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SUMMARY 

N-Heterocyclic and polycyclic molecular scaffolds are valuable structural motifs 

present in many biologically active and pharmaceutically-relevant compounds, and also 

in the field of material science. Much effort has been focused on the development of 

efficient methods for the formation of these significant scaffolds for the synthesis of 

natural product targets. In the following thesis, diverse protocols have been designed to 

access these heterocyclic and carbocyclic targets: (1) the use of strained polarized ring 

systems in the presence of amine nucleophiles to access small N-heterocyclic molecules, 

(2) the design of a formal [5+2] cycloaddition approach towards seven-membered ring 

fused indoles, and (3) the dehydrative, Nazarov-type cyclization via calcium catalysis to 

access directly a wide array of cyclopenta[b]thiophenes and indenes. All these catalytic 

transformations are amenable to various functional groups, thus demonstrating their 

versatility and scope. 
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CHAPTER 1. INTRODUCTION 

1.1 Diversity-Oriented Synthesis: Producing Chemical Tools 

The search for new biological probes capable of regulating biological pathways has 

led to the rapid development of diversity-oriented synthesis (DOS), a strategy used to 

access large numbers of structurally unique small molecules.1-3 A more comprehensive 

definition for DOS has been suggested by Spring3b as “diversity-oriented synthesis 

involves the deliberate, simultaneous and efficient synthesis of more than one target 

compound in a diversity-driven approach to answer a complex problem.” The “complex 

problem” mentioned in this definition usually refers to the discovery of novel biologically 

relevant compounds. However, this does not have to be the case, as the DOS approach 

could potentially be applied to other problems, such as the discovery of a novel ligand or 

catalyst for a reaction.3b 

These small molecules are usually potential orally bioavailable compounds that 

have a molecular weight of less than 1500 Da4 and that are distinct from naturally 

occurring biological macromolecules: DNA, RNA and proteins.5 Moreover, not only do 

they occupy new chemical space, these molecules need to bind to proteins, be of defined 

molecular complexity,6 be structurally rigid, and possess three-dimensionality.7 

Production of these libraries of molecules are not solely based on natural products, due 

predominantly to difficulties in sourcing, isolating, and identifying the bioactive 

components, as well as in purifying and chemically modifying these extremely complex 

structures.8 Therefore, in terms of making large numbers of compounds for screening, 

chemical synthesis if generally considered to be the most efficient approach.9 
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1.1.1 Molecular Diversity and Chemical Space 

The aim of DOS is to incorporate, as efficiently as possible the maximum degree 

of structural diversity for a given synthetic sequence.3e, 9a Ideally, this should involve four 

diversity elements:10 

1. Building block diversity: variation resulting from the choice of starting 

materials used, usually resulting in the variation of R-groups around a single 

scaffold. 

2. Functional group diversity: a myriad of functional groups present in a 

molecule, and also at specific sites within the whole structure. This gives the 

potential for interactions with different polar, apolar, or charged groups present 

in biological macromolecules. 

3. Stereochemical diversity: variation in the orientation of functional groups and 

potential macromolecule-interacting elements. This is crucial as nature and 

biological macromolecules are three-dimensional environments. 

4. Skeletal diversity: variation in the overall molecular framework such as ring 

structures and other rigidifying elements, resulting in molecules with distinct 

scaffolds. 

Chemical space, also properly defined as the multidimensional descriptor space, 

embodies all theoretically possible compounds and is therefore essentially infinite, 

limited only by the imagination of chemists and current synthetic methodologies.11 

Molecules occupy discrete points within chemical space with “similar” molecules 

grouped together and “dissimilar” molecules further apart. Molecules’ positions in 
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chemical space are determined by their comparable physical properties, such as 

molecular weight, log P, and polarizability as well as their topological features.11, 12 

1.1.2 Synthetic Strategies for Creating Molecular Diversity 

There exists a considerable challenge of creating molecular diversity efficiently, 

which requires strategies that differ from the majority of traditional chemical syntheses. 

Since the beginnings of DOS almost 20 years ago, two distinct strategies towards 

generating structural diversity have been established in the literature: (1) the reagent-

based approach, where subjecting a given molecule to a range of reaction conditions 

allows the synthesis of a number of distinct compounds, and (2) the substrate-based 

approach, where a number of starting materials containing pre-encoded skeletal 

information are transformed under conditions into a range of molecular structures (Figure 

1.1). 3c 

 

Figure 1.1. Representation of the Two Strategies for Molecular Diversity 

 

Reagent-based approach

common starting material
1

2 3 4

Substrate-based approach

9 10 11

765

common reagents
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1.2 Strained Carbocycles and 1,3-Dicarbonyl Alkylidene Systems as Building 

Blocks 

There are many useful building blocks in the field of synthetic organic chemistry. 

Strained carbocycles such as cyclopropanes and cyclobutanes, and the 1,3-dicarbonyl 

alkylidene systems peaked major interest due to their availability of providing 

unparalleled versatility for access to diverse chemical scaffolds. The unique structure and 

bonding characteristics of these small rings provide the basis for their incomparable 

reactivity. Similarly, these alkylidene substrates can undergo a diverse array of 

transformations to achieve molecular diversity due to its analogy to D-A cyclopropanes. 

Therefore, efforts to understand the reactivity profiles of these building blocks enable 

their manipulation for strategic effectuation of novel protocols, an accomplishment 

beneficial to synthetic chemistry. 

1.3 Cyclopropanes: Background 

Since its discovery by William Henry Perkin in 1884, cyclopropane has garnered 

much attention in the organic synthetic community.13 The reactivity of this three-

membered ring can be explained by comparing it with its acyclic counterpart.14 Contrary 

to acyclic hydrocarbons, cyclic hydrocarbons have inherent ring strain energy. This strain 

energy consists of torsional and angle strain. Cyclopropanes suffer from torsional strain 

due to the rigid, coplanar arrangement of the three carbon atoms, thereby causing 

eclipsing of ring substituents.15 The release of the ring strain (27.5 kcal/mol) associated 

with ring-opening provides the rationalization for high reactivity and the thermodynamic 

driving force for these reactions.16 
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The unusual properties and reactivity of cyclopropane can be explained following 

the three main models: (1) valence bond (VB) theory, (2) molecular orbital (MO) theory, 

and (3) σ-aromaticity. The cyclopropanes have higher percentage of s character of the C-

C bond forming orbitals, shortened interatomic bond distances, and weaker C-C bonds. In 

addition, they are able to interact with neighboring π-electron systems and p-electron 

centers, form metal complexes, add reagents (strong acids, halogens, ozone), and undergo 

catalytic hydrogenation and cycloaddition reactions. To accommodate all of these, two 

alternative models have been presented: the Coulson-Moffit17 and Walsh models18 

(Figure 1.2).  

 

Figure 1.2. The Coulson-Moffit and Walsh Models for Cyclopropane Bonding 

1.3.1 Modes of Activation: Vicinal D-A Cyclopropanes 

Despite the ring strain, cyclopropanes are often chemically inert and resistant to 

bond cleavage unless activated. Strategic implementation of substitutents on the 

cyclopropane allows for facile ring opening. As such, ring activation is accomplished by 

polarizing one of the C-C bonds through the attachment of electron-donating (donor, D) 

and electron-accepting (acceptor, A) groups as substituents (Figure 1.3).19 The primary 

modes of cyclopropane activation include geminal donor-acceptor (D-A), vicinal donor-

Coulson-Moffit Walsh

E
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acceptor (D-A), vicinal donor-donor-acceptor (D-D-A), and donor-acceptor-acceptor (D-

A-A). 

 

Figure 1.3. Primary Modes of Activation of Cyclopropanes 

Incremental C-C bond polarization is possible through additional substitutions with 

donor and acceptor groups on the cyclopropane. Upon ring opening, a 1,3-dipole is 

formed with both cationic and anionic centers.20,21 This intermediate undergoes 

cyclizations,22 and is reactive towards electrophiles/nucleophiles23 in addition to reactions 

and dipolarophiles in cycloaddition reactions24 (Scheme 1.1). Thus, D-A cyclopropanes 

have been used as a means to access cyclohexanones, tetrahydropyrans, and fused 

heteroaromatics, among many other molecular scaffolds.20, 25 Lastly, D-A cyclopropanes 

are also often viewed as analogs of olefin double bonds due to the deviation from the 

ideal tetrahedral sp3 hybrid orbitals to bent bonds with more p character. Therefore, D-A 

cyclopropanes are able to react with nucleophiles and electrophiles and can participate in 

reactions similar to olefins.26 

AA

D

A

D D
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Scheme 1.1. Reactivity of D-A Cyclopropanes 

1.4 Cyclobutanes: Background 

The cyclobutane, the smallest cycloalkane with typical regular, linear alkane 

characteristics, is progressively catching interest in the field of organic synthesis27 

compared to the cyclopropane, which has been extensively studied and utilized by 

chemists for decades now. Cyclobutane adopts a puckered conformation with a C-C-C 

bond angle of 88° (Figure 1.5).28 While this puckered conformation leads to a decrease in 

torsional strain, it also results in a smaller C-C-C bond angle, hence increasing angle 

strain. The balance between angle and torsional strain (total E = 26.3 kcal/mol) dictates 

the equilibrium geometry. 

Moreover, interestingly the methylene units of a cyclobutane are rotated and point 

inwards in the puckered conformation.29 This enables these CH2-units to have local C2v 

symmetry, which is responsible for the decrease in stability over the puckered one. 

Another way of visualizing bonding in cyclobutane is by considering it being constructed 

from CH2-units, interacting with each other (Figure 1.4).30 The σ-type and p-type orbitals 

interact with themselves to form bonding and anti-bonding orbitals. Similar to 
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cyclopropane, cyclobutane C-C bonds have a high degree of p-character, a property that 

leads to the C-H bonds being oddly strong due to their enhanced s-character.31 The bond 

dissociation energy of C-H bonds in cyclobutane is 99.8 kcal/mol in comparison with 

108.4 kcal/mol for cyclopropane.  

 

Figure 1.4. Conformations of Cyclobutane 

1.4.1 D-A Cyclobutanes 

Activation of the cyclobutanes can be done by adding donor (D) and acceptor (A) 

groups on the ring, known as the D-A cyclobutane (Figure 1.5A).32 The vicinal 

substitution allows ring-opening to occur, generating a 1,4-zwitterionic synthon similar to 

the 1,3-zwitterionic intermediate with D-A cyclopropane. Analogously, this 1,4-

zwitterionic intermediate can undergo diverse reactions: (1) rearrangements, (2) addition 

reactions with electrophiles/nucleophiles, and (3) cycloadditions (Figure 1.5B) in an 

attempt to achieve molecular diversity and chemical space. It has not been until the past 

decade that chemists have shown more interest in the reactivity of D-A cyclobutanes and 
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so far major examples of cycloaddition reactions have been reported with this strained 

carbocycle.33 

 

Figure 1.5. Reactivity of D-A Cyclobutanes 

1.5 Outline of Thesis 

This thesis consists of diversity-oriented synthetic strategies to access a library of 

small nitrogen-containing molecules and more complex polycyclic scaffolds, commonly 

found in natural products, pharmaceutically-relevant compounds, and even in the field of 

material science (Figure 1.6). It can be divided into 2 major categories where the first 

category (Chapter 2) is about using strained carbocycles as a gateway for N-heterocyclic 
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dicarbonyl-type systems under different conditions to access these 7-membered ring 

fused indoles and cyclopenta[b]heteroaromatics.  

 

Figure 1.6. Scope of the Dissertation 

Chapter 2 entails a milder approach accessing functionalized 2,3-dihydropyrroles 

and tetrahydropyridines via a Lewis acid-catalyzed amine ring-opening cyclizations of D-
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addition, examples of affording functionalized pyrroles via oxidation of the 

corresponding dihydropyrroles, is shown. Lastly the application to D-A cyclobutane 

expands the importance of the potential reactivity of these strained carbocycles, which 

has been understudied by the organic synthetic community until now. 

In chapter 3, the focus is on the importance of natural product scaffolds such as the 

azepino[1,2-a]indoles and cyclohepta[b]indoles. A literature survey shows there is a lack 

of general methods to access these scaffolds in an effective and efficient manner. In 

addition, previous reports have shown limitations in achieving molecular diversity and 

chemical space for these particular skeletons. Initially, we addressed these issues by 

investigating the D-A cyclobutanes as potential building blocks, which would undergo 

intramolecular ring-opening cyclization to access these scaffolds. Surprisingly, our study 

provides direct access to azepino[1,2-a]indoles via a formal [5+2] cycloaddition between 

alkylidenes and alkenes under mild Lewis acid catalytic conditions. This similar approach 

is applied to the synthesis of cyclohepta[b]indole framework. 

Chapter 4 reports a comprehensive discussion about the Nazarov-type cyclizations, 

specially the dehydrative, Nazarov-type electrocyclization leading to the synthesis of 

functionalized cyclopenta[b]thiophenes. These molecules commonly used in the field of 

material science are usually functionalized via cyclopenta[b]thiophenone precursor. The 

direct access to functionalized cyclopenta[b]thiophenes via a Lewis acid-catalyzed 

dehydrative, Nazarov-type electrocyclization is achieved. 

Finally chapter 5 summarizes all the findings from the previous chapters, focusing 

on the value of implementing strained carbocycles for diversity-oriented synthetic 
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strategies as a way to achieve molecular diversity. Also, some future directions are 

suggested based on the results obtained from this thesis. 
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CHAPTER 2. STRAINED POLARIZED CARBOCYCLES AS A 

MEANS TO SMALL N-HETEROCYCLIC MOLECULES*, 1 

2.1 Importance of 2,3-Dihydropyrroles 

Among nitrogen-containing five membered heterocycles, the 2,3-dihydropyrrole 

ring system 1 has become a valuable structural motif present in many biologically active 

compounds.2,3 In addition, they have been widely employed as important intermediates in 

the synthesis of natural products 4 and 5, and preparation of functionalized pyrrolidines4 

2 and pyrroles5 3 (Figure 2.1). 

 

Figure 2.1. Reactivity of Dihydropyrroles and Presence in Natural Products 

                                                
* Work on Lewis acid-catalyzed amine ring-opening cyclizations of D-A cyclopropanes performed in 
collaboration with Dadasaheb Patil. 
Published in J. Org. Chem. 2014, 79, 3030. 
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2,3-Dihydropyrroles can be readily exploited for further functionalization because 

of the presence of the enamine moiety, which can be useful in the synthesis of more 

complex molecules. When an electron-withdrawing group (EWG) is substituted at the 3-

position on the dihydropyrrole, extended conjugation with the enamine is observed, and 

vinylogous reactivity is possible (Figure 2.2). 

