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SUMMARY

Under-ice regions in both the Arctic and Antarctica are of great interest to many domains

of science including biology, climate science, and planetary science. Great environmental

and technical challenges face researchers when attempting to gather data from the polar

under-ice regions of Earth for these applications. The harsh environments encountered

both above and below the polar ice limit the use of human divers and manned submersibles

in such data collection efforts. However, recent technological advances have provided the

means for data collection using unmanned underwater vehicles (UUVs) beneath the ice.

New challenges are encountered using this unmanned technology including deploy-

ment, recovery, risk mitigation, navigation, and mapping. Presented in this dissertation are

methods developed to help aid in navigation and mapping tasks in these under-ice environ-

ments. Specifically, development of computer vision methods using acoustic and optical

imaging sensors (especially through sensor fusion) is used to help aid in under-ice UUV

motion estimation. In addition to algorithms which can aid in the navigation problem, addi-

tional computer vision methods for ice texture and ice anomaly mapping are also developed

and presented herein. The methods presented here utilize low-cost sensors already onboard

many UUV platforms, and do not require expensive external infrastructure or setup effort.

First, a relative pose estimation method, used to help track a vehicle’s position over a

trajectory, is presented using a novel combination of optical flow-based computer vision

methods with forward-looking sonar data, assuming a rigid motion model between frames.

The use of computer vision techniques with sonar data is uncommon due to the high noise

levels from this sensor, as well as the changing appearance of objects between frames. In

addition to the use of a sonar sensor to aid in vehicle motion estimation, the use of cam-

era sensors, also commonly onboard UUVs, is presented to provide additional independent

relative vehicle pose estimates. While monocular camera relative pose methods are com-

monly applied in feature-rich environments such as terrestrial urban and underwater coral
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reef locations, such methods are not common in featureless environments such as that found

under the ice. In order to overcome these challenges, a novel adaptation of this approach

is presented here using contrast enhancement and low feature detection thresholds, along

with robust feature matching to eliminate outliers during motion model estimation.

While relative pose estimation using either a sonar or camera sensor provides valuable

information for autonomous navigation in a UUV, fusion of these two complementary sen-

sors can result in a much stronger and more robust trajectory estimate. A novel sonar and

camera sensor fusion approach is presented here using a factor graph framework to com-

bine estimates from these noisy but partially redundant sensors. In this case, the camera

estimates provide additional degrees of motion not possible using a sonar sensor, but the

translational camera estimates contain a scale factor ambiguity inherent to the camera sen-

sor. While the sonar estimates are limited to only three degrees of motion, no scale factor

ambiguity is encountered, and absolute translational motion can be estimated. Fusion of

these two sensors can be used to leverage the strengths of each sensor to overcome the

individual weaknesses and provide much more robust overall vehicle motion estimates.

Finally, it is not only useful to provide an estimate of the location of a UUV during data

collection, but also to automatically estimate ice texture and to flag frames with possible

anomalies of interest present against the ice background. This can help aid human vehicle

operators and scientists in data collection and post analysis of these large, mostly feature-

less, datasets. A method for estimating ice texture using point features is presented here,

along with point feature- and hue-based methods for anomaly detection and mapping.

Methods such as those developed in this dissertation can help aid vehicle operators and

scientists in the difficult tasks of navigation and mapping for under-ice exploration, and

can eventually provide an autonomous means for such data collection. The algorithms

developed here can further the mission capabilities of current under-ice vehicle platforms

to enable further exploration of these remote areas of the planet.
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CHAPTER 1

INTRODUCTION

Figure 1: Custom Icefin vehicle under the sea ice near McMurdo, Antarctica

1.1 Under-ice Exploration and Navigation

Under-ice environments (Figure 1) are some of the least explored areas of planet earth

due to the harsh elements present and difficulty accessing the water below the ice sheet,

which can reach hundreds of meters in thickness. While earlier under-ice exploration in

the Arctic and Antarctic was facilitated through the use of submarines and human divers,

the past 15 years have seen a drastic increase in the use of unmanned underwater vehicles

(UUVs) to perform these dangerous tasks. Localization and navigation through underwater

environments is a difficult task for divers, submarines and UUVs alike due to the lack of

salient (unique) visual features, poor visibility, limited communications, and absence of

GPS signals used as a standard in most terrestrial and airborne applications. Under-ice

environments tend to present even fewer salient visual features, less natural light, and more
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limited access to the surface. An example of the under-ice environments considered here

can be seen in Figure 2 with both permanent ice shelf (left) and thinner sea ice (right)

environments.

Figure 2: ANDRILL on Ross Ice Shelf (c.o. ANDRILL and NASA), Antarctica

Underwater navigation is largely reduced to an x, y problem due to the availability of

highly accurate pressure (to constrain depth, or z-location) and compass (to constrain head-

ing) sensors. The baseline localization method used in almost all open-water and under-ice

UUVs is an inertial navigation system (INS) provided with information from an IMU (iner-

tial measurement unit) and gyroscope that can be integrated to obtain position information.

While the sole reliance on an INS is prohibitive to most missions due to the unbounded

drift rates encountered and the resultant limitations on mission duration, this remains the

most common solution for under-ice UUVs due to the unique environmental constraints.

Some open water autonomous underwater vehicles (AUVs) have developed a solution to

occasionally surface and obtain a GPS baseline, but this is not possible in under-ice en-

vironments due to the ice cover. Another solution for underwater localization takes the

form of acoustic beacon networks for vehicle triangulation, commonly used with systems

deployed in the open ocean. However, deployment of such a system is infeasible in many

ice-covered environments due to the infrastructure required to deploy the beacons through

the ice. Under-ice environments located in the polar regions of Earth also introduce the

additional challenge of limited compass functionality due to the extreme latitudes so close
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to the magnetic poles. All of these challenges present a very inhospitable environment for

autonomous systems, which can easily get lost as their estimated ego-location accumulates

error. Under-ice AUVs cannot be easily recovered after an accumulation of error in the

position estimate (as those in open ocean can by simply surfacing), and much greater care

must be taken to solve the localization and navigation problem in under-ice environments.

A system capable of providing better estimates of localization over an extended trajec-

tory in sensor-deprived, under-ice environments would allow for longer mission durations,

wider vehicle trajectories and greater autonomous capabilities for these AUVs.

1.2 Use of Camera and Sonar Sensors Under the Ice

One increasingly common localization and motion estimation approach for autonomous

vehicles is termed vision-based relative pose estimation. By matching corresponding fea-

ture points detected in consecutive images, the motion of the onboard imaging camera,

correlating to movement of the vehicle, can be estimated. Vision-based relative pose esti-

mation has been previously evaluated for use in terrestrial and underwater environments.

However, such a method typically requires feature-rich and salient image streams, such as

those obtained on coral reefs, but not present under the ice. A camera-based pose esti-

mation method, adapted from use with aerial and terrestrial vehicles, is presented here for

use in relatively featureless under-ice environments such as that in Figure 1. Preprocess-

ing of the low-contrast input images and tuning of this pose estimation approach results

in a self-contained method for estimating vehicle motion between image frames with six

degrees-of-freedom (minus translational scale). This camera-based algorithm provides a

method for vehicle pose estimation that is less vulnerable to integration drift error, such as

that encountered using an INS, and does not require external infrastructure in contrast to

acoustic-beacon-based methods.

Forward-looking multibeam acoustic sonar sensors are commonly found on underwater
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Figure 3: Sonar image of Antarctic ice

vehicles for use in object or obstacle detection. These sensors can provide range and bear-

ing to an object in the path of the vehicle using acoustic waves. Forward-looking acoustic

sonar sensors provide the viewer with a two-dimensional representation of the area in front

of the sensor, highlighting objects with strong acoustic return, as seen in Figure 3. Sonar

sensors do not encounter scale factor ambiguity, as monocular camera systems do, but are

limited in the resolution of altitude angle. These sensors have very high noise levels and

many current sonar processing applications are limited to the detection of strong inten-

sity blob objects in the data. However, advances in imaging sonar technology over recent

years have introduced the possibility of using common image processing algorithms, such

as point-feature tracking and optical flow, with these high-resolution and high-frequency

sonar images. A novel sonar-based pose estimation algorithm is presented here for use in

estimating vehicle motion in relatively featureless under-ice environments. The algorithm

uses an optical-flow-based approach to match points between frames along with a robust

rigid motion model to estimate movement of the vehicle between frames. This motion

model computes the optimal rotation and translation between point sets that minimizes
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weighted pixel reprojection error using singular value decomposition and robust estima-

tion. Such an algorithm provides a self-contained, frame-to-frame, relative pose estimation

method that utilizes a sensor already present on many underwater vehicles. This algorithm

is not subject to integration drift rates such as those encountered with an INS and does not

require the external infrastructure of acoustic-beacon-based methods.

One proposed solution to the under-ice localization problem is visual SLAM (simul-

taneous localization and mapping). SLAM [7] refers to a localization method commonly

used in terrestrial robotics where observations of landmarks in the environment are used

to concurrently create a map of the environment and localize the vehicle inside that map

as the vehicle moves. However, under-ice environments are largely low-contrast and fea-

tureless, and comprise mostly of repetitive ice texture. Therefore, only a very limited set

of current under-ice vehicles utilize a camera-based localization method. SLAM using a

forward-looking sonar sensor has been used in open ocean environments, but typically re-

quires large anomaly features for blob tracking throughout the vehicle trajectory. Due to the

limited anomaly features present in the sub-ice topography, the use of such sonar sensors

for under-ice localization is also very uncommon.

1.3 Multimodal Sensor Fusion

Both cameras and sonar sensors have limitations in underwater and under-ice environments.

Poor visibility, low ambient lighting, and scale ambiguity limit the camera sensor, while

high noise levels and altitude angle ambiguity limit the sonar sensor. However, fusion of

these datasets can utilize the strengths of both to offset the limitations of the individual sen-

sors. Here, the novel use of both video- and sonar-based relative pose estimation methods

is presented to provide additional constraints on the estimated vehicle trajectory and to help

bound the drift rates of the INS. Sonar data can be used to obtain a three degree-of-freedom

estimate (yaw, surge and sway), while six degrees-of-freedom (modulo translational scale)

can be estimated from the camera data. Independent INS, camera-based, and sonar-based
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systems each present unique weaknesses and strengths, and each sensor can encounter pe-

riods of inaccurate estimation. The use of a factor graph framework [8] [9] is presented

here to fuse this information together and obtain a robust location estimate over the vehicle

trajectory. This method combines the strengths of each sensor to overcome the independent

weaknesses. A factor graph framework is a model well suited to such complex estimation

problems where nodes represent unknown random variables to be estimated and the factors

between them represent probabilistic information on those nodes (Figure 4). Optimization

can then be performed over all available estimates to obtain the optimal vehicle state esti-

mate over the entire trajectory. Here, the use of a GTSAM (Georgia Tech Smoothing and

Mapping) [8] [10] [9] framework is used to fuse frame-to-frame sonar and video relative

pose estimates. A novel sensor fusion method is presented here which incorporates the

number of point features matched between frames into the error model of the estimated

vehicle trajectory to more heavily weight the impact of estimates with more matches over

those with less matches. In this way, stronger estimates from one sensor can overpower the

weaker, more inaccurate estimates from the sensor with less point-matches, resulting in a

more robust system. This fusion framework, algorithm and evaluation results are discussed

herein.

Figure 4: Visualization of a generic factor graph framework

1.4 Texture and Anomaly Mapping

Searching for interesting features under the ice, including animals capable of sustaining

life in such harsh environments (Figure 5), is of great interest in both polar (Antarctica)
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(a) Arctic Ice Topography (c.o. Arcodiv) (b) Antarctic Anemone (c.o. Rack et al.)

Figure 5: Life present against the ice.

and planetary (Europa) domains. Underwater environments are known to be largely fea-

tureless, even at the seafloor which can many times consist only of monochrome sand or

rock. Under-ice environments, such as those encountered beneath the Antarctic ice shelves,

are even more devoid of features and tend to be monochromatic centered on the blues of

the ice. With the advent of remotely operated underwater vehicles (ROVs) and autonomous

underwater vehicles (AUVs) has come a large number of video datasets taken in these un-

derwater and under-ice environments. Analysis of these videos can be tedious from both

the perspective of human operators (with ROVs) and scientists performing post-processing

(with AUVs), as most of the dataset contains no interesting information or unique features.

However, all frames must be carefully analyzed to find the few frames of interest. A method

for automatically highlighting a relatively feature-rich or uniquely colored frame to bring

it to the attention of an analyst is presented here. Using point features (already detected by

another algorithm in this application), a novel method for estimating the overall texture of

the background ice in an image is also presented. These same point features are used in

another algorithm presented here to detect any dense groupings of features to mark as an

anomaly candidate. A third algorithm uses a histogram of the hues detected in an image to

find any groupings of anomalous hues outside of the blues corresponding to the ice back-

ground to mark as anomaly candidates. A final mapping algorithm presented here provides

a measurement of the pixels outside the blue hue range as an estimate of non-ice pixels in
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the image. A combination of these four approaches can be used to map the texture and

anomalous colors of the environment over the vehicle’s trajectory, and to map anomalies

detected in the globally feature- and color-poor, under-ice datasets of interest.

1.5 Datasets for Algorithm Evaluation

Under-ice sonar and video datasets are required for evaluation of the algorithms in this

work, but are not readily available. Therefore, simulated sonar and video data of under-

ice environments was obtained along with ground truth position information for additional

validation of the algorithms presented here. Real-world, under-ice, concurrent video and

sonar datasets were taken using a VideoRay UUV deployed under the ice in a frozen lake

in Colorado, as well as the custom Icefin vehicle under the ice in Antarctica (Figure 1).

These video and sonar datasets provide means for evaluation of the presented algorithms

in the environment of interest. Simulation of the under-ice environments was undertaken

using Blender [11] (a visually accurate simulation engine) for camera data and a custom

simulation method for sonar data. These simulation methods and datasets are discussed

here. Specifications and deployment details of the VideoRay vehicle are also presented in

this dissertation. The custom Icefin UUV was designed by a team at the Georgia Institute

of Technology specifically to meet the challenges encountered in sub-ice environments.

The design and deployment of this vehicle beneath the ice near McMurdo, Antarctica is

discussed herein.

1.6 Summary

The sub-ice underwater environment presents unique challenges for navigation and data

collection. The objective of the research presented here is to develop algorithms which

utilize onboard camera and sonar sensors to enhance the capabilities of UUVs to perform

ego-motion estimation and ice anomaly mapping in under-ice environments. A vision-

based relative pose estimation algorithm is developed along with a sonar-based relative
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pose estimation algorithm to estimate even slight vehicle drift movements due to currents.

Fusion of the results from these algorithms using a factor graph framework is used to obtain

optimal estimates of the vehicle trajectory during deployment. Algorithms are presented

here which use sonar and video datasets to automatically estimate and map the texture of

the ice as well as possible locations of marine life anomalies at the water-ice boundary.

Results from the evaluation of all algorithms on simulated and real-world under-ice data

are presented throughout this dissertation. Use of such methods as those presented here

will help further the capabilities of current under-ice vehicle platforms to enable greater

exploration of these unique and interesting environments.

The specific contributions of this dissertation are as follows:

1. Development of a novel monocular camera relative pose estimation algorithm for use

in low-contrast, featureless, under-ice environments

2. Development of new under-ice texture and anomaly mapping methods

3. Development of an innovative under-ice, sonar-based relative pose estimation algo-

rithm using an optical flow and rigid motion model approach

4. Development of a novel under-ice sonar and video sensor fusion algorithm using a

factor graph framework to combine the unique strengths of both sensors

This chapter has provided an introduction to the scope of the problem under considera-

tion in this dissertation, as well as an overview of the research undertaken here to overcome

these challenges. A background of previous work in the various technical areas of this dis-

sertation is presented in Chapter 2. The vehicle platforms and field deployments, as well

as the datasets produced for algorithm evaluation, are presented in Chapter 3. The simula-

tion methods and corresponding datasets produced for algorithm evaluation are presented

in Chapter 4. A camera-based pose estimation algorithm is presented in Chapter 5. The

texture and color-based mapping and anomaly detection algorithms are presented in Chap-

ter 6. A sonar-based relative pose estimation algorithm is presented in Chapter 7. A novel
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high-level underwater sensor fusion method, based on a factor graph framework, is pre-

sented in Chapter 8. Finally a review of the work presented in this dissertation is presented

in Chapter 9 along with an overview of proposed areas of interest for future research.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

This dissertation presents methods for under-ice relative pose estimation, mapping, and

sensor fusion using sonar and camera sensors on an unmanned underwater vehicle (UUV).

To lay the groundwork for the research presented in this dissertation, a survey of relevant

literature is provided in this chapter.

2.2 Under-Ice Motivations

Under-ice regions in both the Arctic and Antarctica are of great interest in many domains

of science including biology [12], climate science [1], and planetary science [2]. Plane-

tary science, in particular, the study of earth’s polar regions and eventually Jupiter’s ice-

covered, sea-moon Europa [2], is a main motivation for multiple under-ice UUV deploy-

ments [3] [4] [5] [6].

Great environmental and technical challenges face researchers when attempting to gather

data from the polar under-ice regions of Earth for these applications. Antarctica is Earth’s

southernmost, coldest, driest, and windiest continent [13] with 98% of its land covered

by a thick continental ice sheet [13] and with 44% of its coastline consisting of perma-

nent ice shelves [14]. The average annual temperature at the United States research center

(McMurdo station), located south of New Zealand, is -18C and can vary from -50C in the

winter to 8C in the summer [15]. In addition to the continental ice sheet and ice shelves,

the oceans around Antarctica are extensively covered by both annual and multi-year sea ice

(almost 20 million square km area in the winter [16] and up to tens of meters thick). While

Antarctica’s harsh climate prevents easy colonization, mankind has been driven to explore

the continent for almost two centuries. Divers and various observing platforms have con-

ducted some limited exploration below the sea ice and in sub-ice lakes in the Antarctic dry
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valleys via auger-drilled access holes in the ice. However, despite scientific interest, explo-

ration of the ocean environment beneath the thick ice shelves has been a nearly impossible

feat prior to the advent of new drilling technology, remote sensors, and remotely operated

and autonomous underwater vehicles (ROVs and AUVs). Note that in this work, “ROV”

refers to a vehicle with no autonomy which requires a human operator, “AUV” refers to

an autonomous vehicle with no human operator, and “UUV” is used to refer generically to

the entire spectrum of unmanned underwater vehicles. Prior to the introduction of this new

technology, under-ice exploration was accomplished with the use of human divers [17] and

manned submarines [1]. UUVs greatly facilitate data collection methods in these regions

and provide scientists access to previously unexplored areas. UUVs have been deployed

under the ice by scientists to collect information on ice topography and thickness [18] [19]

as well as chemical composition [20], temperature, and current speed [21] [20] [22] distri-

butions through the sub-ice water column. In many previous missions, this scientific data

is collected for studies on climate change and the interactions of arctic waters with other

oceans. This includes research on the freshening of seawater [1] and interaction of seawa-

ter with the ice shelf [22]. Monitoring under-ice topography is also a primary focus due

to the fact that bottom melt is an important indication of ice thinning, where the measured

melt rate is proportional to ice thickness [1]. Although many under-ice UUV deployments

are motivated by scientific missions, Ferguson et al. [23] [24] [25] demonstrate another

motivation for under-ice exploration and seafloor mapping with the political intention of

claiming expanded northern borders as part of the United Nations Convention on the Law

of the Sea (UNCLOS). Commercial motivations for under-ice exploration include laying

transoceanic cables (Theseus vehicle in 1996) as well as offshore oil exploration and mon-

itoring [19] [23].

The technology developed for under-ice UUVs can be extrapolated for planetary explo-

ration missions as well. Search for the possibility of life on Jupiter’s moon Europa (Fig. 6)
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Figure 6: Cutaway of Europa (c.o. JPL and NASA)

began when exploration by the Voyager and Galileo spacecraft suggested that Europa pos-

sesses an active ice shell and subsurface ocean [26]. This ocean exists between the moon’s

outer 3-30km ice shell and its rocky interior. The future exploration of Europa may one day

require an autonomous underwater vehicle (AUV) to be able to self-deploy beneath several

kilometers of ice to explore possible oceans or water bodies within Europa’s ice shell in

search of the possibility of life [27] [28] [26] [2]. The closest approximations to such envi-

ronments that can be found on Earth are located in Antarctica, where large permanent ice

shelves form as multiple glacier systems flow off of the continent and stich together [14].

These large, thick ice masses float on the ocean and provide simulated Europa-like envi-

ronments that are scientifically compelling in and of themselves for their implications for

glacial stability and sea level rise. This unique ice-ocean environment presents the pos-

sibility of using Antarctic ice shelves as a test location for evaluating the feasibility of

proposed Europa missions and technology, while also returning a wealth of data about ice
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shelf processes and their stability in a changing climate. Vehicles deployed through the

ice in Antarctica can help frame important climate science by obtaining data and imagery

of areas on Earth that have been out of reach to other technologies, as well as developing

technologies required for the future exploration of Europa.

2.3 Under-ice Vehicle Platforms

The ice thickness and harsh climate has limited the use of human divers and manned sub-

mersibles for sub-ice oceanic exploration. Most data currently collected from beneath the

ice shelves is derived from long-lived ocean moorings set through the shelf via hot-water-

drilled holes and allowed to freeze into the ice. Mooring instruments and drop-cameras

have been successful in obtaining data from the ice and ocean below [29], but are limited to

providing data for only a single location during each deployment. Spatially-resolved data

over a wide area beneath these shelves, such as that obtained with a UUV, can improve

the utility of mooring data that provide a long baseline temporal signal. Such spatially-

resolved data can also uniquely constrain how sub-ice and seafloor topography influence

ocean circulation and the interaction of ice and the ocean.

The development of ROVs and AUVs over the past few decades has led to advances

that enable the exploration of hazardous and extreme environments, such as that found

beneath the Antarctic ice shelves and on the ice-moon Europa. One of the main challenges

preventing further use of these vehicles is difficulty with navigation and localization given

the lack of access to a global positioning system or compass so far beneath the ice and close

to the magnetic poles. However, a few AUVs and ROVs have been developed over the past

decade specifically for such polar sub-ice oceanic exploration. Under-ice UUVs have been

deployed both in the Arctic [25] [19] [21] [30] [31] and Antarctica [3] [31] [18] [6] [22].

While most previous under-ice deployments utilize off the shelf vehicles, custom vehicles

have also been designed for this purpose [5] [6] [3]. The custom Icefin vehicle designed and

deployed in Antarctica (detailed herein) by a team at Georgia Tech now joins this group.
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A number of large, complex platforms have made contributions to sub-ice missions:

Autosub at 7 meters long and 3266 kg explored beneath the Pine Island Glacier tongue [22],

ALTEX at 2.5-6.4 meters with a 53 cm diameter explored beneath ice in the Norwegian

Arctic [32], Endurance a 1.2 meter circular AUV at 1089 kg deployed in sub-glacial Lake

Bonney, Antarctica [33], Nereid Under Ice (NUI) vehicle [4] (1800kg, 1.8x1.8x3m) de-

ployed in sea ice from a ship in the Arctic, and the Seabed-class vehicles [34] [5] at 2 x 1.5

meters in size (weighing 250 kg) deployed from support ships from the open ocean. The

earlier Seabed-class AUVs (Seabed, Jaguar, Puma) were deployed in the Arctic to survey

hydrothermal vent sites in 2007 [5] as well as in the Antarctic to survey sea ice draft in

2010 and 2012 [34]. ARTEMIS (heritage from Endurance) will be deployed by SIMPLE

in Austral summer 2015 under the McMurdo Ice Shelf [35]. It is worth noting that the

NUI vehicle [4] has a single optical fiber tether for use in command and control, similar to

that on the Icefin vehicle. However, the NUI tether is expendable and cannot be used for

recovery of the vehicle. Some of these vehicle platforms can be seen in Fig. 7.

(a) Seabed Jaguar (b) Theseus and Explorer (c) Endurance

(d) SCINI (e) Autosub (f) ALTEX

Figure 7: Some Previous Under-ice Vehicle Platforms.

While large AUV and ROV platforms maintain long range traverse capabilities with a

variety of scientific sensors, they also carry with them immense logistical requirements,
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Figure 8: Through ice-shelf deployment method of the Icefin vehicle (left) compared to
the ship-based open ocean deployment method of most other under-ice vehicles (right).

requiring deployment via gantry or vessel-based lift systems with large teams and heavy

equipment, usually off the side of a ship in open ocean. Because large vehicles like this

cannot be deployed directly through the ice shelves, they are forced to traverse many kilo-

meters from the entry point to targets beneath the ice, limiting the penetration range beneath

the shelves. Many smaller under-ice vehicles including seagliders [36], and the Bluefin

AUV [37] have similar limitations and must also be deployed and recovered from ships.

One drawback with using gliders specifically for polar under-ice missions is their difficulty

dealing with rapid changes in current and bathymetric conditions as well as their reliance on

GPS to navigate (GPS systems have low accuracy at the poles). The Icefin vehicle, capable

of deploying directly through the ice shelf, was designed as a human-portable alternative to

large, long-range vehicles without the need for such extensive support infrastructure, while

increasing the number of onboard science sensors relative to smaller platforms. Figure 8

depicts the advantages of Icefin’s novel through ice-shelf deployment over common ship-

based open ocean deployments. Design and deployment of the Icefin vehicle is presented

in Chapter 3.

Holes drilled through an ice shelf for access to the ocean below are generally kept small

to lower the cost of fuel, which adds mass and cost to field deployments. Few state of the

art vehicles deploy directly through the ice due to these constraints. Of those that do, even

fewer are able to deploy through thick ice shelves and instead deploy through the thinner

sea ice. Some early work in this area includes development of the Theseus AUV (10.8m
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length, 1.28m diameter, 8,600kg) [23], designed to lay fiber-optic cables in the ice-covered

Canadian arctic. Theseus was able to deploy beneath 1.7 meter thick ice through a 2 x 13

meter hole and set records for under-ice mission duration. However, the Theseus vehicle is

too large to be deployed and retrieved through a small diameter hole in the ice shelf, as re-

quired of Icefin. Small observing UUV platforms have been used to make observations and

assist divers below the sea ice, including the Submersible Capable of under-Ice Navigation

and Imaging (SCINI) [3]. The SCINI ROV was developed as a small, human-portable,

tethered vehicle with a camera for real-time control and exploration of the sub-ice environ-

ment by a human operator. The SCINI vehicle was deployed by the SIMPLE project in

2012 and in 2014 along with the Icefin vehicle, and provided some of the heritage for the

design of the Icefin vehicle. SCINI is 4ft in length and 20 cm in diameter, weighing 15.9

kg in air. Both the Icefin and SCINI vehicles have the unique capability to be deployed and

recovered through a small diameter hole. SCINI has been successfully utilized over several

Antarctic field seasons and is a useful tool for initial ice shelf exploration as a roving eye as

well as for vehicle-assisted diver operations in sea ice environments. However, SCINI’s re-

quirements did not necessitate the additional deep water operation (1500m), greater range

(3 km), localization capabilities, or full oceanographic sensor-suite capabilities designed

into the larger Icefin vehicle. The SCINI vehicle’s man portability, hovering capability, and

deployment through small diameter ice-holes have helped influence the development of

Georgia Tech’s Icefin [38] [39] vehicle design. The SCINI and Theseus vehicle platforms

can be seen in Fig. 7.

A few predecessor missions have explored Earth environments as planetary analogs

in ways similar to those that may be one day employed on ocean planets like Europa.

Among the first was the DEPTH-X vehicle [40] used for deployment and science sampling

within deep cenotes between 2006 and 2007. This vehicle was then adapted to become the

ENDURANCE vehicle [33] deployed through the ice at Lake Bonney, Antarctica in 2008

and 2009 Austral summers. In 2007, the Woods Hole Oceanographic Institute used AUVs
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to survey hydrothermal vent environments and provided extrapolations for deployment of

such a mission to Europa [5]. Each of these missions identified unique challenges for future

AUV deployment to Europa as they relate to polar operations. Many of the Europa-specific

AUV mission elements proposed by Kunz et al. [5] have been incorporated into the design

of the Icefin vehicle (deployment through thick ice using a small diameter hole, smaller

vehicle size, and robust communication methods). While some initial investigations have

taken place using current AUVs to begin to find solutions to these challenges, Icefin is

unique in incorporating these Europa-specific mission requirements and previous lessons

learned into the design of the vehicle and its deployment methodology.

While a few ROVs and AUVs have been developed over the past 20 years for sub-

ice deployment, none couple the human-portability, modularity and small diameter needed

for through-ice deep field deployment with a sufficient oceanographic sensor suite and

navigational capability required for the missions at hand. We hope to fill this void in the

spectrum of available tools with the development of the Icefin vehicle. The Icefin system

design has been focused on developing technologies and exploration strategies that can

overcome challenges for both polar and planetary operations.

2.4 Under-Ice Sonar Use

The use of sonar to image under-ice topography (Figure 9) is valuable for many applica-

tions. The first under-ice profile of ice topography was obtained in 1958 from the USS

Nautilus with a single-beam upward-looking sonar [18]. Sidescan sonar was first used to

map ice topography in 1976 from the HMS Sovereign, followed by the first use of 3D

multibeam sonar in 2004 from the Autosub II AUV [18]. Many UUV under-ice deploy-

ments record sonar data for offline analysis [31] [32] [19] [18] [22], while few others ac-

tually use the topography to aid in vehicle localization. Iceberg-relative navigation with a

UUV [30] was performed by Kimball and Rock using simultaneous localization and map-

ping (SLAM) [7] with sonar data. SLAM refers to a localization method commonly used
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Figure 9: Smooth first-year and rough multi-year ice topography [18]

in terrestrial robotics where observations of landmarks in the environment are used to con-

currently create a map of the environment and localize the vehicle inside that map as the

vehicle moves. Another SLAM application is proposed by Kunz and Singh [41] and was

tested in an under-ice environment. As a result of lack of topographical features present in

many under-ice environments to provide significant and unique sonar returns, investigation

into the use of sonar as a navigational aid in such environments has been limited in previous

work.

2.5 Under-Ice Navigation

Underwater navigation is very difficult due to the lack of access to global positioning sys-

tems (GPS) commonly used in terrestrial applications. Navigation and localization under

the ice presents additional challenges on top of those encountered in the already difficult

underwater navigation and localization problem. The dead reckoning systems that form the

baseline navigation solution for almost all under-ice platforms [4] [5] [6] [18] [21] [23] [32]

incorporate accelerometer and gyroscope data from an inertial measurement unit (IMU)

and velocity data from a Doppler velocity log (DVL) [21] [19] [6] [22] [5] [18], usually

through a Kalman filter [19] [6] [21]. However these inertial navigation systems (INSs) are

prone to dramatic drifts in position estimates over time, especially through the double inte-

gration of accelerometer data. Long baseline (LBL) [19] [4] [5] [3] or ultra-short baseline

(USBL) [6] acoustic beacon systems are used with many previously deployed under-ice
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vehicles to bound the error drift encountered in dead reckoning INS systems (sometimes

down to 2% [42] or 3% [20] distance travelled). These LBL and USBL systems are com-

prised of acoustic beacons that are used to calculate time of flight and direction information

to a transponder on the vehicle for localization of the UUV, but require substantial external

infrastructure and setup effort and also limit the deployment area. Compass readings can

prove inaccurate [21] [3] at extreme latitudes, further complicating the navigation prob-

lem. Some previous under-ice systems have used USBL [31] [6] [18] [19] [42] [23] or a

strobe light [6] as a homing beacon to aid in return of the vehicle after accumulated inertial

navigation drift.

The use of automated sonar and video processing as a navigational aid, presented here,

is not common in under-ice or even underwater systems. Some previous under-ice work

has used sonar [41] or monocular camera [6] based algorithms to aid in localization of the

vehicle. While there has been some initial research in this area, these SLAM and visual

relative pose estimation methods (sonar nor camera-based) are not commonly used with

under-ice UUV deployments due to their lack of maturity, lack of unique features in ice

topography, and the need for proven, robust and reliable navigation systems in the extreme

arctic environment. However, systems utilizing common sensors already onboard a UUV

(such as camera and sonar sensors) to aid in localization of the vehicle are highly desirable.

A system, such as that presented here, that is capable of utilizing both sonar and video

data to aid in vehicle ego-motion estimation and ice anomaly (and texture) mapping in

relatively featureless under-ice environments is not present in the current literature. While

uncommon, some previous work in the areas of underwater sonar and video pose estimation

as well as sensor fusion is discussed in this section and has provided some groundwork for

the development of the algorithms in this dissertation.
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2.6 Acoustic Sonar Processing

Automated acoustic sonar processing has steadily increased in popularity for applications

such as object detection (or obstacle detection) [43], tracking [44] [45] [46], and SLAM

[47] [48] [49]. Detection of manmade objects (mostly mines) in sonar data is a popu-

lar subject of research and uses strong areas of backscatter return in the data, followed

by a shadow (lack of backscatter return) as a detection template [43] [48]. In previous

sonar processing applications, blob or cluster detection algorithms are the most preve-

lant [50] [44] [51] [48] [49] [52] [53] and are used to find concentrated areas of strong

backscatter return in the sonar frame corresponding to a possible object or landmark [53],

sometimes for use as features for SLAM [49] [53]. Most of these blob-based algorithms

[52] [46] [47] use features such as blob centroid, area, perimeter, and second moments to

describe and match features between sonar frames. Due to the lack of unique topographical

features present to provide such significant and clustered sonar returns in most under-ice

environments, investigation into the use of sonar as a navigational aid in such environments

has been limited in previous work.

Sonar-based topography measurements can also be used as features for matching, such

as in [54] (motivated by an under-ice mapping scenario) and in [30] [55] [56], using ter-

rain relative navigation (TRN). In a similar application to that presented here, iceberg-

relative navigation with a UUV [30] was performed by Kimball and Rock using sonar-

based SLAM. However, this method requires a previously known map of the environment

for localization and uses a terrain-based matching approach instead of the point-feature

matching approach used here. Texture can also be used [57] [58] to automatically segment

or describe areas in an image. Mallios et al. [59] use a scan-matching method with sonar

images for use in SLAM.

Although much of the previous work in automated sonar processing for tracking and

detection is limited to blob-based methods, new high-frequency and high-resolution sensors
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(i.e. the BlueView P900-45 multibeam sonar [60]) introduce the possibility of using point-

feature (i.e. Shi-Tomasi [61], Harris [62], SIFT [63] and SURF [64]) tracking methods,

popular in optical image processing. While similar point feature methods have been used

in some early sonar processing applications [65] [66] [67], this remains uncommon. Kim

et al. [65] use Harris corners with a multi-scale Gaussian pyramid approach for feature

detection and matching with the purpose of creating a sonar mosaic. They use an affine

transformation as a good approximation of feature movement between frames and examine

the projective transformation model (instead of the pinhole camera model commonly used

in optical imaging) of the sonar imaging camera in detail. A robust model estimation

method similar to RANSAC [68] and Least Median of Squares [69] is used in [65] to

obtain estimates of the model parameters for this affine transform. Harris corners are also

used as point-features with sonar images in [66] [67] described below. While point features

have been used in some early sonar processing research, this is still very uncommon. This

is especially true for unstructured environments and for ice texture and vehicle motion

estimation applications.

Optical flow [70] refers to a method for determining motion of pixels between succes-

sive image frames in a sequence. Optical flow based tracking is not commonly used with

sonar images due to high noise levels present and non-conformity of the sonar images to

the underlying constant-brightness assumption of optical flow. However, some early sonar

optical flow research by Lane et al. [45] [46] presents such a method to obtain motion es-

timates for objects in the sonar data to constrain search areas to a region of interest in the

next frame (Fig. 10). In a similar application to that presented here, a Harris point fea-

ture detector and the optical flow based Lucas-Kanade tracking algorithm [71] are used by

Sekkati and Negahdaripour [66] to estimate 3D motion estimation from 2D sonar images

(Fig. 10). Motion estimation is derived from temporal correlation across successive frames

using an affine transformation model with an added dependency on elevation angle (their

homography matrix is given in [66]). However, this work assumes planar scene surfaces in
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the motion model, which does not hold for an unstructured environment such as the sub-ice

topography considered in this dissertation. Negahdaripour et al. [67] present an optical flow

based method for registration of multibeam sonar images for use in creating mosaics (Fig.

10). This motion model assumes a fixed affine mapping over the entire image (conformal

mapping with scale change, rotation, and x,y shift). While these few pioneering applica-

tions introduce the use of sonar-based feature matching and optical flow algorithms and

prove their utility, such methods are not currently prevalent in previous literature. Previous

work on the use of sonar-based optical flow or point-feature matching methods in applica-

tions of real-time ego-motion estimation in feature-poor, unstructured environments do not

exist in previous work. This is especially true in the realm of under-ice applications.

(a) Lane et al. (b) Sekkati and Negahdaripour (c) Negahdaripour et al.

Figure 10: Previous sonar processing work

One of the difficulties encountered when working with sonar data is the low signal-

to-noise ratio. Sources such as backscatter, reflections, and other acoustic transmitters

inject large amounts of noise into the data. Therefore, preprocessing of the sonar images

is required prior to analysis [45] [72] [52] [44] [51]. This preprocessing usually involves

median [45] [72] or Gaussian [52] [44] [51] filtering to remove noise, followed by thresh-

olding [52] [44] [45]. Morphological filtering [73] (usually opening or closing) is also

popular [74] [47] when filtering sonar images. Histogram equalization is used in [75] to

compensate for the low dynamic range encountered in sonar datasets. Temporal filtering is

suggested in [45], but most previous work avoids such filtering due to the time lag intro-

duced. Due to the noisy nature of the sonar data, most of the previous research encountered

in the literature requires structured environments or multiple objects of strong acoustic
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return in the view of the sensor to yield successful results. Investigation into the algorith-

mic analysis of sonar data obtained in unstructured and relatively featureless environments,

such as those here, is not prevalent in the literature.

