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SECTION 1 

INTRODUCTION 

This report contains recommendations for testing the DFVLR polarimetric 

radar being developed by Enterprise Electronics Corporation (EEC), Enterprise, 

Alabama, USA. These test recommendations are based on a review of the 

technical proposal submitted by EEC to DFVLR and are intended to supplement 

the test plan outlined therein. 

The test recommendations are presented in two general forms: (1) explicit 

test procedures and (2) suggested general test techniques that should be 

considered. Exact performance specifications are not included because: (1) we 

did not have the detailed EEC/DFVLR design documentation on hand to develop 

specific performance criteria, (2) funding and preparation time were limited, 

and (3) major changes to the DFVLR radar design can not be made at this time 

without a significant impact on system cost. Georgia Tech assumed that DFVLR 

had conducted a detailed system design and the specifications shown in the EEC 

proposal are adequate to meet DFVLR's research needs. 

Specific tests and test methodologies for testing certain aspects of the 

DFVLR polarization diversity radar are presented in Sections 2 through 6. 

Each test recommendation was made with the full understanding that many design 

aspects of the DFVLR are fixed and can not be changed without a corresponding 

impact on the DFVLR developmental budget. Therefore, the exact tests to be 

specified must be determined by DFVLR. 
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SECTION 2 

ANTENNA TESTS 

2.1 OVERVIEW  

The antenna tests should ensure that the antenna gain, sidelobe levels, 

and the overall polarization isolation specifications are met. The first set 

of antenna tests should encompass those normally performed on an antenna test 

range. A second set of tests should be specifically devoted to measuring 

antenna isolation and determining the entire cross-polarization sidelobe 

structure. The EEC planned rotation-about-axis measurement technique or a 

raster scanning technique can map the sidelobe structure. 

The antenna should ideally be tested on an antenna measurement range 

which satisfies the 2 d2 /A criterion for separation between the test antenna 

and the source antenna. For an antenna diameter of 4.6 m (15 feet) operating 

at a frequency of 5500 MHz, the antenna separation should be 767 m (2515 

feet). The Radiation Systems, Inc., antenna range in Sterling, Virginia is 

believed to have a path length of only 563 m (1800 feet). If this is correct, 

then an appropriate technique for measuring the antenna characteristics on 

this shorter range should be developed and verified. Re-focusing for the 

lesser range may be a solution and should be considered by Radiation 

Systems. They should verify that the selected techniques do provide accurate 

measurement of the co- and cross-polarized antenna patterns. 

2.2 LIMITS OF CROSS-POLARIZATION MEASUREMENT  

The peak of the cross-polarized beam should coincide with the first nulls 

in the co-polarized beam. Studies conducted at Georgia Tech have shown that 

(1) significant cross polarization extends beyond the region of the second 

sidelobes of the co-polarized beam and (2) measuring cross polarization from 

the co-polarized beam peak to the second nulls in the co-polarized beam will 

account for almost all antenna cross polarization. In the case of the DFVLR 

radar, antenna measurements should be conducted over the solid angle extending 

from the boresight axis to six degrees off boresight. 
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2.3 ANTENNA PATTERNS  

The co-polarized and cross-polarized patterns should be simultaneously 

recorded. The power at hor :tzontal and vertical output ports of the antenna 

should be recorded as the antenna is scanned from minus 6 degrees to plus 6 

degrees across the boresight axis. A set of patterns must be recorded at each 

10 degree plane of antenna roll around the boresight axis at frequencies of 

5450, 5500, and 5550 MHz. The co-polarized boresight gain and the cross-

polarized maximum gain should be 'measured and recorded at each of these 

frequencies. 

A second technique may also be employed using a "raster scan" 

technique. An azimuthal pattern 12° wide (+ 6 °  each side of boresight axis) 

and centered upon boresight may be taken each time the elevation axis is 

incremented one degree. The choice of either measurement technique is 

determined by the availability of antenna positioning equipment. The results 

of the two measurement methods should be similar. 

2.4 VSWR 

Swept frequency techniques should be employed to measure the VSWR of the 

antenna over the operating frequency band. VSWR is a significant 

measurement. Any reflected power from the antenna will be returned to the 

switch/polarizer and retransmitted in the orthogonal polarization channel. 

The resultant cross-polarized backscatter measurement is corrupted by this 

leakage of cross channel energy. From a knowledge of VSWR, the degree of data 

corruption can be reduced, in theory, by the application of an appropriate 

cancellation algorithm during data processing. If an algorithm to reduce 

corruption is not applied, the system performance limits are ascertained from 

the VSWR measurement. 

2.5 MEASUREMENT OF ANTENNA POLARIZATION ISOLATION  

One requirement of the DFVLR polarization diversity radar is it's ability 

to operate as a Circular Depolarization Ratio (CDR) meteorological measurement 

system employing the circular polarization mode of the antenna. All circular 

co-polarization and cross-polarization antenna information is calculable from 

linear polarization, if the antenna phase patterns are available. However, 

direct recording of the circular patterns is usually a preferable and quicker 
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method of antenna analysis. 	The direct recording of circular patterns is 

straightforward. The antenna should be configured for circular polarization, 

and the co-polarized and cross-polarized patterns should be recorded in the 

same manner as for linear polarization. 

2.5.1 CIRCULAR POLARIZATION 

The recommended technique for measurement of circular polarization 

requires many observations of precipitation while backscatter measurements are 

made. The resultant depolarization is graphed against the anticipated 

depolarization imposed by the shape of particles. 1  This curve asymptotically 

approachs the system integrated cancellation ratio if there is sufficient 

intra-channel receiver isolation. This value then becomes isolation for 

circular polarization after algebraic subtraction of 6 dB. 

Two other possible schemes exist for the measurement of circular 

polarization isolation. One employs a measurement of the overall axial ratio 

of the antenna. This technique is very difficult to perform as it requires 

the elimination of almost all multipath on the antenna range; in the case of 

30 dB isolation, the multipath energy must be reduced to - 53 dB with respect 

to the direct energy. 2  

The other possible technique exists in which the co-polarized and cross-

polarized antenna patterns discussed in Section 2.2 are integrated and 

compared either manually or on a point-by-point basis using the antenna range 

computer. This technique is a straightforward measurement, but requires the 

same level of range cross-polarization sophistication as other techniques. 

However, it is the author's opinion that the required accuracy of cross-

polarization isolation measurements are unattainable for circular polarization 

on the standard antenna range. 

1Newell, R. E., Geotis, S. G., and Fleisher, A., "The Shape of Rain and Snow 
at Micro Wave Lengths", Research Report No. 28, Massachusetts Institute of 
Technology, Department of MeteorDlogy, September, 1957. 

2Ryan, C. E. "Review and evaluation of antenna test ranges" Letter report for 
Georgia Tech Project A-1729, Radar Division Engineering Experiment Station, 
Georgia Institute of Technology, 8 May 1975. 
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2.5.2 LINEAR POLARIZATION 

Linear polarization isolation measurements are easier to perform on the 

antenna range since linear cross-polarization is not normally generated upon 

simple reflection. This is diametrically opposite to the case of circular 

polarization in which cross-polarization is generated at every reflection. 

For linear polarization, the integration method of calculating antenna 

isolation is recommended, however, care must be exercised to ensure that the 

range cross-polarization is considered and is reduced as much as practical. 
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SECTION 3 

POLARIZATION SWITCH AND POLARIZER 

3.1 VSWR  

The polarization switch and polarizer VSWR should be measured using swept 

frequency techniques, rather than at three spot frequencies, because VSWR 

affects performance over the actual bandwidth of the received or transmitted 

signal and the three spot frequencies may only approximate the exact 

frequencies of operation. The ])FVLR polarization switch is specified to have 

30 dB isolation between channels; this requires an overall VSWR less than or 

equal to 1.065:1 at all four ports. Therefore, swept frequency techniques 

should be used to measure VSWR over the frequency range of 5440 MHz to 5560 

MHz; the VSWR of each port should be less than or equal to 1.065:1 when all 

other ports are terminated with a load whose VSWR is less than or equal to 

1.03:1. 