 

Figure 2.2. Importance of Enamine Moiety for further Functionalization  

2.2 Selected Methods for the Synthesis of 2,3-Dihydropyrroles 

Much effort has been focused on the development of efficient methods6-11 for the 

synthesis of 2,3-dihydropyrrole structural motifs. The commonly used synthetic routes 

involve cycloaddition or cyclization strategies (Scheme 2.1A)6h in a one-pot-sequential 

manner to give the dihydropyrrole skeleton. Other methods include ring-closure 

metathesis of enamides (Scheme 2.1B),7 and cyclization of sulfonamide anions with 

acetylenes in the presence of iodine10c (Scheme 2.1C) among many others.  

However there are a limited number of published protocols9b, 12 accessing the 

vinylogous dihydropyrroles despite the numerous reports of synthetic efforts toward the 

common 2,3-dihydropyrroles in the literature. The most general approach to 2,3-

dihydropyrroles bearing EWGs at the 3-position involves ring-opening cyclizations of 

cyclopropyl ketones in the presence of primary amines. 
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Scheme 2.1. Previous Approaches to 2,3-Dihydropyrroles 

2.3 Amine-Ring Opening Cyclizations of D-A Cyclopropanes 

Lhommet12a first reported this approach for donor-acceptor (D-A) cyclopropanes 

14 derived from β-ketoesters where the EWG = CO2Me. The reactions gave 4-carboxy-

dihydropyrroles 15 in modest to good yields but were performed in refluxing methanol in 

sealed tubes for up to 24 h or using the amine as solvent under reflux (>140 °C) for up to 

8 h. Charette12c reported the use of D-A cyclopropanes 16 derived from α-nitro ketones 

and α-cyano ketones for the formation of 4-nitro- and 4-cyano-dihydropyrroles 

respectively (Scheme 2.2). Unfortunately, these methods have two major limitations, 
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which include high reaction temperatures and long reaction times, which render them 

inefficient and have low functional group tolerance.  

 

Scheme 2.2. Amine Ring-Opening Cyclization of Cyclopropyl Ketones 

Lewis acids have recently been shown to promote ring-opening reactions of D-A 

cyclopropanes in the presence of amines under milder conditions. In representative 

examples by Charette13 and Tang,14 Ni(ClO4)2!6H2O effectively promotes the ring-

opening reactions of secondary amines with malonate-derived D-A cyclopropanes 18 and 

20 to give homoconjugate addition products 19 and 21 (Scheme 2.3).  
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Scheme 2.3. Lewis Acid-Catalyzed Amine Ring-Opening of D-A Cyclopropanes 

2.4 Lewis Acid-Catalyzed Amine Ring-Opening Cyclizations of D-A 

Cyclopropanes 

2.4.1 Reaction Design and Proof of Principle 

Our lab has reported several examples of Lewis acid-catalyzed intramolecular ring-

opening cyclizations of doubly activated D-A cyclopropanes derived from 1,3-dicarbonyl 

compounds.15 As a starting point, we began our studies with alkenyl cyclopropyl ketone 

as the model substrate and Ni(ClO4)2!6H2O as the Lewis acid due to its demonstrated 

success in amine-mediated cyclopropane ring openings (Scheme 2.3). 

However, upon treatment of cyclopropane 22 with benzyl amine in CH2Cl2 with 

variable loadings of Ni(ClO4)2!6H2O and different reaction temperatures, we observed 

formation of unexpected side product 24 (Scheme 2.4). As dihydropyrrole 23 is an 
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extended Michael acceptor, it was possible that a molecule of water could undergo 1,6-

addition into the extended π-system (Scheme 2.5). Proton transfer and isomerization 

produced alcohol II, which underwent loss of formaldehyde and protonation to give side 

product 24.16  

 

Scheme 2.4. Initial Model Substrate for Reaction Conditions Screening 

 

Scheme 2.5. Proposed Mechanism for the Formation of Dihydropyrrole 24 

2.4.2 Model Substrate Synthesis 
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on β-ketoester 25. The resulting diazo 26 was subjected to Rh-catalyzed cyclopropanation 

to afford cyclopropane 27 (Scheme 2.6). 

 

Scheme 2.6. Synthesis of Model Cyclopropane 27 

2.4.3 Reaction Optimization 

The initial screening conditions were carried out with cyclopropane 22 followed by 

cyclopropane 27 to avoid formation of undesired side product 24 (Table 2.1). We first 

treated cyclopropane 22 with benzyl amine (2.5 equiv.) in CH2Cl2 with Ni(ClO4)2!6H2O 

(30 mol%) at room temperature and successfully desired dihydropyrrole 23 was obtained 

in 89% yield after 3 h (entry 1). Then the amount of amine was reduced to improve atom 

economy and overall reaction efficiency. At both 2.0 and 1.2 equiv. of benzylamine, a 

decrease in yields was observed (entries 2 and 3).  

Next, we investigated the catalyst loadings to obtain the minimum loading required 

for the transformation to remain effective and efficient. Upon lowering the catalyst 

loading to 20 mol% and 15 mol%, dihydropyrrole 23 was obtained in 67% yield and 50% 

yield respectively (entries 4 and 5). At 15 mol%, the reaction failed to go to completion 
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to reduce the catalyst loading below 15 mol% resulted in poor product yields (entries 9 

and 10). The study of the effect of different solvents has shown to be detrimental to the 

overall reaction efficiency and products yields except for 1,2-dichloroethane where 

comparable results were obtained.  

To alleviate the formation of side product 24, we continued our investigation with 

a new model substrate, cyclopropane 27. Upon treatment of 27 with 15 mol% 

Ni(ClO4)2!6H2O and benzylamine (2.0 and 1.2 equiv.) in CH2Cl2 at reflux, desired 

dihydropyrrole 28 was obtained in 70% yield and 83% yield respectively (entries 13 and 

14). Therefore for this stage of the investigation, the optimal conditions were 15 mol% of 

Ni(ClO4)2!6H2O with 1.2 equiv. of benzylamine in refluxing CH2Cl2. 
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Table 2.1. Initial Reaction Optimization 

 

Entry R Loading 
(mol %) 

Amine 
(equiv.) Temp Time (h) Yield 

(%) 

1 2-propenyl (22) 30 2.5 rt 3 89 

2 2-propenyl (22) 30 2.0 rt 3 60 

3 2-propenyl (22) 30 1.2 rt 3 50 

4 2-propenyl (22) 20 2.5 rt 6 67 

5 2-propenyl (22) 15 2.5 rt >16 50 

6 2-propenyl (22) 15 2.5 40 °C 1 65 

7 2-propenyl (22) 15 2.0 40 °C 1 67 

8 2-propenyl (22) 15 1.2 40 °C 2 80 

9 2-propenyl (22) 5 2.5 40 °C 2 47 

10 2-propenyl (22) 5 2.0 40 °C 2 56 

11 phenyl (27) 30 2.5 rt 2 77 

12 phenyl (27) 15 2.0 rt >16 52 

13 phenyl (27) 15 2.0 40 °C 11 70 

14 phenyl (27) 15 1.2 40 °C 2 83 
rt = reaction performed at room temperature 

The experimentation proceeded with the study of a variety of Lewis acids to find 

the optimal Lewis acid catalyst (Table 2.2). Anhydrous Ni(OTf)2 was employed to 

analyze the importance of the water ligands. A reduced yield of 58% was obtained (entry 

2).  This result supported the catalytic role of the nickel but also suggested the 

significance of the water ligand for amine exchange. As with Ni(II) hydrates, copper(II) 

hydrates are known to complex with amines by displacing water molecules.17 However, 
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when Cu(ClO4)2!6H2O was used as the catalyst, a poor 31% yield was obtained (entry 3). 

To rule out the possibility that the ligand is responsible for the observed catalysis, 

Li(ClO4)!3H2O was employed but only gave 14% yield of dihydropyrrole 28. The 

remaining Lewis acids tested proved to be highly ineffective, most likely due to catalyst 

deactivation upon amine complexation (entries 5-9). Therefore Ni(ClO4)2!6H2O 

remained the most effective Lewis acid catalyst for this transformation.18 

Table 2.2. Lewis Acid Screening 

 

Entry Lewis acid Time (h) Yield 
(%) 

1 Ni(ClO4)2!6H2O 2 83 

2 Ni(OTf)2 3 58 

3 Cu(ClO4)2!6H2O 3 31 

4 Li(ClO4)!3H2O >16 14 

5 Sc(OTf)3 >16 27 

6 In(OTf)3 >16 17 

7 Al(OTf)3 >16 8 

8 Mg(OTf)2 >16 6 

9 Zn(OTf)2 >16 5 

 

2.4.4 Reaction Mechanism 

The proposed mechanism for this transformation involves an initial attack of the 

benzyl amine on cyclopropane 27 to form the secondary amine homo-conjugate IV. The 

N
Bn

Ph

OMe
OLewis Acid

(15 mol %)

Bn-NH2  (1.2 equiv)
CH2Cl2, 40 oC 4-MeOC6H4

Ph

O
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O
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secondary amine nucleophile attacks the phenyl ketone producing the alkoxy pyrrolidine 

V, followed by dehydration to afford the dihyropyrrole 28 (Scheme 2.7). 

 

Scheme 2.7. Proposed Mechanism for the Synthesis of Dihydropyrrole 28 

2.4.5 Examination of Substrate Scope 

The protocol was amenable to a wide range of primary amines under the optimized 

conditions (Table 2.3). Alkyl amines such as ethylamine and isopropylamine readily 

reacted with cyclopropane 27 to give dihydropyrroles 29 and 30 in 63 and 81% yield 

respectively. Unfortunately, no reactivity was observed with tert-butyl amine, which is 

presumably the result of unfavorable steric interactions that preclude nucleophilic attack. 

Other functionalized aliphatic amines such as 2-methoxyethan-1-amine and 3-

(triethoxysilyl)propan-1-amine also provided their respective dihydropyrroles 32 and 33, 

in 83 and 42% yield. We also showed that an unsaturated alkyl amine such as allylamine 

provided high yields of the desired dihydropyrrole 35 in 96% yield. However, 

propargylamine afforded only 30% of 36 along with a number of by-products. The poor 
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reaction efficiency is most likely because of competing reactions resulting from 

coordination of the alkyne π-system with the Ni catalyst.19  

More electron-deficient amines, such as aniline, proved to be amenable to the 

transformation, although the reaction had to be performed at higher temperatures for full 

conversion to give N-aryl dihydropyrrole 37 in 74% yield. Amines bearing stronger 

electron-withdrawing groups, such as acetamide and tosamide, failed to produce any 

dihydropyrrole products, even at elevated temperatures because of reduced 

nucleophilicity. Finally, a chiral amine was also employed in hopes of imparting some 

diastereocontrol. Unfortunately, when cyclopropane 27 was treated with (S)-1-

phenylethan-1-amine, dihydropyrrole 40 was obtained in a 1:1 diastereomeric mixture in 

90% yield. The poor observed stereo- or diasteroselectivity could be likely due to an SN1-

like ring-opening that generates a transient carbocation prior to unbiased nucleophilic 

attack. 
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Table 2.3. Primary Amine Screening 

 

The scope of the methodology was further studied by applying the reactions to 

different D-A cyclopropanes with benzylamine (Table 2.4). The investigation of the 

electronics on the phenyl ring (D group) was coherent with what has been established in 

the literature. When a phenyl substituent was employed, successful formation of 

dihydropyrrole 42 in 85% yield was obtained. Similar results were observed for 43, 

where 4-fluorophenyl was the donor group. However when the aromatic substituent bears 

a strong electron-withdrawing group, poor reactivity was observed with only 31% yield 

of 44 was attained.  
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When geminal methyl and phenyl groups are the donor groups, the 2,2-disubstituted 

dihydropyrrole 45 was obtained in 79% yield. However a D-A cyclopropane 41e bearing 

a singly alkyl donor group turned out to be unsuccessful and no desired dihydropyrrole 

product was observed. A more complex polycyclic dihydropyrrole 48 was obtained in 

37% yield when an indene derived cyclopropane 41g was reacted under reflux in toluene. 

No reaction was observed at reduced temperatures. Similarly, 49 containing substituents 

in both 2- and 3-positions was obtained in 44% yield. Both outcomes appeared to be the 

result of steric effects associated with the amine approaching the sterically congested 

cyclopropanes.  

Cyclopropanes derived from other β-ketoesters, where the phenyl group has been 

replaced with an ethyl, thiophene or methoxy substituent were also successful when 

subjected to the reaction conditions. Interestingly, dimethyl malonate-derived 

cyclopropane gave pyrrolidin-2-one 48 in 63% yield upon workup/purification. This 

result was consistent with observations made by Yamagata.12b Finally 1,3-diketones were 

also studied under our reaction conditions. Cyclopropanes from a symmetric 1,3-diketone 

and from an unsymmetric 1,3-diketone provided products 53 in 78% yield and 54 in 51% 

yield respectively. In the case of unsymmetric 1,3-diketone, regioisomers were possible, 

but only one product was observed with the phenyl ring being in conjugation with the 

enone π-system. 
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Table 2.4. Different Substituted D-A Cyclopropanes 

 

2.5 Applications of the Methodology 

Given that both the syntheses of the D-A cyclopropanes (via Rh-catalyzed 

cyclopropanation of alkenes with α-diazo carbonyls) and the dihydropyrroles take place 

in CH2Cl2, a tandem one-pot cyclopropanation/amine ring-opening cyclization was 

conducted (Scheme 2.8). Dihydropyrrole 28 was obtained in 68% yield, which 

corresponds to an average of ~82% yield per step. Hence, the tandem one-pot process has 

proven to be as effective in forming the 2,3-dihydropyrroles. 
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Scheme 2.8. One-Pot Tandem Cyclopropanation/Amine Ring-Opening Cyclization 

In an attempt to demonstrate that the 2,3-dihydropyrrole products could be used as a 

building block to access the pyrrole motifs, we treated dihydropyrroles 40 and 50 with 

1,2-dichloro-5,6-dicyanobenzoquinone (DDQ)12c,20 in toluene at reflux. As a result 

pyrroles 55 and 56 were formed in good yields 65 and 62% yields, respectively (Scheme 

2.9). Therefore our methodology could provide access to highly substituted pyrroles, also 

found in many natural products and pharmaceutically-relevant compounds. 

