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SUMMARY

The detection of subtypes of complex diseases has important implications for

diagnosis and treatment. Numerous prior studies have used data-driven approaches

to identify clusters of similar patients, but it is not yet clear how to best specify

what constitutes a clinically meaningful phenotype. This study explored disease sub-

typing on the basis of temporal development patterns. In particular, we attempted

to di↵erentiate infants with autism spectrum disorder into more fine-grained classes

with distinctive patterns of early skill development. We modeled the progression of

autism explicitly using a continuous-time hidden Markov model. Subsequently, we

compared subjects on the basis of their trajectories through the model state space.

Two approaches to subtyping were utilized, one based on time-series clustering with

a custom distance function and one based on tensor factorization. A web application

was also developed to facilitate the visual exploration of our results. Results sug-

gested the presence of 3 developmental subgroups in the ASD outcome group. The

two subtyping approaches are contrasted and possible future directions for research

are discussed.
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CHAPTER I

INTRODUCTION

1.1 Data Analytics for Healthcare

Healthcare providers worldwide are faced with the formidable task of improving ef-

ficiency and quality of care while also lowering costs. This is especially needed in

the US healthcare system, which su↵ers from exceptionally high per capita costs and

underperforms in comparison to other developed countries on accessibility, equity,

e�ciency, care quality and health outcomes [10] (Figure 1). To begin addressing this

problem, the US Congress passed the HITECH (Health Information Technology for

Economic and Clinical Health) Act in 2009 to promote the adoption and “meaningful

use” of electronic health records, paving the way for improved health information

exchange and data management. Since then, the volume of healthcare data has risen

dramatically, already reaching 150 exabytes (150 ⇥ 1018 bytes) in 2011 [40]. In or-

der to leverage this vast resource, big data analytics tools are being developed to

address several clinical tasks: screening, diagnosis, treatment, prognosis, monitoring

and management [14].

Data analytics in healthcare can be implemented using either a batch processing

approach or an online approach. The batch processing approach can be applied to

study population health management by deriving actionable information from large-

scale health data. For instance, it could allow researchers to assess the e↵ect of

di↵erent genetic or environmental risk factors on disease prevalence, or to monitor

the e↵ectiveness of drugs or interventions. At the same time, such insights can be

applied at the individual level for precision medicine. By profiling patients to identify

individual genetic, environmental and lifestyle characteristics, it may be possible to
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Figure 1: Discrepancy between US healthcare cost and quality of care. Source: [1]

perform more accurate disease risk assessment or to design more targeted treatment

protocols. In this way, online data analytics could lead to the development of an

evidence-based clinical decision support system.

1.2 Subtyping Complex Diseases

One task that lies at the junction of population- and individual-level health is the

detailed study of complex diseases. Complex multi-system diseases are often highly

heterogeneous in terms of clinical presentation, time course and outcome. Disease

subtyping or phenotyping aims to identify homogeneous subgroups of a↵ected in-

dividuals with a common set of clinical features or developmental course. It may

be that these disease phenotypes arise from di↵erent underlying disease mechanisms

or genetic variations, in which case the subgroups of a↵ected individuals could be

studied to identify which genes or physiological characteristics influence the disease

process. This can give healthcare practioners a more precise way to characterize a
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specific disease and to identify treatment plans that target an appropriate pathway or

component of the disease. At the population health level, subtyping can help identify

risk factors for each type of the disease and develop diagnostic tools for early dif-

ferentiation of the precise disease subtype. A meaningful categorization of complex

diseases into subtypes could also enhance fundamental medical science by motivating

genome-wide association and metabolomics studies.

1.3 Autism Spectrum Disorders

1.3.1 Overview

One disease that is well known for its heterogeneity is autism. Autism is a child-

hood neurodevelopmental disorder characterized by early impairment in social and

communication skills and restricted, repetitive behaviors that can result in lifelong

impairments. A recent report by the Centers for Disease Control and Prevention

puts the prevalence of autism spectrum disorders (ASD) in the United States at 1 in

every 68 children [23]. There is currently no known cure for ASD, and the long-term

prognosis for children with autism is highly variable. Only about 12% of adults with

autism achieve a high level of independence. It appears that the prognosis is largely

influenced by the severity of the disorder, the extent of early intervention and the

e↵ects of co-morbid conditions. There is no known single cause of autism, and given

the variation in symptoms and severity in a↵ected individuals, it is very likely that

there are multiple complex genetic and environmental factors involved in its etiology.

This heterogeneity is also the reason for the classification of autism as a spectrum

disorder, encompassing a range of linked conditions with similar symptoms, includ-

ing Asperger syndrome and pervasive developmental disorder not otherwise specified

(PDD-NOS). Currently, the Diagnostic and Statistical Manual of Mental Disorders

(DSM-5) published by the American Psychiatric Association treats ASD as one broad

3



disorder with varying indices of severity. These considerations make ASD a prime

candidate disease for subtyping e↵orts.

1.3.2 Subtyping Autism Spectrum Disorders

The clinical heterogeneity of autism complicates etiological investigation, diagnosis

and detection, and the development of e↵ective interventions. There is a large body of

work dedicated to characterizing and explaining this heterogeneity, which we review

briefly here.

Many early studies of autism aimed to discover behaviorally defined subgroups,

with a particular focus on patterns of language skill development [2, 15, 36, 43]. Much

of this work relied on prospective or retrospective cohort studies of children involving

a combination of diagnostic and developmental assessments and the subsequent mod-

eling of the resulting longitudinal data using latent class growth analysis and other

related models. These empirical studies have identified anywhere between one and

six subgroups on the basis of symptom severity and skill level trajectories.

With the increasing availability of genetic sequencing technology, a number of

studies have shifted focus to the genetic underpinnings of the condition. For ex-

ample, a study by Bruining et al. attempted to connect the Autism Diagnostic

Interview-Revised behavioral characterization to genetic disorders known to be linked

to an increased risk for autism [3]. Another study attempted to reveal genetically-

meaningful phenotypes by clustering vectors constructed from a combination of be-

havioral, biomarker and genetic data [48].

Finally, a few studies explored the heterogeneity of autism using alternative de-

scriptors of disease progression. Autism symptom severity levels have been linked to

di↵erences in di↵usion weighted brain imaging data [47], while another study found

that autism severity itself evolved over time [17]. Lastly, a very small number of stud-

ies have considered the variation in non-neurobehavioral comorbidities of autism,
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finding distinct subgroups characterized by either seizures, psychiatric disorders or

multisystem disorders.

1.4 Goals of this Study

The aim of this study is to perform exploratory analysis on longitudinal healthcare

data for the purpose of detecting disease subtypes with distinct temporal progression

signatures. Specifically, we aim to investigate whether there are distinguishable pat-

terns of early skill development in children with autism spectrum disorder compared

to typical children.

The exploratory analysis is performed using a combination of data mining algo-

rithms and visual analytics. Using a previously developed continuous-time hidden

Markov model of disease progression as a basis for characterizing individual trajecto-

ries [34], we then compare the use of time-series clustering with tensor decomposition

for subgroup identification. To the best of our knowledge, this study is the first

instance of applying tensor factorization in autism research.

1.5 Concepts

1.5.1 Phenotype

Classically, a phenotype is a collection of observable traits in an individual (e.g.

physiological properties, behavior) that result from the expression of the individual’s

genetic makeup. However, in the context of this thesis, we are concerned with the

concept of a disease phenotype. Complex diseases typically show a great deal of vari-

ation in clinical presentation across a↵ected individuals. Although the exact reasons

for this heterogeneity are yet to be fully understood, some contributing factors include

the extensive e↵ect of multiple modifier genes, environmental factors, and complex in-

teractions between them [35]. Even monogenic diseases, such as cystic fibrosis, which

arise from the influence of a single gene, often display varying levels of penetrance

and expressivity in carriers of the gene variant. The ability to di↵erentiate complex
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diseases into clinically meaningful subgroups remains a much-sought-after goal of the

medical community. It should be noted that the notion of what constitutes a clini-

cally meaningful phenotype is flexible, and can encompass within-group similarities

in symptoms, severity, temporal progression and co-morbidity occurrence, to name a

few. In this study, we focus on similarities in the temporal progression of early skill

development. It remains to be seen whether clustering individuals by their develop-

mental trajectories will correspond to other grouping strategies, such as severity of

impairment in one or more domains a↵ected by autism spectrum disorder.