3.2 ISOLATION, INSERTION LOSS, AND PHASE SHIFT  

For both the linear and circular polarization modes, swept frequency 

techniques should be used to measure polarization switch isolation and 

insertion loss across the frequency range of 5440 MHz to 5560 MHz. These 

measurements should be made after the polarization switch temperature has 

stabilized. The polarization switch phase shift should also be measured using 

swept frequency techniques if the necessary instrumentation (network analyzer) 

is available. If the instrumentation is not available, a point-by-point 

measurement of forward and reverse phase shifts is acceptable, provided the 

frequency steps used are not greater than 0.5 MHz and anomalies do not occur. 

3.3 TEMPERATURE RANGE  

The polarization switch should be tested with the remainder of the 

microwave package before the units are installed in the radar to determine the 

effect of temperature on phase and amplitude tracking. Phase and amplitude 

should be monitored as the temperature is varied over the entire anticipated 

thermal operating range of these units. The temperature extremes under 

consideration should include the expected extremes of the environmental 

enclosure and the local heating effects of the enclosed microwave 
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components. 	An optimum tightly bounded temperature range that enables 

accurate phase and amplitude tracking should be found; this temperature range 

will in turn determine the thermal characteristics of the environmental 

enclosure. 

An additional test should be performed after the polarization switch and 

microwave package are installed in the radar. The phase and amplitude 

tracking characteristics of the polarization switch and microwave package 

should be monitored from the time of initial transmitter turn on until the 

phase and amplitude tracking characteristics are stabilized. This 

stabilization time will determine the necessity for a minimum turn-on delay. 

3.4 PHASE STABILITY AND REPEATABILITY 

The polarization switch should be sufficiently tested to determine which 

components of phase stability and phase repeatability can be eliminated by 

signal processing (i.e., known components) and which components are properly 

in the domain of phase uncertainty (i.e., unknown components). The phase 

stability and phase repeatability must be measured separately. Phase 

stability measurements should be conducted over a reasonable time period to 

account for variations of temperature, pulse-to-pulse transmit power, and 

other factors that might cause instabilities. Repeatability measurements 

should be based solely upon the resetability of the polarization switch as it 

is switched between all phase steps to determine the components of the actual 

phase shift and the phase uncertainty contained therein. A graph of actual 

phase shift should be constructed from this information, and the correction 

data should be entered into the processor so that the values of phase shift 

can be corrected prior to processing actual meteorological data. 

3.5 OTHER MEASUREMENTS  

All specifications not specifically addressed here, but indicated in the 

EEC proposal of 30 September 1982, should be measured as indicated. 

Additionally, a reasonable test should be devised to ensure that the 

polarization switch assembly will not be damaged by a severe mismatch between 

this assembly and the antenna due to arcing in the waveguide or other 

catastrophic occurrence. The temporal length of this survivability need not 

significantly exceed the shut--down time of the transmitter. 
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SECTION 4 

RECEIVER TESTS 

4.1 OVERVIEW  

Although the EEC proposal contains no receiver tests, the receiver must 

be tested because it is the heart of a polarization diversity measurement 

system. Two categories of receLver tests are necessary: (1) tests pertaining 

solely to polarization diversity operation and (2) tests pertaining to 

receivers in general. The polarization diversity tests should include intra-

channel phase tracking, intra-channel amplitude tracking, non-linearity of the 

amplitude transfer function, and intra-channel isolation; minimum acceptable 

parameter values for circular depolarization ratio (CDR), linear 

depolarization ratio (LDR), differential reflectivity (Z DR), and polarization 

null radars are listed in Table 1. The general tests should include dynamic 

range (DR), spurious free dynamic range (SFDR), noise figure (NF) or 

tangential sensitivity (TS), intermediate frequency bandwidth, and spurious 

responses. 

TABLE 1. MINIMUM REQUIRED POLARIZATION DIVERSITY PARAMETERS 

FOR VARIOUS CLASSES OF METEOROLOGICAL RADARS 

Parameter CDR 

Radar Class 

LDR 	ZDR Null 

Receiver Intra-Channel Isolation >50 dB >45 dB N/A >45 dB 

Intra-Channel Amplitude Uncertainty 1 dB 1 dB N/A UNK 

Intra-Channel Phase Uncertainty 1 deg 1 deg N/A UNK 

Non Linearity of Receiver Transfer 0.1 	to 
Function 1 dB 1 dB 0.3 dB UNK 

UNK = Unknown 

N/A = Not Applicable 
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4.2 POLARIZATION DIVERSITY RECEIVER TESTS 

4.2.1 RECEIVER INTRA-CHANNEL ISOLATION 

A test must be performed to measure isolation between the receiver 

channels. A pulse signal of approximately 1.0 ps length at the radar 

frequency of operation should be injected into one of the receiver channels. 

The pulse signal level should be set at approximately, but less than, the 

overall receiver 1 dB compression point. The output levels of the two 

logarithmic receiver channels should be measured; the outputs must differ by 

more than 50 dB for proper intra-channel isolation. The test should be 

repeated with the pulse signal injected into the other receiver channels. 

4.2.2 INTRA-CHANNEL AMPLITUDE UNCERTAINTY 

Intra-channel amplitude uncertainty tests should be conducted using the 

test configuration shown in Figure 1. The precision attenuator should be 

incremented in 1 dB steps as the outputs of both receiver channels are 

simultaneously recorded. Although linearity of the receiver channels should 

not be expected to correspond to linearity of the precision attenuator, the 

output levels of the two receiver channels must track within 1 dB. 

4.2.3 PHASE UNCERTAINTY 

The relative phase between two receiver channel output signals should be 

measured using the test configuration shown in Figure 2. As the RF phase 

shifter is adjusted over a 180 degree range, the phase of the signal at the 

output of each receiver channel must track within one degree. An alternative 

to this measurement employs the sampling of the receiver's in-phase (I) and 

quadrature (Q) outputs. For a 180 degree RF phase change, the I and Q outputs 

must deviate by no more than one degree from quadrature. 

4.2.4 NON-LINEARITY OF THE AMPLITUDE TRANSFER FUNCTION.  

The non-linearity of the amplitude transfer function for the receiver 

channel that is to be utilized in the Z DR measurements should be tested using 

the test configuration shown in Figure 3. When the precision attenuator is 

incremented in 0.1 dB steps over any 5 dB range within the receiver dynamic 

range, the output must not deviate more than 0.1 dB from linearity. 
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Figure 1. Test configuration for intra-channel amplitude tracking measurement. 
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Figure 2. Test configuration for intra-channel phase tracking measurement. 



Signal 
Generator 

Attenuator Receiver Precision 
Attenuator 

Hewlett-Packard 
Model 415 E 
SWR Meter or 
Equivalent 

DR 
Channel 

Termination 

Figure 3. Test configuration far receiver transfer function. 



4.3 GENERAL RECEIVER MEASUREMENTS 

4.3.1 RF AND IF BANDWIDTH 

Receiver RF and IF bandwidth tests should be conducted to determine the 

nature of the receiver passband, the output voltage levels, the system 

saturation levels, and the variations in bandwidth with changes in input 

signal strength. RF bandwidth tests should be conducted at each of the center 

frequencies. IF bandwidth tests should be conducted for each selectable 

bandpass. These tests must encompass a range of input power levels from the 

1 dB compression point to approximately 10 dB above the noise floor. The 

exact dynamic range and anticipated bandwidth should be a function of the 

transmitted pulse width. 