2.7 Monocular Video Processing

Optical cameras are not commonly used in automated underwater navigation or mapping

applications due to the poor visibility [6] [66], lack of light [76] [48] and heavy process-

ing [77] demands encountered with this sensor. However, monocular camera systems

have been utilized in some underwater applications of SLAM and ego-motion estima-

tion [76] [52] [78] [79] [72]. Almost all such processing algorithms require an undistorted

image from a calibrated camera [78] [76] [72] [80], usually assuming a pinhole camera

model [76]. In almost all cases, contrast limited adaptive histogram equalization (CLAHE)

is used [79] [80] [72] [81] to compensate for the low contrast encountered with underwater

and arctic imagery. CLAHE [82] is used to adaptively adjust the contrast of local pixel

neighborhoods based on the intensity histogram distribution in that neighborhood.

SIFT [63] and SURF [64] features are used by Beall et al. [78] [83] to estimate cam-

era movement between frames (Fig. 11). A three-point algorithm employed in a random

sample consensus (RANSAC) [68] framework is used to recover the rotation and transla-

tion between frames for use in a smoothing and mapping factor graph SLAM application.

Monocular vision-based SLAM [7] is performed by Kim and Eustice [79] using bag-of-

words [84] methods for matching landmarks using sets of point features in a ship hull

inspection application (Fig. 11). Pairwise image registration in a pose graph framework

is used to provide a six degree-of-freedom (modulo scale) relative pose between nodes. A

pose-constrained correspondence search (PCCS) and RANSAC [68] geometrical model se-

lection framework is introduced for feature robust matching between images using a strong

prior on vehicle motion to provide a bound for matching (useful in feature poor imagery).

Image saliency (distinctiveness) is used to sparsify the pose graph to keep only beneficial

24



constraints with high feature richness (local saliency) and to determine unique regions of

the hull that would be ideal for loop closure (global saliency). Image saliency is calculated

based on the bag-of-words [84] histograms for each image and is used to determine link

proposal events (such as loop closures). Similar relative camera pose estimation work is

presented in [85] using SIFT [63] and Harris features [62]. Eustice [76] presents an im-

plementation of pose graph SLAM with camera-derived motion estimates, termed visually

aided navigation (VAN), to provide relative pose constraints for trajectory consistency and

loop closure (Fig. 11). Rather than tracking features over time, overlapping image pairs are

matched (with at least six Harris and SIFT features) to get relative orientation and direction

(essential matrix) between camera poses. A similar method is used by Hover et al. [72] with

SIFT [63] features to provide camera-relative pose constraints during ship hull inspection.

(a) Kim and Eustice

(b) Eustice (c) Beall et al.

Figure 11: Previous underwater vision-based navigation work

Frame-to-frame six degree-of-freedom motion (or odometry) is estimated in [80] by

solving for the fundamental matrix [73] between image frames, using an algorithm which

requires eight point correspondences and optical flow. Salvi et al. [80] use stereo cam-

eras to create a cloud of 3D feature points with a mix of SIFT [63] and SURF [64] de-

scriptors, where landmarks encompass a spatially grouped set of these points for use in
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SLAM [7]. A “video velocity log” is calculated between frames using a pyramidal im-

plementation of the optical flow [70] based Lucas-Kanade [71] feature tracker. The Shi-

Tomasi-Kanade [71] [61] tracker and RANSAC [68] is used by Trucco et al. [52] to ro-

bustly estimate the fundamental matrix between image frames in an underwater environ-

ment. Features are tracked through multiple frames until no longer matched. When enough

features have been dropped, the algorithm is reinitialized. Aulinas et al. [86] present a

novel method for detection of strong landmarks for SLAM [7] by segmenting the image

(with either edge detection or hue channel thresholding) into background and landmark

candidates. These candidates are then used as regions of interest to search for SIFT [63]

and SURF [64] features. If found to be sufficiently salient, these regions are designated

as SLAM landmarks. Although a terrestrial application, it is also worth mentioning the

monocular visual pose estimation algorithm presented by Williams [81] for use in feature-

devoid arctic environments, as this work has provided some groundwork for the work pre-

sented here. Harris [62] and SIFT [63] features are used with Nister’s [87] five point al-

gorithm to calculate the essential matrix (camera rotation and translation) [73] between

image frames using a robust parameter estimation method termed maximum a posteriori

sample consensus (MAPSAC) [88]. Nister provides a terrestrial method for visual odome-

try motion estimation using a five-point algorithm with RANSAC [89]. Robust parameter

estimation is commonly performed to estimate sensor motion between image frames us-

ing RANSAC [52] [89] [85] [79] [41], Least Median of Squares [76] [41] [80], Maximum

Likelihood Estimation (MLE) or MAPSAC [81]. These robust parameter estimation algo-

rithms are detailed in [68] for RANSAC, [69] for least median of squares (LMedS), [90]

for maximum likelihood estimation sample consensus (MLESAC), and [88] for maximum

a-posteriori sample consensus (MAPSAC).

Some monocular camera vision-based applications and tools from the literature are pre-

sented in this section. While the use of a monocular camera sensor to provide relative pose
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constraints between image frames has been established in terrestrial and some underwa-

ter applications, most require feature-rich environments to provide sufficient matches for

an estimated motion model. The low-contrast, feature-poor, under-ice environment con-

sidered here presents unique challenges for the use of such a method. The application of

monocular visual pose estimation in the sub-ice environments considered here is not found

in previous literature and requires novel tuning of these previously proposed visual odome-

try methods to provide the desired ego-motion estimates. However, this previous literature

has helped form some of the tools and groundwork for the development of the algorithms

presented here.

2.8 Sensor Fusion

Exploiting the complementary and independent information obtained between range and

optical sensors through fusion has been used in a few previous unmanned terrestrial (ground)

[91] [92] [93] [94] [77] [95] and unmanned underwater [96] [41] [50] [97] [98] applica-

tions. However, very few systems in the literature investigate fusion of underwater sonar

and camera sensors for use in cross-sensor mapping or ego-motion estimation, as presented

here. Ground-based systems commonly use either LIDAR [91] [99] [95], laser range scan-

ner [92] [93] [94], or ultrasonic [100] sensors with monocular [91] [93] [94] [77] [98] or

stereo [97] [101] camera configurations. Some systems [91] [92] [102] use co-registered

range and image data to create 3D point cloud maps for more robust feature extraction and

mapping. Many applications [97] [93] [94] [77] of terrestrial sensor fusion match 3D edges

and corners (in structured environments), which are visible in both datasets, for improved

sensor cross-calibration and for use as landmarks. Many times such landmarks are used

for SLAM [7] [97] [94]. Sensor fusion in these cases provides more robust (relative to

vision only) and accurate mapping and matching of landmarks due to the accurate depth

provided by the ranging sensor. In other applications [99], ranging sensors provide regions

of interest to search in the imaging data. Matthies and Elfes [100] fuse stereo vision and
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range data at a high level to detect occupied cells for obstacle avoidance and path planning.

Zhu et al. [95] fuse 3D visual landmark matching (from 3D LIDAR) with visual odometry

estimates to reduce errors from both systems. Song and Tang [77] use ultrasonic sensors

for distance measurement and a vision system for more accurate object boundary detection.

Zhang and Pless [103] describe how a laser range finder and camera sensor fusion system

is calibrated. Neira et al. [104] use a laser range sensor to find walls in front of the robot,

and a camera to find vertical edges corresponding to corners or door frames. While these

terrestrial sensor fusion methods provide insight into the synergy possible through the use

of a range-optical sensor system, such methods are not common in underwater, under-ice,

unstructured, or relatively featureless environments such as those considered here.

Some underwater sensor fusion methods have also been investigated. Singh et al. [105]

balance the strengths and weaknesses of multiple sub-sea 3D mapping methods (image

structure from motion and sonar bathymetric 3D) by fusing the datasets to create an op-

timal 3D map of an underwater environment. Krout et al. [106] present an underwater

acoustic sonar and above-water camera fusion for buoy detection. Cross-calibration of an

acoustic camera and an optical camera for shape recovery of underwater targets exploiting

epipolar geometry constraints is discussed by Negahdaripour et al. [98] and Sekkati and

Negahdaripour [66]. A planar calibration grid visible in both sensors is used for sensor

cross calibration. Once cross calibrated, the two sensors can be used to exploit epipolar

geometry constraints (similar to stereo optical systems) between them to better determine

underwater 3D shape over stereo optical systems. Majumder et al. [50] propose a low level

fusion of sonar and camera sensors prior to feature extraction for more reliable mapping

and navigation (Fig. 12). These sensors are combined using projection and a perspective

transformation to project all sensor data into a common state space prior to feature extrac-

tion in an attempt to improve feature detection underwater. Due to the lack of stable corner

features underwater, blobs are used as features and texture is determined from color anal-

ysis. Williams and Mahon [96] propose fusion through projection of strong sonar cluster
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returns into camera images to provide initial search locations of visual point-features used

for SLAM on the Great Barrier Reef (a very unstructured environment). The sonar is set

to profile mode (in contrast to the methods here) to determine the location of the seafloor,

and strong returns are projected into the camera image to initialize high contrast features

in the SLAM map. Once features are initialized with sonar data, the vision system (with

a Lucas-Kanade [71] tracker) is used to track the feature positions. While these low-level

fusion methods exploit the strengths of both camera and sonar sensors, they require consis-

tently reliable input from both sensors (in contrast to higher level fusion methods such as

that presented here).

(a) Majumder et al. (b) Kunz and Singh (c) Hover et al.

Figure 12: Previous underwater sensor fusion work

A high-level sonar-camera sensor fusion technique for relative pose estimation is de-

veloped in this dissertation. While similar work is present in the literature, none utilize

multibeam sonar and camera sensors for navigation in relatively featureless under-ice en-

vironments. Monocular camera and multibeam sonar fusion in a pose graph SLAM frame-

work is used by Kunz and Singh [41] to automatically build 3D maps of underwater terrain

(Fig. 12). A pose graph framework is used with square root information smoothing and

mapping to optimally solve for the vehicle trajectory, map and camera location. Multibeam

sub-map matches and visual feature matches are used as relative pose constraints in the

graph, but here the calibration of the sensors and extrinsic camera position are also set as

special nodes in the pose graph. Therefore, this system does not require pre-calibration

of the sensors as it is done as part of the global pose map optimization at run time. A

scaled Harris corner [62] detector with Zernike polynomial descriptors and RANSAC [68]
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or Least Median of Squares [69] robust parameter estimation is used for image matching to

estimate a six degree-of-freedom (modulo scale) model of camera motion. Similar under-

water sensor fusion is performed by Hover et al. [72] for vehicle position estimation during

ship hull inspection by combining DIDSON sonar and monocular camera constraints us-

ing a pose graph framework and iterative smoothing and mapping (Fig. 12). In this case,

fusion occurs at a very high level. Sonar and camera clients both add relative pose con-

straints to the pose graph while iterative smoothing and mapping is used to optimally (least

squares estimate) solve for the vehicle trajectory over the entire graph. Features in the

sonar data are based on clusters of strong gradients while SIFT [63] features are extracted

and matched in the image data. Optical camera image registration provides a five degree-

of-freedom constraint between two camera nodes in the graph. Both sonar and video data

can provide sequential constraints and loop closure constraints in the pose graph. While

these pose graph sensor fusion methods are similar to the work presented here, these appli-

cations use ice draft topography [41] (requiring uniquely varying ice draft) and clustered,

strong gradient pixel returns [72] as features to provide sonar constraints, in contrast to the

point-feature-based odometry constraints used here. These previous pose graph systems

use SLAM instead of odometry methods, which require unique landmark features to be

present in both datasets that can be saved and robustly matched over the vehicle trajectory,

especially during loop closure events. While these systems can obtain very low errors as-

suming re-observation of unique landmarks, this assumption breaks down in the case of

continuously textured but non-uniquely varying environments, such as sand-ripples and the

majority of ice topography. While these previous sensor fusion systems have proven the

utility of such methods in underwater environments, systems robust to the unique feature-

poor, under-ice environments, such as that considered here, do not currently exist in the

literature.
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2.9 Mapping

The use of point features (pixel locations with large, unique local gradients) such as SURF

(Speeded Up Robust Features) [64] features or Shi-Tomasi corners [61] for texture estima-

tion in an image has been explored in some previous work for categorizing images [107].

However, previous methods require extensive processing and have not been applied to un-

derwater or under-ice autonomous systems, such as the application here. Kim and Eu-

stice [79] use point features to estimate saliency (uniqueness) and feature-richness of an

image, which requires great processing effort to calculate. Presented here is an algorithm

with very low additional computational cost to get a real time estimate of the texture in an

image using point features that have already been extracted for use in another algorithm in

the system. While a few previous underwater vision applications use point features in video

to perform SLAM [79] [76] [52] [78] [79] [72], none currently use the features detected to

estimate if there is an anomaly of interest in the image across a globally feature poor dataset

(commonly encountered in underwater and under-ice environments). Such a method for

detection of anomalies in a largely featureless under-ice environment is presented here.

Color is commonly used for dissecting an image into foreground and background or seg-

ments [108], even in underwater applications [109]. However, such a color-based approach

is not commonly used in under-ice applications due to the nature of the environment as

largely monochrome and featureless. Despite these challenges, this unique application

requires a means for searching the monochrome ice background for any anomalies (specif-

ically animals) that might be located at the ice-water boundary. Therefore, a color-based

algorithm is presented here using hue histograms and clustering to determine outlying col-

ors corresponding to anomalies in under-ice environments.

2.10 Summary

In this chapter was presented a summary of relevant literature in the technical areas of this

work. While many prior works have investigated the use of sonar or camera sensors to
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aid in localization, the use of such a system in a feature-poor, under-ice environment has

not been examined. The use of underwater sonar sensors for localization has been mostly

limited to applications with blob features of significant acoustic return or structured envi-

ronments such as pools. Use of optical flow and point-feature-based algorithms with sonar,

such as those considered here, is very uncommon in the literature. Camera-based monoc-

ular pose estimation applications remain largely terrestrial-based, with the few underwater

applications commonly requiring feature-rich environments for successful results. While

range and optical sensor fusion has been explored, use of underwater sonar sensors with

camera sensors is very uncommon, especially in featureless and under-ice environments.

Sonar- and video-based algorithms have not been previously used for automatic ice texture

estimation and ice anomaly detection. The work presented here includes sensor fusion of

underwater acoustic sonar data with camera data to aid in ego-motion estimation of a UUV

in a feature-poor, under-ice environment. The use of optical flow is presented as a useful

tool for analysis of sonar data in these applications. Camera-based monocular pose estima-

tion shows promising results despite the lack of strong features in under-ice environments.

Fusion of data from sonar and camera sensors, which are already onboard many underwa-

ter vehicle platforms, can provide a solution to aid in ego-motion determination of a UUV,

without requiring any additional infrastructure. The use of two sensors also provides a

more robust means of estimation, which is useful in such difficult environments. The use

of sonar and video sensors for automatic ice texture estimation as well as ice anomaly map-

ping is also presented. Availability of previous data collection using forward-looking sonar

and optical camera sensors in sub-ice environments is limited. Previous sonar and cam-

era simulations of under-ice environments are not readily available from previous work.

Therefore, datasets for the evaluation of the algorithms presented here are obtained here

directly through simulation and under-ice field deployments. The under-ice UUV frontier

is relatively new in and of itself, and the novel use of the algorithms presented here will

help to advance capabilities in the field.
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CHAPTER 3

DATA COLLECTION AND VEHICLE PLATFORMS

3.1 Introduction

Navigation and mapping in relatively featureless underwater and under-ice environments

is a difficult challenge. Using common sensors already onboard many unmanned under-

water vehicles (UUVs) to aid in this process provides a self-contained and cost-effective

solution. This dissertation presents methods for relative pose estimation, sensor fusion, ice

texture estimation, and anomaly detection using camera and sonar sensors in an under-ice

environment. To evaluate the algorithms in this work, multiple UUVs are used to gather the

required sonar and video data in underwater and under-ice environments. Use of a UUV

for data collection allows for remote control of the position and speed of the system, some

ground truth information from onboard sensors, and a realistic application environment for

the methods under evaluation. The robotic platforms deployed in these field trials include

the VideoRay Pro IV and custom Icefin vehicles. Both of these vehicles are equipped with

the necessary forward-looking sonar sensor and cameras needed for data collection of the

type required for evaluation of the algorithms presented here. The vehicle platforms used

and their field deployments to date are detailed in this chapter. To obtain additional under-

ice data in a more controlled environment with full ground truth, simulated datasets of the

environments of interest were also created. The simulation methods used in the creation of

these additional datasets are detailed in Chapter 4.

3.2 VideoRay Pro IV
3.2.1 Platform Overview

The VideoRay Pro IV UUV (Figure 13) is a tethered, commercial off-the-shelf vehicle. The

physical dimensions of the VideoRay are approximately 33cm in width, 40cm in length
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and 23cm in height. The sensor suite includes an onboard camera and an external forward-

looking sonar sensor. This vehicle has a single vertical thruster for control of heave motion,

and two more powerful horizontal thrusters for control of yaw and surge motion. The

onboard tiltable camera is a Sony WDR380 CCD image sensor, built into the vehicle behind

a clear plastic dome, capable of providing a 768x494 pixel resolution. The sonar instrument

is a BlueView P900-45 forward-looking sonar sensor mounted to the bottom of the vehicle.

To provide support for multiple tilt angles of the sonar sensor, custom running boards were

built for the vehicle, with mounting holes at the desired angles.

Figure 13: VideoRay Pro IV Vehicle

In addition to the camera, the vehicle also has a built-in compass to provide heading,

an inertial measurement unit (IMU) to provide measurements of 3-D acceleration and ro-

tation, and a pressure sensor to provide depth measurements. The IMU of this vehicle was

determined to provide insufficient accuracy for absolute localization, but could be used to

aid in short duration local navigation. The VideoRay vehicle has built-in low-level process-

ing capabilities including controllers for the actuators (thrusters). However, all high-level

processing, user interface, and control is accomplished from the surface computer, with

command and control communication over the tether. User interface software allows for

control of the vehicle actuators, acquisition of camera and sonar images, control of the
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camera tilt angle, and access to the internal vehicle state sensors from a surface computer.

Time-stamped and synchronized images from the camera and sonar sensors can be recorded

for offline analysis. Compass and IMU data can also be recorded concurrently with each

frame for use as ground truth. Using topside control software packages, commands are

sent over RS-485 down the tether connected to the vehicle, while status and video data are

received back in the same manner, and a separate tether provides sonar data back to the

base station. Both heading and depth of the vehicle can be automatically maintained at a

desired set point value with the control software. The vehicle can also be controlled man-

ually. A handheld controller can be used to control the vehicle camera, forward thrusters,

vertical thruster, and lights. This provides the ability to easily command the vehicle around

in three dimensional space. Full specifications on the VideoRay Pro IV vehicle can be

found in [110]. While this vehicle has been deployed in an under-ice lake environment, it

has limited deployment capabilities in the harsher polar under-ice missions.

3.2.2 Hydrodynamics Model and Dead Reckoning

The hydrodynamics of the VideoRay vehicle were analyzed in [111], allowing for the de-

velopment here of a vehicle hydrodynamics simulator in software [112]. This vehicle is

very stable and thus encounters limited movement and disturbance in the roll and pitch

directions, allowing for simplification of the dynamics model. Based on the hydrodynamic

characteristics of the vehicle along with the command inputs given to the actuators dur-

ing a mission, an estimate of the internal vehicle state can be determined over time. This

is referred to as dead-reckoning and provides a method for vehicle localization estima-

tion based only on the control inputs to the thrusters. While dead-reckoning estimates

are very noisy and prone to drift, they can be fused with other means of localization for

more robust positioning estimates. The hydrodynamics simulator developed here is also

useful for simulation of a mission prior to deployment of the vehicle. While develop-

ment of a hydrodynamics simulator and dead reckoning system for the VideoRay Pro IV
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vehicle was undertaken in early work here, this is out of the scope of the dissertation pre-

sented here. However, a detailed work on this dead reckoning and simulation system can

be found in [112]. Dead reckoning provides a valuable tool for sensor-deprived navigation

and should be considered for integration into any robust localization and navigation system.

3.3 Icefin
3.3.1 Introduction

Exploration of the furthest reaches of our planet, as well as other planetary bodies, typi-

cally requires the use of robotic platforms due to the extreme environments encountered.

Some of the harshest conditions on Earth are encountered in Antarctica and require the

use of autonomous underwater vehicles (AUVs) to explore the remote and hazardous ar-

eas beneath the ice. The future exploration of Jupiter’s moon Europa may one day require

a similar AUV to be able to self-deploy through several kilometers of Europa’s ice cover

to explore its ocean or water bodies within its ice shell in search of the possibility of life

[27] [28] [26] [2]. The closest approximations to such environments that can be found on

Earth are located in Antarctica, where large permanent ice shelves form as multiple glacier

systems flow off of the continent and stich together. The custom Icefin under-ice unmanned

underwater vehicle (UUV) has been developed for deployment in such ice-covered oceans

as those found in Antarctica and the Arctic with the intent of furthering relevant technol-

ogy for future Europa missions. Lessons learned from Antarctic deployment of the Icefin

vehicle can be extrapolated to future polar and planetary AUV design.

The novel Icefin vehicle (Figure 14) is unique within the sub-ice UUV class as it com-

bines human portability with an extensive science sensor suite, a modular design, a fiber

optic tether, and a unique deployment and recovery method directly through the thick (hun-

dreds of meters) ice shelf. This relatively small but capable vehicle has relatively low

impact on logistics, since it can be broken down into individual modules and transported

using a light ground vehicle, boat or helicopter to any deployment site of interest; this is

not the case for heavier and larger under-ice vehicles. The Icefin vehicle contains a suite of
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Figure 14: The Icefin modular vehicle in modules (top) and completely assembled with
syntactic foam (bottom)

sensors for scientific data collection and navigation, including multiple cameras and sonar

sensors for visualization of the environment. Five directional thrusters are used in place of

commonly used protruding control planes to facilitate maneuverability and hovering during

missions.

The Icefin vehicle is designed in a modular fashion, which allows for ease of operations

in the field, future expansion, and mission adaptability. Modularity also provides the Icefin

vehicle with the unique ability to face the sensor bay up toward the ice or down toward the

ground with a simple 180 degree rotation, possible in the field. Such a capability is not

present in any other current state-of-the-art, sub-ice vehicle.

The Icefin vehicle is deployed and recovered vertically through a hole drilled in the

ice shelf, which can be hundreds of meters thick, in place of the commonly used methods

based from ships in the open ocean. This unique deployment and recovery method provides

access to more remote areas and is an important extrapolation for future planetary missions.

A small (3.3 mm) diameter optical fiber tether is used for deployment and recovery of the

vehicle, as well as for real-time communication and control. This novel lightweight tether
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has minimal impact on the dynamics of the vehicle, while providing sufficient bandwidth

for communication and control from the surface. Despite its small displacement, the tether

also provides a strong mechanical connection (rated at 272 kg) to the surface, which ensures

recovery of the vehicle.

3.3.2 Mechanical Design

This section provides an overview of the design of the Icefin vehicle, as well as the chal-

lenges encountered due to the unique under-ice mission requirements. The harsh under-ice

environment introduces many challenges not encountered by terrestrial and aerial vehicles,

or even open-water UUVs. In the specific case of the Icefin vehicle, the mission require-

ments include a depth rating of 1500 meters, range capability of 3km, temperature rating of

-5C, hovering capability, modularity to improve field operations and scientific flexibility,

and a small diameter limitation of 26 centimeters. Deployment and retrieval of the vehicle

directly through a small diameter hole in the ice shelf introduced many of the unique design

challenges. More details on the vehicle design solution are provided in this section and a

summary of the under-ice design challenges can be seen in Table 1.

The Icefin vehicle is designed in a modular fashion to retain a human-portable capability

for remote deployments. There are six main modules (Figure 15) that fasten together to

create a three meter long vehicle (3.5 meters with a drop-weight attached to the front): two

directional thruster modules, a front sensor module, a dry electronics module, a wet sensor

module and a rear thruster module. Fiberglass-reinforced syntactic foam is placed around

the three center modules to provide additional buoyancy. The current configuration of the

Icefin vehicle is 26 cm in diameter and weighs 105 kg when fully assembled.

The front module consists of a Kongsberg Light Ring forward-looking camera and a

BlueView P900-45 forward-looking sonar sensor. A Neil Brown conductivity-temperature

(CT) sensor is also located in the front module to sample the salinity and temperature

of undisturbed surrounding sea-water. The front module also contains a Tini Aerospace

Frangibolt mechanism [113] that holds and releases a 4.5 kg weight at the front of the
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Table 1: Polar Under-ice UUV Design Challenges/Solutions
Under-ice Mission Requirement Vehicle Design Solution

Sub-freezing water temperatures (-5
degrees C)

Low temperature capable batteries
Temperature-rated sensors

Hovering capability, non-protruding
thrusters or control planes, 6 DOF

vehicle control
Four non-protruding directional thrusters

Limited power budget
Ability to switch power to each sensor

from the surface control station in
software

Remote vehicle control and
communication; Deployment and

recovery of the vehicle

Kevlar-reinforced single-mode strand of
optical fiber for vehicle tether

Small-diameter deployment hole in ice,
Difficulty avoiding snags

Constraints on vehicle diameter design
No protruding sensors or actuators

1500-meter depth mission requirement

Cylindrical pressure vessel for the main
electronics module rated to mission
depth, Pressure-rated sensors and

actuators
Reliable vehicle navigation and position
information, Vehicle control and sensor

data management

Greensea Balefire software to create
position estimates and record sensor data

Human-portable vehicle
Modular design of vehicle, Size/weight

constraints in the vehicle design
Need for both ice and seafloor data

collection
Modular sensor bay that can be rotated to

face the ice or face the seafloor
Vertical deployment configuration of

vehicle, but horizontal mission
configuration

Frangibolt drop-weight system at the
front of the vehicle

vehicle when it is vertically deployed. This drop-weight shifts the center of mass forward,

forcing the vehicle to remain in a vertical position during deployment through the small

diameter vertical hole in the ice shelf, which can be only a few centimeters wider than the

diameter of the vehicle. The Antarctic ice shelves can be hundreds to thousands of meters

thick, and remaining close to a vertical 90 degree pitch prevents the Icefin vehicle from

getting stuck during deployment. Upon reaching the required operational depth past the ice-

water boundary, the Frangibolt system heats a metal ring around the drop-weight’s retaining

bolt, which expands and breaks the bolt. With this system, the drop-weight keeping the
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Figure 15: An Icefin vehicle CAD drawing, showing the Icefin disassembled into its indi-
vidual modules and syntactic foam

vehicle in a vertical pitch orientation is released, and the Icefin vehicle naturally rotates

to a horizontal (zero pitch) state, as shown in Figure 16. Internal space limitations on the

Icefin vehicle eliminated an internal weight or battery actuation system for pitch control,

such as those used in glider AUVs [36]. Use of the Frangibolt mechanism does not require

any moving parts (as opposed to a robotic arm) that can freeze at low temperatures, and

thus provides a simple and robust system for pitch translation in sub-zero degree seawater.

During recovery, the vehicle is first commanded to a depth of tens of meters below the ice-

water interface at the deployment hole, and is directed to the hole by pulling in the tether

using the winch. Since the vehicle is neutrally buoyant, this provides sufficient time and

force for the vehicle to rotate close to a 90 degree pitch as it is pulled by the tether winch

system toward the deployment hole at a slow, constant velocity. A hot water drill creates a

wide entrance to the deployment hole at the ice-water interface, which also helps to slowly

funnel the vehicle to its 90 degree pitch state for safe recovery.

The Icefin vehicle is mission-required to have five controllable degrees-of-freedom (no

roll control). Translational surge (x-direction), sway (y-direction), and heave (z-direction)

are controlled with respect to the local vehicle frame while rotational pitch (θ) and yaw

(ψ) are controlled with respect to the global coordinate frame (Fig. 17). While roll (φ)

cannot be controlled, rotation around this axis is limited by separation of the vehicle center

of buoyancy and center of mass in the vehicle design.

The two directional thruster modules on the Icefin vehicle are located toward the front
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Figure 16: Deployment of the Icefin vehicle.

and rear of the vehicle. These modules are identical, each containing a vertical thruster and

a horizontal thruster which can be run in both directions. Each of these four thrusters is

mounted into an individual shaft that extends through the diameter of the vehicle, allowing

sufficient water flow as the thrusters are engaged. This allows for directional control of

the vehicle while retaining its torpedo shape with no external protrusions. Control of five

degrees-of-freedom using the five available thrusters is illustrated in Figure 18. Vertical

thrusters are used to control pitch and heave; horizontal thrusters for yaw and sway; and

the rear thruster for surge.

The downward/upward-facing wet-sensor module contains a suite of both oceanographic

and navigational sensors including a high-definition camera, Doppler velocity log and cur-

rent profiler (ADCP), depth sensor, altimeter, and sidescan sonar. Each of these sensors is

contained within independent manufacturer housings rated to the mission-required depth

and temperature of the vehicle, and can therefore be mounted in a wet bay module that is
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Figure 17: Local and global vehicle coordinate systems.

(a) Surge, sway, and heave (b) Pitch and yaw

Figure 18: Directional thruster configurations for control of vehicle surge, sway, heave,
pitch and yaw

open to the seawater. Leveraging the modularity of the Icefin vehicle, the wet sensor mod-

ule is designed with the novel capability of operating in two modes: facing up towards the

ice or facing down towards the seafloor. This provides the capability to adapt the vehicle

to different mission requirements with simple field alterations by rotating the module 180

degrees. This module can also be replaced to satisfy other scientific objectives.

The main electronics module consists of a pressure housing made of 6061 aluminum

(hard coat anodized for corrosion resistance) rated to 1500 meters depth, with a bulkhead

on each side for external electrical connections. The electronics and batteries required

for sensor communication and vehicle control are housed inside this module. The syntactic

foam covering this module helps to insulate the sensitive electronics and batteries contained

within from the sub-zero external water temperature. Aft of the two directional thruster

modules is the rear thruster module. This module consists mainly of a powerful (17.3 kgf)
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thruster that provides the surge thrust for the vehicle. The associated maximum forward

vehicle speed possible with this thruster was measured to be 2.32 m/s (4.51 knots) on the

Icefin vehicle. A protective structure made of 6061 aluminum shields the thruster to prevent

propeller damage to the environment, while still allowing sufficient water flow when the

thruster is engaged. An overview of the sensors, actuators and electronics in each module

can be seen in Figure 19.

Figure 19: Icefin vehicle modular architecture showing sensors (blue) and actuators (green)

A Kevlar-reinforced optical fiber tether is attached to the rear thruster module for com-

munication and control of the vehicle, as well as for mechanical deployment and recovery.

This tether is designed to be only 3.3mm in diameter and lightweight to eliminate almost

all adverse effects on the dynamics of the vehicle. The tether is rated to withstand forces up

to 272 kg and bend diameters of less than a centimeter without damage. The length of the

tether is 3km, providing the vehicle with a radius range of slightly less than that from the
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deployment hole, depending on the ice thickness. A secondary steel cable (rated to 907 kg)

is attached to the first 30 meters of tether to further mitigate risk of loss and tether damage

during deployment and recovery. Both tethers can be seen in Figure 20.

Figure 20: Rear thruster module with the optical fiber tether (yellow) and the steel strength
support cable (gray)

Sub-zero temperatures encountered both above and below the ice can result in reduced

performance and damage to vehicle electronics and batteries if not considered in the design.

All custom mechanical parts, cables, connections, and O-ring seals on the Icefin vehicle

were designed to a low temperature rating of -5C to avoid complications. All commercial

off-the-shelf (COTS) parts, thrusters and sensors were chosen with ratings to withstand low

temperatures down to -5C. Flash memory is used in place of a mechanical hard drive, as

this is one of the most common failure points in systems exposed to extreme cold. Pre-

cautions are taken during vehicle operation to limit drastic temperature changes inside the

electronics pressure housing. Although humidity levels are extremely low in Antarctica,

such temperature changes can lead to water condensation, causing shorts and component

degradation, and thus a humidity sensor is included on the Icefin vehicle. Extremely low

temperatures can increase the internal resistance of lithium-ion batteries, resulting in dras-

tically decreased capacity. To avoid this, heat-radiating components are positioned close to

the system’s batteries to help keep the battery temperatures in the optimal range above 10
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degrees C.

3.3.3 Electrical Design

Most of the vehicle electronics and batteries are housed in the electronics module pressure

housing. The main processing element of the vehicle is a small form-factor single-board

computer with an Intel Atom processor. This single-board computer has an Ethernet con-

nection and multiple USB connections that are used to communicate with sensors, actua-

tors, and the surface control station. An overview of the electrical design is shown in Figure

21.

Figure 21: Design of the electronics module in the Icefin vehicle, along with connections
between the main components.

For lower-level communication with digital relays, analog sensors, and actuators, the

vehicle design incorporates an XMOS XC-2 [114] board, designed for parallel and real-

time applications. A custom interface printed circuit board (PCB) was designed and fabri-

cated in-house to provide the necessary translations between the XMOS XC-2 board and

the relays, actuators, and sensors on the Icefin vehicle. Most sensors on the vehicle use

RS-232, RS-422, or RS-485 for serial communication, which can be translated to TTL lev-

els using the XMOS interface board or translated directly to USB protocol with an FTDI

converter. Mechanical relays are used to switch on and off high voltage (24V-48V) power
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to each of the vehicle sensors and thrusters independently as a power-saving technique.

Ethernet is used for communication between the vehicle on-board computer, the XMOS

board, the BlueView forward-looking sonar, and the tether connection to the surface. As

the tether between the vehicle and surface is comprised of a single strand of optical fiber,

all data signals are multiplexed using an optical multiplexer, and then demultiplexed at the

surface in a similar manner. For this purpose, a Moog 907E mux board is located both

inside the electronics module pressure housing as well as at the surface control station.

A KVH 1750 fiber optic gyro inertial measurement unit (IMU) is used with a NavQuest

600-micro Doppler velocity log (DVL) to provide inertial navigation data in both the trans-

lational and rotational directions. Depth (z-position in vehicle coordinates) is known with

a high degree of certainty and zero drift from the Valeport pressure sensor. Distance to the

ice cover is obtained with an upward-looking OceanTools altimeter. No compass is cur-

rently present onboard due to the polar singularity encountered at such extreme latitudes,

proving such magnetic north-seeking methods useless. In this case, a relative coordinate

reference system is used based on the initial state (inertial navigation system is zeroed)

of the vehicle at the surface prior to deployment beneath the ice. This can be translated

to an absolute coordinate system using the GPS coordinates of the deployment hole and

initial rotational state of the vehicle at the surface. The navigational sensor outputs (IMU,

DVL, depth, and altimeter) are processed directly by the vehicle onboard main computer

to enable a real-time navigation solution. The conductivity-temperature sensor data as well

as battery status data are not needed for real time processing and are both relayed directly

to the surface control station using serial ports present on the Moog optical multiplexer.

The four directional thrusters are each controlled independently using the vehicle’s main

computer via communication over a single FTDI USB to I2C adaptor cable. The parts used

in the design of the Icefin vehicle are detailed in Table 2.

To provide power to the electronics, sensors, and thrusters, 15 Inspired Energy NH2054HD31

14.4V 6.8 amp-hour rechargeable lithium-ion batteries (for a total of 1470 watt-hours) are
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Table 2: Icefin Vehicle Part List
System Component Manufacturer Part

Forward-looking sonar BlueView P900-45
Sidescan sonar Tritech SeaKing ROV

Inertial Measurement Unit KVH 1750 IMU
DVL/ADCP LinkQuest NavQuest 600u
CT Sensor Neil Brown G-CT
Altimeter OceanTools MA500D

Depth Valeport miniIPS
Downward Camera DSPL HD Multi Sea Cam

Forward Camera Kongsberg Light Ring Colour Camera
Single Board Computer Kontron PITX-SP

Power/Battery Management Ocean Server XP-08SR
DC Voltage Regulation Ocean Server DC123SR

Batteries Inspired Energy NH2054HD31
Ethernet Router Routerboard RB951-2n
Rear Thruster Technadyne 580
Rim Thrusters SeaBotix HPDC1502

Tether Linden N/A
Optical Multiplexer Focal Moog 907E Mux, HD-SDI
Low-level Computer XMOS XC-2

Sensor Interface Board Custom PCB Custom PCB
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mounted in the lower portion of the electronics module. Peltier plates were considered in

the design of the electronics module to provide additional heat to keep the temperature of

the batteries within the optimal operating range above 10 degrees C. However, this addi-

tional heat was not required due to the placement of the heat-generating power conversion

boards in close proximity to the batteries. The battery temperature during Antarctic field

deployment remained above the required 10 degrees C despite the sub-zero exterior condi-

tions; thus battery performance was not impacted. These 15 batteries are divided into three

independent banks: an electronics bank providing 3.3V, 5V, 12V, and -12V DC, a thruster

bank providing 48V DC to the rear thruster, and a high voltage bank providing 28V and

24V DC for the remaining thrusters and sensors. Separate battery banks isolate the noisy

thruster and sensor power from the sensitive electronics. The electronics bank was esti-

mated by the corresponding power controller to have a battery life of approximately eight

hours under a nominal computational load in low-temperature, under-ice mission condi-

tions. However, the sensor and thruster banks encounter drastically varying battery life

depending on the amount of actuator and sensor engagement. The actual operating dura-

tion capability of the vehicle during deployment exceeded eight hours between under-ice

mission time and idle time (thrusters not engaged). The main electronics bank is com-

manded to switch power on and off using an external bulkhead dummy plug. The higher

voltage sensor and thruster power banks are designed to be switched on and off through

software during the mission due to power-reduction and safety motivations.

