼ ��r�Eimage, the other is

the shape force fF
shape ¼ �r�E

F
shape. The gradient descent

process described in (1) converges to a local minimum

where fimage and fF
shape balance each other (same amplitude

and opposite directions).

However, Eimage is a squared L2-distance in the input

space, whereas EF
shape is a squared distance in the feature

space. As a consequence, a meaningful balance between

fimage and fF
shape would be hard to reach. The gradient

r�E
F
shape exhibits a nonlinear behavior due to the exponen-

tial terms it involves. To illustrate this point, one can

consider a one-dimensional static version of Eimage and

EF
shape.6 Let E1d

image ¼ ðx� ximageÞ2 be the one-dimensional

analogous of Eimage, with ximage being the one-dimensional

equivalent to the image-shape model, and let E1d
shape ¼

2� 2e
ðx�xshapeÞ2

2	2 be the one-dimensional analogous of EF
shape,

with xshape being the one-dimensional equivalent to the

shape model obtained from learning.7 Although this is

usually not the case during the actual evolution process, the

models ximage and xshape will be considered constant

throughout this discussion for simplicity. The one-dimen-

sional forces f1d
image and f1d

shape corresponding, respectively, to

E1d
image and E1d

shape can easily be computed as
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5. In numerical applications, Pin and Pout are normalized to ensure that
their respective sum over the span of the intensity values is 1.

6. This discussion involving one-dimensional functions also holds for
multiple dimensions since the different forces enjoy radial symmetry.

7. Recall that EF
shape is a squared distance d2

F in the feature space. We

assume here for the purpose of illustration that Pl’ðxÞ has a preimage

xshape in the input space, that is, ’ðxshapeÞ ¼ Pl’ðxÞ. Thus, the one-

dimensional energy E1d
shape ¼ 2� 2kðx; xshapeÞ ¼ 2� 2e

ðx�xshape Þ2

2	2 . This assump-

tion is not true in general; see further remarks in what follows.
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f1d
image ¼ � 2�:ðx� ximageÞ and

f1d
shape ¼ �

2

	2
ðx� xshapeÞe

ðx�xshapeÞ2

2	2 :

The amplitudes and directions of f1d
image and f1d

shape are
presented in Fig. 3 for fixed values of ximage, xshape, and 	, as
well as for different values of �. The amplitude of f1d

shape

presents two maxima around xshape. The values of x,
denoted xmax1 and xmax2, for which these maxima occur
are xmax1 ¼ xshape � 	 and xmax2 ¼ xshape þ 	. During gradi-
ent descent, the variable x evolves from an initial value of
x ¼ x0 in the direction of the force that has the highest
amplitude to converge to the value of x ¼ xfinal for which
f1d

image and f1d
shape have the same amplitudes and opposite

directions. Although the results presented in Fig. 3 are
dependent on the particular choice of ximage, xshape, and �,
valuable insights about the consequences of the nonlinear
behavior of EF

shape may be inferred:

. If � is too large, jf1d
imagej ( line on the graph) is

always above jf1d
shapej: The evolution of x is not

influenced by f1d
shape and x should converge to ximage.

Hence, it can be expected that for too large �s, no
shape knowledge will contribute at all to the contour
evolution and the contour will converge to the
image-shape model. This is counterintuitive since,
from (19), one expects that both energies contribute
to the evolution (for � 6¼ 0).

. If the initial value of x is biased toward ximage, for
instance, x0 located on the right of ximage, f

1d
shape will

not contribute to the evolution of x and convergence
again occurs for x ¼ ximage. Thus, it can be expected
that the final contour will be very much dependent
on initial conditions. For example, if the shape of the
initial contour is biased toward the image-shape
model the contour could converge toward the
image-shape model and shape-knowledge informa-
tion would not influence the evolution.

. The darker area under the jf1d
shapej curve represents

the locus of the possible final values of x realizing a
trade-off between image information and the knowl-
edge of shape. These possible final values are
between xshape and xmax2. Final results for x will
thus be skewed toward the shape-knowledge model
and it is not possible to reach any trade-off value
located between xmax2 and ximage (for any initial
value x0). Thus, the parameter 	 can be expected to
have a limiting influence on the possible trade-offs
realizable between image information and shape
knowledge, resulting in not meaningfully balanced
final contours. Ideally, only the parameter � should
influence the trade-off between forces, whereas 	
should be chosen based on considerations of the
training data only.