 

Scheme 2.9. DDQ-Mediated Oxidation of Dihydropyrroles to Pyrroles 
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2.6 Lewis Acid-Catalyzed Amine Ring-Opening Cyclizations of D-A Cyclobutanes 

2.6.1 Project Rationale and Justification 

In our lab, we have been heavily focused on small, strained carbocycles as building 

blocks for molecular diversity and complexity. As highlighted in Chapter 1, D-A 

cyclopropanes and cyclobutanes share similar reactivity profiles in many ways. However, 

D-A cyclobutane has not received much attention in the synthetic organic chemistry 

community until recently.21 Most of the work reported on D-A cyclobutanes, involved 

intermolecular reactivity with carbonyls,22 imines,23 nitrosoarenes,24 nitrones25 and 

alkynes.26 However, no example of amine ring-opening cyclization has been reported to 

date with the D-A cyclobutane synthetic precursors. Our intended strategy here would be 

to access other classes of N-heterocycles such as tetrahydropyridines and pyridines 

(oxidized counterpart) (Figure 2.3) via a Lewis acid-catalyzed amine ring-opening 

cyclization of D-A cyclobutanes. 

 

Figure 2.3. Amine Ring Opening Cyclization Strategy with D-A Cyclobutanes 

2.6.2 Model Substrate Synthesis 

The alkylidene precursor, methyl 2-benzoylacrylate 57 was synthesized via a 

modified version of the conditions established by Yiotakis.27 This involved a Cu(OAc)2 

catalyzed condensation of β-ketoester 25 with formaldehyde to afford alkylidene 57. The 
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latter was then treated with Yb(OTf)3 catalyst and 4-methoxy styrene to afford the 

resulting D-A cyclobutane 58 (Scheme 2.10).23 

 

Scheme 2.10. Synthesis of Model Cyclobutane 58 

2.6.3 Reaction Optimization 

The optimized conditions used with the D-A cyclopropane system were applied to 

the D-A cyclobutane 58 (Table 2.5, entry 1), which resulted in poor reactivity and hence 

the poor yield (8%) of tetrahydropyridine 59 and recovery of the cyclobutane. In an 

attempt to improve the effectiveness of this transformation, we increased the equivalents 

of amine used and switched solvent to elevate the temperature of the reaction (entry 4). 

The improvement in yield (from 8% to 50%) was promising result but the reaction time 

was long (about 24 h). The next step was to increase the loading of the catalyst in order to 

reduce the reaction time and hopefully bypass any side reactivity to improve the yield as 

well. Entry 8 shows that when the catalyst loading was doubled, the reaction time was 

reduced to 6 h but the yield did not increase much. A study of the reaction concentration 

with a catalyst loading of 20 mol%, 2.5 equiv. led to a reduction in time, from 20 h to 5 h 

when increasing the reaction concentration from 0.1 M to 0.2 M with similar yield, 52%. 
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Table 2.5. Reaction Optimization with D-A Cyclobutanes 

 

Entry Loading 
(mol %) Solvent Amine 

(equiv.) 
Time 
(h) 

Yield 
(%) 

1 15 CH2Cl2 1.2 >48 8 

2 10 Toluene 1.2 24 19 

3 15 Toluene 2.5 24 45 

4 15 Toluene 5.0 24 50 

5 20 Toluene 1.3 24 39 

6 20 Toluene 2.5 20 52 

7 20 Toluene 5.0 6 53 

8 30 Toluene 2.5 6 55 

9 - Toluene 2.5 >24 - 

In an attempt to reduce the reaction time even further and to take advantage of the 

microwave technology, we ran the reaction using 20 mol % Ni(ClO4)2!6H2O in 0.2 M of 

toluene with varying amount of benzyl amine equivalence, temperature, and time in the 

microwave (Table 2.6). We first tested the reaction at temp = 110 °C for 10 and 30 min, 

which led to no reactivity as we observed complete recovery of the starting material 

(entries 1 and 2). Increasing the temperature to 200 °C for 15 min gave 44% yield of the 

desired product (entry 4). From this outcome, we tried a higher temperature (250 °C) for 

the same amount of time (15 min) while maintaining similar pressure inside the vessel. 

However this afforded 2,3-tetrahydropyridine 59 in poor yield, 23% only along with 

major decomposition (entry 5). Changing the amount of amine equivalence while keeping 

the temperature at 200 °C did not result in any improvement in yields (entries 7 and 8). 
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Therefore, there are several other factors that need to be considered as we further 

investigate the optimization of the conditions: (1) find a more suitable Lewis acid that 

coordinates better to the D-A cyclobutane dicarbonyl system to initiate the ring-opening 

(2) the orbitals of a cyclobutane is different from the orbitals of a cyclopropane (see 

Chapter 1) and therefore the nucleophilic attack nature of the primary amine is 

hypothetically different with D-A cyclobutanes (3) examine the potential effect of solvent 

in this transformation which can render the effective amine ring-opening cyclization 

transformation with D-A cyclobutane. 

Table 2.6. Microwave Study for Synthesis of 2,3-Tetrahydropyridines 

 

Entry Amine 
(equiv.) 

Temp 
(°C) 

Time 
(min) 

Yield 
(%) 

1 2.5 110 10 - 

2 2.5 110 30 - 

3 2.5 200 10 21 

4 2.5 200 15 44 

5 2.5 250 15 23 

6 2.5 200 30 39 

7 1.2 200 30 28 

8 5.0 200 30 35 
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2.6.4 Examination of Substrate Scope 

In an attempt to prove that our protocol was amenable to other amines and D-A 

cyclobutanes, we first tested allylamine with cyclobutane 58 since it was our best 

substrate with D-A cyclopropane (see Table 2.3). The reaction worked modestly to afford 

tetrahydropyridine 60 in 47% yield (Scheme 2.11 – (1)). Next, we investigated a different 

D-A cyclobutane 61 with benzylamine (2.5 equiv.), which similarly gave the desired 

tetrahydropyridine 62 in 40% yield (Scheme 2.11 – (2)). These two reactions proved that 

the amine chemistry does work with D-A cyclobutane, but more optimization studies are 

necessary to render this approach more effective and efficient. 

 

Scheme 2.11. Study of Scope of the Protocol 

2.7 Summary 

2,3-Dihydropyrroles are found in several bioactive products but they are also 

significant versatile building blocks used in the synthesis of natural product targets. This 
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carboxy-2,3-dihydropyrroles using activated D-A cyclopropanes under milder conditions 

than previously reported (Scheme 2.12). The method is amenable to a variety of primary 

amine nucleophiles as well as substituted D-A cyclopropanes to provide highly 

substituted dihydropyrroles. Furthermore, the one-pot tandem process has proven 

effective and efficient with an average of ~82% yield per step. Also, the dihydropyrrole 

products can readily be converted to highly functionalized pyrroles, another 5-membered 

N-heterocyclic scaffold found in several natural product targets and pharmaceutically-

relevant compounds. Preliminary results obtained with other polarized strained rings, D-

A cyclobutanes show a potential for representative first examples of amine ring-opening 

cyclizations of these strained carbocycles. 

 

Scheme 2.12. General Ni(II)-catalyzed Approach to 2,3-dihydropyrroles  

2.8 Experimental Section 

2.8.1 2,3-Dihydropyrroles: 

For Lewis acid-catalyzed amine ring opening cyclization of D-A cyclopropanes, 

the experimental section and characterization can be found in the supporting information 

of article: Martin, M. C.; Patil, D.; France, S. J. Org. Chem. 2014, 79, 3030. 
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2.8.2 2,3-Tetrahydropyridines: 

2.8.2.1 General Methods 

Chromatographic purification was performed as flash chromatography with 

Dynamic Adsorbents silica gel (32-65 µm) and solvents indicated as eluent with 0.1-0.5 

bar pressure. For quantitative flash chromatography, technical grades solvents were 

utilized. Analytical thin-layer chromatography (TLC) was performed on EMD silica gel 

60 F254 TLC glass plates. Visualization was accomplished when exposed to 254nm UV 

light. 

Infrared (IR) spectra were obtained using a Nicolet 4700 FTIR with an ATR 

attachment from SmartOrbitThermoelectronic Corp and by attenuated total reflection 

(ATR) through a diamond plate on a Bruker Optics Alpha-P FTIR spectrometer. The IR 

bands are characterized as weak (w), medium (m), and strong (s). Proton and carbon 

nuclear magnetic resonance spectra (1H NMR and 13C NMR) were recorded on a Varian 

Mercury Vx 300 MHz spectrometer, or a Bruker 500 MHz spectrometer with solvent 

resonances as the internal standard (1H NMR: CDCl3 at 7.26 ppm; 13C NMR: CDCl3 at 

77.0 ppm). 1H NMR data are reported as follows: chemical shift (ppm), multiplicity (s = 

singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of 

doublet of doublets, t = triplet, m = multiplet, br = broad), coupling constants (Hz), and 

integration. Mass spectra were obtained MicroMass Autospec M.  The accurate mass 

analyses were run in EI mode at a mass resolution of 10,000 using PFK 

(perfluorokerosene) as an internal calibrant. Uncorrected melting points were measured 

with a digital melting point apparatus (DigiMelt MPA 160). 
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Yields refer to isolated yields of analytically pure material unless otherwise noted. All 

reactions were carried out in oven-dried glassware under an atmosphere of N2, unless 

stated otherwise. Tetrahydrofuran and diethyl ether were distilled from a 

sodium/benzophenone ketyl under N2 and stored in a Schlenk flask. 1,2-dichloroethane 

and dichloromethane was purified by distillation from calcium hydride under N2 prior to 

use. All other reagents were purchased from Acros, Sigma-Aldrich, Fluka, VWR, Merck, 

Alfa Aesar, TCI and Strem (for metal catalysts) and used without further purification 

unless otherwise noted. 

2.8.2.2 Experimental Procedures: 

General procedure for the synthesis of D-A cyclobutanes 58 and 61: To a flask charged 

with Yb(OTf)3 (10 mol %) and a stir bar was added a solution of methyl 2-

benzoylacrylate 57 (1.0 equiv.) in DCM (0.1 M) at 0 °C. 4-Methoxystyrene (1.3 equiv.) 

was added to the reaction mixture and allowed to stir for 1 h. Once reached completion, 

the reaction mixture was concentrated under reduced pressure and purified using silica 

gel flash chromatography to afford the desired cyclobutanes. 

Synthesis of cyclobutane 58: 

 

The general procedure was followed using methyl 2-benzoylacrylate 57 (333 mg, 1.75 

mmol), paramethoxy styrene (0.30 mL, 2.28 mmol), Yb(OTf)3 (109 mg, 0.175 mmol) 

and CH2Cl2 (8.75 mL) at room temperature. After 30 min, the reaction was concentrated 

Ph OMe

O O
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under reduced pressure and column chromatography (25% EtOAc/hexane, Rf = 0.420) 

afforded 58 as a white solid (348 mg, 61 % yield). 1H NMR (300 MHz, CDCl3) δ = 7.83 

- 7.76 (m, 2 H), 7.58 - 7.50 (m, 1 H), 7.47 - 7.39 (m, 2 H), 7.36 - 7.28 (m, 2 H), 6.88 - 

6.80 (m, 2 H), 4.64 (t, J = 10.3 Hz, 1 H), 3.78 (s, 3 H), 3.10 (s, 3 H), 2.99 - 2.90 (m, 1 H), 

2.79 - 2.65 (m, 1 H), 2.33 - 2.12 (m, 2 H). 

Synthesis of cyclobutane 61: 

 

The general procedure was followed using methyl 2-(thiophene-2-carbonyl)acrylate (75 

mg, 0.382 mmol), paramethoxy styrene (0.07 mL, 0.543 mmol), Yb(OTf)3 (23.7 mg, 

0.038 mmol) and CH2Cl2 (2.25 mL) at room temperature. After 1 h, the reaction was 

concentrated under reduced pressure and column chromatography (25% EtOAc/hexane, 

Rf = 0.462) afforded 61 as a white solid (80 mg, 63 % yield). 1H NMR (300 MHz, 

CDCl3) δ = 7.61 (dd, J = 1.2, 5.0 Hz, 1 H), 7.40 (dd, J = 1.1, 3.9 Hz, 1 H), 7.31 - 7.25 (m, 

2 H), 7.06 (dd, J = 3.8, 5.0 Hz, 1 H), 6.85 - 6.79 (m, 2 H), 4.57 (t, J = 9.8 Hz, 1 H), 3.76 

(s, 3 H), 3.12 (s, 3 H), 2.96 - 2.87 (m, 1 H), 2.74 - 2.60 (m, 1 H), 2.36 - 2.25 (m, 1 H), 

2.22 - 2.10 (m, 1 H). 13C NMR (75 MHz, CDCl3) δ = 188.8, 170.6, 158.4, 141.5, 133.8, 

131.8, 131.1, 128.9, 128.1, 113.2, 64.8, 55.1, 51.9, 43.1, 27.1, 20.9. 

General procedure for the synthesis of tetrahydropyridines 59, 60 and 62: To a round 

bottom flask charged with Ni(ClO4)2!6H2O (20 mol%) and amine (2.5 or 5.0 equiv.) in 

CH2Cl2 heated under reflux was added a solution of cyclobutane 58 (1.0 equiv.) in 
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OMe61

S



 41 

CH2Cl2 or toluene. Once the reaction reached completion, the reaction mixture was 

concentrated under reduced pressure and purified using silica gel flash chromatography 

to afford the desired tetrahydropyridines. 

Synthesis of tetrahydropyridine 59: 

 

The general procedure was followed using cyclobutane 58 (60 mg, 0.185 mmol), 

benzylamine (0.10 mL, 0.925 mmol), Ni(ClO4)2!6H2O (13.5 mg, 0.037 mmol) and 

toluene (1.80 mL) at reflux. After 6 h, the reaction was allowed to cool down to room 

temperature, then concentrated under reduced pressure and column chromatography 

(25% EtOAc/hexane, Rf = 0.400) afforded 59 as a yellow oil (40.6 mg, 53 % yield). 1H 

NMR (500 MHz, CDCl3) δ = 7.49 - 7.22 (m, 10 H), 7.14 - 7.09 (m, 2 H), 6.98 - 6.93 (m, 

2 H), 4.43 (t, J = 4.4 Hz, 1 H), 4.36 (d, J = 16.5 Hz, 1 H), 3.89 - 3.82 (m, 4 H), 3.44 (s, 3 

H), 2.72 - 2.65 (m, 1 H), 2.27 - 2.19 (m, 1 H), 2.14 - 2.06 (m, 1 H), 2.03 - 1.96 (m, 1 H). 

