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DESIGN CRITERIA. FOR PET,TET-DISPERSING WARHEADS x 

 Gklbert C. Knoliman and Joseph J. Moder 

Engineering Experiment Station 
Georgia. Institute of Technology 

Atlanta, Georgia 

A warhead is presumed to be so designed as to provide a radial dis-
persion of small pellets without significantly altering their col-
lective forward motion. Thus, at the moment of target interception, 
the pellets are taken as randomly distributed over either a circular 
or an elliptical lamina, and those paraboloidal and uniform distri-
butions which lead to optimum target kill probabilities are derived. 
Design criteria are noted which tend to yield the largest overall 
kill probability. Target and lamina size, individual pellet mass, 
overall mass, kill probability of a single pellet which hits the 
target, and the random errors of predicting target position and of 
placing the pellet array at that position are all taken into ac-
count. Errors in improper orientation of the pellet lamina are 
neglected. An assessment is made of the basic proposition that the 
kill probability of every pellet striking the target is the same, 
independent of the number of previous hits; thereby some "limits 
of applicability" are established for the present study. In conclu-
sion, an application of the mathematical results to a shotgun-bird 
system is presented, 

Introduction 

A comprehensive study has been made of a target-weapon system in three-

dimensional space in which the - weapon is a two-dimensional array of small 

pellets that will cause significant physical damage to the target upon 

impact. The pellets are assumed to be randomly distributed throughout a 

circular or elliptical lamina according to a specified "law of distribu-

tion" at the moment of interception. Emphasis has been placed on the deter-

mination of kill probabilities for various forms of spatial distribution of 

'Based on research supported in part under contract number AF:33(616)-6292. 
To be presented at the Eighteenth National Meeting of the Operations Research 
Society of America, Detroit, Michigan, October 10-12, 19600, 
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pellets throughout the laminas, with account taken of such factors as target 

size, overall pattern size, individual pellet mass, overall mass, and the 

kill probability of a single pellet which hits the target, The analysis 

includes the possibility of two error sources—namely, probable errors of 

predicting target position and of placing the pellet pattern at that target 

position, 

At the time the target center is overtaken by the pellet array and lies 

within the pellet-pattern plane, the projected target area in this plane is 

conveniently represented by that of a circle of radius r T  (called the effec-

tive target circle), while the pellet pattern has an overall cross-sectional 

radius r
P  (in the circular lamina case) or semiaxis lengths a P 

 and b
P 
 (in the 
 

elliptical lamina case), It is assumed that r T  is much smaller than the 

smallest diameter of the pellet pattern so that the actual geometric shape of 

the target is relatively unimportant, However, rT  is not considered as small 

compared to the spacing between individual pellets in the laminar pattern. 

Figure 1 illustrates three forms of pellet distributions which are 

treated in the present analysis, Since it will be shown that the ideal dis-

tribution is paraboloidal in form, the paraboloid which yields overall the 

largest kill probability (labeled "optimum paraboloid" in Figure 1) is 

investigated initially for both the circular and the elliptical laminas. 

Next, that uniform distribution which gives the highest kill probability 

(labeled "optimum cylinder") is treated for both patterns to compare with 

the optimum paraboloid, Lastly, that paraboloid of revolution giving the 

largest kill probability (designated "optimum paraboloid of revolution") 

is included (for the circular lamina) to allow for comparisons between 

symmetric and asymmetric paraboloidal distributions, 

Maximum Kill Probability in each of the cases shown in Figure 1 occurs 

for specific values of the pattern radius or semiaxis lengths. These maxima 

are computed and plotted versus a dimensionless parameter involving the 

effective radius of the target circle, individual pellet mass, overall mass, 

kill probability of a single pellet, and the error variances, Values are 

A general class of problems involving the combination of two random errors 
is discussed by Grad and Solomon [1] 0  
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given for the lamina radius or semiminor axis length which corresponds to the 

maximum Kill Probability. In addition, graphs are presented of Kill Proba-

bility versus pattern radius or semiminor axis length to illustrate the 

destruction probability for "early" or "late" arrival of the pellet array at 

the target position, Following the mathematical presentation, there appear 

a summary of the basic results and indications of some desirable design 

characteristics to incorporate in pellet-dispersing warheads, Finally, an 

application of the theory is made to a shotgun-bird system, 

CIRCULAR LAMINA 
	

ELLIPTICAL LAMINA 

 

g(x,y) 

(a) OPTIMUM PARABOLOID 

(6) OPTIMUM CYLINDER 

(c) OPTIMUM PARABOLOID OF REVOLUTION 

Figure 1, Illustrating Paraboloidal and Cylindrical Pellet Distri- 
butions Which Yield Categorically Optimum Kill Probabilities. 

A basic assumption throughout is that the probability of destroying the 

target with any hit by a pellet is always the same, irrespective of the number 

of previous hits, This means that a pellet will only destroy the target if. it 

hits a "vital spot," a hypothesis stated by Morse and Kimball [2] to be ade-

quate in cases such as torpedoes against cargo ships and AA shells against 

aircraft. An assessment of the independent probability assumption is made in 

Section 10 to establish some "limits of applicability" for the present study, 

-3- 
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2. Problem Geometry 

At the instant of interception, the effective target circle coincides 

with the plane of the laminar pellet pattern, but the distance between centers 

of the target circle and the pellet pattern is typically nonzero. Figure 2 

depicts two representative cases: one in which the target circle lies within 

the bounds of the pellet lamina, so that a kill is possible; the other in 

which no interception occurs, making destruction an impossibility. The pellet 

pattern is depicted as an elliptical lamina; the circular lamina case shown 

(a) INTERCEPTION (b) NO INTERCEPTION 

Figure 2. Typical Relative Positions of Effective Target Circle 
and Pellet Lamina Within the Plane of Interception c, 

in Figure 1 is, of course, the special case of an elliptical lamina with equal 

axis lengths. As noted earlier, rT  is assumed very much less than a p, but has 

been exaggerated in Figure 2 for illustrative purposes °.
* 

The Cartesian reference frame X', Y °  is defined in the plane of inter-

ception with origin at the point of aim and with the Y'-axis drawn vertically 

upward,. The coordinates X;)  and Yi), which locate the center of the pellet 

Contrary to conventional notation, the semiminor and semimajor axis lengths 
of the pellet lamina are represented by a p  and bp, respectively. 
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pattern relative to this frame, may be regarded as the "lateral" and "vertical" 

errors incurred in attempting to place the center of the pellet array at the 

predicted target position, Similarly, lateral and vertical errors in predicted 

target position are represented by the coordinates 1Z and I i°,0 These errors 

combine to give a net "miss distance" r between actual pellet pattern and 

target centers which can be written as 

(la) 	r = (X2 + Y2 ) 	, 

where X = (X °T  - XP) and Y ,., (Y °T  - Y'P ) are new coordinates locating the actual 

target center relative to a translated reference frame with origin at the 

center of the pellet pattern. 