Fig. 3b presents the typical behavior of the L2 norm of

fF
shape, obtained when warping an initial contour very “far

from” (that is, dissimilar to) the elements of the training set,

until convergence. This empirical result for the norm of

fF
shape exhibits very similar behavior to its one-dimensional

theoretical counterpart jf1d
shapej, validating the remarks made

above.8

Hence, these issues need to be addressed in order to take

advantage of the KPCA technique in a robust (for example,

less dependent on initial conditions), intuitive, and mean-

ingful manner. We now proceed to explain a methodology to

address the aforementioned issues for the exponential kernel

(the methodology is general enough to accommodate any

invertible kernel of the form kðx; yÞ ¼ kðkx� ykÞ). The non-

linear behavior ofrEF
shape stems from the fact that the energy
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8. Also, during our initial experiments using (19) directly, meaningful
balances between shape knowledge and image information were difficult to
reach (despite investigating wide ranges of �). Final contours were either
biased toward the image-shape model or adopted a familiar shape that did
not segment the image in a satisfactory manner. Satisfactory balances were
obtained only for large values of 	.

Fig. 3. (a) Theoretical forces corresponding to Eimage and EF
shape. The double-bell-shaped curve represents jf1d

shapej. The two-segment curves represent
jf1d

imagej for diverse values of � (higher absolute slopes correspond to higher �s). The respective directions of both forces are materialized by the two
pairs of opposite horizontal arrows at the bottom of the figure. The darker area under the jf1d

shapej curve represents the locus of possible convergence
points that realize a trade-off between jf1d

imagej and jf1d
shapej: for theþ, �, and4 lines, the corresponding possible point of convergence is indicated by a

circle (no trade-off is realizable between jf1d
imagej and jf1d

shapej for the line). (b) Experimental result highlighting the nonlinear behavior of the L2 norm
of r�E

F
shape. An initial contour “far away” from the learned shapes was warped (note the similarity between the experimental curve and the theoretical

solid-line curve in the leftmost graph).
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is defined as a distance in the feature space. We would like to
redefine the shape energy so that the amplitude of its gradient
exhibits a linear behavior (similar to rEimage for which the
energy is defined as a distance in the input space). We note
that distances in the feature space and the input space are
related as follows, for any SDFs �a and �b:

d2
F ð�a; �bÞ ¼ 2� 2k’	ðH�a;H�aÞ;

¼ 2� 2e
�kH�a�H�bk2

2	2 ¼ 2� 2e�
d2
I
ðH�a;H�bÞ

2	2 ;
ð20Þ

where d2
I is a squared distance in the input space. Using

the invertibility of the kernel in (20), one can write

d2
IðH�a;H�bÞ ¼ �2	2 logð2�d

2
F ð�a;�bÞ

2 Þ. Let us define a new

shape energy from EF
shape:

Eshape ¼ �2	2 log
2�EF

shape

2

 !
: ð21Þ

This energy can be expected to behave in a similar fashion as a

squared distance in the input space. The gradient of the

energyEshape should now exhibit a more stable behavior than

rEF
shape. By applying the chain rule, one can verify that

r�Eshape ¼ 2	2

2�EF
shape

r�E
F
shape. Hence,rEF

shape andrEshape have

an identical direction ( 2	2

2�EF
shape

2 Rþ since Eshape 2 ½0; 2�) and

will influence the evolution in similar ways since both

gradients point in the direction of the projection in the

feature space. However, the extra term in the expression of

r�Eshape, namely, 2	2

2�EF
shape

, modifies the amplitude of the

gradient and was found to indeed drastically improve

balancing performances between image and shape forces

(for a rather large range of values of 	) during our

experiments.
It is important to note that, for a certain �, Pl’ð�Þ does

not necessarily have a preimage in the input space I : It may
not be possible to define �P 2 I so that �P ¼ ’�1ðPl’ð�ÞÞ.
Thus, rigorously defining an energy functional as a distance
between the contour and a model encoding shape knowl-
edge obtained from KPCA directly in the input space is
problematic. A few authors proposed methods to compute
an approximate preimage of Pl’ð�Þ. In [19], an iterative
scheme is proposed to compute �approx

P ’ ’�1ðPl’ð�ÞÞ,
while, in [35], a direct method is proposed. These methods
could have been used to define Eapprox

shape ¼ kH��H�
approx
P k2

directly in I . However, defining Eshape as the scaled log of a
distance in the feature space was found to be more stable
and computationally efficient while not requiring any
approximation of the shape model.