Receiver RF bandwidth tests should be conducted using the test 

configuration shown in Figure 4. An oscilloscope display and camera can be 

used in lieu of the X-Y recorder to record results. The sweep generator 

should be set for an appropriate sweep width centered about the frequency of 

interest. The receiver should be tuned to the center frequency. The detected 

receiver output should be recorded as a function of input frequency as the 

input power is stepped downward in 10 dB increments from the 1 dB receiver 

compression point to approximately 10 dB above the noise threshold. The 

recorded data must be carefully annotated to correlate the output voltage 

levels with the input swept frequency range and input signal levels. 

The receiver IF bandwidth tests should be conducted using a test 

configuration similar to that used for the RF bandwidth tests. Examples of 

anticipated 3 dB IF bandwidths as a function of transmitted pulse widths are 

presented in Table 2. The IF passband for each transmitted pulse width should 

be characterized to determine the -3 dB points, and the skirt selectivity for 

each passband should be analyzed for proper width and shape to ensure proper 

measurement of pulse signals as well as minimum phase dispersion. 

4.3.2 RECEIVER DYNAMIC RANGE TESTS 

The receiver should be tested to determine the dynamic range for both the 

linear and logarithmic outputs. The dynamic range should be determined by 

measuring the difference between the receiver noise floor level and the 1 dB 

compression point when the widest IF passband is selected. (The 1 dB 
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Figure 4. Test configuration for RF bandwidth characterization scheme. 



compression point is defined as the point at which 1 dB of non-linearity is 

observed at the output for a Linear increase in input signal level.) The 

effectiveness and calibration curve of the automatic gain control (AGC) or 

sensitivity time control (STC) circuit should be verified during the dynamic 

range test. 

TABLE 2. RECEIVER. -3 dB IF BANDWIDTH FOR VARIOUS 

TRANSMITTED PULSE WIDTHS 

Transmitted Pulse Width (ps) 	Receiver 3 dB Bandwidth (MHz) 

2 
	

1.2 

1 
	

2.4 

0.5 
	

4.8 

4.3.3 RECEIVER INTERMODULATION DISTORTION TEST 

The receiver should he tested to determine the level at which 

intermodulation products are processable, even if preselection is employed. A 

two-tone intermodulation distortion test should be conducted using the test 

configuration shown in Figure 5 to determine the intercept point. The 

intercept point can be used in conjunction with the minimum detectable signal 

level and the nomogram shown in Figure 6 to determine detectable 

intermodulation product signal levels. 

4.3.4 RECEIVER LOCAL OSCILLATOR SPURIOUS RESPONSE TEST 

The receiver should be tested to determine whether the local oscillator 

introduces spurious responses. This test can be conducted using a test 

configuration similar to that used for the RF bandwidth test (Figure 4), but 

the sweep width should be increased to cover the local oscillator circuit 

frequency. The receiver output as a function of input frequency for various 

input signal levels should be recorded. 
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Figure 5. Test configuration for intercept point measurement. 



Spurious Response Level 

2nd Order 	3rd Order 
(—dbm) 	(—dbm) 

10 	 30 

Intercept Point 
(darn) 

+40 

Signal Level 
(dim') 

+10 

+20 

—10 

—20 

—30 

—40 

—50 

—40 	 —60 

20 	 40 

30 	 50 

40 	 60 

50 	 70 

60 	 80 

70 	 90 

80 	 100 

90 	 110 

0 

+10 

—10 

—20 

—30 

I00 120 

Figure 6. Intermodulation distortion nomograph from Electronic 
Design,1  February 1967. The diagonal line indicates 
the intercept point for a typical low-noise amplifier 
(LNA) and the resultant level of processable inter-
modulation products. 
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4.3.5 RECEIVER SENSITIVITY OR NOISE FLOOR TEST 

Various equivalent measurements of system sensitivity can be used to 

determine the receiver noise floor or minimum discernible signal (MDS). The 

receiver tangential sensitivity should be measured using the test 

configuration shown in Figure 7. Although this measurement is reasonably 

repeatable, at least two different persons should perform the measurement at 

each frequency to establish an average value for tangential sensitivity; this 

average value should be used as the measured tangential sensitivity. The 

receiver noise floor or minimum discernible signal can then be determined from 

the following relationship: 

Nf = 114 dBm - (TS + 10 log (2BV) 1 / 2  + C) . 	 (10) 

Where: 	Nf = noise figure in dB 

TS = tangential sensitivity in dBm 

B = IF bandwidth in MHz 

V = video bandwidth in MHz 

C = tangential sensitivity conversion constant of 6 dB* 

4.3.6 RECEIVER FREQUENCY STABIL[TY AND RESETABILITY 

Receiver frequency stability and resetability should be tested. 	The 

measurement is straightforward since the IF frequency is fixed. The local 

oscillator frequency should be compared with that of a frequency standard. 

Both long term and short term stability of the local oscillator should be 

examined to determine the receiver characteristics and to establish an 

effective recalibration cycle. 

Frequency resetability is less a function of the reference standard than 

a function of the phase locked loop and oscillator driver circuitry. For the 

frequency resetability tests, the receiver should be initially tuned to a 

midband reference frequency, then displaced to the band edge, and finally 

returned to the reference frequency. The amount of frequency reset error 

should be recorded for both manual and automatic tuning. 

*Various values between 6 and 3 dB for this constant may be found in the 
literature. This discrepancy may present small noise figure error. 
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SECTION 5 

TRANSMITTER TESTS 

5.1 OVERLOAD AND PROTECTIVE CIRCUITS 

The transmitter should be tested to demonstrate that it contains the 

overload and protective circuitry necessary to adequately protect the 

magnetron and ensure reliable magnetron operation. Although many of these 

tests are not part of either the proposal or the specification, their 

inclusion is necessary to ensure reliable system operation. 

5.1.1 WAVEGUIDE PRESSURE 

This test should demonstrate that lack of adequate waveguide 

pressurization prevents the system from radiating power. The demonstration 

should show that: (1) loss of waveguide pressure when the transmitter is on 

causes the transmitter to revert to standby status and (2) inadequate 

waveguide pressure prevents the system from being placed in a radiate 

condition. 

5.1.2 VSWR 

This test should demonstrate that excessive VSWR (or equivalently 

excessive reflected power from the antenna) will cause the system to revert to 

a standby condition. These tests should be conducted by simulating the 

excessive VSWR condition, rather than actual insertion of a high VSWR for test 

purposes. 

5.1.3 SHORT CIRCUIT TESTS 

Since magnetron or modulator malfunctions may result in an extremely low 

impedance at the modulator output, operation into a short circuit should be 

demonstrated. 	The magnetron should be removed from the modulator and the 

system should be operated into a resistive load for this test. 	The load 

should be shorted to ground; satisfactory operation should be indicated by a 

lack of damage to any modulator components and a prompt reversal of the 

transmitter to the standby condition. 
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5.1.4 OPEN CIRCUIT TESTS 

Since magnetron malfunctions may result in an abrupt increase in 

magnetron impedance, operation in such a mode must be avoided to prevent 

magnetron damage. 	Protection against such conditions is necessary for 

reliable operation. 	The magnetron should be removed for the open circuit 

test. The modulator should be operated into an open circuit while the output 

voltage is monitored with a high voltage oscilloscope. Proper operation 

should be indicated by (1) firing of the over-voltage spark gap to prevent 

excessive voltage across the magnetron and (2) prompt reversal of the 

transmitter to the standby condition. 

5.1.5 EXCESSIVE MAGNETRON CURRENT OVERLOAD 

Operation of the magnetron current overload circuit should be 

demonstrated. Due to the wide variety of possible circuit configurations, it 

is difficult to provide exact guidance of the details of the test; however, 

any test performed should demonstrate that operation of the magnetron beyond 

its normal performance limits is excluded. 

5.1.6 EXCESSIVE SHUNT DIODE CURRENT 

Since shunt diode current is a relatively sensitive function of the load 

characteristics, protection from this overload should also be demonstrated. 