1.5.2 Panel Data

Multidimensional time-series data, referred to as panel data or longitudinal data,

consist of multiple measurements in several dimensions for a set of individuals or

entities over some period of time. This type of data is information-rich, as it captures

both individual-specific time-series (obtained by restricting the data to those of one

individual) as well as population-wide cross-sectional data (obtained by restricting

the data to those taken at one time-point). Clinical data, which may be sourced from

electronic health records, longitudinal cohort studies or ICU monitoring, often takes

this form, since data are collected from multiple individuals at arbitrary times over

the course of their treatment.

The development of disease progression models or subtyping methods using panel

data is complicated by certain inherently challenging properties of these data, which

include:

• Discrete Observations: The development of a disease or the evolution of

a patient’s state of health is a continuous process, but observations are often

made at only discrete, sparse, irregularly-sampled time-points.

• Irregular Sampling: The visits or measurements are arbitrarily timed, and

individual records may span time periods of di↵erent lengths that do not align

6



in any obvious way.

• Multiple Covariates: The progression of a disease may be reflected in a

multitude of variables, which may be di�cult to identify without prior domain

knowledge.

• Missing Data: Some relevant measurements may be missing at some time-

points or for certain individuals.

• Population Heterogeneity: Even within a carefully selected sample popula-

tion, there is often a great deal of variation in disease trajectory and time-course,

which may suggest the presence of disease subtypes, or may be due to other

confounding e↵ects.

Existing disease progression modeling approaches often handle these factors through

aggregation in the data pre-processing step, but this can result in the masking of tem-

poral e↵ects.

1.5.3 Distance Measures

A distance function describes the distance between two points in a set. A distance

measure should be symmetric, i.e. d(x1, x2) = d(x2, x1), and should have a value

of zero between identical points, i.e. d(x1, x2) = 0 if x1 = x2. If the distance

measure also satisfies the triangle inequality, d(x1, x2) + d(x2, x3) � d(x1, x3), it is

also a metric. Since clustering aims to group similar elements together, the choice

of distance measure between those elements has a profound e↵ect on the clustering.

Some commonly used distance measures include:

1. Minkowski: d(x
a

, x

b

) = (
P

n

i=1 |xai

� x

bi

|r)1/r For r = 2, the above yields the

familiar Euclidean distance. For r = 1, we have the Manhattan distance, and

for r = 1 we have the Chebyshev distance.
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2. Edit: Minimum number of insert and delete operations needed to change one

string into another.

3. Jaccard: The distance between two sets d(A,B) = 1� |A
T

B|
|A

S
B|

1.5.4 Cluster Validation

The purpose of clustering is to compare items on the basis of some distance measure

so that distinct groupings of the items become apparent. Two components of this

“distinctness” are compactness, whereby items in each cluster are close to one another

under the distance measure; and separation, by which we mean that the di↵erent

clusters are far away from one another. There are di↵erent ways to define the distance

between clusters of elements, e.g. distance between cluster centers, or between the

closest elements of the clusters.

There are three families of methods for validating the output from clustering

algorithms:

1.5.4.1 External Validation Measures

External criteria are applied when the user has access to some information that was

not used to derive the cluster assignments, such as class labels. These are useful in

cases where cluster analysis is used to assess whether a particular distance measure

is e↵ective for stratifying di↵erent categories of elements.

1.5.4.2 Internal Validation Measures

Internal validation criteria rely on inherent features of the data to quantify compact-

ness and separation. These criteria are more applicable when the user is conducting

cluster analysis for exploratory purposes.

8



1.5.4.3 Relative Validation Measures

These measures compare di↵erent clustering measures with respect to one another,

and is especially useful for comparing the e↵ect of di↵erent input parameters to a

clustering algorithm.

1.6 Importance and Scope of this Study

Computational models for disease subtyping have the potential to improve health-

care and clinical research. At the same time, the demand for data-driven descriptive

and predictive tools in healthcare can drive the development of novel computational

methodologies. Visual analytics can foster a collaboration between healthcare prac-

tice and computational research, whereby domain experts can better interpret and

interact with computational models and provide feedback for further development.

The visualization scheme presented in this work was developed for precisely that pur-

pose, and it is hoped that it enables users, readers and analysts with another means

to study multidimensional disease progression models.

Additionally, this work was conducted to gain a deeper appreciation for what

longitudinal disease subtypes might look like. It is vital to carefully assess how

di↵erent approaches to clustering either rely on being given an appropriate metric

or implicitly learn their own metrics on the input space. Especially in unsupervised

settings, where there is no “correct” answer, it is worthwhile to look beyond results

and compare di↵erent methods based on their assumptions about the structure of the

underlying process.
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CHAPTER II

LITERATURE REVIEW

In view of the increasing volume and availability of digitized healthcare data, there

have been numerous e↵orts to leverage this resource to produce actionable insights for

the improvement of care. The knowledge discovery process consists of several steps,

including data storage, cleaning and access (collectively referred to as data warehous-

ing), feature selection, data mining, evaluation and visualization. Data mining has

received the most attention from researchers due to its potential to automatically

discover patterns of interest that can provide descriptive and predictive support to

data analysis. More recently, visualization has also come to light as a valuable tool

for finding, exploring, validating and communicating patterns and information. In

this chapter, we survey some recent work in data mining and visual analytics with a

specific focus on the medical task of disease subtyping.

2.1 Data Mining for Disease Subtyping

Numerous recent studies on the clinical heterogeneity of well-known diseases–such

as asthma [51], heart failure [11] and autism–have promoted the hypothesis that

many such diagnoses are not distinct diseases, but rather they are umbrella terms

for multiple phenotypes with a common symptomatology. The presence of consistent

groupings of clinical characteristics could point to di↵erent etiologies, and accordingly

the resolution of complex diseases into subtypes has been an active area of research.

Traditionally, disease subtyping e↵orts have been led by medical experts seeking to

ask specific questions driven by their observations during clinical practice. While this

direction has obvious benefits, such as expert-driven feature selection and outcome

validation, it is poorly suited to handle the vast amounts of medical data at our
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disposal and can preclude the discovery of previously unknown medical concepts.

The expert-driven approach may also be more vulnerable to bias towards conventional

conceptions and methods. As such, many modern approaches to disease subtyping use

unsupervised learning techniques from machine learning and computational statistics,

which try to infer representations of the input without supervised target outputs or

rewards. Most of the studies discussed in this section belong to this category.

2.1.1 Clustering

2.1.1.1 Partitional Clustering

In the search for subgroups of similar patients within a larger population, clustering is

a natural choice of methodology, where even relatively simplistic clustering techniques

have proved useful. A 2005 study by Lewis et al. explored heterogeneity in early-stage

Parkinson’s Disease (PD) by applying k-means clustering to raw data [33]. The data

were collected at a single time point from a relatively small patient cohort (by current

“big-data” standards), and comprised of carefully selected features to encompass a

wide range of features associated with PD heterogeneity. Despite the simplicity of

the method and the data, the clustering revealed four clinical phenotypes that were

in good agreement with clinical knowledge. The authors attempted to validate their

approach by tracking the assignment of patients to phenotypes while varying the

number of clusters sought. They also found by inspection that the clusters varied in

the rate of PD progression based on a computed “disease progression score”. This

work was one of the earliest e↵orts at data-driven disease subtyping and highlights the

potential of clustering for this purpose, provided the input features are well chosen.

2.1.1.2 Hierarchical Clustering

In contrast to partitional clustering methods, one advantage of hierarchical clustering

is that one does not need to provide the algorithm with the optimal number of clusters.

A recent study by Yang et al. used unsupervised hierarchical clustering to search
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for clusters of non-motor symptoms in patients with early Parkinson’s Disease [52].

The resulting clusters were validated by performing multiscale bootstrap resampling.

They obtained three overall groups of patients with distinct patterns of symptoms

that may be useful for diagnosing pre-motor Parkinson’s Disease.

2.1.1.3 Longitudinal Data

Longitudinal data is information rich, but can be challenging to work with in its un-

processed form due to unequal observation periods, arbitrarily spaced observations,

di↵erent variables observed at each time point, etc. Therefore, clustering using lon-

gitudinal clinical data calls for a careful choice about how to compare non-uniform

time-series data. One common strategy for handling these issues is to aggregate the

longitudinal data for each patient into a vector. This was the strategy adopted by

Chen et al. who tried to subtype Down’s syndrome, Crohn’s disease and cystic fibro-

sis by severity [7]. They averaged the laboratory test values across all time points for

each patient in their study to construct uniform disease-specific matrices of “clinar-

rays”, and subsequently applied Pearson’s correlation coe�cient as a distance metric

for hierarchical clustering. A study by Doshi-Velez et al. converted ICD-9 codes from

the electronic health records of subjects with ASD into aggregate count vectors over

6-month blocks [12]. They subsequently applied hierarchical clustering and were able

to distinguish 3 main patterns of ASD comorbidity trajectories.