Both the shape and image energies now behave as
distances in the input space between shapes that are
represented by binary maps. This consistent description of
energies allows for meaningful trade-offs between image
cues and shape knowledge through the energy functional:

Etotalð�; IÞ ¼ ð1� 
Þ Eshapeð�Þ þ 
 Eimageð�; IÞ; ð22Þ

where 
 is a balancing parameter, effectively and intui-
tively encoding the level of trust accorded to each model
(image-shape model or shape-knowledge model). For

example, if the same level of trust should to be accorded to
each model during segmentation, 
 can be chosen to be 0.5.

5.2 Pose Invariance

Prior to the construction of the space of shapes, the elements
of the training set need to be aligned, e.g., in order to
disregard differences due to affine transformations. As a
result, the elements of the training set are registered at a
certain position in the image domain (usually at the center
of the domain). Typically, the object of interest in image I
and the registered training shapes do not have the same
pose and differ by some transformation. This transforma-
tion needs to be recovered during the segmentation process
in order to constrain the shape of the contour properly (see,
for example, [1], [2]). In what follows, we detail our
approach to dealing with differences in pose within our
segmentation framework.

Let us assume that the object of interest in I differs from
the registered elements of the training set by the transfor-
mation T ½p� with parameters p ¼ ½p1; p2; p3; p4� ¼ ½tx; ty; �; ��,
in which tx and ty correspond to translation according to the
x and y-axis, � is the rotation angle, and � is the scale
parameter. Let us denote by ~Ið~x; ~yÞ the image obtained by
applying the given transformation on Iðx; yÞ. We have
~Ið~x; ~yÞ ¼ Iðx; yÞ, with

ð~x; ~yÞ ¼ T ½p�ðx; yÞ
¼ ð�ðx cos �� y sin �Þ þ tx; �ðx sin �þ y cos �Þ þ tyÞ:

The transformation T ½p� may be recovered by minimizing
Etotalð�; ~IÞ with respect to the pis via gradient descent. Since
Eshapeð�Þ does not depend on p, minimizing Etotalð�; ~IÞ is
equivalent to minimizingEimageð�; ~IÞ only with respect to the
pis. In particular, we have rpiEtotalð�; ~IÞ ¼ rpiEimageð�; ~IÞ for
i ¼ 1; . . . ; 4. Assuming that the image-shape model
G½~I;�ðtÞ� is negligibly modified by an infinitesimal
transformation of ~I,9 one can compute rpiEimageð�; ~IÞ
by considering that Eimageð�; ~IÞ is a distance between
two determined binary maps, namely, H�ðx; yÞ and
G½~I;�ðtÞ�ð~x; ~yÞ ¼ G½~I;�ðtÞ�ðT ½p�ðx; yÞÞ. One can thus write

rpiEimageð�; ~IÞ ¼ 2

Z
�

ðH��G½~I;�ðtÞ�ÞrpiG½~I;�ðtÞ�dxdy; ð23Þ

where

rpiG½~I;�ðtÞ� ¼
@G½~I;�ðtÞ�ð~x; ~yÞ

@~x

@G½~I;�ðtÞ�ð~x; ~yÞ
@~y

" #
@T ½p�ðx; yÞ

@pi

� �t
:
ð24Þ

To perform segmentation of images with shape priors,
the following gradient descent scheme is undertaken in
parallel to the contour evolution in (1) for i ¼ 1; . . . ; 4:

dpi
dt
¼ �rpiEimageð�; ~IÞ: ð25Þ

To initiate the segmentation process, an estimate p0 of p
needs to be computed (the initial curve is drawn around the
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9. This amounts to assuming that the pixel statistics inside and outside
the curve (computed for ~I) are constant for an infinitesimal transformation
of ~I.
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object in ~I) so that the pose of the object of interest in ~I
roughly matches the pose of one of the registered training
shapes. Recovering the transformation T ½p� by working
with the image I only instead of transforming each element
of the training set is different with previously proposed
approaches (for example, [8], [2]) and is computationally
very advantageous when dealing with large training sets.