We assume that the coordinate pairs (XT, 
TP  Y° ) and (X°' P  Y') each have a 

bivariate normal distribution with zero mean—the associated variances and 

covariances being designated g2 g2  62 g2 g 	and g 	 Then X —X" Y" 	Y" —X °Y ° 	—X °Y" T T 
and Y also have a bivariate normal distribution with mean zeroP ,

P 
 whose variances 

and covariance are given by 

2 	2 	2 
X = a 
X 	X ° 	° T 	P 

2 	2 	2 
g 	g 	a , 

T 
Y 	Y   

GXY 	
g
x-y° 	c)-..)° T T 	vYP P 

A third orthogonal coordinate system x,y is now introduced in the plane 

of interception, This reference frame has the same origin as the X,Y system 

but is rotated counterclockwise therefrom by an angle cp. The coordinates (x,y) 

of the actual target center in this system are assumed to have a bivariate 

normal distribution with mean zero, Equation (la) for the miss distance r is 

written in terms of these coordinates as 

(2a) 
	

r = (x2  + y2  

The angle cp can always be chosen to align the axes of the x,y frame with 

those of the composite error ellipse so that the covariance —x
a
y 
 (of x and y) 
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is zero, and the variances are 

	

ax 
 = 1 f(aX 

	
2 	0.2

Y) 
	[(02X 
	6Y

2)2 + 4 
0_XY
2  jil 

	

62
= 1 f(a2 	02 ) 	4. L(0,2 	02 ) 2 + 4 02 

y 2 	X 	Y 	X 	Y 	XY 

This process of diagonalizing the covariance matrix is discussed in Appendix A, 

where Equations (2b) and (2c) and also the requisite angle cp are derived° 

The subsequent mathematical development is formulated with reference to 

the x,y coordinate system, wherein the ellipse of composite error variance is 

in standard position. Generally, the axes of the elliptical pellet pattern 

will not coincide with those of the x,y system due to errors incurred in 

attempting to properly orient the pellet lamina. However, to avoid unreason-

able complications in the ensuing analysis, it is assumed that the elliptical 

pellet lamina is also in standard position in the x,y frame, and further that 

its major axis coincides with that of the error ellipse, 

Computation of Intercept Probability 

The term "Intercept Probability" as used here means the probability that 

the effective target circle and the pellet pattern will overlap somewhere in 

the plane of interception (see Figure 2a), 	Insofar as the radius r
T  of the 

effective target circle can be considered small compared to the smallest pel-

let pattern dimension ap, a practical criterion for an Intercept is the condi-

tion that the center of the target circle lie within the boundary of the pellet 

pattern. Expressed mathematically, the Intercept Probability is 

a 
(3a) 	P{Intercept} 	

2 
a a 	

bP 2 	2 1  

	

(ap  - x ): 	l 7/x
2 	2 

--7  xpL- 	 dy dx , 
x y 0 0 	 u

x 	
u
y 

where bP  and aP 
 are the semimajor and semiminor axis lengths of the pattern 
 

ellipse, respectively, and ax 
 and y 

—Y 
 are defined in (2b) and (2c). In polar- 

coordinate notation the above equation takes the form 

* . 
Since the pellets are random in their distribution within the pattern, an 
"intercept" of the target by the pellet array does not necessarily constitute 
a "hit," 

(2b)  

(2c)  
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(3b) 

where 

(3c) 

t 
1 	 r

2 
cos

2
0 	sin

2
0 

P{Interceptl = 2n axoy
0  

rt = aP  bP  (b
2 

cos
2 0 + a

2 
sin

2
0) • 

exp[ 77(
2 	2  )] r dr d8 , a

x 	ay 

Some simplification is gained in subsequent mathematical procedures by 

normalizing ”length" quantities with respect to the standard deviations. Thus, 

the following substitutions are made in (3b): 

a 
(4a) Pa - (a a ) 2  x y 

the normalized semiminor axis length of the pellet pattern ellipse, and 

bP  

Pb =  
(a a ) 2  x y 

the normalized semimajor axis length. In addition,the ratio of error standard 

deviations is represented by 

(4b)  

(5a) 

where 
-x 

 a and a 
-y 	 x 

are arbitrarily chosen so that a 	y < a , and the ratio of pellet- 
- 

pattern axes by 

(51D) 

a 	p P 	a 
K — — < b

P 
p
b 

 

Upon introduction of the substitution 

2 
(6) 	w -r  7 7  

x y 

in conjunction with Equations (4) and (5), one then obtains for the Intercept 
Probability 

(7a) 	P{Intercept} exp cos
2
0 + 2 	2 X3 sin 0)] dw de , 

where 

(7b) w = p2 ( cos2 0 + K
2 

sin
2
0)

-1 
a 

-7- 
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Computation of Kill Probability 

The term "Kill Probability" (meaning the probability of target destruction 

or disablement) implies not only that the target will lie within the pellet-

pattern area at the time of interception but that it actually will be hit by 

one or more of the pellets, to each of which is ascribed a certain chance of 

striking some vital point in the target. The determination of Kill Probability 

therefore involves three factors: the likelihood of finding the target center 

within an interval dr at any given distance r from the center of the pellet 

pattern, the number of pellets likely to be encompassed at that distance by 

the effective target circle, and the probability of target disablement asso-

ciated with each pellet hit. 

The first of these factors is the differential Intercept Probability, 

given in normalized form by f(w,9) dw de, where f(w,9) denotes the normalized 

probability density function of the miss distance r and is the integrand in 

Equation (7a). The second and third factors will be considered in combination 

as a single "effectiveness function"--designated h(w,0)-- which represents the 

conditional probability of a Kill, given that an Intercept has occurred at 

normalized distance .07. Then the Kill Probability is written 

2n 
(8) 	P{Kill} • 

wt 
h(w,e) f(w,e) dw de , 

0 	0 

where the integration extends over the entire area wherein pellets exist. 

Thus, the total Kill Probability is given in terms of an "extrinsic" function 

f(w,9), which contributes the effect of random errors in predicted target 

position and actual weapon placement, and an "intrinsic" function h(w,9) which 

takes into account such things as distribution of pellets within the laminar 

pattern, the effective target area, and the vulnerability of the target to 

hits from pellets of given mass. 