Synthesis of tetrahydropyridine 60: 

 

The general procedure was followed using cyclobutane 58 (60 mg, 0.185 mmol), 

benzylamine (0.04 mL, 0.463 mmol), Ni(ClO4)2!6H2O (13.5 mg, 0.037 mmol) and 
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toluene (0.92 mL) at room temperature. After 6 h, the reaction was allowed to cool down 

to room temperature, then concentrated under reduced pressure and column 

chromatography (25% EtOAc/hexane, Rf = 0.385) afforded 59 as a yellow oil (31.8 mg, 

47 % yield). 1H NMR (300 MHz, CDCl3) δ = 7.43 - 7.34 (m, 3 H), 7.34 - 7.27 (m, 2 H), 

7.25 - 7.18 (m, 2 H), 6.95 - 6.88 (m, 2 H), 5.64 - 5.49 (m, 1 H), 5.11 - 4.96 (m, 2 H), 4.53 

- 4.48 (m, 1 H), 3.82 (s, 3 H), 3.64 - 3.54 (m, 1 H), 3.36 (s, 3 H), 3.30 - 3.20 (m, 1 H), 

2.69 - 2.59 (m, 1 H), 2.23 - 2.01 (m, 3 H). 13C NMR (75 MHz, CDCl3) δ = 181.9, 168.4, 

158.6, 156.5, 138.1, 134.4, 134.2, 128.1, 127.8, 127.3, 116.6, 113.9, 96.0, 58.3, 55.3, 

52.5, 50.4, 28.4, 19.1. 

Synthesis of tetrahydropyridine 62: 

 

The general procedure was followed using cyclobutane 61 (60 mg, 0.182 mmol), 

benzylamine (0.05 mL, 0.454 mmol), Ni(ClO4)2!6H2O (13.5 mg, 0.036 mmol) and 

toluene (0.92 mL) at room temperature. After 23 h, the reaction was allowed to cool 

down to room temperature, then concentrated under reduced pressure and column 

chromatography (25% EtOAc/hexane, Rf = 0.385) afforded 59 as a yellow oil (30.2 mg, 

40 % yield). 1H NMR (300 MHz, CDCl3) δ = 7.41 - 7.37 (m, 1 H), 7.35 - 7.24 (m, 3 H), 

7.18 - 7.12 (m, 4 H), 7.04 - 7.00 (m, 2 H), 6.94 - 6.88 (m, 2 H), 4.49 (d, J = 16.0 Hz, 1 

H), 4.43 - 4.38 (m, 1 H), 3.91 - 3.80 (m, 4 H), 3.48 (s, 3 H), 2.68 - 2.58 (m, 1 H), 2.21 - 

1.93 (m, 3 H). 13C NMR (75 MHz, CDCl3) δ = 168.2, 158.7, 148.5, 138.4, 138.1, 133.6, 

N
Bn

O

OMe

62
MeO

S
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128.5, 127.3, 127.2, 127.1, 126.9, 126.8, 126.3, 113.9, 99.9, 58.2, 55.3, 53.2, 50.7, 28.1, 

19.8.  
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CHAPTER 3. FORMAL [5+2] CYCLOADDITIONS TOWARDS 7-

MEMBERED RING FUSED INDOLES: SYNTHESIS OF 

AZEPINO[1,2-A]INDOLES AND CYCLOHEPTA[B]INDOLES*† 

3.1 Significance of Azepino[1,2-a]indole and Cyclohepta[b]indole frameworks 

The indole moiety has been found to be a popular scaffold used in both the 

chemical and pharmaceutical industries.2 The indole framework is found in a large 

number of important compounds that occur in nature such as indole alkaloids.3 

Azepino[1,2-a]indoles and cyclohepta[b]indoles are interesting subclasses of the indole 

alkaloid family of natural products (Figure 3.1). For instance the azepino[1,2-a]indole 1, 

correantine B,4 represents a set of exciting compounds isolated from Psychotria Correae, 

which is structurally similar to the dihydro-cycloakagerine 2,5 which possesses 

antiprotozoal activity. In addition, the cyclopropyl azepine 3 belongs to a small molecule 

library (>1000) developed by Bristol-Myers Squibb as Hepatitis C NS5B inhibitors.6 

Likewise, the cyclohepta[b]indoles 4 – 6 are found to exhibit significant biological 

activities such as anticancer, antidepressant, anti-HIV, antimicrobial, antileishmanial and 

potential therapeutic agents for the treatment of cardiovascular disease.7 

 

                                                
* Work on catalytic formal [5+2] cycloaddition approach for the synthesis of azepino[1,2-a]indoles was 
performed in collaboration with Raynold Shenje. 
Published in Angew. Chem. Int. Ed. 2014, 53, 13907. 
† Work on catalytic formal [5+2] cycloaddition approach for the synthesis of cyclohepta[b]indoles was 
performed in collaboration with Raynold Shenje. 
Manuscript in preparation. 
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Figure 3.1. Azepino[1,2-a]indoles and Cyclohepta[b]indoles in Natural Products 

3.2 Past Synthetic Methods Accessing these 7-Membered Ring Structural Motifs 

These two subclasses of the indole alkaloid natural products featuring 6-5-7 ring 

scaffolds have garnered much attention from the synthetic community.1,8 Much effort has 

been dedicated in developing general protocols to access these interesting frameworks. 

Some of these approaches are hetero[5+2] cycloadditions,8f olefin metatheses,9 radical 

cyclizations10 or transition-metal-catalyzed intramolecular cyclization cascades.11 As 

such, Scheme 3.1 shows 3 examples of prior syntheses of azepino[1,2-a]indoles. Iwasawa 

and co-workers8f reported a W-mediated cyclization of imino alkyne 7 to afford 

azomethine ylides 8, which underwent subsequent hetero-[5+2] cycloadditions with 

ketene acetals 9 to form the desired azepino[1,2-a]indoles 10 (Scheme 3.1A). Moreover, 

Malacria and co-workers8b pioneered a simple ring-closing metathesis approach to 

azepino[1,2-a]indoles 12 using indole-based dienes 11 (Scheme 3.1B). Lastly, Bandini 
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and co-workers8c designed an effective synthesis to the azepinoindole scaffold via Au-

catalyzed tandem hydroamination/dehydrative cyclizations to obtain azepino[1,2-

a]indoles 15 in good chemoselectivities and yields (Scheme 3.1C). 

 

Scheme 3.1. Prior Selected Syntheses of Azepino[1,2-a]indoles 
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protocol for the synthesis of the azepino[1,2-a]indole focusing on achieving efficiency, 

selectivity and modularity. 

Otherwise, recent examples of prior syntheses accessing the cyclohepta[b]indole 

core are shown in Scheme 3.2. Li and co-workers12 reported this novel approach to 

cyclohepta[b]indoles via one-pot hydroamination/[4+3] cycloaddition. This 2-step 

process involved hydroamination of alkyne 16 to generate intermediate 17, followed by 

[4+3] cycloaddition of 17 with dienes 18 (Scheme 3.2A). In the same year, Haugen and 

co-workers8e developed this protocol for the synthesis of highly functionalized 

cyclohepta[b]indoles from precursor allenamides 20 through an efficient sequence of a 

[4+3] cycloaddition – cyclization – elimination (Scheme 3.2B). Finally, Phukan and co-

workers13 developed this new approach for the synthesis of molecular scaffolds of indole 

rings fused with seven-membered carbocyclic skeletons such as the cyclohepta[b]indole 

(Scheme 3.2C). This involved an intramolecular Heck cross-coupling reaction of aryl 

bromide 25 using Pd(OAc)2 as catalyst in the presence of benzyltrimethylammonium 

bromide (BTMAB) under microwave conditions. While these effective methods afforded 

highly functionalized cyclohepta[b]indoles, there is a need to design more concise 

protocols to access this particular scaffold in a streamlined and modular fashion. 
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Scheme 3.2. Prior Selected Syntheses of Cyclohepta[b]indoles 
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ring-opening cyclizations of D-A cyclopropanes14 and activated cyclopropenes15 as a 

means to access a range of diverse polycyclic molecules.  As highlighted in Chapter 1, D-

A cyclopropanes and cyclobutanes share similar reactivity profiles in many ways. D-A 

cyclopropanes have been a popular topic and extensively studied in organic synthesis16. 

On the other hand, D-A cyclobutane has not received much attention until more 

recently.17 Most of the work reported involved intermolecular reactivity of D-A 

cyclobutanes with carbonyls,18 imines,19 nitrosoarenes,20 nitrones21 and alkynes.22 Despite 

these important examples, there were no examples of any reports of D-A cyclobutanes 

undergoing intramolecular ring-opening cyclization reactions to our knowledge. 

Therefore, from the success with D-A cyclopropanes, we envisioned homologous 

intramolecular ring-opening reactivity with D-A cyclobutanes. If this strategy is 

successfully implemented, it will not only allow an effective and new approach for the 

synthesis of azepino[1,2-a]indoles (Figure 3.2) but also provide the first example of 

intramolecular ring-opening cyclization reactivity with D-A cyclobutanes. 

 

Figure 3.2. Intramolecular Ring-Opening Cyclization Strategy with D-A Cylobutanes 
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3.3.2 Reaction Design 

To explore such strategy, we sought to prepare the desired D-A cyclobutanes using 

Lewis acid promoted formal [2+2] cycloadditions of alkylidene 27 with alkenes 28 

(Scheme 3.3). While the anticipated cycloisomerization works well with D-A 

cyclopropanes, its application to D-A cyclobutanes has not been previously explored and 

could pose certain difficulties. Firstly, the formation of larger 7-membered rings (with D-

A cyclobutane reactions) is entropically less favored compared to 6-membered rings 

(with D-A cyclopropane reactions).23 Secondly, once ring-opening occurs to form the 

1,4-dipole intermediate 30, it is necessary that the π-attack in a Friedel-Crafts-type 

manner, occurs immediately to prevent side reactions such as E1-elimination to form 

alkene 32 or any potential degradation pathways (Scheme 3.3). However the selected 

indole π-nucleophile is suitable for this transformation since it has been shown to 

undergo rapid and smooth reactivity in Friedel-Crafts-type transformations.24 
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Scheme 3.3. D-A Cyclobutane Strategy for the Synthesis of Azepino[1,2-a]indole 

3.3.3 Model Substrate Synthesis 
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Scheme 3.4. Synthesis of Model N-Indolyl Malonamide 36 

3.3.4 Proof of Principle 

We started our study by synthesizing the required cyclobutane via a Lewis acid-

catalyzed formal [2+2] cycloaddition approach established by Roberts and co-workers 

(Scheme 3.5).8a N-Indolyl malonamide 36 was treated with 4-methoxy styrene 37 and 20 

mol% ZnBr2 as the catalyst, which gave a 1:1.3 ratio mixture of D-A cyclobutane 38 and 

azepino[1,2-a]indole 39 in 62% yield after 24 h. This exciting result suggested the 

possibility of accessing the azepino[1,2-a]indole directly in a one-pot fashion from the 

alkene and alkylidene precursors via a formal [5+2] cycloadditon approach. 

 

Scheme 3.5. Initial Test Reaction for the Synthesis of Azepino[1,2-a]indole 
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screening was performed in an attempt to identify a catalytic approach for the formation 

of exclusively azepino[1,2-a]indole 39 (Table 3.1). We first investigated the effect of the 

loading of ZnBr2 on the reaction outcome. Using 30 and 100 mol% loading led solely to 

the production of azepino[1,2-a]indole 39 in 49% and 52% yield respectively (entries 1 

and 2). Surprisingly, no change in reaction time (24 h) was observed irrespective of the 

amount of ZnBr2 used. 

Other oxophilic Lewis acids with the ability to bind to the dicarbonyl moiety of 

alkylidene 36 were probed. Using Sc(OTf)3 at loadings of 20 and 10 mol% led to the 

formation of azepine 39 in 72% and 78% yield respectively (entries 3 and 4). Other 

Lewis acids, such as Yb(OTf)3, Mg(OTf)2 and La(OTf)3 gave either low yields of 

azepino[1,2-a]indole 39 or a mixture of cyclobutane 38 and azepine 39 (entries 5, 8 and 

12). 

During the optimization study, we also observed that whenever exclusive 

formation of azepinoindole 39 was obtained, the cis/trans diastereomeric ration (dr) was 

>8:1. The ZnBr2 catalyzed reactions gave dr’s in the range of 11:1 to 16:1 while 

Yb(OTf)3, Mg(OTf)2 and La(OTf)3 gave dr’s of 12:1, 19:1 and 8:1 respectively. 

Fortunately, the optimum Lewis acid, Sc(OTf)3 not only afforded azepinoindole 39 in the 

highest yield (78%) but also gave the best diastereoselectivity (33:1) (entry 4). 
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Table 3.1. Lewis Acid Screening for Azepino[1,2-a]indole Synthesis 

 

Entry Lewis acid Loading 
(mol %) Time (h) Yield (%) 38:39 dr 

1 ZnBr2 30 24 49 0:1 16:1 

2 ZnBr2 100 24 52 0:1 14:1 

3 Sc(OTf)3 20 1 72 0:1 11:1 

4 Sc(OTf)3 10 2 78 0:1 33:1 

5 Yb(OTf)3 10 7 44 1:1.3 12:1 

6 In(OTf)3 10 0.5 - - - 

7 Al(OTf)3 10 0.5 - - - 

8 Mg(OTf)2 10 48 25 0:1 19:1 

9 Zn(OTf)2 10 24 - - - 

10 Cu(OTf)2 10 24 - - - 

11 Ga(OTf)2 10 0.5 - - - 

12 La(OTf)3 10 7 25 1.6:1 8:1 

13 Ni(OTf)2 10 24 - - - 

Finally, a solvent screening was performed to investigate the effects of different 

solvents on the reaction outcome (Table 3.2). Weakly coordinating, non-polar solvents 

such as dichloromethane (CH2Cl2), benzene and toluene worked well and led to the 

desired product in 78%, 64%, and 57% yield respectively (entries 1, 2 and 3). On the 

other hand, polar coordinating solvents gave low reaction yields (32% yield with EtOAc) 

(entry 6) or no product formation (with MeCN and THF) (entries 4 and 5). It is likely that 

the coordinating solvents bind to the metal center of the catalyst, hence altering the Lewis 
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acidity of the catalyst or complete sequestration leading to no desired reactivity. The last 

stage of our optimization studies involved modifying the reaction concentration and 

temperature. However these condition factors were unproductive and did not contribute 

to any improvement in either yield or diastereoselectivity for the transformation. 

