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INTRODUCTION

In an effort to introduce the simplicity and elegance
of operator thecry on a Hilbert space into the realm of a
general Banach space, G. Lumer (15} introduced the notion of
a semi-inner-product on the Banach space X as a function
(‘,'):Xxx+¢(ﬂl) which is linear in the first argument,
strictly positive, and satisfies the Schwarz inequality
|(X,Y)J2 < (x,x) (y,¥). The form (+,+) induces a norm in the
natural way by setting ¥Tx,x) = [|x||. Lumer showed that every
normed linear space has at least one semi-~inner-product which
is compatible with the norm in this fashion. |

Later, J. R. Giles (8) extended the result to inqlude
conjugate homogensety in the second coordinate.

The principal thrust of the theory of semi-inner-
products has been the study of operator theory in Banach
spaces. A notable exception to this is a theorem by Giles
to the effect that in a smooth, uniformly convex Banach space.
a Riesz Representation theorem holds. ‘This is to say that for

* * . . *
every x eX there exists an xeX so that for all yeX, x (y)

{(y,x). Our intent is to turn attention toward the use of

semi-inner-products in the geometric theory of Banach spaces.
In fact we prove a generalization of Giles' theorem amounting
to a characterization of reflexivé Banach sﬁaces. In other

) . *
words, a space is reflexive if and only if every x eX can

;;;;;
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be represented by some semi-inner-product.
In (9) James jintroduced the notion of orthogonality
in Banach spaces as follows: xeX is orthogonal to yeX, de-

noted x | y, if and only if for each scalar o, [{x| < |lx+ay]

We are able to prove a theorem relating this notion of
orthogonality to the natural concept of orthogonality (nor-
mality) engendered by the semi-inner-product. Using these
two key results we explore some of the geometric implications
of semi-inner-product theory.

In addition,we use semi-inner-products to investigate
somewhat the structure of scalar operators with a cyclic
vector on a certain class of Banach spaces.

In Chapter 2 we turn our attention to families of
operators in a Hilbert space satisfying D'Alembert's functional
equation 2C(s)C(t) = C(s+t) + C(s-t)(s,telR). Such families |
are called cosine operator functions and have been extensive-
ly studied under various assumptions of continuity, notably
by Sova (24), Sz.~Nagy (17), and Kurepa (12), (13), (l4). We
define a cosine representation of a *-semigroup and give a
characterization of operator families which may be dilated to
cosine representations. This theorem is analogous to the
celebrated "principal theorem” of Sz.-Nagy (18) which gives
similar conditions for semigroup representations. We are
able to characterize generalized cosine operator functions
as an application of this theorem. A generalized cosine

operator function is a family of operators C(t) on a Hilbert
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space H which can be realized as C(t) Py é(t)[H, where

C(t) is a cosine operator function on a Hilbert space H
containing H as a subspace.

We are able to give two integral representations of
generalized cosine operator functions, the scalar versions
of which solve two cosine moment problems related to the
cosine-Stieltjes transfoxrm.

For the general theory of dilations which is substan-
tially used in this chapter, the reader is referred to (18),
(23), (16).

In what follows R will denote the real numbers, ¢
the complex numbers, B(H) the bounded linear operators on
the Hilbert space H, L(H) the linear operators on H, X* the
dual of the Banach space X, and N(f) the null space of the
transformation f£f. D(A) and R{A) will denote the domain and

range respectively of the operator A.




CHAPTER I

SEMI~INNER~-PRODUCT SPACES

SECTION l: Geometry

In the following, all Banach spaces will be considered
to be over the field of complex numbers with the understand~
ing that, unless otherwise specified, all of the conclusions
also apply to real Banach spaces with the obvious natural
modifications.

Definition 1.1.1 Let X be a Banach space. A semi-

inner-product on X is a function (-,:):XxX+¢ satisfying the

following: For all x,y,zeX
1. (ex+By,z) = a(x,z) + B(y,z) For all a,Be
' _ 2
2. (x,x) = ||x]|“ > 0 Por x#0
2
3. )T < (x,x) (y,y)
4. (x,By) = Blx,y)

Semi-inner-products were first considered by G. Lumer
(15) as a form (+,*) which satisfied (1)=(3) of the above
definition, Later, J. R. Giles (8) showed that without sac-
rifice of applicability (+,-} can be chosen to satisfy (4)
in addition. That is to say that Giles gave a proof thét

every normed linear space X has a (possibly infinitely many)




semi-inner-product, (*,*), satisfying all of the axioms of
Definition 1.1.1. We will not attempt to give a proof of

Giles's result here in as much as it is a consequence of a
more general theorem to follow.

Definition 1.1.2 A Banach space X is said to be

uniformly convex if and only if for each €>0 there exists a

§(e)>0 so that if |[x]|| = {|y|| = 1 and ||x-y||>e, then
15X)) <1-s.

Definition 1.1.3 A Banach space X is said to be

strictly convex if and only if |[|x||+]|ly¥[| = ||x+y||, where

X,y#0, implies x=Ay for scme )1>0.
In (4) Clarkson showed that every separable Banach
space can be renormed so as to be strictly convex.

Definition 1.1.4 A Banach space X is reflexive if

and only if the J:X+X** given by (Jx) (x*) = x*(x) is sur-
jective.

Every Hilbert space is reflexive and apparently, as
we will later observe, reflexivity in a Banach space in some
sense says that the Banach space is approximately a Hilbert
space.

It is well known that uniform convexity implies both
strict convexity and reflexivity. As a corollary to theorem
1.1.7 we will obtain an alternate route to proving the Milman-
Pettis theorem that every uniformly convex Banach space is
reflexive. |

We will now state without formal proof several well




known theorems.

Theorem 1.1.1 In a uniformly convex Banach space

every closed convex set has an element of minimum norm.

As a consequence of this,if M is a closed subspace
of the uniformly convex Banach space X and xeX-M, then the
closed convex set x-M has a unigue point of minimum norm so
that we have:

Theorem 1.1.2 Let X be a uniformly convex Banach

space,M a closed subspace of X, and xeX~M, then there exists

a unique element x,eM so that

llx-x|l = inflly-x|| = d(x,M)
yeM
In reflexive Banach spaces, Theorems 1.1.1 and 1,1.2
may be retained with the sacrifice of uniqueness so that we
have:

Theorem 1.1.3 Let X be a reflexive Banach space,

then the following are true:

(i) Every closed convex set in X has element of
minimum norm.

