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Critical-engine-inoperative (CEI) takeoff is a required flight test in transport aircraft type
certification. Due to the limited excess power following engine failure, this flight test is po-
tentially dangerous and highly sensitive to the flight controls. To enhance the flight safety in
CEI takeoff, an optimal longitudinal control sequence is necessary for the flight test. On the
other hand, to reduce the cost associated with type certification process, it is desired to incor-
porate certification analysis in early design phases. Since the certification regulations pose
requirements on aircraft dynamic responses, the point-mass based method used in most of
the takeoff analyses for aircraft early design is not suitable. To incorporate flight dynamics in
takeoff analysis, a robust longitudinal control law is needed for takeoff performance prediction.
This paper proposes to use Differential Dynamic Programming (DDP) for the optimization of
elevator control for CEI takeoff certification analysis. To evaluate the method, two test cases
are performed on the CEI takeoff of a small single-aisle aircraft model with different initial
conditions. The results of two cases suggests that the DDP algorithm is able to optimize the
trajectory in terms ofminimizing takeoff distance, maximizing the rate of climb, and improving
the compliance with respect to takeoff certification constraints. The optimized trajectory is
sensitive to the initial control sequence given to the algorithm and the cost function settings.

I. Nomenclature

α = angle of attack
β = sideslip angle
θ = pitch attitude
γ = flight path angle
δe = elevator defection
c̄ = reference chord length
CD = drag coefficient
Cf = runway friction coefficient
CL = lift coefficient
Cm0 = pitching-moment coefficient at zero angle of attack
Cmα = pitching-moment coefficient with angle of attack
Cmδe

= pitching-moment coefficient with elevator deflection
Cmq̂ = pitching-moment coefficient with pitch rate
D = drag
Iyy = pitching mass moment of inertia
L = lift
Ps = excess power
q = pitch rate
S = reference wing area
T = thrust
u = body x-axis velocity
V∞ = airspeed
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w = body z-axis velocity
W = weight

II. Introduction
Takeoff performance is of essential importance in aircraft design. In Title 14 of the Code of Federal Regulations

(14 CFR) Part-25 [1], the takeoff certification requirements are specified including takeoff speeds, takeoff distance,
takeoff path, etc. To show the compliance with respect to these certification regulations, the aircraft must perform
flight tests following the procedures described in the Advisory Circular [2]. One of the required flight tests is the
critical-engine-inoperative (CEI) takeoff. The CEI takeoff flight test can be particularly dangerous due to the limited
excess power available due to the simulated engine failure. Aircraft manufacturers want to have their aircrafts to be
certified with minimized takeoff field length because it determines the takeoff operational limit which directly affects
the market performance of their products. But meanwhile, the manufactures also need to guarantee the whole flight test
process is safe and satisfies the regulatory requirements. Although takeoff performance is mostly determined by aircraft
sizing and design, the responses of aircraft in flight test can also be significantly affected by the strategy of longitudinal
control. Therefore, to encourage an optimal takeoff certification result, it is necessary to have an optimal flight control
applied on the aircraft.

On the other hand, type certification is a process that is expensive, time-consuming, and subject to uncertainties [3].
In order to reduce the cost associated with certification, it is desired to incorporate certification consideration into aircraft
early design phase to promote the viability of the design. Such incorporation requires a relatively accurate and robust
certification analysis capability to be integrated in sizing and design loop. Because the regulations pose requirements on
aircraft dynamic responses, the point-mass performance evaluation method may no longer be valid for certification
analysis. Considering that takeoff performance and dynamics are sensitive to flight control, it is necessary to introduce a
robust way to determine the optimal flight control in certification analysis capability, thus to better evaluate how “best”
the current design can perform with respect to takeoff certification requirements.