With the differential Kill Probability written as 

(9) 
	

dP{Kill} = P{KilllIntercept} dP{Intercept} , 

reference to Equation (8) reveals that the normalized effectiveness function 

h(w,19) may be regarded as the probability that a kill occurs given that an 

intercept has taken place. If every pellet within the pellet lamina has the 

-8- 
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same mass m and if the total mass involved is M, then there will be M/m 

individual pellets distributed throughout the pattern. Assuming that the 

total number of pellets (M/m) will be very large while the ratio of target 

size to pellet-pattern size (r T/ap) is very small, and defining the normal-

ized average or expected number of pellet hits occurring in the event of an 

Intercept to be g(w,e), one may express the actual number of pellets hitting 

the target by the Poisson distribution function. 	Hence, the probability that 

exactly i pellets will hit the target, provided an Intercept occurs, is 

i -g 
(10) 	P{i HitslIntercept} - g ' 	

i 	0, 1, 2, 0 „, 

To conserve the pellet number, g(w,A) must satisfy the following integral 

equation: 

g(w,e)  r dr de 2 
RrT  

With the introduction of Equations (5), (6), and (7b) and the normalizing con-

ditions (4), Equation (11) reduces to 

2 '7 	wt  (12) f 	f g(w,0) dw de = 	a 
0 	0 

where a is a "composite pellet/target characteristic" given by 

(13) M 	2 
a= P PT 

and incorporates (in dimensionless form) those parameters which are fixed by 

the selection of a specific target vehicle and pellet-pattern design. The 

quantity p appearing in (12) and (13) represents the probability than any one 

pellet produces a kill, while 2T in (13) is the normalized radius of the 
effective target circle and is defined as 

r
T 

P - -----7m 
( 	 ) 2 

x y 

' The notation g(w,A) expresses the fact that the expected number of pellet 
hits on the target depends upon the precise location of the target within 
the pellet array. 

f 
0 

	
rt 

-9- 
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A simplifying assumption relating to Equation (10) is now made—namely, 

that each of the i particles which hit the target has the same probability p 

of producing a kill. *  This gives for the probability that the target will be 

destroyed, conditional upon its receiving exactly i hits: 

(15) P{Killli Hits} = 1 - (1-p) 1  , 	i = 0, 1, 2,. 0 , 

Combining Equations (10) and (15) and performing a summation (over i) so as 

to account for every possible grouping of pellets which might be encountered, 

one obtains the intrinsic effectiveness function h(w,0): 

h(w,O) = P{KilllIntercept} , 

(16)  

i -g 
= 	g iel  [1 - (1-p) ] 	, 
i=0 -- 

= 1 - e -Pg(w° )  

Equation (16) and the integrand in Equation (7a) are now inserted into 

Equation (8) to obtain the Kill Probability as 

27 wt 
(17) P{Kill} = 7-1 

1 [1 - e Pg(w°) ] exp[- 0 0   

in which the normalized average number of pellet hits (or pellet distribution 

function) g(w,e) must satisfy Equation (12). The constants 2 and K above, 
representing the ratio of the standard deviations and the ratio of pellet-

pattern axis lengths, are defined in (5a) and (5b), respectively. It is 

noted that K has the value unity for the circular lamina pattern shown in 

Figure 1, while 2 is unity for the case of identically distributed horizontal 
and vertical error components--that is, when the radial distribution of miss 

distance has no angular dependence. 

In the next section Equation (17) is extremized for the special case of 

K and .a both equal to unity to determine the ideal form of the pellet distri-

bution function g(w,O). Each of the functions sketched in Figure 1 is then 

investigated in turn for various K and .a values. A discussion is included of 

the manner in which these so-called optimum distributions are determined, and 

*
Limitations introduced by this assumption are considered in Section 100 

cos
2 	p2 sin 2

0] dw dO , 

-10- 
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the resulting Kill Probabilities for paraboloidal and cylindrical distributions 

are compared with one another. 

Geometric Form of the Ideal Pellet Distribution Function 

In order to determine the mathematical form of that distribution function 

which leads to the greatest overall Kill Probability, a simplified version of 

Equation (17) is considered: that which prevails when the components of the 

composite error variance are equal (p.1) and the lamina pattern is circular 

(K=1). Under these conditions, Equation (17) reduces to 
2 

(18) 1 P 
P{Kill) - 	

P [1 - e -Pg(w) ] e -w/2  dw , (K=1, p.1) 
0 

and the constraint equation (12) for the pellet distribution function g(w) 

becomes 
2 

(19) f PP  g(w) dw = a/p . 0 

In the above, p p  is the normalized pellet-pattern radius given by 

(K=1, p.1) 

(20) Pp - 	 

	

(c) 
	, 

x y 

rp  

and the distribution function g(w) represents a surface of revolution° 

To extremize Equation (18) subject to the auxiliary condition (19) is 

now a simple isoperimetric problem in the calculus of variations,, With the 

aid of a Lagrange multiplier to include the constraint and the appropriate 

Euler variational equation, one obtains for the optimum pellet distribution 

function"' in this case the paraboloid of revolution 
2 

(21) g(w) 	( cc 	
2 

op 	p 	2 	- 2' , 	
w < pp  . 

Pp 

We have now reached the goal of this section, and have found the ideal 

form of the distribution function to be a paraboloids However, it may be of 

interest to continue with this simplified case somewhat further° We will 

The designation "optimum" pellet distribution is used herein to denote that 
function which gives categorically the largest Kill Probability °  
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establish the Kill Probability for this case and then maximize it with respect 

to the normalized pattern radius. 

Introduction of (21) into (18) leads immediately to the desired optimum 

Kill Probability—namely, 
2 2 	 2 	2 

\ 	1 2 	 Pp/4) 
(22) 	PIKilll op  = (1 - 

e-pp/ 
 ) - 	pp 

e-(a/Pp 
 (K=1, p-1) 

A plot of this expression versus the normalized pattern radius p p  for three 

values of the dimensionless parameter a is contained in Figure 5 (see p-1 

curves). 

The Kill Probability in (22) can now be maximized with respect to pp . 

Since PfKilll 
op 
 in Equation (22) is a monotonic increasing function of p 2 no 

relative maximum exists„, Rather, the largest possible value for the Kill 

Probability is sought. The distribution function in Equation (21) must, of 

g(p p ) op  = a/pP  - p
2

/2_[ 	Since g(pP ) op 	0' 	 pP 	■
1/  this means that 	< 4a) 

course, be non-negative. On the boundary of the circular lamina, w p p  and 

Since the Kill Probability is largest for the maximum permissable radius p P' 
we take 

(23) pp ] max  = (4a) 1/4 

	
(K.1, (3-1) 

and obtain 

(24) PfKilll 
op  ] max = 1 - (1 	■/7c) e - 
	

(K=1, p=1) 

Graphs of Equations (23) and (2L4.) versus a are to be found in Figures 6 and 

7, respectively. The pellet distribution function accompanying the maximum 

Kill Probability above is found by substituting (23) into (21): 

(25) gmopi max - p (/E - 4) 
	

0 < w < 21/E 	 (K=1, p.1) 

One notes that the above surface is identically zero on the boundary of the 

circular lamina, that is, when w = 21/E . 

The significant feature of the foregoing analysis is the shape of the 

pellet distribution function: a paraboloid. Furthermore, the Kill Proba-

bility is seen to be largest for a specific value of the pattern dimension„ 

-12- 
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It is now assumed, with Morse and Kimball [2], that the ideal pellet distribution 

is also paraboloidal for non-symmetrical components of the composite error 

variance, i.e., for p L 1. However, the particular shape of the paraboloidal 
surface, as well as its boundary configuration, is not necessarily similar to 

that considered above for p=1. These properties must be determined anew, and 

indeed separately for the two lamina types K=1 and 01. For K=1 the optimum 

distribution function is found to be an elliptic paraboloid which is not iden-

tically zero on the boundary of the circular lamina while an elliptic parab-

oloid which is identically zero on the boundary of the elliptical lamina is 

found for 	These results are depicted in Figure la and analyzed in the 

following section. 