(ii) For every subspace M of X and every xeX-M there

exists an element xoeM so that

on—x“ = inf||y-x|| = d(x,M). :
veM |

Definition 1.1.5 Following James (9), in a normed




vector space X, an element xeX is said to be orthogonal +to
an element yeX if and only if for every Xef, |fx+ay| = (|¥)|.
This is written as x _y. If for each x M and y W,

M,NCX, we have x | y, we will write M | N.

This notion of orthogonality generalizes the familiar

notion of orthogonality in ihner—product space. However,

unlike the inner-product engendered orthogonality, the rela-

tion l is neither symmetric nor additive, (where additive
means z | {x, 3} ——z lax+gy). 1In fact, Birkhoff (3) has
shown that for normed spaces of dimension strictly greater
than 2, the symmetry of l implies that the normed space is
a Hilbert space. James (9) has shown that the additivity

of l is equivalent to the Gateaux differentiability of

the norm at every nonzero vector, where we have the following:

Definition 1.1.6 A functional f defined on a normed

linear space X is Gateaux differentable at xeX if and only
if %ig (f(x+hy)-f(x))/h exists for each yeY with Nyﬂ =1,

Always when refering to the Gateaux differentiaﬁility
of the norm, we assume this to be at nonzero vectors,

Definition 1,1.7 The relation l is said to be right-

unique if and only if for no element x{(#0) and y there is
more than one number a for which x l ax+ty.
We have the following by James (9):

Theorem 1.1.4 Orthogonality is additive in a normed

linear space X if and only if it is right unique, or if and
only if the norm is Gateaux differentiable,

We now show that in reflexive spaces, closed subspaces




have orthogonal complements.

Theorem 1.1.5 Let X be a reflexive Banach space and

M C X a subspace with M#X, then there exists a non-zero

element erX-M such that
Xy L M.

Proof: According to Theorem 1.1.3, if M is a closed

subspace of X and xeX-M, then there exists an element zoeM

such that
Iz x|l = inf|ly-xl|
veM
Let y, be an arbitrary element of M and put X, = z =X, then
for all AE¢
x Al = inflly-x|| < ||x_-ry i
o yeM - o Yo

so that x_ | M.

Definition 1.1.8 For x,yeX we say that x is normal to

y with respect to, or relative to, the semi-~inner-product
(+,*) if and only if (v,x) = 0. If M and N are subsets of X,
we say that M is normal to N if and only if for each xeM and
yeN we have (y,x) = 0.

Definition 1.1.9 A Banach space X is smooth if and

only if for each xeX with ||x|| = 1 there is a unique x*eX*
such that x*(x) = {|x*||, We may note that in all cases the

Hahn-Banach theorem insures the existence of at least one




such x*. Geometrically, the condition of smoothness is that
the unit ball of the space posess unigque supporting hyper-
planes. From this definition the following is clear:

Theorem 1.1.6 (15) A Banach space is smooth if and

only if there is a unique semi-inner-product.

We now pass to a theorem which is central to our
considerations of semiﬂinner-products/and their relations
to orthogonality and Banach space geometry.

Theorem 1l.1.7 Let M and N be subspaces of a normed

linear space X. A necessary and sufficient condition for
M | N is that there exist a s.i.p. (.,-) relative to which
M is normal to N. |
Proof: Suppose that M is normal to N with respect to

(*,*). If xeM and yeN we have

I+l x|l > (xby,x) = ||x||2,

from which it follows that M | N.
Let us now suppose that M | N, then M N N = {0}.
Hence, for each xeM we may define a linear functional fx on

s, = spanix,N} = {ax+n|{aeC,neN} as follows:

- 2
£ (ax+tn) = af|x{}* .
Now £ is clearly linear and in view of

2 '
(£ Coaxtn) | = a| [1x|l® < l[xll la| [lx+ZIl = lIx]l [[ax+n]|




£, is bounded with £l = llxll. By observing that

X

(
* =l

£ (x) = Ihcﬂz and £ _(n) = 0 ¥neN. For z/M we may define

) = [|x{| we obtain [{f || = [|x||. Also, £ satisfies

£,(az) = a||z]|2 on the span of {z}. Clearly, for these
st,||sz = ||z}l and £ (2) = ||zH2. Thus for each xeX we
obtain a bounded linear functional fx which may be extended
to the entire space by the Hahn-~Banach theorem without in-
creasing the norm. We therefore consider fx to be defined
throughout X, Now, let A be a well ordering of X-{0}, and
let x be the initial element of A. Define the functional L
to be fx: and if z = Ax,define ¢, = I@x. Similarly for x~,
the initial element of A not in the span of x, define

. = fx' and ¢ = Ad

x Ax - Continuing in this fashion we

X~
may, by transfinite induction, define ¢z for each zeX. Since
zeX has a unique initial generator w relative to the order A
(i.e., w is the least element of A for which z = Aw), the
indexing of the functionals @z-is clearly well-defined. We
may now set {(x,z) =‘¢Z(x){ and we need only verify that (1}-
(4) of Definition 1.1.1 holds, since clearly for xeM, yeN we
have (y,x) = ¢_(y) = 0. The condition (1) is immediate from
the linearity of Qz' For condition (2) suppose that o is the
initial generator of xeX, say x = \w, then (x,x) = o, (o) =
A28, (@) = Il = Ix]|® > 0. Ssimilarly, for condition (3),
if x = Aw and y = puv for both w and v initial in A, then we

have




2 2 2
|Gy 1% = Jo 0] = [o 0w) 12 = Jul*[3]%]o, )]

v 12 1e]l? = (7,9 (x,%).

2,2 2 .12
< Tl I E I el

Pinally for part (4) (x,8y) = (x, (Bu)v) = sue_(x) =
% v(X) = B(x,y). This concludes the proof.