A number of methods have been proposed for takeoff modeling. Past studies have focused on takeoff analysis for
aircraft sizing and performance analysis [4–7], takeoff trajectory prediction for aircraft operational level analysis [8, 9],
takeoff dynamics modeling [10–13], one-engine-out lateral path strategy [14, 15], and lateral controllability at
CEI [16, 17]. Limitations in preceding research include: 1. The point-mass based method used in most research cannot
capture the aircraft dynamic responses during takeoff; 2. Most of the CEI takeoff analyses ignored the takeoff climb
segment from 400 to 1500 feet, but this segment could be critical to CEI flight due to limited excess power; 3. The
control laws used in existing longitudinal takeoff dynamic simulations are mostly open-loop or aircraft-depended, which
are not robust and cannot guarantee the optimal takeoff performance.

This paper proposes an approach to optimize the longitudinal control for CEI takeoff using Differential Dynamic
Programming (DDP) [18], thus to improve the takeoff certification analysis capability. The reminder of this paper is
organized as follows: Section III describes the takeoff flight dynamics modeling; Section IV introduces the method
and algorithm of the DDP; Section V discusses how the DDP is applied to the CEI takeoff trajectory optimization;
Section VI presents the CEI takeoff simulation and optimization results of the test cases; Section VII draws some
conclusions from the presented results.

III. Takeoff Dynamics Modeling
The takeoff dynamic simulation is performed on the Flight Certification Analysis Module [19] developed in Georgia

Tech Aerospace Systems Design Laboratory. Suppose that the side force and yawing moment from inoperative engine
are balanced by steady sideslip and rudder control, and assume no lateral or directional motions, the takeoff process can
be regarded as a three degree-of-freedom longitudinal dynamics. Assuming the body axes aligned with the principle
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axes for simplification, the equations of motion are written as:

Ûu = X/m − g sin θ − qw
Ûw = Z/m + g cos θ + qu
Ûq = M/Iyy
Ûθ = q
Ûxe = u cos θ − w sin θ
Ûze = u sin θ + w cos θ

(1)

where X , Z , and M are the external forces and moment contributed by aerodynamics, propulsion, and ground roll,
measured in aircraft body axes. The expressions for these forces and moments are explained later. xe and ze are the
displacements in ground axes, i.e. the takeoff horizontal distance and altitude above the ground.

The takeoff simulation follows the procedure described in the Advisory Circular AC 25-7D [2] as shown in Fig. 1.
The process can be divided into two segments: the ground roll before lift-off and the takeoff climb after lift-off.

Fig. 1 Takeoff Segments and Nomenclature [2]

The ground roll segment includes all-engine-operating accelerating to VEF , critical engine failure at VEF , critical-
engine-inoperative accelerating to decision speed V1, rotating at VR, and accelerating to lift-off speed VLOF . In this
paper, VEF and V1 are given externally and remained fixed in the optimization process. The external forces and pitch
moment at ground roll segment are given by

X = T + Xaero + Xground (2)

Z = Zaero + Zground (3)

M = Maero + Mthrust + Mground (4)

In these equations, the aerodynamic forces and moment are given by{
L = 1

2 ρV2
∞SCL

D = 1
2 ρV2

∞SCD

(5)


Xaero = −D cosα cos β + L sinα
Zaero = −L cosα − D cos β sinα
Maero =

1
2 ρV2

∞Sc̄(Cm0 + Cmαα + Cmq̂ q̂ + Cmδe
δe)

(6)
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where CL and CD are varying with angle of attach α and elevator deflection δe. The sideslip β is computed from lateral
trim and assumed constant after V1. The ground forces and moment are given by:

Xground = −Cf (W − L) cosα cos β − (W − L) sinα
Zground = −(W − L) cosα − Cf (W − L) cos β sinα
Mground = −(W − L)(xMW − xCG) − Cf (W − L)(zCG − zMW )

(7)

where xCG (zCG) and xMW (zMW ) are the x(z)-coordinates of center of gravity and main landing gear measured from
aircraft front-nose. The pitching moment from thrust is given by:

Mthrust = T · zN (8)

where zN is the vertical distance between nacelle main axis and aircraft main axis.
The takeoff climb segment is from the lift-off to 1500 feet above ground. The forces and pitch moment at this

segment are governed by:
X = T + Xaero (9)

Z = Zaero (10)

M = Maero + Mthrust (11)

where the aerodynamic forces and moment are given by Eqs. (5) (6), and the pitch moment from thrust is given by
Eq. (8).