3.3.4 Control Architecture and Software Design

The main software component of the Icefin system is comprised of a customized version

of Greensea’s Balefire software [115]. This software provides a framework for streaming

sensor values and vehicle status to a control station, calculating inertial navigation esti-

mates onboard the vehicle in real time, controlling the vehicle actuators in real time, and

for transferring high-level control signals from the surface control station to the vehicle dur-

ing mission operation. While a Linux-based surface computer is used for the main control
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station, an additional topside surface computer is also used to concurrently run commer-

cial software (sonar, video, etc.). The control software provides the capability for both

real-time human operator control as well as autonomous control of the vehicle. Vehicle

state and estimated position information is presented through a graphical interface (GUI)

to the operator at the surface control station (Figure 22). The actuator control architecture

consists of a low-level front seat driver application running on the vehicle’s on-board com-

puter, while a higher-level back seat driver application is run at the surface control station.

The front seat driver application controls the actuators directly through low-level hardware

commands. The back seat driver application utilizes input from the autopilot or human

operator to provide set points for the front seat driver’s low-level mixing functionality and

proportional-integral-derivative (PID) controllers.

Figure 22: The topside surface control station for the Icefin vehicle (center) with a mapping
diagram of joystick control to vehicle dynamics (lower left).

The majority of the processing takes place on a computer at the surface. However, an-

other Balefire node is also running on the vehicle’s main onboard computer for real-time

processing and input/output control. Communication between these two Balefire nodes

takes place through a publish-subscribe architecture built into Balefire itself over an Ether-

net (and optical fiber) physical interface. The main processing element of the vehicle is an
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Intel Atom-based pITX computer which handles the majority of the high-level control and

communication with the surface computer. An XMOS XC-2 [114] computing platform is

used to handle the lower-level control of the actuators and contains the ability to multi-

plex multiple RS232 serial input streams for sensor transmission to the surface computer.

A customized Balefire process, named GTRI-Thrust, was developed to provide hardware-

specific, low-level control of the vehicle’s thrusters. This process translates and mixes the

generic commands from the surface control station (joysticks or autopilot) to the required

specific low-level thruster hardware commands. Desired effort commands from the joystick

user input or autopilot controllers are translated into the range of +/−100% values and then

sent to the GTRI-Thrust application in the form of a five-variable effort data structure. This

effort is then mixed, saturated, and translated to the required format for each thruster before

being sent to the hardware.

The rear thruster is controlled through the XMOS board, while the directional thrusters

are controlled directly from the main vehicle computer through a USB to I2C FTDI in-

terface. Custom XMOS code is run on the XC-2 board to create a Telnet interface, used

to communicate with the Balefire software on the main vehicle computer. Other custom

XMOS code, to be run in parallel, was also written to directly set the analog control sig-

nals (rear thruster speed, LED intensity) as well as the digital control signals (switching

of individual sensor and actuator power, leak sensor input, power-board status signal in-

puts). A custom Balefire process was added to the vehicle computer, named GTRI-Telnet,

to provide a communication liaison between the surface control station soft-button GUI

commands and the XMOS hardware implementation of these commands. In this process,

all commands from the surface control station are converted to the correct Telnet format

of “SET” and “GET” variable commands and sent to the XMOS chip over the Ethernet

channel. An XMOS-provided Ethernet IP software block was added to the XMOS chip to

provide the low-level Ethernet IP interface. An overview of the software system architec-

ture of the Icefin vehicle is shown in Figure 23. It can be seen here that four computing
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nodes comprise this system including a Windows commercial software command station

and a Linux Balefire command station located at the surface, as well as a Kontron vehicle

computer and an XMOS board located onboard the vehicle. Communication between each

of these nodes utilizes an Ethernet/Fiber physical interface.

Figure 23: The software/communication architecture diagram for the Icefin vehicle and
command and control center. The main software components are listed along with connec-
tions between them, broken out into the four main computing components in the system.

For human operation of the vehicle, two joysticks are incorporated into the surface

control station for control of the thrusters: one three-axis joystick for control of surge,

sway and yaw, and one two-axis joystick for depth control (Figure 22). Video streams from

both vehicle cameras and a visual representation of the sonar data is also presented at the

control station in real time to aid in operator control.

As recovery of the Icefin vehicle through the thick Antarctic ice shelves requires the

use of a tether, the current configuration of the vehicle is designed to remain tethered with
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constant communication and control from the surface. However, the autonomy capabilities

of the vehicle’s control software enable untethered operation if desired, simply requiring

the addition of a larger onboard hard drive for data collection. Autonomy capabilities were

not utilized during the 2014 Antarctic missions due to the early nature of the deployments,

but are fully integrated into the Balefire system and will be used in future deployments.

The forces and torques obtained from each thruster can be modelled as in Equations

1-2 where F is the control force due to the propeller, T is the torque due to the propeller,

k is the force coefficient, l is the distance between the thruster and the vehicle’s center of

gravity and u is the input to the thruster. To correctly mix the independent effects of each of

the vehicle’s five thrusters, the thruster allocation matrix (T) in Equation 3 is used to obtain

the forces and torques on the vehicle (τ). Here, K is the thruster coefficient matrix and u is

the input command matrix corresponding to Equation 4.

F = k ∗ u (1)

T = l ∗ F = l ∗ k ∗ u (2)

τ =
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3.3.5 Summary

The Icefin vehicle was designed as a modular unmanned underwater vehicle with an exten-

sive sensor suite and an optical fiber tether for control and communication to meet under-

ice deployment challenges while obtaining high science return. A unique combination of

human portability and a novel through-ice (small diameter hole) deployment method facil-

itates deployment of the modular Icefin vehicle out into the field. The vehicle design builds

upon a foundation of previous under-ice research to make a unique contribution to the field.

The Icefin vehicle is novel among state of the art under-ice vehicles; it contains a scien-

tific and navigational sensor suite, autonomous capabilities, vectored thrusters in place of

control planes, and a unique sensor module integration (rotatable by 180 degrees for ice

missions). The Icefin vehicle’s small size and human portability lowers logistical effort

and cost. The Icefin vehicle provides a custom solution to the unique polar and under-ice

deployment challenges.

3.4 Sensor Package
3.4.1 Overview

A multibeam forward-looking sonar sensor and an optical camera sensor are both required

for the algorithms presented in this dissertation. The methods here are designed to be

robust to changes in vehicle platform, requiring only slight changes in sensor to vehicle

relative coordinate transformations. The sonar sensor used here with both the VideoRay and

Icefin platforms is the BlueView P900-45 acoustic sonar sensor. However the cameras on

each vehicle platform are different. The commercial off-the-shelf Videoray Pro IV vehicle

contains a built-in camera sensor, while the custom Icefin vehicle design incorporates both

an upward and forward camera using commercial components. The sonar and camera

sensors used for data collection in the field deployments here are detailed in this section.
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3.4.2 Sonar Sensor

Forward-looking multibeam acoustic sonar sensors are commonly found on underwater ve-

hicles for use in object or obstacle detection. These sensors can provide range and bearing

to an object in the path of the vehicle using acoustic waves. Forward-looking acoustic

sonar sensors provide the viewer with a two-dimensional representation of the area in front

of the sensor, highlighting objects with strong acoustic return, as seen in Figure 3. These

sonar sensors are limited in the resolution of altitude angle and encounter very high noise

levels. The BlueView P900-45 sonar sensor used here provides a 45-degree horizontal

field of view with an angular resolution of 256 pixels (beams), and a range resolution of

2.54cm per pixel. Using a tether with Ethernet capabilities, imaging from the sonar sensor

can be obtained at the surface in near real time. This sonar sensor was chosen for use in

this and future under-ice missions due to its low cost, high resolution and widespread use.

Additional specifications for this sonar sensor can be found in [60].

The BlueView P900-45 forward-looking sonar sensor can be mounted to the bottom of

the VideoRay Pro IV vehicle and is tethered to the base station computer at the surface.

To change the tilt angle of the sonar sensor (to match the angle of the camera), custom

running boards were built for the vehicle with mounting holes at the desired angles. This

same sonar sensor was also used in the design of the Icefin vehicle. In this case, it is

mounted at the nose of the vehicle, facing forward (zero degree tilt), and cannot change

angles dynamically. Sensor communication between the Icefin vehicle and the surface is

coupled onto the Ethernet to fiber interface built into the Icefin vehicle.

3.4.3 VideoRay Pro IV Camera

The VideoRay Pro IV UUV is a tethered, commercial off-the-shelf vehicle. A camera is

built into the vehicle behind a clear plastic dome, and is capable of tilting at angles between

90 and -90 degrees in the altitude direction. The camera has a field of view through the lens

and dome of approximately 75 degrees. The camera sensor’s effective pixel resolution

is 768x494, but the images are digitized to 640x480 and 496x480 pixels by the capture
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hardware and software. Full specifications on the camera sensor can be found in [116].

Two lights are located at the front of the vehicle to provide variable magnitude lighting for

the camera based on commands from the user interface.

3.4.4 Icefin Upward Camera

The upward-looking camera on the Icefin vehicle is mounted in the sensor bay module of

the vehicle. This HD Multi Sea Cam camera is a commercial off-the-shelf sensor made by

Deep Sea Power and Light. The field of view available is 85 degrees in the horizontal di-

rection and 50 degrees in the vertical direction. The resolution of the camera is 1920x1080

pixels. More specifications for this sensor can be found in [117]. A SeaLite Sphere LED

light made by Deep Sea Power and Light is mounted close to this camera in the sensor bay

module of the Icefin vehicle to provide additional lighting if needed.

3.4.5 Icefin Forward Camera

The forward-looking camera on the Icefin vehicle is mounted to the front module of the

vehicle in line with the BlueView sonar sensor. This Light Ring Color Camera is a com-

mercial off-the-shelf sensor made by Kongsberg. The field of view available is 36 degrees

in the horizontal direction and 27.5 degrees in the vertical direction. The resolution of the

sensor is 752x582 pixels, but images are digitized to 640x480 pixels by the capture hard-

ware and software. A ring of LEDs built into the camera housing provide lighting for the

camera if needed. More specifications for this sensor can be found in [118].

3.5 Field Trials

During the development of this research, the VideoRay Pro IV and Icefin vehicles were

deployed in multiple field tests for data collection. Details of these field deployments, in-

cluding dates and locations, are presented in this section. The under-ice simulation methods

used and corresponding datasets obtained are detailed in Chapter 4.
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3.5.1 Open Water Testing, Lake Lanier, GA - August 2013

Lake Lanier (Fig. 24) is a reservoir located north of Atlanta, and provides a natural test lo-

cation for the vehicle. The VideoRay vehicle was deployed here with the BlueView sonar

sensor attached facing straight forward. The visibility in Lake Lanier is extremely low and

testing of the VideoRay camera was limited. However, the sonar sensor was successfully

used to image the relatively featureless lake bottom (Figure 25a). Sonar (Figure 25b) and

camera (Figure 25c) data were also obtained of the square dock buoys clearly visible from

both sensors. The sonar data taken of the lake floor was used for development and eval-

uation of the ego-motion estimation methodology presented here in relatively featureless

ground tracking missions, due to the similarity of this environment to under-ice topography.

Figure 24: Lake Lanier Test Setup

3.5.2 Outdoor Pool Testing, Atlanta, GA - December 2013

A man-made pool provides a very structured environment where walls and corners are

clearly visible in the sonar data. A pool also provides a very high visibility environment

to test the vehicle’s camera. The VideoRay vehicle with the BlueView sonar was deployed

in an outdoor pool to collect concurrent camera and sonar data. This data was used for

initial analysis of the synchronicity and cross-calibration of the dual sensor data collection
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(a) Sonar - lake bottom (b) Sonar - dock buoys (c) Camera - dock buoy

Figure 25: Sonar and video imagery collected in Lake Lanier

method.

3.5.3 Under-ice Testing, Lake John, CO - January 2014
3.5.3.1 Introduction

In this section is presented some initial under-ice testing and data collection results using

the sensor package of interest. This sensing package was deployed with a VideoRay Pro

IV unmanned underwater vehicle and includes sonar, video, depth, temperature, and com-

pass instruments. The platform was deployed in an under-ice lake in the Rocky Mountains

of Colorado. The experiment and data collection was conducted by deploying the vehicle

through a hole cut in the ice. A command center was placed above the ice around the hole

for control and deployment of the vehicle (shown in Figure 26). Multiple sensor configu-

rations were tested during data collection to find the most useful configuration for future

under-ice deployment. The data obtained from the testing included many deployments of

the vehicle through the ice with sonar and image sensors placed at various angles of inclina-

tion toward the ice. This enabled the topography of the under-ice structure to be examined

using both video and sonar data in various configurations.

3.5.3.2 Approach

Lake John in the Colorado Rocky Mountains was chosen as the testing location due to

the lake depth and ice thickness there during the winter testing period. As Lake John is
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Figure 26: Lake John under-ice testing location. Tent placed around deployment hole and
VideoRay vehicle (in tent) can be seen.

Figure 27: Auger used to drill ice deployment hole and as a feature for the sonar and video
sensors

primarily used as a fishing lake, approval was obtained to drill a large hole and perform

the desired testing. A combination of ice auger and chainsaw effort was used to cut a

rectangular hole in the ice of the required size for vehicle deployment (46cm x 71cm).

A tent was placed over the hole to provide protection from the elements for the vehicle,

equipment, and personnel. To ensure there was at least a singular feature that could be

easily seen in both the sonar and video data, the ice auger (shown in Figure 27) used to drill

ice holes was placed through the ice at a sufficient distance from the deployment hole (4.5

meters). This large artificial feature provided a good point of reference when taking data

and could be easily seen in both the video and sonar datasets.

The BlueView P900-45 forward-looking sonar sensor with a 45 degree horizontal beam
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Figure 28: VideoRay vehicle and sonar sensor deployed under the ice in Lake John

width was mechanically connected to the Videoray Pro IV UUV. The assembled vehicle

was deployed and recovered multiple times by hand through the hole in the ice. Once

the vehicle was placed in the hole, the slightly negative buoyancy of the vehicle carried it

slowly down until it was commanded to a certain depth by the operator. The vertical thruster

on the vehicle was used to control the depth of the vehicle and prevented it from sinking

to the bottom. Control of the vehicle was accomplished using both control software and

manual joystick control. Two different forms of control software were used during testing.

Windows software packages provided by VideoRay and BlueView as well as a Linux-based

Robot Operating System software package were used independently for control and data

collection with the vehicle, camera, and sonar sensor. An image of the Videoray vehicle

deployed under the ice in Lake John is shown in Figure 28.

Many different independent runs (or missions) were completed during vehicle deploy-

ment, as shown in Table 3. In some cases, the vehicle was commanded straight forward and

then straight back to end at the start location. In other runs, the vehicle was turned in a 360

degree circle with minimal translational movement. Many runs were also completed with

the vehicle starting close to the hole, being commanded in a random path, and returning
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Table 3: Lake John navigation scenarios
Navigation Scenario Runs
Deployment through

ice
6

360 degree circle 7
Forward and back 10

Examine auger 6
Random path 14

to the start location. In all of these cases, the data recorded for each run was obtained in-

dependently from the others. The vehicle was commanded to remain at a constant desired

depth for most of the testing. Ground truth vehicle position is always difficult to obtain in

underwater environments due to the lack of a GPS system. These run-types were designed

to provide as much consistency and ground truth as possible in the data sets. The vehicle

was visible from the deployment hole, and data-recording was started and stopped with

the vehicle as close to straight under the hole as possible to aid in ground truth analysis

of the data. The artificial ice auger feature was used as a known reference point to aid in

post-deployment analysis of the data. Many runs contain multiple views of this feature.

Heading and depth readings from the Videoray were utilized to provide ground truth

information. Heading from a compass sensor and depth from a pressure sensor provided

consistent and fairly accurate readings. Pressure readings were calibrated to translate ef-

fectively to depth readings using known lake depth information. Compass heading read-

ings were used to provide yaw truth for each set of associated concurrent sonar pings and

camera images. Such data can be used for analysis of the runs in which the vehicle was

commanded to turn in a 360 degree yaw circle. Inertial measurement data, often used for

dead-reckoning inertial navigation, was also recorded by the vehicle, but requires careful

calibration and scaling if used for vehicle positioning.

The camera and sonar sensors were pointed at varying angles up at the ice throughout

the testing runs. One such configuration was straight up while the other two were set to
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graze the ice at 8 degree and 24 degree angles. Each configuration was used for multiple

runs to determine the optimal configuration for the sensors in similar future missions. A

single run was taken looking down at the bottom of the lake by manually holding the vehicle

and pointing the sensors in the desired direction. Once all required concurrent sonar and

video data was collected, the sonar sensor was removed. Multiple runs were undertaken in

which the vehicle was commanded in a random path to record only video. The vehicle was

much more positively buoyant (remained just below ice level) in this case and had a much

larger radius to explore without the limitation of the second sonar tether. All data obtained

during the vehicle runs was recorded for future offline analysis.

3.5.3.3 Experimental setup

The vehicle, sonar and command and control systems were tested in a test tank prior to field

deployment. Upon validation of all software and hardware involved, the deployment setup

was transferred to the field testing location. Due to the extreme temperatures and damp

conditions on the ice, a tent was used as a control base-station around the deployment hole

during field testing. Equipment cases were used to keep the equipment in the base station

dry and off of the ice. Power to the equipment was provided using a small suitcase-sized

generator placed outside of the tent. The deployment hole cut into the ice was 45cm by

71cm and cut through approximately 51cm of ice thickness. An image of the test setup is

shown in Figure 29. The artificial ice auger feature was placed at a heading of 45 degrees

from north and distance of 4.5m from the deployment hole. The depth of the lake at the

deployment hole was around 6.1m at the time of deployment.

The Videoray Pro IV vehicle was assembled with additional buoyancy to compensate

for the weight of the sonar sensor as well as the balancing weight. Extra-long plastic run-

ners were attached to the bottom of the vehicle to allow attachment of the sonar sensor at

the desired angles of 90 degrees (straight up), 30 degrees, and 10 degrees (almost straight

forward). The sensors mounted in the 90 degree configuration are shown in Figure 30. A

diving weight was attached at the back of the vehicle between these runners to balance the
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Figure 29: Lake John under-ice experimental testing setup and base station

pitch effects of the sonar sensor attached at the front. The sonar sensor could be mounted at

any of the three angles by moving between three pre-drilled mounting points, and the vehi-

cle camera was mechanically tilted to the desired angle to match the angle of the mounted

sonar.

During deployment, one operator was in control of the deployment and retrieval of the

vehicle through the hole, as well as management of the tether. A second operator controlled

the vehicle and data collection efforts using the laptop control station. Two cables were used

to tether the vehicle: one for the control, status and video from the vehicle and another for

sonar sensor communication. The sonar tether limited the vehicle range to a radius of

approximately 6.1m from the deployment hole. The tethers were secured to a stake drilled

in the ice and managed by an operator to reduce strain on the control equipment and prevent

control equipment from accidentally being dragged into the water.

Two sets of control and data collection software were used for redundancy and ro-

bustness. Off-the-shelf software from Videoray and BlueView was used on a Windows

operating system. A Robot Operating System (ROS) package developed for control of the

Videoray vehicle and BlueView sonar was used on an Ubuntu Linux operating system as

well. The ROS package records a timestamp and single video image for each sonar ping
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Figure 30: Videoray sonar and video sensors in 90 degree straight-up configuration

recorded, which provides datasets for the required algorithm validation and analysis. This

ROS package also provides vehicle control, vehicle status, and navigational sensor data

recording capabilities. The BlueView off-the-shelf software used with Windows was also

able to record concurrent sonar and video streams. A GoPro camera was used to take video

of the vehicle operating under the ice.

3.5.3.4 Results

During this Lake John deployment, over 40 runs of data were collected across the two

sets of system software. The Linux-based ROS package seemed much more responsive

for vehicle control, and provided the ability to record vehicle status information (compass

heading, depth, IMU, control inputs) concurrently with the sonar and video data for post-

analysis. The frame rates of the sonar and video streams differed when recorded using

the BlueView software, and required manual post-synchronization using the timestamps in

each dataset.

The artificial ice auger feature was clearly visible in both the sonar and video image

data, but was only clear in the video data when the vehicle was sufficiently close to the
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object, due to the poor visibility in the lake. Figures 31a-31c show concurrent sonar and

video image frames of the auger feature and ice cover. The 30 degree sensor angle seemed

to provide the best configuration for highlighting features in the ice topography. The 90

degree angle (straight up) configuration (Figure 31c) provided a cutaway view of the ice

topography directly above the vehicle, but the small topographical features were lost amidst

stronger returns with this straight-on angle. The 10 degree angle (Figure 31a) seemed to

provide too small of a grazing angle, and little acoustic return was received by the sonar

sensor due to the lack of strong topographical features in the ice. By tilting the sonar at a 30

degree angle from the horizontal up at the ice (Figure 31b), small features were discernible,

even in the mostly flat and smooth first-year ice. At this angle, multiple small features can

be seen to move upon panning of the sonar sensor, and a human operator can detect a

slight uniform shift of many faint features in the sonar data as vehicle motion. Table 4

presents a summary of the analytical results from varying the sensor tilt (altitude) angle.

One observation determined from this under-ice sonar data was an ambiguous visual result

for the ice location (with the 90 degree configuration) due to propagation of the acoustic

sonar waves through the ice (instead of providing a strong return at the ice-water boundary).

Table 4: VideoRay sensor angles during Lake John deployment
Angle Benefits Drawbacks

90 degrees
Good ice topography cutaway

information.
Difficult to distinguish

smaller features.

30 degrees
Good for distinguishing smaller features.

Cannot determine ice location.
Smaller coverage area.

10 degrees
Can distinguish some smaller features.

Large coverage area.
Less resolution for
small ice features.

Some features in the ice were visible to the camera including cracks in the ice, snow

on top of the ice, and air bubbles caught in the ice, shown in Figure 32. However, many

of these features are very small and could not be distinguished from more than a few me-

ters away. The slight topography of the ice could be determined visually when viewed at
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(a) 10 degrees

(b) 30 degrees

(c) 90 degrees

Figure 31: Concurrent video (left) and sonar (right) image frames of the auger feature and
the surrounding ice taken at a various angles up at the ice.
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Figure 32: Close video imaging view of water-ice boundary with visible snow and ice-
crack features.

extreme grazing angles with the vehicle very close to the ice. Sunlight projecting through

the ice and water reduced visibility of the ice-water boundary in many cases. Sunlight

also resulted in saturation of some of the camera data. The ice topography would be better

viewed in the absence of sunlight (such as with thicker polar ice), using the cameras on the

VideoRay as a sole light source. The ice was mostly clear and transparent, which made it

even more difficult to find distinguishable features in the video data. However, this trans-

parency provided the ability to see through the ice layer to the snow pack on top, which

was determined to have more features for the camera to pick up.

Many lessons were learned during this under-ice field deployment. It was determined

that the sonar and video streams collected using the BlueView software have different off-

sets and frame rates, which must be taken into account during sensor fusion post-analysis.

The light saturation, due to the sun shining through the ice, should be avoided if possible to

obtain more feature-rich video data of the under-ice topography. A 30 degree tilt from the

horizontal toward the ice was determined to provide the best sonar views of the features in

the ice topography. Lastly, the low-temperature ratings of the vehicle platform and sonar

sensor proved reliable, and no equipment problems or failures were encountered despite

the harsh deployment environment.
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3.5.3.5 Summary

This under-ice field deployment in Lake John, Colorado using the VideoRay Pro IV ve-

hicle and BlueView P900-45 forward-looking sonar provided a wealth of data for use in

algorithm development and analysis. Video and sonar data was collected for over 40 runs

of the vehicle using multiple software suites for redundancy. The sensors were tilted at

three different angles toward the ice to determine the optimal configuration for viewing the

under-ice topography. The qualitative results from this sensor angle evaluation was used

for development of the Icefin vehicle. The data collected and lessons learned here facili-

tated development of the Icefin custom polar under-ice vehicle, as well as development of

the algorithms presented in this dissertation.

3.5.4 Under-ice Testing, McMurdo, Antarctica - November 2014
3.5.4.1 Introduction

(a) Map of Antarctica (c.o. NSF) (b) McMurdo and deployment site (c.o. Google)

(c) McMurdo Station

Figure 33: Maps and images of the deployment area in Antarctica. McMurdo station and
the relative deployment location (SIMPLE site E) can be seen.

67



Figure 34: 2014 Antarctica SIMPLE field deployment team.

The Icefin vehicle’s maiden sub-ice voyage occurred as part of the 2014 Austral summer

deployment of the NASA-funded project Sub-Ice Marine and Planetary-analog Ecosystems

(SIMPLE) to McMurdo station, Antarctica (Figure 33). The goal of the deployment was to

support a NASA scientific expedition, while providing an assessment of this new under-ice

vehicle and deployment strategy to help lay the initial groundwork for both terrestrial and

planetary exploration. The 2014 deployment team can be seen in Figure 34. Final Icefin

integration took place in Austral spring, 2014 and the vehicle’s maiden voyage beneath the

ice took place in November, 2014. The Icefin vehicle was first deployed from a dive jetty

on the sea ice, close to McMurdo station, for system testing. Following validation of the

vehicle’s control and communication systems, the vehicle was deployed through the ice

at SIMPLE site E (Figure 33b) on the McMurdo Ice Shelf. Video, sonar and other sci-

entific data was collected for analysis by scientists and engineers on the team. The Icefin

vehicle returned data of the previously unexplored under-ice and seafloor environment ad-

jacent to Black Island in McMurdo Sound. The field deployment to Antarctica ended in

December, 2014. This section provides an overview of the 2014 Icefin deployment field

trials in Antarctica and lessons learned, with extrapolations to future polar and planetary

exploration missions.
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3.5.4.2 Testing and Validation

Figure 35: Icefin vehicle deployed by hand in the test tank for actuator testing.

Prior to deployment in an under-ice environment, lab and tank-based testing (Figure 35)

was required to reduce the probability of operational failures with the Icefin vehicle. The

Icefin vehicle was transported over 15,000 km by plane to McMurdo station in Antarctica.

A small shared laboratory space was provided at the bottom of McMurdo Station’s Crary

science lab for final Icefin vehicle integration and testing (Figure 35). The control software

present on the vehicle computer, XMOS, and surface control station computer were tested,

debugged and validated. A ten-meter diameter test tank was provided in the lab, and the

vehicle was deployed by hand into this tank multiple times for in-water testing. Sensors,

actuators, communication and control over the optical fiber tether were tested in this tank

along with mechanical aspects such as buoyancy and center of mass. Additional syntactic

foam was added the fore and aft of the vehicle during tank testing to compensate for unan-

ticipated additional weight in the electronics module, and to bring the vehicle to the desired

slightly negative overall buoyancy with zero pitch. The thrusters were validated by sending

gradually increasing speed commands to the thrusters in the sway, surge, heave, and yaw

directions, and verifying the desired dynamic response of the vehicle.
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(a) Dive jetty and Pisten Bully (b) Icefin vehicle deployed in jetty

Figure 36: The dive jetty near McMurdo Station, Antarctica used for pre-field testing of
the Icefin vehicle and the location of the vehicle’s initial under-ice deployment. The dive
jetty shack is shown on the right and a Pisten Bully used for transportation of the vehicle
equipment is shown to the left in (a). The Icefin vehicle being deployed through the dive-
jetty ice-hole in (b).

3.5.4.3 Field Deployment

Ice cover is difficult to recreate in testing chambers, thus extensive under-ice testing in a

relatively controlled environment was required by the science and engineering teams prior

to certifying the vehicle ready for science operations through the ice shelf. The Icefin

vehicle’s maiden deployment beneath the ice took place in November, 2014 at McMurdo

station’s sea-ice jetty (Figure 36), commonly used by human divers. The dive jetty as well

as the Pisten Bully vehicle, used for vehicle field transport, can be seen in Figure 36a. This

location was utilized due to its close proximity to McMurdo, existing hut infrastructure

setup, and large pre-drilled ice-hole. The goal of this initial sub-ice deployment was to fully

validate the vehicle system and deployment setup in a more controlled environment prior to

full deep-field deployment. The dive jetty provided a much larger diameter hole and thinner

ice than would be possible with ice shelf deployment. These aspects eased Icefin operations

as the vehicle could be deployed by hand and recovered quickly if necessary, with a greatly

reduced probability of loss with respect to ice shelf operations. Deployment in the dive jetty

was also beneficial to evaluate the vehicle drop-weight system, and provided the unique

ability to view the vehicle during deployment through direct human observation and with

a standalone external camera in real time. Such observation was used to directly evaluate
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the vehicle’s behavior and dynamics during testing. An image of the Icefin vehicle under

the sea ice is shown in Figure 37. The vehicle was deployed in the dive jetty four times

for a total of approximately five hours. During the final jetty deployment, the vehicle was

fully operational and performed as desired for approximately 45 minutes of human operator

joystick control before testing was considered to be complete. Successful deployment of

the Icefin vehicle in the McMurdo sea-ice dive jetty proved the vehicle ready for mission

deployment through the deep-field ice shelves.

Figure 37: The Icefin vehicle beneath the sea-ice, deployed through the dive jetty ice-hole
near McMurdo Station, Antarctica.

After the initial sub-ice deployment, the Icefin vehicle was transported from McMurdo

station out to SIMPLE Site E on the McMurdo Ice Shelf (30 km away), as seen in Figure

33. The disassembled Icefin modules and support equipment were loaded into sleds and

tracked vehicles (Pisten Bullies) and driven four hours out to the deployment location on

the ice shelf. A team of hot water ice-drillers had spent the prior day to the vehicle’s arrival

drilling a 38 cm diameter hole for the vehicle deployment, extending vertically through the

14.6 meters of ice thickness present at the Site E location. A 4.5 meter tall tripod was set up
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and positioned above the hole, while the vehicle tether and winch were set up two meters

away for use during deployment. The Icefin surface control station was set up inside a tent

approximately five meters from the deployment hole. This deep-field camp setup can be

seen in Figure 38. Upon connection of the Icefin vehicle modules, the tether was attached

to the rear module and the vehicle was raised to a vertical pitch state above the deployment

hole using the tether, tripod and winch.

Figure 38: The field camp for the Icefin deep-field deployment through the McMurdo Ice
Shelf. The hot water drill used to drill holes through the ice shelf is can be seen on the
right. The vehicle tripod is shown in the middle with the surface control station tent on the
left.

The day following departure from McMurdo Station for the deep field, the Icefin vehicle

was successfully deployed at SIMPLE’s site E location near Black Island. After setup and

system initialization, the vehicle was lowered vertically by the tether through the ice shelf

deployment hole using the winch. Upon reaching the bottom of the hole, the ice-water

interface was examined (with vehicle still in vertical orientation). During this time, the

platelet ice (top of Figure 39) found at the ice-water boundary was examined through real-

time camera streams. The vehicle was then commanded directly down to the seafloor, while

collecting water column profile measurements. At approximately 480 meters depth (less

than five meters from the seafloor), the drop weight at the fore of the vehicle was released

using the Frangibolt system, resulting in vehicle rotation to a horizontal pitch state, as
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desired. Currently, the drop-weight is released upon receipt of a human operator command

from the surface. However, this capability is integrated into the autonomy infrastructure

of the control software, and can be completed autonomously at a preset desired depth in

future missions. The main goal of the deep-field Antarctic deployment described herein

was to obtain characteristic data of the water column extending from the surface to the

seafloor, as well as images, video and sonar imagery of the ice-water boundary and the

sub-ice seafloor (Figure 39). Upon reaching the seafloor and release of the drop-weight,

the vehicle was commanded in a random exploratory pattern (mostly yaw and surge) by the

human operator in search of interesting features and life forms (bottom of Figure 39). A

summary of testing and deployment results is presented in Table 5.
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Table 5: Icefin field testing/deployment results and lessons learned

Power-up and quick validation of sensor
and actuator functionality

Current draw, communication interfacing, sensor and
actuator behavior determined Changed directional

thrusters from RS422 to SPI interface.
Pressure testing of pressure bottle and

bulkheads.
Pressure rating validated to 1500 meters.

Testing of main electronics components
and computing elements

Software bugs were fixed and minor electrical and
heating problems were resolved.

Light dB loss test for 4000 meter optical
fiber tether to validate optical continuity.

No breaks detected, despite being wound around the
winch multiple times. Very low dB loss through fiber.

Tank test to validate buoyancy and leak
resistance.

Added more buoyancy to make the vehicle only
slightly negative. Removed sidescan sonar.

Communications test between surface
control station and the vehicle through

the multiplexer boards and a patch
optical fiber cable.

Multiplexer boards were very easy to use and robust.
Communications and video streams established

successfully over single fiber.

Tank test to test buoyancy,
communications between surface and

vehicle, actuator and light functionality.

Problems with directional thrusters determined to be
shorting of the I2C to USB chip. Protection circuitry

added to both the directional and the rear thruster
control. External power switch and battery charging

solution added to bulkhead.
Full software, electronics, and sensor

bench testing.
Small changes made to complete the full required

system functionality.
Full tank testing of electronics, sensors,
and actuators as well as surface/vehicle

communications.
Validated system readiness for under-ice deployment.

Under-ice deployment of the vehicle in
the McMurdo dive jetty. Weight-release

system validation. Full system
validation.

Further debug of directional thruster issue and
changed lubricant for wet-mate connector. Actuator

tuning, data collection.

Field deployment to McMurdo Ice Shelf. Data collection mission
Under-ice deployment of vehicle in the

McMurdo dive jetty.
Further data collection. Intermittent electronics

system problem debugged.
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Figure 39: Images captured by the Icefin vehicle during its Antarctic deep field deploy-
ment. The top row of images show the crystal-like platelet ice found at the ice-water bound-
ary under the McMurdo Ice Shelf formed by slow freezing of the seawater. The bottom row
of images show a variety of life found on the seafloor 482 meters below the ice, including
anemones, brittle stars, and crustaceans. Scale is estimated from sonar range and camera
field of view.

Sonar and video imagery, as well as water column salinity, temperature, altimetry and

depth data, was recorded during deployment for post-analysis. Video imagery obtained

by the Icefin vehicle of the seafloor includes views of sea stars, brittle stars, crustaceans,

anemones, and sponges (Figure 39). The ocean floor at this location was previously unex-

plored prior to this Icefin voyage. Observations and imagery of life that is able to sustain

itself in such harsh, sub-ice environments is of interest to biologists. A summary of the

datasets collected during field deployment is presented in Table 6.

Ocean currents and water properties affect how the ice shelf and ocean interact, includ-

ing whether ice is melted or accreted and what kind of ice forms. Salinity and temperature

versus depth plots of the water column from initial analysis of the CT sensor data, collected
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Table 6: Datasets recorded during deployment
Data Type Location Total Time Number of Files

External Camera Dive Jetty 0:54:19 8
Down-looking

Camera
Dive Jetty 7:38:54 10

Down-looking
Camera

Ice Shelf (Field) 1:00:34 37

Front-looking
Camera

Dive Jetty 7:08:06 10

Front-looking
Camera

Ice Shelf (Field) 1:07:42 42

Sonar Dive Jetty 2:41:10 20
Sonar Ice Shelf (Field) 0:53:44 5

Telemetry Dive Jetty 5:18:06 7

Telemetry Ice Shelf (Field)
0:00:00

(Corrupted)
1

during this deployment, is shown in Figure 40. In this case, the distinct water profile within

the ice-hole (first 15 meters) is evident from lower salinity and a higher temperature seen in

these plots. The water column below the ice shelf is seen to be well-mixed to the seafloor,

consistent with the formation of platelet ice, seen in the top row of Figure 39.

After a mission consisting of two hours and 45 minutes of data collection beneath the

ice, the winch was used to recover the Icefin vehicle through retraction of the tether. The ve-

hicle rotated to a -90 degree pitch upon intersection with the deployment hole, as designed,

and was raised at a constant velocity by the tether through the deployment hole using the

winch. Upon completion of the deep field deployment, the Icefin vehicle was broken down

and returned to McMurdo station. The vehicle was subsequently returned to the dive jetty

for two more sub-ice missions of sonar and video imagery collection. Throughout these

jetty missions the vehicle was commanded over singular decoupled degrees-of-freedom

(surge, sway, and yaw), as well as over random exploratory paths, for a total duration of

four hours and 22 minutes. Sonar and video datasets were collected from beneath the sea-

ice for use in algorithm development and evaluation. An example of the sonar and video
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(a) Salinity versus depth (b) Temperature versus depth

Figure 40: Salinity (left) and temperature (right) from initial data analysis of a vertical
profile taken during the ice shelf deployment, showing the water column profile with depth.

imagery from the sea-ice deployment can be seen in Figure 41. In mid-December of 2014,

the vehicle and support equipment was broken down and shipped back to Atlanta, GA.

3.5.4.4 Lessons learned from Antarctic deployment

Design and deployment of the Icefin vehicle in the Antarctic presented unique challenges.

Many lessons were learned from this work that can be passed on to future sub-ice mis-

sions. One lesson learned during tank testing was the need for an external vehicle power-

switching and battery-charging solution to reduce wasted energy expenditure during de-

ployment lead up time and to facilitate faster mission turnaround with limited vehicle tear-

down in-between. Relatively small screws are currently used to connect the modules prior

to deployment, which presents a challenge in the field with sub-zero air temperatures. A

module connection system requiring less fine motor work is suggested for future designs.

It is also suggested that such a system incorporate a single standard bulkhead connec-

tor between all modules to reduce the setup effort required to connect many independent
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(a) Sonar (b) Video

Figure 41: Sonar and video images collected during the Icefin vehicle’s under-ice dive jetty
deployments. The textured frazil ice and ice-hole features can be seen here.

bulkhead cables between modules. During deployment, it was discovered that the vertical

hovering thrusters disturb the seafloor and reduce visibility at close proximity. Any design

incorporating vertical thrusters is encouraged to design a control system to engage these

thrusters minimally when close to the seafloor in areas of loose sediment. While a mag-

netic compass cannot be used for polar operations, it is suggested that this sensor be added

to any polar vehicle design, with the option to ignore sensor data in the control software.