We may observe that there ex1st subspaces M and N,
both with dlmen51on larger than one, that satisfy the hypoth-
esis of this theorem. ‘For example if the Banach space has a
monotone base {xi} then for every n, span {xl,....xn} is
orthogonal to its algebraic complement. As a conseqguence of

the previous theorem we obtain:

Corollary 1.1.1 (5) 1In a normed linear space X the

norm is Gateaux differentiable if and only if X is smooth.
Proof: 1If the norm of X is Gateaux differentiable,
then L is right-unique. Suppose that there exist two semi-

inner-products with (y,x)1 # (y,x)z. It follows then that

(Y'X)l (Y!x)z
a; = - —ﬁ;ﬂjr and a, ﬂ:ﬁTf-are not equal. But (alx+y,x)l=
(y,
T ”2 fl ” + (y,x}); = 0, and similarly (a,x+y,x), = 0. As
X

in the proof of Theorem 1.1.6, this iﬁplies that x | a;xty,
and x | a,x+y, which contradicts the assumption that | is

right unique. So X must be smooth. Suppose now that X is
smooth, so that (-,-.) is unique. Suppose that x | ax+y. By

theorem 1.1.7 there exists a semi-inner-product for which




(ax+y,x) = 0. This is equivalent to allxl|? + (y,x) =0
which implies that a = - (y,x)/[hd[z. In other words, a is
unique which by theorem 1.1.4 implies that the norm is

Gateaux differentiable. This concludes the proof.
In (2) Berkson showed that the following holds:

Lemma 1.1.1 A semi-inner-product space is strictly

convex if and only if whenever (x,y) = |{x||{|y||, with x,y#0,
then y = Ax for some A >0, We will use this in the following
theorem which generalizes the celebrated Riesz Representation
theorem for inner-precducts. The theorem has been proven
independently in part by Papini (21).

Theorem 1.1.8 Let X be a Banach space, then a neces-

sary and sufficient condition for X to be reflexive is that
for every feX* there exists a semi-inner=-product (.,+) and
an element yeX so that f(x) = (x,y) for all xeX. In the
event that X is strictly convex, then relative to the semi-
inner-product (-,-), the element y is unique.

Proof: (Necessity) If the null space N(f) = X, any

semi-inner-product will suffice with y = 0., If N

N(f)#X,
since X is reflexive, by theorem 1.1.5 there exists an X, l N.
The orthogonality relation is homogeneous, thus if M is the
span of x_  we have M | N. By theorem 1.1.7 let (:,-) be
chosen so that M is normal to N with respect to (-,-). For
xeX, consider the element z given by z = f(x)xo-f(xo)x.

Clearly, zeN so
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0 = (z,x.) = f(x)||x°||2 - E{x ) (x,x ).
Consequently we Havé
ftxoj
f(x) = (x, — xo) = (x,y).
NESY

(Sufficiency) For sufficiency we need only observe
that every functional representable by a semi-inner-product
assumes its norm on the unit sphere and hence by James (10)
X is reflexive.

{(Unigueness) Suppose there exist vectors y and y~

such that £(x) = (x,y) = (x,¥7) for all xeX, then (y,y) =
(y,y?) < |yl 7. Thus ||y|| < [ly“ll, o ||l = |y~
since ||y|l1? = (v,y"), it follows that [ly[]| [ly-|| = (v,¥")

so that v = y° by Lemma 1.1.1.

J. R, Giles (8) defined a continuous semi-inner-

product as a semi-inner-product (+,+) which for every x,yeX

Re{ (y,x+1y) }»Re{ (v,x)}

for all real i-0.

Using this definition he proved the following:

Theorem 1.1,9- Suppose X is a continuous semi-inner-
produdf space X which is uniformly convex and complete in
its norm. Then, corresponding to every functional feX* there
exists a unique vector yeX such that f(x) = (x,y) for all xeX.

Theorem 1.1.8 is clearly a generalization of this re-
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sult. If we observe that the uniform:convexity is required
only to obtain a vector orthogonal to N(f) we are led to the
following famous result as a corollary to Theorem 1.1.8.

Theorem 1.1.9 (Milman-Pettis) Every uniformly convex

Banach space is reflexive.

Theorem 1.1.10 Let X be a smoothable Banach space.

Then X is isomorphic to a Hilbert space if and only if for
each subspace M C X and each yeX there exists a smooth re-
norming of X and an meM such that M L y-m.

Proof: If X is a Hilbert space then clearly such an
m exists by virtue of the projection theorem. Conversely if
for each subspace M and each yeX, an meM.exists so that
M | y-m, we can show that every subspace in X is complemented
in X. To this end, let Ml = {xeX|(x,m) = 0 for all meM}. By
the continuity of (-,m), Ml is closed. 1In addition,M N ML =
"{0}. Since M is smooth, M | y-m implies that y—meML (Theo-
rem 1.1.7) from which we may conclude that each y has a
unigque representation y = {(y-m}+m, i.e. X = M @ ML. By the
Lindenstrauss-Tzafrini theorem on complemented subspaces; X
is a Hilbert-space. We may observe that as a consequeqce of
this, in a smooth, reflexive Banach space X, if L is symmetric,
then X is a Hilbert space. As was previously mentioned, the
following was shown by James (9).

Theorem 1.1.11 In a smooth Banach space the relation

| is additive.

Proof: Suppose x | y and x | z. We must show that
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X L ay+Bz for complex numbers ao,f. Let Mx’ My' Mz be the
subspaces generated by x; y, and z respectively. By hypoth-
esis, since | is homogeneous, M, | My and M_ L M . If My =
M, we are finished. If My¢Mz,then relative to the semi-inner-
product on X, Mx is normal to both My and MZ and consequently
M, is normal to M, ® M,. But this implies that x | aytsz.

Theorem 1.1.12 Suppose that M and N are closed sub-

spaces of a Banach space X. If M | N then M ® N is closed.

Proof: Suppose znsM ® N and zZ,72Z. Let 2z, = xn+yn

where xneM and yneN for each meN. Let (-,-+) be any semi-

inner-product with respect to which M is normal to N. Then

2
<.

lzp=xp Il xp=xp 1l 2 |z -z % —x ) | = [lx -x

Thus, since ||z -z || > |lx -x ||, {x } must be Cauchy

with X X for some xeM. In addition, Yo = Zn~%p must be a

Cauchy sequence so that yn+yeN. So z = lim zZ, = lim X, *

lim Y, = XtYEM @ N.
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SECTION 2: An Application to Operator Theory

@
1,2 The original introduction of semi~inner-products

(15) was motivated by an attempt to introduce the elegarnce
and simplicity of operator theory, as it appears in the con-
text of a Hilbért space, to a general Banach space setting.
This attempt must fall far short of this goal since it is
necessary to maintain the obvious distinction between Hilbert
spaces and Banach spaces in general. There is, however, a
great deal of insight to be gained through the attempt.

In the following we will apply the semi-inner-product
structure to operators in a Banach space.

Definition 1.2.1 A scalar operator in a Banach space

X is a linear operator A for which there is spectral family

A =./;dE(A).

The general theory of such operators can be found in

E(+} such that

(6). If o(A)< (a,b) for some a,beR, then A is clearly a
generalization of a bounded self-adjoint operator in a
Hilbert space.

