Scalable Implementation of
Synchronization Primitives
on Broadcast Rings*

Martin H. Dawvs, Jr. Umakishore Ramachandran

GIT-CC-93/07

January 1993

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

{davism,rama}@cc.gatech.edu

Abstract

Synchronization is an important aspect of parallel program design. By def-
inition synchronization is an aspect of a program where multiple processors
participate. Thus it is important to design and implement hardware primitives
that scale well with the size of the parallel machine, both in terms of space and
time requirements. The focus of this research is to propose implementation for
some well-known synchronization primitives in a broadcast ring network. The
key aspects of the implementation are to make local decisions to determine the
outcome of the synchronization operations; and to keep the space overhead per
node constant independent of the number of processors participating in such op-
erations. It is also shown that the implementation incurs exactly the minimum

amount of communication to perform the synchronization operations.

Keywords: scalable synchronization primitives; broadcast ring interconnect;
shared memory multiprocessor; distributed queues; local decision algorithms.

*This work has been funded in part by NSF PYI Award MIP-9058430.

1 Introduction

The work in this paper focuses on how shared memory style synchronization commands
can be efficiently implemented. In order to make our solution general, we have made the
implementation of these commands orthogonal to the physical implementation of the shared
memory abstraction. In contemplating this problem, we have been interested in how the
interconnection network can be structured so as to provide more than just communication
services, i.e., how can the interconnection network’s structure provide support for useful
parallel programming commands? From this consideration we have developed interesting
“local decision” techniques for implementing locks, barriers, and F&OP synchronization
primitives.

In Section 2 we describe these implementation techniques. Our implementation in-
curs exactly the minimum amount of communication to perform the synchronization, by
making local decisions for determining the outcome of the synchronization operations. Fur-
ther, the implementation requires a constant amount of storage space per node independent
of the number of processors participating in a synchronization operation. We present some
discussion and analysis regarding these issues in Section 3. Finally, we conclude in Section 4

with questions for future work.

2 Synchronization Primitives

There are software algorithms for barriers and spin-lock that minimize the amount of net-
work messages and storage space [4] for implementing such synchronization operations.
However, such algorithms do not reduce the inherent latency for synchronization operations.
This latency is two-fold: (1) the potential wait times at synchronization points due to si-
multaneous access from parallel processors; and (2) the intrinsic overhead for implementing
the synchronization. In this section we describe our proposed hardware implementation for
some well-known synchronization primitives that reduces this latency.

Our implementation techniques for the three synchronization primitives are all local
decision monitoring based. That is, each node maintains its own local copy of a data
structure, which represents the current state of a particular instance of the synchronization

primitive, by monitoring all the nodes’ commands which affect that particular instance.

The data structure contains enough information that each node independently decides how
it is affected by the current state.

The only architectural requirement for our local decision scheme is that the nodes
transmit their synchronization commands via what we call a broadcast ring. The broadcast
ring has three properties which are illustrated in Fig. 1. First, the nodes are attached
(at least logically if not physically) to the medium as a ring. Thus, a node’s message is
transmitted unidirectionally to all its downstream neighbors, and a node always hears the
messages from all its upstream neighbors. Second, every node’s message is broadcast to
every other node, i.e., each node is connected to the broadcast ring such that it hears
all messages (including its own). This connection is equivalent to every node having a
connection so that every node (including itself) is upstream of the connection. Third, each
node hears the broadcast messages in the same order as every other node; this property is
expressed as a “train” of messages.

In the following subsections we describe these local decision monitoring algorithms

for locks, barriers, and F&OP.

2.1 Locks

A lock is a mechanism by which a task can access a set of shared data associated with the
lock in a controlled and regulated fashion. There are two different modes in which a lock can
be requested: read (or shared, denoted as R/S) and write (or exclusive, denoted as W/F).
By definition, use of the R/S mode guarantees to the task that the data cannot change for
the duration of the lock. Similarly, by definition, use of the W/E mode guarantees to the
task that no other task can access the data, much less change the data.