6 EXPERIMENTS

In this section, we present experimental results that
compare linear PCA and KPCA as means to introduce
shape priors and we test our segmentation framework. In
Section 6.1, we describe the training sets used in the
experiments. In Section 6.2, we deform an initial shape
using only shape knowledge and compare the perfor-
mances obtained using KPCA and linear PCA in various
settings. In Section 6.3, we test our region-based approach
to intensity segmentation (as presented in Section 4) on
artificial and real-world images. Finally, in Section 6.4, we
test our complete segmentation framework (Etotal is mini-
mized,and the transformation T ½p� is recovered) on challen-
ging images and video sequences.

6.1 Training Sets and Learning

In the experiments presented below, three training sets of
shapes were used. Shapes were represented by either
signed distance functions or (smoothed) binary maps. The
first training set of shapes consists of 22 shapes of a man
playing soccer. The second training set is composed of
28 shapes of a shark. These shapes were aligned using an
appropriate registration scheme [2] to remove differences
between them due to translation, rotation, and scale. In
order to test for the ability of the proposed framework to
learn and deal with multimodal distributions, a third
training set was built. This training set consists of four
words, “orange,” “yellow,” “square,” and “circle,” each
written using 20 different fonts, leading to a training set of
80 shapes in total. The size of the fonts was chosen to lead to
words of roughly the same length. The obtained words
were then registered according to their centroid. No further
effort such as matching the letters of the different words
was pursued. The binary maps corresponding to the diverse
training shapes are presented in Fig. 4. The shapes depicted
are from the original training sets, before alignment. The
first row in Fig. 4 presents a few elements of the “Soccer

Player” training set and the second row of Fig. 4 presents a
few shapes from the “Shark” training set. The third row in
Fig. 4 presents a few of the words used to build the
“4 Words” training set. Shape learning was performed on
each training set, as presented in Section 3. The familiar
spaces of shapes (KPCA spaces) were built for each of the
kernels presented in (5) to (8), whether linear PCA or KPCA
was respectively performed, on binary maps or SDFs.

6.2 Warping Results: Linear PCA versus KPCA for
Shape Priors (No Image Information)

In this section, we compare the performances of KPCA to
linear PCA as methods for introducing shape priors in the
GAC framework. The fact that energy functional Eshape is
consistently defined for both shape learning methods in (9)
ensures that the performances obtained from applying linear
PCA or KPCA can be accurately compared. No image
information was used in these experiments; instead, the
contour evolution was carried out to minimize Eshape only
(“warping”). This further guarantees a meaningful compar-
ison among methods since performances do not stem from
the balancing factor between image information and shape
knowledge. In what follows, the same initial shapes were
warped and the final contours obtained were compared for
both methods in terms of their resemblance to the elements of
the training sets utilized. Equation (1) was run until
convergence, using the expression of the gradients presented
in (13) and (14) for linear PCA and (11) and (12) for KPCA.

6.2.1 Warping an Arbitrary Initial Shape

Fig. 5 presents the warping results obtained starting from
an arbitrary initial shape representing a “plus” sign. The
first row of Fig. 5 shows the results obtained using kernel
PCA (with SDFs as a representation of shape). The second
row of Fig. 5 presents the results obtained using linear PCA
(with shapes represented as SDFs). As can be noticed, the
results obtained with linear PCA bear little resemblance to
the elements of the training sets. In contrast, the final
contours obtained by employing KPCA are more faithful to
the learned shapes.

Fig. 6b shows the warping results obtained by applying
linear PCA on SDF. Fig. 6d shows the warping results
obtained by applying linear PCA on binary maps. Note that
the results obtained for the SDF representation bear little
resemblance to the elements of the training sets. The results
obtained for binary maps are more faithful to the learned
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Fig. 4. Three training sets (before alignment—binary images are

presented here). First row: “Soccer Player” silhouettes (6 of the 22

used). Second row: “Shark” silhouettes (6 of the 15 used). Third row:

“4 Words” (6 of the 80 learned).

Fig. 5. Warping results obtained for the “Soccer Player” training set,
starting with an initial contour representing a “plus” sign. First row:
Evolution obtained using kernel PCA. Second row: Evolution obtained
using linear PCA. When kernel PCA is used, the final contour resembles
the elements of the training set. In contrast, the final contour obtained
using linear PCA bears little resemblance to the learned shapes.
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shapes (see [36] for a more in-depth study of this fact).
Figs. 6c and 6e presents the warping results obtained by
applying kernel PCA on SDF and binary maps, respectively.
In both cases, the final contour is very close to the training
set and the results are better than any of the results obtained
with linear PCA.