The same cautions expressed in Section 5.1.5 above should be observed for this 

test. 

5.1.7 PROPER HEATER SCHEDULE 

The correct reduction in heater voltage as a function of duty cycle and 

transition from the standby condition to the radiate condition should be 

demonstrated. 

5.1.8 POWER SUPPLY OVERLOAD 

The operation of an overload circuit which prevents excessive amounts of 

current from being drawn from the power supply should be demonstrated to 

ensure protection of the modulator components. 
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5.2 MAGNETRON FUNCTIONAL TESTS  

Described in this section are a series of tests designed to demonstrate 

the proper values and ranges for major magnetron functional parameters. In 

addition, these tests provide a reference for the calibration subsystem 

included as part of the overall radar system. 

5.2.1 FREQUENCY 

These tests should demonstrate that the magnetron meets all of its 

functional requirements over the frequency range of 5450 to 5550 MHz. 

Although actual measurements at the band edges and band center are considered 

adequate, the tube should also be tuned throughout its operational frequency 

range while the output is carefully monitored for signs of excessive power 

variation or presence of moding at specific frequencies. 

5.2.2 PEAK POWER OUTPUT 

The transmitter power output and power output from the two arms of the 

polarization network should be measured. The total power output should be 

greater than 300 kW. The preferred test method is to measure the power output 

by using a microwave peak power meter. The power output can also be 

determined by measuring average power output and duty cycle, and then 

computing peak power based upon measured pulse characteristics. 

5.2.3 PULSE WIDTH AND STABILITY 

The transmitter pulse width for each of the three modes should be 

measured by using an oscilloscope to observe the detected RF output from the 

transmitter. In addition, short term variations in pulse width should be 

recorded, and their conformance with the stability error budget discussed in 

Section 5.3 should be demonstrated. 

5.2.4 PULSE REPETITION FREQUENCY 

The transmitter PRF for each of the three modes should be measured by 

using an oscilloscope to observe the detected RF output - from the 

transmitter. The PRF in each of the three modes should be within 10% of the 

nominal value. 
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5.2.5 TIME DELAY STABILITY 

The detected RF pulse and the system timing pulse should be displayed 

simultaneously on an oscilloscope. The variations in time delay between these 

two signals should be compatible with the stability budget discussed in 

Section 5.3. 

5.2.6 AMPLITUDE STABILITY 

The detected RF output pulse from the transmitter should be observed on 

an oscilloscope. Variations in amplitude of the displayed pulse should be 

compatible with the stability budget discussed in Section 5.3. 

5.3 OVERALL TRANSMITTER PHASE  TESTS 

These tests are designed to ensure that the system has the intrinsic 

capability required for measurement of the desired phase variations over the 

entire operating envelope. The initial requirement is to establish a 

stability budget by outlining all of the factors which contribute to the 

accuracy limitation of phase measurements in the system and assigning 

reasonable values to each factor. The contributions of each of these factors 

to the overall phase stability should be measured to demonstrate that the 

individual components are well controlled. Then, the actual phase stability 

of the overall system should be measured. These measurements should identify 

those truly random errors on a pulse-to-pulse basis as well as those errors 

which are either increasing or decreasing functions of range to the target. 

5.3.1 STABILITY BUDGET 

The manufacturer should establish an error budget of the primary factors 

which contribute to phase noise and phase measurement inaccuracies. These 

factors should include amplitude stability, pulse width stability, time delay 

stability, stable local oscillator (STALO) frequency stability, coherent 

oscillator (COHO) frequency stability, and random COHO phase lock errors. 

5.3.2 STALO FREQUENCY STABILITY 

The STALO frequency stability should be determined by measuring the 

sidebands induced by phase noise. The frequency stability should be 

compatible with the error budget. 
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5.3.3 MAGNETRON FREQUENCY STABILITY 

The stability of the magnetron should be determined by measuring the 

variations in the voltage output from the automatic frequency control (AFC) 

discriminator; the AFC voltage should be a measure of variations between the 

magnetron frequency and the STALO frequency. 

5.3.4 OVERALL PHASE STABILITY 

The overall phase stability can be determined by measurements that are 

internal to or external to the radar. These measurements must be conducted in 

such a manner that the random phase components and the range dependent 

components are separated and the overall phase measurement stability is 

indicative of that which would be obtained over the entire range of target 

ranges to be encountered. Since these measurements are sensitive to 

fluctuations in the phase as well as average values, both average and RMS 

values of the phase variations should be measured. 

5.3.4.1 External Phase Stability Measurements  

Overall system phase stability can be demonstrated by external phase 

stability measurements conducted by using a standard target if the following 

conditions are met: (1) the propagation medium must be essentially stationary 

and homogeneous so as not to affect the measurement capability, (2) 

measurements must be made at several ranges to identify both the range 

dependent and range independent components, (3) the signal-to-clutter and 

signal-to-noise ratios must be sufficiently large to achieve the desired phase 

accuracies (approximately 26 dB is required for 3° phase measurement 

accuracy), and (4) the beamwidth and location of the reflector must be such 

that multipath returns are minimized. 

5.3.4.2 Internal Coherence Measurements 

Determination of phase measurement accuracy by measurements conducted 

internal (rather than external) to the radar has a number of .advantages 

including ease of measurement, independence from external weather conditions, 

ability to operate without fixed external targets, and capability to make 

measurements regularly throughout the measurement program. The major 

disadvantage is the additional equipment required for such measurements. 
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SECTION 6 

RADAR SIGNAL PROCESSOR TESTS 

6.1 OVERVIEW  

The following tests are recommended in addition to those tests outlined 

in Section 9.4 of technical proposal P-1038-81/82. The tests recommended in 

this section will demonstrate the proper functioning of not only the digital 

signal processor (DSP), but also the entire radar system. Thus, these tests 

establish measurement accuracies and resolutions of the DSP only if the rest 

of the radar system has been tested independently and found to meet the 

required specifications. 

The DSP tests utilize three types of targets: static targets, dynamic 

targets, and targets of opportunity. The first two types of tests employ 

calibrated radar reflectors. For the static test, the reflectors are fixed in 

position. For the dynamic tests, the reflectors are moving. The static and 

dynamic tests are tailored to provide testing of some part or function of the 

signal processor. Tests utilizing weather targets of opportunity are also 

recommended. A summary of DSP features to be tested is provided in Table 3. 

The specified tests called for in this table are described below in detail. 

6.2 STATIC TESTS  

The static tests are conducted by using calibrated corner reflectors 

placed in the first range cell (range of 1 km). The reflectors should each 

have a radar cross section of about 250 m 2  (24 dBsm) to provide sufficient 

signal-to-clutter ratio (20 dB) in this cell. The clutter level at this range 

with a 1 degree beamwidth is estimated to be +4 dBsm; this estimate is based 

on assumptions that the normalized radar cross section for a grassy open field 

is -30 dBsm (worst case) and the grazing angle is low (radar on a tower). 

The clutter rejection filter in the DSP must be inhibited during these 

tests since returns from the stationary corner reflectors should show up in 

the zero Doppler bin of the FFT output. When a trihedral reflector is placed 

in the range cell, measurement of reflectivity (Z) accuracy and system linear 

polarization isolation should be possible. With the clutter rejection filter 

active, the clutter rejection capability of the DSP can also be demonstrated. 
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TABLE 3 
DATA SIGNAL PROCESSING TEST 

Tests 
DSP Features 

Static 
Tests 

Dynamic 
Tests 

Weather Tests 
(Extended Target 

in Range & Azimuth) 

Real-time operation of FFT 
(32, 64, 128 points) X X 

Clutter Rejection X X X 

Velocity Estimate (V) X 

Spectral Width Estimate (0) X 

Reflectivity Estimate 
(Z), (Z-C) X X 

Scattering Matrix Estimates 
(Four Complex-Valued Quantities) 	X X 

System Polarization Performance 	X X 

,System Cross-Polarization 
Performance X 	 X 
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A dihedral reflector can be placed alone in the range cell and canted at 

various angles to pfdvide linear cross-polarized returns. For example, if the 

canting angle is +45 0  and vertical polarization is transmitted, the return 

polarization should be +90 0 ; that is, horizontal polarization should be 

returned. This should allow testing of the cross-polarization channel. Other 

polarization angles can be provided by canting the dihedral reflector at 

various geometric angles. In general, the polarization angle of the radar 

return relative to the transmit polarization is equal to twice the canting 

angle of the dihedral reflector if vertical or horizontal polarization is 

transmitted. Tests can thus be devised to obtain any single element of the 

scattering matrix while the remaining elements are theoretically zero valued. 