Definition 1.2.2 Let A be a bounded scalar operator

and E(+) its spectral family. A will be said to have simple
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spectra if and only if there is some vector geX such that
the linear manifold spanned by vectors of the form E(A)g is
dense in X, where A(is an interval in IR. The vector g will
be called a generating vector.

It is well knOwn that the self-adjoint operators in a
Hilbert space which have simple spectrum are isometrically
equivalént to multiplication by the independent variable on
a suitably constructed L2 space (l). The purpose of this
section is to extend this result.

In finite dimensional spaces or in the elementary
theory of integral equations, an operator has simple spectra
if the multiplicity of each eigenvalue equals one. For
general operators the eigenvalues do not exhaust the spectrum.
Consequently we have the Definition 1.2.2.

Definition 1.2.3 Let u be a vector valued measure

whose domain is the sigma algebra of Borel sets in R on ¢,
and whose range is in the Banach space X. The semi-variation

of u, denoted [|ul||, is given by

r

[lull (B} = sup

zjaiu(Eif

where the supremum is taken over all finite collections of
scalars o with |ai|gl and all finite measurable disjoint
partitions of E.

Lemma 1.2.1 A vector valued measure has finite semi-

variation. For the proof of this lemma and the following
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theorem the reader is referred to (6,: sec. IV. 10).

Theorem 1.2.1 If y is a vector valued measure taking

values in the Banach space X, and f a p-essentially bounded

scalar valued function on R (¢), then f is py-~integrable and

Definition 1.2.4 Let X be a smooth, strictly convex,

meaum < {u-ess S)uplf(s)l}{llu(E) IRE

seIR(

reflexive Banach space and let A be a bounded operator on X.
The uniquely determined operator at gefineq by (Ax,y) =

(x,A*y) will be called the generalized adjoint of A,

By Section 1 we see that at is well defined though
not necessarily linear. For an excellent treatment of gen-
eralized adjoints see Koehler (11) and Stampfli (25). Our
interest in them is only their use in the text of the next
theorem.

Now let A be a bounded scalar operator in X with
og{A) € (a,b) for some a,belR. Suppose,in addition that A has
simple spectra with g a generating vector. 1If E is the
spectral family for A, let the vector measure p be defined

by
u{M) = E(M)g for all MeB.

Using the vector measure p we can define a linear operator

U:L_{(u)+X by
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uf =ff()\)du(l).

By Theorem 1.2.1 U is bounded, and by virtue of

E(A)g =f1(m)dum,

the range of U is dense in X.

We are now in a position to state and prove the

principal result of this section.

Theorem 1.2.2 Let A be a scalar operator on a smooth,
strictly.convex, reflexive Banach space X with ¢(A) C (a,b)
for some a,belR, Suppose that A has.simple spectra with
generating vector g, and, in addition, that E(-) is the

spectral family for A. Then,if U:L_(u)+X is given by

Uf =.ff(h)du(l):

for u(+) = E(+})g, and Q:Lw(u)+Lm(u) is "multiplication by
the independent variable®, i.e. Qf(A) = Af(A), the following

diagram commutes

X< L. (1)

A Q (1.)

=®<
mn
[
8
by
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If N = N(U) is the null space of U and M = L_ () /N(Q),
the corresponding operator in the equivalence classes of M,
Q" and U” are well defined and for any feX and any €>0 there
exists an £ ¢X such that

1

Af - U°Q(U") "f°||< E. (2.)

This implies that bn a dense subset of X, A is essentially
a multiplication.

Proof: We will first show tﬁat tﬁe diagram (1.,) com-'
mutes. Let h be an arbitrary vector in X, {(-,+) the semi-
inner-product for X. We remark that (.,-) is unique by the

smoothness of X. We calculate as follows: for any feLm(u)

o a0

(AUf ,h} = J.Ad(E(A)Uf,h) = J.Ad(Uf,E+(l)h)

- 00 -0

o o oo A
= Jgd;J.f(u)d(E(u)g,E+(A)h); =.[Ad;.J.f(u)d(E(u)g.h)

= [lf(k)d(E(l)g,h) = (U(A£(X}),h).

L)

By the arbitrariness of h, it follows that
AUf (A) = U(AE£(A)) = UQE(X) (3.)

so that (1.) commutes,
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The operator U”:M+X given by U‘[f] = Uf is clearly
well defined and injective. We define Q”[E] = [of]. To
show that Q° is well defined suppose f£(A)-g(A)eN, then we
require A(£(A)-g(X))eN. However, £~geN = AU(f-g) = 0. But,
AU(f~g) = UQ(f-g) = 0 s0 A{f-g)eN. It follows that Q~ is
well defined and that AU” = 0U°Q°, which is to say that for

f°eR{U"} = R(U)

1

Af° = UTQ(UT)  TET

il

Since by hypothesis R{U”) is dense in X, the inequality (2.)

holds. This completes the theorem.
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CHAPTER II

GENERALIZED COSINE OPERATOR FUNCTIONS

Definition 2.1.1 A semigroup T with identity & will

be called a *-semigroup provided there is a "star" operation

*:T>I satisfying

(i) e* = ¢
{ii) s** = g

(iii) (st)* = t*s*

Definitiongz.l.Z Let I' be an abelian *-semigroup
with idéntity ¢ and L(H) the collection of all linear opera-
tors on the Hilbert space H. A function C:T+L(H) will be

called a cosine representation of T provided C satisfies

(1) Cle) =1

(i1i) 2C(s)C(t) = C(st) + C(s*t) for all s,tel,

Definition 2.1.3 Let A be a linear operator on a

Hilbert space H, then an operator A on a Hilbert space # con-
taining H as a subspace will be said to be a dilation of A

provided

A= PﬂAlH ﬁ

where P,; is the orthogonal projection of H onto H. This

relationship will be denoted A = pri.
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The study of dilations was inifiéted in order to
generalize tbe convenéibnal concept of the extension of an
operator. It may,in fact, be thought of as an extension which
goes beyond the space on which the original operator was
defined.

We will first consider an extension problem of the
conventional sense.

Definition 2,1.4 Let A be a symmetric operator on a

Hilbert space H. Then the dimensions of the orthogonal com-
plements of the subspaces R(A~iI) and R(A+iI), denoted m~ and
mt respectively, are called the deficiency indices of the
operator A. A symmetric operator is self adjoint if and only
ifmt =m" =0 (1).