How requests for a particular lock are serviced can be understood by the concept of
peer groups, as illustrated in Fig. 2. A peer group of lock requests is a set of consecutive
and compatible requests for a particular lock. Thus, a W/E request forms a peer group
of size one. R/S requests made without an intervening W/E request form a peer group of
arbitrary size. Although peer groups can be serviced out of order, some rules must exist
to prevent starvation of requests. From a performance standpoint, if a R/S peer group is
the currently serviced peer group and no other peer groups are pending, then another R/S

request joins the current R/S peer group and is granted the lock immediately.

Fig. 3 shows the data structure needed for each lock (note the various fields are
grouped into four parts). Remember that this data structure is replicated at each node and
modified independently by each node. The first group (LOCK-ID and my) contains the fields
to identify the lock and define the peer group into which the lock request is placed. The
second group (prior) of fields defines the peer group which is to be serviced immediately
before the lock request’s own peer group. The third group (most-recent) of fields defines
the most recent peer group of lock requests, and the fourth group (next-recent) defines
the peer group just before the most recent peer group. These four groups of fields, when
taken as a whole over all the nodes, implement a distributed queue of lock requests. This
queue is replicated at each node; note, however, that each node stores only the portion of
the queue that is necessary to its knowing wherein the queue its own request falls and when
its request should be granted.

To maintain its portion of the distributed queue, each node follows specific monitor-
ing algorithms (shown in Appendix A) when observing all nodes’ lock requests. Recall that
the broadcast ring’s properties guarantees that each node sees all the lock command traffic
both preceding and succeeding its own command and that each node sees the same sequence
of lock commands as every other node. The algorithms can be summarized as follows (the
details can be found in [1]). The first algorithm is for when a node sees a lock request from
any node except itself: the node updates the most-recent and next-recent groups. The
second algorithm is for when a node sees its own lock request command: the node updates
the my fields, the prior, most-recent, and next-recent groups, and determines whether it
can immediately acquire the lock. The third and fourth algorithms are needed for when the
node sees a R/S or W/E unlock command respectively: the most-recent and next-recent
groups are always updated appropriately, and the node’s own outstanding lock request (if
any) is granted if appropriate. Thus, this implementation provides the logical abstraction of
a nearly FCFS queue for lock requests. It is “nearly” FCFS because of the broadcast ring’s
possible re-ordering of nodes’ requests within one ring cycle. Although the broadcast ring’s
unidirectional property compromises true FCFS service, the same property also guarantees

forward progress and no starvation of the lock requests.

2.2 Barriers

The barrier is a rendezvous point for some set of tasks. The barrier’s semantics are that
after initialization of the barrier, the participating tasks are free to reach the barrier at their
own pace. A task is in the arrival phase when it reaches the barrier. Barrier completion
occurs when all participating tasks have arrived at the barrier. A task must wait at the
barrier until it becomes aware of barrier completion, at which time it can proceed past the
barrier.

Fig. 4 depicts the simple data structure which captures the state of a barrier. Recall
that there is one such data structure per barrier, and this data structure is replicated at
each node. The ID field uniquely identifies the barrier. The participation field stores how
many nodes are participating in the barrier, and the counter field tracks how many nodes
have reached the barrier. By maintaining the state of the barrier, each node can deduce
when barrier completion occurs.

To maintain the state of the barrier, each node follows a simple monitoring algorithm
(shown in Appendix B) when observing all nodes’ barrier commands. If the observed barrier
command is for barrier initialization, then the participation and counter fields are set to
the number of participating nodes and zero respectively. If the observed barrier command
is that a node has reached the barrier, then the counter field is incremented. When a node
itself reaches the barrier, it stalls at the barrier by watching the counter field and waiting
for it to equal the participation field. When the two fields are equal, the node realizes
that barrier completion has occurred. Note that since each node locally ascertains when
barrier completion has occurred, there is no need for an explicit command to notify nodes
of barrier completion.

If the data structure continues to represent the same logical barrier, then reuse of
the barrier hardware is a simple matter of each node resetting its copy of the counter
field. If the data structure is to represent a different logical barrier, then an explicit barrier

initialization command is required to reset the participation and counter fields.