In this paper, the dynamic simulation is performed in discretized time domain. The state variables are iteratively
updated by numerically solving the equations of motion using the Euler’s method. The control variable is determined
and optimized by the Differential Dynamic Programming introduced in following section.

IV. Differential Dynamic Programming
Differential Dynamic Programming (DDP) is an optimum control algorithm for trajectory optimization [18]. For

a discrete dynamics xi+1 = f(xi,ui) (such as the takeoff dynamics governed by Eq. (1)), the cost function for a finite
horizon spanning from initial state to final time step N can be written as:

J0(x,U) =
N−1∑
i=0

g(xi,ui) + gf (xN ) (12)

where U is the control sequence from initial state to final state, g is the cost at each time step, and gf is the terminal cost
at the end point. The value function is defined as the minimization of cost function with the optimal control sequence
and written as a function of state variables:

V(x,0) = min
U

J0(x,U) (13)

In the DDP, the optimal control problem is decomposed into a series of recursive subproblems and iteratively solved
backward in time by the Bellman equation. The Bellman equation describes the relationship between the value function
in one time step and the value function in the next time step:

V(x, i) = min
u
[g(x,u) + V(f(x,u), i + 1)] (14)

This implies that if the optimization is worked backwards, the value function at time step i can be found from the value
function at time step i + 1. Perturbing the value function around (x,u) at time step i, and letting Q be the variation of
value function yields:

Q(δx, δu) = g(x + δx,u + δu) − g(x,u) + V(f(x + δx,u + δu), i + 1) − V(f(x,u), i + 1) (15)

Expanding Q with second-order approximation and denote V ′ as the value function at next time step V(i + 1):

Q(δx, δu) = Qxδx +Quδu +
1
2
δxTQxxδx +

1
2
δuTQuuδu + δuTQuxδx (16)
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where 

Qx = gx + fTx V ′x
Qu = gu + fTu V ′x
Qxx = gxx + fTx V ′xxfx + V ′x · fxx

Quu = guu + fTu V ′xxfu + V ′x · fuu

Qux = gux + fTu V ′xxfx + V ′x · fux

(17)

By minimizing Q(δx, δu) with respect to δu and ignoring the second-order tensor contractions in Qxx, Quu, and Qux,
the optimal change in control is computed as

δu∗ = −Q−1
uuQu −Q−1

uuQuxδx = k +Kδx (18)

Substituting δu∗ back to Q, the local quadratic approximation of the variation of value function at time step i becomes

∆V(i) = −
1
2

QuQ−1
uuQu (19)

Vx(i) = Qx −KTQuuk (20)

Vxx(i) = Qxx −KTQuuK (21)

The general steps of DDP to discrete dynamics control optimization are as follows [20]:
1) Initialization: Start with an initial trajectory with nominal control and state variables. For each time step,

compute partial derivatives of cost and dynamics with respect to state and control: gx, gu, gxx, guu, gux, fx, fu,
fxx, fuu, fux.

2) Backward sweep: Along the trajectory, compute the local quadratic approximation of the value function V(x, i)
at each time step from the end point i = N to the starting point i = 0 using Eqs. (15) to (21).

3) Forward sweep: Compute the new optimized control using Eq. (18), and re-launch the dynamic simulation to
compute the new trajectory as well as the partial derivatives of cost and dynamics with respect to state and control

4) Iteration: Repeat the backward sweep and forward sweep until the value function and trajectory converge to the
optimal solution.