The next well known theorem relates the deficiency
indices to the possibility of extending a symmetric operator
to a self-adjoint operator. We will not give a proof here.

Theorem 2,1.1 (1) A symmetric operator A has a self

adjoint extension if and only if m = m+.

In the event that m"#m+, then, within the original
Hilbert space containing the domain of the symmetric operator
A, no self-adjoint extension can be obtained. Howeﬁer, if we
allow extentions to extend beyond this original space we have
the following theorem which is a slight generalization of one
by Naimark (19);

Theorem 2.1.2 Let A, {aed) be a collection of pair-

wise commuting symmetric operators on a Hilbert space H, then
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there exists a Hilbert space H containing H and a pairwise
‘commuting collection of self-adjoint operators ﬁu (aeA) on

H satisfying

A = A For each ach

Proof: Let H = H®H endowed with inner-product
<{f,9),(f£7,g7)> = <£,£°> + <g,g”>. Define ﬁa on H by
A =aje{-a )}, then clearly,?\aﬁB = ABAQ and & is symmetric
for each aeA. If we identify X+ (x,0), then KOL is clearly an

extension of Aa for each acA. We show that the deficiency

indices of ia are identical for each a
R(ﬁa-iI) = (ﬁa-iI)D(AG) =
(R,-iI)D(A )®D(-B ) =
(A -iI)D(A )®(-A -iI})D(-A )
= (Aaj-il)D(AGJG(Aa+iI)D(Aa)
= R(Aa—iI)GR(Aa'f-iI).
So, the orthoéonal complément of R(ﬁa-iif has dimension m* + m~,

Similarly,R(ﬁa+iI) has orthogonal complement of dimension

m' + m~. We must conclude that each of ﬁa has a self-adjoint
extension ia,and consequently so does A,. In addition, since

A C ia_C_ A *, the collection A is pairwise commuting.
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Theorem 2.1.3 Let H be a Hilbert space and Ai (ie 1)

a countable collection of pairwise commuting symmetric

operators on H, Then, there exists a Hilbert space H contain~

ing H, an orthogonal spectral function E on H and an E-

meastrable function ¢(s,i), so that for each xeD(Ai)

Ai X ijr¢(s,i)dEs X.

Proof: This follows from Theorem 2.1.2 and (18, p 67).

In what follows we will need the following:

Theorem 2.1.4 Let E be a real spectral family, g:R-+¢

a Borel measurable function, and £ a Borel measurable func-

tion ¢+¢ for which, given xeH

~/;og dEx exists,

R

then the function E(A) = E(gfl(A)) is a complex spectral

family,

./; dﬁg exists,
¢

and the two integrals are equal.

Proof: It is immediate that £ is a complex spectral
family. If £ = 1, where 4 is a Borel subset of ¢ the con-
clusion obviously holds. Thus we are lead to conclude that

for all simple functions £,
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u ﬁog dEx =j;5 déx.

Now, as is usual, if f is non-negative, we approximate f from
below by simple functions fn' Since the dominated conver-

gence theorem holds for vector valued measuressz dfx exists

/;fog dEx = lim ffnog‘dEx = lim ffndﬁx = ff agx.
n-+o n-+

The extension to arbitrary functions is routine.

and

- The desirability of being gble to extend a symmetric
operator to a self-adjoint operator is evident in that when
this is possible we are able to apply the spectral theorem
to such an operator. Suppose now that we have a symmetric
operator A and a self-adjoint dilation of A, That is to say
that if A has domain in the Hilbert space H, then there is a

~

Hilbert space H and a self-adjoint operator A on H such that

pPraA = A,

Let E be the spectral family associated with A. 1In

A fAdE.X'

In this case, the family Ey

other words

prf‘..A satisfies the following:

(i) For A2>Al, the ?ifference EAZ-EAI is a
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bounded positive operator

(ii) E = E

A=-0 A
(iii) 1lim EA = 0 and lim EA =TI,
A+=co Ar+o0.

In contrast to an orthogonal spectral family, the
operators EA need not be orthogonal projections. As a con-

sequence of this,we do not have EklEAZ = Emin(llylz)'

Families of operators satisfying the conditions (i)-

(iii) are called generalized spectral families., Such a

function generates an operator valued measure in the same
fashion that a distribution function generates a Stieltjes
measure. In full generality we have the following:

Definition 2,1.5 A generalized spectral function E

is a positive operator valued measure defined on a o-algebra

S satisfying

(i) E(X) = I
(ii) E(¢) =0
(iii) For .:Eies with E,N Ej = ¢

oo

E(jI=JlEi) = ZE(Ei).
j=1

In (20) Naimark showed that every generalized spectral

family E(+) can be realized as

E(-) = prﬁ(')
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where E(-) is projection valued.

For the symmetric operator A with self adjoint dila-

i = ez,

If EA = prﬁk,then for xeD(A) and yeH

(i) <ax,y> =/;\d <ﬁkx,y> = ﬁd<EAX.Y>

tion A, with

we have the following:

and

(11) a2 =ﬁ2d <Eyx,%> =/;\2d <E,x,X>.

E, is:said to be a generalizéd s§éCtral family asso-
ciated with the operator A. 1In general,El is not unigque.

The proof of Naimark's theorem that all generalized
spectral families méy be dilated to orthogonal spectral
functions may be made to rely on the following theorem by
Sz.-Nagy which, in the full range of its applicability, is
unsurpassed in generality and elegance.

Theorem 2.1.5 (18) Let I' be a *-semigroup with iden-

tity ¢ and suppose that T:I'+B(H) (the bounded operators on a
Hilbert space H) satisfies the following conditions:

(a) T(e) - I, T(s*) = T(s)*

{(b) T(s) considered as a function bf s is of‘poéitive

type. That is to say that for every finite
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{xl,xz,...xn}Q_H and {sl,...sn}g;r we have

n.

Z<T(Si sj)xj,xi> > 0,
i,j=1
{c) For finite {xlj...,xn}ggﬂ and {sl,...,sn}g;F and

tel’ we have

n n

2
* * *
E <T(si t tsj)xj,xi> < Ca 2 <T(si sj)xj,xi>.

i,3=1 i,j=1
Then there exists a fepresentation D:T+B(ﬁ) on a dilation
space H of H such that T(s) = prD(s) for each sel.

In actuality, under subsidary conditions, Sz,-Nagy is
able to conclude more. We are not, however, concerned here
with the remaining conclusions. We may note in passing that
in the case that I' is a topological group and H is the com-
plex numbers, then this theorem reduces to the Gelfand-Riakov
theorem (7) on the representation of positive definite func-

tions on T.