6. Optimum Paraboloidal Pellet Distribution Functions  

In the event 01 (so that the radial distribution of miss distance has 

an angular dependence), that paraboloidal distribution function (the optimum 

paraboloid) is to be determined which yields the largest Kill Probability 

subject to the subsidiary condition of Equation (12). Both the circular 

lamina (K=1) and the elliptical lamina (01) are considered. To begin with, 

the distribution function is taken in the general paraboloidal form 

(26) g(w,O) = A - w (B sin 2 0 	C cos2 0) , 

where A, B, and C are constants to be determined. Substitution of (26) into 

(12) leads to the first equation relating these constants: 

P
2 

(27) A - IL+ a (B CK
2

) 
2 	2 

PPa 4K  

It is next reasoned that the elliptical cross-sections of the surface (26) 

should optimally have the same shape (eccentricity) as the elliptic error 

pattern; in other words, the mean density of pellets should be constant along 

a curve whose probability density is constant. This gives 

(28a) (1 - B/C) 2  = (1 - p
2 
 )-
4  
 , 

or 

(28b) B = p
2 
C . 

-1 3- 
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Substitution of (28b) into (27) results in the following relationship between 

A and C: 

(29) 

2 
Ka 	P  A 	 , 

= 	2 -I- 	
a 

 2 u  (P2 
	2 

a  )  

PPa 4K  

A third equation associating A, B, and C will be determined separately for the 

cases Kl and K=1. 

Since the probability density function is a smooth function decreasing 

with increasing distance from the center of the distribution, it is reasoned 

that the pellet distribution function must likewise be a smooth function. For 

the elliptical lamina (V1), one then requires that the pellet distribution 

function (26) be identically equal to zero (in 9) on the boundary of the 

lamina— that is, 
2 

Pa  
(30) g [ 2 	2 ' el 	0 cos2 	K sin 9 

for all 9. This is in agreement with a similar condition determined in the 

previous section, which led to the optimum Kill Probability for a circular 

lamina (K.1) and a circular error pattern (p.1)0 With the use of (26) and 

(29), one obtains from condition (30) the fact that K must equal 2 and also 

that 

(31) C - 
2pa 

 4 • 
PPa 

Upon finding A from (29), use of (28b) and (31) gives for the optimum parab-

oloidal distribution function, 

(32) g(w,) op  . 	[1 - 2ccos2 0 	(32 sin2 e) ]  . 	 (K=p) 

a 	a 

Equation (17) for the Kill Probability now reduces, with the substitution of 

Equation (32), to the form 2 	2 

	

-Pa/2p 	 -Pa/2P 
(33) P{Kill} op  . (1 - e 	) _ e

-2pa/p
a - e 
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A graph of PfKilll op  versus pa/pi for various a values is shown in Figure 

3. (This figure also contains the corresponding curve for the optimum cylindri- 

cal distribution discussed in the following section.) Maximum Kill Probabilities 

are obtained by differentiating (33) with respect to p 2 and equating the result a 
to zero. Thus, one obtains as the normalized semiaxis lengths of that ellipti-

cal lamina which yields maximum Kill Probability 

Palmax = P 2 (4a)1/4  

 
(3410) 	p  ] 	

= 	(4a)1/4 . 

b max p z 

The maximum value of Equation (33) is 

(35) 	P {Kill} op j max  = 1 - ( 1 + VE) e IC  

(3)4a) 

(K-p) 

(K--1) 

a result identical with that for K--, 1 and p.1 as found in Equation (2L). This 

function, which is independent of 	is plotted in Figure 7, while 
Pa ] max/P 2 is 

 depicted in Figure L. (A corresponding graph for the optimum cylindrical 

distribution is also shown.) The pellet distribution function accompanying 

the above maximum is found by introducing (34a) into (32): 

(36) g(w5e) 
opJrrax 	p r L 

 xrc-c 	* (cos 2 e 	p2sin2 e)]  

For the circular lamina (K=1), Equations (28b) and (29) remain applicable ° 

 However, the boundary condition differs from that considered above. The 

pellet distribution function is now required to be zero at but two opposite 

points on the boundary of the circular lamina—namely, those points on a line 

coinciding with the minor axis of the error ellipse °  This corresponds to 

vectorial angles e of 0 °  and 1800 ; selecting one of these, we write 

(37)
,(1) = 0  
U ) 

in which p p  is the normalized radius of the circular lamina, (The 180°  angle 

would give the same result.) Condition (37) in conjunction with Equation (29) 

and K equal to unity determines the constant C in this case: 

(38) 4a 
 ppp (3 - p 2 ) 
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With A in Equation (29) now completely determined, one can specify the 

optimum paraboloidal distribution function with the aid of (28b) and (38) 0 

 There results 

g(w ' e) op - 	2 4 a  2 [1  - 	2 
—7 (cos0 + 	

,-. 1.) (39) p2 sin2 0)] 	. 	(K 
- 	PP (3 - P )  Pp 

Equation (17) for the Kill Probability then becomes with K=1, 
,2 

27 "P 
(40) P{Kill} 	= „.._ i 	[1-e -Pg(w' e) °P] exp[- -7/7(cos2 0 4,  p 2 sin2 0)] dw de op an 0 0 

In Appendix B, each of the double integrals appearing in (40) is reduced to 

the form tabulated by Cox and Johnson [3]0 Thus, indicating the tabulated 

integrals by _ 

(41)

 where 

(42) 

(43) 

PfKilll op 

k= 1/p , 

Ap  = Pp/191  , 

T 

Ap 2 	..1(A 2 	B2 

	

AP ) - (7—) e -2 ` 111D 	Pi 
PTAB (k,Bp )  ' 	(K-1) 

(44) BP  = AP  [1 
8a

2 	 ' 
P(3 - p )AP 

Equation (41) is valid for all 2, including p-i, and is plotted in Figure 

5 versus 21)  for various values of 2 and three values of the parameter a defined 
in Equation (13). Maximum Kill Probabilities occurring in Figure 5 are plotted 

versus a in Figure 7. The corresponding normalized pattern radius values, 213 1  max' 
are shown in Figure 6 as a function of a. The maximum Kill Probability plot 

for p=1 in Figure 7 coincides with the curve representing, for all 2 .  values, 

the optimum paraboloidal distribution for elliptical laminas °  

Attention is drawn to the values in Figure 5 indicated by arrows„ These 

represent Kill Probabilities which would be realized if one were to base the 

pellet-pattern design on the assumption of equal components for the composite 

A more extensive but as yet unpublished set of tables was provided the 
authors by Herbert Solomon, Staaford University, in a private communication, 

PTAB' 
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error variance. For large a values, a marked degradation in Kill Probability 

is noted over that to be had by adequately accounting for the error-pattern 

eccentricity. Of course, the more eccentric the error pattern, the more 

important it becomes to consider its ellipticity in the design of the pellet 

array. 

In the following section, the optimum cylindrical distribution functions 

depicted in Figure lb are analyzed for comparison with the optimum paraboloidal 

distributions considered thus far. Figure 7 contains plots of the maximum Kill 

Probability attainable with an optimum cylinder, as well as curves relating 

to the optimum paraboloid of revolution of Figure lc; the latter is discussed 

in Section 8 prior to an evaluation of the overall conclusions to be had from 
studies of the several distributions. 