V. Takeoff Trajectory Optimization

A. Objectives and Constraints
The goal of the takeoff trajectory optimization is to find the optimal elevator control law for the dynamic simulation

of CEI takeoff certification using the DDP. The objectives of the optimization includes minimizing takeoff distance,
minimizing the time to climb, and maximizing flight safety margin. Minimizing takeoff distance is to minimize the
horizontal distance from starting point to 35 feet above ground according to 14 CFR 25.113 [1].Minimizing the time to
climb is to maximize the rate of climb at each point of takeoff trajectory. As for the flight safety margin, two aspects are
considered. One is to maximize the excess power. Higher excess power means the aircraft is being operated further
away from limits, which gives more tolerance on the pilot control actions and allows the aircraft to climb faster. For a
fixed-design aircraft, although the maximum available excess power is determined by its aerodynamic, weight, and
propulsion characteristics, the actual excess power in unsteady flight can be significantly varied by the flight control.
Another way to maximize safety margin is to minimize the control efforts. The certification rule requires that all the
flight tests should be performed by average pilot skills, so the optimized control sequence should not include any rapid
change in control or any extreme movement applied on the control stick. Frequent and rapid changes on elevator control
may not only be out of pilot’s skill, but also cause structural fatigue to the control surfaces.

The constraints associated with the trajectory optimization include the certification rules from 14 CFR Part-25
Subpart-B Flight [1]. The takeoff speed constraints are specified in 14CFR25.107 [1], includingVR ≥ max(V1,1.05VMC),
V2 ≥ max(1.13VSR,1.1VMC), and VFTO ≥ 1.18VSR. The gradient of climb (tan γ) constraints are specified in 14 CFR
25.111 and 25.121 [1], including tan γ ≥ 0 at lift-off, tan γ ≥ 0.024 at landing gear retraction, and tan γ ≥ 0.012
between 400 feet and 1500 feet (for two-engine aircraft) .
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B. DDP Optimization
Suppose x = [u,w,q, θ, xe, ze]T and u = δe, the DDP takeoff trajectory optimization can be written as:

min
U

J0(x,U)

s.t. Ûx = f(x,u)
δemin ≤ u ≤ δemax

(22)

where f(x,u) is the takeoff dynamic function from Eq. (1). δemin and δemax are the elevator upward and downward
deflection limits. In this paper, the elevator travel range is assumed between −30◦ and 30◦.

The core of the DDP algorithm is to define the cost function J0(x,U) appropriately such that by minimizing the cost,
the optimized trajectory could be pushed toward the objectives while satisfying constraints. As described in Sec. IV, the
cost function involves two terms: the cost at each time step g and the terminal cost gf . This paper defines three costs g
at different segments of takeoff and one terminal cost gf at the end of trajectory.

The first cost g1(x,u) is applied to the segment between starting point and 35 feet above ground and defined as a
function of climb angle and control change:

g1(x,u) = Rγ
1

γ̄ + ε
+

1
2
∆uT Ru∆u (23)

where γ̄ is the normalized climb angle:
γ̄ =

γ

γmax
(24)

γ = θ − arctan
w

u
(25)

Rγ and Ru are the weight factors corresponding to the terms of climb angle and control change. ε is to prevent the
denominator of inverse term from being less or equal to zero. The goal of g1(x,u) is to maximum the climb angle to
clear the obstacle and satisfy the gradient of climb constraint at 35 feet. By setting climb angle term inversely, the aim is
to minimize the takeoff distance since the zero γ at ground roll would largely increase the cost.

The second cost g2(x,u) is applied to the segment between 35 and 400 feet above ground and defined as a function
of climb angle, excess power, and control change:

g2(x,u) = Rγ
1

γ̄ + ε
+ RPs

1
P̄s + ε

+
1
2
∆uT Ru∆u (26)

where P̄s is the normalized excess power:
P̄s =

Ps

Psmax

(27)

Ps = V∞ sin γ +
V∞
g

dV∞
dt

(28)

V∞ =
√

u2 + w2 (29)

RPs is the weight factor corresponding to excess power. The goal of g2(x,u) is to keep the maximum climb angle from
obstacle clearance as indicated by Fig. 1 while maintaining sufficient excess power for takeoff speed constraints and
flight safety consideration.