These sensors are small and low cost and can increase the utility of the vehicle in the likely

case that the vehicle is used for missions at less extreme latitudes. During post-analysis of

the sonar and video data obtained by the Icefin vehicle during Antarctic deployment, it was

learned that sufficient texture and features in the ice-cover were present to be considered

for use in vision-based algorithms to aid in navigation, currently under development.

The use of internal vectored thrusters in place of protruding control planes in the ve-

hicle design proved successful, but requires additional energy expenditure. A hybrid of

retractable control planes and vectored thrusters is suggested for consideration with future

through-ice-shelf designs. While the deployment and recovery methodology used here was

successful, internal actuators for movement of batteries (similar to seagliders) is suggested

as a method to consider, in place of a drop weight, for moving the center of mass to control

vehicle pitch. Provided there is sufficient space in the vehicle (which was not the case here),

such internal mass actuation would allow the vehicle to be pitched vertically for recovery
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as well as deployment.

3.5.4.5 Extrapolation for Future AUV Planetary Exploration

Many of the lessons learned from the design and deployment of the unique Icefin vehicle

can be extrapolated for use in future Europa and other planetary exploration missions. Use

of a hot water drill to provide a small-diameter hole through thick ice for vehicle deploy-

ment proved effective. However, this drilling method would need to be replaced by onboard

melting or drilling for Europa missions. Deployment and recovery of the vehicle vertically

through a small diameter hole (as well as the use of a drop-weight system for pitch trans-

lation) proved successful in Antarctica and is a key technology that can be extrapolated

to future planetary AUV missions. Such a method might be considered for use in an au-

tonomous Europa mission, although more safeguards would be needed to help guide the

vehicle back into the hole in the unlikely case that vehicle recovery is a requirement.

The use of internal thrusters and lack of protruding control planes is suggested for con-

sideration in future Antarctic and planetary AUV designs deployed through small diameter

ice holes. Such a self-contained design lowers the probability of damage to fragile but nec-

essary external components. However, additional energy is required to run these thrusters,

and thus a tradeoff is presented. A hybrid system might be considered for planetary mis-

sions with a combination of directional thrusters and retractable control planes. An inertial

navigation system proved to be effective for tethered Antarctic missions, but a method less

prone to drift (such as Simultaneous Localization and Mapping [7]) is suggested for longer

duration planetary missions.

While the Icefin vehicle does not currently contain sufficient autonomy in deployment

and control for planetary deployment, and is not rated for some of the extreme conditions

encountered in space, many of the lessons learned in the design of the vehicle and de-

ployment in Antarctica can be extended to aid the design of future planetary AUVs. A

system capable of self-deployment to Europa must be fully autonomous, capable of land-

ing on Europa, capable of drilling and deploying through hundreds of meters of ice, should
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have a robust underwater-surface-Earth communication system, and will be very limited in

power, size and weight. This is a tall order to fill, but with recent advances in the field, the

possibility of such a capable system now seems to be on the horizon.

3.5.4.6 Summary

Deep-field Antarctic deployment of a complex under-ice vehicle system is accompanied

by many unique challenges. The Icefin vehicle was designed as a modular unmanned

underwater vehicle with an extensive sensor suite and an optical fiber tether for control

and communication to meet these challenges while obtaining high science return. The

vehicle was deployed to McMurdo station in Antarctica from October to December of 2014.

Designed for the harsh under-ice environment encountered on the McMurdo Ice Shelf,

the Icefin vehicle was successfully deployed over multiple sub-ice exploration missions

to obtain data of previously unexplored areas beneath the ice shelf. The Icefin vehicle’s

small size and human-portability lowered logistical effort and cost, as expected. Vertical

deployment through a small diameter hole in a thick ice shelf was verified as a tenable

approach. The vehicle’s maiden sub-ice voyage took place in November of 2014, and was

followed by additional missions out in the deep field. Further sub-ice deployment of the

vehicle is planned for Greenland in 2016 and a return to Antarctica in future seasons.

3.6 Summary

Evaluation of the algorithms presented in this dissertation requires sonar and video data

obtained in sub-ice environments. The VideoRay Pro IV and custom Icefin vehicles were

used for data collection beneath the ice in Lake John, Colorado and McMurdo, Antarctica

respectively. These real-world under-ice datasets were used for development and validation

of the algorithms presented in the chapters below. The field deployments, as well as the

vehicle platforms and sensor packages used in this work, were discussed in this chapter.
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CHAPTER 4

SIMULATION

4.1 Introduction

The algorithms presented in this dissertation include methods for motion estimation, sen-

sor fusion, navigational facilitation, ice texture estimation, and ice anomaly detection and

mapping with an under-ice UUV. In order to robustly develop, test, and evaluate these al-

gorithms, under-ice datasets similar to those encountered during full mission deployment

of the algorithms are required. Real-world, under-ice dataset collection presents many

challenges and requires a prohibitive amount of time, cost and support to complete. Such

environments are also very hazardous and force human operators into dangerous situations.

A method for simulation of such under-ice environments is presented here for use in vision-

based algorithm development and evaluation. Simulation-based methods for data collection

are beneficial for many reasons: very low-cost, tight control of the environment and sensor

trajectory, knowledge of ground truth information, and faster results. These benefits pro-

vide motivation for the creation of the under-ice simulation systems presented here. The

algorithms presented in this dissertation require forward-looking sonar as well as camera

sensor datasets of sufficient visual accuracy for algorithm evaluation. Simulated under-ice

environments are created here for both sonar and camera sensors for this purpose. A variety

of datasets are obtained over multiple vehicle trajectories and sensor angles. Development

of the simulation methods used here is detailed in this section, and the resultant datasets

are presented.

4.2 Camera Simulation

Cameras are present on almost all unmanned underwater vehicles due to the desire of hu-

man operators and scientists to view the mission environment. Under-ice UUVs are no ex-

ception to this rule. The Icefin under-ice vehicle considered here has two onboard cameras;
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one upward-facing and one front-facing. A method for simulation of these two unique cam-

era views in an under-ice environment is presented here. Using Blender [11], realistic and

visually consistent scenes of an under-ice environment can be created and imaged. Blender

has been used in multiple previous works, including some in arctic environments [81], for

visually accurate imagery simulation. Motion of the camera can be simulated over the en-

vironment to imitate a realistic vehicle trajectory. The output of such a Blender simulation

provides a stream of sequential simulated images as a video file. Motion of the camera

between frames can be clearly seen in the resultant output video as relative world motion.

Upon creation of a sufficiently accurate under-ice environment in Blender, videos can be

obtained simulating realistic motion of an under-ice vehicle over this environment. These

output videos can be used for evaluation of under-ice vision-based algorithms and should

yield equivalent results to real-world video datasets.

Ice can vary drastically in texture from first year ice that can be only a few centimeters

thick and very smooth with cracks, to multi-year ice that is smooth but varies greatly in

topography, to platelet ice that is comprised of a textured mix of small ice fragments at the

ice-water boundary, to drastically textured frazil ice comprised of half-formed crystals of

ice at the ice-water boundary. In some sub-ice regions, multiple types of ice can be en-

countered during a single UUV mission. In Antarctica, some under-ice locations encounter

large currents where any frazil or platelet ice is swept away to leave only the smooth ice

beneath, while other locations are sheltered from these currents and platelet or frazil ice

can accumulate multiple meters in thickness. Here, an under-ice environment was created

in Blender containing flat and smooth first-year ice, topographically varying but smooth

multi-year ice, textured platelet ice in a wave-like formation (from currents), and drasti-

cally textured and crystal-like frazil ice. A summary of each ice type and its formation

details in Blender is presented in Table 7.

Anomalous objects present at the ice-water interface are often of interest to scientists

for analysis as well as to navigational systems to provide unique visual landmarks. Cracks
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Table 7: Simulated ice types and corresponding Blender configuration settings
Ice Type Blender Settings

All (ICE
Material)

Diffuse: Intensity=0.7, R=0.5,G=0.7, B=0.8,
Specular: Intensity=0.1, R=0.72,G=0.72,B=0.72,

Hardness=100, Shading: Emit=0, Translucency=0,
Transparency=FALSE, Shadow Cast = FALSE

Brash/Platelet Ice

Displacement Modifier: Texture=Dunes,
Strength=1.0, Displacement Modifier:

Texture=Clouds, Strength=0.4, Displacement
Modifier: Texture=Noise, Strength=0.2,

Subsurface Modifier: View=1, Render=1
Displacement Modifier: Texture=Noise,

Strength=0.1

Multi-year
Smooth Ice

Displacement Modifier: Texture=Voronoi,
Size=0.2 Displacement Modifier: Texture=Clouds,

Strength=0.02 Subsurface Modifier: View=1,
Render=1 Displacement Modifier: Texture=Noise,

Strength=0.008

Frazil Ice

Displacement Modifier: Texture=Noise,
Strength=1.0 Displacement Modifier:

Texture=Clouds, Strength=1.0 Subsurface
Modifier: View=1, Render=1 Displacement

Modifier: Texture=Noise, Strength=0.1

First-year
Smooth Ice

Displacement Modifier: Texture=Noise,
Strength=0.1 Subsurface Modifier: View=1,

Render=2 Displacement Modifier: Texture=Noise,
Strength=0.01
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in the ice, holes in the ice, ice deformations, and even life such as anemones [12] can

been found in previous under-ice video datasets. Similar anomalies were added to regions

of each type of ice in the simulated environment presented here, to include ice cracks,

topographical ice deformations, sections of green ice, anemone-like objects, sponge-like

objects, and other animal-like objects. While these plant- and animal-like anomalies do

not need to be completely visually consistent with real anomaly images for the algorithms

developed here, it is important that they provide a unique color and texture against the ice

background, as would be the case with a real ice anomaly. A summary of these anomalies

introduced into the under-ice Blender environment is presented in Table 8.

(a) (b)

Figure 42: Real-world under-ice camera images (left) along with the resultant simulated
under-ice camera images (right) obtained using the simulation methods presented here.

Using Blender, the ground truth of vehicle position over the entire trajectory as well as

the ground truth map of anomaly locations is known exactly and can be used for algorithm

validation. A simulated camera is used to produce video datasets as the camera moves over

the simulated ice environment, just as a camera on a UUV would. A view looking straight

up (pitch=90 degrees) at the ice is simulated in addition to a forward view (pitch=0 de-

grees) from the front of the simulated vehicle. This accurately simulates the two cameras

available on the Icefin UUV platform being simulated, which was used for real under-ice

data collection in McMurdo, Antarctica. The results of the simulated under-ice environ-

ment presented here provide realistic, visually consistent, under-ice images. Examples of
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such images can be seen below, compared with a corresponding real-world, under-ice im-

age. The anemones found under the ice in Antarctica [12][3] can be seen in Figure 42a,

along with simulated anemones in Figure 42b. A patch of green ice located beneath the

Antarctic sea ice can be seen in Figure 43c, along with simulated version of such anoma-

lous ice in Figure 43d. The four different ice types simulated here can be seen in Figure

43b (frazil ice), Figure 43f (smooth multi-year ice), Figure 43d (Brash or platelet ice), and

Figure 43h (smooth first-year ice). Real-world images from under-ice datasets are used for

comparison of these simulated images; Figures 43a, 43e, 43c (collected in Antarctica with

the Icefin vehicle) and Figure 43g (collected in Lake John, Colorado using the VideoRay

vehicle) respectively. Views from both simulated camera viewpoints can be seen in these

images as well. For example, the forward-looking camera view is used to synthesize Figure

43d, while the upward-looking camera view is used for Figure 43f.
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Table 8: Simulated under-ice anomalies and corresponding Blender configuration settings
and components

Anomaly Anomaly Description Blender Settings and Components

Ice crack
Crack in the ice. Visual

but not largely
topographical.

Shape=Icosphere, Hardness=511, Diffuse
Intensity=0.5, Specular Intensity=1.0,

Transparency=TRUE, Alpha=0.2,
Displacement Modifier: Texture=Noise,

Strength=0.4

Ice deformation
Topographical

protruding feature in
the ice

Material=ICE (see above), Shape=Icosphere,
Displacement Modifier: Texture=Noise,

Strength=1.0

Anemone
White color, complex

shape

Shape=Multiple connected icospheres,
Hardness=1, Diffuse intensity=0.8, Specular

intensity=0, Color(R,G,B)=(1,1,1)

Sea star White color, star shape
Shape=Multiple connected icospheres, Diffuse

intensity=0.8, Specular intensity=0,
Color(R,G,B)=(1,1,1)

Green ice patch
Green color, circular

but flat shape

Shape=Icosphere, Color(R,G,B)=(0.1,0.3,0.1),
Hardness=50, Diffuse intensity=0.8, Specular

intensity=0.5, Displacement Modifier:
Texture=Noise, Strength=0.1

Sponge
Various colors,

complex and jagged
structure

Shape=Icosphere, Diffuse intensity=0.8,
Specular intensity=0,

Color(R,G,B)=(0.8,0.8,0.3),
Color(R,G,B)=(0.6,0.1,0.6) Displacement

Modifier: Texture=Noise, Strength=10

Sea slug
Dark color, rounded

circular shape,
antennae

Shape=Multiple connected icospheres, Diffuse
intensity=0.8, Specular intensity=0,

Color(R,G,B)=(0,0,0)

Shrimp
Dark color, complex

shape

Shape=Multiple connected icospheres, Diffuse
intensity=0.8, Specular intensity=0,

Color(R,G,B)=(0,0,0)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 43: Real-world under-ice camera images (left) along with the resultant simulated
under-ice camera images (right) obtained using the simulation methods presented here.
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Figure 44: Ground truth map of the all-ice rectangular simulated under-ice dataset. This
view is looking up from beneath the ice at the entire environment with the various ice types
and ice anomalies.

In order to obtain useful video datasets for vision-based algorithm development, a va-

riety of camera, or vehicle, trajectories were simulated over these simulated under-ice en-

vironments. The simulated cameras were first moved in a translational (purely surge and

sway) trajectory as well as a rotational (yaw or heading) pattern around the vehicle’s z-axis

to obtain decoupled translational and rotational datasets for unit-testing of algorithm func-

tionality. This was done for each ice type individually as well as over both camera angles.

A summary of these decoupled simulation trajectories is presented in Table 9. In addition to

these rotation- and translation-only trajectories over a single ice type, more complex cam-

era trajectories were also simulated. A surge-only trajectory as well as a surge and sway

rectangular trajectory over all ice types and both camera angles was simulated to present a

dataset containing various ice textures and shapes. An overview of the rectangular all-ice

environment is can be seen in Figure 44. While these trajectories are also decoupled from

rotation, a final trajectory was simulated with an s-curve trajectory which couples transla-

tion and rotation over both camera angles for full vision-based motion estimation algorithm

validation. A summary of all simulated, under-ice camera datasets is presented in Table 9.
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Ground truth (x, y, z) position and heading are recorded for each video frame as ground

truth over each trajectory. These simulated datasets provide the most accurate means for

evaluation of many vision-based algorithms as they contain the most reliable ground truth.

Table 9: Camera Simulated Datasets

Ice Type Camera
Angle Trajectory

First-year Smooth
Up

Yaw-only
Forward-only (Surge)

Front
Yaw-only

Forward-only (Surge)

Brash/Platelet
Up

Yaw-only
Forward-only (Surge)

Front
Yaw-only

Forward-only (Surge)

Multi-year Smooth
Up

Yaw-only
Forward-only (Surge)

Front
Yaw-only

Forward-only (Surge)

Frazil
Up

Yaw-only
Forward-only (Surge)

Front
Yaw-only

Forward-only (Surge)

All Ice Types
Up

Forward-only (Surge)
Rectangular

(Surge/Sway)
S-Curve (Coupled

Surge, Sway, and Yaw)

Front
Forward-only (Surge)

S-Curve (Coupled
Surge, Sway, and Yaw)

4.3 Forward-Looking Sonar Simulation

Forward-looking multibeam sonar sensors, such as the BlueView sensor [60] considered

here, are used in multiple algorithms presented in this dissertation. These sensors are con-

sidered to be “imaging sonars” and present the viewer with a relatively high-definition,

two-dimensional representation of the area in front of the sensor, up to a certain range and
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bearing field of view. An example of such a sonar image taken of the sea ice near Mc-

Murdo, Antarctica can be seen in Figure 45a. In order to simulate such sonar images of

an under-ice environment with sufficient accuracy for vision-based algorithm evaluation, a

large image with similar texture to that found under the ice is used as a representation of the

under-ice environment. In order to imitate the limited range and field of view of the sensor,

a triangular (45 degree) bounding frame is translated and rotated over the large world im-

age to obtain simulated local views over a trajectory. An example of such a bounded-frame

simulated sonar image can be seen in Figure 45b in comparison with an actual under-ice

sonar image in Figure 45a.

(a) (b)

Figure 45: Under-ice sonar data (a) obtained of the sea ice near McMurdo, Antarctica along
with a simulated version (b) of this sonar image.

The texture in these images represents formation of the semi-frozen platelet, brash or

frazil ice located at the ice-water boundary. Anomalies in the ice (such as that seen in

the lower-center of Figure 45a) present strong returns in the image and are also present in

smooth ice (no semi-frozen ice layer). An example of a strong return from an anomaly

deformation in the ice can be seen in Figure 46a, along with a simulated high-return object
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in Figure 46b. Contiguous areas of low return are also present in both smooth and non-

smooth ice types, and represent holes in the ice or acoustic shadows following large, high-

return objects. An example of such a low-return area can be seen in Figure 46c, which

represents a hole drilled in the sea-ice near McMurdo, Antarctica. A simulated sonar image

with such a feature is shown in Figure 46d for comparison.

(a) (b)

(c) (d)

Figure 46: Under-ice sonar data (left) obtained of the sea ice near McMurdo, Antarctica
along with simulated versions of this sonar data (right). Areas of strong return in the sonar
can be seen in (a)-(b) while low-return areas can be seen in (c)-(d).

Many different trajectories are simulated using this under-ice sonar simulation method.
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Table 10: Sonar simulated datasets
Trajectory Description

Forward Forward-only (surge) decoupled motion
Circle Rotation-only (yaw) decoupled motion over 360 degrees

Rectangle
Surge and sway motion in a rectangular trajectory returning to the

initial point

S-Curve
Coupled rotation (yaw) and translation (surge/sway) to form
alternating circular trajectories which create an s-curve shape

These trajectories are designed to match those discussed in the camera simulation section

above. Such complementary datasets provide the means for evaluation of sensor fusion

algorithms. In the case of the sonar sensor (as opposed to the camera sensor), only a single

sensor angle is considered (forward-looking) as this is the common sensor configuration.

Decoupled rotation- and translation-only trajectories are simulated, as well as a rectangular

surge/sway trajectory. An s-curve trajectory coupling rotation and translation (similar to

that in the camera simulation section above) is also simulated for full validation of motion

estimation algorithms. A summary of all trajectories simulated over the under-ice sonar

datasets created is presented in Table 10.

4.4 Summary

The difficulties encountered in obtaining under-ice sonar and camera datasets due to the in-

frastructure required and the harshness of the environments can be very prohibitive to such

data collection missions. Development of an under-ice environment simulation method

is presented here as a low-cost, controlled, and time-effective approach for creation of

under-ice datasets for evaluation of vision-based algorithms such as those considered here.

These simulation methods are detailed herein and results from such under-ice environment

simulation is presented as images along with real-world imagery for comparison. These

simulation methods prove effective for low-impact dataset creation for the evaluation of

the vision-based algorithms considered here.
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CHAPTER 5

UNDER-ICE MONOCULAR CAMERA RELATIVE POSE
ESTIMATION

5.1 Introduction

Localization and navigation through underwater environments is a difficult task for divers,

submarines and unmanned underwater vehicles (UUVs) alike due to the lack of salient vi-

sual features, poor visibility, limited communications, and absence of GPS signals used

as a standard in most terrestrial and airborne applications. Under-ice environments tend to

present even fewer salient visual features, less natural light, and increased difficulty deploy-

ing acoustic beacon based localization methods commonly used in the open ocean. Most

current under-ice vehicles use an inertial navigation system for position estimation, despite

the large error drifts encountered, which limit mission duration. One increasingly common

localization and motion estimation approach used with unmanned vehicles is termed vision-

based relative pose estimation. Using corresponding feature points detected in consecutive

images, the motion of a camera between these frames can be estimated. Vision-based rela-

tive pose estimation has been previously evaluated for use in underwater environments, but

typically requires feature rich and salient image streams not present under the ice.

Adaptation of a camera-based relative pose estimation method previously used on aerial

and terrestrial vehicles is presented here for use in relatively featureless under-ice environ-

ments. Preprocessing of the low-contrast input images and adaptation of this relative pose

estimation approach for this unique environment results in a self-contained method for

estimation of under-ice vehicle motion between image frames in six degrees-of-freedom.

This camera-based relative pose estimation algorithm is evaluated using both simulated and

real-world, under-ice datasets with positive results. This algorithm provides a method for

vehicle-relative pose estimation that is less vulnerable to integration-based drift error, such

as that encountered using an inertial navigation system (INS), and does not require external
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infrastructure, in contrast to acoustic beacon-based methods.

5.2 Camera Model and Intrinsic Parameter Estimation

In order to relate pixels in a camera image to points in the outside world from which they

were obtained, a camera model for how an image is formed must be considered. The model

used here is an extension of the simple pinhole camera model with added distortion. Almost

all cameras have some amount of tangential and radial (fisheye) distortion. Equations 5 – 6

(radial distortion) and 7 – 8 (tangential distortion) can be used to model this distortion and

correct for it [119] [120]. In these equations, x and y represent the pixel coordinates and

r represents the radius from the center of the image, while k1-k3 and p1-p2 represent the

radial and tangential distortion coefficients respectively.

xcorrected = x ∗ (1 + k1r2 + k2r4 + k3r6) (5)

ycorrected = y ∗ (1 + k1r2 + k2r4 + k3r6) (6)

xcorrected = x + [2p1xy + p2(r2 + 2x2)] (7)

ycorrected = y + [p1(r2 + 2y2) + 2p2xy] (8)

A camera calibration process is used to estimate both the pinhole camera model param-

eters (focal lengths and principal point) and the distortion coefficients. Camera calibration

is a process that uses multiple images (from different viewpoints) of a known object to

obtain an estimate of the camera’s intrinsic parameters (focal length, principal point and

distortion coefficients) that minimizes the reprojection error of the model. In this case, a

planar chessboard pattern with known dimensions is imaged, the corner pixel locations are

extracted, and these pixel locations are compared with the known model of the chessboard

to determine the intrinsic parameters.

Calibrated models for the cameras used here for data collection do not exist in the litera-

ture and were thus obtained through testing. The VideoRay camera encounters a significant

amount of fisheye distortion due to the lens and the large, clear plastic dome that acts as
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Figure 47: Uncalibrated (left) and calibrated (right) images from the VideoRay camera.

an additional optical element. An example of a VideoRay chessboard calibration image

both before and after removing distortion is shown in Fig. 47. The VideoRay camera hard-

ware provides the capability to pan up and down inside the plastic dome, but movement of

the camera induces different distortion effects, and each tilt angle must be calibrated sepa-

rately. Using the VideoRay Pro IV camera, separate calibration datasets with images of the

chessboard pattern were obtained underwater for each sensor angle used when obtaining

the under-ice dataset in Lake John, Colorado. Chessboard calibration datasets were also

obtained for the forward and upward cameras present on the Icefin vehicle. The simulated

(Blender) camera provides control over the intrinsic parameters, and did not require cal-

ibration. The algorithm used for calculation of intrinsic and extrinsic parameters is that

presented in [73] based on [119] and [120]. A summary of the calibration results ob-

tained for the camera parameters is shown in Fig. 48. The average pixel reprojection error

is calculated by taking the arithmetical mean of the absolute norms between all projected

points in the model and the corresponding detected corner locations. Following calibration,

distortion can be removed to produce images assumed to satisfy an ideal pinhole camera

model.
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Figure 48: Table of underwater calibrated camera intrinsic parameters along with the
average pixel reprojection error of the estimated models. Here fx and fy are the camera
focal lengths and cx and cy represent the optical center in pixel coordinates.

5.3 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Due to the low contrast encountered in under-ice images, use of a preprocessing technique

called contrast limited adaptive histogram equalization (CLAHE) [82] was used to adap-

tively adjust the contrast of local pixel neighborhoods based on the intensity histogram

distribution in that neighborhood. This method results in globally contrast-enhanced im-

ages, and allows for improved point-feature detection. The CLAHE mapping function

maximizes the contrast of the most common intensity values. This mapping function is

shown in Equations 9 – 10. Here i represents intensity, Cclahe(i) is the contrast of a specific

intensity value, fclahe(i) is the mapping function, α is a constant representing the display

range divided by the region size, and Cmax is the clip limit on the contrast. An example

of CLAHE applied to an under-ice image is shown in Figure 49. Point-features can be

automatically extracted from images to provide strong points for tracking. Detected point-

features are shown as small circles in Figure 49 to show the increased performance (more

features detected) of such point-feature detection algorithms on CLAHE contrast enhanced
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(a) Raw original image (b) CLAHE preprocessed image

Figure 49: SIFT feature detections in an original (a) and CLAHE preprocessed (b) image.

images. Preprocessing of low-contrast, feature-poor, under-ice images using CLAHE en-

hances the capabilities of computer vision methods, such as point-feature algorithms, in

this environment. Therefore, vision-based relative pose estimation methods, commonly

used with feature-rich imagery, can now be utilized in this much harsher environment.

Cclahe(i) =


histogram(i), histogram(i) < Cmax

Cmax, histogram(i) >= Cmax

(9)

fclahe(i) = α

∫ i

0
Cclahe(τ)dτ (10)

5.4 Vision-Based Relative Pose Estimation Algorithm

In order to estimate relative motion of the vehicle between camera frames, application of

a vision-based relative pose estimation method, commonly used in feature-rich environ-

ments, is presented here. A combination of preprocessing, low feature detection thresh-

olds, and robust matching methods is presented in order to successfully apply this method

to feature-poor, low-contrast under-ice environments. The method presented here for visual

relative pose motion estimation utilizes a five-point algorithm with random sampling and
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consensus (RANSAC) [68] provided by Nister [89]. The required point-features for match-

ing between images and use in relative pose estimation methods can be extracted once the

camera images in the system here have been preprocessed, distortion has been removed,

and histogram equalization (CLAHE) has been applied. Matching corresponding points

between images requires point-features that can be easily found and reliably matched, such

as the common Shi-Tomasi [61] or SURF [64] point-features. Shi-Tomasi features are a

modified version of Harris corner point-features, which are based on derivatives (the sec-

ond order moment matrix) [62] or local gradients of the neighborhood surrounding a pixel.

SURF features can be extracted very fast and use an approximation of the determinant of

Hessian blob detector. Once a set of point-features have been detected and a description

for them has been extracted, the point-features between two images can be matched.

The method presented here for estimating corresponding point sets between images

utilizes optical flow theory. Optical flow [70] is a pixel-based method often used to estimate

motion of pixel points between images in a sequence. This differential algorithm works on

the assumption of a brightness constancy constraint (Equation 11), similar motion between

neighboring pixels (smoothness), and small temporal movement between the images. In

Equation 11, u and v refer to the x and y motion vector magnitudes respectively, while

Ex, Ey and Et are the partial derivatives of image brightness with respect to x, y and time

respectively. The Lucas-Kanade algorithm [71] used here provides an approximation for

optical flow of 3x3 pixel patches [73] in the images by using least squares minimization

to find an estimate for the gradient constraint equation at a sparse set of Shi-Tomasi [61]

or SURF points. Specifically, a pyramidal implementation of this method [121] is used in

order to increase robustness over scale-space. A candidate set of matched points between

images results from the application of this Lucas-Kanade method. While point-feature

and optical flow algorithms are common in computer vision applications, underwater and

under-ice relatively featureless environments, such as that here, present much less common

and more challenging applications.

98



uEx + vEy + Et = 0 (11)

Vision-based relative pose estimation methods are not commonly used in underwater

or under-ice applications due to low contrast and limited features encountered. In order to

apply such a method to the feature-poor environments of interest here, point-feature detec-

tion and matching thresholds must be set low to provide the maximum number of candidate

matches between images. However, this dramatically increases the number of false detec-

tions and matches, and a robust model estimation method is used here to remove these false

matches from the inlier set. The method presented here utilizes adaptive contrast enhance-

ment (CLAHE), as well as a system with maximum point-feature detections on the front

end and robust model estimation on the back end, to provide the robustness required for

use in under-ice environments. Provided sufficient candidate corresponding points matched

between images, it is possible to estimate the relative pose of the camera (and therefore the

vehicle) between successive images. In computer vision, the essential matrix (E) encodes

complete information on the 3-D rotation and translation between two camera viewpoints.

Nister’s five-point algorithm [87] provides a method for estimation of the essential matrix

with only five point correspondences between images, using the epipolar constraint equa-

tion (Equation 12). Here x1 and x2 are points in the image plane and E is the essential

matrix. When more than five candidate point correspondences are available, robust param-

eter estimation techniques such as random sample consensus (RANSAC) [68] can be used

to improve the parameter accuracy. RANSAC iteratively finds a minimal random sample

set, calculates the motion model for this set, and then computes the resultant error from

this model over all match points and repeats this process until a satisfactory model (with

sufficient inlier points) is produced. All matches within a certain error threshold of the final

model are considered “inliers” while any matches with model error above this threshold are

considered “outliers”. RANSAC is used here to eliminate false matches from the motion

model calculation, and allows for lower detection and matching thresholds, and therefore
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more candidate matches, on the front end.

x̂2
T
· E · x̂1 = 0 (12)

In the vision-based pose estimation algorithm presented here, the essential matrix be-

tween two camera viewpoints is extracted from corresponding point sets between two

consecutive images, as detailed above. The essential matrix can be decomposed into

two possible rotation matrices and a translation vector using singular value decomposi-

tion (SVD) [122] with Equations 13–17. In these equations E is the essential matrix, t is

the translation vector, R is the rotation matrix, U,V,Σ are the decomposed SVD matrices,

R1 and R2 are two possible rotation matrices, and W is the matrix in Equation 17. SVD

decomposition provides four possible sets of rotation and translation (R1 | t, R2 | t, R1 | −t,

R2 | −t). The two possible rotations are related through a 180 degree rotation around the

translation vector [123], and the roll and pitch of the vehicle platforms used here are as-

sumed to be zero. Therefore, the rotation vector chosen for the relative pose estimate, in

the algorithm presented here, is that with the smallest roll and pitch Euler angles. The scale

and sign of the translation vector is not recoverable from this method.

E = [t]XR = UΣVT (13)

R1 = UWT VT (14)

R2 = UWVT (15)

t = U(0, 0, 1)T (16)

W =


0 −1 0

1 0 0

0 0 1

 (17)

The Euler angles of rotation can be extracted from the rotation matrices using Equations

19–21, assuming that the rotation matrix is of the form shown in Equation 18. In these

equations φ, θ and ψ are angles around the x, y and z axes respectively. Rx, Ry, and Rz are
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the individual rotation matrices for these angles, and cx, cy, cz, sx, sy and sz are the cosine

and sine values of these angles.

Rzyx = RzRyRx =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


czcy czsysx − szcx czsycx + szsx

szcy szsysx + czcx szsycx − czsx

−sy cysx cycx

 (18)

φ = tan−1(r32/r33) (19)

θ = tan−1(−r31/
√

r2
32 + r2

33) (20)

ψ = tan−1(r21/r11) (21)

In order to obtain the correct motion model estimates between frames in the vehicle

coordinate system instead of the camera coordinate system, the result must be multiplied by

the rotation matrix Rimage2vehicle in Equation 22 to convert from image coordinates to vehicle

coordinates (Figure 50). The camera tilt angle is accounted for by further multiplying the

model by the rotation matrix Rsensor in Equation 23, where θ corresponds to the camera tilt

angle. The resulting output motion model provides relative pose estimates of the camera

between image frames. The number of inliers in the estimated model is also presented

at the output to indicate the strength of the estimate. Pseudo code for the camera-based

relative pose algorithm developed here is presented in Figure 51.

Rimage2vehicle =


0 0 1

1 0 0

0 1 0

 (22)

Rsensor =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 (23)
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Figure 50: Vehicle and camera coordinate systems.

Pseudo code for camera-based relative pose algorithm main loop:
Capture camera image at time t0 and t1

Convert both images to grayscale
Apply CLAHE to both images
Remove lens distortion from both images (camera calibration)
Extract 1000 strongest Shi-Tomasi or SURF features in t0 image
Extract 1000 strongest Shi-Tomasi or SURF features in t1 image
Bouguet’s pyramidal Lucas-Kanade optical flow matching of features be-
tween images
Estimate 5.5 DOF motion model essential matrix using Nister’s five-
point method and RANSAC
Decompose essential matrix into translation and rotation matrices using
SVD
Convert relative pose estimate to vehicle-base coordinate system
Output estimated motion model and number of inliers

Figure 51: Pseudo code for camera-based relative pose algorithm
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5.5 Algorithm Results

The vision-based relative pose estimation algorithm presented here was first evaluated us-

ing simulated camera data, due to the controllability and inherent ground truth available.

These simulated video datasets provided a variety of vehicle trajectories for full evalu-

ation of the algorithm. The camera-based relative pose estimation algorithm presented

here provides a six degree-of-freedom (minus scale) motion estimate between frames. The

first trajectories considered during testing were single degree-of-freedom trajectories with

decoupled rotational and translational motion. A surge-only trajectory was used for eval-

uation of the translational estimation accuracy. In this case, the simulated camera sensor

was commanded in a surge-only (directly forward) path for 600 meters. Between each

frame, the simulated vehicle was moved forward a distance of one meter. The results of

this testing can be seen in Figure 52 along with the ground truth. It can be seen that a small

drift is accumulated (clearly visible in the y-direction), but represents an error of less than

one percent of the distance travelled. In this case, the maximum accumulated x-error over

600 meters is measured at 7.24m, while the maximum accumulated y-error is measured at

5.75m. This corresponds to error percentages of 1.2% and 0.96% respectively. In contrast

to INS systems, this accumulated error is positional in nature and does not affect future cal-

culations. Any error drift in INS acceleration-based methods for position estimation result

in velocity offset error, further resulting in a steady state position error, which effects all

future calculations. This illustrates the benefit of a direct positional difference method over

an integrated acceleration method in tracking motion or odometry.

In addition to the surge-only simulated dataset described above, an additional decou-

pled, single degree-of-freedom dataset was also used to evaluate the rotational estimation

performance of the algorithm. In this case, yaw motion of the vehicle was simulated at a

rate of one degree per frame, over a full 360 degree circle. Surge and sway translational

motion was kept at zero during this rotational motion. The results from one of the simu-

lated yaw-only camera datasets can be seen in Figure 53. In this case, it is clear that the
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Figure 52: Translational (surge-only) estimated trajectory with ground truth

accumulated error rates are very low (less below one percent of the distance travelled). The

maximum accumulated yaw error is calculated at 0.8 degrees, corresponding to 0.2% of

the total 360 degree rotation. Qualitatively, it can be seen from Figure 53 that the accumu-

lated yaw-estimate result tracks very well with the ground truth. These translational and

rotational, decoupled, single degree-of-freedom evaluations show that the camera-based

relative pose algorithm performs as expected, with sufficiently low error rates.

A final decoupled, simulated camera dataset was tested with the vision-based relative

pose estimation algorithm before advancing to more complicated trajectory evaluations.

In this case, the simulated vehicle was commanded in a piecewise sway- and surge-only

translational trajectory to form a rectangular path. Yaw was again held constant to decouple

the translational and rotational effects. The resultant estimate, along with the ground truth

trajectory, can be seen in Figure 54. It is clear that the vehicle begins at the origin (0,0)

and moves in the negative sway direction, then the negative surge direction, followed by

the positive sway direction and then finally the positive surge direction to return to the
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Figure 53: Rotational (yaw-only) estimated yaw with ground truth

origin. A slight accumulated error can be seen between the camera estimate and the ground

truth in this figure. The maximum error calculated over this trajectory was 7.8 meters in

the x-direction and 12.45 meters in the y-direction, over a distance of 600 meters. This

corresponds to an accumulated error percentage of 1.3% and 2.1% of the distance travelled

respectively.

The positive results from the evaluation of this algorithm over these three initial, decou-

pled trajectories proves the utility of the camera-based relative pose algorithm presented

here. However, further evaluation is required using a dataset which contains coupled ro-

tational and translational motion if the algorithm is to be used in realistic applications.

Estimation of coupled rotational and translational motion presents a much more difficult

problem, but such motion is commonly encountered when using real vehicle systems. In

order to evaluate the performance of the algorithm presented here with coupled transla-

tional and rotational motion, an s-curve trajectory is used to create an additional simulated

camera dataset. Over this s-curve trajectory, the vehicle follows alternating hemispherical
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Figure 54: Rectangular (surge and sway) estimated trajectory with ground truth

paths, with surge and yaw motion between each frame. The ground truth s-curve path can

be seen in Figure 55a along with the resultant output estimate from the vision-based rela-

tive pose algorithm, scaled from unit vector form for visual comparison. In this case it can

be seen qualitatively that the estimated trajectory tracks well with the ground truth. While

quantitative error values are not available for the translational results in this case, due to

the camera scale factor ambiguity, the absolute rotational yaw error values can be used for

algorithm validation. The estimated s-curve trajectory encounters a maximum rotational

error of 2.12 degrees, corresponding to 0.3%, over the total 720 degrees of rotation (Figure

55b). A summary of all maximum accumulated errors and average frame-to-frame errors

over all simulated camera dataset trajectories (detailed in Section 4.2) can be seen in Table

11 and 12 respectively.