2.3 Fetch-&-OP

The F&OP (Fetch-&-OP) primitive is a generalization of the Fetch-&-ADD primitive intro-

duced by Gottlieb [2]. Give that the OP represents any associative, commutative operator,

the semantics is that when a node issues F&OP(V,e), the command returns the old value of
V to the node and atomically replaces V with V 0P e. An attractive property of the F&OP
command is its potential combining capability. This capability can be expressed by saying
that the F&OP command must satisfy the serialization principle: if V is a shared variable
and many nodes issue F&OP(V,e) to the same target V simultaneously, then the effect of
the many parallel F&OP commands is exactly what it would be if they had occurred in
some (unspecified) serial order. That is, the final value of V due to the parallel F&0P(V,e)
commands is the result of applying all the operators OP and operands e to the original V,
and each node receives an intermediate value of V depending upon where its own particular
F&OP(V,e) command happens to fall in the arbitrary serial order.

The data structure associated with each target Vis shown in Fig. 5. The V-current
field stores the current value of V, and the V-mine field stores the value of V which the node
obtains from having issued the F&O0P(V,e) command. Before any F&OP(V,e) command for
a particular target V is issued by a node, the target V must be initialized, i.e., the V-current
field is set to the initial value of V. From this data structure, each node determines the
value of V it should receive from its F&OP(V,e) command and updates V.

To update its data structure, each node follows a simple monitoring algorithm (shown
in Appendix C) when observing all nodes’ F&OP commands. When the node observes its
own command, it sets V-mine equal to V-current (and returns that value to the CPU);
for any node’s command, the node updates V-current. Thus, each node is provided the
logical abstraction that its F&OP command is placed somewhere into a serial ordering of

all the nodes’ F&OP commands.

3 Analysis and Discussion

3.1 General observations

There are several general observations to be made about these implementations. First,
each implementation is decentralized. Fach node independently maintains its copy of the
appropriate data structure by observing the synchronization command traffic. Specifically,
for locks, each node observes the stream of lock commands including its own. By observing

this stream of commands, the node determines in what peer group its own command falls;

from the stream, the node also deduces when the lock is released by the previous holder(s).
Thus, no central entity takes responsibility for queuing lock requests and granting them. For
barriers, each node observes the stream of barrier arrivals including its own. By observing
this stream, each node independently counts how many nodes have arrived at the barrier;
from this information, each node independently ascertains when barrier completion has
occurred. Thus, since no central entity computes barrier completion, no central entity has
responsibility for notifying others of barrier completion. For the F&OP command, each
node also observes the stream of commands including its own. By observing this stream,
each node determines its own command’s place which, in turns, allows the node to compute
the value of its F&OP command. Since each node listens to all the F&OP commands, each
node also maintains the current value of the F&OP targets, thus avoiding the need for a
central entity to maintain the value. The key to this decentralized scheme’s working is that
each node hears all nodes’ messages in the same order as every other node.

Recall that we are interested in how the interconnection network’s structure provides
support for the implementations. Our second observation concerns how the broadcast ring’s
property of ordering the messages plays a role in the implementations. In the case of locks,
the ordering automatically forms the service order of peer groups; thus, the interconnection
network takes the responsibility for arbitrating among the queue of lock requests. For
barriers, the ordering plays no role. For the F&OP command, the ordering automatically
creates the (arbitrary) serial ordering needed for each node to calculate locally the value of
its F&OP(V,e) command.

The third observation concerns the space requirements. For the lock design, note that
no matter how large the distributed queue of lock requests becomes, each node only needs
to store four peer groups of information (per distinct lock). For the barrier, each node stores
only one group per barrier no matter how many nodes participate in the barrier. For the
F&OP, each node also stores only one group per target V no matter how many nodes issue
F&OP commands to that target. Thus, for each synchronization primitive implementation,
the data structure storage requirements are constant per node per instance of the primitive
no matter how many nodes participate in operations on the primitive.