The third cost g3(x,u) is applied to the segment between 400 and 1500 feet above ground and defined as a function
of rate of climb, climb angle, excess power, and control change:

g3(x,u) = RRoC
1

¯RoC + ε
+ Rγ

1
γ̄ + ε

+ RPs

1
P̄s + ε

+
1
2
∆uT Ru∆u (30)

where ¯RoC is the normalized rate of climb:

¯RoC =
V∞ sin γ

(V∞ sin γ)max
(31)

6

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ne

 1
5,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

26
41

 



RRoC is the weight factor corresponding to rate of climb. The goal of g3(x,u) is to minimize the time to climb while
satisfying the minimum gradient of climb constraint between 400 and 1500 feet from 14 CFR 25.111 and maintaining
the flight safety margin.

The terminal cost gf at the end point is defined as the deviation from expected final state xtarget and the terminal
state computed from dynamic simulation xN :

gf (xN ) =
1
2
(xN − xtarget )T RxN (xN − xtarget ) (32)

where RxN is the weight matrix for the terminal cost function. In this paper, the target state is selected as the maximum
rate of climb trimmed condition at 1500 feet, which is to push the aircraft to successfully climb to 1500 feet as required
by the regulation while minimizing the time to climb. This target state is computed at the beginning of optimization
using trim analysis and fixed in iteration process.

With g(x,u) and gf (xN ) defined, the cost function J(x,U), the value function V(x, i), and the local variation of value
function Q(δx, δu) can be found from Eqs. (12) (14) (15). The optimal longitudinal control is solved through the four
steps of DDP described in Sec. IV. The derivatives of f(x,u), g(x,u), and gf (xN ) are computed numerically using the
central-differential scheme. The optimization algorithm flowchart is illustrated in Fig. 2.

Fig. 2 CEI Takeoff Trajectory Optimization Algorithm

VI. Test Cases
To demonstrate the method, this paper applies the DDP algorithm to the critical-engine-inoperative takeoff of a

small single-aisle aircraft (SSA) model. The SSA model is sized by the Environmental Design Space (EDS) [21]
and calibrated using the data of Boeing 737-800 from public domain [22]. The stability and control derivatives of
the SSA model are computed by the open-source vortex lattice solver AVL [23]. The key performance and geometry
specifications of the SSA model are shown in Table 1 in the Appendix. The details about the SSA model development is
included in Ref. [19, 24].
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A. Test Case 1
The first test case starts with the initial control sequence of zero elevator deflections. The optimization results of the

test case are included in Fig. 3 and Fig. 4.
Fig. 3 shows the CEI takeoff trajectories and elevator control sequences from initial condition to 100 iteration steps

of applying the DDP. The blue dash curve represents the initial trajectory and control sequence, and the light blue curve
represents the final optimized solution at 100 iteration steps, while the other curves represent the trajectory and control
sequence at intermediate optimization steps. Comparing the optimized controls with the initial condition in the control
sequence plot, the main difference is that the elevator is deflected to almost the upward limit right after VR and then
recovered back during the rotating process until lift-off. This accelerates the takeoff rotation which in turn makes the
lift-off much earlier than the initial case as shown in the trajectory plot.

For the details along the trajectory, Fig. 4 tracks the changes of takeoff distance, takeoff speeds, rate of climb,
and gradients of climb at each optimization step. It is seen that the takeoff distance is successfully decreased in the
optimization and converge at 10 947 feet. The rate of climb at the end point is dropped at the first step but then
monotonically increased in the optimization process due to target state xtarget setting and the inverse term of rate of
climb defined in cost g3. As a result, the rate of climb at 1500 feet in optimized trajectory is higher than that in the
initial condition.

The takeoff certification constraints mentioned in Sec. V.A are also examined in the iteration as indicated by the
history plots of gradient of climb and takeoff speeds. The available gradient of climb constraint is checked at 35 feet as
required by §25.121 and the minimum gradient of climb constraint is checked between 400 and 1500 feet as required by
§25.111. The dash lines in the gradient of climb history plots represent the minimum constraint values defined in these
regulations. Note that the gradient of climb constraints are initially violated, but soon mitigated in the optimization.
Regarding the takeoff speeds constraints, the test case tracks the changes of V2 and VFTO during the optimization process.
V2 is decreased in the optimization because the shorter takeoff ground roll optimized by cost g1 makes the aircraft lift off
at a lower speed. VFTO is increased in the optimization because excess power and rate of climb are maximized by the
inverse terms defined in g2 and g3 which promotes the acceleration during the takeoff climb segment. The constraints of
V2 and VFTO are specified in §25.107 in which V2 should be no less than 1.13VSR and 1.1Vmc , and VFTO should be no
less than 1.18VSR. Substituting VSR and Vmc from Table 1, the constraint value for V2 and VFTO are 126.65 and 132.25
knots respectively. Because these constraint values are much lower than the V2 and VFTO at each iteration step, they are
not included in takeoff speed history plots.