Optimum Cylindrical Pellet Distribution Functions 

The cylindrical pellet distributions shown in Figure lb are treated 

next for both the elliptical lamina (K'l) and the circular lamina (K=1). 

With the distribution of pellets regarded as a constant G throughout the 

lamina, that is, with 

(45) g(w5 e) 	G 5  

the constraint equation (12) leads immediately to the expression 

G (46) = K  2 
PPa 

where p a 
 and p

P 
 are synonymous in the case of a circular lamina (K-1). 

-  
Equation (17) for the Kill Probability now becomes 

2 	2n WI- w 	 2 
(47) Mill} = 7(1 - e -K a/Pa) 

	

	exp[- 77(cos
2 
 0 + p sing e)] dw dO . 

0 0 

This result will be examined separately for the elliptical and circular laminas. 

In the elliptical lamina case (K/1), one wishes to find the ratio K of 

pattern axis lengths such that the Kill Probability in (47) is optimum. There-

fore, the following heuristic argument is introduced. Since the distribution 

function is a constant for a fixed pattern area, the Kill Probability is 
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largest when the Hit Probability is largest. Since the latter occurs when 

the pellet pattern coincides with a locus of constant probability density, 

the shape (eccentricity) of the pellet pattern must be identical to that of 

the error pattern— that is, K must equal L  for optimum Kill Probability. 

Equation (47) then reduces to 

(48)
 

/ 2 	2 /  
P{Kill} 	= (1 - e -Pa/ Pa) (1 - e -Pai 2 P )  

op 	 ) 

which is shown plotted versus pa/p 2  for several values of a in Figure 3. 

The maximum value in Equation (48) is found by differentiating with respect 

to pa' and is given by — 

(49) P{Kill} opJ max - (1 - e - 	) 2 , 	 (K-p) 

a result independent of 	A graph of this maximum Kill Probability versus a 

is contained in Figure 7, The corresponding normalized semiaxis lengths of 

the elliptical lamina are 

(50a) - 	 \ 

pa] maxp
2(2 a) I/4 (K-p) 

(50b) 
Plolmax

(2a)1/4  

P z  

a plot of pa]max/p
i versus a is found in Figure 40 

In the circular lamina case (K=1), Equation (47) can be reduced to a tabu-

lated form as shown in Appendix B; the result is 
2 

(51) 	P{Kill}
op  = (1 - e-a/pp) PTAB (k,AP 	, ) 	 (K=1) 

where k and A43 are defined in Equations (42) and (43), respectively, Plots of 

Equation (51) are found in Figure 8, and the maximum is again plotted versus 

a in Figure 7. The maximum Kill Probability for p-1 in this case coincides 

with that obtained for all L  in the above case of the optimum cylindrical 

distribution throughout an elliptical lamina. Maxima in the present case 

occur for pellet-pattern radii given by the curves of Figure 9, As in Fig-

ure 5, the values indicated by arrows in Figure 8 represent Kill Probabilities 

which would be realized if one were to design the pellet pattern on the assump-

tion of equal components for the composite error variance. Once again, a 
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decided degradation in Kill Probability is evidenced for relatively large a 

values, especially in the cases of highly eccentric error ellipses °  

. The Optimum Paraboloid of Revolution as a Pellet Distribution Function 

It is of interest to investigate the Kill Probability resulting from the 

use of an optimum paraboloid of revolution as the pellet distribution within 

a circular lamina (K=1)° For identical components of error variance (p-1), 

the present case is identical to that for a circular lamina considered in 

Section 6. With 131, the two cases differ as revealed by comparing Figure 

la (circular lamina) with Figure lc 

One begins here by considering as the distribution function a paraboloid 

of revolution in the general form 

(52) 	g(w,e) = D - Ew 

where D and E are constants to be determined such that the Kill Probability 

for this distribution is optimum° The first equation relating the above con-

stants is obtained immediately by imposing condition (12) on the distribution 

(52) which gives 
2 

PP  D (53)
a E 7  

PPp 

Here pa  in Equation (12) is replaced by the pellet-pattern radius pp  as  
defined by Equation (20), A second relation between D and E may be derived 

by virtue of an argument similar to that advanced in Section 6, Thus, the 

optimum boundary condition on (52) is 

(54) 2
,  s

„a _ eo  _ 0  
-) 

for all 0—that is, the distribution of pellets vanishes on the circumference 

of the circular lamina° Then D = Ep p which, combined with (53), gives 

(55a) D = 2a/pp 2  P 

(55b) E = 2a/p4 . 
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Therefore, the optimum paraboloid of revolution becomes 

(56)
2a ,_2 

K  jop = ---T P 
PPp 

Equation (17) giving the Kill Probability has the following form when 

Equation (56) is substituted therein: 

(57) PfKilil o_ . P 	( A ) 
A 	- TABs k' -"P' 

	

2 	2 e -2a/pApjr,  2rf  pAp 	w  

4R 	
exp[7( La 

1 
1—r  p sin2  G - 7  cos2  g)] dw dg , 

0 0 	p A; 

where k = 1/p and Ap  = pp/P
1/2 

as defined by Equations (42) and (43), respec-

tively. The non-tabulated integral in (57) can be evaluated approximately 

by utilizing Simpson's Rule; the resulting Kill Probability is plotted versus 

the normalized pattern radius p p  for several a and 2.  values in Figure 10. 
Maximum Kill Probabilities occur at the particular pattern radii shown in 

Figure 11, and have the magnitudes indicated by the appropriate plots in 

Figure 7). Values indicated by arrows in Figure 10 are the Kill Probabilities 

realized with a distribution function designed to be optimum in the case of 

identical error-variance components (p1),, Relatively large gains are 

achieved in predicted Kill Probability, especially for large a and small 2 
values, if the design includes the optimum paraboloid of revolution as the 

pellet distribution function in this case, 

9. Summary of the Mathematical Analysis 

The foregoing mathematical study has been concerned with determining 

kill probabilities for various spatial distributions of pellets throughout 

both circular and elliptical laminas. Three classes of pellet distributions 

were considered, which reference to Figure 1 will recall to the reader. They 

consist of those paraboloidal, cylindrical, and paraboloid-of-revolution con- 

figurations which were found to lead to the optimum kill probability. Probable 

errors of predicting target position and of placing the pellet pattern at that 

position have been included, but errors due to improper orientation of the 

pellet lamina with respect to the target at interception have been ignored. 
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A composite pellet/target characteristic a has been introduced to account for 

target size (assumed small as compared with that of the pellet lamina), indi-

vidual pellet mass, overall mass, and the kill probability of a single pellet 

which hits the target. Each pellet is regarded as having the same chance of 

destroying the target as had its predecessor. (An assessment of this hypo-

thesis is contained in the following section. 