Table 3.2. Solvent Screening for Azepino[1,2-a]indole Synthesis 

Entry Solvent Time (h) Yield (%) 

1 CH2Cl2 2 78 

2 benzene 4.5 64 

3 toluene 4.5 57 

4 MeCN 2 - 

5 THF 7 - 

6 EtOAc 24 32 

 

3.3.6 Reaction Mechanism 

Mechanistically, the transformation proceeds initially by an intermolecular π-

attack by the alkene 41 to form 1,4-dipolar intermediate I (Scheme 3.6). Intermediate I 

can undergo two parallel pathways: (a) a direct intramolecular Friedel-Crafts-type 

alkylation (formal [5+2] route) to afford azepino[1,2-a]indole 42, or (b) a 4-(enol-exo)-

exo-trig cyclization (formal [2+2] cycloaddition route) to form cyclobutane 43.  
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Scheme 3.6. Proposed Mechanism for Azepino[1,2-a]indole Synthesis 

The transformation likely proceeds via the cyclobutane 43 first, followed by a 

cycloisomerization to give azepino[1,2-a]indole 42, given entropic considerations for 

ring-forming reactions.25 Cyclobutane 38 was isolated and subjected to the optimized 

conditions to show its potential as an intermediate in the reaction (Scheme 3.7). The 

formation of azepino[1,2-a]indole 39 in 94% yield with a 50:1 dr in less than 1 h, 

supported our hypothesis. In addition this reaction represents the first example of 

intramolecular ring-opening/cyclization of a D-A cyclobutane in literature. 
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a]indole enolate complex is anticipated to adopt a twist-chair conformation similar to that 

of cycloheptenone systems (Scheme 3.8). Finally, a preferred pseudoaxial protonation 

leads to the cis product as the major diastereomer (kinetic product). 

 

Scheme 3.8. Rationale for Diastereoselectivity 
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styrene was used, no product was formed whereas ortho-bromo styrene gave azepine 39f 

in 15% yield. Other ortho-substituted styrene such as, 2,4-dimethoxy styrene and 2-

bromo-4-methoxy styrene worked moderately and afforded azepinoindoles 39g and 39h 

in 25% and 66% yield respectively. This poor reactivity is likely due to the undesired 

steric repulsion between the ortho-substituent and the indole methyl group, which 

prevents ring closure to form the azepine ring.  

Table 3.3. Scope for Azepino[1,2-a]indole Synthesis 

 

N

Me

O O
OMe

X

X = 39; OMe, 78%, 33:1 dr 
       39a; Me, 62%, 20:1 dr 
       39b; Cl, 33%, 34:1 dr
       39c; H, 24%, 10:1 dr 
       39d; NO2, no product

N

Me

O O
OMe

X = 39e; OMe, no product
       39f; Br, 15%, 2.3:1 dr

X

N

Me

O O
OMe

X = 39g; OMe, 25%,
               1.6:1 dr
       39h; Br, 66%, 
               3:1 dr

X

MeO

N

Me

O O
OMe

R R = 39i; 2-naphthyl; 45%, 16:1 dr 
       39j; 2-furyl; 62%, 8:1 dr 
       39k; n-Bu; no product

N

Me

O O
OMe

PhS 39l; 85%, 11:1 dr

N

Me

O O
OMe

39n; 81%

N

Me

O O
OMe

Ph Ph

N

Me

O O
OMe

Me Ph

N

Me

O O
OMe

Me C6H4-OMe
39o; 78% 39p; 92%, 2:1 dr 39q; 64%, 2:1 dr

N

Me

O O
OMe N

Me

O O
OMe

Me C6H4-4-OMeC6H4-4-OMe
Me Me

39r; 82%, 10:1:0:0 dr 39s; 84%, 7:1.3:1:0 dr

N

O O
OMe

C6H4-4-OMe

N

Me

O O
OMe

C6H4-4-OMe

N

Me

O O
OMe

N

R

39t; R = Br, 78%, 12:1 dr
39u; R = CO2Me, 54%, 29:1 dr

39v; R1=R2=Me, no product
39w; R1=H, R2= C6H4-4-OMe,
        no product

39m; no product

N
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OMe

O O

R7
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Other alkenes, such as 2-vinyl naphthalene, 2-vinyl furan and phenyl vinyl sulfide 

were tolerated and azepinoindoles 39i, 39j and 39l were obtained in 45%, 62% and 85% 

yield respectively. However, no desired azepinoindole 39m was obtained when N-

methyl-N-vinylacetamide was employed. We observed Michael addition of the enamide 

41m to the alkylidene 36 occurring, but no subsequent intramolecular Mannich reaction 

happened. Instead, we obtained about 15-20% yield of the aldehyde resulting from 

hydrolysis of the Mannich intermediate along with indiscernible side products, 

presumably resulting from the carbocation degradation pathways. On the other hand, 

using ethyl vinyl ether in the reaction did not lead to the desired product since it easily 

degraded or polymerized in the presence of strong Lewis acids.26 Instead, we subjected 

ethyl vinyl ether to 10 mol% Yb(OTf)3 where only cyclobutane 38n was obtained 

(Scheme 3.9). Then, treating cyclobutane 38n to the optimized Sc(OTf)3-catalyzed 

conditions afforded the formation of unsaturated azepino[1,2-a]indole 39n in 81% yield. 

The unsaturation presumably arises from the Lewis acid mediated elimination of EtOH 

after formation of the seven-membered ring 39n’.  

 

Scheme 3.9. Synthesis of Unsaturated Azepino[1,2-a]indole 39n 
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Multi-substituted alkenes gave desired products, providing one of the substituents 

was aromatic. For instance, 1,1-diphenylethylene and α-methyl styrene gave azepines 39o 

and 39p in 78% and 92% yield, respectively. A tri-substituted alkene 41s led to 

azepinoindole 39s in 84% yield. Finally, changes to the substituent at the 3-position of 

the indole moiety such as alkylidenes derived from 3-(2-bromoethyl)indole and indole 

acetic acid methyl ester readily reacted with para-methoxy styrene to give the azepines 

39t and 39u in 78% and 54% yield, respectively. However, when alkyl or aryl 

substituents were placed on alkylidene 40, no reactivity was observed (39v and 39w). 

The lack of reactivity presumably originates from the undesired steric interactions 

between the ester group and the alkylidene substituent that force the enone into the 

unreactive s-cis conformation.27 

3.4 Design of a Formal [5+2] Cycloaddition Approach to Cyclohepta[b]indoles 

3.4.1 Reaction Design 

Given the importance of the indole moiety, we attempted to extend the formal 

[5+2] cycloaddition chemistry to the synthesis of similar scaffolds such as the 

cyclohepta[b]indoles. This approach could potentially be applied to C-acylated indolyl 

alkylidene β-ketoester 44 with various substituted alkenes 41 to afford the synthesis of 

highly functionalized cyclohepta[b]indoles 45 (Scheme 3.10). 
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Scheme 3.10. Formal [5+2] Cycloaddition Approach to Cyclohepta[b]indole Synthesis 

3.4.2 Model Substrate Synthesis 

The alkylidene precursor, C-acylated indolyl alkylidene β-ketoester 48 was 

synthesized via a three-step sequence in which commercially available 1-methyl-1H-

indole-2-carboxylic acid 46 was reacted with oxalyl chloride and catalytic DMF to form 

N-methyl indole-2-carbonyl chloride in situ (Scheme 3.11). A solution of enolate of 

methyl acetate was added to the acid chloride, forming β-ketoester 47. Finally, this indole 

β-ketoester 47 underwent Cu(OAc)2-catalyzed condensation with formaldehyde to afford 

alkylidene 48.  

 

Scheme 3.11. Synthesis of Model C-acylated indolyl alkylidene β-ketoester 48 

3.4.3 Proof of Principle 

Initially, we subjected alkylidene 48 and α-methyl styrene (5.0 equiv.) to the 

optimized Lewis acid (10 mol% of Sc(OTf)3) used for the synthesis of azepino[1,2-

a]indoles. This reaction led to the formation of a keto-enol mixture of 
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cyclohepta[b]indole 49 in 51% yield within 1 h (Scheme 3.12). This result proved that the 

formal [5+2] cycloaddition strategy can be applied to chemotypes other than the 

azepino[1,2-a]indole framework. 

 

Scheme 3.12. Initial Test Reaction for the Synthesis of Cyclohepta[b]indoles 

3.4.4 Reaction Optimization 

The amount of the catalyst loading was decreased to 2.5 mol% and heated at reflux 

in CH2Cl2, giving to improved yield of 65% (Table 3.4, entry 1). This led to a screening 

of various oxophilic Lewis acids which would promote this formal [5+2] cycloaddition 

approach. Lewis acids such as Al(OTf)3, Hf(OTf)4 and Yb(OTf)3 afforded keto-enol 

mixture of cyclohepta[b]indole 49a in yields above 50% (entries 2-4). Interestingly, a 1:1 

mole ratio of Ca(NTf2)2:(n-Bu4N)(PF6) provided the highest yield, 78% (entry 11). This 

catalytic system was developed by Leonori and co-workers28, which presumably 

undergoes anion metathesis that results in the formation of Ca(NTf2)(PF6), a complex 

with increased Lewis acidity and the availability of two binding sites, suitable for a 1,3-

dicarbonyl system (similar to 48) to chelate to the metal center and be activated.29  

The importance of the combination of both Ca(NTf2)2 and (n-Bu4N)(PF6) was 

justified after subjected them separately to alkylidene 48 and alkene 41a where no 

reactivity was observed (entries 12 and 13). Efforts to optimize temperature and reaction 
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concentration did not lead to any improvement in yield. Therefore, the optimized 

conditions for this transformation was 2.5 mol% of Ca(NTf2)2 and 2.5 mol% of additive, 

(n-Bu4N)(PF6) in CH2Cl2 with 5.0 equiv. of alkenes. The success of developing a Ca2+-

catalyzed transformation has many advantages: (1) low cost, (2) low toxicity, and (3) 

ease of disposal, rendering a sustainable and non-expensive catalytic protocol.28  

Table 3.4. Lewis Acid Screening for Cyclohepta[b]indole Synthesis 

 

Entry Lewis acid Time (h) Yield (%) 

1 Sc(OTf)3 1 65 

2 Al(OTf)3 1 73 

3 Hf(OTf)4 0.5 73 

4 Yb(OTf)3 1 51 

5 Cu(OTf)2 0.5 44 

6 In(OTf)3 1 43 

7 La(OTf)3 1 33 

8 Zn(OTf)2 1.5 31 

9 ZnBr2 1 42 

10 Mg(OTf)2 1 - 

11 Ca(NTf2)2 
(n-Bu4N)(PF6) 

0.5 78 

12 Ca(NTf2)2 24 - 

13 (n-Bu4N)(PF6) 24 - 

 

N
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OMe

O O N
O O

OMe
Me

Ph
48 41a 49a

MeLewis acid
(2.5 mol%)

Me Ph

CH2Cl2, 40 oC
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3.4.5 Examination of Substrate Scope 

The scope of this transformation was investigated by first studying different 

substituted alkenes 41 (Table 3.5). Para-Substituted styrenes gave cyclohepta[b]indoles 

49c to 49f in poor yields due to significant degradation and polymerization of the 

styrenes under the optimized conditions. 1,1-substituted alkenes were revealed to work 

better for this transformation leading to the desired cyclohepta[b]indoles 49a, 49b, and 

49g in 78%, 63% and 90% yield. Possibly the 1,1-disubstitution provides better 

stabilization for the initial carbocation generated during the transformation. In addition, 

the tri-substituted alkene 41h led to the formation of the cyclohepta[b]indole 49h in 79% 

yield. Finally, indene provided with an interesting polycyclic cyclohepta[b]indole 49i in 

31% yield, which underwent decarboxylation (50i) for structural confirmation. Further 

investigation of the scope is under progress involving other alkenes bearing heteroatoms 

and finding an alternative Lewis acid for mono-substituted styrenes in an attempt to 

reduce degradation, hence improving the yields. 

 However, when alkyl substituents were placed on the alkylidene, no desired 

cyclohepta[b]indole product was obtained. 51a was subjected to the optimized Ca2+ 

optimized conditions, no desired reactivity was observed. Instead the Nazarov cyclization 

occurred leading to the five-membered ring fused indole 52a’ in high yield (Scheme 

3.13). 
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Scheme 3.13. Effect of alkyl substituent on alkylidene 51a 

Table 3.5. Scope for Cyclohepta[b]indole Synthesis 

 

3.5 Summary 

We described in this chapter a formal [5+2] cycloaddition strategy (Scheme 3.13), 

accessing the azepino[1,2-a]indole and cyclohepta[b]indole scaffold found in many 

natural product targets with prominent bioactive properties. Indole-based alkylidenes 40 
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or 48 react with alkenes in the presence of appropriate catalytic amount of Lewis acid 

affording the desired indole-fused 7-membered rings. Variations in the alkylidenes and 

alkenes have shown to provide a wide breadth of scope under mild conditions, thus 

offering highly functionalized azepino[1,2-a]indole and cyclohepta[b]indole scaffolds. 

Interestingly, we have also demonstrated the first examples of Lewis acid catalyzed 

intramolecular ring-opening cyclizations of D-A cyclobutanes 38 and 38n. To date, these 

approaches represent the most efficient routes to functionalized azepino[1,2-a]indoles 

and cyclohepta[b]indoles. 

 

Scheme 3.13. Formal [5+2] Cycloaddition Approach  

3.6 Experimental Section 

3.6.1 Azepino[1,2-a]indoles: 

For the formal [5+2] cycloaddition approach towards Azepino[1,2-a]indoles, the 

experimental section and characterization can be found in the supporting information of 

article: Shenje, R.; Martin, M. C.; France, S. Angew. Chem. Int. Ed. 2014, 53, 13907. 
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3.6.2.1 General Methods 

Chromatographic purification was performed as flash chromatography with 

Dynamic Adsorbents silica gel (32-65µm) and solvents indicated as eluent with 0.1-0.5 

bar pressure. For quantitative flash chromatography, technical grades solvents were 

utilized. Analytical thin-layer chromatography (TLC) was performed on EMD silica gel 

60 F254 TLC glass plates. Visualization was accomplished when exposed to 254nm UV 

light. 

Infrared (IR) spectra were obtained using a Nicolet 4700 FTIR with an ATR 

attachment from SmartOrbitThermoelectronic Corp and by attenuated total reflection 

(ATR) through a diamond plate on a Bruker Optics Alpha-P FTIR spectrometer. The IR 

bands are characterized as weak (w), medium (m), and strong (s). Proton and carbon 

nuclear magnetic resonance spectra (1H NMR and 13C NMR) were recorded on a Varian 

Mercury Vx 300 MHz spectrometer, or Bruker 500 MHz spectrometer with solvent 

resonances as the internal standard (1H NMR: CDCl3 at 7.26 ppm; 13C NMR: CDCl3 at 

77.0 ppm). 1H NMR data are reported as follows: chemical shift (ppm), multiplicity (s = 

singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of 

doublet of doublets, t = triplet, m = multiplet, br = broad), coupling constants (Hz), and 

integration. Mass spectra were obtained MicroMass Autospec M.  The accurate mass 

analyses were run in EI mode at a mass resolution of 10,000 using PFK 

(perfluorokerosene) as an internal calibrant. Uncorrected melting points were measured 

with a digital melting point apparatus (DigiMelt MPA 160). 