Definition 2.1.6 Let E be an abstract set, H a Hilbert
space and K:ExE+B(H). Then the kernel K is said to be of
positive type if and only if for finite subsets

{sl,sz,...,sn}g;E and {xl,xz,...,xn}ggH we have

n n
2: ZE <K(sj 'Sy )x x> > 0,
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We now come to the principal result of this section.

Theorem 2.1.6 Let I' be an Abelian *-semigroup with

identity €. Suppose C:I'+B(H) is a family of operators
satisfying

{a) Cle) = I, C(s}) = C(s*)

(b) the kernel K(s,t} = %{C(st)+c(s*t)} is of posi-
tive type,
then there exists a dilation space H containing H and a
family of operators C:T+L(H) satisfying

{a”) C is a cosine representation of T

(b”) prC(t) = C(t) for all tel.
Proof: Let H, be the linear space formed by the col-
lection of all linear combinations of functions of the form

${(s) = K(s,t)x, where xeH. We may define a bilinear form
n

(+,*) on H0 as follows: if ¢(s) = Z:K(s,ti)xi and

m
v(is) = }E K(S,tg)xg are functions in H , we define (¢(s),v(s))
by =1
n
(p,v) = :E: <K(t5,ti)xi,x3>
i,3j=1

where <:,+> is the inner-product on H. We observe that

K(t ft )xl,x >

n
(¢(s),v(s)) = Z ;

m
= :2:<¢(t ), x Ty =
j=1

,v(t ) >,

?—
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where the last equation follows from the relation <K(s,t)x,y>
= <x,K(s,t)y> which is a.COnSequence of K being of positive
type. In any case, this implies that (¢(s),v(s)) is in-
dependent of the representation of either ¢ or v. It follows
from this that (*;*) is well defined.

We now show that (-,:) satisfies the axioms of an
inner-product. It is clear that (-,+) is both bilinear and
symmetric. In addition, by the positivity of K, (-,-) is
noh—negative. Suppose now that (¢(s),d(s)) = 0. Since the
Cauchy-Schwarz inequality_is valid for (*,"), we have for

any xcH and any teTl

0 < |<o(),x>|% = | (o(s),K(s,t)x) |2
A (p(s),d(s)) (K(s,t)x,K(s,t)x) =0

from which if follows that (-,-) is positive definite. Thus
with (-,+), H  is a pre-Hilbert space. Let H denote the
completion of Ho'

We may embed H into H by identifyving x+K(s,e)x =
C(s)x. Since (K(s,e)x,K(s,e)x) = <K(e,e)x,x> = <x,x>, the
embedding is an isometry. Henceforth, H will denote the

image of this identification.

If P = PH is the orthogonal projection of H onto H,

P K(s,t)x = K(s,e)K(e,t)x = K{(s,e)C(t}x.

That this is true can be shown by observing that for every
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¢€Hoand veH,
(P\)_\)’¢) = 0-

We now define E:P»L(Ho) by
C(s”) (K(s,t)x) = %(K(S.S’t)x + K(s,s"*t)x).
Direct calculation shows that for ¢,veHo

(C(E)p,v) (¢,C(t)v)

so that, since HO is dense in ﬁ,«if ¢ = 0, it follows that
C(t)¢ = 0. That is to say that C(t) is well defined for each
tel.

We note that

é(e)(K(s,t)x) = %K(s,et)x + %K(s,e*t)x = K(s,t)x

so that Cle) = I.

Now for a function ¢(s) = K{(s,t)x we obtain

2C(v)C(u) (K(s,t)x) = %(K(s,but)x + K(s,v*ut)x +

K(s,vp*t)x + K(s,v*p*t)x) = (C(vp) + C(v*u)) (K(s,t)x)

so that C satisfies (i) and (ii) of Definition 2.1.2. We
observe that at this point we make essential use of the com-
mutativity of T.

.In order to complete thg proof, we need only show that
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prC(t) = C(t). But we have
. ! 1 _
prC(t) (Kis,e)x) = PL(3K({s,t)x + SK(s,t¥)x) =
K(s,e) (-JZLK(E,t)x + %K(s,t*)x) = K(s,e)C(t)x,

and this completes the proof.

Definition 2.1.7 Let X be a Banach space and C:IR+B(X).

C is said to be a. cosine operator function provided C satis-
fies |
(a) 2C(s)C(t) = C{s+t) + C(s-t)
(b) C(0) = I.
‘ Cosiﬁeloperator functions have been extensively stud-
ied, as was mentiOned:in the introduction.

Definition 2.1.8 Let C(t) be a family of operators in

B(H) on a Hilbert space H. If there is a Hilbert space H
containing H and a cosine operator function C(t) in B(H) sat-

isfying
c(t) = prC(t),

then C(t) is said to be a generalized cosine operator function.

As a consequence of Theorems 2.1.6-2.1.7,we have the
following:

Theorem 2,1.8 Let C:IR+B(H) satisfy

(a) C(0) = I, C(s) = C{~-s)
(b) Kis,t) = %(C(s+t) + C(s-t)) is of positive type,

then, C(t) is a generalized cosine operator function. In
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addition, if the dilated operator C is self adjoint, then
conditions (a) and (b) are necessary.

Proof: We need only take I' = IR and "*" as the addi-
tive inverse in Theorem 2.1.6. We note that it is possible
to have unbounded cosine operator functions so that without
further hypotheses we cannot assume that C(t)eB(H). As an
example of an unbounded cosine operator function, let P be
an unbounded projection on the Hilbert space H and Pc = I-P.
Direct calculation shows that C(t) = Pc + (cos t)P is an un-
bounded cosine operator function. We have the following
parallel to condition (c) of Theorem 2.1.5.

Theorem 2.1.2 If the following inequality holds, then

C(v) is bounded: for all {tl,...,tn}g I' and {xl'...,xn}g;H,

n
2 : * *

i,i=1

* *
+ K{(v tj,v tj))xi,xj>

n

< Mv [ E. <K(tj,ti)xi,xj>]

i,j=1

Proof: Direct calculation yields

n
Z <(K(vtj,\)ti) + K(vtj,\)*ti)

i,j=1

N|

Hé(v)z:K(s,ti)xiH
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+ e, . *t ., ,ukt, .
| K(v tj,vtl) + K(v tJ,v tl))xl,xj>

n

M
.V
f.Mv[-Z:<K(tj'ti)xi'xj%'_ 2
i,j=1 ‘

E:K(s,ti)xi'2

We will see later that even with the apparent artificiality
of the hypothesis of Theorem 2.1.9, it is, in fact, satisfied
'for the case of principal interest. We will need the fol-

lowing later.