It was found, in each of the several pellet distribution cases, that the 

optimum Kill Probability could be maximized with respect to the size of the 

pellet lamina. The maximum Probability was seen always to be a monotonic 

increasing function of the parameter a. This means that if we consider the 

weapon-target combination to fix the total pellet mass and the normalized 

effective target radius, a weapon design objective would be to select the indi-

vidual pellet mass such that a is as large as possible. It is noted that this 

selection entails a determination of an empirical relationship between the 

kill probability and the mass of a single pellet. 

An anticipated result of the analysis is that the paraboloidal pellet dis-

tribution throughout an elliptical lamina of optimum dimensions (and eccentri-

city equal to that of the error ellipse) indeed affords the largest expected 

Kill Probability. However, the optimum cylindrical distribution over an ellip-

tical lamina was found to give almost as large Kill Probabilities, especially 

in the extremes of relatively small or large a values. With a circular lamina, 

the optimum paraboloidal distribution reveals a significantly larger maximum 

Kill Probability than does the optimum cylindrical distribution when the error 

pattern has a large eccentricity ( L  less than one half). In fact, the 

optimum paraboloid of revolution as a distribution, while not entirely as 

promising as the elliptical paraboloid, was also found to be superior to the 

cylindrical distribution in yielding larger Kill. Probabilities. 

Paraboloidal distributions allow for considerably broader crests in the 

curves of Kill Probability versus pellet-pattern size than do cylindrical dis-

tributions. This difference becomes more pronounced as the composite pellet/ 

target characteristic a increases. The paraboloid-of -revolution configuration 

leads to wider crests in the Kill Probability graphs than does the elliptical 

paraboloid over a circular lamina, thus revealing the more critical nature of 
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the pellet-pattern size in the latter case. In general with any of the dis-

tributions, the more eccentric the error pattern, the broader the Probability 

peaks become. 

The dimensions of the lamina pattern which give, for each distribution, 

the maximum Kill Probability are monotonic functions of a, No precise depend-

ence of optimum dimensions on error-pattern axis ratio t can be deduced on 

the whole. However, for circular laminas, as 2 decreases, the optimum pattern 
size decreases for small a and increases for large a_ This phenomenon is the 

natural result of "placing the pellets where they do the most good." If a 

is small, the optimum pattern size diminishes as the error pattern becomes 

more eccentric, so that the relatively few pellets available can be concen-

trated in a region of higher probability density; the important factor in 

this case is to obtain sufficient hits on the target, On the other hand, if 

a is quite large, the larger the error-pattern eccentricity the larger the 

optimum pellet lamina to insure target interception; since the density of 

pellets in this latter case is high, interception is the significant factor 

10. Assessment of the "Vital-Spot H •othesis" 

A basic assumption in this paper is that the kill probability p of a 

pellet which hits the target is a constant (0 < p < 1), independent of the 

number of pellets hitting the target. This assumption, referred to by Morse 

and Kimball [2] as the "vital-spot hypothesis," has been found to give satis-

factory results in many cases and seems fairly realistic, for example, when 

applied to targets involving electro-mechanical assemblies. It is of interest, 

however, to investigate the applicability of this hypothesis in the case of 

certain other targets (among which live targets are a prime example) for which 

the kill probabilities of the individual pellets have the following property: 

(58) 	pl y P2 	• • 	Pj -1 	Pj 
	pj+l 	° 0 0

'  

that is, each pellet has a greater chance of disabling the target than has its 

predecessor. The individual pellet kill probabilities can be expressed in the 

following form: 
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PO = ° ' 

(59) P1 = P  
p. = p. 	c.(1-p. 	) , j 	2 j 	j-1 	j 	j-1 

where the c.
J
's are empirical constants in the range 0 < c.

J 
 < 10 

A model of intermediate complexity which may be a good approximation to 

the above case is on for which c 2  = c 3  = 00 0  = co This model involves only 

the two constants p and co Under this assumption of equal c,?s, the results 

in (59) reduce to 

PO = 0 ' 

(60) Pi = P  
p
j 
 = pj-1 	Pj-1 c(1 - 	) = c 	

Pj-1(1 
 - c) , j > 2 , 

For convenience, Equations (60) may be expressed in terms of q . = 1 - Pj  . as 

follows: 

q0 = 1  ' 

(61) ql = 1  - p 

qJ 
. = (1 - 	(1 - p) , j > 2 

It is proposed to compare the results of this paper, which are predicated upon 

the vital-spot assumption, with results obtainable from the aforementioned 

model, and thereby to establish some "limits of applicability" on the analysis 

previously presented. Since the maximum Kill Probabilities for the parabo-

loidal distribution discussed earlier do not differ significantly from those 

obtained with the cylindrical distribution, the latter alone are considered 

here. 

In view of Equations (61), the effectiveness function h(w,G) for the 

cylindrical pellet distribution no longer has the form given in Equation (16). 

Instead, 

(62) h(w,G) = E (L4r-) (1 - 	q.) , 
i=0 	" 	j=0 

which becomes, upon introduction of (61), 
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-g 	. 
(63) h(W,G) = 1 - e -g  [1 	g(1 - p)] - E ( g  ?,  )(1 - p) 1  n (1 - c) j-1  

i=2 	j=2 
• 

In the above, g represents the expected number of pellets striking the target, 

Equation (63) can also be written as 

(64) h(w5-4) = 1 - e -g  [1 + g(1 - p) + 	
g1(1 - p) 1 (1 - c)

i(i-1)/2  
i=2 

whereupon two special cases, c = 0 and c = 1, are immediately expressible 

in the simplified form 

(65a) h(w,G) = 1 - e -Pg 	 (c = 0) 

(65b) h(w,G) = 1 - e -g [1 + g(1 - p)] . 	 (c = 1) 

Equation (65a) corresponds to the result of the vital-spot hypothesis 

(the kill probability of each pellet is the same) and is Equation (16) of the 

text. Equation (65b) represents the opposite extreme-that is, the second 

pellet (and all subsequent ones) is certain to kill the target upon striking 

it. Figures 12 and 13 present the effectiveness function of Equation (6L) 

plotted versus the mean number of target hits g for pellet kill probabilities 

p of 0.1 and 0.5, respectively. Shown are graphs for c values of 0, 0,1, 0.5, 

and 100 which thus include the extreme cases of Equations (65). 

A measure of the general applicability of the vital-spot theory is obtained 

by comparison of the maximum Kill Probability attainable for G=0 with that for 

c 10. This can be accomplished by choosing the circular lamina pattern of 

Figure lb (K=1) and a symmetrical error distribution ((3.1)0 Under these cir-

cumstances the Kill Probability for the uniform pellet distribution is, from 

Equation (8), 
2 

, 
(66) P{Kill} = h(w,G) (1 - e

-3p/2 
) 

2 
where h(w,G) is given by (64) and p p  is the normalized pellet-lamina radius 

defined in Equation (20). Since the distribution function g must satisfy the 

restriction expressed by Equation (12), its value is found from Equation (L6) 

to be 

a g  =  

pp P 

(67) 
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With c 	0, the effectiveness function is given by Equation (65a); 

the accompanying Kill Probability in (66) can be maximized by differentiation 

with respect to p p. There results 

(68) P{Kill} max  = (1 - e — ✓a/2  ) 2  ; 	 (c = 0) 

the value of 24, which yields this maximum is 

(69) p
P 

 ] 
max

= (2a) 1/4 	 (c = 0) 

With c 0, the effectiveness function in (66) is represented by the graphs 

of Figures 12 and 13. Maximum Kill Probabilities are obtained by trial and 

error procedures. Table 1 summarizes maximum Kill Probabilities and optimum 

pattern radii obtained for several values of c, a, and p, including c = O. 