2.1.1.4 Probabilistic Clustering

More recently, the problem of patient subgroup identification has been approached

with more sophisticated clustering techniques based on probabilistic models rather

than raw data or feature vectors constructed from raw data. Here, we assume a model

for each cluster and find the models that best fit the data; subsequently, clustering

is performed using model parameters or coe�cients. Marlin et al. constructed a

piecewise aggregated data matrix from the first 24 hours of physiological variable
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measurements from a pediatric intensive care unit, and subsequently developed a

probabilistic clustering scheme based on a Gaussian mixture model [37].

One benefit of employing model-based clustering methods for time series is that

issues like missing data, unequal observation intervals and uneven observation timing

can be handled by choosing an appropriate model; this removes the need for aggre-

gating or standardizing the data in a way that may alter the temporal information.

Another probabilistic clustering model developed by Schulam et al. also adopts the

mixture model approach, but with each subtype’s temporal trajectory fit to B-splines

[42].

2.1.2 Matrix and Tensor Factorization

In the past few years, there have been a few studies using matrix or tensor decomposi-

tion to reveal substructure in patient population data that could correspond to disease

phenotypes. Such dimensionality reduction techniques have been of particular inter-

est to the bioinformatics community, where principal component analysis, singular

value decomposition, non-negative matrix factorization and independent component

analysis have been used to cluster gene expression data to find endophenotypes [49].

Sun et al. developed a multi-view singular value decomposition to incorporate both

genetic and clinical data [44]; by treating them as di↵erent views, the algorithm seeks

clusters that have both marked clinical features and genetic markers.

Dimensionality reduction methods have also been applied to search for purely

clinical phenotypes. Ho et al. developed a non-negative tensor factorization method

to obtain candidate phenotypes from electronic medical record data [22]. The longi-

tudinal data was pre-processed to construct a count tensor with three modes: patient

mode, diagnosis mode and medication mode. For each patient, the counts are the

number of co-occurrences of medications and diagnoses in visits over a two year ob-

servation window prior to some anchor event.
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2.1.3 Growth Curve Analysis

There is a large body of work in trajectory modeling using growth curve analysis

in the developmental sciences, which encompasses a variety of methods for studying

inter-individual di↵erences in intra-individual temporal patterns. These models are

generalizations of linear regression designed to describe di↵erent modeling situations.

Multilevel models (also referred to as hierarchical linear models) organize the indepen-

dent variables on di↵erent levels to distinguish between individual-level and shared

e↵ects [46, 16, 53]. These techniques model between-cluster variation explicitly, while

another set of methods, generalized estimating equations, estimates within-cluster

similarity instead [20, 31]. Other approaches, like growth mixture models and la-

tent class growth analysis, capture population heterogeneity by explicitly allowing

for di↵erent unobserved subpopulations with di↵erent growth parameters [26, 30].

2.1.4 Other Miscellaneous Methods

While clustering, matrix factorization and growth curve analysis are some of the

most common strategies for pattern mining with longitudinal clinical data, there

have been numerous studies that utilize other machine learning methods for this

goal. These include support vector machines, deep learning, temporal abstraction

and factor analysis. A few of these are discussed here briefly, but a more complete

overview of the applications of these methods can be found elsewhere [24].

2.1.4.1 SVM

In a recent study, Bruining [3] et al. used autism symptom profiles from subjects with

genetic conditions linked to autism to investigate whether there are distinct patterns

of behavioral symptoms associated with each condition. They trained a multi-class

support vector machine to classify the genotype based on behavioral symptom scores,

which performed with 67% classification accuracy using the leave-one-out cross valida-

tion method. Their analysis also showed that quality of social interactions contributed
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more to the SVM classifier than repetitive behaviors or communication deficiencies

for di↵erentiating each genotype’s autism behavioral signature.

2.1.4.2 Deep Learning

Deep learning, which has had great success in unsupervised feature learning for object

recognition, was recently applied to the problem of phenotype discovery from elec-

tronic medical records [32]. The authors converted raw uric acid measurements from

patients with either gout or acute leukemia into continuous longitudinal probability

densities which were then used to infer meaningful features. The resulting first-layer

and second-layer feature sets were embedded in 2-d and the data for each subject were

plotted using the diagnoses as labels. Both feature sets showed significant separation

between the two phenotypes and also showed additional cluster structure, suggesting

the presence of subtypes for each disease.

2.2 Visual Data Mining for Disease Subtyping

Another answer to the need for tools to interpret and analyze the overwhelming

amount of clinical data is visual analytics. Visualization has the capacity to provide

cognitive support in a way that can relieve information overload [4] and assist users

in the performance of several tasks relevant to healthcare practice: combining infor-

mation from multiple sources, analyzing several variables or individuals at once, and

ultimately making decisions supported by data and clinical evidence.

The visualization community has recognized this opportunity, and there is a grow-

ing body of research dedicated to developing novel strategies and interfaces for e↵ec-

tively navigating complex clinical data. Moreover, combining automatic mining-based

analysis with visual analysis can be argued to be more powerful than either approach

used independently [27]. For example, data mining methods can discover patterns,

but often fail to provide any context within which to interpret them, a limitation

that can be addressed through visualization. Conversely, visual analysis without any
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confirmatory data analysis can also be misleading, and can quickly become di�cult

to interpret as more and more information is added to the display [19].

2.2.1 Visual Cluster Analysis

Another set of visualization tools relevant to disease subtyping are those developed to

visualize the clusters themselves for interpretation and evaluation. One such tool, DI-

CON [5], uses the well-known treemap visualization to produce icons for representing

multidimensional clusters with the di↵erent color-coded features of each entity within

the cluster grouped together. As a result, the icon gives a compact overview of the

relative values and importance of di↵erent features for entities belonging to the clus-

ter. The authors proposed the use of this visualization for clinical decision support

by searching for similar patients to a target patient and then evaluating the quality

of the resulting cohort [18]. Another recent work used a force-based network visual-

ization to identify subgroups within a primary sample phenotype [50], demonstrating

its utility for revealing links between similar patients or co-occurring symptoms that

traditional pairwise correlation analyses have missed.

2.2.2 Temporal Progression Visualization

2.2.2.1 Population-level Trends

The visualization of disease progression is of particular value for managing chronic

diseases, summarizing patient histories in a clinical setting, and understanding lon-

gitudinal cohort study data. MatrixFlow, developed by Perer and Sun, was one such

disease progression visualization tool, in which closely-timed clinical events were rep-

resented in a pictorial adjacency matrix, highlighting co-occurrences between symp-

toms, diagnoses and medications [39]. Temporal trends were illustrated through the

approach of small multiples, with multiple matrices for di↵erent time segments dis-

played side by side. MatrixFlow proved extremely successful for illustrating broad
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di↵erences in the evolution of clinical events and symptoms between di↵erent co-

hort populations. However, the identification of intra-cohort subgroups with varying

disease progression dynamics would prove challenging with this visualization scheme.

2.2.2.2 Population-derived Temporal Associations

Besides looking for overall trends, users performing visual analytics may be interested

in correlations between early clinical observations and later events. This functionality

is made available in the Visual Temporal Analysis Laboratory (ViTA-Lab) visual an-

alytics environment, which supports an iterative workflow consisting of data mining

and query-driven visual analytics [28]. In particular, the tool features a temporal

association chart for visually exploring raw longitudinal data and probabilistic tem-

poral associations between events. The authors showcased their tool by exploring

data from a cohort of diabetic patients, starting with an overview of the distribution

of the subjects across di↵erent albuminuria-level groups from year to year. Next,

applying the data mining engine produced patterns linking HbA1C states to albu-

minuria levels indicative of renal damage; these patterns were further explored via

temporal association charts to find the frequency of transitions in the cohort popu-

lation. Although ViTA-Lab lacks the functionality to track individual trajectories,

it is an appropriate tool for discovering temporal trends and links between clinical

concepts at the population level.