Lemma 1.1.1 Let C(t) and C(t) be as in Theorem 2.1.8,

then the following are true:

(a) If C(t) is weakly continuous, then C(t) is weakly

continuous

(b) If w-lim Cistt)=C(s)

re exists for each se1R,
t-+0
then w-1im Ei%}ll exists.

t+0

Proof: (a) Consider lim<C(t)K(s,u)x,K(s,v)y>. By
t+t
0

direct calculation we have

<G(t)K(s,u)x,K(s,v)y> = %<K(s.u+t)x + %K(S,u—t)x,K(s,v)y>

= %({K(v,u+t)'+ K{v,u-t)lx,y> = %<C(v+u+t)x + C{v-u-t)}x

+ C{v+u-t)x + C(v-u+tt)x,y>.

So lim<&(t)K(s,u)x,K(s,v)y> = %<C(v+u+t0)x + C(v-u-to)x
t+t
0
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+ C(vtu-t )x + Clv-utt )x,y> = <E(t0)K(s,u)x,K(s,v)y>,

from which (a) follows.

(b) We calculate

<Ei%?:£ K(s,v)x,K(s,u)y> =

T<C(E)K(s,v)x,K(s,u)y> - £<K(s,v)x,K(s,u)y>

= é%<C(v+u+t)x + C{v-u-t)x + C(v+u-t)x + C{v-u+t)x,y>

- f%<c(u+u)x + C(v~u)x,y>

_ 1<C(U+u+t)—C(v+u)

- l<C(v+u-t)—C(v+u)
4 rs

4 t x'y>

X,y> +

1 C(v-u+t)-C(v-u) 1 .C(v-u-t)-C(v-u)

+ 7 £ X,y> + 2 s X, ¥>
\ , +t) -~ . . ) -
So if w=1lim Cis tl C(s) exists for each seIlR then w=lim ElE%_E

t=>0 t+0
exists.,

In (13), Kurepa showed that every function C:IR-+»B(H)
satisfying

(a) C(s) is a normal transformation

(b) 2C(s)C(t) = C(s+t) + C(s-t)

{c) C{s) is weakly continuous in s,

can be represented as
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C(t) =fcos tlciEx_

where EA is a spectral family with compact support and inte-

gration is taken over the complex plane. We now apply this ‘

result to obtain such a representation for generalized cosine

operator.

Theorem 2.1.10 Let C:IR+B(H) satisfy the following:

(1) c(0) =1, C(s}) = C(-s)

(2) the kernel K(s,t) = %{C(s+t) + C(s-t)} satisfies
{(a) K is of positive type

n

{(b) E [<K(s+tjs+ti)xi,xj> +
i, 3=1

: +t.,t,.~ . g K., .=S,t. , p X .,
<K(s tj,tl s)xl,xj> + <K(tJ S't1+s)x1’xj> +

T

<K(tj-s,ti-s)xi,xj>]< Ms [ \_<K(tj'ti)xi'xj>]'
i,3=1

then C(t) has a representation given by
<C({t)x,y> =./Zosltd<EAx,y>.

HC(t)xH2 5}/;oszltd<E X, x>

A

For all x,veH, where EA is a generalized spectral family with

compact support, and the integration is over the complex

plane. In addition, the support of E(+) is contained in the

two axes of the plane.
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Proof: By Theorems 2.1.8 and 2.1.9 the family can be
dilated to a cosine operator function €(t) on a Hilbert space
H containing H. 1In addition, since C(t) is symmetric and

bounded (by virtue of condition 2b), C(t) is self adjoint. By

Kurepa's result we have

&(t) = f:osxtdﬁ)\

where E(.) is a regular orthogonal spectral family defined on
the Borel sets of ¢. However,since C(t) is self adjoint,
cosit must be real-valued on the support of E. This implies
that the support of E is contained in RU iR. Now we have

for x,ycH

<C(t)x,y> = <PHé(t)x,y>

-

=./Eosktd<PHEAx,y> =./;osltd<EAx,y>

where E(+) = PHE(-). In addition, for xecH,

llcterx(|? = [le&erx]|? <
~ 2 _ 2 ~
|C () x| —-/;05 Atd<EAx,x>

x,PHx>

=./;oszktd<ﬁA
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=./;oszltd<EAx,x>.

This concludes the theorem.

Definition 2.1.9 Let E be an abstract set and g a

function EXE+¢(IR) then g is said to be positive definite if
for all finite sets {Al,Az,...An}g;E and {al,az,...,an}g(ttm)

we have

i’j=l

We now will apply Theorem 2.1.10 to obtain a solution

to the cosine moment problem.

Theorem 2.1.11 TLet f£(t) be a real valued function of

a complex variable. ' Then,a necessary and sufficient condi-

tion for f(t) to be representable as

f(t) = fcos()\t)da(l) (1),
¢
where o is a regular measure in the complex plane with com-
pact support, is that the following hold:

(a) f£(t) = £(-t) and £ (0}#0
(b) The kernel K(s,t}) = %{f(s+t) + f(s-t)} satisfy

(1) K is positive definite ]

n
(ii) E [g(tj+s,ti+s) + K(tj-s,ti+s)
i,3=1
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+ .+ = .= .- LA,
K(i;J s,tl s) + K(t:J s,t1 s):lala:|

. n
< M [ ZK(t.,t.)a.a.]
- s SR A A

i, =1

Proof: Let us first show that the conditions are suf-

ficient to guarantee the representation (l1). Let the Hilbert
space H be the complex numbers with the inner-product given
by <a,b> = ab. Without loss of generality, we may assume that
f(0) = 1,and we may define C(t)(a) = f(t).a for each te{ and
each aeR. Clearly,C(t) so defined satisfies the conditions

of Theorem 2.1.10. Thus,if we set a(:) = <E{.)1;1> we obtain

f(t)

fcos)xtda(t) ’
¢

where as before the support of o is a compact subset of IRU ilR.
To show necessity, we note that on R=H, the measure «
defines a generalized spectral family if we put E(.) (a) =
®(+)-a. By Naimark's theorem (20), there is a Hilbert space H
containing H and an orthogonal spectral function E on H satis=-

fying

o

prE = E. and E(A) = 0 <> E(A) = 0.