Table 1. Maximum Kill Probabilities and Optimum Normalized Pattern 
Radii for Several Values of Pellet Tandem Factor c. 

c 
\\\ 131 

1 5 10  

P { Kill } max  p p] max  P {Kill ) max  p pi max  P {Kill } max  p F] max  

o oe26 102 0,63 108 0080 2 0 1 

0 0 1 0 0 1 0.45 103 0089 2.4 0.97 2.8 

0.5 0,60 1,6 0„95 206 0099 3,2 

100 0,67 1.7 0.97 2,8 0,995 3.5 

0 0„26 102 0„63 108 0080 2 0.1 

0.1 0.5 0„26 1,2 0065 1 0 8 0082 2 0 2 

0,5 0.28 1.2 0068 1,9 0085 2,3 

100 0030 1.1 0071 1.9 0087 2 0 3 

The following conclusions are evident from an inspection of Table 1. For 

large values of p, say one half or larger, the vital-spot hypothesis appears 

in general to be an adequate assumption. In this case, values of c even as 

large as unity yield maximum Kill Probabilities and optimum pattern radii 

differing by no more than about 10 percent from those based on zero c, However, 
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for values of p less than a half, the vital-spot assumption may lead to 

results differing somewhat from those obtained with the model considered 

in this section, especially for small p and large values of pellet tandem 

factor c, When p=001, for example, even small values of c such as 0,1 

yield Kill Probabilities which are significantly different from that real-

ized with c ,--0„ 

11. Application to a Shotgun-Bird System 

Results of the foregoing mathematical development are now applied to a 

specific weapon-target system consisting of shotgun and bird, and a study 

is made of the theoretical Kill Probability for a proposed shell and gun 

design. 

As noted earlier, an objective in the design of a pellet-dispersing 

shell should be the maximization of the ratio p/m of individual pellet kill 

probability to pellet mass, This presupposes a knowledge of the target 

type and the nominal range-to-target, and entails a determination of an 

empirical relationship between the individual kill probability and the mass 

of a single pellet, We propose such an optimum shell design, and tabulations 

of the individual pellet mass m to be chosen and the accompanying optimum 

ratio of p/m for various birds and nominal ranges, Thus, one can select 

the proper shell for a given "job," If, for a given gun, ones error vari-

ances a2 and a
2 
are known, the composite pellet/target characteristic a is  

then ascertainable, as well as the ratio of of standard deviations, 

Present shotguns are built to project a circular pellet array, We 

propose a "gun choke" which can shape the shot pattern into an elliptical 

lamina of eccentricity equal to that predicted for the error ellipse, " 

Furthermore, the choke is to be "rotatable" in order that the major axis of 

the shot pattern can be aligned with the major axis of the error ellipse, 

where the latter is considered as the projection of the flight path (assumed 

It is tacitly assumed that, over the time interval between firing of the 
shotgun and target interception, the shot pattern retains its initial 
shape although increasing uniformly and symmetrically in size, 
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to be rectilinear) of the bird into the pellet plane. 	A. gun choke setting 

is also incorporated which allows for optimum pellet-pattern size at inter-

ception and which is based upon estimates of a. and 

If, for a given type of bird, the range-to-target, target size, and 

the composite error variances could be accurately predicted, and if the shell 

design were perfect, an exact a and could be determined, and hence one 

could expect the maximum Kill Probabilities displayed in Figure 7. Since 

precise prediction of the above parameters is impossible, the gun choke 

setting will generally be inaccurate, and hence the pattern size at inter-

cept will not be optimum, We therefore consider pattern sizes at impact 

to vary by as much as 50% about the optimum, 

In our present application, a representative pellet mass m of 0.01 

ounce is taken, and the fairly realistic value of 0,50 is chosen for p, 

the individual pellet kill probability. (This latter value is sufficiently 

large that, according to the analysis in Section 10, the vital-spot theory 

may be regarded as applicable and hence also the results herein presented,) 

An effective target radius of 1/5 foot is assumed, while the overall pellet 

mass is 1 ounce, Computed Kill Probabilities with and without the proposed 

choke (that is, for elliptical and circular laminas) are to be compared 

for two optimally designed pellet distributions the cylindrical and the 

paraboloidal. For the circular pellet array, both distributions are taken 

as surfaces of revolution. 

Table 2 contains optimum Kill Probabilities pertaining to paraboloidal 

and cylindrical distributions contained within a circular lamina, for a few 

typical error variances, a numbers, and values of the error-pattern axis 

ratio 	Pellet-pattern radii at intercept are taken as 1/2, 3/L, 1, 5/L, 
and 3/2 of that ideal value, r p] max, which yields maximum Kill Probability 

under the given conditions, All rows of Kill Probability for which 13-1 are 

* 
All of the errors here can be attributed approximately to inaccuracy in 
placement of the pellet pattern on target at intercept, and these placement 
errors tend to be larger along the direction of target motion; hence the 
particular choice of major axis for the error ellipse. Consistent with the 
arbitrarily adopted convention 6 < o v this major axis becomes the y-axis 
of the rotated coordinate system intrZduced in Section 2. 
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Table 2, Kill Probabilities for a Shotgun-Bird System, 

Pellet 
Distribution 

2 
a
x 

.2) (ft 

2 a 
Y 

2 (ft  -) P a  

rP 3 max 

(ft) 

aP3max 

(ft) 

PfKilll op 

1 
 rp3 max  5 rp3 max 	rp3 max 	T  rp max  i rp ] max  

1/5 1/5 1 10 1,12 1,12 0,52 0.75 0„82 0.78 0.70 

1/10 2/5 1/2 10 1.15 0.79 0,50 0.71 0.77 0,73 0,66 

Optimum 1/20 4/5 1/4 10 1,26 0.56 0,47 0,61 0,66 0.63 0,57 

Paraboloidal 2 2 1 1 2,01 2.01 0.16 0,25 0.27 0,25 0,23 

1 4 1/2 1 1,88 1„41 0.15 0,23 0,25 0024 0,21 

1/2 8 1/14  1 1,78 1,00 0,12 0.19 0.22 0,20 0,18 

1/5 1/5 1 10 093 0,93 0,42 0„69 0,80 0,714 0„63 

1/10 2/5 1/2 10 0,96 0,67 0„40 0065 0„74 0„70 062 

Optimum 
1/20 4/5 1/14  10 1„00 0.47 0,38 0,56 (1,63 0„59 0,52 

Cylindrical 2 2 1 1 1,71 1,71 0.15 0,24 0,26 0,24 0.21 

1 4 1/2 1 1,68 1.19 0.15 0.22 0.24 0.23 0,20 

1/2 8 1/14  1 1.57 0.83 0.13 0.18 0.21 0.19 0.17 



also applicable to elliptical pellet laminas, irrespective of 	In this 

case the symbol r ] max in the Kill Probability portion of Table 2 is to be 

replaced by 	
ax' 