2.2.2.3 Specific Clinical Event Sequences

Another approach to clinical event sequence pattern mining is to specify the event

sequence of interest, use it to query patient data and subsequently search for note-

worthy trends. This was the pipeline adopted by Gotz et al [19]. By applying tem-

poral pattern mining algorithms to these event sequences and visualizing the result-

ing frequent patterns, the authors explored which intermediate event sequences were

strongly linked to later outcomes of interest. This approach focuses heavily on finding
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variations in the e↵ect of preconditions and intermediate event sequences on outcomes

for patients with a common sequence of milestone events.
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CHAPTER III

VISUAL ANALYTICS WITH FLUXMAP

One basic challenge in using data-driven methods to improve health care is the devel-

opment of appropriate visualization techniques. Healthcare data is frequently large,

unstructured and multidimensional, and therefore di�cult to make sense of. Fur-

thermore, with the increasing usage of o↵-the-shelf machine learning and statistics

toolboxes, it is vital that information visualization methods are concurrently devel-

oped to ensure that the results of these analyses are easily interpretable by end-users.

Otherwise, there is a danger that models that are fit to complex high dimensional

datasets become “black box” analysis tools whose outputs cannot be clearly explained

by health researchers. Finally, as healthcare analytics research produces increasingly

advanced predictive models, it is necessary to help medical domain experts interact

with these models to assess their validity and utility. E↵ective visualization can facili-

tate these tasks by providing an interface between users and data, making exploratory

data analysis, hypothesis generation and model validation much faster. This is likely

to lead to valuable insights that can provide clinical decision support to physicians

and accelerate the discovery of new medical knowledge by researchers.

This chapter introduces FluxMap, an interactive visualization system that I de-

veloped for displaying and analyzing state-based disease progression models based

on the continuous-time hidden Markov model (CT-HMM) framework. FluxMap is

designed to visualize state and transition properties of the CT-HMM and supports

the identification and tracking of sub-groups of patients over time. This chapter be-

gins with a brief introduction to visual analytics, followed by a survey of past e↵orts
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in visualizing longitudinal healthcare data. Then, Section 3.2.1 briefly describes the

the CT-HMM disease progression model, followed by an outline of FluxMap’s design

and features. The chapter concludes with some comments on visualizing longitudinal

data from the UCLA-UC Davis study of early skill development in autism spectrum

disorder [38, 41]. I would like to thank Agata Rozga and Ted Hutman for making

this dataset available to me for this work.

3.1 Visual Analytics

Visualization refers to the use of diagrams to represent information, as an aid for

either communication or analysis. Visual representations can “amplify cognition” [6]

by reducing working memory load and harnessing visual perception to quickly perform

tasks like finding emergent patterns and outliers or comparing values. Visual analytics

is an outgrowth of visualization that lies at the intersection of data mining, human-

computer interaction and information visualization. It is typically associated with

the coupling of interactive visual interfaces with computational analysis methods for

abstract data, thereby facilitating an iterative process of data-driven pattern mining

and user-driven querying and visual data mining. Visual analytics thus enables users

to gain insight into complex data while also exploring and interpreting the results of

data mining algorithms.

3.1.1 Representing Data

To generate a visualization, features from the data are mapped to certain graphical

attributes such as the shape, size or color of a marker. E↵ective information visualiza-

tion tools capitalize on the extremely fast first stage of human perception, known as

pre-attentive processing. Certain features are processed unconsciously and in parallel

in this stage, including:

• color
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• shape

• size

• curvature

• orientation

• position

• grouping

These features can be used to encode di↵erent dimensions or properties of the data

in a visualization scheme. While it may appear that there are nearly infinite possible

combinations of these variables, allowing users to inspect multiple features simulta-

neously, there are several points one must be careful of. Although the aforementioned

features are individually easily processed pre-attentively, this is not the case for cer-

tain combinations of those features, e.g. color and shape together. Furthermore,

some encoding variables are more suitable for categorical features (e.g. shape) while

others are appropriate for numerical data (e.g. size). And while these visual encoding

variables can all be processed quickly, they vary greatly in terms of our ability to per-

ceive them accurately; small variations in position or length are easy to distinguish,

whereas small gradations in area or color are not.

3.1.2 Representing Models

Visualizing analytical models has the dual purpose of helping users gain an under-

standing of the model’s rationale and assessing how much the model’s output can be

trusted. Though there has been relatively little study into how models ought to be

visualized as opposed to data, the visualization design should give careful considera-

tion to model representation, interaction and integration [45]. Selecting a graphical

representation that conveys the structure of the model and the information it contains

as completely as possible can elucidate the logic behind the model.
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3.1.3 Interaction

While standalone visualizations go a long way towards helping users make sense of

data, the ability to manipulate these visualizations makes exploratory data analysis

much more flexible. Interaction allows the data mining process to be shaped along

a user-driven line of inquiry, e↵ectively combining expert knowledge with automated

data analytics. In order to be e↵ective, the interactive elements of a visual analytics

system must provide functions that contribute to this adaptive “analytic dialogue”.

Schneiderman’s Visual Information Seeking Mantra of “overview first, zoom and

filter, then details on demand” provides a widely acknowledged framework for de-

signing interactions. The initial visualization provides a high-level view of the data,

expediting the identification of clusters, patterns, outliers and other features of in-

terest. Then, rather than viewing all of this information at once, the user may wish

to modify the visualization to explore a particular question, by specifying the data

being shown or the visualization scheme being applied. This can be achieved through

features such as filtering, in which the displayed data subset satisfies some conditions

that may isolate the e↵ect of certain parameters on the observed phenomena; and

sorting, where data points may be reordered along the display according to their

values for one or more variables.

Once a visualization has been rendered, users may wish to manipulate the view

in search of more details. This can include selecting a subset of the visible data by

clicking it or hovering over it; zooming into one part to magnify it and display finer

details more clearly; panning and scrolling to quickly scan for interesting patterns.

With manipulations that essentially reduce the amount of visible data, a focus plus

context approach is often adopted to help the user stay oriented with respect to the

complete view. Multidimensional data is often visualized using multiple views, in

which case selecting data from one view should highlight the corresponding data in

the other views to facilitate comparison (brushing).
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Advanced visual analytics systems may include more advanced interactive dynam-

ics for capturing the analyst’s inputs to the interface for future reference, through

features such as annotation and interaction history. These higher-level design consid-

erations are beyond the scope of this work, although interested readers can find more

information in [21].

3.2 FluxMap

We will now describe FluxMap, a visual analytics tool developed to allow users to

interactively explore disease progression as a co-evolution of multiple interacting fac-

tors. First, we review the continuous-time hidden Markov model used to model disease

progression [34].

3.2.1 Continuous-Time Hidden Markov Model (CT-HMM)

We now provide a brief description of the CT-HMM [25, 34] and its application to

autism progression modeling, although a more detailed discussion of the CT-HMM

is provided in Section 4.1.2. We assume the progression of autism can be mod-

eled as an unobserved Markov process between discrete hidden states. The state

space is 4-dimensional, with each state characterized by range bands in chronologi-

cal age, Mullen receptive language age-equivalent score, Mullen expressive language

age-equivalent score and Vineland socialization age-equivalent score. Only transitions

between adjacent states are permitted (e.g. we assume subjects cannot jump from a 6-

month age-equivalent score to an 18-month age-equivalent score without first passing

through the 12-month age-equivalent score), and bidirectional transitions are allowed

in all dimensions except chronological age. The instantaneous transition intensities

q

rs

, representing the instantaneous probability of moving from state r to state s, are

parameters learned by the model. Together, these transition intensities make up an

instantaneous transition matrix Q.

Each individual i in the subject population has n

i

irregularly timed visits with
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Table 1: Attributes related to subject transitions through hidden states.

Attribute Values Visual Encoding
Outcome Group ASD — TD hue
Risk Group High — Low saturation

Chronological Age 6:6:36 position (horizontal)
Measurement Score 6:6:36 position (vertical)
State Visit Count 0:1:nSubjects radius
Transition Count 0:1:nSubjects thickness

observations (o
i,1, ..., oi,ni). These observations are generated conditionally on the

hidden states according to emission probabilities p(o|s), which are assumed to be

distributed according to a multivariate Gaussian. The q

rs

parameters are estimated

using the Expectation-Maximization (EM) algorithm to maximize the likelihood of

the observation sequences.

3.2.2 Visualization Design Considerations

3.2.2.1 Visual Encoding of Data

There is a vast amount of information about the CT-HMM that users may wish to

explore. For example, analysts may be interested in the instantaneous transition

matrix Q, or in how the transition probabilities evolve with time as P (t) = e

Qt, or

the average dwell times associated with each state. It could be highly informative

to compare these parameters between models trained separately on individuals with

ASD or typical development. However, in the current iteration of FluxMap, we have

focused on the exploration of subject trajectories through the state space. Table 1

shows how attributes are encoded.