Yields refer to isolated yields of analytically pure material unless otherwise noted. 
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All reactions were carried out in oven-dried glassware under an atmosphere of N2, unless 

stated otherwise. Tetrahydrofuran and Diethyl ether were distilled from a 

sodium/benzophenone ketyl under N2 and stored in a Schlenk flask. 1,2-dichloroethane 

and dichloromethane was purified by distillation from calcium hydride under N2 prior to 

use. All other reagents were purchased from Acros, Sigma-Aldrich, Fluka, VWR, Merck, 

Alfa Aesar, TCI and Strem (for metal catalysts) and used without further purification 

unless otherwise noted. Description of the experimental section and characterization of 

alkylidene 48 and cyclohepta[b]indole 49c can be found in the supporting information of 

article: Shenje, R.; Martin, M. C.; France, S. Angew. Chem. Int. Ed. 2014, 53, 13907. 

3.6.2.2 Experimental Procedures: 

General procedure for the synthesis of cyclohepta[b]indoles 49: To a round bottom flask 

charged with Ca(NTf2)2 (2.5 mol%) and (n-Bu4N)(PF6) (2.5 mol%) in CH2Cl2  at 40 °C 

and a magnetic stir bar was added a solution of alkylidene 48 (1.0 equiv.) and alkene 41 

(5.0 equiv.) in CH2Cl2 (0.10 M). After complete consumption of the alkylidene, the 

reaction mixture was concentrated under reduced pressure and purified by silica gel flash 

chromatography eluting with EtOAc:Hexanes.  

Synthesis of cyclohepta[b]indole 49a: 

 

N
O O

OMe
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The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), α-

methylstyrene 41a (0.23 mL, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-

Bu4N)(PF6) (3.3 mg, 0.009) and CH2Cl2 (3.49 mL) at 40 °C. After 30 min, the reaction 

was allowed to cool to room temperature, then concentrated under reduced pressure and 

column chromatography (25% EtOAc/hexane, Rf = 0.386) afforded 49a as a colorless oil 

keto-enol mixture (98.7 mg, 78 % yield). 1H NMR (500 MHz, CDCl3) δ = 13.45 (s, 

0.22), 7.41 - 7.15 (m, 18.67), 7.00 - 6.83 (m, 3.36), 4.02 (s, 0.73), 3.98 - 3.91 (m, 1.83), 

3.90 (d, J = 3.7 Hz, 5.82), 3.87 - 3.85 (m, 1.05), 3.79 (s, 2.69), 3.74 (s, 3.00), 2.41 - 2.02 

(m, 11.41), 1.89 (s, 2.88). 13C NMR (126 MHz, CDCl3) δ = 193.8, 193.5, 170.9, 147.8, 

139.8, 134.2, 128.9, 128.3, 128.2, 128.1, 127.9, 127.3, 126.5, 126.3, 126.1, 126.0, 125.6, 

125.4, 125.2, 125.1, 124.3, 124.1, 123.9, 123.9, 123.5, 119.7, 119.5, 118.9, 110.3, 109.9, 

60.3, 59.9, 52.3, 51.9, 47.4, 45.1, 43.8, 42.7, 33.8, 31.8, 31.7, 29.5, 28.4, 22.2, 21.3, 19.1. 

Synthesis of cyclohepta[b]indole 49b: 

 

The general procedure was followed using alkylidene 48 (84 mg, 0.345 mmol), α-methyl-

paramethoxy styrene 41b (256 mg, 1.73 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-

Bu4N)(PF6) (3.3 mg, 0.009) and CH2Cl2 (3.49 mL) at 40 °C. After 15 min, the reaction 

was allowed to cool to room temperature, then concentrated under reduced pressure and 

column chromatography (25% EtOAc/hexane, Rf = 0.386) afforded 49b as a colorless oil 
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keto-enol mixture (84.7 mg, 63 % yield). 1H NMR (500 MHz, CDCl3) δ = 13.44 (s, 

0.17), 7.38 - 7.34 (m, 2.14), 7.32 - 7.27 (m, 2.10), 7.25 - 7.21 (m, 2.51), 7.20 - 7.17 (m, 

1.28), 7.16 - 7.12 (m, 1.98), 7.00 - 6.87 (m, 3.47), 6.84 - 6.80 (m, 2.18), 6.80 - 6.75 (m, 

2.35), 3.99 (s, 0.55), 3.93 (dd, J = 7.0, 10.4 Hz, 1.14), 3.90 - 3.86 (m, 7.18), 3.83 (s, 

0.55), 3.79 (s, 3.07), 3.76 (d, J = 3.4 Hz, 6.20), 3.71 (s, 3.00), 2.36 - 2.26 (m, 1.26), 2.25 - 

2.07 (m, 5.05), 2.06 - 1.99 (m, 2.27), 1.97 (s, 3.08), 1.92 (s, 0.59), 1.84 - 1.82 (m, 3.10). 

13C NMR (126 MHz, CDCl3) δ = 193.9, 193.5, 170.9, 170.8, 157.7, 157.6, 140.5, 139.8, 

139.6, 134.0, 134.0, 129.2, 128.9, 128.4, 127.8, 127.6, 125.3, 125.2, 125.2, 125.1, 124.2, 

123.9, 123.6, 119.7, 119.5, 118.9, 113.5, 113.3, 113.2, 110.3, 60.3, 59.9, 55.1, 55.0, 52.3, 

51.9, 44.5, 44.4, 43.9, 42.7, 31.8, 31.7, 29.8, 29.6, 28.6, 22.2, 21.2. 

Synthesis of cyclohepta[b]indole 49c:  

 

The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), 

paramethoxy styrene 41c (0.25 mL, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-

Bu4N)(PF6) (3.3 mg, 0.009) and CH2Cl2 (3.49 mL) at 40 °C. After 15 min, the reaction 

was allowed to cool to room temperature, then concentrated under reduced pressure and 

column chromatography (25% EtOAc/hexane, Rf = 0.407) afforded 49c as a yellow oil 

keto-enol mixture (48.3 mg, 37 % yield). 1H NMR (500 MHz, CDCl3) δ = 13.34 (s, 

0.15), 7.41 - 7.29 (m, 4.33), 7.14 (d, J = 8.2 Hz, 0.51), 7.11 - 7.07 (m, 0.54), 7.07 - 6.99 
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(m, 4.09), 6.98 - 6.90 (m, 0.78), 6.83 - 6.75 (m, 3.56), 4.81 (dd, J = 3.7, 6.4 Hz, 0.97), 

4.78 - 4.74 (m, 0.49), 4.63 (t, J = 8.7 Hz, 0.17), 3.99 (s, 0.51), 3.98 - 3.96 (m, 3.03), 3.94 

(s, 1.76), 3.88 - 3.83 (m, 1.58), 3.79 (s, 1.52), 3.77 - 3.74 (m, 5.13), 3.71 (d, J = 6.7 Hz, 

3.00), 2.42 - 2.22 (m, 4.81), 2.14 - 2.07 (m, 0.91), 2.05 - 1.95 (m, 0.73). 

Synthesis of cyclohepta[b]indole 49d:  

 

The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), 

paramethyl styrene 41d (0.23 mL, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-

Bu4N)(PF6) (3.3 mg, 0.009) and CH2Cl2 (3.49 mL) at 40 °C. After 30 min, the reaction 

was allowed to cool to room temperature, then concentrated under reduced pressure and 

column chromatography (25% EtOAc/hexane, Rf = 0.425) afforded 49d as a colorless oil 

keto-enol mixture (70.3 mg, 56 % yield). 1H NMR (500 MHz, CDCl3) δ = 13.35 (s, 

0.30), 7.41 - 7.29 (m, 8.53), 7.09 - 6.90 (m, 18.12), 4.83 (dd, J = 3.8, 6.6 Hz, 2.03), 4.79 - 

4.76 (m, 0.89), 4.65 (t, J = 8.7 Hz, 0.35), 3.97 (s, 5.54), 3.94 (s, 2.65), 3.86 (dd, J = 6.1, 

9.5 Hz, 2.21), 3.79 (s, 2.76), 3.71 (s, 6.00), 2.43 - 2.22 (m, 22.18), 2.13 - 2.07 (m, 2.05), 

2.07 - 2.05 (m, 3.70). 

Synthesis of cyclohepta[b]indole 49e:  
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The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), 

parachloro styrene 41e (0.25 mL, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-

Bu4N)(PF6) (3.3 mg, 0.009) and CH2Cl2 (3.49 mL) at 40 °C. After 30 min, the reaction 

was allowed to cool to room temperature, then concentrated under reduced pressure and 

column chromatography (25% EtOAc/hexane, Rf = 0.400) afforded 49e as a colorless oil 

keto-enol mixture (20 mg, 10 % yield). 1H NMR (300 MHz, CDCl3) δ = 13.33 (s, 0.18), 

7.43 - 7.29 (m, 7.67), 7.25 - 7.18 (m, 4.91), 7.11 - 7.01 (m, 6.51), 7.01 - 6.92 (m, 1.68), 

4.83 - 4.75 (m, 2.00), 4.69 - 4.62 (m, 0.36), 4.00 - 3.97 (m, 1.27), 3.97 - 3.94 (m, 4.40), 

3.93 (s, 2.62), 3.79 - 3.77 (m, 2.45), 3.71 (s, 4.12), 2.39 - 2.29 (m, 4.53), 2.29 - 2.21 (m, 

1.58), 2.12 - 1.99 (m, 2.23). 

Synthesis of cyclohepta[b]indole 49f:  

 

The general procedure was followed using alkylidene 48 (100 mg, 0.411 mmol), styrene 

41f (0.24 mL, 2.06 mmol), Ca(NTf2)2 (6.2 mg, 0.010 mmol), (n-Bu4N)(PF6) (4.0 mg, 

0.010) and CH2Cl2 (4.11 mL) at 40 °C. After 1.5 h, the reaction was allowed to cool to 
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room temperature, then concentrated under reduced pressure and column chromatography 

(25% EtOAc/hexane, Rf = 0.480) afforded 49f as a colorless oil keto-enol mixture (13.1 

mg, 9 % yield). 1H NMR (300 MHz, CDCl3) δ = 13.33 (s, 0.13), 7.39 - 7.37 (m, 1.91), 

7.36 (q, J = 1.4 Hz, 1.17), 7.34 - 7.30 (m, 1.36), 7.24 - 7.22 (m, 1.53), 7.22 - 7.15 (m, 

2.53), 7.14 - 7.09 (m, 3.36), 7.08 - 7.00 (m, 1.60), 6.97 - 6.90 (m, 0.70), 4.88 - 4.83 (m, 

1.00), 4.80 (t, J = 4.9 Hz, 0.50), 4.68 (t, J = 8.9 Hz, 0.24), 4.00 - 3.95 (m, 4.03), 3.94 (s, 

1.58), 3.83 (s, 1.00), 3.79 - 3.76 (m, 1.54), 3.71 (s, 3.20), 2.45 - 2.19 (m, 5.13), 2.15 - 

1.97 (m, 2.01). 

Synthesis of cyclohepta[b]indole 49g:  

 

The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), styrene 

41g (0.19 mg, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-Bu4N)(PF6) (3.3 mg, 

0.009) and CH2Cl2 (3.49 mL) at 40 °C. After 3 h, the reaction was allowed to cool to 

room temperature, then concentrated under reduced pressure and column chromatography 

(25% EtOAc/hexane, Rf = 0.480) afforded 49g as a colorless oil keto-enol mixture (115.9 

mg, 90 % yield). 1H NMR (400 MHz, CDCl3) δ = 7.95 - 7.85 (m, 12.71), 7.75 - 7.70 (m, 

3.52), 7.59 - 7.50 (m, 9.35), 7.41 (dd, J = 0.8, 8.3 Hz, 3.73), 7.31 (dt, J = 1.4, 7.6 Hz, 

3.37), 7.21 - 7.15 (m, 3.84), 6.78 (d, J = 0.8 Hz, 2.92), 3.75 (s, 9.16), 3.47 (s, 9.23), 2.69 - 

2.59 (m, 3.18), 2.52 (td, J = 5.6, 13.6 Hz, 3.16), 2.45 - 2.35 (m, 3.35), 2.21 (ddd, J = 5.8, 
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8.5, 13.9 Hz, 3.25), 1.78 (s, 9.00). 13C NMR (126 MHz, CDCl3) δ = 167.5, 153.4, 141.8, 

137.2, 135.4, 133.1, 132.4, 128.4, 128.1, 127.4, 127.2, 126.7, 126.2, 126.0, 123.3, 122.7, 

122.1, 121.2, 119.6, 109.5, 107.6, 102.4, 80.5, 52.5, 51.3, 31.9, 30.5, 29.65, 28.7, 20.4. 

 

 

Synthesis of cyclohepta[b]indole 49h: 

 

The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), alkene 

41h (283 mg, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-Bu4N)(PF6) (3.4 mg, 

0.009) and CH2Cl2 (3.5 mL) at 40 °C. After 30 min, the reaction was allowed to cool to 

room temperature, then concentrated under reduced pressure and column chromatography 

(25% EtOAc/hexane, Rf = 0.325) afforded 49h as a colorless oil keto-enol mixture (111.6 

mg, 79 % yield). 1H NMR (500 MHz, CDCl3) δ = 13.36 (s, 0.20), 7.32 - 7.27 (m, 1.84), 

7.27 - 7.16 (m, 2.76), 7.14 - 7.08 (m, 2.88), 6.87 - 6.78 (m, 2.68), 6.77 - 6.71 (m, 3.49), 

3.99 - 3.94 (m, 1.76), 3.85 (s, 2.40), 3.83 (s, 2.84), 3.81 (s, 1.79), 3.75 (s, 1.73), 3.73 (d, J 

= 6.4 Hz, 6.72), 2.66 - 2.52 (m, 1.27), 2.52 - 2.46 (m, 0.78), 2.35 - 2.28 (m, 0.57), 2.25 - 

2.19 (m, 0.56), 2.17 - 2.10 (m, 1.18), 1.99 - 1.93 (m, 1.08), 1.92 (s, 3.00), 1.87 (s, 0.70), 

1.83 (s, 1.72), 0.92 - 0.86 (m, 3.81), 0.79 (d, J = 6.7 Hz, 1.71). 13C NMR (126 MHz, 
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CDCl3) δ = 193.8, 193.1, 173.2, 170.9, 170.8, 163.3, 157.4, 157.3, 141.2, 140.3, 139.9, 

139.8, 139.0, 133.6, 133.5, 131.1, 130.8, 129.0, 127.9, 125.5, 125.0, 124.9,123.7, 123.6, 

123.2, 119.6, 118.9, 113.1, 112.9, 110.1, 110.0, 109.8, 104.0, 59.8, 58.5, 54.9. 54.9, 52.3, 

52.2, 51.9, 48.3, 47.6, 46.7, 46.3, 44.1, 42.8, 33.7, 31.6, 31.5, 30.0, 29.9, 26.8, 21.6, 19.3, 

19.0, 17.8, 17.7, 16.9. 