The fourth observation regards the number of messages generated for each primitive

and how that number compares with the minimum number needed. For either a R/S or

W/E lock request, a node generates only one message (the minimum number). When a
node releases a lock, only one message is generated (the minimum number). No additional
messages are generated for the lock actually to be granted to the next requester since
the nodes are monitoring the request and release traffic to determine when they should be
granted the lock. For the barrier operation, one message is generated to initialize the barrier,
which is the minimum. One message is generated for each node arriving at the barrier, which
is the minimum. No additional messages are generated when barrier completion occurs since
each node calculates for itself when barrier completion occurs. For the F&OP command,
each node generates a message when issuing the command, which is the minimum. No
additional messages are needed for the node to calculate the result of its F&OP or keep the
the target V updated since each node observes all the command traffic and performs those
calculations locally.

Together, the third and fourth observations demonstrate that the implementation of

these synchronization primitives are scalable in both space and time requirements.

3.2 Implementation-dependent comments

In [1] we assumed an optical fiber implementation of the broadcast ring; this assumption
allows us to make two implementation-dependent observations. First, the previous discus-
sion has implicitly assumed that all of a given synchronization command’s traffic is carried
on only one broadcast ring. The high bandwidth of optical fibers (on the order of ten
Terahertz) makes it possible to have, as the optical technology matures, large numbers (on
the order of a hundred) of high speed (Gbit or more) channels. Thus, if the lock com-
mand (or barrier or F&OP command) traffic is heavy enough, one might allocate several
high speed channels to alleviate the communication bottleneck. The algorithms previously
described do not need modification to work properly if the command traffic is split over
several channels as long as one restriction is observed. That restriction is that all command
traflic pertaining to one instance of a given synchronization command must be carried on
one channel. An additional implication of splitting a given type of command traflic over
several channels is that the node will need to replicate the hardware that implements the
monitoring algorithms.

As a second observation (that assumes using optical fibers), we show some minimum

and maximum execution times of these synchronization primitives for various system config-
urations (the details of the derivation of these times are given in [1]). Tables 1, 2, and 3 list
these execution times for idle and busy locks, last arrival and simultaneous arrival barriers,
and single and multiple F&OP commands respectively. These execution times are listed
for small and large system sizes (50 and 100 nodes respectively) and for small and large
physical scales (end-to-end propagation times of 50 nsec, or 10 m, and 500 nsec, or 100 m,
respectively). An idle lock is one not being held when the node requests it; a busy lock is
one for which the node waits before being granted it. A last arrival barrier is one for which
all nodes but one have previously arrived; a simultaneous arrival barrier is one for which
some arbitrary number of nodes arrive together at the barrier. A single F&OP command
situation is one in which only one node issues the F&OP for a particular target V; in the
multiple F&OP command situation, some number of nodes P issue the F&OP command
to the same target V. These execution times indicate that even for large system sizes and
large physical scales, the raw execution times of these three synchronization primitives is

on the order of from a few microseconds to a few tens of microseconds.

4 Conclusions

We have presented eflicient implementation techniques for some well-known synchroniza-
tion operations that rely on local decisions for determining the outcome of such operations.
We have shown that our implementation incurs exactly the minimum number of messages
to perform these operations. Further, the space requirement at each node for implement-
ing these algorithms is a constant independent of the number of participating processors.
Thus our implementation is scalable in terms of both time and space requirements. These
algorithms depend upon the interconnection network being a broadcast ring having three
particular properties. These algorithms demonstrate that it is useful to consider how an
interconnection network’s structure (and resulting properties) can aid the implementation
of useful parallel programming constructs. By assuming a particular implementation tech-
nology for the broadcast ring (optical fibers), we have also presented some results showing
the raw execution performance of these commands to be reasonable over even large system

sizes and physical scales. The next research step is to consider the various practical issues

and concomitant ramifications of constructing systems using these techniques. There are
several different questions to be addressed in this next step. What are the engineering
issues in building the broadcast ring in either electronic or optical hardware? How many
nodes can be supported in either technology? What are the design issues involved in stor-
ing the replicated data structures distinct from the architecture’s shared memory? Should
local hardware tables be used for this storage? Are there existing parallel systems (e.g.,
the KSR machine [3]) having a ring-style interconnection network which could utilize these
algorithms? Are there other interconnection network structures which can be utilized in a
similar manner? Finally, how do “real” parallel programs perform when using these syn-
chronization primitives’ implementations versus using other (previously suggested) software

and hardware implementations?