(a) Takeoff Trajectory (b) Control Sequence

Fig. 3 Takeoff Trajectories and Control Sequences at Different Optimization Steps of Test Case 1

B. Test Case 2
Although the DDP successfully minimizes the takeoff distance for the first test case, the final optimal solution

converged at 10.947 feet is still higher than the takeoff distance 7780 feet of B737-800 documented in public domain.
This is due to the limitation of the DDP algorithm in takeoff trajectory optimization: the control optimization can only
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(a) Takeoff Distnace (b) Rate of Climb at Takeoff End point

(c) 35 ft Gradient of Climb (d) Minimum Gradient of Climb between 400 and 1500 ft

(e) Takeoff Safety SpeedV2 (f) Final Takeoff SpeedVFTO

Fig. 4 Takeoff Objectives and Constraints Tracking in Optimization Process of Test Case 1
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start after the takeoff rotation at VR but it cannot move the rotation point forward or backward because the derivatives fu,
gu, guu, and gux are always zero before the rotation which makes Eq. (18) equal to zero. To solve the problem, this
paper launched another test case with a new initial control sequence of constant −3 deg, which decreases the VR from
175 knots of first test case to 148 knots.

The DDP optimization results of the second test case are included in Fig. 5 and Fig. 6. The number of iterations of
the second case is increased from 100 of the first case to 300 because this case is more difficult to converge. The general
trend of the optimized elevator control sequences are similar to the first test case with significant upward deflection after
VR and slight control change during takeoff climb, as shown Fig. 5. Note that there is an abrupt jump around the end
point, and this might be caused by the terminal cost gf and associated derivatives since the gf tends to push the aircraft
to match the velocity and pitch angle at the maximum rate of climb trim condition. For the trajectory, similar to the first
test case, the lift-off point is moved forward in optimized trajectory. But when comparing the optimized trajectories of
two test cases shown in Fig. 3 and Fig. 5, it is found that the initial takeoff climb path from ground to about 100 feet
height is much flatter in case 2 than that in case 1. The degraded climb gradient might be due to the difference in ground
roll distance. Earlier lift-off may encourage shorter takeoff distance, but the shorter ground-roll acceleration may not
be able to provide the aircraft enough mechanical energy to support a higher climb angle. Therefore, the optimized
trajectory of case 2 has a shorter takeoff distance, but the initial takeoff climb gradient is higher in case 1.

Fig. 6 includes the tracking of takeoff metrics at each iteration step. As expected, the takeoff distance is minimized
and rate of climb at 1500 feet is maximized, but the trends of their changes during the iteration is different from the first
test case and present some “stepwise” manners. In terms of certification constraints, there are some issues happened
with the constraints of gradient of climb. The gradient of climb at 35 feet is significantly decreased at first 136 steps
which makes the final optimized trajectory violate the certification constraint, even though it starts recover back after
step 136. But on the other hands, the minimum gradient of climb between 400 and 1500 feet shows the opposite: the
optimization successfully mitigates initial constraint violation and make final optimized trajectory pass the constraint,
even though there is a drop from step 52 to step 136. As for the takeoff speeds, V2 is decreased while VFTO is increased
in the optimization, both of them satisfy the constraint at each iteration step. Compared to the first case, the magnitudes
of V2 and VFTO are smaller and the trend of takeoff speed changes during the iteration is less continuous.