 

Synthesis of cyclohepta[b]indole 49i: 

 

The general procedure was followed using alkylidene 48 (85 mg, 0.349 mmol), indene 

41i (0.20 mL, 1.75 mmol), Ca(NTf2)2 (5.2 mg, 0.009 mmol), (n-Bu4N)(PF6) (3.4 mg, 

0.009) and CH2Cl2 (3.5 mL) at 40 °C. After 1 h 15 min, the reaction was allowed to cool 

to room temperature, then concentrated under reduced pressure and column 

chromatography (25% EtOAc/hexane, Rf = 0.375) afforded 49i as a yellow oil keto-enol 

mixture (38.8 mg, 31 % yield). 1H NMR (300 MHz, CDCl3) δ = 13.33 (s, 0.27), 7.44 - 

7.30 (m, 11.82), 7.25 - 7.19 (m, 7.00), 7.10 (d, J = 0.9 Hz, 1.46), 7.08 - 7.02 (m, 8.36), 

7.01 - 6.93 (m, 2.56), 4.83 - 4.75 (m, 3.09), 4.69 - 4.62 (m, 0.53), 3.99 - 3.97 (m, 1.87), 

3.95 (s, 6.30), 3.93 (s, 3.92), 3.84 - 3.83 (m, 2.10), 3.79 - 3.77 (m, 3.39), 3.71 (s, 6.00), 

2.41 - 2.29 (m, 7.27), 2.28 - 2.21 (m, 2.42), 2.12 - 2.01 (m, 3.03). 
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Synthesis of cyclohepta[b]indole 50i: 

 

To a round bottom flask charged with cyclohepta[b]indole 49i (38.8 mg, 0.108 mmol) in 

DMSO (0.43 mL) and a magnetic stir bar was added sodium chloride (18.9 mg, 0.3237 

mmol) in water (1.9 mL). After 2 h, the reaction mixture was concentrated under reduced 

pressure and purified by prep-TLC afforded 50i as a colorless oil (11.3 mg, 35%). 1H 

NMR (500 MHz, CDCl3) δ = 7.76 (d, J = 8.2 Hz, 1 H), 7.47 - 7.43 (m, 2 H), 7.25 - 7.19 

(m, 2 H), 7.14 - 7.09 (m, 1 H), 7.00 - 6.95 (m, 1 H), 6.53 (d, J = 7.3 Hz, 1 H), 5.25 (d, J = 

8.2 Hz, 1 H), 4.03 (s, 3 H), 3.55 (dd, J = 8.4, 16.6 Hz, 1 H), 3.19 - 3.11 (m, 1 H), 2.90 (td, 

J = 1.0, 16.3 Hz, 1 H), 2.53 (dd, J = 7.9, 17.4 Hz, 1 H), 2.35 - 2.27 (m, 1 H), 2.12 - 2.04 

(m, 1 H), 1.97 - 1.90 (m, 1 H). 13C NMR (126 MHz, CDCl3) δ = 197.4, 146.5, 142.5, 

139.2, 131.9, 127.3, 126.8, 126.7, 123.9, 123.5, 120.6, 120.4, 110.3, 44.4, 39.8, 39.7, 

39.3, 32.2, 29.8. 
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CHAPTER 4. CA(II)-CATALYZED DEHYDRATIVE, NAZAROV-

TYPE ELECTROCYCLIZATIONS: ACCESS TO 

CYCLOPENTA[B]THIOPHENES AND INDENE DERIVATIVES*,1 

4.1 Importance of Cyclopenta[b]thiophenes and Indenes 

Cyclopenta[b]thiophenes exemplify a unique class of organic molecules which 

have shown to be isosteres of indenes (Figure 4.1)2 and therefore are useful in broad 

range of applications. For example, the parent compounds have been primarily used as 

precursors to thiophene-fused cyclopentadienyl metal complexes, zirconium complexes 

effectively catalyze the regiospecific polymerization of 1-alkenes.3 On the other hand, the 

5,6-dihydro derivatives are used in the field of material science for conjugated polymers, 

liquid crystalline media and organic field-effect transistors.4 

                                                
* Work on Ca-catalyzed dehydrative Nazarov-type electrocyclization was performed in collaboration with 
Matthew Sandridge, Corey Williams and Zola Francis. 
Published in Tetrahedron. 2017, 73, 4093. 
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Figure 4.1. Isomeric Forms of Cyclopenta[b]thiophene 

4.2 Previous Approaches towards Cyclopenta[b]thiophenes 

There is a lack of general and robust methods for the preparation of functionalized 
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three-step sequence: 1) a one-pot acid-promoted Friedel-Crafts acylation/Nazarov 

cyclization of thiophene with acrylic acid derivatives to form thiophene-fused 

cyclopentanones 5, 2) nucleophilic attack at the carbonyl to form the corresponding 

alcohols 3) acid-promoted dehydration to form the cyclopenta[b]thiophenes 6. An 
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cyclopentadienyllithium 7.6 Then cyclopentadienes 9 were treated with Lawesson’s 

reagent to afford cyclopenta[b]thiophenes 10. 

Alas, these approaches had shown several limitations: 1) limited scope (only 

methyl or phenyl substituents) 2) low functional group tolerance as a result of using 

strong acids, 3) low yielding transformations. With these limitations in mind, we sought 

to design a milder and more generalized protocol for the synthesis of 

cyclopenta[b]thiophenes focusing on achieving catalysis, efficiency, and modularity. 

 

Scheme 4.1. Previous Approaches to Cyclopenta[b]thiophenes 
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a 4π-electrocyclization of the 1,4-pentadienyl cation 12, generated from the cross-

conjugated divinyl ketones 11 (Scheme 4.2). Due in large part to initially harsh reaction 

conditions, this cyclization was of limited utility until most recently. 

 

Scheme 4.2. Nazarov Cyclization Mechanism 

Renewed interest in the Nazarov cyclization led to the breakthrough of a more 

diverse set of starting materials used for “Nazarov-like” reactions (Scheme 4.3).8 Hetero-
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Moreover, the replacement of one of the alkene moieties with an alternative group such 
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Scheme 4.3. General Examples of Nazarov-like Reactions 
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 In 2010, Batey and co-workers reported an example of dehydrative, Nazarov-type 

4π-electrocyclization to access functionalized indenes (Scheme 4.5A).10 They have 

comprehensively studied the effects of substituents on the selectivity of the cyclizations 

of 1,3-diarylallylic cations I, derived from the diallyl alcohols using stoichiometric 

BF3!OEt2. Then Würthwein and co-workers in 2012,11 incorporated a heteroatom (N in 

this case) in the vinyl moiety of the divinyl alcohol 31, leading to the synthesis of 

pyrroles 32 (Scheme 4.5B). This transformation involved formation of highly reactive 1-

azapentadienyl cations after protonation at the hydroxyl group of 31 by the super acid and 

subsequent loss of water. Then the 1-azapentadienyl cations underwent a pericyclic ring-

closure reaction leading to the pyrroles 32 after proton loss and aromatization. Finally in 

2013, Bisai and co-workers9g showcased an example of a metal triflate-catalyzed 

cyclization of arylvinylcarbinols 33 via an arylallyl carbocation species intermediate, 

affording synthesis of the carbotricyclic scaffold of natural products, taiwaniaquinoids 

(Scheme 4.5C). 
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Scheme 4.5. Examples of Dehydrative Nazarov-type Cyclization in Literature 
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As mentioned in previous chapters, our lab has developed a variety of Lewis acid-

catalyzed protocols toward (hetero)aryl-fused five-, six-, and seven-membered rings 

using Nazarov-like reactions.12,13,14 As such, we sought to establish the catalytic, formal 

homo-Nazarov cyclization as a template for diversity-oriented synthesis (Figure 4.2).15  

 

Figure 4.2. Catalytic, Formal Homo-Nazarov Cyclization as a Template for 
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To expand that work on Nazarov-type cyclization, we recently reported a Ca2+-

catalyzed, dehydrative, ring-opening cyclization of (hetero)aryl cyclopropyl carbinols to 

form (hetero)aryl-fused cyclohexa-1,3-dienes in up to 97% yield (Scheme 4.6A).16 As a 

result, replacing the cyclopropane with an alkene would lead to formation of 5-membered 

rings instead of 6-membered rings. Therefore we pursued to identify catalytic conditions 

that were amenable for the dehydrative Nazaro-type cyclization of alkenyl (hetero)aryl 

carbinols that specifically led to the synthesis of functionalized cyclopenta[b]thiophenes 

(Scheme 4.6B). 

 

Scheme 4.6. (A) Ca2+-catalyzed, Dehydrative, Ring-Opening Cyclization of 41, (B) 

Analogous Catalytic Approach to Cyclopenta[b]thiophenes 
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4.5.2 Model Substrate Synthesis 

The alkenyl (hetero)aryl carbinol 50 was synthesized via a two-step sequence from 

β-ketoester 47 (Scheme 4.7), which was accessed via a two step synthesis from 

commercially available thiophene-3-carboxylic acid. Knoevenagel condensation of β-

ketoester 47 with benzaldehyde 48 led to alkylidene β-ketoester 49. Finally subsequent 

Luche reduction17 of 49 provided with the desired carbinol 50. 

 

Scheme 4.7. Synthesis of Model alkenyl 3-thiophene Carbinol 49 
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Initially, we treated carbinol 50 to the same conditions reported by Batey10 – 100 
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successfully led to formation of cyclopenta[b]thiophene 51 albeit in low yield (47% 

yield). Attempt to achieve catalysis by lowering the amount of catalyst loading to 10 

mol% did not affect the yield of the reaction but a 2:3 mixture of cyclopenta[b]thiophene 

isomers (51’:51) were obtained. This showed successful implementation of catalytic 

conditions to afford the synthesis of cyclopenta[b]thiophenes in two different isomeric 

forms. 

 

OMe

O

Ph

OH

S

OMe

O

Ph

O

S
OMe

OO

S

piperidine
HOAc

Ph H

O

Benzene
reflux

CeCl3 7H2O
NaBH4

MeOH
47 49 50

48



 120 

Table 4.1. Initial Catalytic Conditions for Cyclopenta[b]thiophene Synthesis 

 

Entry Loading 
(mol %) Time (h) Yield (%) 51’:51 

1 100 4 47 0:1 

2 10 5 43 2:3 

 

4.5.4 Reaction Optimization 

From the initial screening, we investigated other Lewis acids than BF3!OEt2 such 

as metal triflate salts (Table 4.2, entries 4, 6 – 13). No desired product was obtained with 

La(OTf)3, Yb(OTf)3, Ni(OTf)2 and Dy(OTf)3 after 24 h (entries 10-13), while trace 

amount of cyclopenta[b]thiophene was detected with Al(OTf)3 (entry 9). In(OTf)3 and 

Ga(OTf)3 gave the sole cyclopenta[b]thiophene isomer 51 in 51% and 47% yield 

respectively. Treating carbinol 50 with Bi(OTf)3 led to a mixture of 

cyclopenta[b]thiophenes 51’:51 as a 1:2 mixture with an increased yield of 57% (entry 4). 

Inspired by our previous work on the ring-opening cyclization (Scheme 4.6A), a 

combination of Ca(NTf2)2 and additive (n-Bu4N)(PF6) was used for this transformation. 

This combination has been shown to be effective in catalyzing Nazarov cyclization and 

the reactions of carbinols.18 Under these conditions, only cyclopenta[b]thiophene isomer 

51 was obtained in 55% yield in 4 h (entry 2). Attempts to improve the effectiveness of 

the transformation by carrying the reaction at reflux led to an increase in yield of 65% in 

1h 45 min (entry 3). 
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Table 4.2. Acid Screening for Cyclopenta[b]thiophene Synthesis 

 

Entry Lewis acid Time (h) Yield (%) 51’:51 

1 None 24 - - 

2 Ca(NTf2)2 
(n-Bu4N)(PF6) 

4 55 0:1 

3* Ca(NTf2)2 
(n-Bu4N)(PF6) 

1.75 65 0:1 

4 Bi(OTf)3 4 57 1:2 

5* Bi(OTf)3 1.75 62 1:1 

6 In(OTf)3 4 51 0:1 

7 Ga(OTf)3 4 47 0:1 

8 Sc(OTf)3 24 11 1:1.15 

9 Al(OTf)3 20 trace - 

10 La(OTf)3 >24 - - 

11 Yb(OTf)3 >24 - - 

12 Ni(OTf)2 >24 - - 

13 Dy(OTf)3 24 - - 

14 TfOH 0.5 43 2:3 

* Reaction run at 40 °C. 

Next, we studied the effects of time at reflux on both the yields and product ratios 

(Table 4.3, entries 1 – 3). At 1h 30 min, the reaction gave a 3:1 mixture of the products 

with isomer 51’ as the major one, whereas when the reaction was allowed to go longer 

(2h 30 min), some isomerization was observed as 50’ to 50 ratio eroded to 1:5.5 along 

with a minor drop in yield (58%), possibly due to product degradation. Therefore to 
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minimize product degradation while optimizing for yield and product ratios, 1.75 h was 

selected as the ideal reaction time. 

In the final phase of optimizing the conditions for this transformation, we 

investigated the effects of (1) decreasing catalyst loading, (2) solvent, and (3) reaction 

concentration. Reducing the catalyst loadings to 5 mol% and 2.5 mol% did not lead to 

any improvement in yields and was detrimental to the rate of the alkene isomerization. 

Then, the different solvents were screened while maintaining the temperature at 40 °C to 

minimize product degradation (Table 4.3). Similar to CH2Cl2, both 1,2-DCE and toluene 

gave only isomer 51 but with reduced yields, 58% and 53% respectively (entries 4 and 5). 

On the other hand MeCN was incompatible since no desired products were observed 

(entry 6). This is presumably due to catalyst deactivation through solvent coordination. 

With THF, we detected a mixture of isomers 51’:51 as a 1:6 mixture (entry 7). 