References

[1] M. H. Davis, Jr. Optical Waveguides in General Purpose Parallel Computers. PhD
thesis, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280,
Dec. 1992. Available as Technical Report GIT-CC-93/06.

[2] A. Gottlieb and C. Kruskal. Coordinating parallel processors: A partial unification.
Computer Architecture News, pages 16-24, Oct. 1981.

[3] Kendall Square Research Corp., Waltham, Massachusetts. Kendall Square Research
Technical Summary, 1992.

[4] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65,
February 1991.

10

1’s msg o 1’s msg o N’s msg

Figure 1: The broadcast ring’s properties.

E}l P6
P3 J b | p2 | ps
> > " P9

p7
W/E R/S W/E R/S
req. req. req. req.

Figure 2: Lock request peer groups.

11

B B B
N(ide o o N(;de o o Nf/)Tde
T T T /
I: T V >

‘LOCK—ID ‘my—type ‘my—id ‘my—status

‘prior—type ‘prior—id ‘prior—count

‘most—recent—type‘ most—recent—id‘ most—recent—count‘

‘next—recent—type‘ next—recent—id‘ next—recent—count‘

Figure 3: The data structure associated with each lock.

‘ ID‘ participation ‘counter

Figure 4: The data structure which represents the state of each barrier.

‘V—current ‘V—mine

Figure 5: The data structure associated with each target V.

12

Execution Time (nsec)
Idle Busy
N | 7 (nsec) | min | max | min | max
50 50 70 | 2555 | 170 | 3910
50 500 70 | 2555 | 670 | 4360
500 50 70 | 25055 | 170 | 37660
500 500 70 | 25055 | 1070 | 38110

Table 1: Minimum and maximum execution times for idle and busy locks. N is the system

size, and 7 is the physical scale.

Execution Time (nsec)
Last Simul
N | 7 (nsec) | min | max | min | max
50 50 70 | 2605 | 670 | 2655
50 500 70| 3055 | 670 | 3535
500 50 70 | 25105 | 6295 | 25155
500 500 70 | 25555 | 6295 | 26055

Table 2: Minimum and maximum execution times for last arrival and simultaneous arrival

barriers. N is the system size, and 7 is the physical scale.

Execution Time (nsec)

Single Multiple
N | 7 (nsec) | min | max | min | max
50 50 70 | 2555 | 170 | 2555
50 500 70 | 2555 | 670 | 2555
500 50 70 | 25055 | 170 | 25055
500 500 70 | 25055 | 1070 | 25055

Table 3: Minimum and maximum execution times for single command and multiple com-

mand F&OP. N is the system size, and 7 is the physical scale.

13

A Lock Monitoring Algorithms

if (COMMAND == REQUEST):
if (SENDER != sELF): // Just update most-recent and
next-recent peer groups.
switch REQUEST_TYPE:
case W/E: // Automatically starts new Peer Group.
next-recent-type := most-recent-type;
next-recent-id := most-recent-id;
next-recent-count most-recent-count;

most-recent-type = W/E;

most-recent-id := REQUEST-id;

most-recent-count := 1;

break;

case R/S:

if (most-recent-type == (NONE .O0R. W/E)):
// Starts a new Peer Group.
next-recent-type 1= most-recent-type;
next-recent-id := next-recent-id;
next-recent-count := next-recent-count;
most-recent-type := R/S;
most-recent-id := REQUEST-1id;
most-recent-count := 1;

else: // Since most-recent Peer Group is R/S, this request

joins it.
most-recent-count++;
endif.
break;
endswitch.
endif.
endif.

Figure 6: The algorithm which nodes follow for processing Lock Requests from other nodes.