Once the algorithm performance was validated using simulated camera datasets, further

evaluation was undertaken using real under-ice datasets taken in Colorado and Antarctica.
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Table 11: Maximum accumulated error results (all simulated data)

Trajectory Ice type Angle x (%, m) y (%, m) ψ (%, ◦)
Surge-sway translation

(Fig. 54)
All Upward

1.30%,
7.80m

2.08%,
12.45m

-

Yaw-only (Fig. 53) Brash Upward - -
0.22%,
0.80◦

Yaw-only (Fig. 53) First-year Upward - -
0.39%,
1.40◦

Yaw-only (Fig. 53) Frazil Upward - -
0.10%,
0.37◦

Yaw-only (Fig. 53) Multi-year Upward - -
0.06%,
0.20◦

Surge-only (Fig. 52) All Forward
1.21%,
7.24m

0.96%,
5.75m

-

Yaw-only (Fig. 53) Brash Forward - -
0.24%,
0.85◦

Surge-only (Fig. 52) Brash Forward
0.04%,
0.07m

0.11%,
0.22m

-

Yaw-only (Fig. 53) First-year Forward - -
0.26%,
0.93◦

Surge-only (Fig. 52) First-year Forward
0.07%,
0.14m

0.19%,
0.37m

-

Yaw-only (Fig. 53) Frazil Forward - -
0.30%,
1.09◦

Surge-only (Fig. 52) Frazil Forward
0.01%,
0.02m

0.08%,
0.15m

-

S-curve (Fig. 55) All Forward - -
0.29%,
2.12◦

Yaw-only (Fig. 53) Multi-year Forward - -
0.25%,
0.91◦

Surge-only (Fig. 52) Multi-year Forward
16.22%,
32.43m

0.16%,
0.32m

-

Surge-only (Fig. 52) All Upward
11.08%,
66.47m

3.93%,
23.58m

-

S-curve (Fig. 55) All Upward - -
0.33%,
2.34◦

Surge-sway translation
(Fig. 54)

All Upward
1.30%,
7.80m

2.08%,
12.45m

-
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Table 12: Average frame-to-frame error results (all simulated data)

Trajectory Ice type Angle x (%, m) y (%, m) ψ (%, ◦)
Surge-sway translation

(Fig. 54)
All Upward

3.00%,
0.03m

4.00%,
0.04m

-

Yaw-only (Fig. 53) Brash Upward - -
1.00%,
0.01◦

Yaw-only (Fig. 53) First-year Upward - -
1.00%,
0.01◦

Yaw-only (Fig. 53) Frazil Upward - -
0.00%,
0.00◦

Yaw-only (Fig. 53) Multi-year Upward - -
0.00%,
0.00◦

Surge-only (Fig. 52) All Forward
1.00%,
0.01m

3.00%,
0.03m

-

Yaw-only (Fig. 53) Brash Forward - -
1.00%,
0.01◦

Surge-only (Fig. 52) Brash Forward
0.00%,
0.00m

1.00%,
0.01m

-

Yaw-only (Fig. 53) First-year Forward - -
1.00%,
0.01◦

Surge-only (Fig. 52) First-year Forward
0.00%,
0.00m

2.00%,
0.02m

-

Yaw-only (Fig. 53) Frazil Forward - -
1.00%,
0.01◦

Surge-only (Fig. 52) Frazil Forward
0.00%,
0.00m

1.00%,
0.01m

-

S-curve (Fig. 55) All Forward - -
2.78%,
0.02◦

Yaw-only (Fig. 53) Multi-year Forward - -
1.00%,
0.01◦

Surge-only (Fig. 52) Multi-year Forward
16.00%,
0.16m

1.00%,
0.01m

-

Surge-only (Fig. 52) All Upward
11.00%,
0.11m

8.00%,
0.08m

-

S-curve (Fig. 55) All Upward - -
4.17%,
0.03◦

Surge-sway translation
(Fig. 54)

All Upward
3.00%,
0.03m

4.00%,
0.04m

-
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(a) x,y trajectory (b) Yaw

Figure 55: S-curve (coupled rotation and translation) estimated trajectory with ground truth
(left), as well as estimated yaw with ground truth (right)

These real datasets provide difficult benchmarks due to the disturbances of human opera-

tor control, and more realistic autonomous missions would present much smoother inputs

with the ice consistently fixed in the frame. Compass and gyroscope data was used for

ground truth in the yaw direction for the Colorado and Antarctica datasets respectively.

Translational motion in the datasets was validated using approximated vehicle trajectories

as qualitative ground truth. During rotational data collection, the vehicle was commanded

to rotate around the z-axis (yaw) with minimal translation. The results for the estimated

vehicle rotation, along with compass yaw ground truth, for one rotational Colorado dataset

is shown in Figure 56. In this case, SURF feature-points were tracked between frames,

providing an estimate that follows close to the ground truth. The maximum accumulated

yaw error for this dataset is 107.29◦, and the final yaw error is 32.08◦ over 550 total degrees

of rotation. These error rates correspond to 19.51% and 5.83% respectively, and mostly re-

sult from periods of time when the ice is not visible in the frame. It is important to note

that absolute camera translational trajectory estimates are shown for the simulation datasets

above, despite the fact that these estimates are composed of a unit vector without scale. Us-

ing simulated datasets, the magnitude of the motion between each frame is known, which

provides the ability to plot absolute trajectories. However, these magnitude values are not
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Figure 56: Yaw rotation estimates from the algorithm using SURF features along with
compass ground truth data for an under-ice rotation run through 550 degrees

known in real-world datasets, and therefore the absolute translational trajectories cannot

be plotted. Evaluation of the translational results, in these cases, is limited to qualitative

analysis. However, absolute rotational information is estimated, and can be compared with

the available ground truth for real-world validation of the algorithm. Qualitative analysis of

the Colorado out-and-back translational dataset estimate, shown in Figure 57, shows that

the vehicle encounters positive sway for the first half of the trajectory, followed by nega-

tive sway for the remainder, as expected with such a trajectory. In this case, magnitude in

the plot is not significant, and it is only important to note that the plot shows an increase,

followed by a decrease in accumulation over a symmetrical number of frames.

Translational ground truth is not available for the Antarctic datasets used here. There-

fore, the yaw ground truth from the gyroscope and INS was used to validate the perfor-

mance of the camera-based pose estimation algorithm presented in this dissertation. It can

be seen from the estimated output plots in Figure 58 that this algorithm tracks well with

the ground truth. The maximum accumulated error in this case is 70.98◦ and the final error

110



Figure 57: Surge motion estimate representation using a summation of surge unit vector
components for a Colorado out-and-back trajectory

is 50.46◦, corresponding to 26.29% and 18.69% respectively, over 270 total degrees. The

majority of this accumulated error results from periods of time when the ice is not visi-

ble in the frame. These promising results using real-world, under-ice datasets proves the

utility of this vision-based relative pose estimation algorithm, despite such low-contrast,

feature-poor environments.

While translational ground truth was not available for the Antarctic datasets, qualitative

analysis of the estimated trajectories can be performed. Figure 59 presents the estimated

trajectory obtained with this algorithm using one of the Antarctic datasets, in which the

vehicle was commanded in a mostly forward (surge) trajectory. This is apparent in Figure

59, as the vehicle maintains a mostly steady course over the estimated trajectory. Again, it

should be noted that care must be taken during analysis of this plot, as it does not contain

absolute position estimates, but instead an accumulation of unit vectors with the inherent

assumption of constant magnitude. Another qualitative visualization of a mostly-surge tra-

jectory from another Antarctic dataset can be seen in Figure 60. In this case, the magnitude
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Figure 58: Yaw rotation estimates from the algorithm using SURF features along with
compass ground truth data for an Antarctic under-ice rotation run over 270 degrees

of the plot is not of interest, as it is simply a summation of surge unit vector components

over the trajectory. The important take-away from this plot is the positive slope of the surge

accumulation value over the entire trajectory, as expected from the mostly positive surge

trajectory considered here. Additional results can be found in Appendix A.

112



Figure 59: Estimated vehicle trajectory (modulo frame-to-frame unit vector scale) in an
Antarctic dataset with mostly surge-based motion

Figure 60: Surge motion estimate representation using a summation of surge unit vector
components for an Antarctic positive surge trajectory

113



5.6 Summary

A vision-based relative pose estimation algorithm was presented in this chapter for use in

low-contrast and feature-poor under-ice environments. This method utilizes a five-point

algorithm for estimating relative camera pose between frames. Using adaptive contrast

enhancement preprocessing and liberal feature-detection and matching thresholds on the

front end, with a robust model estimation method on the back end, this relative pose algo-

rithm, commonly used with feature-rich environments, can be adapted for application in

the much harsher environments considered here. The algorithm is detailed in this chapter,

along with evaluation results over simulated and real-world, under-ice datasets. In the next

chapter, a novel method using the point-features, already extracted in the algorithm from

this chapter, for sub-ice texture estimation and anomaly mapping, is presented. Both of

these vision-based algorithms can provide enhanced capabilities for under-ice UUVs.
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CHAPTER 6

TEXTURE AND ANOMALY MAPPING

6.1 Introduction

In this chapter, the focus moves from an under-ice navigation problem to an under-ice

mapping problem, but remains consistent in the use of camera sensors. Much of the com-

putational effort expended for vision-based relative pose estimation, such as point-feature

extraction, can be leveraged for the equally important task of mapping the sub-ice envi-

ronment. Searching for interesting features under the ice, including animals capable of

sustaining life in such harsh environments, is of great interest in both polar (Antarctica)

and planetary (Europa) domains. Underwater environments are known to be largely fea-

tureless, even at the seafloor which can many times consist only of monochrome sand or

rock. Under-ice environments such as those encountered beneath the Antarctic ice shelves

are even more devoid of features and tend to be monochromatic centered on the blues of

the ice. With the advent of remotely operated underwater vehicles (ROVs) and autonomous

underwater vehicles (AUVs) has come a large number of video datasets taken in these un-

derwater and under-ice environments. Analyzing these videos can be tedious from both the

perspective of human operators (ROVs) and scientists performing post-processing (AUVs),

as most of the dataset contains no “interesting” information or unique features. However,

all frames must be carefully analyzed to find the few frames of interest. A method is

presented here for automatically highlighting a relatively feature-rich or uniquely colored

frame to bring it to the attention of an analyst. If an estimate of the vehicle location is

available, these frames or anomalies of interest can be mapped to create a global view of

these anomalies over the vehicle’s trajectory. Using point features (already extracted using

the algorithm in the previous chapter running in parallel), a novel method for estimating the

overall texture of the background ice in an image is presented here. Point features, along

with image color histogram information, are also used to detect and map the ice texture and
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any candidate anomalies detected in the globally feature- and color-poor under-ice datasets

of interest. The methods developed here are evaluated using both simulated data of sub-ice

environments and real under-ice data obtained from Lake John, Colorado and McMurdo,

Antarctica.

6.2 Algorithms
6.2.1 Texture Estimation Algorithm

An estimation of texture in an image can give insight into the content of the image with a

single quantitative value. Mapping the estimated texture of video frames over a large vehi-

cle trajectory can indicate areas of interest during post processing, as well as give insight

into the type and texture of background ice present over a wide area. Ice can vary drasti-

cally in texture from first year ice that can be only a few centimeters thick and very smooth

with cracks, to multi-year ice that is smooth but varies greatly in topography, to platelet

ice that is comprised of a textured mix of small ice fragments at the ice-water boundary,

to drastically textured frazil ice comprised of half-formed crystals of ice at the ice-water

boundary. A good example of the contrast between first-year and multi-year ice can be seen

in Figure 9. In some sub-ice regions, multiple types of ice can be encountered during a sin-

gle AUV mission. In Antarctica some under-ice locations encounter large currents where

any frazil or platelet ice is swept away to leave only the smooth ice beneath, while other lo-

cations are sheltered from these currents and platelet ice can accumulate multiple meters in

thickness. A mapping of estimated ice texture throughout under-ice mission video datasets

can provide a global view of the ice types encountered over the mission. This mapping can

also give scientists an idea of what to expect from a frame during post-analysis.

The algorithm presented here uses point-features already extracted from a video frame

(during relative pose estimation) to calculate an estimate of ice texture. The model used

here for a high texture value is the case of a large number of detected point features dis-

tributed evenly over the image plane. Given the point features extracted from the image,
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Pseudo Code (Texture Estimation Loop):
Get input frame and initialize masks to all zeroes
Extract SURF and GFTT Feature Locations
Draw coverage circles for each feature (radius=r, value=1)
maskImg = and(SURF mask, GFTT mask)
pointCover = sum(maskImg)
pointCoverPct = pointCover/(maskImg.width*maskImg.height)

Figure 61: Pseudo code for main loop of texture estimation algorithm

the algorithm creates a coverage area for each pixel, which includes all pixels within a cer-

tain radius (r) of the point feature. A binary mask with the dimensions of the input image

is then created from the summation of each of these individual coverage areas, where a

pixel inside at least one coverage area takes the value of one, and any pixel not covered

by any point feature coverage area takes the value of zero. From this binary mask, much

information can be gleaned about the distribution of the point feature pixels. In the case

of this algorithm, the total number of covered pixels can be easily and quickly determined

with a summation over all pixels in the mask image. The ratio of covered pixels over total

image pixels gives an estimate of texture which is normalized over image size. The pseudo

code for the main loop of this algorithm is shown in Figure 61. Both Shi-Tomasi GFTT

(Good Features to Track) [61] features and SURF (Speeded Up Robust Features) [64] fea-

tures were used during the development of this algorithm. Shi-Tomasi features and SURF

features each performed well on different datasets and seem to complement each other well

in this application. A combined system using both Shi-Tomasi and SURF features is used

in this algorithm to provide a more robust system.

To see how this algorithm obtains an estimate of ice texture, the reader should consider

the following three examples. In the first case, a drastically textured image would have

many point detections throughout the image plane that are fairly evenly distributed. This

would lead to a very small amount of overlap between the coverage zones of the point

features, and therefore result in a high value for total coverage and texture. In the case of

an anomaly located in the middle of smooth and featureless ice, almost all point features
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detected would be tightly grouped around the anomaly, with little coverage over the rest of

the image. This would lead to a large amount of overlap between coverage areas, as the

point-feature pixels are densely grouped, and therefore a small value would be obtained for

a coverage and texture estimate. In the third case, mostly smooth ice with no anomalies

would only have a few point-feature detections, which would be fairly evenly distributed.

Despite the minimal overlap in coverage areas, the small number of features would lead to

a low value for total coverage and texture. A high value for texture can only be obtained

when a large number of features are detected, and those features are evenly distributed over

the image plane. This ensures the algorithm is robust against a large number of densely

grouped features, such as in the case of an anomaly in the ice. This algorithm provides the

means for quickly calculating an estimate of the background texture in an under-ice image

based on point features and their distribution over the image plane.

6.2.2 Point-Feature Anomaly Detection Algorithm

The distribution of detected point features in the image plane can not only give an idea

about the texture over the entire image, but can also indicate the presence of an object

of interest, or anomaly, in the image. Modelling such a small object or anomaly against

a mostly featureless background as a tight grouping of point features in a small area is

presented here. The algorithm developed here to detect such anomalies in a frame of video

uses point-features, already extracted for relative pose estimation in the system, as input.

The algorithm first determines groupings for the detected features using a k-means [124]

based method which partitions the points (both Shi-Tomasi and SURF) into k clusters,

where each point is part of the group with the nearest mean. The number of clusters (k)

varies here between each frame and is calculated as in Equation 24, where n is the number

of features detected and Ncluster is a constant. Ideally, a closely grouped set of features

(such as that corresponding to an anomaly) will form at least one group by itself due to the

relative local density of the points. In contrast, a textured image with evenly distributed

feature points will yield widely distributed groupings, and a mostly featureless image will
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Pseudo Code (Texture-based Anomaly Detection Loop):
Get input frame
Extract SURF/GFTT feature locations
k-means clustering of SURF/GFTT features (k from Eq. 24)
N f min = k ∗ Tcluster (Eq. 25)
FOR i=0; i <k; i++ {

nbox = S UM (cluster[i] points within centroid box)
IF nbox > N f min

Anomaly detected }

Figure 62: Pseudo code for main loop of texture-based anomaly algorithm

have very few points per group where these points will be widely spread out. In order

to determine if a group of extracted feature points form an anomaly or object of interest,

the number of features within an S x S square pixel area, surrounding the group mean, is

considered. In order to normalize the threshold of anomaly detection over the total number

of features detected in the image, the ratio of feature points within the centroid square over

the total number of group features is used as the metric for determining if a group comprises

an anomaly in the image. In the algorithm, this threshold is represented by Tcluster, which

requires the corresponding percentage of the total feature points in the group to be within

that group’s centroid box to be classified as an area of interest (Equation 25, where N f min

is the minimum points for a feature, k is the number of clusters, and Tcluster is the cluster

threshold). In this manner, density of feature points is used to estimate whether an object

of interest, or anomaly, is present in each video frame. The pseudo code for the main loop

of this algorithm is shown in Figure 62.

k = n/Ncluster (24)

N f min = k ∗ Tcluster (25)

6.2.3 Hue Mapping Algorithm

In addition to the use of point feature distribution as a means for detecting anomalies or

areas of interest in a frame, a second method is presented here, which uses hue to find

such anomalies. The model of hue distribution in an under-ice image used here consists
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mainly of blues corresponding to the ice background (determined from experimental test-

ing). Therefore, any pixel groupings outside of the main blue hues of the ice can be consid-

ered as anomaly candidates. This hue mapping algorithm first splits the input video frame

into hue, saturation, and value channels, each consisting of a single matrix of 8 bit values

with the same size as the input image. Hue represents the actual color of the image, while

value represents brightness, and saturation represents color strength. The hue channel is

the only one used in this algorithm as it provides information about the color of each pixel,

which is used to find anomalous colors in the image. In theory, hue values take the form of

degrees in a circle, and can range from zero back around to 360, both of which correspond

to red (Figure 63). However, because 8 bit values (0:255) are used here, this spectrum is

halved to fit between 0 and 179 and stay below the 255 maximum value.

Figure 63: Hue spectrum which typically varies from 0 to 359, but here is divided by two
to fit into an 8-bit representation, and so varies from 0 to 179.

An algorithm to obtain a single quantitative measurement for color in a video frame

is presented here, which provides an indication of how much anomalous color is present

in each frame throughout an under-ice video dataset. To obtain this value, each frame is

first filtered to eliminate all pixels with a hue corresponding to the blue range (TBL – TBH

here). Then all remaining pixels are summed to obtain the total number of non-blue pixels

in the frame. This value is normalized over the total number of pixels in the frame to obtain

a percentage of pixels that are not within the blue band of hue values. The pseudo code

for this algorithm is shown in Figure 64. During analysis, this value can be mapped over

the dataset to provide indications of frames of interest for post-analysis located at local

maximums, where an abnormal amount of non-blue color is present in the image.
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Pseudo Code (Color Estimation Loop):
frame = Get input frame
threshBlueImg1 = THRESHOLD(frame, values above TBL)
threshBlueImg2 = THRESHOLD(frame, values below TBH)
threshBlueImg = threshBlueImg1 + threshBlueImg2
pixNotBlue = S UM(threshBlueImg)/255
pctNotBlue = pixNotBlue/( f rame.width ∗ f rame.height)

Figure 64: Pseudo code for main loop of color estimation algorithm

6.2.4 Hue-based Anomaly Detection Algorithm

In addition to mapping a quantitative value for relative colorfulness of a video frame over a

dataset, an algorithm which uses hue to detect anomalies in an under-ice image for mapping

is also presented here. In this algorithm, a histogram is created from the input image over

all possible values of hue with a bin width of one. The local maximums of the histogram

are used as candidates for anomalous colors in the image, as the model used assumes a

Gaussian-like distribution around at least one hue value for any color grouping in the image.

This expected distribution can be seen in Figure 65 and Figure 66, where a large Gaussian-

like distribution is centered on the blue hue values, and smaller Gaussian-like distributions

are found outside the blue hues as candidates for anomalies.

Two normalized thresholds are used to eliminate hues with small and large histogram

values, assumed to correspond to noise and background (ice or water) respectively. These

thresholds are set at THL and THH to eliminate from consideration any hue local maximum

that represents over THL% of the total pixels or under THL% of the total image pixels. In

order to reduce the chance that local maximums corresponding to the blues of water or

ice are considered to be anomalous, all hue values between TBL and TBH are ignored, in

a form of band-stop filtering. The values of 0 and 179 (on a 180 scale) are also ignored,

as they most often correspond to the whites and blacks in the image. While these values

also correspond to the red hue, they can be safely ignored, as red is very uncommon in

underwater imagery. Hues with fewer than TGL or more than TGH pixels in the image are

also eliminated from anomaly consideration, and are assumed to correspond to noise and
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Figure 65: Histogram representing hue values for four simulated under-ice images. Most
pixels are clustered around blue hue values (105) but two other much smaller groupings
can be seen around yellow (30) and green (68) representing yellow sponges and green ice
respectively.

Figure 66: Histogram representing hue values for three real-world under-ice images. Most
pixels are clustered around blue hue values ( 87) with some consistent false anomalies (115,
120, 130, 135, 150) that represent black pixels (ignored). Image with green ice and yellow
Icefin vehicle has more pixels centered around green (57-80) and yellow ( 30). Image with
green ice has slightly more green hue pixels. Image with only ice pixels is more centered
around blue hues.
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background respectively. The remaining local maximums in the hue histogram are used

to add the corresponding hue pixels to an output mask, along with any pixels of the hue

values on either side of the local maximum. The result of this algorithm is a mask of binary

values the same size as the input image, where a value of one represents a pixel that is of

a hue considered to be possibly anomalous and a zero represents background. The pixels

of the output mask are then clustered into groups using a connected components method,

where a connected component is considered to be a continuous group of touching pixels.

A normalized threshold is used here to eliminate small (noise) groupings of pixels. This

threshold, represented by TA in Figure 67, is used to eliminate any pixel groupings with an

area smaller than TA% of the image size. Pseudo code for this algorithm is shown in Figure

67. The output result is a number of candidate components in the image that are considered

anomalous in hue to the rest of the image, which mostly comprises of the blues of the ice.

This provides a method for automatic detection and mapping of any ice anomalies, such as

animals, present at the ice-water boundary.

The hue-based anomaly detection algorithm presented above uses only local maximums

of hue pixel count in the calculations. However, this limits the amount of information ob-

tained about a detected anomaly candidate, as only the pixels with hues at a local maximum

and the two surrounding hue values are added to the output mask. Most anomaly objects

contain a distribution of colors that is much more widely spread than a simple three-point

local maximum. Therefore, during development of this hue-based anomaly detection al-

gorithm, an additional method for anomaly detection was developed which considers all

hues except those eliminated in the blue hue band described above, instead of only local

maximums. The pseudo code for this algorithm is shown in Figure 68. This method results

in more false detections, but gives much more detail about any candidate anomalies that

are detected (size, shape, area). Both of these hue-based anomaly mapping algorithms are

evaluated using the datasets described below.

Explicit quantitative values, obtained through experimentation, were applied to the
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Pseudo Code (Local Max Hue-based Anomaly Detection):
frame = Get input frame
hueHistogram[180] = calculateHistogram(frame)
FOR i=0; i < 180; i++

IF (i < TBH) AND (i > TBL)
CONTINUE

ELSE IF (hueHistogram[i] > TGH)
OR (hueHistogram[i] < TGL)

CONTINUE
ELSE IF (hueHistogram[i] > hueHistogram[i − 1])

AND (hueHistogram[i] > hueHistogram[i + 1])
Add pixels in hueHistogram[i] to maskImg

dilate(maskImg, 4 times)
erode(maskImg, 4 times)
components[] = find connected components (threshBlueImg)
FOR i=0; i < components.size(); i++ {

IF component[i].area() > TA

Anomaly detected }
Clear maskImg to all zeroes

Figure 67: Pseudo code (main loop) for local-max hue-based anomaly detection

Pseudo Code (Blue-thresh Hue-based Anomaly Detection):
frame = Get Frame
threshBlueImg1 = THRESHOLD(frame, values above TBH)
threshBlueImg1 = THRESHOLD(frame, values below TBL)
threshBlueImg = threshBlueImg1 + threshBlueImg2
threshBlueImg = dilate(threshBlueImg, 4 times)
threshBlueImg = erode(threshBlueImg, 4 times)
components[] = find connected components (threshBlueImg)
FOR i=0; i <components.size(); i++ {

IF component[i].area() > TA

Anomaly detected }

Figure 68: Pseudo code (main loop) for blue-thresh, hue anomaly detection.
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thresholds and constants introduced in this section during the evaluation of the algorithms

presented here. A summary of these threshold and constant value assignments is presented

in Table 13.

Table 13: Threshold and constant value assignments for the mapping algorithms deter-
mined through experimental testing

Constant Value Assignment
r 20 pixels

Ncluster 20
S 30 pixels

Tcluster 0.8
TBL 82
TBL 151
THL 0.0001
THH 0.1
TA 0.03

6.3 Algorithm Results

In order to evaluate these algorithms, simulated video data of under-ice environments (with

inherent ground truth) was used, along with real under-ice data collected in Lake John, Col-

orado and McMurdo, Antarctica. Other real-world, under-ice animal imagery previously

collected [12] is also used to further validate the algorithms on real data with anoma-

lies. The simulated datasets provide the most accurate means for evaluation of the algo-

rithms presented here, as they contain the most reliable ground truth. The main simulated

dataset used for validation of the algorithms here is named the “Upward All-Ice Simulated

Dataset”. This simulated ice environment spans a very large area and contains regions

of first-year ice, multi-year ice, frazil ice, and platelet ice. A ground truth map of this

simulated ice environment is shown in Figure 69. Ice anomalies were introduced across

the simulated ice in the form of ice deformations, ice cracks, and various colored animal

shapes, similar to those encountered under the ice in Antarctica. The camera path was a

translational rectangle of surge and sway (no rotational motion), where the vehicle returns
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to the starting point at the end of the trajectory. Because an estimate (ground truth in this

case) of the camera location for each frame is known, maps can be created over the trajec-

tory to show estimated textures as well as the location of ice anomalies using the camera

field of view and known altimetry (distance to ice). This dataset provides a very difficult

benchmark for the algorithms presented here, as it contains a larger number and variety of

anomalies and textures than would normally be encountered in a real-world under-ice data

collection mission.

Figure 69: Ground truth map of the main simulated under-ice dataset and vehicle trajectory.
This view is looking up from beneath the ice at the entire environment with the various ice
types and ice anomalies.

6.3.1 Texture Estimation Results

The results from evaluation of the texture estimation algorithm on simulated under-ice data

are presented in Table 14. In this table, the estimated texture values correspond to the

percent point cover of the algorithm, and therefore provide an estimate of how textured an

image is (high values correspond to highly textured backgrounds). Many representative

single-frame examples can be seen in Figure 70 and Figure 71. In these figures, the left

column shows the original image, with point feature detections as colored dot groups, while

the right column shows a visualization of the point cover result mask, used to estimate
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Table 14: Texture estimation results and relative rankings (1 = most textured)

Platform Image Contents
Estimated

Texture
(%)

Expected
Relative

Rank

Estimated
Relative

Rank

Simulated

First-year Ice 0.179 5 5
Voronoi Ice 48.038 3 3
Platelet Ice 48.647 2 2
Frazil Ice 94.551 1 1

First-year ice with features 8.331 4 4
Front camera, platelet and green ice 16.709 - -

SCINI Multi-year ice, Anemones 12.840 - -

GoPro

Jetty Ice, Platelet ice and green ice 24.914 1 (tied) 1 (tied)
Jetty Ice, Platelet/green ice, Icefin 2.313 3 3

Platelet ice and green ice 25.640 1 (tied) 1 (tied)
Platelet ice 24.996 1 (tied) 1 (tied)

Platelet ice and green ice 24.996 1 (tied) 1 (tied)
Platelet ice, green ice, Icefin 9.739 2 2

Icefin Front

Jetty Ice, Nothing just blue 12.423 4 4
Jetty Ice, Large ice crack 16.341 2 3

Jetty Ice, Ice crack and ice hole 23.442 1 1
Jetty Ice, Ice crack 21.025 3 2

texture. A point cover image with more white pixels corresponds to a highly textured

image while a point cover image with mostly black pixels corresponds to an image with

a low texture value. As expected, the first-year ice, shown in Figure 70a, yields only a

few, closely grouped point features, resulting in a low value for point cover (0.179%). At

the other end of the spectrum, the frazil ice image (Figure 70g) yields many point-feature

detections distributed evenly over the image, leading to a point cover image of mostly

white pixels (94.55%), which correctly corresponds to a highly textured image. In between

these two extremes are the multi-year ice (Figure 70c) and platelet ice (Figure 70e) images

which have point cover values somewhere in the middle (48% for both). It can be seen

from Table 14 that the sample simulated images are correctly ranked by estimated texture

values. Simulation data (Figure 71a and Figure 71b) with this algorithm yields very similar

results to real data obtained from under the ice in Antarctica (Figure 71c and Figure 71d).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 70: Results from texture estimation algorithm with the simulated under-ice dataset
showing each ice type (a-b: first-year, c-d: multi-year, e-f: platelet, g-h: frazil). On the left
are input images with point feature detections as dots with color determined by k-means
grouping. On the right are visual representations of the point cover mask used to calculate
estimated texture.
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(a) (b)

(c) (d)

Figure 71: Results from the texture estimation algorithm with the simulated under-ice
dataset (a-b) compared to real-world results (c-d). On the left are the input images with
point feature detections as dots with color determined by k-means grouping. On the right
is a visual representation of the point cover mask used to calculate estimated texture.

The resultant texture estimation map of the simulated data over the vehicle trajectory

is shown in Figure 72, where white represents more textured areas and black represents no

texture. The quantitative value for estimated texture can be visualized in the point cover

images (the right side of Figure 70) as the percentage of non-zero valued pixels (white

pixels here). It can be seen from this output map that the expected texture is obtained with

the algorithm for each type of ice: platelet ice is on the left hand side, the top left corner,

and the bottom left corner and shows a medium texture value (gray); multi-year ice is on

the top to the right of the platelet ice and shows a much lower texture; frazil ice is on the top

to the right of the multi-year ice and is the most textured (white); first-year ice is located

from the end of the frazil ice clockwise until reaching the platelet ice on the bottom left

corner, and shows a very low value for texture (black), as expected.

The texture estimation results can also be represented versus time (instead of x, y posi-

tion) over the dataset duration (Figure 73), which does not require an estimate of the vehicle
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Figure 72: Texture estimation using point features. The vehicle trajectory is plotted along
with the estimated texture at each point. Here the texture measurement is represented as a
scale from white (most textured) to black (least textured) with a gray scale in between. It
can be seen that the most textured points in this case are located at the frazil ice while the
least textured points are located at the first-year ice, as expected. Ground truth can be seen
in Figure 69.

location. From this representation it can be seen that the global maximum is located around

frame 120, which corresponds to the frazil ice, while the frames corresponding to first-year

ice (frames 150-350) are at the global minimum - as expected. Local maximums (i.e.

frames 240, 410) mostly correspond to frames with features (cracks, animals) in the ice.

There is a single frame of incorrect estimation (frame 217) in the first-year data resulting

from many false feature detections. In areas where there are sharp transitions between ice

types (i.e. between frames 120 and 160), the estimated texture value makes a linear trans-

lation, as would be expected. The texture estimation algorithm estimates texture values

consistent with the corresponding ice types for 98.9% of the “Upward All-ice Simulated

Dataset”. Table 15 presents a summary of these texture estimation results. The bad frame

estimates in this case include frames with ice deformations that are not detected due to

their smooth transitions (which is acceptable), as well as the single frame of false feature

detections in the first-year ice. The algorithm is successfully able to produce higher texture
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Table 15: Texture estimation results for upward all ice dataset

Ice type Number of
frames

% Correct
texture estimate

Brash 250 100
Frazil 25 100

First-year 200 97
Multi-year 75 100

estimates from the more evenly distributed point sets. This can be seen between the image

of simulated platelet ice only in Figure 70f (232181 pixel cover / 469 SURF points = 495

pixels / point spread) and the image of simulated first-year ice with features in Figure 75b

(42664 pixel cover / 132 SURF points = 323 pixels / point spread). Here the spread of

each point-feature is much greater for the evenly distributed points in the platelet ice, as

expected, due to the limited overlap between point covers.

Figure 73: Texture estimation results plotted versus frame number for the simulated all
ice dataset shown in Figure 69. As expected, the global maximum (approx. frame 120)
corresponds to the most textured frazil ice, while the global minimums (between frames
150-350) correspond to the least textured first-year ice.

The texture estimation algorithm was also evaluated using other simulated data with

similar results, as well as on real under-ice imagery obtained under the ice near McMurdo,
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Antarctica. Results from this testing is shown in Table 14. In this case, the algorithm

uses a combination of Shi-Tomasi and SURF point-features for more robust results and

better comparison across datasets. It can be seen from this table that the four types of ice

simulated (first-year, multi-year, platelet, and frazil) are correctly ranked by texture value.

It can also be seen that in the “Icefin Dive Jetty Dataset”, the frame with nothing but blue

water has an estimated texture of only 42935 pixels, while any image with ice present has

a much higher value (at least 53256 pixels). In the image where an ice hole and ice crack

feature are visible, the texture estimate is almost double (81014 pixels) that of the empty

frame. The GoPro Jetty dataset shows consistent texture estimation across all images,

except those with the Icefin vehicle present in the frame, as expected. This algorithm

shows promising results in attempting to estimate ice texture throughout an under-ice video

dataset.

6.3.2 Texture-based Anomaly Detection Results

The texture-based anomaly mapping algorithm using point feature methods presented here

was first tested on the simulated all ice dataset described above, given the inherent ground

truth benefits. This dataset represents a large simulated under-ice environment comprised

of multiple sections of different types of ice (platelet, multi-year, frazil, and first-year) as

well as anomalies in the ice (cracks, deformations, and animals of multiple colors seen

under the ice in Antarctica). The location of the camera throughout the trajectory is known,

so the locations of detected objects can be used to create a map using the camera field

of view and the altimetry (distance to the ice). The results from this algorithm over the

simulated all ice dataset can be seen in the form of the mapped positions of detected ice

anomalies (seen as blue blobs) in Figure 74. The ground truth map can be seen in Figure

69.

The five yellow sponges (bottom center), green ice (bottom right, bottom left, top mid-

dle), and anemones (top mid-left) were detected successfully as well as cracks (long straight

features in lower right quadrant) and ice deformations (right side) that cannot be detected
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Figure 74: Resultant map from the point-feature-based under-ice anomaly detection al-
gorithm. Here 20 of 24 anomalies were detected (six misses) with only six false frame
detections over the 600 frame dataset.

using color-based methods. Overall, 20 of the 24 anomalies were successfully detected

(four misses for a 16% miss rate) with only six false frame detections over the 600 frame

dataset (1% false detection error). All misses represent anomalies of similar texture to the

background ice, showing one benefit of the fused use of both a texture and color detection

method. An example anomaly detection frame can be seen in Figure 75a with the detec-

tion of both colorful features (yellow and purple anemones) as well as an ice crack feature.

Local maximums in the estimated texture plot (Figure 73) (i.e. frame 240 crack in the ice;

frame 410 five yellow anemones) mostly correspond to frames with anomalies in the ice,

and can be used to indicate frames of interest in post-analysis.

This algorithm was also tested on other simulation and real-world data with similarly

promising results, as summarized in Table 16. Examples of successful detections, success-

ful empty frames, and missed detections are presented in this table across multiple datasets.

In the dataset obtained by the Icefin vehicle under the sea ice in Antarctica, there are many

false anomaly detections of the vehicle’s structure (seen in Figure 76a), where there are

anomaly detections despite a mostly blue frame. However, these false detections can be
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Table 16: Texture-based anomaly detection results

Platform Image Contents Qualitative Results Frame
count

Simulated

Platelet ice Success no detections 34
Platelet ice and green ice Success green ice 46
Platelet ice and 5 sponges Fail misses sponges 31
FY ice, anemone group Success - anemones 31

FY ice, ice features, sponges Success - crack, sponges 24
FY ice, green ice, shrimp Success - shrimp, green ice 33
FY ice, ice crack, sea slug Success - slug, crack 24

Frazil ice Success no detections 36
MY ice, crack, anemones Fail misses anemones 35

SCINI MY ice and anemones Success - detects anemones 1

GoPro in Jetty

Platelet ice, green ice Success no detections 1
Platelet ice, green ice, Icefin Success - detects Icefin 1
Platelet ice, green ice, tether Success - no detections 1

Platelet ice Success - no detections 1
Icefin, green ice background Success - detects Icefin 1

Icefin in Jetty

Blue frame Success no detections 1
Jetty platelet ice Success no detections 1

Platelet ice, small ice crack Fail -misses small ice crack 1
Platelet ice, ice crack Success - detects ice crack 1

Platelet ice, large ice hole Success - detects ice hole 1
Platelet ice, spec feature Success - detects spec 1

Platelet ice, small ice hole Fail misses small ice hole 1
Platelet ice, ice crack Success - detects ice crack 1

Platelet ice, ice crack/hole Fail - misses ice crack 1
Platelet ice, large ice hole Success - detects ice hole 1

Platelet ice, ice hole Success - detects ice hole 1
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(a) (b)

(c) (d)

Figure 75: Results from the texture estimation algorithm (right) and feature-based anomaly
detection algorithm (left). It can be seen that in both the simulated (a) and real (c) datasets,
anomalies are successfully detected (green boxes).

easily ignored as the location of the vehicle structure in the image is constant and can be

masked out. True detections using the algorithm can also be seen, including specs in front

of the camera, ice cracks (Figure 76c) and holes in the ice.