6.2.2 Robustness to Misalignment

In these experiments, the robustness of each method (linear
and kernel PCA) to misalignments relative to the registered
shapes of a training set is tested. This robustness to
misalignment is an interesting property to evaluate since
to perform segmentation, differences in pose (for example,
translations) between the object of interest in the image and
the registered training shapes need to be accounted for.
Hence, whether a probabilistic method [1] or a gradient
descent scheme [2] is used to compensate for these
differences, more or less important misalignments between
the contour and the registered training shapes may occur
during the evolution process. This can impair the ability of
the shape energy to properly constrain the shape of the
segmenting contour.

In each of the following three experiments, an initial
contour representing a chosen training shape for which
pose differs from the registered training shapes is used as
the initial contour for warping (SDFs were used to represent
shapes). For the first initial contour, a small translation of
about 5 pixels in the x and y-directions was performed. The
second initial contour was a translation of about 10 pixels in
the x and y-directions. Figs. 7 and 8 present the warping
results obtained for the smaller and larger misaligned initial
shapes, respectively. The first lines of Figs. 7 and 8 show the
results obtained using KPCA; the second lines of Figs. 7 and
8 present the results using linear PCA. Once again, the
results obtained with linear PCA bear little resemblance to
the elements of the training sets. In contrast, the final
contours obtained using kernel PCA are more faithful to the
learned shapes. Besides, whether the initial contour is
slightly or heavily misaligned, the contour evolution results
in a translation of the contour when kernel PCA is used.
Interestingly, the shape of the final contour obtained using
KPCA is very much like the shape of the initial contour for
both experiments. In Fig. 9, the initial contour represents
one of the learned shapes scaled up by 10 percent and
rotated by 10 degrees. As a result of warping using linear

PCA, an unrealistic shape is obtained. In contrast, the final
contour obtained when using kernel PCA is a realistic shape
that is, in effect, rotated back and scaled down compared
with the initial contour. Similar satisfying results were
obtained with KPCA using binary maps as a representation
of shapes. Hence, KPCA appears to offer a higher level of
robustness than linear PCA to the misalignment of the
initial contour (at least in the experiments we performed).

6.2.3 Multimodal Learning

Kernel methods have been used to learn complex multimodal
distributions in an unsupervised fashion [9]. The goal of this
section is to investigate the ability of kernel PCA to
simultaneously learn objects of different shapes and to
constrain the contour evolution in a meaningful fashion.
Besides, we want to contrast the performances obtained with
KPCA to the performances obtained with linear PCA. The
“4 Words” training set was used for these experiments.
Diverse contours, whose shapes bore some degree of
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Fig. 6. Warping results of an arbitrary shape, obtained using linear PCA
and kernel PCA applied on both SDFs and binary maps. First row:
Results for the “Soccer Player” training set. Second row: Results for the
“Shark” training set. (a) Initial shape. (b) PCA on SDF. (c) Kernel PCA on
SDF. (d) PCA on binary maps. (e) Kernel PCA on binary maps.

Fig. 7. Warping results obtained for the “Shark” training set. The initial
contour (leftmost image) represents one of the learned shapes slightly
misaligned (5 pixels) with the corresponding element in the registered
training set. First line: Evolution obtained using kernel PCA. Second line:
Evolution obtained using linear PCA. The final contour obtained using
kernel PCA resembles the elements of the training set and is positioned
where the learned shapes were registered. The final contour obtained
using linear PCA bears little resemblance to the learned shapes.

Fig. 8. Warping results obtained for the “Shark” training set. The initial

contour (leftmost image) represents one of the learned shapes

misaligned by approximately 10 pixels. First line: Evolution obtained

using kernel PCA. Second line: Evolution obtained using linear PCA.

Fig. 9. Warping results obtained for the “Soccer player” training set.
(a) Initial contour representing one of the learned shapes scaled up by
10 percent and rotated by 10 degrees. (b) Final result using linear PCA
(an unrealistic shape is obtained). (c) Final result using KPCA (the final
contour is a realistic shape, effectively rotated and scaled down).
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resemblance to any of the four words (“orange,” “yellow,”
“square,” or “circle”), were then used as initial contours for
warping.