The operator C(t) given by

¢ (t) =fcosxtd§A
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is therefore a self-adjoint cosine operator function satis-

fying

o ‘ prC(t) = C(t).

Consequently by Theorem 2.1.8 the kernel K is of positive type.

Now under the assumption that

£f(t) '—'fcosktda (\),

. _[K(tj+s'ti+s) + K(tj-s,ti+s)
1,3=

/

n
1 .
5 E {f(ti+tj+25) + f(tj ti) + f(tj+ti) + f(tj ti-Zs)

i,3F1

+ f(tj+ti) + f(tj—ti+25) + f(tj+ti-2s) + f(tj—ti)}aia

]

~h

= % :E:[ {cos(A(ti+tj+25)) + cos(A(ti+tj-2s))} +
i,3%1

cos(l(tj-ti+25)) + cos(A(tj—ti-2s)) +

2 cos (A(ty+t)) + 2 cos(k(tj—ti))}da(ki]aiaj

n

[ {cos(k(25))cos(ti+tj) + cos(A(Zs))cos(ti-tj)
i, )=1

e

|
[
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+ cos(ti+tj) + cos(ti-tj)}da(li]aiaj

n

= }E: [ (L + cos(k(2s)))(coé(A(tj+ti))
i,3=1
4 cos()\(tj-ti)))d&()\)]aiai
. n' T Wi . N . S U - . i
. < MS EE: [ cos(k(tj+ti))’+ cos(k(tj—ti))da(ti]aiaj
irj=l ) l
n
s e [ e e,

i,3=1 .

R

where MS is anfupper bound for the continuous function
1 + cos(A(2s)) on the support of a. This proves the neces-

sity of the condition (b).

Theorem 2.1.12 We now consider the unbounded case.
Let C(t) be a family of operators in B(H}, and suppose that
tﬁe'follow&ﬁé hold,f

{a) C(0) = I, C(t)l= C(-t}

(b} K(s,t) = %ﬂc(s+t)f+ C(th)) is of positive type

(¢) w-lim %{C(s+t) - C(s)} exists,
t-+0

then there is a generalized spectral family E, whose domain is

the Borel sets of the complex plaﬁe;-for which, given x,yeH

(2) <C{t)x,y> =fcos(At)d<E)\x,y>

RIET E"m i Lo W B BN PR il "\‘l‘i;‘"ii‘\‘l"'j"!‘"'-i_l"‘T‘ \“\H;,‘A;”fﬁ R AR N Lt O U [
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and

(3) lcwrx])? < fcosz()\t)d<E X, x> < ® .

A

Proof: If C(t) satisfies (a) and (b), then, by Theorem
2.1.8, we may dilate C(t) to a symmetric cosine operator func-
tion &(t) on H#DH. I1f G = {&/2" : 2,n = 0, %1, *#2,...}, then by

Theorem 2.1.3 we may represent, for teG and xeD(C(t))

(7) E(t)x = f¢(x.t)dékx ,

-~

where E is an orthogonal spectral function and ¢(A,t) is an

~

E-measurable real-valued function. As in (13), substitution

of (7) into (a) of Definition 2.1.7 yields, for tl,tzeG
¢(l-tl)¢(A:t2) = ¢(kftl+t2) + ¢(l,tl-t2) - a.e.

Now by Lemma 2.1.1 and condition (c) we have w-lim QLE%:£
+
t+0

exists. From this we are able to conclude that

c(2™-1l

2
x l' < M(x) teG
271 T

so that

w _ 2 ) . _ 2
j |¢(>\,2 By - 1| d<E, X, x> =Z ”[c(z n)-I]xH < ®,
n=1 n=1

B o ———
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from which it follows that

E o (x,27™) - l|2 < o a.e.,
n=1

and from this

i)

p(rA,27) » 1 a.e.

From Lemma 4 of (l4), we are able to conclude that for almost

all A and each teG,
¢ (A, t) =j::08(5(?\)t) .

Where £(A) is an everywhere finite, E measurable function.
By the weak continuity of the family C(t) {Prop. 1) we are

now able to conclude that for every telR
&) = feos(zv)ak, .
By Theorem 2,1.4, we may make a change of variables to obtain
C(t) =‘[cos(kt)dﬁl.
If we now project onto the subspace H, we obtain for x,yeH

(2) () x,y =fcos(lt)d<EAx,y>

where prE = E.




42

Similarly,
2 ~ 2 2 A 2
fle(eyxf|® < {[Ce)x]||© = | cos (At)a<k, x,y> =‘[cos (At)A<E, x,y>,

which concludes the proof.

Theorem. 2.1.13 Let f:R+{ satisfy tﬁe following con-
ditions: ‘

(a) X(s,t) - f(st+t) + f(s-t) is of positive type

(b) £(0) # D, f(t) = £(-t)

(c) f7(t) exists for all tenL
then there exists a regular probability measure o defined on
the Borel sets of the complex plane (with support in IKUiIR)

for which
f(t) =.fcos(kt)da(A).

Proof: Without loss of genefality,we may assume that
£(0) = 1. Our intent is to apply Theorem 2.1.12 with H = ¢,
<a,b> = a-E, andC(t) {a) = f(t)-a. Clearly i(s,t) =

%{C(s+t) + C{(s-~t)} is of positive type, C(0) = 1, and C(t) =

Cl{t+s)-C(s)

C(~t). In addition, by condition (c¢) w-lim E

t>0
So by Theorem 2.1.,12, there is a generalized spectral family E

exists.

whose domain is the Borel sets in ¢ for which <C(t)a,b> =

_fcos(kt)d<EAa,b> if we set a()) = <EA1'1>' We then have

<C(t)1l,1> = £(t) =fccssmt)dam.
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Note: If <C(t)x,y> =‘fcos(lt)d<EAx,y> is self~-

?

adjoint or if f£(t) =‘[cos(lt)du(l) is real, then conditions

(a) and (b) of Theorems 2.1.12 and 2.1.13 are easily seen to
be necessary. If C(t) is’a weakly measurable cosine operator,
then (c) also holds (13). However, condition (c) is not nec-

essary as the following example shows.

Example 2 Let f(t) be the Weienstrass function given

by £(t) = :z: -i%i-cos(tsk), then f£(t) is no-where differ-

k=0 2

erentéble.. However if F(x) = :E: —ﬁ%I-é(x—Sk), with § given
2

k=0
by

0 x<0
§(x) =
1 x>0 ,

then £ (t) =f cos (At)aF (1) .
R
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