(a) Takeoff Trajectory (b) Control Sequence

Fig. 5 Takeoff Trajectories and Control Sequences at Different Optimization Steps of Test Case 2

VII. Conclusion
This paper proposes a control optimization method for critical-engine-inoperative takeoff certification analysis using

the Differential Dynamic Programming. The test cases performed in this paper demonstrate that the DDP algorithm is
able to provide an optimal elevator control sequence for CEI takeoff in terms of minimizing takeoff distance, maximizing
rate of climb, and improving the compliance with respect to gradient of climb and takeoff speed certification constraints.
The comparison between two test cases illustrates that the trajectory optimization is sensitive to the initial control
sequence settings and the way to define the cost function. Future investigation will be conducted to evaluate how
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(a) Takeoff Distnace (b) Takeoff Safety SpeedV2

(c) 35 ft Gradient of Climb (d) Minimum Gradient of Climb between 400 and 1500 feet

(e) 1500 ft Gradient of Climb (f) Final Takeoff SpeedVFTO

Fig. 6 Takeoff Objectives and Constraints Tracking in Optimization Process of Test Case 2
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these parameters affect the optimization and how to set these parameters appropriately to promote the convergence and
encourage a more optimal control sequence.

The application of the DDP to CEI takeoff certification analysis provides an insight of implementingmachine-learning
techniques to enhance aircraft virtual certification. The goal of virtual certification includes two aspects: 1. Certification
by analysis: Move some of the flight tests and ground experiments to digital platform thus to reduce cost and time
spent on certification process; 2. Certification driven design: Provide certification predictions using simulation and
analysis in early design phases to improve the robustness of a new design. In terms of certification by analysis, by
integrating the machine-learning techniques like the DDP into digital platforms, some alternative and potentially more
optimal flight test strategies could be explored and virtually tested without taking risks in real flight test, and thus further
“exploit” the performance of aircraft and improve the flight safety. As for certification driven design, the incorporation of
certification analysis in aircraft early design allows the certification constraints to be quantified in conceptual level, but
such incorporation might be impeded by the lack of design knowledge in early design phases. However, machine-learning
techniques may help with overcome such obstacles. For instance, the DDP method presented in this paper shows an
example of performing dynamic simulation and trajectory optimization without knowing the detailed design knowledge
of aircraft control systems. Potentially, it can be expected that such manner of integrating machine-learning techniques
with certification analysis could be applied to other disciplines and other sections of certification rules. Future work will
further explore the benefits of implementing machine-learning techniques in aircraft virtual certification.
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Appendix

Table 1 Specifications of Small Single-Aisle Aircraft Model

Parameter Value Unit

Passenger capacity 160 -
Design range 3140 nmi
Cruise Mach number 0.85 -
Maximum ramp weight 174 870 lb
Maximum landing weight 146 300 lb
Sea-level static thrust 2 × 27 297 lb

Stall speed at takeoff configuration VSR 112.08 kts
Minimum control speed Vmc 108.13 kts
Minimum control speed on ground VmcG 91.72 kts
Engine failure speed VEF 130.67 kts
Decision speed V1 132.45 kts

Wing planform area 1408.5 ft2

Wingspan 113.15 ft
Mean aerodynamic chord 11.85 ft
Wing aspect ratio 9.74 -
Wing taper ratio 0.28 -
Wing 1/4-chord sweep 25.72 deg
Wing dihedral 5.69 deg
Aileron chord ratio 0.15 -
Aileron locations (fraction of semi-span) 0.62; 0.83 -

Fuselage total length 124.75 ft
Maximum fuselage width 12.33 ft
Maximum fuselage height 13.17 ft

Horizontal tail planform area 359.22 ft2

Horizontal tail aspect ratio 6.27 -
Horizontal tail taper ratio 0.20 -
Horizontal tail 1/4-chord sweep 29.91 deg
Elevator chord ratio 0.25 -
Elevator locations (fraction of semi-span) 0.06; 1.00 -

Vertical tail planform area 277.76 ft2

Vertical tail aspect ratio 1.92 -
Vertical tail taper ratio 0.28 -
Vertical tail 1/4-chord sweep 35.00 deg
Rudder chord ratio 0.25 -
Rudder locations (fraction of semi-span) 0.05; 0.98 -
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