6.3 DYNAMIC TESTS  

The dynamic tests are conducted by using several corner reflectors on a 

rotating arm as illustrated in Figures 8 and 9. The arm is mounted on a pole 

or small tower and driven by a motor. The tangential velocity of the 

reflector at each end of the arm is related to the arm radius (X) and rpm as 

V
t

( 	
7X(m) 

m/s) - 	• rpm . 
30 

Thus, the maximum Doppler frequency shift at 5.5 GHz due to the rotation of 

the arm is given by 

2V
t
(m/s) 

Max f
d 

(Hz) - 	 x 5.5 x 10
9 

Hz 
3x10

8 
m/s 

or 

110's 
Max f

d 
 (Hz) =

90 	
£(m) . rpm 

If an arm radius of 5 meters is used, then the rpm needed to achieve the 

maximum unambiguous Doppler shift for each PRF is as listed in Table 4. 

The testing of the signal processor at maximum unambiguous Doppler shift 

is not required for all PRF rates. Hence, a reasonable arm rotation rate is 

about 10 rpm (one revolution every six seconds). 
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TABLE 4. RELATIONSHIP BETWEEN TARGET SPEED AND 

DOPPLER FREQUENCY SHIFT 

PRF (Hz) 
	

RPM 	 Vt  (m/s) 

	

400 	 10.4 	 ±5.45 

	

1,200 	 31.2 	 ±16.34 

	

2,400 	 62.4 	 ±32.67 

Reflectors located at positions along the arm experience velocities that 

are slower than those listed in Table 4. For example, a reflector located at 

the center of the arm does not experience any tangential velocity component, 

even though it does rotate. By appropriately positioning combinations of 

reflectors (trihedrals and dihedrals), various spectral situations can be 

simulated. Reflectors of about 25 m2 (14 dBsm) cross-section should be 

adequate for the dynamic tests since ground clutter is at essentially zero 

Doppler. 

As the arm rotates about its pivot, the corner reflectors should travel 

around a circular path and experience a velocity relative to the radar that 

varies sinusoidally with timed, Therefore, the Doppler frequency shift 

measured at the DSP output should also vary sinusoidally with time as 

illustrated in Figure 9. In this figure, only the velocity trajectory of a 

pair of corner reflectors mounted back-to-back is shown. As the reflectors 

turn relative to the radar, theft radar cross-sections also vary. The maximum 

cross-section and maximum Doppler shift are exhibited when the arm is 

perpendicular to the radar line of sight. The reflector cross-section remains 

fairly constant (a 10 dB variation) over a ±30 °  sector about this .point. At 

other angles, the cross-section of the corners and arms should be much 

lower. The arm and back of the reflectors should be covered with radar 

absorber material to minimize their cross-section contributions. 
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Since a specified number (32, 64, or 128) of radar returns from one range 

cell is required to provide a Doppler "picture" of that cell, the time between 

Doppler pictures, At, is given by 

At = FFT size/PRF. 

The separate Doppler pictures are indicated in Figure 9 as dots superimposed 

on the sinusoidally varying function. Of course, each dot only represents one 

part of the entire spectrum that is displayed. 

Combinations of reflectors can be used to simulate spectral shapes which 

should test the DSP's spectral width estimation algorithm and the spectral 

resolution. A single reflector should allow verification of velocity 

estimation and reflectivity measurement accuracies. 

The degree of clutter rejection achieved over a given bandwidth can be 

measured by mounting several corner reflectors close to the pivot point on the 

rotating arm. 	The velocity of the corner reflectors can, thus, be made 

arbitrarily small to appear as clutter moving in the wind. 	Additional 

reflectors can be mounted to appear as low velocity weather. 

Real time operation of the FFT processor within a single range cell can 

be tested by observing the Doppler trajectory of a corner reflector mounted on 

the rotating arm. Since the arm rpm and radius are known, one can determine 

how often the FFT's are being performed. 

6.4 WEATHER TESTS  

Weather targets of opportunity provide the only feasible extended targets 

that can realistically be used to demonstrate the real-time operation of the 

DSP over a large range and azimuth area. However, this type of test is not 

useful for verifying the accuracy to which the DSP can estimate various 

spectral quantities. Therefore, static and dynamic tests utilizing calibrated 

reflectors are necessary. 

The tests outlined in Section 9.4.2 of the technical proposal P-1038-

81/82 in which weather is used as a test target should be sufficient. No 

additional tests are recommended. 
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the antenna. It was suggested that antenna surface deformation due to slewing 
could affect the polarization characteristics of the antenna. EEC took the position 
that this analysis was not part of the contract. 

5. Welded Waveguide: Georgia Tech suggested that the waveguide running between 
the feed and along the feed arm support structure be welded at various intervals. 
Welding is proposed to reduce differential expansion between feed lines. 

6. Infra-Red Heating of Feed: There was concern that infra-red energy from the sun 
would be focused on the feed if the antenna was accidentally pointed at the sun, 
and the resultant heating would deform the feed. EEC will investigate this 
problem. 

7. Standing Wave Ratio (SWR) Versus Isolation: EEC plans to specify the SWR of the 
polarization network (switch 1 and associated microwave circuitry on the basis of 
measurements made on the component as individual parts. Georgia Tech suggested 
that the polarization specification be tested for the entire system after the system 
is assembled. EEC suggested that a double stub tuner be used as a nulling network 
to lower the specified SWR. The issue of testing SWR is unresolved. 

8. Slip Rings Versus Coiled Coaxial Cable: EEC will use coiled coaxial cables to 
connect the antenna-mounted receiver components to the system at the antenna 
pedestal. EEC argued that the substitution of coaxial slip rings would cost $10,000 
to install and that this was beyond the contract specification. 

9. Flexguide Between Antenna Feed and Waveguide Run: EEC had planned to use a 
short section of flexible waveguide near the antenna feed to adjust the phase 
between channels. After discussion it was agreed that this design was not a good 
idea. EEC will investigate other ways of achieving the phase trim between 
channels. 

10. Switching of Receiver Channels: There was a discussion concerning the desirability 
of switching receiver outputs on a pulse-to-pulse basis instead of switching the 
microwave network high powered switch when making certain measurements. It 
was finally determined that the microwave switch must be switched instead of the 
receiver output. This determination was made after EEC discussed switch 
specifications with the manufacturer. 

11. Handwheels and Locking Pins on Antenna: Georgia Tech suggested that handwheels 
be supplied with the antenna to allow movement during power failures. EEC 
countered that the antenna could be stowed by one man using the leverage of the 
counterbalance. If this is not the case, there may be problems stowing the antenna 
should a power failure occur during use. EEC agreed that the provision of locking 
pins would be a good idea. 

12. High VSWR Protection: The system design presented at the meeting did not provide 
for transmitter "shut down" if the switch or other components in the microwave 
network should encounter high VSWR conditions due to arcing or other problems. 
EEC agreed to move the reflected power monitor point to a location in the 
transmitter output that would allow a high VSWR in the microwave network to be 
detected and thus protect the polarization by shutting down the transmitter under 
high VSWR conditions. 