3.2.2.2 Display

The FluxMap visualization scheme is comprised of two side-by-side panels inspired

by the small multiples visualization concept introduced by Edward Tufte. In each

panel, states are arranged on a 2D grid layout according to the states values in
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the chronological age dimension (horizontal axis) and one skill dimension (vertical

axis). It should be noted that since the state space is 4D, each panel actually depicts

the state space collapsed onto a plane. As a result, the state corresponding to a

chronological age 6 months and receptive language age-equivalent score of 6 months

contains all 4D states with those two values.

Each state is represented as a circular node whose radius is proportional to the

number of visits to that state. If multiple patient subgroups are selected, the states are

depicted as pie graphs to depict the proportion of measurements from each subgroup.

Although the use of pie graphs is discouraged by the visualization community, this

choice is still appropriate for use with a small number of patient subgroups as a means

of identifying any states visited predominantly by one subgroup.

3.2.2.3 Interactions

A key component of the FluxMap visual scheme is its interactivity. The di↵erent

ways of interacting with the visualization are detailed below:

• Filtering

The user is able to change the set of subject trajectories being shown based on

certain criteria. The outcome group can be set to display only ASD outcome

subject, only typical subjects, or both. Similarly, the risk group can be set

to display only high-risk individuals, only low-risk individuals, or both high-

and low-risk subjects. Besides these standard filters, the user can also filter

the visualized subject population based on some complementary analysis,such

as clustering of subjects based on similar trajectories; such a use case will be

demonstrated in Chapter 5.

• Reconfiguring

The user can also specify which measurement is presented along the vertical
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axis as either receptive language, expressive language or socialization. Each of

these options provides a di↵erent perspective to the exploratory analysis.

• Brushing

By hovering over a state, the user can highlight the transitions into and out

of that state. In-transitions are colored lighter than out-transitions to help

di↵erentiate them.

• Linking

Hovering over a state in one panel shows the corresponding transitions in the

second panel. For example, if we inspect receptive language with ASD subjects

in the left panel and typical subjects in the right panel, hovering over the

(12, 12) state in either panel highlights the inward and outward transitions for

each subject group.

• Details-on-Demand

While hovering over a particular state, a tooltip appears, listing the number of

subjects who visited that state, and what percentage of that number belong to

each group.

• Dynamic Querying

Clicking on a state causes only those trajectories which pass through that state

to be displayed.

In order to explore and convey the results of the CT-HMM model in an easily in-

terpretable way, we opted for an interactive web-based visualization scheme. The

states are arranged on a 2D grid layout according to the states systolic and diastolic

blood pressure ranges. Each state is represented as a circular node whose radius is

proportional to the number of visits to that state.
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This tool thus enables users to examine the disease progression model in the con-

text of a particular set of features of interest. For instance, a user may wish to assess

the e↵ect of early plateauing in receptive language on subsequent expressive language

development in subjects with ASD. To do this, the user selects the ASD outcome

group in each panel, specifies receptive language in one and expressive language in

the second panel, and selects an early-delay state in receptive language. This filters

the visualization to show receptive language and expressive language development for

the selected subjects. Hence this visualization scheme combines an intuitive presen-

tation of the CT-HMM model predictive results with the capacity for some visual

exploratory analysis.

3.2.3 Implementation and Software Design

FluxMap was implemented as a web application written in HTML/CSS. All views and

interactions were programmed using JavaScript with the support of the jQuery, Ajax

and d3 libraries. Data from the CT-HMM model was stored in JSON format. This

architecture has the advantage that all data can be stored server-side, and therefore

in compliance with most IRB’s. Meanwhile, the derived measures used to create the

visualizations, which are usually permissible for sharing, are transmitted to the client

side for rendering in a web browser.

3.3 Exploratory Visual Analysis of UCLA-UC Davis Dataset

We conclude our discussion of the FluxMap visualization tool with a preliminary ex-

ploration of the UCLA-UC Davis dataset. In Figure 2, we use FluxMap to compare

the hidden state trajectories of subjects with ASD and those with typical develop-

ment. First, the trajectories of the ASD subgroup are much more varied than those of

the typically developing subgroup. There are much stronger horizontal transitions for

the ASD group (indicating plateauing of a skill) than for the typical group. Further-

more, there appears to be a particular tendency for plateauing in receptive language
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and socialization in the ASD subset.
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Figure 2: FluxMap: comparison of subjects with ASD (left column) or typical de-
velopment (right column) in receptive (top) and expressive (middle) language and
socialization (bottom).
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CHAPTER IV

UNSUPERVISED PATTERN DISCOVERY

4.1 Preliminaries

4.1.1 Data

The data for this work were obtained with permission from a longitudinal cohort

study of children who have siblings with autism spectrum disorder (high-risk group)

or typical development (low-risk group). The study was led by Dr. Sally Ozono↵

at the UCLA Center for Autism Research and Treatment in collaboration with the

MIND Institute at UC Davis. Inclusion criteria for the high-risk group included

having at least one older sibling with an autism spectrum disorder and without any

genetic conditions linked to autism. Inclusion criteria for the low-risk group included

the absence of developmental or learning disabilities in older siblings and no family

history of autism spectrum disorders.

Subjects entered the study at either 4, 6, 12 or 18 months of age, and were

reassessed at 6, 12, 18, 24 (30 for subset), and 36 months of age, or within two weeks

of the target age. At each visit, the Mullen Scales of Early Learning (MSEL) and the

Vineland Adaptive Behavior Scales (VABS) assessments were administered.

Table 2: Distribution of subjects between risk-groups and outcome-groups.

High-risk Low-risk Other Total
ASD 27 3 2 32
Non-ASD 107 89 0 196
Total 134 92 2 228
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4.1.1.1 Mullen Scales of Early Learning

The Mullen Scales of Early Learning are a tool for assessing learning abilities in

children between 1 and 69 months of age. The MSEL provides age-equivalent scores

in four areas: visual reception, fine motor, expressive language and receptive language.

These four scores can be combined into an overall Early Learning Composite. Only

the expressive language and receptive language scores were available for the work in

this thesis.

4.1.1.2 Vineland Adaptive Behavior Scales

The Vineland Adaptive Behavior Scales measure adaptive functioning in individuals

from birth to adulthood and produce age-equivalent scores. The assessment covers

five domains: communication, socialization, daily living skills, motor skills and mal-

adaptive behaviors. Only socialization, communication, daily living and motor scores

were available for this work.

4.1.2 CT-HMM Disease Progression Model

A continuous-time hidden Markov model of disease progression serves as the basis

for the disease trajectory clustering in subsequent sections of this work. The model

is formulated as follows. For an individual i with n

i

irregularly-timed visits at times

(t
i,1, . . . , ti,ni) we have observations (~o

i,1, . . . ,~oi,ni). These observations are assumed

to be generated from a set of hidden states S with conditional emission probability

p(o|s).

The state space is formulated in order to let us model the progression of a disease as

a co-evolution of multiple factors. In the autism disease progression model, the subject

age, Mullen receptive language age-equivalent score, Mullen expressive language age-

equivalent score and Vineland socialization age-equivalent score are the state space

dimensions, giving rise to a 4-dimensional state space. Each state is then defined as

having a specified range of these three variables.
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The individual moves through di↵erent hidden states following a Markov process,

with transitions between states and the transition times governed by transition inten-

sities q
r

s between all pairs of states r and s. The transition intensities together form

a transition intensity matrix Q, whose the diagonal entries are set to q

rr

= �
P

r 6=s

q

rs

so that the rows sum to 0. Then, the transition probability matrix P (t) = e

Qt gives

the probabilities of the individual’s state membership t units of time in the future.

The model parameters, that is the transition intensities and the emission probabil-

ities, can be found by maximizing the likelihood of the data with the EM algorithm.

In the E or expectation step, the Viterbi algorithm is used to find the best state

sequence for each individual’s observation sequence, given the current model param-

eters. Then, in the M or maximization step, the model parameters are updated to

maximize the likelihood for the previous E step. Once the model parameters stabilize

after alternating between the E and M steps, the most likely state sequence for each

subject can be obtained via the Viterbi algorithm once more.

4.2 Methods

A number of variables are available for each subject at the conclusion of the Viterbi

decoding algorithm, summarized in Table 3. We consider the most probable hidden

state sequence, instant state seq, to be an encoding of the subject’s co-evolution

in di↵erent skills over time, and use this variable to compare the development trajec-

tories of di↵erent subjects. Given two sequences of hidden states, (s
i,1, . . . , si,mi) and

(s
j,1, . . . , sj,mj), where mi

and m

j

denote the number of hidden states in the sequences

belonging to i and j respectively, we need to quantify the distance between these tra-

jectories. It should be noted that m

i

and m

j

need not be equal to the number of

visits n

i

and n

j

recorded for each individual, since an individual may pass through

multiple unobserved states between visits.
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Table 3: Subject Variables after Viterbi Decoding.