14

if (COMMAND == REQUEST):
if (SENDER == sSELF): // Must define my and prior
peer groups, as well as update most-recent
and next-recent peer groups.
switch REQUEST_TYPE:
case W/E: // Automatically starts new Peer Group.
// First create prior group from most-recent group:

prior-type := most-recent-type;
prior-id = most-recent-id;
prior-count := most-recent-count;

// Update next-recent and most-recent groups:

next-recent-type := most-recent-type;
next-recent-id := most-recent-id;
next-recent-count := most-recent-count;
most-recent-type = W/E;
most-recent-id := REQUEST-id;
most-recent-count := 1;

// Create my group:

my-type := most-recent-type;

my-id := most-recent-id;

if (prior-type == NONE): my-status := GRANTED;

else: my-status := PENDING; endif.
break;

First part (of three) of Fig. 7.

Figure 7: The algorithm which nodes follow for processing Lock Requests from themselves.

15

case R/S:
if (most-recent-type

(NONE .OR. W/E)

// Form new Peer Group:
// First create prior group from most-recent:

prior-type
prior-id
prior-count

1= most-recent-type;
most-recent-id;
most-recent-count;

// Update next-recent and most-recent groups:

next-recent-type
next-recent-id
next-recent-count

most-recent-type
most-recent-id
most-recent-count

// Create my group:
:= most-recent-type;
most-recent-id;

my-type
my-id

if (prior-type ==
else:

Second part (of three) of Fig. 7.

NONE) : my-status

most-recent-type;
most-recent-id;
most-recent-count;

R/S;
REQUEST-id;
1;

my-status

16

GRANTED;
PENDING;

endif.

else: // Since most recent Peer Group is R/S, this request
// joins it.
// First create my group:

prior-type 1= next-recent-type;
prior-id := next-recent-id;
prior-count := next-recent-count;

// Update most recent group:
most-recent-count++;

// Create my group:
my-type := most-recent-type;
my-id := most-recent-id;

if (prior-type == NONE): my-status := GRANTED;
else: my-status := PENDING; endif.

endif.
break;
endswitch.
endif.
endif.

Third part (of three) of Fig. 7.

if (COMMAND == W/E-UNLOCK):
if (REQUEST-id == next-recent-id): next-recent-type := NONE; endif.
if (REQUEST-id == most-recent-id): most-recent-type := NONE; endif.

if (REQUEST-id == prior-id):

prior-type := NONE;

if (my-type == (wW/E .OR. R/S):
my-status := GRANTED;
endif.

endif.

if (REQUEST-id == my-id): // Change my-type to indicate that node
// 1o longer holds this lock—there is no
// my-count field to update.
my-type : = NONE;
endif.

endif.

Figure 8: The algorithm which nodes follow for processing W/E UNLOCK commands.

17

if (COMMAND == R/S-UNLOCK):
if (REQUEST-id == next-recent-id):
next-recent-count--;
if (next-recent-count == 0): next-recent-type :
endif.

NONE; endif.

if (REQUEST-id == most-recent-id):
most-recent-count--;
if (most-recent-count == 0): most-recent-type := NONE; endif.
endif.

if (REQUEST-id == prior-id):
prior-count--;

if (prior-count == 0):
prior-type := NONE;
if (my-type == (w/E .OR. R/S): my_status := GRANTED; endif.
endif.

endif.

if (REQUEST-id == my-id): // Change my-type to indicate that node
// mo longer holds this lock—there is no
// my-count field to update.
my-type : = NONE;
endif.

endif.

Figure 9: The algorithm which nodes follow for processing R/S UNLOCK commands.

18

B Barrier monitoring algorithms

switch command:
case INITIALIZE:

participation := N;
counter = 0;
break;

case REACH:
counter++;
break;

endcase;
endswitch.

Figure 10: The monitoring algorithm that each node follows in processing barrier com-
mands.

C F&OP monitoring algorithms

if (SENDER == SELF):
V-mine := V-current;
notify CPU that the F&OP has completed by returning V-mine;
endif;

V-current := (V-current 0P e).

Figure 11: The monitoring algorithm each node follows in the hybrid F&OP scheme.

19