In the GoPro dataset taken under the sea ice in McMurdo, Antarctica, the only tex-

ture anomaly feature present was the Icefin vehicle itself, which is successfully detected

in Figure 75c. Images from this dataset with only the small diameter tether in view yield

clustered point groupings around the tether, indicating an object that is difficult to see with

human perception, but more easily found in post-processed images. It is interesting to

point out that while the patches of green ice are considered ice anomalies here, they are not

detected with the texture-based algorithm, as they are the same texture as the background

ice surroundings. This indicates the benefit of a fusion of color- and texture-based detec-

tion methods. The images from this Antarctica GoPro dataset that do not have anomalies

present yield no detections despite the large number of point features, as the features are
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(a) (b)

(c) (d)

Figure 76: Results from the texture estimation (right) and feature-based anomaly detection
(left) algorithms. It can be seen that only the vehicle body is detected in an empty frame
(a) while an ice crack features is detected in (c).

evenly distributed and not sufficiently dense to indicate an anomaly. This is the desired

behavior of the algorithm in such cases, as it is able to avoid false detections in highly tex-

tured images, which cannot be accomplished with a simple point-feature count for anomaly

detection. The missed detection failures encountered in the simulated datasets result from

similarity between textures of the anomalies and the ice background, which presents an-

other motivation for a fused texture- and hue-based detection algorithm. Most of the missed

detection failures encountered in the Icefin Antarctica dataset result from anomalies that are

too small to accumulate a sufficient grouping of point features.

6.3.3 Hue-based Anomaly Detection Results

The hue-based algorithms presented here were also evaluated using the same simulated and

real-world under-ice datasets entailed above for the texture-based algorithms. The upward

all-ice simulated dataset was again used for primary validation of the algorithm, as ground

truth was known with the highest accuracy. Table 17 presents a summary of the results
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Table 17: Hue-based anomaly detection results for upward all ice dataset

Method Correct detections (#, %) False detections (frames, %)
Local maximum 20 anomalies, 100% 4 frames, 0.67%
Blue threshold 20 anomalies, 100% 42 frames, 7%

of the hue anomaly detection algorithms on this dataset. An example output of the blue-

thresholding and component-grouping algorithm is shown in Figure 77 and Figure 79. In

Figure 77b, the main detection in the image is of the green ice, along with other small false

detections at the edge of the ice (which are filtered out based on their small size). In Figure

77d, the yellow sponge anomaly is detected completely, while the purple sponge yields

multiple fragmented detections due to the close proximity of the color purple to the blue

hue band. However, both colorful sponge anomalies are successfully detected, while the ice

features of blue color are not - as expected from a hue-based algorithm. This provides an

argument for a texture and color fusion method for anomaly detection, as these ice features

are detected using the texture-based method. The mapped results of the hue-based anomaly

detection algorithm indicate highlighted objects of interest over the trajectory, given an

estimate of the vehicle position over time as well as the distance to the ice and the camera

field of view. The simulation datasets contain ground truth for these values, and thus the

estimated output map for the upward all-ice simulated dataset can be seen in Figure 78,

where the trajectory is plotted in green (anomaly detected) and red (nothing detected) and

objects of interest are marked with blue blobs. In this case, the green ice and the anemone

group anomalies are successfully detected and mapped. It can be seen from comparing the

output maps (Figure 78) to the ground truth map (Figure 69) that all 20 non-blue anomalies

are detected with zero misses for both local-maximum and blue-thresholding methods. One

false detection was found with the local-maximum method, while ten false detections (eight

of which were in the frazil ice) were found with the blue-thresholding method. Over the

600 frames of the simulated dataset, the local maximum method was 88.5 percent accurate
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(a) (b)

(c) (d)

Figure 77: Results from the blue thresholding hue-based anomaly detection algorithm with
simulated under-ice data. Both green ice anomalies (a-b) and yellow/purple sponge anoma-
lies (c-d) are successfully detected.

in detection of any colorful anomaly in the frame. Specifically, 27 frames encountered

misses and 42 frames encountered false detections. These results are summarized in Table

17.

While the simulated datasets provided reliable ground truth for evaluating the accuracy

of the algorithm, further insight was gained with the evaluation of the algorithm on real-

world data obtained from beneath the ice near McMurdo station. An image from the SCINI

dataset [12] of anemones present against the ice shelf resulted in the detection of six of the

nine anemones in the foreground (Figure 79a-79b). An image containing the Icefin vehicle

and green ice as anomalies from the GoPro Jetty dataset shows correct detections of both

the Icefin vehicle and the patch of green ice (Figure 79c–79d). An image from the Icefin

Jetty dataset with an ice-hole anomaly is shown in Figure 79e–79f, where the hole itself

was not detected, but instead the green ice around it. In this image, the false detection of the

Icefin vehicle frame can be seen. This is masked out, as the location is known and constant
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(a) (b)

Figure 78: Output map result from the hue-based anomaly detection algorithm where the
blue blobs represent detected anomaly candidates (Left: Local maximum method, Right:
Blue threshold method). Using the local maximum method, 100% of the 20 non-ice anoma-
lies were detected with one false detection. Using the blue thresholding method, 100% of
the 20 non-ice anomalies were detected with ten false detections (eight of which are in the
frazil ice).

Table 18: Hue-based color estimation results (local maximums) for upward all ice dataset
Local maximum
frame range with
anomaly present

Contents Found anomaly?

50 – 100 Green ice Yes - correct
280 – 330 Green ice Yes - correct
330 – 360 Two yellow/purple sponges Yes - correct
400 – 420 Five yellow sponges Yes - correct
440 – 460 Single purple sponge Yes - correct
460 – 520 Green ice Yes - correct

over time.

6.3.4 Hue-based color estimation results

In addition to the hue-based filtering and clustering method for anomaly detection in a

frame, presented in the previous section, a quantitative value for percent “interesting” color

(i.e. non-ice) is obtained by another algorithm, for each frame over a dataset. When these

values are mapped over the vehicle trajectory, local maximums can be used during post

processing to indicate candidate frames of interest to examine for anomalies. Mapping of

these non-blue hue percentage values can give insight into the color contents of the video

frames, and therefore indicate areas of interest over the vehicle’s trajectory.
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(a) (b)

(c) (d)

(e) (f)

Figure 79: Results from the blue thresholding hue-based anomaly detection algorithm with
real-world under-ice datasets. Anemones (a-b), the Icefin vehicle (c-d), green ice (c-d), and
a hole in the ice (e-f) are all successfully detected. False detections of the Icefin vehicle
body can also be seen (f), but can be filtered out in practice as the locations are known and
constant.
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This algorithm was evaluated using the upward all-ice simulated dataset (with ground

truth), and plots of the resultant hue values are shown in Figure 80 and Figure 81. The local

maximums in these plots, corresponding to estimated areas of interest, are summarized

in Table 18. Most of the frames with color values around zero percent represent those

with only ice in the frame across the various ice types (Figure 70). Using an estimate of

vehicle location, a map of the vehicle trajectory along with estimated color can be obtained

(Figure 80), where brighter values represent more non-ice color and darker values represent

a smaller percentage of non-ice color present in a frame. It can be seen from this map that

the algorithm outputs high color values for areas of large non-blue groupings, such as the

green ice and five yellow sponges, while it has low values for ice-only areas or areas of ice

with only white and black features. The use of a quantitative non-blue percentage value for

each frame in a dataset yields an accurate estimate for 95% of the simulated all ice dataset,

where almost all of the 30 incorrect estimates result from small false detections in the frazil

ice.

In addition to evaluation with simulated data, this hue-based color estimation algorithm

was tested with real-world under-ice datasets obtained in Antarctica. A summary of the

results is shown in Table 19, where “Baseline” represents an image with only ice back-

ground present (no anomaly). In the simulation dataset, it can be seen that images of just

platelet ice yield a value of zero (as expected), while images with green ice and other col-

orful anomalies yield values between seven and nine percent (corresponding to the local

maximums in Figure 81). The simulated forward-looking camera datasets encounter much

lower relative values for colorful detections (less than two percent), as over half of the im-

age pixels are black, corresponding to the open water taking up most of the frame (which

is ignored). In the Icefin Jetty dataset, a much smaller variation is observed in the values,

with a baseline of around three percent, representing the amount of vehicle frame always

present in the images. However, the platelet ice with an ice-crack anomaly yields a local

maximum at 0.4% above the baseline with only water in the image. One image in this
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Figure 80: Output map from the hue-based color estimation algorithm. The vehicle tra-
jectory is plotted along with the estimated amount of non-ice color at each point. Here the
color measurement is represented as a scale from white (most color) to black (least color)
with a gray scale in between. It can be seen that the highest valued locations in this case are
located around the large green ice patches and groups of colorful features while the lowest
valued points are located in locations with no colorful features (black, white, and blue), as
expected. Ground truth can be seen in Figure 69.

dataset shows a box at the seafloor, which results in a color value of 82%. Such a high

value can be expected in this case, as there is no ice in the frame and the box is not of a

blue hue. The anemones in the image taken from the SCINI vehicle in Antarctica [12]

represent 0.4% of the image. In the GoPro Jetty dataset, no vehicle frame is present and

the baseline for the values in this dataset is around 0.375%. Various amounts of green ice

across the dataset increase this value to 0.4-4.1%. When the Icefin vehicle is present in the

image in addition to the patch of green ice, this output value increases to 8.2%. In the frame

containing the Icefin vehicle against a patch of green ice, this value increases drastically

to 83%. This value, representing percent of pixels outside of the blue hue range, can be

mapped to provide a relative indication within a dataset of the likelihood that a frame has a

colorful anomaly present.

After evaluation of both anomaly detection methods presented here with the upward
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Figure 81: Output results from the local maximum hue estimation algorithm plotted versus
frame number for the simulated all ice dataset. This measure represents the percentage of
pixels in each frame that are outside of the blue hue range. The local maximums here
represent patches of green ice and a large group of yellow sponges.

all-ice simulated dataset, results were gathered for evaluation of algorithm detection per-

formance. The ground truth used for this evaluation was human annotation of each frame

in the dataset. The results are shown Table 20 for both the hue-based and feature-based

detection algorithms. As expected, the first-year and multi-year ice show the best results,

as they contain a smoother ice background. There are some missed detections and false de-

tections of anomalies in the ice, but most of these scenarios occur at the abrupt boundaries

between ice types (not common in real-world datasets). However, these false detections at

sharp transitions between ice types are acceptable, as they would represent areas of interest

for post-analysis. The hue-based methods did not perform well with the frazil ice due to

false positives stemming from small blobs of artificial colors introduced in the simulated

data with such a jagged ice structure. These small false detections would be eliminated in

a real-world dataset by raising the threshold for component size, due to the high texture of

frazil ice. The low detection score for the feature-based method with platelet ice is caused

by the high texture of the ice, which masks the texture of the anomalies (mostly misses
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Table 19: Hue estimation example results (single images)

Platform Image Contents
%

Anomaly
Pixels

Result

Simulated

Platelet Ice 0.000 Baseline
MY ice with green ice and features 7.028 Detection

Platelet ice with yellow sponges 9.000 Detection
Platelet/green ice and colorful features 6.949 Detection

Platelet ice and green ice 1.933 Detection

Icefin in Jetty

Platelet ice 3.562 Baseline
Nothing just blue 3.264 Baseline

Seafloor, Box feature 82.45 Detection
Platelet ice and ice crack 3.682 Miss

SCINI Multi-year ice and Anemones 0.410 -

GoPro in Jetty

Platelet ice only 0.375 Baseline
Platelet ice and green ice 0.710 Detection

Platelet ice, green ice and Icefin 8.192 Detection
Platelet ice and green ice 0.844 Detection

Platelet ice and small amount of green ice 0.411 Miss
Platelet ice and green ice 2.367 Detection

Platelet ice and large amount of green ice 4.103 Detection
Platelet ice, green ice, Icefin 83.426 Detection

here). In the case of highly textured platelet and frazil ice, the hue-based algorithm should

commonly perform with better results. In practice, the algorithm could automatically favor

the hue-based method in a situation of high background texture detection, using the point

cover texture estimation detailed above. The main problem encountered with the hue-based

algorithm was missed detections with the white and black features due to the fact that these

hues are filtered out during pre-processing. The main issue with the feature-based algo-

rithm was both false detections and misses due to similarity in textures between anomalies

and background ice. This leads to the desire for a fusion algorithm that uses both hue and

texture to more robustly find anomalies, which is out of the scope of this work.
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Table 20: Anomaly Detection Results (Simulated Dataset)

Ice Type Correct Detection Percentage
Feature-

based
(SURF)

Hue-based
Hue-based

(blue-
thresh)

First-year 93.89 98.33 93.89
Multi-year 95.83 100 100

Platelet 57.21 80.18 81.53
Frazil 100 0 0

6.4 Summary

Post processing analysis of under-ice video datasets can be incredibly tedious. The four al-

gorithms presented here aid in this process by mapping automatic estimates of the texture,

non-ice color percentage, and anomaly candidates in each video frame over the dataset.

The texture estimation method presented here provides a quantitative estimate for the num-

ber and spread of the detected point features in a frame, corresponding to the texture of the

background ice. Any dense groupings of these extracted features indicate anomaly candi-

dates for post-processing by a human analyst. Hue, or color, is also used to estimate the

percentage of pixels in the image that do not correspond to ice background yielding a good

relative estimate of how “interesting” the colors in a frame are. Any pixel groupings out-

side of the blue hues corresponding to the ice that are found from this hue analysis provide

candidates for ice anomalies in post processing. Each of these algorithms show promising

results across both simulated and real under-ice datasets and provide useful tools in the

mapping and post-processing of these large datasets. These mapping algorithms can be run

in parallel with the navigational algorithms also presented in this dissertation to best utilize

the limited computational budget available on the vehicle platforms. This chapter, as well

as the previous chapter, present methods to aid in navigation and mapping during under-ice

UUV missions. While cameras are present on almost all UUVs, sonar sensors are just as

common, and provide much greater visibility in many cases. Use of such a sonar sensor

is presented in the following chapter for use in relative pose estimation as another possible
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sub-ice navigational aid.
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CHAPTER 7

MULTIBEAM SONAR RELATIVE POSE ESTIMATION

7.1 Introduction

Forward-looking multibeam acoustic sonar sensors are commonly found on underwater

vehicles for use in object or obstacle detection. These sensors can provide range and bear-

ing to an object in the path of the vehicle using acoustic sound waves. Forward-looking

acoustic sonar sensors provide the viewer with a two-dimensional representation of the area

in front of the sensor, highlighting objects with strong acoustic return. Sonar sensors do

not encounter scale factor ambiguity, in contrast to the monocular vision systems used in

the previous chapters. However, these sensors encounter very high noise levels, and many

current sonar processing applications are limited to detecting strong-intensity blob objects

in the data. The increase in quality of imaging sonars in recent years has introduced the

possibility of using common image processing algorithms, such as point-feature tracking

and optical flow, with these sonar images. A novel sonar-based pose estimation algorithm

is presented here for use in estimating vehicle motion in relatively featureless under-ice en-

vironments. This algorithm uses an optical-flow-based approach to match points between

sonar frames, along with a robust, rigid motion model to estimate motion of the vehicle.

This motion model computes the optimal rotation and translation between point sets that

minimizes weighted pixel reprojection error using singular value decomposition and robust

estimation. The algorithm was tested with both simulated and real-world, under-ice sonar

datasets with positive results. Such an algorithm provides a self-contained, frame-to-frame

pose estimation method that utilizes a sensor already present on many unmanned under-

water vehicles (UUVs). This method is not subject to integration-based drift rates, such as

those encountered with an inertial navigation system (INS), and does not require the exter-

nal infrastructure of external acoustic-beacon-based methods. Use of a sonar-based relative

pose estimation method to aid in navigation under the ice complements the camera-based
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algorithm presented in Chapter 5. While sonar sensors cannot provide the resolution and

information-richness of camera images, the range of these sensors is much larger in low-

visibility environments, such as those considered here.

7.2 Formation of Sonar Images

The most commonly used forms of perception in underwater applications rely on acoustic

sensing. A form of active sonar, in which the sensor transmits acoustic pulses into the

environment and then listens for the echo to return, can be used to form images of the

sensor’s surroundings. This is accomplished using an array of acoustic transmit and receive

transducers that are able to effectively steer the sonar beam to different angles [125]. In this

way, sonar sensors can be used to create a map, or image, of the surroundings by steering

the beam across a number of angles and splicing together the angle slices into an image of

a continuous sweep of the area in front of the vehicle. Based on the elapsed time taken for

the echo to be received by the sensor, distance to an object can also be determined. Sonar

data can be represented as an image of intensity return values (pixels), with range (R) from

the sensor on the vertical axis, and azimuth angle (θ) from the sensor on the horizontal

axis (but can be easily converted to Cartesian x- and y-coordinates). Multibeam forward-

looking sonar can be used to create 1-D, 2-D, or even 3-D range maps of the surrounding

environment, and is typically used for obstacle avoidance. Often the sensor is tilted at a

slight angle so that the area insonified by the sensor is limited to the seafloor (or ice-sheet

in this case). A good illustration of the formation of sonar images can be found in [60], and

is shown here in Figure 82.

One benefit realized with sonar sensors is the lack of scale factor ambiguity, which is

a problem in the case of optical monocular vision. However, while the angular bearing

resolution in the horizontal azimuth (yaw in this case) direction is inversely proportional

to the number of beams, there is ambiguity in the altitude direction due to a single beam

resolution with a relatively large beam width (20 degrees here). This ambiguity disallows
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Figure 82: Illustration depicting the formation of a sonar image [60]

resolution of the z (Cartesian) or elevation angle (polar) degree-of-freedom, and reduces the

three-dimensional world to a two-dimensional representation with ambiguity. In the ice-

survey applications considered here, it is reasonable to assume a constant elevation angle

(or z-distance) to the mostly flat ice surface of interest. It is also reasonable to assume

that the ice topography will comprise almost all acoustic returns found in the sonar data.

Therefore, the elevation angle ambiguity can be ignored, and a 2-D sonar image can be

used to provide a full picture of the local environment. While absolute information on the

unknown elevation angle to the ice sheet can be obtained using an altimeter sensor present

on the vehicle, this is not needed to calculate relative range and bearing (or x and y) shifts

between successive sonar images. Therefore, this z-range distance to the ice is considered

to be constant here and is factored out, as altimeter and depth measurements can be used

by control software to keep the vehicle at a constant distance from the ice.

7.3 Preliminary Investigation of Optical Flow with Sonar Data

This section presents a preliminary investigation into the use of optical flow methods for

determining vehicle ego-motion based on sequences of acoustic sonar images. If a sonar

sensor has a lock on the seafloor or ice-cover, features encountered in the resultant images

can be used to extract motion between frames. While under-ice environments contain very
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few and indistinguishable features, the model here makes the assumption that all environ-

mental features are static, and all movements are correlated between sonar frames. This

assumed model can be used with machine vision techniques to determine vehicle motion

between frames. Statistical analysis of the estimated movement of all detected features

from one frame to the next is assumed here to provide an accurate estimate of vehicle mo-

tion, as the vehicle is the only object assumed to move between frames. In this way, a

shift detected in the sonar image of a few pixels can translate directly to vehicle movement

of a certain distance or angle. In this initial investigation of the use of optical flow with

sonar data, the motion model is assumed to have only surge translation and yaw rotation.

This simple model was used for initial validation of the use of optical flow with sonar im-

agery. Following positive results in this preliminary investigation, a final motion model was

developed, and is presented in Section 7.4, which also incorporates sway motion. Range-

bearing sonar image representations were used in this preliminary investigation, but were

abandoned in favor of the Cartesian representation for the final algorithm. The performance

of a sparse, as well as a dense, algorithm for calculating optical flow are compared for use

in this application, along with a common algorithm for the estimation of the rigid transform

between images. An investigation into sonar noise reduction methods is also presented in

this section. Multiple preprocessing filters were tested in an attempt to transform the sonar

data into a form more attractive for robust feature detection and tracking. This preliminary

investigation provided the groundwork for development of the final sonar-based relative

pose estimation algorithm, presented in Section 7.4.

7.3.1 Noise in Sonar Images

While sonar provides a common method used for viewing the underwater environment,

sonar data is extremely noisy, and requires interpretation by experienced sonar experts

in most applications. Sonar data may be corrupted with a much higher noise level than

that seen in optical images [66]. Other acoustic sources, such as surface noise (including

waves), biological noise from fish and other living entities, noise from surface ships and
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propellers, and noise due to interference from other man-made sources such as acoustic

modems, all introduce undesirable noise into the sonar return data. The sonar sensor itself

can also add noise due to multipath returns and overlapping echoes. It is very difficult

to perform useful computations, such as automatic feature extraction, on this noisy sonar

data [51]. It is also difficult to characterize the inherent noise of most sonar sensors due

to the dynamic nature of the sensor gains. Many times the magnitude of the noise in the

image coincides with the magnitude of object pixels in the image, thus noise cannot be

easily eliminated without also removing useful parts of the image.

Most previous research in the area of acoustic image processing uses a smoothing fil-

ter in an attempt to eliminate some of the noise encountered in the sensor data. Here,

mean smoothing, median smoothing, Gaussian smoothing, morphological opening, thresh-

olding, adaptive thresholding, and histogram equalization were investigated as candidate

sonar preprocessing approaches to reduce noise and increase the utility of image process-

ing techniques on these images. A range-bearing sonar image, with these various prepro-

cessing techniques applied, can be seen in Figure 83. Histogram equalization was used for

preprocessing in this initial investigation, but was eliminated from the final algorithm as it

changes the pixel brightness distribution between frames, and is not well suited to optical

flow methods. A Gaussian smoothing filter was determined to best reduce noise in the

image without altering the nature of the raw sonar intensity returns. This smoothing filter

is used in the final implementation of the sonar-based relative pose estimation algorithm

presented in Section 7.4.

7.3.2 Optical Flow with Sonar Images

Optical flow [70] is a pixel-based computer vision method often used to estimate motion

of pixel points between images in a sequence. This differential algorithm works on the

assumption of a brightness constancy constraint (Equation 26), similar motion between

neighboring pixels (smoothness), and small temporal movement between the images. In

Equation 26, u and v refer to the x and y motion vector magnitudes respectively, while
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Figure 83: Outputs of Sonar Preprocessing Filters.

Ex, Ey and Et are the partial derivatives of image brightness with respect to x, y and time

respectively.

uEx + vEy + Et = 0 (26)

Optical flow is differential in nature and is therefore limited in noisy applications such

as sonar image processing. Optical flow is not often used with sonar images due to their

noisy nature and low frame rates [52]. Thus, most previous sonar image tracking algorithms

favor the use of blob-based methods instead of gradient-based methods such as optical flow.

Another problem encountered with sonar images that violates the optical flow assumptions

occurs when the movement of the sonar sensor causes the target to appear differently in

successive images. Movement of the source (acoustic in this case) can cause the image
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brightness values to change at a given object point, which violates the constant brightness

assumption of optical flow, and can cause errors in motion estimation. Despite the chal-

lenges encountered in using optical flow with sonar images, some preliminary research has

shown the utility of such methods for object tracking using sonar data. Provided there is a

sufficient number of features identified and matched between images, and the frame rate is

high enough, it is possible to estimate relative motion of the sonar sensor using optical flow,

despite these challenges. Because optical flow is a pixel-based, dense algorithm, it is very

computationally intensive and difficult to use in real-time applications. However, sparse

optical flow techniques have been developed to reduce the computational demand of this

approach. The Lucas-Kanade algorithm [71] provides an approximation for optical flow

of 3x3 pixel patches in the images by using least squares minimization to find an estimate

for the gradient constraint equation at a sparse set of Shi-Tomasi [61] points. Specifically,

a pyramidal implementation of this method [121] is evaluated here in order to increase

robustness over scale-space.

7.3.3 Investigation Method

A comparison of performance between sparse and dense optical flow methods with sonar

data is undertaken in this section. The dense optical flow method evaluated in this research

is that of Gunnar Farneback [126]. Another commonly used optical flow method is the

Lucas-Kanade method [71], which was designed as a dense algorithm, but has been adapted

for use as a sparse algorithm performed on predetermined feature points. Using a pixel

down-sampled pyramid of images, the method presented by Bouguet in [121] is able to

relieve the breakdown encountered with large jumps between images. The Lucas-Kanade

method is applied to the pyramid of images, starting with the lowest resolution first, and

each optical flow estimate is used successively as an initial estimate for optical flow at

the next level down in the pyramid. The features chosen from the sonar images for use

in the Lucas-Kanade algorithm result from the feature detection algorithm presented by

Shi and Tomasi [61]. In the initial investigation presented here, features obtained using
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Figure 84: Visualization of sparse (right) and dense (left) optical flow results.

the Shi-Tomasi algorithm are used for sparse optical flow determination with a five level

image pyramid. Sub-pixel resolution for object position estimation is then obtained. A third

method for motion estimation evaluated here is an algorithm to estimate the rigid transform

between two images by finding the image shift that minimizes the difference between the

images using least squares minimization [73]. This least squares transformation estimate

is shown in Equation 27 where A is the scale and rotation transform (not considered here)

and b is the (x,y) shift. Due to the lower computational cost and better performance, sparse

optical flow using the Lucas-Kanade method is chosen for the final sonar-based relative

pose estimation algorithm presented in Section 7.4. A visualization of the results obtained

with the two optical flow algorithms are shown in Figure 84.

[A∗|b∗] = arg min
[A|b]

∑
i

||dst[i] − Asrc[i]T − b||2 (27)

7.3.4 Investigation Results

Sonar data collected using the BlueView sonar sensor on the VideoRay Pro IV vehicle,

deployed in Lake Lanier, was used for this preliminary investigation. In this case, the sur-

face area being insonified by the sonar sensor was a portion of the lake bottom, which is

mostly planar and largely featureless. In order to determine vehicle or sensor movement,
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small and sparse features such as sand ripples and rocks can be used. It is assumed that the

only movement in the image should be a common feature shift in the horizontal and ver-

tical directions of the range-bearing sonar data, corresponding to a yaw rotation and surge

translation respectively. Therefore any translation of the image corresponds to movement

of the vehicle in the corresponding direction, and can be directly translated as so. While

optical flow methods can encounter problems tracking certain individual features in these

noisy sonar images, the assumption that all interesting features should move with the same

speed and direction, relaxes the computations. Under this simplifying assumption, it is only

required that the majority of the interesting features are tracked correctly between frames,

providing a robust method for motion estimation. The motion of the vehicle is estimated

using statistical analysis of the optical flow results between frames. Each of the three meth-

ods for motion determination described previously are tested using sonar image sequences

from the Lake Lanier dataset, and the performance of each method is evaluated. The com-

putational demands of the three methods are compared using algorithm execution times,

providing insight into the feasibility of algorithm implementation in a real-time embedded

control system, such as that on an autonomous underwater vehicle. The ground truth im-

age motion between frames is determined manually from human-annotated measurements

of various feature locations. The results from testing both reliable and false shift data are

presented as percent correct estimates in Table 21. The standard deviation values of the

estimates can be used as confidence values for the shift values returned by the algorithms,

where smaller standard deviation values indicate a tighter distribution, and therefore a more

confident estimate.

The first data set contains a sequence of ten sonar images with the vehicle moving at

a relatively constant rotation rate, two of which are shown in Figure 85. This rotation

corresponds to a horizontal translation in the range-bearing sonar image space. The trans-

lation between each of the images in this sequence can be consistently measured at around

7-10 pixels per frame. The estimation results from the sparse optical flow method, the
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Dataset ERT Sparse Sparse Dense Dense
Mean Mode Mean Mode

Yaw-shift 40% 90% 100% 40% 0%
Surge-shift 60% 100% 100% 80% 100%
Yaw-shift False 92% 92% 92% 100% 100%
Surge-shift False 92% 92% 100% 92% 100%

Table 21: Percent accurate movement estimates (top) and percent accurate rejection rates
(bottom)

Figure 85: Example of movement between six sonar frames

dense optical flow method, and the rigid transform estimation method are plotted in Figure

86, along with the human-annotated truth measurements. The rigid transform estimation

method shows a very wide distribution and drastically varying amount of error, which can

be seen in all datasets. The mode value for dense optical flow calculations is always zero,

and the mean dense flow estimates tend to show larger magnitude error than those pro-

duced with the sparse method. The most accurate estimates are obtained using mean or

mode values from the sparse optical flow algorithm.

The second dataset used for evaluation contains a sequence of ten images with the

vehicle moving in the vertical (forward) direction at a relatively constant speed of around

one to two pixels per frame. The performance results from the three motion estimation

methods are plotted in Figure 87. Similar to the first data set, the estimated rigid transform

method produces inconsistent estimates of the shift, while the sparse optical flow method
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Figure 86: Shift estimates for movement in x-direction

remains the most accurate. The magnitude of movement between images is much smaller

in this case (one pixel instead of ten) resulting in an increase in performance for both the

sparse and dense optical flow methods.

The mode value obtained from the dense optical flow method is much more accurate

in this case, and estimates two pixels each time, while the manual estimate is between one

and two. The mean dense estimate is also more accurate, but still shows poor performance.

The best estimates are obtained using either the mean or mode value of sparse optical flow

estimates. The distributions of optical flow estimates obtained using this dataset show even

higher certainty (lower standard deviation values) than the first dataset due to the smaller

shift between images.

Another dataset was obtained using four sets of consecutive images with only noise

in the field of view, and are used to determine the system’s ability to reject noise as false

targets. In the absence of targets, the best solution would be for the system to determine

that no movement was made, or to reject the estimate completely and use information

gleaned from other sensors or previous more reliable estimates. Therefore, the highest

performing algorithm would yield estimates close to zero shift, or low confidence (high

standard deviation) values, allowing the system to automatically reject them. The mode
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Figure 87: Shift estimates for movement in y-direction

values for both sparse and dense optical flow are consistently zero, as desired. The sparse

mean values show better estimate performance than the dense mean values. In almost

all cases, the poorer estimates correspond to the highest standard deviation values, which

should lead these estimates to be rejected automatically, as desired.

In order to ensure that optical flow algorithms are able to estimate zero movement be-

tween frames when the vehicle stays in place, a dataset was obtained using two consecutive

images with no feature or target location changes between them. In this case both the sparse

and dense algorithms estimated very small shifts with very high certainty, further proving

that a smaller amount of movement between frames leads to more accurate estimates of

shift. The best performing estimation method is again the sparse optical flow algorithm.

The value obtained for a shift estimate in this case is a fraction of a pixel with incredibly

high certainty (standard deviation less than 0.5), as desired. A comparison of the distribu-

tions of sparse and dense optical flow estimates for a case with no movement and a case

with one pixel movement is shown in Figure 88.

The final test of robustness for the algorithms was undertaken using sonar image se-

quences that are not sequential, and sometimes not even from the same sonar data run.

Ideally, these false image sequences should be rejected completely by the algorithms with
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(a) Dense No Move (b) Sparse No Move

(c) Dense One Pix Move (d) Sparse One Pix Move

Figure 88: Histogram distributions of shift estimates where each vertical line represents
one pixel

a very low number of feature matches and high standard deviation values. The results for

these test sequences are shown in Figure 89. This is the only case where the estimate rigid

transform method performs sufficiently well, as it rejects almost all false estimates. The

best method for rejection of bad data uses mean estimates from the sparse optical flow

algorithm, as almost all values of standard deviation returned from this algorithm were

higher than ten, and would therefore be automatically rejected by the system. The sparse

mode estimate values performed poorly as the higher mode estimate values correspond to

the higher confidence values, while the sparse mean values were very low (as desired) in

almost all of these cases. Dense algorithm standard deviation values were relatively high

as well, and therefore all three shift estimation methods would consistently reject almost

all bad image data.

The three methods for estimation of image shift show widely varying execution times.

The rigid transform estimation method performed consistently the fastest (median= 7ms,

mode=7ms), while the sparse optical flow algorithm ran between two and seven times
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Figure 89: Shift estimates for false data

slower (median=35ms, mode=33ms), and the dense optical flow algorithm method ran

between nine and fifteen times slower (median=89ms, mode=87ms). The dense algorithm

is known to be very computationally intensive [73], and is typically avoided in real-world

applications. The sparse method for optical flow used in this case would be able to satisfy

the timing constraints of a real-time sonar processing system. While the dense optical flow

algorithm is the most computationally expensive of the three considered, it obtains worse

performance results than the sparse method here, due to the fact that most pixels in the

sonar data represent noise or background.

7.3.5 Discussion

From the results obtained in this initial investigation, the Lucas-Kanade method was shown

to be the most promising for optical flow analysis of sonar images. This sparse optical

flow algorithm is able to most accurately estimate the shifts between images in a sequence,

reject images with only noise or false data, and accurately determine if there has been no

movement between frames. The final system has a high enough frame rate to keep the im-

age movement between frames as low as possible, yielding the best algorithm performance.
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The sparse optical flow algorithm obtains estimates of the pixel shift made by the one hun-

dred best features in the images. This maximum feature number seems to be sufficient to

predict accurate shifts without producing a lot of false tracks. The mean value of these

estimates can be used to predict the vehicle movement between frames in the sonar data, as

each pixel in the sonar data corresponds to a constant value of distance and angle in the real

world. Therefore, an estimated value of shift in both the vertical and horizontal directions

of the sonar data can be directly translated to vehicle movement, aiding in navigational

accuracy. The underlying assumption is that the only movement seen in the images in these

applications corresponds to a seafloor (or ice-sheet) plane shift, and all feature motion has

the same magnitude and direction. In this manner, a vehicle platform can track its position

change between frames of sonar data with relatively high accuracy and small drift. Other

sensors used for vehicle motion determination, such as inertial navigation systems (INS),

measure acceleration instead of position change directly, and must integrate to obtain the

change in position. Such a system is very sensitive to drifts in accumulated position and

velocity, as well as errors from the sensors.

In order to robustly reject bad data or images with only noise and no target returns, the

system should reject estimate values with a standard deviation value that is higher than a

predetermined threshold. This threshold can be determined using methods similar to those

presented. If an estimate is returned from the sparse optical flow algorithm with a standard

deviation above the threshold, it should be rejected, and previous estimate data, or data

from other sensors, should be used instead. The results presented here give evidence of

the robustness of this system in the rejection of bad estimates. While optical flow algo-

rithms tend to perform poorly in noisy images, such as those produced by acoustic sonar

sensors, statistical analysis and the underlying assumption of tightly coupled movement of

all features in the image, provide a robust method for using optical flow for vehicle motion

estimation in a UUV navigation system. This preliminary investigation of the use of opti-

cal flow with sonar data proves the utility of such a method, and provides the groundwork
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for development of the final sonar-based relative pose estimation algorithm presented in

Section 7.4.

7.3.6 Summary

A preliminary investigation into the use of optical flow with sonar data was presented in this

section. Such gradient-based methods are not commonly used with sonar images due to the

high noise levels encountered and the variation in object appearance between frames. How-

ever, this initial investigation proves the utility of using such an optical flow method with

sonar data in a robust framework with a rigid motion model. Dense and sparse implemen-

tations of optical flow are compared using the Lake Lanier datasets, and the Lucas-Kanade

sparse implementation yields the best performance. This method is used in the implemen-

tation of the final sonar-based relative pose estimation algorithm presented in Section 7.4.

It was determined in this preliminary investigation that statistical analysis of the optical

flow results can be used to estimate a model for vehicle motion. However, a more complex

and robust method is required for estimation of the motion model over simple averaging.

The final motion model estimation technique developed here is presented in the following

section.

7.4 Sonar-Based Relative Pose Estimation Algorithm

The sonar model presented in Section 7.2 above allows for the use of a two-dimensional

rigid motion model assumption for movement between frames. Motion of the vehicle in

the roll, pitch, and heave (z) directions is assumed constant in the algorithm. Therefore,

any valid motion (x, y, or yaw) of the vehicle relative to the ice sheet can be detected

through examination of successive sonar images. A rigid motion model allows for move-

ment in these three degrees-of-freedom only, and does not allow a change in scale. While

coupling of both rotational and translational motion is difficult to resolve, singular value

decomposition is used here with a least squares method for resolution of all three valid

degrees-of-freedom [127]. In this method, the optimal rotation (R) and translation (t) are
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selected to minimize Equation 28. In this case, n represents the total number of correspond-

ing points found between images, while wi represents the weight of each point match, R

represents the rotation matrix between points, t represents the translation vector between

points, and pi and qi represent the corresponding points in each matching set. To find the

optimal least-squares solution, the weighted centroid of each set of points is first calculated

(Equations 29–30) followed by the resultant centered vectors (Equations 31–32). The co-

variance matrix S is then computed as in Equation 33 where X and Y are matrices with

xi and yi as their columns, and W is as in Equation 34. The singular value decomposition

of this covariance matrix (S) is then computed (Equation 35) to find the desired rotation

matrix solution (Equation 36). Once the optimal translation result is obtained, the optimal

corresponding translation is estimated as in Equation 37.

n∑
i=1

wi||(Rpi + t) − qi||
2 (28)

p̄ =

n∑
i=1

wipi

n∑
i=1

wi

(29)

q̄ =

n∑
i=1

wiqi

n∑
i=1

wi

(30)

xi = pi − p̄, i = 1, 2, ..., n (31)

yi = qi − q̄, i = 1, 2, ..., n (32)

S = XWYT (33)

W = diag(w1,w2...,wn) (34)
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S = UΣVT (35)

R = V



1
. . .

1

det(VUT )


UT (36)

t = q̄ − Rp̄ (37)

In order to find the corresponding point matches between sonar images, required for

computation of the rigid motion model described above, an approach is presented here us-

ing an optical-flow based method commonly used with optical camera images, as discussed

in section 7.3. While this optical flow based tracking method presents a set of candidate

point matches with sub-pixel accuracy, a robust sampling method is presented here to find

a motion model with a maximum inlier set and minimized error. Any poor matches that do

not fit this model are removed from the resultant inlier set, and are not considered in the

calculation of the frame-to-frame motion model. While multiple robust sampling methods

were tested, RANSAC [68] proved to be most effective in this case, and is used in the final

model estimation algorithm. RANSAC iteratively finds a minimal random sample set, cal-

culates the motion model for this set, and then computes the resultant error from this model

over all match points and repeats this process until a satisfactory model (with enough inlier

points) is produced. In the case of the rigid-body motion model used here, three feature

points matched between sonar images provide sufficient information to estimate the trans-

formation. All matches within a certain error threshold of the final model are considered

“inliers” while any matches with model error above this threshold are considered “outliers”.