Variable Description
ID subject ID number

visit list cell of visit data for each visit
num visit number of visits

ori state seq visit data encoded in states
ori dur seq dwell time at each observed state
viterbi prob probability associated with Viterbi decoded path

instant state seq Viterbi decoded path through hidden states
instant dur seq dwell time at each hidden state

instant trvisit seq indicator variable encoding true visits

4.2.1 Time-Series Clustering

4.2.1.1 Unidimensional Sequence Alignment

The most straightforward strategy is to treat the problem as an alignment of unidi-

mensional sequences (states) of multidimensional information. The distance between

two K-dimensional states s1 = (v1,1, v1,2, . . . v1,k) and s2 = (v2,1, v2,2, . . . , v2,k) is taken

to be the L1 norm between the states’ centered parameter values:

d(s1, s2) =
KX

k=1

|v1,k � v2,k|

The distance between two sequences of states, then, can be measured as the average

distance between overlapping states. The number of overlapping states is dependent

on the lengths of the state sequences and the alignment method selected. Two possible

alignment strategies were explored:

1. anchoring the sequence alignment by the age dimension of the states, and

2. sliding one sequences along the other to search for the minimum-distance align-

ment with at least 3 overlapping states

The reasoning behind the first choice was to use a distance function that would yield

early skill development patterns with chronological age as a reference; refer Figure 3

33



Figure 3: Two hidden state sequences (s
i1, . . . , si5) and (s

j1, . . . , sj5) anchored by
chronological age. When multiple hidden states are traversed between visits, their
values are averaged (represented by ovals above), weighted by the dwell time in each
hidden state. States are compared only within the window of overlap (purple square
above) to compute the average di↵erence between coinciding states.

for details. The second alignment strategy was devised in an e↵ort to highlight more

general dynamics in skill acquisition.

4.2.1.2 Clustering

A symmetric pairwise distance matrix was constructed using the distance measure

described above. This distance matrix D was used to perform agglomerative hierar-

chical clustering analysis, in which each sequence initially belongs to its own cluster

and subsequently, clusters that are the closest together are combined at each step.

There are multiple methods for computing the distance between clusters of elements,

including:

• single linkage: shortest distance between any pair of elements in the clusters
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• complete linkage: furthest distance between any pair of elements in clusters

• average linkage: average distance between elements in the two clusters

The relative merit of these three linkage criteria for representing the distances com-

puted in D was evaluated using the cophenetic correlation coe�cient, (CPCC). The

cophenetic distance between two elements is the distance between the subclusters

joined at the linkage step where the two elements are first connected. The pairwise

cophenetic distances between elements can be used to construct a cophenetic matrix

C. These distances are represented in dendrograms as the height at which the link

is drawn. The cophenetic correlation coe�cient is then the correlation between the

cophenetic distance matrix C and the original distance matrix D.

The dendrogram derived from the best linkage criterion as reflected by the CPCC

was pruned to obtain clusters for further exploration and evaluation.

4.2.1.3 Cluster Validation

Cluster validation was performed through a combination of visual inspection and

internal validation measures.

• Distance Matrix Visualization The pairwise distance matrix was reordered

so that elements assigned to the same cluster were grouped together, and the

reshu✏ed distance matrix was visualized.

• Dunn Index Computation The Dunn Index is a well-known internal valida-

tion measure that aims to identify compact, well-separated clusters. It is the

ratio between the smallest inter-cluster distance and the largest within-cluster

distance, defined as follows:

DU

k

= min
i=1,...,k

⇢
min

j=1,...,k

✓
diss(c

i

, c

j

)

max
m=1:k diam(c

m

)

◆�

• FluxMap Visualization Lastly, the clusters are visualized using FluxMap.
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4.2.2 Tensor Methods for Data Mining

4.2.2.1 Overview

Dimensionality reduction via matrix or tensor decomposition is an alternative to

distance function-dependent methods for unsupervised clustering. A tensor is a mul-

tidimensional array. The order of a tensor is the number of dimensions, also called

modes or ways. An Nth-order tensor is called rank-one if it can be written as the

outer product of N vectors:

X = ~a

(1) � ~a(2) � . . . � ~a(N)

where each element of the tensor is given by:

x

i1,i2,...,iN = a

(1)
i1
a

(2)
i2

. . . a

(N)
iN

4.2.2.2 CP Decomposition

The CANDECOMP/PARAFAC (CP) tensor decomposition can be thought of as a

higher-order extension of singular value decomposition (SVD). SVD can be formulated

as the decomposition of a matrix into a weighted sum of rank-one matrices, that is:

X = U⌃V T =
X

i

�

i

~u

i

� ~v
i

Analogously, the CP decomposition factorizes an Nth-order tensor into a sum of

rank-one Nth-order component tensors. For a third-order tensor X 2 RI⇥J⇥K , the

CP decomposition is of the form:

X ⇡
RX

r=1

~a

r

�~b
r

� ~c
r

where ~a

r

2 RI , ~b
r

2 RJ and ~c

r

2 RK . It should be noted that there is no known

polynomial time algorithm for determining the rank of a tensor (the problem is NP-

hard), so it is non-trivial to select the number of components R into which the tensor

should be factorized.
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One widely-used method for computing the CP tensor decomposition given a set

number of components R is through a technique known as alternating least-squares

(ALS) [29]. This approach assumes that random variation in the data follows a

Gaussian distribution and accordingly optimizes the decomposition using a Euclidean

distance-based objective function [8].

However, for tensors consisting of count data, assuming a Gaussian likelihood

model for randomness does not provide a good description of the data. Instead,

we wish to perform a decomposition that assumes the tensor elements are Poisson-

distributed. It can be shown that performing maximum likelihood estimation under

the assumption of i.i.d. Poisson variables is equivalent to minimizing the generalized

Kullback-Leibler divergence [9]

xi ⇠ Poisson(mi)

) P (xi = k) =
e

�mi
m

k

i

k!

Thus the likelihood of the tensor X is:

L(X|X̂ ) =
Y

i

e

�mi
m

xi
i

xi!

) logL(X|X̂ ) =
X

i

(�mi + xilog(mi)� log(xi!))

=
X

i

(�mi + xilog(mi)) +
X

i

(�log(xi!))

= �
X

i

(mi � xilog(mi)) + c

Maximizing the log-likelihood is equivalent to minimizing
P

i (mi � xilog(mi)), the

KL divergence. This can be achieved using a technique known as alternating Poisson

regression (APR) [8].

4.2.2.3 Data Tensor Construction

We constructed a multidimensional array with five modes: subject, age at visit,

receptive language level, expressive language level, and socialization. For each subject,
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every state in the Viterbi path inferred based on the CT-HMM model discussed in

4.1.2 was encoded into the data tensor. Two di↵erent encoding schemes were utilized.

• Scheme 1

Each state encountered in the Viterbi path was counted in the data tensor based

on its central values. For example, if subject number 5 visited a state with the

values (12, 6, 6, 6)–that is, 12 months chronological age and an age-equivalent

score of 6 months in all 3 measurements–this state is encoded as X5,2,1,1,1 = 1.

• Scheme 2

The change in measurements between adjacent states in the Viterbi path is en-

coded, with the change described as either improvement, stagnation or decline.

For example, if subject 5 visits state (12, 6, 6, 6), followed by (12, 6, 12, 12) and

then (18, 6, 12, 6), the first transition is encoded as an increment to X5,2,2,1,1

(rlang stagnation! 2, elang improvement ! 1, soc improvement ! 1). The

second transition is encoded as an increment to X5,2,2,2,3 (rlang stagnation!

2, elang stagnation ! 2, soc decline ! 3).

This resulted in a count tensor representing the age-score combinations or transi-

tions observed over the cohort population, with all other elements set to zero.

4.2.2.4 Factorization

The tensor factorization was done with the help of the cp apr function available

through Sandia Corporation’s MATLAB Tensor Toolbox (2015). As mentioned pre-

viously, it is di�cult to know beforehand the number of component rank-one tensors

to provide the CP-APR algorithm. First, we explored giving the CP-APR algorithm

between 2 and 6 components and inspecting the resulting phenotypes.