Each line in Fig. 10 presents the warping results obtained
for the diverse initial contours used, for both linear and
kernel PCA, using SDFs as representations of shape. The
initial contour presented on the first line in Fig. 10a is the
word “square” in which the letters are partially erased. The
warping result using linear PCA bears little resemblance to
the word “square.” In contrast, using kernel PCA, the word
square is accurately reconstructed. In particular, a police
close to the original one used in the initial contour is
obtained. The initial contour presented on the second line in
Fig. 10a is the word “circle” occluded by a line. Again, the
warping result using linear PCA bears little resemblance to
the word “circle” (a mixing of the different training words
is obtained). Using KPCA, not only is the word “circle”
accurately reconstructed, but the line is also completely
removed. Besides, the original scheme used for the initial
contour (which belongs to the training set) is preserved. The
initial contour presented on the third line in Fig. 10a is the
registered training word “yellow” slightly translated. The
letter “y” is also replaced by a rectangle. Employing kernel
PCA, the word “yellow” is perfectly reconstructed: The
letter “y” is recovered, the contour is translated back, and
the original police used for the initial contour is preserved.
In comparison, the word “yellow” is barely recognizable
from the final contour obtained using linear PCA.

In each of the experiments above, the accurate word is
detected and reconstructed using kernel PCA. Similar
robust performances were obtained with kernel PCA on
binary maps. The shape of the final contour obtained with
linear PCA was oftentimes the result of a mixing between
words of different classes. This mixing between classes can
lead to unrealistic shapes. Thus, KPCA appears to be a
strong method for introducing shape priors within the GAC

framework when training sets involving different types of
shapes are used.

6.2.4 Influence of the Parameter 	 in Exponential

Kernels

The goal of this section is to study the influence of the
parameter 	 when kernel PCA is performed using
exponential kernels. Fig. 11 presents warping results of an
arbitrary shape using different values of the parameter 	 for
the kernel defined in (8), which corresponds to performing
kernel PCA on binary maps. The Shark training set was
used for the shape learning.

As can be seen in Fig. 11, as the value of 	 increases,
more and more mixing among the shapes of the training set
is allowed. Such shape mixing naturally occurs when linear
PCA is used for learning (for example, in Fig. 6d, second
row, this type of mixing can be observed). Similar results
were obtained for the SDF representation and the kernel
given in (7). Hence, the parameter 	 allows for controlling
the degree of “mixing” allowed among the learned shapes
in the shape prior, which is another advantage of kernel
PCA over linear PCA. The choice of 	 should typically
depend upon how much shape variation occurs within the
data set. To emphasize this, larger 	’s allow for more
mixing among the shapes, whereas smaller 	s lead to more
“selective” shape priors.

6.3 Segmentation Results: Image-Shape Model
Only (No Shape Prior)

This section presents segmentation results of real and
synthetic images obtained from using the image-shape
segmentation technique presented in Section 4. No shape
information was used to perform these segmentations. To
ensure the smoothness of the contour, a classical curvature
term which penalizes longer contours was introduced.
Equation (1) was run until convergence using the expres-
sion of r�Eimage as given in (17).

Fig. 12 presents results obtained for each of the image-
shape models (involving different intensity statistics)
presented above. Fig. 12a represents a couple (darker
intensities) on a lighter background. At each iteration of
the contour evolution, an image-shape model was built,
using the mean intensities inside and outside the curve.
Fig. 12b is a synthetic image representing a square. The
mean intensities inside and outside the square are the same;
only the variances differ. Fig. 12c represents a zebra on a
savannah plain. For both images, image-shape models were
built from the probability distributions of the intensities
inside and outside the curve at each evolution step.
Satisfying segmentation results were obtained in each case,
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Fig. 10. Warping results for the “4 Words” training set. (a) Initial

contours. (b) Warping using linear PCA. (c) Warping using kernel PCA.

Fig. 11. Influence of 	 for the kernel PCA method (exponential kernel) on

binary maps. Warping results of an arbitrary shape are presented for the

“Shark” training set. (a) Initial shape. (b) Warping result for 	 ¼ 3,

(c) 	 ¼ 7, (d) 	 ¼ 9, (e) 	 ¼ 15.
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resulting in the accurate separation of the object of interest
from the background.

6.4 Segmentation Results: Image-Shape Model +
Shape Prior

This section presents segmentation results obtained by
introducing shape prior using KPCA on binary maps and
using our intensity-based segmentation methodology as
presented in Section 5. For all of the following experiments,
(1) was run until convergence on diverse images, using (22) as
an energy functional (the parameter 
 was chosen to be

 ¼ 50%). In parallel, the transformation T ½p� between the
object of interest and the registered training set was
recovered. No curvature term was used for contour regular-
ization since smoothness information is indeed already
present in the binary maps used to build shape priors.