13. Local Oscillator Run-Out Time: The local oscillator is phase locked to the 
transmitted pulse. The stability of the phase lock (with increasing time) after 
transmitter firing was questioned by Georgia Tech. Georgia Tech will obtain the 
stability specification on the local oscillator and provide it to DFVLR. 

14. Overall Receiver Sensitivity: 	The specification on the receiver minimum 
detectable signal was questioned by Georgia Tech. 	The specified receiver 
bandwidth was half the required bandwidth. It was also pointed out that increased 
receiver bandwidth would be desirable to reduce the phase dispersion that will 
occur if the presently specified bandwidth is utilized. The minimum detectable 
signal level will drop 3 dB if the bandwidth is increased to improve phase 
dispersal. It is suggested that DFVLR conduct analysis on the trade-offs involved 
regarding receiver bandwidth versus measurement precision. 

15. Receiver Gain Settings: The present EEC signal processor will not control the gain 
of each receiver separately. This may be a problem when the power returned to 
one channel is 30 dB below the power in the other channel. For certain 
measurements, it may be useful to increase the gain in the "low" channel by a 
known amount. This differential treatment would be possible if EEC can make a 
software modification and add an additional output port to drive the additional 
Sensitivity Time Control circuit (STC). 

16. Use of Transponder With Radar: The use of a standard transponder or radar beacon 
will not be possible because of the instability problem that would occur if the local 
oscillator signal were moved in "side step" fashion. Thus the DFVLR aircraft 
conducting cloud physics sampiling missions must be located using means other than 
a radar beacon. 

17. Scattering Matrix: Dr. J. D. Echard has developed a review of the scattering 
matrix that will be provided by the EEC signal processor. This discussion is 
included as Attachment I to this letter. 

These are the major points that were part of the EEC/DFVLR meeting summary. 
A written meeting summary was prepared by EEC and agreed on by the DFVLR 
representative on the last day of the review. This report addresses many points of the 
official meeting summary. 

It is our understanding that the next effort that Georgia Tech is to undertake 
within the next 60 days is the review of the EEC final specifications document. This 
review is to be completed in preparation for the 18 July system design review to be held 
at Georgia Tech. If there are questions pertaining to this report, please feel free to call 
me at (404) 424-9616 between 1300 and 2100 DMT. 

Yours truly. 

Gene Greneker 
Project Director 

cc: EKR, JLE, NTA, HLB, JDE, JSU, OCA 



Attachment I 

Discussion on the Derivation of the 
Scattering Matrix to be Used 

by the DFVLR Signal Processor 



1st transmission 

2nd transmission 

Problem:  Estimation of Scattering Matrix Elements With a Coherent-on-Receive Radar 

Approach:  

Figure 1 indicates the transmit-receive timing of the radar. As indicated, 

orthogonal polarizations are transmitted on alternate pulses at the pulse repetition rate 

(PRF). Both orthogonal polarized signals are received simultaneously via channels a and 

b. The nature of the received pulses is shown in Figure 1 for only one range cell - the ith 

range cell. Since the modulation on each returned pulse can be considered complex 

valued (A and (I) or I and Q), with two pulse tranmissions all the information on the 

scattering marix is obtained Aaa' 'Paz' Aab' d ab' Aba' q)ba' Abb , and 4>bb• However, 

the returns from a pair of transmitted pulses are not sufficient for determining the 

velocity of the target (Doppler). A number of transmitted pulse-pairs is needed to 

estimate the target Doppler. 

The diagrams shown in Figures 2 and 3 indicate how the scattering matrix elements 

can be extracted as a function o:E Doppler shift. Figure 2 indicates typical receive 

channels with explanations of the frequency and phase terms involved. Note that the 

video signals (out of the A/D converterss) are independent of transmitter frequency and 

phase. However, the video signal is still dependent on target position (velocity) and the 

target reflected phase (the information desired). 

Figure 3 indicates how the I and Q signals from both receive channels can be used 

to extract polarimetric phase as a function of Doppler frequency. Note that the same  

Doppler phase exists on each of the two receive signals. However, the Doppler phase will 

be differrent for the next pair of • receive signals obtained when the next pulse is 

transmitted. 

The output quantities shown in Figure 3 can be placed in matrix form as follows: 

(1)  j aa 
A. aae j  

j el)  jab 

A  j abe  

S. = 

jba 
	

jbb 
A. 

j bae 
	

. b be  



Where subscript "j" refers to Doppler spectrum component itj (j = 1,2 	The first row 

of the above scattering matrix is obtained from the circuit of Figure 3 when polarization 

"a" is transmitted. The second row is obtained when polarization "b" is transmitted in 

the next pulse repetition period (see Figure 1). 

Since absolute phase is not important, one of the phases can be removed from the 

scattering matrix as indicated below: 

jab - (P jaa ) 
A. jaa 	 Ajabe  

J 	- iP • 	) jba 	jaa 
Ajbae 

j ((i) jbb 	jaa )  

Ajbbe  

S. = e  J^j aa 

This operation is not shown in Figure 3, but is easily performed from the information 

available. Note that there is no Doppler phase in the (q) jab 	jad term, but there is a 

Doppler phase in the ( (P jjba (P j aa and ((ID jbb - (1) jaa ) terms which must be estimated 

and removed. 
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ENGINEERING EXPERIMENT STATION 

Georgia Institute of Technology 
A Unit of the University System of Georgia 

a 

Atlanta. Georgia 30332 

September 23, 1983 

Dr. Peter Meischner 
DFVLR Oberpfaffenhofen 
8031 Wessling 

Dear Peter: 

This letter report was generated under the provisions of Contract 55312-433X-82. 
It is a report of the topics discussed by Enterprise Electronics Corporation (EEC), 
DFVLR, and Georgia Tech, during the three day test plan review held at Georgia Tech on 
27, 28, and 29 July. This summary addresses the test that are proposed for the signal 
processor and the tests proposed for the radar system. We have also included additional 
comments for your consideration. 

A. Design Philosophy 

The polarization agile DFVLR Doppler radar is a unique cloud physics data 
collection system. The precision that can be achieved in maintaining system tolerance 
determines the resolution of the measurements. Channel isolation, system stability, and 
signal processor resolution all determine the ultimate system resolution. 

The DFVLR staff, in true scientific tradition, will use the this radar to make 
precision meteorological measurements. The resulting data will be analyzed and 
ultimately presented to the scientific community. The credibility of the reported 
meteorological observations will be determined by the precision to which the radar 
system parameters have been measured and the system stability that can be maintained 
over long periods of time. The effects of disassembly, transportation, and reassembly of 
the system will also affect system stability. This report was generated to suggest tests 
that should be conducted to document system performance and ensure that system design 
specifications are met. 

B. Test Philosophy 

Georgia Tech agrees that certain planned EEC test procedures are adequate to test 
the proper operation of various system modules. We do feel that in general the 
procedures designed to test the entire system as a unit are inadequate to accurately 
quantify absolute system performance. For example, tests that utilize the radar's 
internal coherent local oscillator (COHO), local oscillator (L0), and the proposed 
software based test routines are acceptable for the purpose of testing primary system 
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functions. We do feel that EEC should develop test procedures and independent test 
instrumentation to allow the DFVLR radar performance to be determined as a total stand 
alone system. 

During the test plan review meeting, we requested that a corner reflector array be 
used to test total system polarization resolution, polarization state repeatability, and 
polarization stability. If entire system polarization test are not conducted, there will be 
no way to confirm that the system is meeting the design goal for all polarization states. 
The use of a corner reflector array is the best way to test total system channel isolation, 
switch thermal stability (under transmitter radiation conditions), and receiver 
chain/processor resolution. In addition, dynamic tests should be conducted using a 
rotating corner reflector to test the receiver and Doppler processing chain. The antenna 
response should be measured on the antenna range using the raster-scan test to be 
presented in a later section. Appendix 'A' is a collection of papers that should be useful 
in quantifying the magnitudes of the effects that you are trying to measure. 