The novel sonar-based motion estimation algorithm implementation begins with a pre-

processing step. One of the difficulties encountered when working with sonar data is the

164



Pseudo code for sonar-based relative pose algorithm main loop:
Capture sonar image at time t0 and t1

Apply Gaussian blurring to both images
Find 1000 strongest GFTT features in t0 image
Find 1000 strongest GFTT features in t1 image
Bouguet’s pyramidal Lucas-Kanade optical flow matching of features between images
Estimate rigid motion model using least-square, SVD and RANSAC
Convert motion model to vehicle-based coordinate system
Take into account altitude angle to remove foreshortening
Output estimated motion model and number of inliers

Figure 90: Pseudo code for sonar-based relative pose algorithm

low signal-to-noise ratio. Sources such as backscatter, reflections, and other acoustic trans-

mitters inject large amounts of noise into the data, requiring preprocessing of sonar images

before analysis. In the method presented here, Gaussian blurring is applied to each cor-

responding sonar image to reduce the effect of any pixel noise present. This is followed

by extraction of Shi-Tomasi features, as described previously. Bouguet’s pyramidal Lucas-

Kanade optical flow based tracking algorithm is then used to match feature points between

sonar images to a sub-pixel accuracy. This set of candidate feature matches is then input

to the novel RANSAC implementation of the rigid motion model estimation method de-

scribed previously. Finally, the altitude angle of the sonar must then be taken into account

to remove foreshortening effects. The result from this algorithm is an estimated x, y, and

yaw motion model of the vehicle between frames, as well as the number of inliers found

for the corresponding motion model to indicate estimate strength. The pseudo-code for the

sonar-based relative pose estimation algorithm presented here is shown in Figure 90.

7.5 Algorithm Results

The sonar-based relative pose estimation algorithm presented here was first evaluated using

simulated sonar data, due to the controllability and inherent ground truth available. These

simulated sonar datasets provided a variety of vehicle trajectories for full evaluation of the

algorithm. The algorithm provides an estimate of surge (x), sway (y), and yaw (ψ) motion.
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Figure 91: Forward (surge-only) estimated trajectory with ground truth

The first trajectories considered were single degree-of-freedom trajectories with decoupled

rotational and translational motion. A surge-only trajectory was used for evaluation of the

translational estimation accuracy of the algorithm. In this case, the simulated sonar sensor

was commanded in an surge-only (directly forward) path for 600 frames. Between each

frame, the simulated vehicle was moved forward the equivalent distance of one pixel in

the sonar data. In the case of the simulated sonar sensor, this corresponds to one meter

(resolution = one meter per pixel). The results of this evaluation can be seen in Figure

91 along with the ground truth. It can be seen that a slight drift is accumulated (clearly

visible in the y-direction), but represents an error of less than one percent of the distance

travelled. In this case, the maximum accumulated x-error over 600 meters is measured

at 2.4m, while the maximum accumulated y-error is measured at 4.4m. This corresponds

to error percentages of 0.4% and 0.7% respectively. In contrast to INS systems, this ac-

cumulated error is positional in nature and does not affect future calculations. Any error

drift in INS acceleration-based methods for position estimation result in a velocity offset
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Figure 92: Rotational (yaw-only) estimated trajectory with ground truth

error, further resulting in a steady state position error, which effects all future calculations.

This illustrates the benefit of a positional difference estimation method over an integrated

acceleration method in tracking motion or odometry.

In addition to the surge-only simulated dataset described above, an additional decou-

pled, single degree-of-freedom dataset was also used to evaluate the rotational estimation

performance of the algorithm. In this case, yaw motion of the vehicle was simulated at a

rate of one degree per frame, over a full 360 degree circle. Surge and sway translational

motion was kept at zero during this rotational motion. The results from one of the sim-

ulated yaw-only sonar datasets can be seen in Figure 92. In this case, it can be seen that

accumulated error rates are very low (below one percent). The maximum accumulated yaw

error is calculated at 0.22 degrees, corresponding to 0.06% of the total 360 degree rotation.

Qualitatively, it can be seen from Figure 92 that the accumulated yaw-estimate result tracks

very well with the ground truth. From these translational and rotational, decoupled, sin-

gle degree-of-freedom evaluations, it is clear that the sonar-based relative pose algorithm

167



presented here performs as expected, with sufficiently low error rates.

A final decoupled simulated sonar dataset was tested with the sonar-based relative pose

estimation algorithm before advancing to more complicated trajectory evaluations. In this

case, the simulated vehicle was commanded in a piecewise sway- and surge-only transla-

tional trajectory to form a rectangular path. Vehicle yaw was again held constant to decou-

ple the translational and rotational effects. The resultant estimate along with the ground

truth trajectory can be seen in Figure 93. The vehicle begins at the origin (0,0) and moves

in the negative sway direction, then the negative surge direction, followed by the positive

sway direction and then finally the positive surge direction to return to the origin. A slight

accumulated error can be seen between the sonar estimate and the ground truth in this fig-

ure. The maximum error calculated over this trajectory was 0.57 meters in the x-direction

and 1.41 meters in the y-direction. This corresponds to an accumulated error percentage of

0.1% and 0.23% of the distance travelled respectively.

Figure 93: Rectangular (surge and sway) estimated trajectory with ground truth
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The positive results from the evaluation of this algorithm over these three initial, de-

coupled trajectories prove the utility of the sonar-based relative pose algorithm presented

here. However, further evaluation is required using a dataset which contains coupled ro-

tational and translational motion if the algorithm is to be used in realistic applications.

Estimation of coupled rotational and translational motion presents a much more difficult

problem, but such motion is commonly encountered when using real vehicle systems. In

order to evaluate the performance of the algorithm presented here on coupled motion, an

s-curve trajectory is used to create an additional simulated sonar dataset. Over this s-curve

trajectory, the vehicle follows alternating hemispherical paths, with surge and yaw motion

between each frame. The ground truth s-curve path can be seen in Figure 94a along with

the resultant output estimate from the sonar-based relative pose algorithm. In this case,

the sonar estimate tracks well with the ground truth over the entire 377 meter trajectory,

with maximum errors of only 2.06m and 1.8m in the x- and y-directions, corresponding to

0.55% and 0.48% accumulated error respectively. The accumulated yaw estimate over this

s-curve trajectory can be seen in Figure 94b. This also tracks well with the ground truth

yaw, and has a maximum error of 0.31◦, corresponding to 0.04%, over the total 720 degrees

of rotation. A summary of all maximum accumulated errors and average frame-to-frame

errors over all simulated dataset trajectories (detailed in Section 4.3) can be seen in Table

22 and Table 23 respectively.

Once the algorithm performance was validated using simulated sonar datasets, further

evaluation was undertaken using real under-ice datasets taken in Colorado and Antarctica.

These real datasets provide difficult benchmarks due to the disturbances of human opera-

tor control, and more realistic autonomous missions would present much smoother inputs

with the ice consistently fixed in the frame. In both Colorado and Antarctica datasets, a

BlueView P900-45 sonar sensor was used for data collection. Compass and gyroscope data

was used for ground truth in the yaw direction for the Colorado and Antarctica datasets
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Table 22: Maximum accumulated error results (all simulated data)

Trajectory Ice type Angle x (%, m) y (%, m) ψ (%, ◦)
Surge-sway translation

(Fig. 93)
All Upward

0.10%,
0.57m

0.24%,
1.41m

-

Yaw-only (Fig. 92) Brash Upward - -
0.06%,
0.22◦

Yaw-only (Fig. 92) First-year Upward - -
0.06%,
0.22◦

Yaw-only (Fig. 92) Frazil Upward - -
0.06%,
0.22◦

Yaw-only (Fig. 92) Multi-year Upward - -
0.06%,
0.22◦

Surge-only (Fig. 91) All Forward
0.40%,
2.40m

0.73%,
4.40m

-

Yaw-only (Fig. 92) Brash Forward - -
0.06%,
0.22◦

Surge-only (Fig. 91) Brash Forward
0.29%,
0.57m

0.61%,
1.21m

-

Yaw-only (Fig. 92) First-year Forward - -
0.06%,
0.22◦

Surge-only (Fig. 91) First-year Forward
0.29%,
0.57m

0.61%,
1.21m

-

Yaw-only (Fig. 92) Frazil Forward - -
0.06%,
0.22◦

Surge-only (Fig. 91) Frazil Forward
0.29%,
0.57m

0.61%,
1.21m

-

S-curve (Fig. 94) All Forward
0.55%,
2.06m

0.48%,
1.80m

0.04%,
0.31◦

Yaw-only (Fig. 92) Multi-year Forward - -
0.06%,
0.22◦

Surge-only (Fig. 91) Multi-year Forward
0.29%,
0.57m

0.61%,
1.21m

-

Surge-only (Fig. 91) All Upward
0.40%,
2.40m

0.73%,
4.40m

-

S-curve (Fig. 94) All Upward
0.55%,
2.06m

0.48%,
1.80m

0.04%,
0.31◦

Surge-sway translation
(Fig. 93)

All Upward
2.54%,
15.24m

1.23%,
7.39m

-
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Table 23: Average frame-to-frame error results (all simulated data)

Trajectory Ice type Angle x (%, m) y (%, m) ψ (%, ◦)
Surge-sway translation

(Fig. 93)
All Upward

2.00%,
0.02m

7.00%,
0.07m

-

Yaw-only (Fig. 92) Brash Upward - -
1.00%,
0.01◦

Yaw-only (Fig. 92) First-year Upward - -
1.00%,
0.01◦

Yaw-only (Fig. 92) Frazil Upward - -
1.00%,
0.01◦

Yaw-only (Fig. 92) Multi-year Upward - -
1.00%,
0.01◦

Surge-only (Fig. 91) All Forward
2.00%,
0.02m

7.00%,
0.07m

-

Yaw-only (Fig. 92) Brash Forward - -
1.00%,
0.01◦

Surge-only (Fig. 91) Brash Forward
2.00%,
0.02m

7.00%,
0.07m

-

Yaw-only (Fig. 92) First-year Forward - -
1.00%,
0.01◦

Surge-only (Fig. 91) First-year Forward
2.00%,
0.02m

7.00%,
0.07m

-

Yaw-only (Fig. 92) Frazil Forward - -
1.00%,
0.01◦

Surge-only (Fig. 91) Frazil Forward
2.00%,
0.02m

7.00%,
0.07m

-

S-curve (Fig. 94) All Forward - -
1.39%,
0.01◦

Yaw-only (Fig. 92) Multi-year Forward - -
1.00%,
0.01◦

Surge-only (Fig. 91) Multi-year Forward
2.00%,
0.02m

7.00%,
0.07m

-

Surge-only (Fig. 91) All Upward
2.00%,
0.02m

7.00%,
0.07m

-

S-curve (Fig. 94) All Upward - -
1.39%,
0.01◦

Surge-sway translation
(Fig. 93)

All Upward
4.00%,
0.04m

7.00%,
0.07m

-
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(a) x,y trajectory (b) Yaw

Figure 94: S-curve (coupled rotation and translation) estimated trajectory with ground truth
(left), as well as estimated yaw with ground truth (right)

respectively. Translational motion in these datasets was validated using approximated ve-

hicle trajectories as qualitative ground truth. During the collection of some datasets, the

vehicle was commanded directly forward (surge-only) while minimizing yaw motion, and

then returned in the reverse manner to the origin. The resultant vehicle path should show

positive surge motion, followed by an approximately equivalent negative surge motion.

This expected path can be seen in the estimated surge result from a Lake John dataset in

Figure 95.

Translational ground truth was not available for the Antarctic datasets. Therefore, the

yaw ground truth from the gyroscope and INS was used to quantitatively validate the per-

formance of the sonar-based pose estimation algorithm presented in this dissertation. It can

be seen from the estimated output plots in Figure 96 that this algorithm tracks well with

the ground truth, even in real-world applications. In the first case (left), the maximum ac-

cumulated error is 71.31◦ and the final error is 55.75◦, corresponding to 8.49% and 6.64%

respectively, over 840 total degrees of rotation. In the second case (right), the maximum ac-

cumulated error is 29.56◦ and the final error is 21.18◦, corresponding to 10.95% and 7.84%

respectively, over 270 total degrees of rotation. Most of the accumulated error in these
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Figure 95: Estimated surge (x-motion) of the vehicle through an out-and-back dataset from
the Lake John, Colorado deployment

cases results from periods of time when the ice is not visible in the frame. These promis-

ing results using real-world, under-ice datasets prove the utility of this sonar-based relative

pose estimation algorithm, in addition to the underlying use of optical flow methods with

sonar data.

Figure 96: Estimated yaw rotation over multiple Antarctic datasets with ground truth

While translational ground truth was not available for the Antarctic datasets, qualitative
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analysis of the estimated trajectories can be performed. Figure 97 presents a qualitative

visualization obtained with this algorithm using one of the Antarctic datasets, in which the

vehicle was commanded in a mostly forward (surge) trajectory. In this case, the magnitude

of the plot is not of interest, as it is simply a summation of estimated surge motion over

the trajectory. The important take-away from this plot is the positive slope of the surge

accumulation value over the entire trajectory, as expected from the mostly positive surge

trajectory considered here. Additional results can be found in Appendix A.

Figure 97: Surge motion estimate representation using a summation of estimated surge
shifts for an Antarctic positive surge trajectory
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7.6 Summary

A sonar-based relative pose estimation algorithm is presented is this chapter. The use of

optical flow and point-feature computer vision methods is not common with sonar imagery.

However, the application of such methodology to sonar datasets obtained in simulated and

real-world under-ice datasets, presented in this chapter, proves the utility of such an ap-

proach. A preliminary investigation into the use of optical flow methods with sonar data

was presented in this chapter, along with the final sonar-based relative pose estimation al-

gorithm. Results from evaluation of these methods using simulated and real-world sonar

data was presented in this chapter as well. While the sonar-based vision processing al-

gorithms developed here, and the camera-based vision processing methods presented in

previous chapters, provide valuable results, there are many drawbacks to methods which

depend only on a single sensor. Fusion of information from multiple independent sensors

can produce a more robust and capable system. Such sensor fusion methods, using under-

water sonar and camera sensors, are investigated in the final chapter of this dissertation.
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CHAPTER 8

FACTOR GRAPH SENSOR FUSION

8.1 Introduction

The baseline localization method used with almost all open-water and under-ice unmanned

underwater vehicles (UUVs) is an inertial navigation system (INS), provided with infor-

mation from an IMU (inertial measurement unit) and gyroscope that can be integrated to

estimate position over a trajectory. While the sole reliance on an INS is prohibitive to most

missions due to the unbounded drift rates encountered, this remains the most common so-

lution for under-ice UUVs due to the unique environmental constraints. One proposed

solution to the under-ice localization problem is visual SLAM (simultaneous localization

and mapping). SLAM [7] refers to a localization method commonly used in terrestrial

robotics where observations of landmarks in the environment are used to concurrently cre-

ate a map of the environment and localize the vehicle inside that map as the vehicle moves.

However, under-ice environments are largely low-contrast and featureless, and comprise

mostly of repetitive ice texture; thus re-observation of unique landmarks for loop-closure

constraints in SLAM is very challenging. Loop-closure is required, in the case of SLAM,

in order to bound localization uncertainty drift, as re-observation of a landmark gives much

insight into the relative vehicle motion encountered between viewings. Therefore, only a

very limited set of current under-ice vehicles utilize a camera-based localization method.

SLAM using a forward-looking sonar sensor (present on many underwater vehicles) has

been used with UUVs in open ocean environments (no ice cover), but typically requires

large anomaly features for blob tracking throughout the vehicle trajectory. Due to the lim-

ited anomaly features present in the sub-ice topography, the use of such sonar sensors for

under-ice navigation is also very uncommon.

Here, the novel use of both video- and sonar-based relative pose estimation methods is

presented to provide additional constraints on the estimated vehicle trajectory, and to help
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bound the drift rates of the INS. In Chapter 7 a method was developed for use of a forward-

looking sonar sensor with feature-based optical flow methods to track three degree-of-

freedom ego-motion, even in relatively featureless environments such as sand or ice. Such a

method extracts feature points [61] (pixels with unique and high-gradient neighborhoods),

to match between successive frames, which can be used to estimate a world motion model

between those frames. A method for camera-based relative pose estimation, even from

the low contrast, relatively featureless environments encountered under the ice, was also

presented here in Chapter 5. Sonar data can be used to obtain a three degree-of-freedom

motion estimate (yaw, surge and sway), while six degrees-of-freedom (minus translational

scale) can be estimated from the camera data. Each of these sensors has unique limitations

when used independently. In addition, some individual frame-to-frame estimates over the

trajectory can be inaccurate, due to a low number of feature points detected in a frame, a

low number of point matches between frames, or inaccurate point matching.

From these insights, a method is developed in this chapter for fusion of both sonar-

and camera-based estimation of vehicle motion between sensor frames. Independent INS,

camera-based, and sonar-based systems each present unique weaknesses and strengths,

and each sensor can encounter periods of inaccurate estimation. The use of a factor graph

framework [8] [9] is presented here to fuse this information together and obtain a robust

position estimate over the vehicle trajectory, which combines the strengths of each sen-

sor to overcome the independent weaknesses. A factor graph framework is a model well

suited to complex estimation problems, where nodes represent unknown random variables

to be estimated and the factors between them represent probabilistic information on those

variables (Figure 98).

Optimization can be performed over all available estimates in the factor graph frame-

work to obtain the optimal vehicle state estimate over the entire trajectory. Here, the use of

a GTSAM (Georgia Tech Smoothing and Mapping) [8] [10] [9] framework is presented to

fuse frame-to-frame sonar and video relative pose estimates. A novel sensor fusion method
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Figure 98: Visualization of a generic factor graph framework, where variable nodes are
shown as large open circles (Xn), a prior node is shown as P0, factor nodes are shown as
small solid circles (Fn,m for binary and An for unary, or absolute, factors) and where n,m ∈
0,1,2.... Movement left to right here represents passage of time.

is presented here which incorporates the number of features matched between frames into

the error model of the estimated vehicle trajectory, in order to more heavily weight the im-

pact of estimates with more matches over those with less matches. In this way, stronger es-

timates from one sensor can overpower the weaker, less accurate estimates from the sensor

with fewer point matches, resulting in a more robust system. This sensor fusion algorithm

is evaluated using simulated data with inherent ground truth, as well as real-world data

taken under the ice near McMurdo station, Antarctica (with INS estimates as truth). The

sensor fusion method developed here shows promising results for aiding in under-ice UUV

relative pose estimation by robustly fusing estimates from both sonar and video sensors.

The fusion framework, algorithm and evaluation results are discussed in this chapter.

8.2 Factor Graphs and GTSAM

Under-ice environments can be very feature-poor and low-contrast. Therefore, relative

pose estimates obtained from one sensor (i.e. camera or sonar) can be prone to occasional

inaccuracies. Fusion of estimates from multiple sensors can provide much more robust

estimates. The type of high-level sensor fusion presented here uses a factor graph frame-

work to optimally combine noisy but partially redundant estimates of relative pose from

sonar, camera and other navigation sensors. Factor graphs are abstract representations of

variables and constraints in an optimization problem [9]. The algorithm presented here

utilizes a factor graph framework inside the Georgia Tech Smoothing and Mapping Library
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(GTSAM) presented by Dellaert and Kaess [8] [10] [9]. A factor graph is a bipartite graph-

ical model G = (F,Q, E) containing variable nodes q j ∈ Q (unknown random variables in

the estimation problem), factor nodes fi ∈ F (probabilistic information on those variables

derived from measurements or prior knowledge) and edges ei j ∈ E (encode sparse structure

between q j and fi). A factor graph structure defines the function f (Q) as in Equation 38,

where Qi represents all variables connected to factor fi, and the goal is to find the variable

assignment Q∗ that maximizes this equation, as shown in Equation 39. Assuming Gaussian

measurement models, this yields a nonlinear least-squares problem. A visualization of a

generic pose graph framework is shown in Figure 98. Here variable nodes are shown as

large open circles (Xn), while factor nodes are shown as small solid circles. In this figure,

the prior factor P0 encapsulates the prior distribution on the first node X0. Binary factors

(Fn,m) represent pose constraints between two variable nodes and unary factors (An) repre-

sent external absolute measurement pose constraints (n,m ∈ 0,1,2...t).

f (Q) =
∏

i

fi(Qi) (38)

Q∗ = argmaxQ f (Q) (39)

The GTSAM library provides efficient, real-time implementations of many factor graph

tools commonly used for robot pose estimation and mapping. In applications of factor

graphs for robot pose estimation (such as that presented here), variables are used to repre-

sent the vehicle pose at each point over the trajectory, while factors encode relative pose

estimates between two variables in the graph. The graph itself represents an error function

between the measured and predicted trajectory. Each factor represents a part of this overall

error function, and contains a relative pose measurement, as well as a matrix (information

matrix) to weight the contribution of the factor in the global error function relative to other

factors. Measurement error (noise) can be represented as a probability density function on

each factor. Note that in this work, the idea of high uncertainty (variance) in a variable’s
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value is referred to as “high noise” as well as “low confidence”. The pose estimation prob-

lem using factor graphs is nonlinear in nature due to the rotation matrices and Euler angles

used to represent angular pose.

Optimization of the factor graph to obtain the maximum a-posteriori (MAP) assignment

for a vehicle trajectory can be performed by the square root information Smoothing and

Mapping algorithm [8], using the iSAM incremental real-time implementation [10]. This

implementation exploits the sparsity of the pose estimation problem to increase efficiency

and performance. In order to find the optimal variable assignment, the overall error function

(Equation 40) is minimized over all factors in the graph (where F is a factor, eF is the error

for that factor, and ΛF is the information matrix for the factor used to weight each factor’s

error). GTSAM uses the Levenberg-Marquardt [128] nonlinear optimization method to

solve the factor graph and provide this most likely trajectory over all past and present poses.

This optimization method requires initial values to seed the algorithm in order to increase

the likelihood that the global minimum is found, instead of a false local minimum (or none

at all). One of the advantages of such a “smoothing” method over filtering is that the factor

graph embodies the joint probability function P(X|Z) (X represents variables, Z represents

measurements) over the entire trajectory, instead of only the last pose, and optimization is

performed for all variables using all available measurements, resulting in a “smoothed” out

trajectory [9]. A prior factor can be used to anchor the pose graph to the global or relative

coordinate system, by encoding the pose of the vehicle prior to the addition of other factors

to the pose graph.

argmin(
∑

eT
FΛFeF) (40)

In a single-sensor odometry application, a dead reckoning solution can be found by

adding the current odometry measurement to the previous pose at each step. In this case

the pose graph will not be over-constrained and the linearized error matrix will be square

and full rank. In the case of multiple sensor inputs (presented here), some variables become
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over-constrained and the linearized error matrix becomes rectangular. The pose graph op-

timization method can then be used to smooth over all nodes in the trajectory to obtain

the least square error result between contradictory inputs. The information matrix used to

weight each factor in the graph is a diagonal matrix (6x6 for a six degree-of-freedom fac-

tor node) with values approximating the inverse of the variance (σ2) based on the noise in

the measurement model. While most similar applications use a constant variance model

for each sensor, a novel adaptive noise model is used here, which incorporates a per-

measurement estimate of accuracy into the resultant information matrix. The application

presented here does not include the absolute pose information (depth, magnetic heading)

or inertial navigation system (INS) estimates, available in most underwater vehicles, in or-

der to limit the scope of the problem at hand and to use such information as ground truth.

However, it is important to note that these absolute and inertial measurements can be eas-

ily incorporated into the factor graph framework as additional factors to increase system

accuracy and performance in the final system.

The problem presented here can be represented in the form of a pose graph for real-time

sensor fusion of camera and sonar relative pose estimates on an under-ice vehicle. A pose

graph framework tailored for the sensor fusion method presented here is shown in Figure

99, where the variable assignments are the same as in Figure 98. It can be seen that, despite

operating with different measurement rates, both sonar and camera sensor factors can be

represented in a single factor graph, due to the sparse nature of such a framework.

8.3 Factor Graph Sensor Fusion Algorithm

The factor graph sensor fusion algorithm presented here requires processed frame-to-frame

relative pose estimates from both an acoustic sonar sensor and an optical camera sensor

as inputs. These two sensors provide concurrent and independent vehicle motion estimate

information, which is partially redundant but also complimentary. Sonar estimates provide

absolute shift estimates (measured in meters and degrees) but are only capable of resolving
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Figure 99: Pose graph framework visualization for the sensor fusion application presented
here. Here, the six degree freedom vehicle pose is represented by Xn, the initial vehicle pose
estimate is represented by P0, Cn,m represents camera pose constraints between nodes n and
m, and S n,m represents a sonar pose constraint between nodes n and m (n,m ∈ 0,1,2...t).

motion in the vehicle’s x, y, and yaw directions (Equation 41). Camera estimates provide a

more complete six degree-of-freedom picture with the addition of z (depth or heave), roll,

and pitch information (Equation 42). However the translational (x, y, and z) estimates are

limited to a unit vector (due to a scale ambiguity), providing direction of the translational

shift without magnitude values. When processed concurrently, fusion of motion estimates

from these two independent sensor streams can leverage the strengths of each sensor to

provide a full and robust estimate of vehicle motion.

∆Xson =

[
∆x ∆y ∆ψ

]
(41)

∆Xcam =

[
∆x̂ ∆ŷ ∆ẑ ∆φ ∆θ ∆ψ

]
(42)

Sonar frames are obtained from the sensor for processing at a rate that can vary from

the advertised minimum of 67ms, to over a second in the case of the BlueView P900-45

used here (depending on the range distance). In almost all cases, this frame rate is much

lower than that of the camera in the system (30 fps). The fusion algorithm presented here

utilizes all frames available, even those obtained at vastly different frame rates, without

the need for prior synchronization of the sensors. A pose graph is used to encompass all

estimate information over the vehicle trajectory. The rate of node creation in the fusion
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graph is set by the sensor with the higher frame rate (camera in this case). A variable

node and two factor nodes are created in the fusion graph corresponding to each camera

frame timestamp. For each set of successive camera frames, two constraints are added to

the fusion graph between the nodes corresponding to the timestamps of the two camera

frames. The first constraint contains the sonar motion estimate (Equation 41), which has

been subdivided in time to match the camera frame timestamps (Equations 43–44). The

second constraint provides the camera motion estimate (Equation 42), where an absolute

translational motion estimate is obtained by multiplying the unit vector from the camera

estimate by the total magnitude translation estimate obtained by the sonar sensor (Equations

45–47). In these equations, ∆X represents the estimated pose vector between frames, ∆t

is the time difference between frames, v represents a velocity vector, and ||vson|| represents

the magnitude of the translational sonar velocity vector. A fusion factor graph containing

such variable nodes and factor constraints can be optimized (provided an initial estimate) to

provide an optimal trajectory of the vehicle motion over the entire trajectory. This optimal

result utilizes all estimate information provided by the two sensors to create a robust and

complete estimate of the vehicle’s motion.

vson =
1

∆tson
∗

[
∆xson ∆yson ∆ψson

]
(43)

∆Xson = ∆tcam ∗ vson (44)

||vson|| =



vsonx
x̂cam

, ŷ < 0.1

vsony

ŷcam
, x̂ < 0.1

vsonx
2∗x̂cam

+
vsony

2∗ŷcam
, otherwise

(45)

vcam = ||vson|| ∗

[
∆x̂cam ∆ŷcam ∆ẑcam

]
(46)
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∆Xcam =

[
∆tcam ∗ vcam | ∆φ ∆θ ∆ψ

]
(47)

The sensor fusion algorithm presented here was designed for use in both real-time ap-

plications as well as during post-processing analysis. Therefore, the algorithm design takes

into account the unique input data flow. The algorithm is presented in pseudo code form

in Figure 100. A GTSAM nonlinear factor graph is initialized during startup to provide

the framework for the fusion algorithm. An initial prior factor node is added to the factor

graph to encode the prior estimate of vehicle state, along with the confidence (or noise) of

the prior estimate. An initial value array is also instantiated to provide a framework for the

initial guess at each graph node, which is required for factor graph optimization. An initial

value is added to the beginning of the initial value array, corresponding to the prior factor

node added to the factor graph.

After initialization, the main loop begins with data inflow from camera and sonar frame-

to-frame shift estimates. Due to the higher frame rate, camera shift estimates are buffered

until a corresponding sonar estimate arrives. Upon arrival of the next sonar shift estimate,

the time difference between frames (∆tson) is recorded for use in later calculations. For

both sonar and video frames, Tinliers (set at 200 here through experimentation) point-feature

matches is considered sufficient to provide a robust estimate of relative pose. This robust

estimate can be used in future calculations in cases where more current sonar data is unre-

liable or non-existent. This robust estimate is also used as input to an accumulator which

keeps a running sum of frame-to-frame estimates to be used for nodes in the initial value

array. In order to synchronize the sensor inputs across different frame rates and arrival

times, velocity estimates (for x, y and yaw) are calculated from the sonar shift estimates

and ∆tson, as shown in Equation 43. These velocity values normalize the shift estimates

over time, and are used in later calculations.

The confidence (noise or variance) value corresponding to the frame-to-frame sonar

estimate is then calculated, as it is required when the factor is added to the factor graph.
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Pseudo code for factor graph sensor fusion algorithm:

Create factorGraph
Create initialValueArray
Add priorFactor to factorGraph
Add prior value to initialValueArray
//Main (Sonar) Loop:
While(input data available) {

While(no sonar frame available)
Buffer camera frame

If(Sonar frame arrives){
If(nsoninliers >Tinliers)

Update robust sonar estimate
∆tson= f rame1.time- f rame0.time
Calculate vson (Eq. 43)
Calculate sonar noise model
//Secondary (Camera) Loop:
For(all buffered camera frames) {

If(ncaminliers >Tinliers)
Update robust camera estimate

∆tcam= f rame1.time- f rame0.time
Subdivide sonar estimate (Eq. 44)
Calculate | vson | (Eq. 45)
Calculate vcam (Eq. 46)
Calculate camera estimate (Eq. 47)
Calculate camera noise model
factorGraph.add(sonarEst)
factorGraph.add(cameraEst)
initialValue = avg(sonarEst, cameraEst)
initialValueArr.add(initialValue)

} } }

Result = Optimize(factorGraph, initialValueArr)

Figure 100: Pseudo code for factor graph sensor fusion algorithm
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This confidence value is calculated using the number of inlier matches between the sonar

frames (Equation 48 and Table 24). In these equations, K represents the noise multiplier,

ninliers represents the number of inlier matches, Tinliers represents the inlier threshold, and

σ2
sonTransl represents the translational noise value calculated for the sonar data. If there are

at least Tinliers matching inlier points between sonar frames, the confidence is a constant

for both translation (σ2
sonTranslMin) and rotation (σ2

sonRotMin). In cases with less than Tinliers

inlier matches, the sonar noise value model is linear with a slope equal to -1/Tinliers and a

maximum at two orders of magnitude above the high confidence values. In the case of zero

inlier matches, this results in a noise value of σ2
sonTranslMax for translation and σ2

sonRotMax

for rotation. All minimum and maximum variance values used here (determined through

experimentation) can be seen in Table 25. The model for sonar noise versus number of

inlier matches is shown in Figure 101 (translational) and Figure 102 (rotational).

Figure 101: Translational noise model showing variance values used for the noise model
on a factor versus the number of inlier point matches used to calculate the relative pose
model. The maximum variance occurs with zero matches while the minimum variance
occurs with over Tinliers matches.

K = 1 −
ninliers

Tinliers
(48)
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Figure 102: Rotational noise model showing variance values used for the noise model on a
factor versus the number of inlier point matches used to calculate the relative pose model.
The maximum variance occurs with zero matches while the minimum variance occurs with
over Tinliers matches.

Table 24: Noise Model Equations

Sensor Transl/Rot Noise (Variance) Model Equations
Inliers = 0 Inliers <Tinliers Inliers ≥ Tinliers

Sonar
Transl 0.01 0.01*Kson 0.0001

Rotation 0.001 0.001*Kson 0.00001

Camera
Transl

√
σ2

sonTransl

√
Kcam ∗ σ

2
sonTransl

√
0.0001 ∗ σ2

sonTransl

Rotation 0.001 0.001*Kcam 0.00001

Once all calculations are complete following the arrival of a new sonar frame-to-frame

estimate, the previously buffered camera estimates obtained between the last sonar arrival

and the current arrival are considered. A second nested loop is used to calculate and add

each camera factor along with a corresponding sonar factor to the factor graph. For each

camera estimate, the time difference between frames is calculated (∆tcam). In a similar

manner to the sonar processing method, the robust camera estimate is updated with the

current shift estimate if the number of inlier matches exceeds the threshold of Tinliers. This

previous robust estimate is used for future calculations in cases where the current shift

187



Table 25: Minimum/maximum noise variance variables and corresponding values used here

Translational Rotational

Noise Sonar Camera
(Sonar=MAX)

Camera
(Sonar=MIN) Sonar Camera

Max
σ2

sonTranslMax σ2
camS onTranslMax1 σ2

camS onTranslMax2 σ2
sonRotMax σ2

camRotMax
0.01 0.1 0.01 0.001 0.001

Min
σ2

sonTranslMin σ2
camS onTranslMin1 σ2

camS onTranslMin2 σ2
sonRotMin σ2

camRotMin
1 ∗ 10−4 0.001 1 ∗ 10−4 1 ∗ 10−5 1 ∗ 10−5

estimate is unreliable or non-existent, yielding a more robust system. An estimate for

total magnitude translational camera velocity is calculated from both the robust sonar (x

and y) estimate magnitudes and the camera (x, y and z) estimate unit vector, due to the

lack of magnitude information available from the camera estimates (Equation 45). This

calculation assumes that the robust sonar translational direction and camera translational

direction are in agreement in order to extrapolate magnitude information from the sonar

estimate to the camera estimate. The translational velocity magnitude is first obtained by

dividing the robust sonar velocities by the corresponding unit vector components (Equation

45). The total estimated camera translational shift magnitude can then be calculated from

this velocity magnitude estimate (Equation 47).

Values for rotational and translational noise (variance) are also obtained for each cam-

era factor. Because the previous robust sonar estimate is used in the calculation of the

translational camera estimates, the noise of this sonar estimate must be incorporated into

the overall translational noise estimate of the camera factor. A geometric mean (Table 24)

is used to combine the two translational noise estimates (σ2
sonTransl and σ2

camTransl) into a

resultant fused translational sonar-camera noise estimate represented by σ2
camS onTransl. As

rotational camera noise does not depend on the sonar estimates, such an averaging tech-

nique is not required for this calculation. The strictly camera-based portion of the noise

estimate (σ2
camTransl and σ2

camRot) is calculated in a similar manner to that of the sonar noise

estimates described previously. These variance values are calculated using the number of
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inlier matches between the camera frames with the same approach described previously for

sonar frames (Equation 48 and Table 24). If there are at least Tinliers matching inlier points,

the confidence is a constant for both translation (σ2
camTranslMin2) and rotation (σ2

camRotMin). For

cases where there are less than Tinliers inlier matches, the confidence value model is non-

linear, with a maximum of two orders of magnitude more than the high confidence values.

In the case of zero inlier matches, this results in a value ofσ2
camTranslMax2 for translation noise

and σ2
camRotMax for rotation noise. The resultant camera-only noise estimate (σ2

camTransl) is

then combined with the most recent sonar-only robust noise estimate (σ2
sonTransl) using a

geometric mean (Table 24), as described above. A geometric mean is used to add robust-

ness to the common case where the two estimates differ by multiple orders of magnitude.

In these cases, a geometric mean method normalizes the weight of each estimate to have

a more equivalent effect on the result, in contrast with the use of an arithmetic mean ap-

proach. In the case of a strong sonar translational noise value (σ2
sonTranslMin), the range

of values for the σ2
camS onTransl variable spans from σ2

camS onTranslMin2 to σ2
camS onTranslMax2. At

the other extreme, a minimum sonar translation variance (σ2
sonTranslMin) using a sonar esti-

mate with zero inliers yields a span of resultant camera noise an order of magnitude higher

(σ2
camS onTranslMin1 to σ2

camS onTranslMax1). An order of magnitude difference between sonar and

camera translational variances is used to ensure equal noise values following the geometric

sum in the case of full feature match inlier sets (high confidence) with both sensors. The

model for camera noise versus number of inlier matches is shown in Figure 101 (transla-

tional) and Figure 102 (rotational) for both the case of a full sonar inlier set (> Tinliers) and

zero sonar inliers.

Upon calculation of the relative pose estimate and noise model for each set of sonar

and camera factors, these factors are added to the initialized nonlinear factor graph as

BetweenFactor<Pose3> nodes. A single sonar constraint and a single camera constraint

are added for each pass through the secondary loop (corresponding to the arrival of a cam-

era frame), while one sonar frame is processed during each pass through the overarching
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main loop. The populated factor graph representation used in the algorithm can be visual-

ized as in 103. Here the six degree-of-freedom vehicle pose is represented by Xn, the initial

vehicle pose constraint is represented by P0, Cn,m represents a camera pose constraint be-

tween nodes n and m, and S n,m represents a sonar pose constraint between nodes n and m

(n,m ∈ 0,1,2...t). As in the algorithm presented here, each pose node and camera factor is

added to the factor graph in Figure 103 corresponding to the arrival of a camera frame. It

can be seen that a corresponding sonar node is also added for each camera frame, which

is subdivided across multiple camera frames to provide a synchronous system, despite the

differing frame rates of the sensors.

Figure 103: A visualization of the pose graph framework used in the algorithm developed
here. Here the six degree-of-freedom vehicle pose is represented by Xn, the initial vehicle
pose constraint is represented by P0, Cn,m represents a camera pose constraint between
nodes n and m, and S n,m represents a sonar pose constraint between nodes n and m (n,m ∈
0,1,2...t).