6.4.1 Toy Example: Shape Priors Involving Objects of

Different Types

The goal of this section is to investigate the ability of the
algorithm described in Section 5 to accurately detect and
segment objects of different shapes. For these experiments,
the “4 Words” training set was used. We tested our algorithm
on images where a corrupted version of the word “orange,”
“yellow,” “square,” or “circle” was present (Fig. 13, first row).
Word recognition is a challenging task and addressing it
using GACs may not be a panacea. However, the ability of the
level set representation to naturally handle topological
changes was found to be useful for this purpose. During
evolution, the contour split and merged a certain number of
times to segment the disconnected letters of the words. In
all of the following experiments, the same initial contour
was used.

Experiment 1. In this experiment, the word “square” was
corrupted: The letter “u” was almost completely erased.
The shape thus obtained was filled with Gaussian noise
of mean �o ¼ 0:5 and variance 	o ¼ 0:05. The back-
ground was also filled with Gaussian noise of the same
mean �b ¼ 0:5 but of variance 	b ¼ 0:2. The result of
applying our method is presented Fig. 13a. The image-
shape model was built using the method involving
global statistics described in Section 4.2. Despite the
noise and the partial deletion, a convincing segmentation
and a smooth contour are obtained. In particular, the
correct font is detected and the letter “u” is accurately
reconstructed.

Experiment 2. In this second experiment, one of the
elements of the training set was used. A thick line
(occlusion) was drawn on the word and a fair amount of
Gaussian noise was added to the resulting image. The
result of applying our method is presented in Fig. 13b.
Despite the noise and the occlusion a very convincing
segmentation is obtained. In particular, the correct font is
detected and the thick line is completely removed. Once
again, the final contour is smooth despite the fairly large
amount of noise.

Experiment 3. In this third test, the word “yellow” was
written using a different font from the ones used to build
the training set. In addition, “linear shadowing” was
used in the background, making the first letter “y”
completely hidden. The letter “w” was also replaced by a
gray square. The result of applying our framework is
presented in Fig. 13c. The word “yellow” is correctly
recognized and segmented. In particular, the letters “y”
and “w” were completely reconstructed.

Experiment 4. In this experiment, the word “orange” was
handwritten in capital letters roughly matching the size
of the letters of the words in the training set. The
intensity of the letters was chosen to be rather close to
some parts of the background. In addition, the word was
blurred and smeared in a way that made its letters barely
recognizable. This type of blurring effect is often
observed in medical images due to patient motion. This
image is particularly difficult to segment, even when
using shape prior, since the spacing between letters and
the letters themselves are very irregular due to the
combined effects of handwriting and blurring. Hence,
mixing among classes (confusion between any of the four
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Fig. 12. Segmentation results obtained using Eimage from (16). The initial
contour is in black and the final contour is in white. (a) Couple (dark) on
lighter background, segmented using first moment only. (b) Two regions
of same mean intensity and different variances segmented using global
intensity distributions. (c) Zebra segmented using global intensity
distributions.

Fig. 13. Segmentation results for the “4 Words” training set. Shape
priors were built by applying the KPCA on binary maps. First row:
Original images to segment. Second row: Segmentation results. Third
row: Shape underlined by the final contour ðH�Þ. Fourth row: Image-
shape model ðG½I;�ðtÞ�Þ obtained when computing Eimage for the final
contour.
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words) can be expected in the final result. In the final
result obtained, the word “orange” is not only recog-
nized but satisfyingly recovered; in particular, a thick
font was obtained to model the thick letters of the word
(Fig. 13d).

Hence, starting from the same initial contour in each
experiment, our algorithm was able to accurately detect
which word was present in the image. This highlights the
ability of our method not only to gather image information
throughout evolution but also to distinguish between
objects of different classes (“orange,” “yellow,” “square,”
and “circle”). Comparing the final contours obtained in
each experiment to the final image-shape model G½I;�ðtÞ� (last
row in Fig. 13), one can measure the effect of our shape
prior model in constraining the contour evolution. The
image information alone would lead to a shape bearing
very little resemblance to any of the learned words.