We also attempted to empirically find an acceptable number of components R by

comparing the fit of several decompositions as R was varied from 40 to 160. The fit

of each model to the input tensor was compared based on a combination of the final
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log-likelihood and the least-squares fit, which roughly quantifies the proportion of the

data described by the CP decomposition. The value of R that produced the highest

log-likelihood and fit was chosen to fit a CP model.

4.2.2.5 Scoring and Clustering

With the final CP model determined, we needed to derive some way to assign a

distance score to each pair of subjects based on the extracted components. Again,

two methods were explored:

• Projection Method:

In the first method, inspired by [22], each subject’s individual data tensor was

projected onto each of the R components to produce a normalized membership

vector. These membership vectors were then used to cluster the subjects using

k-means clustering.

• Subject Factor Matrix Method:

The second method, inspired by [13], was based on the interpretation of each

component r in the decomposition. For component r, the rth column of the

subject factor matrix a
r

captures a group of subjects; the rth column of the

receptive language factor matrix captures receptive language activity that the

subjects in a
r

show; the same is true for the expressive language and socializa-

tion factor matrices. The time factor matrix captures the times at which these

associations occur. The scores assigned to each subject a
r

essentially denote

the extent to which they contribute to the rth component. The subject factor

matrix can thus be used to cluster the subjects using k-means clustering.
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CHAPTER V

RESULTS

5.1 Data Preprocessing

Although data was available for a total of 228 infants from the UCLA-UC Davis

dataset, a number of the subjects had only one or two visits in their record. Since

these subjects had little to no temporal data, they were excluded from subsequent

analysis, and only subjects with at least 3 visits were retained. The remaining 188

subjects were distributed across risk and outcome groups as shown in Table 4.

5.2 Hierarchical Clustering of State Sequences

5.2.1 Linkage Criteria

After the pairwise distance matrix between subjects was constructed from their tra-

jectory distances, agglomerative hierarchical clustering was performed using three

linkage criteria: single-linkage, average-linkage and complete-linkage. The the cophe-

netic correlation coe�cient was used to identify the linkage strategy which produced

the dendrogram that best reflected the relative distances in the distance matrix. This

was done separately for the ASD outcome group, the non-ASD outcome group and

the entire cohort all together. The average-linkage criterion performed consistently

well for all three partitions of the data, while single-linkage performed the worst.

Table 4: Distribution of remaining subjects between risk-groups and outcome-groups
after preprocessing.

High-risk Low-risk Other Total
ASD 23 (27) 3 (3) 2 (2) 28 (32)
Non-ASD 87 (107) 73 (89) 0 (0) 160 (196)
Total 110 (134) 76 (92) 2 (2) 188 (228)
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Figure 4: The e↵ects of linkage criterion on dendrogram representation for ASD out-
come class. Inter-sequence distance computed using the chronological age-anchored
alignment. The closer the cophenetic correlation coe�cient is to 1, the better the
dendrogram represents the distances between data elements.
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Figure 5: Di↵erent linkage criteria for dendrograms representing non-ASD outcome
class. Inter-sequence distance computed using the chronological age-anchored align-
ment.
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Figure 6: Di↵erent linkage criteria for dendrograms representing all outcomes.
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Table 5: Quality of clusters derived from di↵erent cuts of the ASD outcome dendro-
gram.

‘maxclust’ Dunn Index
2 0.3039
3 0.2026
4 0.3291
5 0.3611
6 0.3611
7 0.3472
8 0.3472

5.2.2 Cluster Evaluation: ASD Subset

In the interest of searching for longitudinal subtypes of early skill progression in

autism spectrum disorders, we focus on the ASD outcome population subset for the

analysis in this section.

5.2.2.1 Number of Clusters

The average-linkage dendrogram was pruned using the MATLAB cluster function

with parameter ‘maxclust’ varied between 2 and 8. The ‘maxclust’ argument

specifies the maximum number of clusters to be returned by a horizontal cut in the

tree. For each subsequent clustering, the Dunn Index was computed, shown in Table

5.

The 5-cluster solution appeared to be the best out of these choices. However, the

smallest three clusters (with 1, 2 and 5 elements respectively) were merged together

in a single cluster in the 3-cluster solution. Since the 1- and 2-member clusters are

of little interest on their own, we looked at the 3-cluster solution in spite of its lower

Dunn Index.
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Figure 7: ASD outcome group distance matrix reshu✏ed to reflect three clusters.

5.2.2.2 Three-Cluster Solution

The average-linkage dendrogram for the ASD outcome group was pruned to create

three clusters of subjects. The pairwise distance matrix was reordered by cluster

membership and visualized. This clustering result had a very modest Dunn index of

0.2026, indicating relatively low compactness relative to the cluster separation. Nev-

ertheless, the distance matrix visualization immediately highlighted one very distinct

cluster, as well as the other two somewhat similar clusters.

The hidden state trajectories for subjects belonging to each cluster were visually

explored using FluxMap, revealing distinct trends in receptive language and expres-

sive language development for each group. One cluster (the top cluster in Figure 8) is

characterized by early plateaus in receptive language followed by later recovery, cou-

pled with delayed but steady expressive language growth. A second cluster appears

to have a much stronger tendency for stagnation in all three measured skills. The

final group, which is actually a combination of the three smallest clusters from the

5-cluster solution, shows much more varied development patterns, but overall appears

to show steady receptive and expressive language development with slower gains in

socialization.

The time-series clustering approach to autism subtyping established a shape-based

distance measure in order to find trajectories with similar shapes. As such, it is
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Figure 8: ASD outcome group clusters 1 (top), 2 (middle) and 3 (bottom), trends
in receptive language (left), expressive language (center) and socialization (right)
development, obtained from hierarchical clustering.
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unsurprising that the clusters obtained with this method had fairly clear trends in

skill development. The need for a custom distance measure appropriate to the domain

can be seen as advantageous in that it allows domain expertise to be incorporated

into the notion of meaningful clusters. However, it can also be challenging to define

an appropriate distance function, especially when the data is multivariate.

5.3 CP Decomposition

As we saw previously, shape-based time-series clustering relies on the user to define a

distance measure that captures shapes in the time series. Subsequently, it is assumed

that under this distance measure, clusters will have small within-cluster distances

and large between-cluster di↵erences in shape. However, it is not guaranteed that an

arbitrarily-imposed distance measure will achieve this. It may be desirable to convert

the feature space into one that emphasizes the variance in the dataset. This was the

reason for exploring tensor factorization applications, which we discuss next.

5.3.1 Initial Guesses for R

The number of R components was varied between 2 and 8 and inspected. However,

these phenotypes were di�cult to interpret, had a large degree of overlap, and varied

greatly from run to run even with the same value for R. For these reasons, we decided

to try higher values of R.

5.3.2 Model Selection

The number of components R given to the CP-APR algorithm to fit a decomposition

to was varied between 40 and 160 to assess the e↵ect of R on the resulting log

likelihood and least-squares fit of the CP model to the data tensor. This was done for

data tensors constructed using the ASD subset data according to both schemes 1 and

2 described in Section 4.2.2.3. The best fit CP model for the scheme 1 data tensor

had a log-likelihood of -159.9 and a least-squares fit of 0.908 for R = 160, which was a

47



Table 6: Least-squares fit and log-likelihood for CP models for the scheme 2 data
tensor.

R 40 80 120 160
µ

FIT

0.6090 0.8162 0.9824 0.9830
�

FIT

0.0521 0.0603 0.0394 0.0380

µ

LL

-158.4 -132.6 -125.4 -125.4
�

LL

8.5029 3.6469 0.8944 0.8944

Figure 9: The number of rank-one components given to the CP-APR algorithm was
varied to compare the fit of each resulting model to the input tensor.

poorer fit than was achieved for the scheme 2 transition data tensor, shown in Table

6. It should be noted that the final least-squares fit is considered only as an estimate

of the model quality, since CP-APR optimizes the Kullback-Leibler divergence rather

than least-squares cost.

These experiments favored larger values of R, with the log-likelihood and least-

squares fit plots leveling o↵ at R = 120. Subsequently, a CP model with R = 120 was

fit to a tensor constructed from the ASD-outcome class data using transition data

(scheme 2), resulting in a model with a final least-squares fit of 0.999987 and final

log-likelihood of -125.455.
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5.3.3 Cluster Evaluation: ASD Subset

5.3.3.1 Projection Method

The phenotype membership vectors of the ASD outcome group were clustered by

k-means with varying values of k between 2 and 10. The quality of each of these

clusterings was evaluated using the average silhouette coe�cient; these results sug-

gested that the optimal number of clusters was either 2 or 8. However, the 2-cluster

solution had one “cluster” with a single subject. The 8-cluster solution also had two

such clusters, and two more with just two subjects each. The dominant 4 clusters are

viewed through FluxMap as shown in Figure 11.