As the algorithm runs through the main loop, accumulator sums of both sonar and cam-

era estimates are maintained for use in calculation of an array of initial values used to seed

the optimization algorithm at each node point. In the case of a unique optimization solu-

tion, these initial values can be set arbitrarily. For more complex cases in which multiple

optimization minimums exist, these values must be estimated close to the optimal solution

for the Levenberg-Marquardt optimization algorithm to converge to this desired solution.

In the application presented here, these initial values are calculated as an arithmetic aver-

age between sonar and camera inputs at each node. In this way, the optimization algorithm

begins with a solution that lies equidistant from each independent sensor solution, regard-

less of the confidences on the estimates. During optimization, the confidence value on each
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estimate is then utilized to pull the result toward one sensor estimate or the other over the

entire trajectory.

Once a nonlinear factor graph is created and populated with a prior factor node, as well

as all between-node factors (or constraints), the graph and initial value array can be pre-

sented as input to the Levenberg-Marquardt optimization algorithm. The resultant array

of value node assignments represents the vehicle six degree-of-freedom, globally optimal

trajectory, taking into account all frame-to-frame estimates from each sensor, and the con-

fidence values on those estimates. This optimal result is smoothed over the entire trajectory

using the iterative smoothing methodology [8] [10]. This method smooths in both the

forward and backward directions (uses all nodes available) to reduce the effect of short-

duration sharp inconstancies or uncertainties at the input. This output result can be used to

both estimate the current vehicle state (at the present node), and to estimate the vehicle’s

entire past trajectory, for use in navigation or post-processing.

8.4 Algorithm Results
8.4.1 Quantitative Overview of Sensor Fusion Benefits

In order to evaluate the utility of the sensor fusion algorithm presented in this chapter, the

effect of this sensor fusion on the variance (noise or confidence) of the optimized assigned

variable values is first discussed. In order to obtain insightful quantitative values, the scope

of this discussion is limited to the simplified cases of minimum (zero inlier matches) and

maximum (> Tinliers matches) variance noise models with constant relative pose estimates.

Limiting the discussion in this way allows for the simplification of the fusion model, since

no smoothing is required, and the result is a simple, linearly compounding odometry case,

where only the current factor estimate and noise is used in calculations. However, this can

be extrapolated over all noise models in the range between the minimum and maximum

variance values with the addition of a smoothing factor, which results from the use of all

factors in the graph during the optimization process to eliminate large jumps. The results

from these middle cases lie on a continuous spectrum between the minimum and maximum
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variance values, and share the same benefits discussed below, as well as the additional

“smoothing” benefit. The fusion equations for this simplified model below (Equations 49–

50) give an idea of how over-constrained inputs are weighted in the factor graph framework

used here. In these cases σ2 represents variance and X represents vehicle state.

σ2
f used =

σ2
son ∗ σ

2
cam

σ2
son + σ2

cam
(49)

X f used = Xson
σ2

cam

σ2
son + σ2

cam
+ Xcam

σ2
son

σ2
son + σ2

cam
(50)

Table 26 presents a summary of quantitative and qualitative sensor fusion benefits in

the application considered here. In cases where both sensors provide reliable (> Tinliers

inlier matches, minimum variances) and equal relative pose estimates, the confidence of

the estimates doubles (variance halves) over independent estimates. The benefit of sensor

fusion in this case is to more strongly (factor of two) weight the corresponding fused output

due to the additional information encoded, as well as to provide the end user with twice

the assurance of the assigned value over independent sensor methods. Qualitatively, a

combination of two independent but equal measurements of the same variable provides

valuable information on the accuracy of the measurement (reduces variance), and allows

for increased dependence on the result. In all combinations of sonar and camera variances

with equal pose estimates, fusion using the factor graph framework discussed here simply

results in increased levels of confidence (reduced variance). The case in which both sensors

provide reliable estimates results in a decreased variance of 50% over each independent

sensor estimate. The other three combinational cases considered here also see decreased

variances for both sensors, the amounts of which can be seen in Table 26.

In more common cases where the two sensors provide differing pose estimates, the

benefits of this sensor fusion method are much clearer. In the case where both sensors

provide reliable but differing pose estimates, an average will result with a 50% decrease in
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Table 26: Factor Graph Sensor Fusion Advantages

Est. Values Variances
(Son,Cam)

Transl.
Fusion

Variance

Factor Weights
(Son, Cam)

Fusion Benefit
(Son, Cam)

All All N/A N/A

Added translation
magnitude to camera.
Addition of z, roll and

pitch to sonar.

Equal
MAX,
MAX

0.009091 0.9091, 0.09091
Lower variance

(9.1%, 90.9%)

Equal MIN, MIN 0.00005 0.5,0.5
Decreased variance

(50%, 50%)

Equal
MAX,
MIN

0.000909 0.09091, 0.9091
Decreased variance

(90.9%, 9.1%)

Equal
MIN,
MAX

0.000099 0.99, 0.0099
Decreased variance

(1%, 99.01%)

Not equal
MAX,
MAX

0.009091 0.9091, 0.09091
Weighted average.
Decreased variance

(9.1%, 90.91%)

Not equal MIN, MIN 0.00005 0.5,0.5
Robust average

Decreased variance
(50%, 50%)

Not equal
MAX,
MIN

0.000909 0.09091, 0.9091

Heavily weight low
noise value. Ignore

high noise val.
Decreased variance

(90.9%, 9.1%)

Not equal
MIN,
MAX

0.000099 0.99, 0.0099

Heavily weight low
noise value. Ignore

high noise val.
Decreased variance

(1%, 99.01%)
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variance over both individual sensor inputs. This results in a more robust estimate equidis-

tant between the two equally likely pose estimates given. In the case where both sensors

provide unreliable pose estimates (zero inlier matches, maximum variances), the output

will be a weighted average, inherently favoring the sonar estimate as it is used for both

translational pose estimate calculations. Lastly, in the most applicable cases for the sensor

fusion method presented here, if one sensor presents a reliable pose estimate and the other

presents an unreliable estimate, the factor graph will heavily weight the reliable estimate,

while essentially ignoring the unreliable estimate. Quantitative values for these weights can

be seen in Table 26. The reliable sonar data is weighted more heavily here over the reliable

camera case due to the inherent use of sonar translation estimates in both sensor calcula-

tions. If the reliable estimates are assumed to be accurate and the unreliable estimates are

assumed to be incorrect, these weights translate directly to decreases in error (99% over a

camera-only system in the reliable sonar case, 91% over a sonar-only system in the reliable

camera case).

In addition to the quantitative sensor fusion benefits described above based on reduced

variance and weighted averaging, two important qualitative benefits should be noted. Sonar

pose estimates contain information on x, y, and yaw motion but none on z, roll or pitch.

Fusion of a complimentary camera sensor provides this z, roll, and pitch information that

is not available using only a sonar sensor. Camera pose estimates are limited to a unit

vector (no magnitude scale) x, y, z translational shift in addition to full roll, pitch, and

yaw estimates. While magnitude of the translational shift cannot be recovered using only

a camera sensor, fusion with a sonar sensor provides an estimate of this information. A

summary of the quantitative and qualitative benefits of sensor fusion can be found in Table

26.

8.4.2 Synthetic Data Results

Multiple examples using realistic (but synthetic) input shift estimates are now considered

to better present the utility of the sensor fusion algorithm presented here. In the first case,
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consistently equal and reliable pose estimates from both sensors results in the translational

output variance plot seen in Figure 104. It can be seen here that while the variance of each

independent sensor, as well as the variance of the fused output, compound linearly with

time, the fused output variance consistently remains at half the value of either sensor alone.

Figure 104: Variance plot of equally confident sonar and camera estimates in the fusion
algorithm developed here. Independent sonar and camera results can be seen to be twice as
noisy as the fused result.

In the second, more interesting case, synthetic sonar and camera pose estimates are

input with alternating periods of unreliable data. Initially both sensor estimates are reli-

able; then the camera sensor becomes unreliable while the sonar sensor remains reliable;

then the sonar sensor becomes unreliable while the camera sensor becomes reliable; etc.

The variance plot shown in Figure 105 shows the utility of the factor graph sensor fusion

method presented here. While the variance of individual sensors increases dramatically

upon reaching a period of unreliability, the fusion variance output remains consistently low

and is not subject to such drastic effects from individual sensor unreliability periods. This

stems from the fact that when one sensor’s pose estimate is unreliable, sensor fusion pro-

vides another independent source of information to rely on, and a more robust, low noise
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result can still be obtained.

Figure 105: Variances of the estimates from camera, sonar as well as the fusion estimate,
showing the decreased variance (decreased noise and increased confidence) of the sensor
fused over the individual results. It can be seen that when one sensor (sonar between frames
11 and 15, 21 and 25, camera between frames 6 and 10, 16 and 20) drops out, the combined
estimate does not suffer.

8.4.3 Simulated Dataset Results

Initial evaluation of the algorithm utilized synthetic input data (comma separated value files

imitating the outputs of the shift estimation algorithms) in order to provide more control for

unit testing, development, and algorithm evaluation. Following this stage in the develop-

ment process, the algorithm was further evaluated using outputs from the actual sonar and

camera shift estimation algorithms with simulated under-ice sonar and video data. This

simulated data provides a good compromise between control of the inputs and realistic

outputs, and has the additional benefit of containing absolute ground truth.

The first cases tested with the fusion algorithm presented here included an x-only

(surge) translational case, and a yaw-only rotational case. The results from these single

degree-of-freedom tests can be seen in Figure 106 and Figure 107 below. In the transla-

tional case (Figure 106), it can be clearly seen that over a translational distance of 600
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Figure 106: Translational result of fusion algorithm showing sonar, camera, fused, and
truth trajectories. The truth trajectory shows decoupled, surge-only motion over 600m.

meters, the sonar y-estimate error drifts to a maximum of 4.4 meters (0.73%), while the

camera y-estimate error drifts linearly to a maximum of 23.58 meters (3.93%). The larger

drift in the camera data results from an unreliable estimate period (x=230m to 250m) where

the estimate of yaw drifts a few degrees, causing a linear x, y drift from that point forward.

While both sensors encounter drift error here, as is commonly the case, the fusion method

produces a result with less error than either sensor independently. Most notably, the large

drift rate in the camera data is greatly reduced while the sonar estimates are favored due to

the higher confidence values, as expected. It is important to note that a camera-only trans-

lational trajectory estimate is shown despite the fact that these estimates are composed of a

unit vector without scale. For all simulated data, a frame-to-frame magnitude shift of one

meter can safely be assumed for plotting purposes, as this ground truth is known a priori.

In the yaw-only rotational case (Figure 107), it can be seen that all results are essentially

equivalent and track well with the ground truth (almost zero error).
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Figure 107: Rotational yaw-only result of sensor fusion algorithm showing sonar, camera,
fusion, and truth trajectories. The truth trajectory shows decoupled yaw-only translation
over 360.

In order to increase the complexity of the input datasets for further evaluation of the al-

gorithm, a purely translational, but rectangular (surge and sway) trajectory is used to create

simulated under-ice datasets. The output of the fusion algorithm on this rectangular input

trajectory is shown in Figure 108, along with the independent sonar and camera results and

ground truth. The surge (x) error plot for this trajectory can be seen in Figure 109. In

this case, it can be seen that the sonar estimate drifts in the negative surge direction with

a maximum error of 2.54% (15.24 meters), which results in an under-shoot of this amount

at the end of the trajectory. It can be seen that the camera estimates encounter a drift in

both the x- and y-directions, with a maximum x-error of 1.3% (7.8 meters), which results

in an overshoot of that much at the end of the trajectory. The fused result produces a final

x-error of only 0.72% (4.34 meters) over the 600 meter trajectory. This is a representative

example showing the power of the fusion algorithm presented here, as the resultant error is

much smaller in magnitude than either of the independent sensor errors.
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Figure 108: Translational results from the sensor fusion method on a vehicle trajectory
with surge- and sway-only motion. The truth trajectory shows 200 meters of positive sway,
then 100 meters of negative surge, then 200 meters of negative sway followed by 100 meters
of positive surge.

A final, more complex simulated dataset was used to fully validate the algorithm prior

to testing with real-world data. This dataset contains simulated sonar and video data of an

s-curve trajectory, in which rotational and translational movement is coupled. The fusion

result in this case is shown in Figure 110 (translational) and Figure 111 (rotational) along

with the sonar-only, camera-only and truth trajectory plots. It is important to note that a

camera-only translational trajectory estimate is shown despite the fact that these estimates

are composed of a unit vector without scale. For this more complex case of simulated data,

a frame-to-frame magnitude shift of one meter is assumed for plotting purposes. However,

this is not the case here, and care should be taken during analysis of this trajectory to only

consider the frame-to-frame vector shape and not the accumulated magnitude or offset.

This is clear from the larger magnitude of the initial curve in the camera data in Figure

110. It can be seen from the translational case in Figure 110 that a fusion of the two sensor

estimates results in a combinational result which favors the more confident sonar data, but
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Figure 109: Accumulated error plot for the rectangular (surge and sway) vehicle trajectory
in Figure 108. Plots of camera, sonar, and fused error over the inherent ground truth are
shown.

also incorporates the camera directional estimates. Analysis of the yaw-only rotational

result (Figure 111) is more straight-forward, as absolute angular information is known for

both sensors. It can be seen from this yaw plot that sonar-only, camera-only and fusion

estimates track well with ground truth. The camera maximum accumulated yaw error is

measured at 0.29% and the sonar maximum error is 0.04%, while the fusion error is in

between the two at 0.14% over the 377 meter trajectory, as expected. Additional results

can be found in Appendix A.

A summary of the maximum accumulated translational and rotational trajectory errors

from the inherent ground truth is shown in Table 27 for all simulated datasets (detailed in

Chapter 4). The average frame-to-frame error results are also presented for these simulated

datasets in Table 28. It can be seen in these tables that the error is reduced using fusion in

many cases (e.g. the surge-only, all-ice forward dataset), and the utility of a fusion com-

bination can be seen to provide a more robust estimate over independent sensor systems.
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Figure 110: Translational result of the sensor fusion algorithm showing sonar, camera,
fusion, and truth over an s-curve trajectory. The truth trajectory shows coupled rotation
and translation over an alternating circular pattern with a radius of 30 meters.

In the case of the s-curve forward dataset results detailed previously, the maximum yaw-

error is reduced in the fusion case over the camera independent sensor estimates, and lies

between the sonar and camera errors. The average frame-to-frame error results from this

same s-curve dataset also show that the fusion error rate is equivalent to the more accurate

sonar error rate (1.4%), robust to the the camera error values that are twice as large. These

examples prove the utility and robustness of the sensor fusion method presented here.
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Figure 111: Rotational result of the sensor fusion algorithm showing sonar, camera, fusion,
and truth over an s-curve trajectory. The truth plot shows a pattern of alternating yaw
rotation between -90 and +90.
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8.4.4 Real-World Dataset Results

The fusion algorithm presented here was evaluated on real-world, under-ice data using

datasets from the Colorado and Antarctic vehicle deployments. Ground truth for the Col-

orado datasets is provided by compass data for rotational yaw. Quantitative translational

ground truth is not available, but qualitative analysis of the translational results can be

performed based on the expected trajectory type over the dataset. For validation of the fu-

sion algorithm on the Colorado dataset, results from yaw estimation is the primary form of

analysis. One example from these Colorado datasets can be seen in Figure 112. Although

both sonar and camera estimates encountered large amounts of error in this case, qualita-

tive analysis of the plots in Figure 112 clearly shows the desired effect of the sensor fusion

approach, as the fusion plot shows influence from both independent sensor estimates.

Figure 112: Yaw-only results of the fusion method showing the sonar, camera, and fused
result in comparison to the ground truth estimated from the compass.

Full ground truth is not available with the Antarctic vehicle platform, so onboard inertial

sensors were used to provide an estimate of all six degrees-of-freedom. The translational
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degrees-of-freedom (surge, sway, heave) are subject to large drifts in the accelerometer-

based INS. Therefore, these translational INS estimates do not provide useful information

in many cases, as the vehicle was running for long durations prior to data collection, re-

sulting in the accumulation of drift error. For validation of the sensor fusion algorithm on

real-world data, estimated yaw from an onboard gyroscope is used, as it provides more

accurate truth over the translational estimates. For a qualitative translational validation,

intra-consistency is analyzed between the sonar and video datasets. Qualitative analysis

of the translational results can also be undertaken based on examination of the sonar- and

video-only trajectories versus the fusion output trajectory, to ensure that the fusion method

performs as desired.

Figure 113: Yaw-only results of the fusion method showing the sonar, camera, and fused
result in comparison to the ground truth estimated from the INS.

A plot of yaw rotation from an Antarctic dataset is presented in Figure 113. It can

be seen from this plot that the sonar data is relatively accurate, while the camera data

is noisy but follows the correct trend. The maximum accumulated error in the camera

data is measured at 96.04% and the maximum sonar error is much lower at 10.95% of
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Figure 114: Surge estimation results of the fusion method showing the sonar, camera, and
fused result for this Antarctic out and back dataset (camera results are not scaled)

the total 270 degrees of rotation. The fusion of these two inputs with the sensor fusion

algorithm presented here results in an output favoring the more stable sonar data, with

reduced noise over the camera data, that tracks well with the ground truth. In the fusion

case, the maximum accumulated error is measured at only 14.93%, clearly rejecting the

majority of the poor camera estimates in favor of the more reliable sonar estimates.

While ground truth translational position information is not available, it can be seen

from the surge estimation plot in Figure 114 that the fused trajectory is influenced by both

the sonar and camera estimates. In this case, the trajectory is comprised of mostly forward

surge motion, clearly visible in the results as a steady increase in accumulation value. It

is important to note that a camera-only surge estimate is shown despite the fact that these

estimates are composed of a summation of unit vector components without scale. Here,

a frame-to-frame magnitude shift of one inch is assumed for plotting purposes; therefore

care must be taken when comparing the camera trajectory to the others. Additional results

can be found in Appendix A.
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8.5 Summary

Navigation under the ice is a difficult challenge. A factor graph sensor-fusion method

for utilizing camera and sonar sensors already onboard many underwater vehicles to help

bound drift rates encountered with inertial navigation systems is presented here. The work

presented in this chapter utilizes the sonar- and camera-based relative pose estimation al-

gorithms presented in Chapter 7 and Chapter 5 respectively. Using relative pose estimates

between successive sensor frames, a combination of sonar- and camera-based information

can provide a robust and full estimate of the vehicle state over the trajectory. A factor graph

framework is used here to incorporate all available estimates in order to obtain an optimized

trajectory result. Fusion of these two independent and complementary sensors combines

the strengths of each sensor to overcome independent weaknesses, yielding a more robust

and powerful system over independent sensor systems. The fusion method developed here

was detailed in this chapter, and results were presented from testing over a variety of simu-

lated and real-world under-ice datasets. Such a sensor fusion method can be used to reduce

the error in under-ice navigation systems and increase mission capabilities.
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CHAPTER 9

CONCLUSIONS

9.1 Summary and Conclusions

Exploration of under-ice environments, such as those found in Antarctica, has been the

driving force in advances in the field of sub-ice vehicle development. Early exploration

of these harsh regions was accomplished using human divers and manned submersibles.

While these approaches are still used occasionally today, there has been a shift to favor the

use of unmanned underwater vehicles (UUVs). The technology available with these tools

has advanced drastically over the past two decades, and state-of-the-art UUVs can now

provide amazing capabilities, while reducing the risk placed on human operators. While

low-impact under-ice exploration is now possible using UUVs, these sub-ice environments

still present many unique challenges to the vehicle platforms used in these deployments.

GPS is not available for use under the ice, and thus navigation and localization is extremely

difficult. Deployment of these vehicles beneath the ice presents a feat in and of itself, due to

the harsh environments and logistical challenges. Once deployed, the environment encoun-

tered beneath the ice is difficult to explore. Almost no sunlight is transmitted through the

thick ice cover, resulting in a lack of external light available for any onboard vehicle camera

sensors. Even with a self-contained light solution on the vehicle, visibility can be very lim-

ited in these environments. Life under the ice is very uncommon, and the ice topography

and seafloor is largely featureless and consists mostly of a simple repetitive-texture. This

presents a major challenge for camera-based navigation, either by a human operator or a

computer-vision algorithm. With no unique and re-observable features present, navigation

methods based on landmarks is extremely difficult. For similar reasons, data collected from

under the ice in these regions is largely featureless, and difficult to analyze. Most of these

datasets provide hours of empty water column, ice-background, or void seafloor images.

However, most vehicle deployments are motivated by exploration of these regions in search
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of life, or interesting features amidst these vast, mostly empty environments. Therefore,

careful analysis of each frame in the datasets must be tediously undertaken. These chal-

lenges encountered in the deployment of UUVs under the ice present unique opportunities

for novel computer vision techniques to ease these difficulties.

This dissertation presented novel computer vision based algorithms for use in under-ice

UUV deployments. Camera and sonar sensors are already present in the design of almost all

UUVs. Camera-based and sonar-based relative pose estimation algorithms were presented

to aid in the navigation problem encountered in these environments. A method for mapping

ice texture and locations of any anomalies present against the ice was also presented here

to ease in the scientific analysis of the under-ice video datasets. Novel methods for sensor

fusion, using camera and sonar sensors, was presented in this dissertation to provide more

robust techniques for landmark detection and relative pose estimation than those possible

with single sensor systems. The algorithms developed here were evaluated using simu-

lated under-ice datasets created for this purpose, as well as real-world under-ice datasets

collected in Lake John, Colorado and McMurdo, Antarctica. These simulation methods

and data collection deployments were detailed herein. The Icefin custom under-ice vehicle

deployed for data collection in Antarctica was detailed in this dissertation. This platform

represents a novel UUV design, specifically for polar under-ice deployments. The novel

algorithms developed as part of this dissertation, and results from the evaluation of these

methods using the simulated and real-world under-ice datasets, were discussed throughout

this dissertation.

The specific contributions of this dissertation are as follows:

1. Development of a novel monocular camera relative pose estimation algorithm for use

in low-contrast, featureless, under-ice environments

2. Development of new under-ice texture and anomaly mapping methods
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3. Development of an innovative under-ice, sonar-based relative pose estimation algo-

rithm using an optical flow and rigid motion model approach

4. Development of a novel under-ice sonar and video sensor fusion algorithm using a

factor graph framework to combine the unique strengths of both sensors

9.1.1 Previous Work

A background of previous work in the various technical areas of this dissertation was pre-

sented in Chapter 2. While many prior works have investigated the use of sonar or camera

sensors to aid in localization, the use of such a system in a feature-poor, under-ice environ-

ment has not been examined. The use of underwater sonar sensors for localization has been

mostly limited to applications with blob features of significant acoustic return, or structured

environments such as pools. Use of optical flow and point-feature-based algorithms with

sonar, such as those considered here, is very uncommon in the literature. Camera-based

monocular pose estimation applications remain largely terrestrial-based, with the few un-

derwater applications commonly requiring feature-rich environments for successful results.

While range and optical sensor fusion has been explored, use of underwater sonar sensors

with camera sensors is very uncommon, especially in featureless and under-ice environ-

ments. Sonar- and video-based algorithms have not been previously used for automatic

ice texture estimation and ice anomaly detection. Availability of previous data collection

using forward-looking sonar and optical camera sensors in sub-ice environments is limited.

Previous sonar and camera simulations of under-ice environments are not readily available

from previous work. Therefore, datasets for the evaluation of the algorithms presented

here are obtained here directly through simulation and under-ice field deployments. The

under-ice UUV frontier is relatively new in and of itself, and the novel use of the algorithms

presented here will help to advance capabilities in the field.
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9.1.2 Under-Ice Data Collection and Vehicle Platforms

The simulation methods, vehicle platforms and field deployments, as well as the datasets

produced for algorithm evaluation, were presented in Chapter 3. Evaluation of the algo-

rithms presented in this dissertation requires sonar and video data obtained in sub-ice envi-

ronments. The VideoRay Pro IV and custom Icefin vehicles were used for data collection

beneath the ice in Lake John, Colorado and McMurdo, Antarctica respectively. Simulation

methods were also developed here to produce additional datasets with full controllability

and ground truth available. These simulated and real-world under-ice datasets were used

for development and validation of the algorithms presented throughout this dissertation.

The simulated datasets provided inherent ground truth, along with fine controllability, and

thus were used for performance analysis of the algorithms presented in this dissertation.

The under-ice field deployment in Lake John, Colorado using the VideoRay Pro IV

vehicle and BlueView P900-45 forward-looking sonar provided a wealth of data for use in

algorithm development and analysis. Video and sonar data was collected for over 40 runs

of the vehicle, using multiple software suites for redundancy. The qualitative results from

this sensor angle evaluation were used for development of the Icefin vehicle.

The Icefin vehicle was designed as a modular unmanned underwater vehicle, with an

extensive sensor suite, and an optical fiber tether for control and communication, in order

to meet under-ice deployment challenges while obtaining high science return. A unique

combination of human portability and a novel through-ice (small diameter hole) deploy-

ment method facilitates deployment of the modular Icefin vehicle out into the field. The

Icefin vehicle is novel among state of the art under-ice vehicles; it contains a scientific and

navigational sensor suite, autonomous capabilities, vectored thrusters in place of control

planes, and a unique sensor module integration (rotatable by 180 degrees for ice missions).

The Icefin vehicle’s small size and human portability lowers logistical effort and cost. The

Icefin vehicle provides a custom solution to the unique polar and under-ice deployment
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challenges. The Icefin vehicle was deployed to McMurdo station in Antarctica from Octo-

ber to December of 2014. Designed for the harsh under-ice environment encountered on

the McMurdo Ice Shelf, the Icefin vehicle was successfully deployed over multiple sub-ice

exploration missions to obtain data of previously unexplored areas beneath the ice shelf.

The data collected during deployment of the Icefin vehicle provided valuable real-world

datasets for full evaluation of the algorithms presented in this dissertation.

9.1.3 Under-Ice Monocular Camera Relative Pose Estimation

A vision-based relative pose estimation algorithm was presented in Chapter 5 for use in

low-contrast and feature-poor under-ice environments. This method utilizes a five-point

algorithm for estimating relative camera pose between frames. Using adaptive contrast

enhancement preprocessing and liberal feature-detection and matching thresholds on the

front end, with a robust model estimation method on the back end, this relative pose algo-

rithm, commonly used with feature-rich environments, was adapted for application in the

much harsher environments considered here. This vision-based relative pose estimation

algorithm was first evaluated using simulation datasets. The algorithm was also evaluated

using real-world datasets, and the results track well with the ground truth compass data (in

a Colorado dataset) over 550 degrees of rotation. An Antarctic dataset is presented in the

results for qualitative validation of the algorithm, which tracks a mostly-surge trajectory

with a steady course, as expected. The results from this camera-based relative pose esti-

mation algorithm show promise for the use of such an approach in under-ice environments,

despite the challenges encountered.

9.1.4 Texture Estimation and Anomaly Mapping

The texture and color-based mapping and anomaly detection algorithms were presented in

Chapter 6. The texture estimation method presented here provides a quantitative estimate

for the number and spread of the detected point features in a frame, corresponding to the

texture of the background ice. Hue, or color, is also used to estimate the percentage of
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pixels in the image that do not correspond to ice background yielding a good relative es-

timate of how “interesting” the colors in a frame are. Qualitative and quantitative analysis

of the texture estimation algorithm with simulation data proves its utility, as four varying

ice textures are correctly ranked by the estimated texture values. Qualitative analysis of the

hue-based mapping algorithm shows consistency with the ground truth of the main simu-

lated dataset. All of these algorithms also showed similar positive results with real-world

datasets. These mapping algorithms can be run in parallel with the navigational algorithms

also presented in this dissertation to best utilize the limited computational budget available

on the vehicle platforms.

9.1.5 Sonar-based Relative Pose Estimation

A sonar-based relative pose estimation algorithm was presented in Chapter 7. The use of

optical flow and point-feature computer vision methods is not common with sonar imagery.

However, the application of such methodology to sonar datasets obtained in simulated and

real-world under-ice datasets with positive results, presented in this chapter, proves the

utility of such an approach. A preliminary investigation into the use of optical flow meth-

ods with sonar data was presented in this chapter, along with the final sonar-based relative

pose estimation algorithm. Results from evaluation of these methods using simulated and

real-world sonar data was presented in this chapter as well. The preliminary investigation

into the use of optical flow methods with sonar data proved the utility of such an approach

through statistical analysis of the optical flow results over a sonar dataset with human-

annotated ground truth. Optical flow methods were able to effectively estimate direction

and magnitude of any shift between frames, while rejecting false data. These promising

results led to further development of a more robust model for motion estimation between

sonar frames. Multiple preprocessing and optical flow techniques were evaluated with

sonar data during this initial investigation, and it was determined that Gaussian smooth-

ing should be applied to the sonar images to reduce noise prior to evaluation, and that the

Lucas-Kanade optical flow based algorithm performed the best with such unique datasets.
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Once the final sonar-based relative pose estimation algorithm was developed, it was evalu-

ated using the simulated and real-world under-ice datasets obtained here. The effective use

of optical flow with sonar data in featureless environments presents a novel contribution

with promising results. The application of such a method for relative pose estimation can

help aid in navigation in challenging under-ice environments.

9.1.6 Factor Graph Sensor Fusion

A factor graph sensor-fusion method for utilizing camera and sonar sensors already onboard

many underwater vehicles to help bound drift rates encountered with inertial navigation

systems was presented in Chapter 8. The work presented in this chapter utilizes the sonar-

and camera-based relative pose estimation algorithms presented in Chapter 7 and Chapter

5 respectively. Using relative pose estimates between successive sensor frames, a combi-

nation of sonar- and camera-based information can provide a robust and full estimate of the

vehicle state over the trajectory. A factor graph framework is used here to incorporate all

available estimates in order to obtain an optimized trajectory result. Fusion of these two in-

dependent and complementary sensors combines the strengths of each sensor to overcome

independent weaknesses, yielding a more robust and powerful system over independent

sensor systems. The fusion method developed here was detailed in this chapter, and results

were presented from testing over a variety of simulated and real-world under-ice datasets.

Results from this analysis showed a decrease in error for multiple fused output results, over

both independent sensor estimates. In almost all other cases, reduced error amounts, over

the least accurate single-sensor input, are produced by the sensor fusion estimate. Quali-

tative analysis of the sensor fusion algorithm with real-world datasets, for both rotational

and translation cases, shows the expected influence of both sonar and camera estimates on

the fusion output result. The novel factor graph sensor fusion method developed in this

dissertation presents a robust algorithm for incorporation of multiple complementary but

partially redundant sensor datasets, to provide a more capable navigational aid. Such a

sensor fusion method can be used to help bound the error in under-ice navigation systems,
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and increase mission capabilities.

9.2 Contributions

The unique contributions of this work include development of multiple algorithms to aid in

navigation and mapping in under-ice environments. An under-ice simulation environment

is developed for creation of both camera and sonar datasets. The design of a custom under-

ice vehicle is presented, along with novel lessons learned from Antarctic deployment, and

extrapolation of such a deployment to future planetary exploration. The adaptation of a

vision-based relative pose estimation algorithm is presented for use in low-contrast and

mostly featureless under-ice environments. The novel use of optical flow with sonar data

is shown to be a useful approach, despite its uncommon use. One main contribution of

this thesis is the development of a relative pose estimation method using a forward-looking

multibeam sonar sensor. The final main contribution of this dissertation is the novel factor

graph sensor fusion method presented here for robust relative pose estimation in under-ice

environments using sonar and camera sensors, already onboard many UUVs. The contri-

butions of this dissertation will help advance the capabilities of under-ice UUVs to provide

greater mission potential in these challenging environments.

9.3 Possible Topics For Future Research

There are many additional interesting topics for investigation in this area, which are out

of the scope of this dissertation. Presented in this final section are some of these topics as

open investigation problems for future development.

Development of the custom Icefin vehicle for polar sub-ice deployment provided a valu-

able investigation into the unique challenges of field robotics in such a harsh environment.

The lessons learned from the 2014 Antarctic deployment of this vehicle should be exploited

in the future development of new under-ice vehicles. Future development of the Icefin ve-

hicle will include additional sensors and modules, tuning of the vehicle, and refinement
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of the inertial navigation system. Investigations into the use of power-over-fiber could

provide greater mission durations for the vehicle and reduce the dependence on batteries.

Development of a similar under-ice vehicle for planetary deployment to Europa is a main

open research problem presented here. Lessons learned from vehicles such as Icefin can be

extrapolated to the more challenging problem faced with the development of such a plan-

etary exploration platform. Further sub-ice deployment of the Icefin vehicle is planned for

Greenland in 2016 and a return to Antarctica in future seasons.

The use of a monocular vision system for sub-ice relative pose estimation, which

showed promising results here, should be investigated as a navigational aid for use in simi-

lar low-contrast, feature-poor environments. Additional vision-based relative pose estima-

tion approaches could be investigated for use in these under-ice environments, as a more

robust and accurate approach may be available in the future. The use of a multiple-camera

approach (instead of a monocular system) for under-ice navigation is presented here as an

open research problem, and could provide more accurate and robust results if two cameras

are available on the UUV.

Mapping methods commonly used with open-water UUVs should be investigated for

use in under-ice environments. Methods such as structure-from-motion might be consid-

ered to create three-dimensional representations of the under-ice environment. Additional

vision-based mapping techniques should also be investigated to provide other valuable in-

formation for scientific investigations. Additional future research in this area could also

include a fusion of the two anomaly detection algorithms presented here, to increase ro-

bustness.

The initial development of a sonar-based relative pose estimation method, presented

here, proves the utility of such optical flow and feature-based methods with sonar data.

This opens up a large area of research on the application of other computer-vision methods

with sonar datasets. The sonar-based relative pose estimation algorithm presented here

assumes use in planar, ice-covered environments. However, this could be extrapolated in
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future research to additional applications, such as deployment in areas of drastically varying

topography.

The factor graph sensor fusion method presented in this dissertation proves the utility

of the integration of sonar- and camera-based relative pose estimation into the navigational

framework of a UUV. However, other available positional information was used as ground

truth for algorithm evaluation here, and not integrated into the system. Future research

should investigate the fusion of other available navigational sensors into this factor graph

framework approach. The loop-closure problem, not possible in repetitive-texture environ-

ments with no unique features, should be further investigated in these under-ice environ-

ments. Loop-closure constraints can be easily integrated into the factor graph sensor fusion

framework developed here, and can yield substantial reductions in error drift rates.

All of the computer vision methods developed in this dissertation should be integrated

and evaluated in real-time embedded UUV platforms. While the theory of these applica-

tions is presented here, application of such methods during deployment of UUVs would aid

in navigation and data collection. Adaptation of the algorithms presented here for a paral-

lel architecture is presented as an open investigation problem, to provide a more capable,

efficient implementation. These final algorithms should be integrated into the Icefin vehi-

cle control and data collection software architecture in future research. Further evaluation

and adaptation of these algorithms to an even wider range of environments is suggested to

provide further utility and robustness to the methods.
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APPENDIX A

ADDITIONAL RELATIVE POSE ESTIMATION RESULTS
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Figure 115: Simulated rotation dataset: estimated yaw over 360 degrees (maximum accu-
mulated error = 0.22% (camera), 0.06% (sonar), 0.11% (fusion) )

Figure 116: Simulated surge-only dataset: estimated trajectory over 200 meters (maximum
accumulated y-error = 0.11% (camera), 0.61% (sonar), 0.31% (fusion) )
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Figure 117: Simulated s-curve estimated trajectory over 377 meters (maximum accumu-
lated error = N/A (camera), 0.55% (sonar), 2.61% (fusion) )

Figure 118: Simulated s-curve estimated yaw over 720 degrees (maximum accumulated
error = 0.33% (camera), 0.04% (sonar), 0.18% (fusion) )
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Figure 119: Colorado dataset: camera estimated yaw over 850 degrees (maximum accu-
mulated error = 11.77%, final accumulated error = 5.24%)

Figure 120: Colorado dataset: camera estimated yaw over 1600 degrees (maximum accu-
mulated error = 24.3%, final accumulated error = 16.28%)
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Figure 121: Colorado dataset: camera estimated yaw over 550 degrees (maximum accu-
mulated error = 32.1%, final accumulated error = 31.96%)

Figure 122: Colorado dataset: camera estimated yaw over 375 degrees (maximum accu-
mulated error = 24.95%, final accumulated error = 18.46%)
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Figure 123: Colorado dataset: camera estimated yaw over 1000 degrees (maximum accu-
mulated error = 12.7%, final accumulated error = 3.23%)

Figure 124: Colorado dataset: camera estimated yaw over 550 degrees (maximum accu-
mulated error = 11.19%, final accumulated error = 4.14%)
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Figure 125: Colorado dataset: camera estimated surge representation for out and back
trajectory (qualitative)

Figure 126: Colorado dataset: sonar estimated surge representation for out and back tra-
jectory (qualitative)
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Figure 127: Colorado dataset: estimated yaw over 135 degrees (maximum accumulated
error = 54.7% (camera), 57.7% (sonar), 56.15% (fusion) )

Figure 128: Colorado dataset: estimated yaw over 70 degrees (maximum accumulated
error = 23.2% (camera), 30.7% (sonar), 13.31% (fusion), final accumulated error = 11.6%
(camera), 16.9% (sonar), 2.64% (fusion) )
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Figure 129: Colorado dataset: estimated yaw over 20 degrees (maximum accumulated
error = 341.65% (camera), 219.85% (sonar), 117.85% (fusion), final accumulated error =

308.1% (camera), 189.35% (sonar), 59.4% (fusion) )

Figure 130: Colorado dataset: estimated surge representation for out and back trajectory
(qualitative)
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Figure 131: Antarctica dataset: camera estimated yaw over 275 degrees (maximum accu-
mulated error = 32.75%, final accumulated error = 23.11%)

Figure 132: Antarctica dataset: camera estimated yaw over 800 degrees (maximum accu-
mulated error = 27.37%, final accumulated error = 2.18%)
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Figure 133: Antarctica dataset: sonar estimated yaw over 300 degrees (maximum accumu-
lated error = 9.59%, final accumulated error = 2.85%)
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