6.5 Real-Image Examples: Tracking Temporal
Sequences

To test the robustness of the framework, tracking was
performed on two sequences. A very simple tracking
scheme was used with the same initial contour being used
for each image in the sequence. This contour was initially
positioned wherever the final contour was in the preceding
image. Of course, many efficient tracking algorithms have
already been proposed. However, convincing results were
obtained here, without considering the system dynamics,
for instance. This highlights the efficiency of including prior
knowledge on shape for the robust tracking of deformable
objects. The parameter 
 was fixed to 
 ¼ 55 percent in (22)
to make up for the influence of clutter in the images. The
nice tracking performance observed, despite the fact that
parameters are fixed throughout the sequence, further
highlights the robustness of the proposed segmentation
framework.

6.5.1 Soccer Player Sequence

In this sequence (composed of 130 images), a man is playing
with a soccer ball. The challenge is to accurately capture the
large deformations due to the movement of the person (for
example, limbs undergo large changes in aspect) while

sufficiently constraining the contour to discard clutter in the
background. The training set of 22 silhouettes, presented in
the first row of Fig. 14, was used. The version of Eimage

involving the intensity means only was used to capture
image information. Despite the small number of shapes
used for training and the initialization of the contour
evolution with the same (arbitrary) contour, successful
tracking was obtained, correctly capturing the very diverse
postures of the player.

6.5.2 Shark Video

In this sequence (composed of 70 images), a shark is
evolving in a highly cluttered environment. Note that the
shark is at times partially occluded by other fish and has
poorly contrast. To perform tracking, 15 shapes were
extracted from the first half of the video (second row of
Fig. 14) and used to build the shape prior. The version of
Eimage involving global statistics was used to make up for
the poor contrast of the shark in the images. Once again,
despite the small training set, successful tracking perfor-
mances were observed. The shark was correctly captured,
while clutter and occlusions were rejected.

7 CONCLUSIONS

In this paper, we used an unsupervised learning technique
to introduce shape priors in the GAC framework. Our
approach uses KPCA, a technique borrowed from the
machine learning community. We employed the projections
on the learned spaces of shapes (using either linear PCA or
kernel PCA) as models. The projections on the learned
spaces appear to be more representative than the commonly
used average of the (mapped) data when dealing with
multimodal distributions. Further, using such models
allows for comparing learning techniques in a rigorous
manner. For each learning technique, the same initial
contour can be deformed (using the projection on the
corresponding learned space as a model) and the final
contours thus obtained can be compared in terms of their
similarity with the elements of the training sets. This
approach allows for investigating the performance of each
learning method without using any image information.
Using this technique, better performance of kernel PCA as
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Fig. 14. Tracking results with the proposed method. First row: Soccer Player sequence (the rightmost frame is the result obtained without shape

prior; 
 ¼ 1 in (22)). Second row: “Shark” sequence (the rightmost frame is an original image from the sequence, reproduced here to assess the poor

level of contrast).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 19, 2009 at 10:40 from IEEE Xplore.  Restrictions apply.



compared to linear PCA was demonstrated for two
representations of shapes (binary maps and SDFs).

In addition, we proposed a region-based approach
aimed at separating an object from the background. This
method consists of extracting an image-shape model from
the image to direct the evolution of the contour. The
technique can successfully deal with diverse image inten-
sity statistics. In the present work, we also highlighted the
importance of expressing image and shape energies in a
consistent manner. This is especially important when
dealing with nonlinear techniques such as KPCA. Valuable
insights about the pitfalls of balancing forces extracted
directly from the feature space with “linear” (image) forces
were obtained from the study of one-dimensional approx-
imations. A method for addressing some of the potential
problems was also proposed which drastically improved
balancing performances. In the proposed algorithm, image
information and shape knowledge are combined in a
consistent fashion, both energies are expressed in terms of
shapes, and meaningful balances between image informa-
tion and shape knowledge are realized.

Finally, very reasonable segmentation performances were
obtained on complex images, highlighting the power and
accuracy of the proposed framework. The method not only
allowed us to simultaneously learn shapes of different objects
but was also robust to noise, blurring, occlusion, and clutter.

In this paper, the image-shape model G½I;�� was
considered to be constant between two evolution steps.
Interesting additional segmentation properties can be
observed by also considering the variation of G½I;�� in the
computation of r�Eimage; these properties will be studied in
detail in our future work. In addition, we plan to investigate
the performance of other kernels to introduce shape priors
within the GAC framework. Our goal is to apply the
proposed framework on 3D medical images. The precision
and robustness afforded by the proposed technique will
hopefully be a valuable asset for automated medical
segmentation.
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