Interestingly, benzene gave a slight improvement in yield, 67% and when the reaction 

was diluted (concentration = 0.05 M), the yield was further improved to 70% yield. 

Therefore, the optimized conditions for this transformation was 10 mol % of Ca(NTf2)2 

and 10 mol% of (n-Bu4N)(PF6) in benzene (0.05 M) at 40 °C at 1.75 h. 
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Table 4.3. Effect of Changing Solvents 

 

Entry Solvent Time (h) Yield (%) 51’:51 

1 CH2Cl2 1.75 65 0:1 

2 CH2Cl2 1.0 63 3:1 

3 CH2Cl2 2.5 57 1:5.5 

4 1,2-DCE 1.75 58 0:1 

5 Toluene 1.75 53 0:1 

6 MeCN >24 - - 

7 THF 1.75 57 1:6 

8 Benzene 1.75 67 0:1 

 

4.5.5 Examination of Substrate Scope 

With the optimized conditions in hand, we studied the scope for the transformation 

by investigating the effect of changing the alkenyl substituent of the carbinol 50 (Table 

4.4). First, we examined any stereoelectronic effects imparted by substituents on the 

phenyl ring. When the more electron donating group, para-methoxy was used, 51a was 

obtained in highest yield, 82%. With a weakly activating para-tolyl substituent, a 1:6.5 

mixture of cyclopenta[b]thiophene isomers was produced with 51f as major. With a 

weakly electron-withdrawing group (para-bromo) and a strong electron-withdrawing 

group (para-trifluoromethyl), the cyclization led to formation of solely isomer 51b and 
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51c in 69% and 67% respectively. Therefore, this study suggested that higher yields are 

anticipated with strong donor groups on the phenyl ring due to slight inductive effect. 

Table 4.4. Scope for Cyclopenta[b]thiophene Synthesis 

 
                * Synthesis of 51f and 51g performed by co-author Matthew Sandridge. 
 

To further probe substituent effects on the cyclization, the ortho- and meta-

methoxyphenyl carbinols 50g and 50h were subjected to the reaction conditions. 

Cyclization of 50g led to cyclopenta[b]thiophene as a 8:1 isomeric mixture with major 

51g’ in 75% yield. This unexpected result might presumably be due to steric influences 

(imparted by the methoxy group), which lowered the rate of alkene isomerization. On the 

other hand, 50h did not produce any cyclopenta[bthiophene isomers 51h’ or 51h 

(Scheme 4.8). Instead, indene 53f was formed in 79% yield where cyclization occurred 

onto the aryl group (reaction performed by co-author Matthew Sandridge). This result 

was consistent with Batey’s work10 in which the location of substituent on the phenyl ring 

has a direct influence on product outcome, with cyclization onto the more nucleophilic 
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aromatic ring as the major product.19 Ring closure is thus expected to occur preferentially 

on the phenyl ring para to the methoxy group – a more nucleophilic position than C-2 on 

the thiophene ring.  

Moreover, other than phenyl substituents, a heteroaryl group such as thiophene 

was substituted on the alkenyl moiety of carbinol 50d  (Table 4.4).  51d was generated in 

66% yield, as no cyclization onto the 2-thienyl moiety was observed. This outcome 

agrees with the greater nucleophilicity of the thiophene C-2 vs C-3. For 50e with a β-

styryl substituent, only 22% yield of 51e was isolated along with significant degradation 

and uncharacterized compound mixtures. Given the added delocalization, multiple 

cationic intermediates could be formed and might have been involved in competing 

reactions.  

 

Scheme 4.8. Synthesis of Indene 53f 

Next, the effects of replacing the thienyl group with other (hetero)arenes were 

studied under the optimized conditions (Table 4.5). 2-Benzothienyl carbinol 52a cyclized 

to give benzo[b]cyclopenta[d]thiophene 53a in 53% yield. However, 2-benzofuranyl 

carbinol 52b did not give any desired product, as significant decomposition was 

observed. This outcome was consistent with the low yield (10%) observed by Batey10 for 
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a similar 3-benzofuranyl derivative.  

Finally, we also investigated some examples with phenyl substituent on carbinols 

52 in an attempt to synthesize functionalized indenes. Ortho-methoxy substituted phenyl 

carbinol 52c led to indene 53c in 77% yield as expected. 2-Naphthyl carbinol 52e proved 

a competent substrate (75% yield) with alkylation readily occurring at C-1 to form 53e as 

the only detectable product. This outcome was consistent with what Batey10 obtained for 

a 2-naphthyl derivative with a methyl group in place of the ester group.  

Table 4.5. Effect of Changing the (Hetero)aryl Carbinol Substituents 

 

4.5.6 Reaction Mechanism* 

After investigating the scope of the transformation, the nature of the isomeric 

ratios of the products remained puzzling. The reaction appeared to be more complicated 

than a simple kinetic vs thermodynamic product argument since the ratios fluctuated, 

                                                
* The mechanistic studies were performed by co-author Matthew Sandridge. 
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changing in both directions. An understanding of the product ratios for this 

transformation was extensively investigated through a series of control reactions (Scheme 

4.9).  

 

Scheme 4.9. Probing the Interconversion of 51’ and 51 

First, before the optimization experiments were finalized, a 1:1.7 isomeric 

mixture of 51’:51 was subjected to the initial reaction conditions (10 mol % of Ca(NTf2)2 

and 10 mol% of (n-Bu4N)(PF6) in CH2Cl2 (0.1 M) at 40 °C) for 0.5 h and 1 h (Table 4.6). 

At 0.5 h, the product ratios improved with an increase for 51 (1:15 isomeric mixture) 

(entry 1). On the other hand, letting the reaction at reflux for 1 h resulted in deterioration 

of 51’:51 isomeric mixture to 1:3.5 (entry 2). Furthermore, in both cases, we observed 

product degradation as about 65 – 69% of the mixture was recovered. From this first 

study, we learnt two things: (1) the reflux time affects directly the product ratios, and (2) 

there is a competing pathway happening resulting in product degradation.  

Table 4.6. Control Experiment to Probe the Effect of Temperature 

Entry Time at 
reflux (h) % recovery 51’:51 

1 0.5 65 1:15 

2 1.0 69 1:3.5 

There are two plausible mechanistic pathway for the existence of the 

interconversion of 51’ and 50 (Scheme 4.10). The first pathway involves two 1,5-H shifts 
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occurring consecutively (converting from the 4H, 5H and 6H-cyclopenta[b]thiophenes 

and vice versa). Otherwise, the other pathway can be described as an acid/base-mediated 

protonation/deprotonation mechanism. Finally, a third option could be a combination of 

the two pathways if they occur concurrently. 

 

Scheme 4.10. Plausible Mechanism for Interconversion 

To understand further the effects of heat on the isomeric ratios, a plot of product 

ratios as a function of time was drawn (Figure 4.3). The blue line indicated significant 

fluctuations in the isomeric ratios between 60 and 120 min for the optimized reaction 

starting with 50. Full conversion of 50 to cyclopenta[b]thiophene was observed within 15 

min with oscillation in product ratios until 105 min where only isomer 51 was detected. 

Lastly, product degradation did not seem to aggravate over the time span of 15 min and 

120 min. 

Two additional experiments involved heating and stirring a 1:2.2 isomeric ratio of 

51’:51 in benzene either with 10 mol% HNTf2 (purple line) or without (green line). If the 
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interconversion were the result of purely thermodynamic H-shifts, product fluctuation 

would be observed with simple heating and stirring over time. If it was following the 

protonation/deprotonation pathway instead, oscillation should only occur with acid 

present. The results for both show a minor change (~5%) in ratio within the first 15 min, 

followed by little change at all (<5%). As a result, interconversion seemed very slow or 

the system had reached equilibrium. This result is definitely different from the other data 

sets involving the calcium catalyst, which appeared to be accountable for the large 

fluctuations. Therefore, we could presumably think there might be some sort of complex 

involving the calcium catalyst and the products that facilitated interconversion between 

51’ and 51.  

 

Figure 4.3. Control Reactions as a Function of Time 
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Finally, we subjected deuterated carbinol 50-d to the reaction conditions in an 

attempt to investigate the hydride shift mechanism (Scheme 4.11). 51’-d was obtained as 

the major product in a 40:1 ratio of 51’-d:51-d. This experiment was repeated at 30 min 

and 60 min and gave identical results. Analogously, the control reaction of carbinol 50 in 

deuterated solvent showed no deuterium incorporation but did indicate a change in 

isomeric ratio, implying a solvent effect. Therefore the consistency over time and 

constant prevalence of 51’-d isomer suggested that it formed first in the reaction and 

presence of the deuterium prevented isomerization, implying a very large kinetic isotope 

effect. Mechanistically, this meant that cyclopenta[b]thiophene 51’ was the first to form 

in the reaction and subsequently isomerized in the instances we observed isomer 51. 

 

Scheme 4.11. Nazarov Cyclization of Deuterated Carbinol 50-d 

4.6 Summary 

Herein, we revealed a Ca2+-catalyzed protocol for the dehydrative, Nazarov-type 

electrocyclization of alkenyl (hetero) aryl carbinols that allowed access to functionalized 

cyclopenta[b]thiophenes and indenes (Scheme 4.12). This novel approach provides with 

milder conditions for the direct synthesis of cyclopenta[b]thiophenes, circumventing the 

need for cyclopenta[b]thiophenones as precursors. As a result, high tolerance for aryl and 

heteroaryl substituents on the alkene moiety of carbinols was shown. Substituent effects 

on the phenyl ring play a significant role in determining product outcomes and isomeric 
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ratios. For systems with competing (hetero)aryl substituents, cyclization occurred 

preferentially on the most nucleophilic ring. In addition, interestingly with the 3-thienyl 

series (without a competing aryl substituent), the reaction was selective for the 

thermodynamic alkene isomer in all but one case, whereas the arene series favored the 

kinetic alkene isomer for the resulting indenes. Lastly, this transformation represents one 

of the only examples of catalytic, dehydrative, Nazarov-type electrocyclizations in which 

thiophenes are compatible.  

 

Scheme 4.12. Catalytic Dehydrative Nazarov Cyclization for Cyclopenta[b]thiophenes 

4.7 Experimental Section 

4.7.1 Cyclohepta[b]thiophenes and Indenes: 

For the Ca2+-catalyzed dehydrative Nazarov-type electrocyclizations for the 

synthesis of cyclopenta[b]thiophene and indene derivatives, the experimental section and 

characterization can be found in the article: Martin, M. C.; Sandridge, M. J.; Williams, C. 

W.; Francis, Z. A.; France, S. Tetrahedron 2017, 73, 4093. 
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CHAPTER 5. CONCLUSIONS AND FUTURE OUTLOOK 

5.1 Conclusion 

Highlighted in this thesis are the diversity-oriented synthetic strategies as a gateway 

to small N-heterocyclic and polycyclic scaffolds such as 2,3-dihydropyrroles, 2,3-

tetrahydropyridines, azepino[1,2-a]indoles, cyclohepta[b]indoles, cyclopenta[b]thio-

phenes and indene derivatives. We have developed a general approach using mild Lewis 

acid-catalyzed amine ring opening cyclization using D-A cyclopropanes and D-A 

cyclobutanes to access 2,3-dihydropyrroles and 2,3-tetrahydropyridines. The design of a 

catalytic and diastereoselective formal [5+2] cycloaddition approach to access the 

azepino[1,2-a]indole scaffold found in many natural product targets. Importantly, the first 

example of Lewis acid-catalyzed intramolecular ring-opening cyclizations of D-A 

cyclobutanes, have been reported. In addition, this catalytic formal [5+2] cycloaddition 

has proven to be applicable to the synthesis of another interesting seven-membered ring 

fused indole, cyclohepta[b]indole. Finally, the first example of a Ca2+-catalyzed 

dehydrative, Nazarov-type cyclization in which thiophenes are compatible, hence 

providing with a more direct route to the synthesis of cyclopenta[b]thiophene and indene 

derivatives. These frameworks are useful in many applications in the field of inorganic 

chemistry and material science. 
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5.2 Lewis Acid-Catalyzed Amine Ring-Opening Cyclizations of Strained 

Carbocycles 

Chapter 2 entailed this Ni-catalyzed amine ring-opening cyclizations of D-A 

cyclopropanes and D-A cyclobutanes to afford dihydropyrroles and tetrahydropyridine 

core structures. Interestingly, we have shown treatment of these dihydropyrroles with 

DDQ led to the formation of another popular nitrogen-containing five-membered ring, 

the pyrrole (Scheme 5.1A). Once the optimization conditions are finalized with D-A 

cyclobutanes to access the 2,3-tetrahydropyridines, similar oxidation conditions could be 

applied to lead to formation of functionalized pyridines, found to be useful in medicinal 

chemistry. 

 

Scheme 5.1. Oxidation Step to Afford Pyrrole and Pyridine Derivatives 

In addition, an alternative route to access functionalized pyrroles is possible by 
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reactivity in presence of difference electrophiles accessing polycyclic skeletons (Scheme 

5.2B) 

 

Scheme 5.2. (A) Strained Polarized Carbocycles as a Means to N-heterocycles, 
         (B) Further Derivation using Vinylogous Reactivity 
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hence leading to unsaturation in the seven-membered ring fused indole scaffolds. 

Moreover, there is the potential formation of D-A cyclobutenes as intermediates, which 

can undergo intramolecular ring-opening cyclization to form this unsaturated seven-

membered ring. This type of chemistry will be very much attractive and novel since no 

reports of intramolecular ring-opening cyclizations with D-A cyclobutenes exist in the 

literature. 

Moreover, in an attempt to apply this formal [5+2] cycloaddition protocol to the 

synthesis of certain natural products (Scheme 5.3B), we envisioned intramolecular formal 

[5+2] cycloadditions of tethered alkylidenes under Lewis acid conditions to access these 

nitrogen-substituted tetracyclic scaffolds. This can provide a direct synthetic route to 

these scaffolds. On the other hand, the intermolecular approach developed in chapter 3 

did not show successful implementation. 

 

Scheme 5.3. Potential Other Directions with Formal [5+2] Cycloadditions 
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Finally, with the constant interest with the popular indole alkaloid natural products, 

we have explored the formal [5+2] cycloaddition reactivity involving mostly indole-type 

alkylidenes to access the azepino[1,2-a]indoles and cyclohepta[b]indoles. There is 

potential to apply this reactivity towards the synthesis of other scaffolds using different 

heterocyclic-based alkylidenes (Figure 5.1). Therefore, these scaffolds can provide the 

generality and breadth of scope of formal [5+2] cycloaddition as well as D-A cyclobutane 

reactivity. 

 

Figure 5.1. Other Potential Scaffolds using Formal [5+2] Cycloadditions 
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