C. Signal Processor Dynamic Test 

The signal processor design is relatively straight-foward. We recommend that 
dynamic procedures be used to test the entire system under controled conditions. 

The use of a weather balloon lifting a corner reflector was suggested as an 
independent test of the velocity measurement resolution of the DFVLR radar. A report 
entitled "Note on Probing Balloon Motion by Doppler Radar" by R. M. Lhermitte is 
included as Appendix 'B' of this report. The data presented in this report indicate that 
the balloon is too unstable a platform to test the 1 meter/second velocity resolution of 
the DFVLR radar. 

We therefore suggest that EEC develop a dynamic test proceedure that will employ 
a moving target of controlled velocity, such as the previously proposed rotating corner 
reflector. The corner reflector dynamic test will ensure that the receiver/signal 
processor chain works as a system and that the transmitter and LO have an overall 
system stability that will allow velocity measurements of 1 meter/second velocity 
resolution. 

Appendix 'C' is a paper entitled "The Correction of I and Q Errors in a Coherent 
Processor." It is included as a discussion on the errors that can occur in the 'I' and 'Q' 
channels and the effects of these errors on system accuracy. This paper is included to 
show the need for measuring Doppler velocity under carefully controled conditions using 
a rotating corner reflector as outlined in the original Georgia Tech test plan outline. If 
the EEC test range can not accommodate the rotating corner reflector test, then a 
condition of system acceptance should be that the velocity test be met at DFVLR using a 
rotoating corner reflector. 

D. Non-Dynamic Tests of the Signal Processor (Tests 3.5, page 5) 

a. Acceptable as proposed. 

b. Acceptable as proposed. 

c. Acceptable as proposed, except maximum switch time should be specified. 



d. Same as c. 

e. Specifies that the signal processor will output an STC gain control for both 
linear amplifiers. We suggest that it should be specified that "the gain curves 
for each amplifier shall be settable independently of each other on a 
pulse-to-pulse basis." 

f. The definition of bandwidth and bandwidth measurement technique should be 
specified. 

g. The power received versus power measured at the IF amplifier should be 
specified to ensure true log response to within a specified tolerance. 

h. The use of a wind-finding radar to make the balloon platform velocity tests 
(see earlier comments about use of balloon) is not acceptable. 

i. Acceptable. 

j. Acceptable. 

k. We hope that this test will also verify that the correct values appear in the 
intensity, velocity, and spectral width positions on the display. 

E. Test Under Section 3.6.1 

a. We agree that weather should not be used to demonstrate that 8 levels can be 
displayed. This test must be done with a signal generator. The input power 
levels to the receiver at which each of the 8 levels change should be recorded 
for test verification purposes. 

b. It is unclear how the Doppler data used to test the velocity display will be 
generated. Could EEC provide more information? The static dihederal corner 
reflector should be moved in 75 meter range increments to verify that the 
range resolution is 75 meters. 

c. Acceptable as written 

d. This test is very important as it establishes the precision to which the system 
can measure the parameters that make-up the scattering matrix. We support 
the use of a corner reflector array of the type described in the paper entitled 
"Passive Polarimetric System" that was distibuted to all attendees during the 
July meeting. The use of the suggested array has an advantage over a single 
corner reflector. The array will allow arbitrary polarization components of 
preselected amplitudes to be generated. The generation of arbitrary 
polarization components of preselected amplitudes will allow the resolution of 
the polarization measurement system to be defined. 

F. Test Under Section 3.6.3 Phase Stability 

a. This paragraph states that the minimum Doppler resolution is only 2.55 meters 
per second if the promised 7 degree phase stability specification is met. The 
footnote (asterisks) stating that "This does not imply that the point target 



velocity accuracy will be worse than 1 meter per second" is very confusing. 
We do not fully understand this statement. Could EEC or DFVLR clarify? 

G. Test Under Section 6.0 Signal and Data Processing Subsystems 

We have no written specification for the digital signal simulator that will be used 
to test the signal processor. It would be advisable to request a set of specifications from 
EEC concerning the digital signal simulator design. Hopefully, the digital signal 
simulator is a stand alone system. We do not think that the stable local oscillator or 
coherent local oscillator in the DFVLR radar should be used to simulate any signals for 
absolute test, as the use of system components are acceptable only for testing system 
modules. 

H. General Pulse Pair Processor Algorithm. 

Georgia Tech does not have a detailed description of the DFVLR signal processor. 
We do have the manual supplied by Sigmet that discusses how the mean Dopper velocity 
is computed and how the elements of the scattering matrix are computed, in general 
terms. We have therefore located a number of papers on pulse pair processing (PPP) the 
scattering matrix calculations and, using these papers, we have developed a simplified 
algorithm that explains the PPP technique. We have included several of these papers on 
the PPP technique as Appendix 'ID' for your use and study. 

1. Computation of Mean Doppler Velocity 

The DFVLR radar is designed to provide a mean Doppler estimate and a velocity 
variance estimate for each of 2 channels for each of 2 polarization states. Figure 1 
shows the convention that will be used to describe the data channels. 

When 'I' is shown, the inphase channel is referenced. The term 'Q' refers to the 
quadrature channel. There are 2 '1' and 2 'Q' channels processed for each polarization 
state. The raised 'xx', 'xy', 'yy', and 'yx' indicate polarization states. The first letter in 
the group indicates the transmitted polarization and the second letter indicates the 
received polarization. In the case of Figure 1, 'xx' indicates transmit 'x' polarization and 
receive 'x' polarization, while 'xy' indicates transmitt 'x' polarization and receive 'y' 
polarization. The designator '1' indicates the pulse number. The transmitter always 
transmits in the 'X' channel on the oc'd pulses (1,3,5,7,9 N). 

Figure 2 shows a similar convention, except the polarization has been switched to 
the orthogonial state. The transmitter is now transmitting in the 'Y' channel. The pulse 
number is '2'. The transmitter will transmitt in the 'Y' channel on all even pulses 
(2,4,6,8,10 N). The raised subscript changes to 'yy' or 'yx' to show this fact. 

Figure 3 shows how the combination of values, shown in Figures 1 and 2, are 
generated. There are two linear intermediate frequency (IF) amplifiers; one for the 'X' 
channel and one for the 'Y' channel. The gain of each should be capable of being set 
separatly. The output of either 30 MHz linear IF amplifier feeds the input port of a 
non-limiting phase detector. The 30 MHz output of the COHO feeds the other port of 
the non-limiting phase detector. The resulting output of the phase detector is an in-
phase (I) channel and the quadrature (Q) channel. Since there are two IF amplifiers there 
are two 'I' and two 'Q' channels to be processed for each polarization state. 
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Pulse 1 is transmitted in the 'X' channel and 4 analogue values (Ixx Qxx , ixy , Qxy)  
are digitized by the 10 bit analogue to digital converter. The polarization state is 
switched and pulse 2 is transmitted in the 'Y' orthogonal channel. The next 4 additional 
analogue values (IYY, QYY, IY x , QY x) are digitized by the 10 bit analogue to digital 
converter. These values are stored in an even integer pulse number location. 

Figure 4 shows a typical data storage scheme. The pulse numbers are shown across 
the top. The transmit polarization is shown along the left margin. The data collected 
for pulse numbers 1 through 6 are shown, as are the data for pulse numbers 13 and 14. In 
actual practice 32, 64, or 128 pulses will be collected at one time and stored as shown. 

The storage scheme shown in Figure 4 shows how the pulses will be processed by 
the pulse pair processor. Ref ering to the illustration shown in Figure 4, pulses 1 and 3 
will be treated as a pair and pulses 2 and 4 will be treated as a pair. Pulses 3 and 5 will 
be treated as a pair and pulse 4 and 6 will be treated as a pair. Pairs of 'I' and 'Q' values 
are processed in the order shown because the polarization is switched on each pulse, and 
each pair processed must come from the same polarization state. 