a_j m 	the ideal semiminor axis length of the pellet lamina,  
Ideal semiminor axis lengths, which are dependent upon 2,, are listed in a 

separate column; corresponding ideal semimajor axis lengths are equal to 

aPimax/P° 
An examination of Table 2 indicates the special utility of the gun 

choke in the case of rather eccentric error ellipses (p < 1/2) and values 

of a as large as 10, Whether the pellet distribution is paraboloidal or 

cylindrical, the advantageous effects of the choke are evidently about 

the same. When p-1/4, for example, the Kill Probability is generally 

larger by approximately 25% with an appropriate elliptical lamina over that 

accompanying the conventional circular array, Erroneous estimates of range-

to-target, target size, and the composite error variances are manifested 

in the pellet-pattern size at intercept, Although "pattern-size errors" of 

less than - 25% play a rather insignificant role, errors as large as - 50% 

have a considerable effect on the Kill Probability, It is noted that a 

paraboloidal distribution is not as sensitive to variations in the pattern 

size about the optimum as is the cylindrical distribution, 

The following concluBions, in order of relative importance, can now 

be made with respect to ways whereby a hunter may increase his kill prob-

ability 

(1) Attainment of the optimum pellet-pattern size at intercept 
would bring about the largest improvement in kill probabil-
ity, This requires a knowledge of ones error variances, 
and judicious prediction of target size, range-to-target, 
and individual pellet kill probability, 

(2) For hunters already achieving kill probabilities on the 
order of 0,50, further improvements can be had through 
the use of elliptical pellet laminas of suitable shape, 

(3) Shaping of the pellet distribution to conform to an optimum 
paraboloid will have a twofold probable result; not only 
will the expected kill probability be increased, but also 
the detrimental effects of unavoidable non-optimum pattern 
sizes are minimized, 
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_2 

	

uX 	c7XY 

a2 

	

c7XY 	Y 

2 	2 	2 a = a 4- a 
X 	X ° 	X ° 

	

T 	P 

2 	2 	2 

	

= a , 	, a 
Y 	TT   

(A-1) 

where 

(A-2a) 

(A-2b) 

7 
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APPENDIX A 

DIAGONALIZATION OF THE COVARIANCE MATRIX 

The covariance matrix C pertaining to the discussion of Section 2 is the 

following: 

1, (A-2c ) 	0-xy 	° 	0 X °Y
, 

 

	

T T 	P P 

2 	2 a
° 
 , g 

YT 
errors in 

variances 

pattern. 

, and 
-X 

 g , are the variances and covariance associated with random 
° 

2 T 7 	 2 
the predicted target position, while 2k, , 2-y , , and Ekoy , are the 

and covariance associated with errors in
P 
	placement the placement of

P 
 the pellet 

Since 7 is a symmetric matrix, there exists a real nonsingular linear 

transformation which will diagonalize it to the form [14] 

(A-3) 

in which the diagonal elements of the transformed matrix are the character-

istic roots of C found from 

(A-14) 
	

17 	g2  71 	0 

Overlining is used in this Appendix to represent vector quantities. 

-37- 



2 	2 
g - g y x 

, 
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Upon solving the determinantal form (A-4), one finds for the diagonal ele-

ments of (A-3) 

(A-5a) 	621={(G 	a2y) - [qc .  - 4) 2  4-4 c-y] i  1 

2 	1 	2 	2, 	„ 2 	2,2 	L  2 ,i 
(A-510) 	gy  = 7 fgx 	gy) 	— gy) de 4 0-xy] } 5 

arbitrarily been chosen to be smaller than 6 2
Y5 
 both, of course, are positive 

since C is positive definite. 

The orthogonal transformation matrix R, which diagonalizes 7 may be 

taken as the rotation matrix 

cos cp 	sin (1) 
(A-6) Rh 

-sin (I) 	cos (I) 

where (I) represents the counterclockwise angle as measured from the original 

X,Y coordinate system in Figure 2 to the new system x,y in which C is 
diagonal. Since, to diagonalize 

(A-7) 7'7 7 - 7D 
or 

(A-8) 7 - 7 7D 7° , 

one obtains (1) by performing the operations indicated in (A-8). Thus 
2 	2 

6Y 	6
2(;)(A-9a) 	coscos 2(;) 

or upon introducing Equations (A -5) 

	

2 	2 

(A-9b) 	cos 2(1) - 	
61 	6XX 

	

gy ) 	4 oky 1 2  

which are Equations (2b) and (2c) of the text. It is noted that 6 has x 

5 
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APPENDIX B 

REDUCTION OF AN INTEGRAL TO TABULAR FORM 

Equation (40) in the text contains two double integrals of the form 

2 

(B-1) I(y) 
iPP 

exp[- i(132 sin2  0 f cos
2 0)] dw 	, 

0 

where y is unity for the first integral and has the value 

P
-7- 

(3 - p 
2 

) 
for the other. It is the purpose here to reduce (B-l) to the form expressed 

in Equation (41) and tabulated by Cox and Johnson[3]. 

Replacing w in (B-1) by its equivalent given in terms of r in Equation 

(6) and subsequently changing from polar to rectangular form, one has 

2 	2.i 
8 	(rp 	y ) 	2 	2 

(B-2) I(y) `' 7-7- 	 exp[- 	2L7)] dx dy , 
x y 0 0 	 a 	a 

	

x 	y 

where L3 has been replaced by ax/oy as defined by. Equation (Lc) and 121, by 

rP 	x - /(0-  a y ) 2  as given by (20). Introduction of the substitutions 

a 
(B-3) 	x 	s 

Y2 
 a 

(B-) 
 

Y =•-• 
Y2  

leads to 

(B-5) 	I(y) 

in which 

(B•6) 	k = lip , 

2 
- t

2
) 

1 	t
2 

exp[- 7(s2 	-7)] ds dt , 

(B- 7) 
	

P 	Pp (f) 1  

and and pp  have been reintroduced. Reference to Cox and Johnson reveals 
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that I(y) can now be written in terms of their tabulated probability( 	) PTAB s k ' P:' 

(B-8) I(Y) = 	[4 PTAB(k , P)] 

LT1 P 	(k'  P) y TAB 	° 

In evaluating the first of the double integrals in Equation (40), x has 

the value unity and P takes the special form A P : 

(B-9) A = p /p i-  P 	P 

Then 

(B-10) I(1) = 47 PTAB(k,AP ) 

For the second double integral in (40), x has the form cited earlier and the 

corresponding value of P is designated as B p  which with the aid of (B-9) 

becomes 

(B-11) Bp  = Ap[l 	
8a 
7--7] 

P(3 - p )AP 
In this case Equation (B-8) is written 

A„ 
(B-12) I(1 - 	 

P 4 ( 3a- P 2 )  ) 
	47 (7E)- PTAB(k ' BP )  ° 

Equations (B-10) and (B-12) together yield Equation (41) of the text. 
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