The phenotype membership vectors were also used to create a pairwise distance

matrix based on the L1. The dendrogram obtained from hierarchical clustering with

complete linkage is shown in Figure 12. Note the negative cophenetic correlation

coe�cient, indicating that the dendrogram is actually a poor representation of the

pairwise distance matrix.

5.3.3.2 Subject Factor Matrix Method

We applied k-means clustering to the subject factor matrix, again varying the values

of k between 2 and 10. The quality of each of these clustering solutions was evaluated

using the average silhouette coe�cient, plotted in Figure 13. The optimal number of

clusters indicated by the graph was k = 3, but this led to a relatively uninteresting

solution in which two clusters had one subject each.

The subject factor matrix was used to construct a pairwise distance matrix using

the L1 distance metric, which was then used to perform a hierarchical clustering with

complete linkage. The resulting dendrogram is shown in Figure 14, and the two main

clusters obtained from this approach are viewed through FluxMap in Figure 15.
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Figure 10: (Top) Average K-means silhouette coe�cient vs. K, projection method.
(Middle) K-means silhouette for K=2. (Bottom) K-means silhouette for K=8.
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Figure 11: Dominant 4 clusters from the 8-cluster solution using phenotype mem-
bership vectors.
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Figure 12: Hierarchical clustering of ASD subjects based on their projections onto
the CP components.

Figure 13: (Top) Average K-means silhouette coe�cient vs. K, factor matrix
method. (Bottom) K-means silhouette for K=3.
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Figure 14: Hierarchical clustering of ASD subjects based on their subject factor
matrix weights.

Figure 15: Two dominant clusters from factor matrix hierarchical clustering.
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CHAPTER VI

DISCUSSION

This chapter reviews the results from my experiments in the context of previous work,

highlights the contributions of this work, discusses its limitations and outlines possible

areas for future work.

6.1 Summary of Results

This research addressed a common problem in clinical research: the identification

of subgroup populations with similar characteristics to help define meaningful phe-

notypes. This translates directly to an unsupervised learning or clustering task in

machine learning. We are specifically interested in finding subgroups with distinct

temporal patterns in longitudinal data. Traditionally, past e↵orts to find longitudi-

nal patient subtypes have relied on fitting the observation data with mixture models

where each mixture is characterized by a learned cluster trajectory function. While

these methods have proved valuable for extracting prototypical disease trajectories

from population data, the descriptive power of the prototypes relies heavily on the

choice of model or function for disease progression. Much of this prior work begins

by assuming that clusters are indeed present and then fits the cluster parameters and

assignments to maximize the likelihood of the training data.

In this study, we adopt the reverse approach of first training a disease progression

model for the overall population and then subsequently searching for longitudinal clus-

ters in individual trajectories as understood by the overall model. That is, the disease

progression model does not assume the presence of any subgroups. Disease progres-

sion was modeled as the co-evolution of multiple variables using a multidimensional

continuous-time hidden Markov model, which provided a detailed representation of
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the dynamics of disease evolution across the study population. Next, two di↵erent

clustering pipelines were explored to find subsets of similar subjects based on each

subject’s Viterbi-decoded path of most likely states. The results of each clustering

approach were compared through a use-case of characterizing the heterogeneity in

early skill development patterns for subjects with an autism spectrum disorder.

The clustering results from each pipeline varied considerably. This was not un-

expected, since each approach utilized di↵erent ways of representing relationships

between di↵erent variable dimensions. The di↵erences are further examined in Sec-

tion 6.2.3.

In the first approach, the comparison between two subjects was based on the mean

cumulative di↵erence in receptive language, expressive language and social scores at

a common age. Hierarchical clustering yielded a five-cluster solution with two large,

distinct clusters that together accounted for 20 of the 28 subjects. Through the

FluxMap visualization tool, it was evident that each of the larger clusters was char-

acterized by prominent temporal patterns in receptive and expressive language skill.

These patterns agreed with the well-documented early delays in language associated

with autism spectrum disorder. If these patterns are observed at a larger sample size,

they could be valuable for predicting early on the likelihood of an ASD diagnosis at

a later age.

In the second subtyping approach, subjects were first compared to a set of “phe-

notypes” defined by rank-1 tensors. Each component rank-1 tensor captured some

feature of the full data tensor, as well as those subjects associated with that feature

and the changing strength of the association over time. The projection or contribu-

tion of each subject’s data across these components recasts the subject’s state space

trajectory as a time-varying mixture of components. However, the components we

obtained captured relatively low-level features, such as a particular link direction at
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a particular time point. As a result, one particular component could feature mul-

tiple subjects whose trajectories looked overall very di↵erent. This led to clusters

with some overlap in temporal patterns of skill development, suggesting that the

tensor-based subtyping approach needs to be refined.

6.2 Contributions

6.2.1 Novel Methods in Autism Research

To the best of our knowledge, this work is the first use of a CT-HMM to describe and

visualize the progression of early language and social skill development in autism. It

is also the first application of tensor decomposition methods to autism research.

6.2.2 Visualization Support for Longitudinal Subtyping

The FluxMap visualization scheme provides users with an interface through which

they can interact with the results of the CT-HMM model and the results of the

clustering.

6.2.3 Comparison of Clustering Paradigms

In the time-series clustering approach, we devised a custom distance function to

compare two hidden-state sequences. This distance function was domain-specific,

subjective, and by no means perfect:

• The decision to anchor sequences by one dimension, chronological age, reflected

the importance of the age at which certain key skills appear to the understanding

of developmental patterns.

• Computing the cumulative di↵erence in each dimension e↵ectively weights each

dimension as equally important. This may or may not be the case, but cannot

be validated without additional external criteria.
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Despite these considerations, the clustering results were clearly interpretable, indicat-

ing that using a well-chosen custom distance measure for a specific application can

still yield useful outcomes.

In the tensor decomposition approach, the original data tensor is decomposed into

a set of 120 components. The subject factor matrix of the decomposition gives the

extent to which each component features di↵erent subjects. Clustering this matrix re-

sulted in two broad clusters with overlapping temporal patterns in each skill measure.

However, the first cluster could be approximately described as having a tendency for

early delay in receptive language followed by later improvement, and steady expres-

sive language development. In contrast, the second cluster appeared to feature more

consistent plateauing in receptive and expressive language.

The subjects’ distribution across the tensor components was also estimated by

projecting each individual’s data onto the 120 component tensors. This approach

yielded an 8-cluster solution, from which the dominant 4 clusters are shown in Fig-

ure 11. The first cluster here also shows prominent plateauing in receptive language,

expressive language and socializaton. The second cluster is characterized by steady

improvements in language, but a lack of improvement in socialization. The third clus-

ter again agrees with the first group found using the factor matrix, with early delays

in rlang followed by improvement, and steady improvement in elang. Furthermore,

this group seems to show a concurrent early delay in socialization followed by later

improvements after 24 months of age. The last cluster shows highly varying temporal

trends in all three dimensions.

6.3 Limitations

One significant limitation of this work is the small subject population of just 32

subjects, only 28 of whom had enough data to be included in these analyses. It is

unlikely that such a small cohort adequately captures all of the variation in temporal
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development trajectories associated with autism spectrum disorders. In addition,

the clustering methods explored here would benefit from having more subjects to

“reinforce” common patterns, if present.

Another limitation of this work is the lack of external validation measures for a

more thorough evaluation of clustering solutions. Especially in the case of longitu-

dinal disease subtyping, it is important to assess the impact of disease trajectory on

prognosis or final outcome.

6.4 Future Directions

The first steps for extending on this work should be to address the aforementioned lim-

itations by analyzing a larger cohort population, preferably with additional features

for external validation such as a severity score at diagnosis or some other outcome

of interest. This would help confirm the existence of longitudinal autism progres-

sion patterns, and investigate possible links between these development patterns and

outcomes.

It would also be valuable to explore other tensor construction strategies. One pos-

sibility could be to encode the ratio between age-equivalent scores and chronological

age. Another possible extension would be to explore the use of tensor factorization

methods for temporal link prediction as discussed in [13]. Each component r of the

CP decomposition we obtained has a time mode encoding the strength of the associ-

ation between subjects in a
r

and the component r activity pattern in the skill modes.

These component-wise temporal profiles may be useful for predicting changes in skill

level into future time steps.
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