The terms 'Imag' and 'Real' are computed from the 'I' and 'Q' values developed in 
Figure 4. The variable names 'Real' and 'Imag' are assigned to the sum and difference of 
the terms in the numerator and denominator of the series shown in Figure 5 as step (1). 
The values for 'Real' and 'Imag' are computed for any 32, 64, or 128 pulses from a 
specific polarization, in this case polarization state 'xx'. 

The 'I' and 'Q' values are ordered as shown in Step 1, Figure 4 and the mathematical 
operations shown are performed. The terms in the series would be expanded to 32, 64, or 
128 samples in a complete example. When the indicated mathematical procedures are 
performed, -the 'Real' and 'Imag' variables are assigned the computed values. The 'Real' 
and 'Imag' values will have a plus '+' or minus '-' sign, depending on their value. The sign 
information for the 'Real' and 'Imag' values is saved in step (3) for use in step (6). The 
value of the intermediate variable 'Uxx' is computed in step (4) by dividing the 'Imagxx' 
value by the 'Realxx' value. 

Figure 6 shows how the mean Doppler angle is computed. The average angular step 
between pulse pairs, shown as Txx,, is computed over the interval of 32, 64, or 128 
pulses and is found in step (5) by taking the arctangent of 'Uxx'. 

The calculated average value of qxx lies between 0 and 2/7 radians at this point in 
the calculation. The true value can between - 7 and 7 radians. The signs that were 
saved during step (3) of Figure 5 are used to resolve this ambiguity. - 

A truth table was constructed in step (6) to determine the angle to add to cbxx to 
find the true average angle qb xx. If the sign  of 'Realxx' and 'Imagxx' are both '+', then 
the value of Pxx is the correct value of (p x x If the sign of 'Imagxx' is '-' and the sign 
of 'Realxx' is '+', then cb xx is equal to 4) xx - 7T. If the signs of both 'Imagxx' and 
'Realxx' are '-', then cl)xx equals Tr -4 xx . If the sign of 'Imagxx' is '+' and the sign of 
'Realxx' is '-', then the value of 475rx-  - cb xx. 

When the value of ,Dxx has been determined, the mean Doppler 'Fdxx' can be 

calculated. This calculation is shown in step (7). The pulse repetition frequency (PRF) is 
divided by 4 Tr instead of the normally used 2 FT because of the order in which the pulse 
pairs were collected. The polarization state is switched on every other pulse (i.e., pulses 
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1,3,5 	N are  paired and pulses 	 are paired). The value of PRF/47 then is 
multiplied by 40xx, producing the value of the mean Doppler frequency, fdxx, which is in 
units of Hertz. 

This same procedure is repeated in steps (8) through (21) for the computation of the 
mean Doppler for the terms fdxy, fdyy, and fdyx. The mean Doppler values for these 
terms are stored in step (22). The variance or Doppler spread of each of the 4 mean 
Doppler terms must be computed. 

2. Computation of Doppler Variance 

Figure 7 shows how the Doppler variance is computed for the 'xx' case. The 'I" and 
'Q' values are grouped as shown in step (1) of Figure 7. The indicated mathematical 
operations are performed and a value is assigned to variable 'Vxx'. Step (2) is performed 
according to Sigmet documentation. The square root of the terms under the radical is 
taken. The result is the variance (a Kx). The variance is a measure of spectrum width 
which serves as an indicator of the velocity spectrum of all hydrometeors in the radar 
range/azimuth cell of interest. The velocity spectrum serves as a measure of the size 
distribution of the hydrometeors in the beam. 

3. Computation of the Scattering Matrix 

This section is in preparation and will be forwarded in the near future. We did not 
want to hold this report until the scattering matrix explanation is complete. 

The section that follows this part of the report contains comments prepared by Mr. 
J. S. Ussailis. The points made in his attached report are the same points made during 
the DFVLR/EEC/Georgia Tech meeting in July. 

If there are questions please feel free to call me. 	The scattering matrix 
information will be forwarded upon completion. 

Yours Truly, 

Gene Greneker 
Project Director 



ENGINEERING EXPERIMENT STATION 

Georgia Institute of Technology 
A Unit of the University System of Georgia 

Atlanta, Georgia 30332 

December 19, 1983 

Dr. Peter Meischner 
DFVLR Oberpf aff enho fen 
8031 Wessling 

Dear Peter: 

This letter is in response to your request for an explanation of how EEC proposes to 

compute the elements of the scattering matrix and also to clarify a mistake that we 

made in the explanation of how the mean Doppler variance is computed. 

A. The EEC Method of Computing Variance  

Our last letter included a section showing how the mean Doppler velocity and the 

variance of the mean Doppler velocity were computed, using and 'Q' values. The 

method of computing the mean Doppler frequency is correct as presented. The method 

of computing the variance is also correct; however, the method presented by Georgia 

Tech is not the method used by EEC to compute the variance of the mean Doppler 

frequency. 

AN EQUAL EMPLOYMENT EOUCAT ,ON OPPOPTL1NiT Y INSTiTUT , ON 



Figure 1 shows the process used by EEC to compute the variance of the mean 

Doppler frequency. This method uses 7 steps in the computation. The digitized 'I' and 'Q' 

values are stored in the primary data array (shown as figure 4 in the November report). 

A 32, 64, or 128 point Fast Fourier Transform (FFT) is performed on the 'I' and 'Q' values 

in step 2. The output of the FFT is the voltage spectrum. An algorithm to remove the 

ground clutter is performed in step 3. This involves the removal of spectral components 

that lie around the zero velocity line of the spectrum. The components that lie near the 

zero velocity line represent the spectral components contributed to the spectrum by 

ground clutter. The 'real' and 'imaginary' spectral values, produced by the FFT, are 

squared in step 4. The inverse FFT is then performed on the 'real' values and the 

'imaginary' array is loaded with zero values. The squared frequency spectrum valves are 

then transformed back to the time domain. The second and third points (Point 1 

represents zeroth lag) of the transformed time series represent the first and second lags 

(R1 and R2). 

The variance is computed by taking two thirds of the natural log of the ratio of the 

absolute value of the first and second lags (R1 and R2) as shown in step 6 and performing 

the operation shown in Step 7. According to EEC, the resulting value is the variance. 

The standard deviation may be computed (if desired) by taking the square root of the 

variance. 

B. Computation of the Scattering, Matrix Elements  

The and 'Q' values are collected and stored as shown in figure 4 of the November 

report. The first step in computing the elements of the scattering matrix is the 

computation of the amplitude values S xx  , SxY , SYx  , and SYY . As shown in step 1 of 

figure 2, the value of s xx  is computed by squaring the 'I' and 'Q' values, performing the 

indicated multiplication, and then summing the results over the odd pulses pairs. The 

value of SxY is computed the same way, by also using pulses 1, 3, 5, 7 	N-1. The 



amplitude of Sx  and 	are computed in the same way, except pulses 2, 4, 6, 8 	 

are used in the computation. 

xy Step 2 shows the elements of the phase term 4)  , and the general equation 

supplied by EEC is shown. The 'P and 'Q' variables are substituted in the equation in step 

3. The 'I' and 'Q' terms are multiplied in step 4, and 'j' (the imaginary term) is removed 

from one set of terms through algebraic manipulation, resulting in a sign change. The 

sums of the imaginary and real values are taken in step 5, and their signs are saved in 

step 6. These signs will be used to solve the inverse tangent ambiguity (in step 9). 

The ratio of the real and imaginary values is taken in step 7 and the resulting value 

is assigned to the variable V xY. The mean phase angle 4" is computed in step 8 by 

taking the inverse tangent of variable V xY. The possible quandrant ambiguity in the 

phase angle of 4)" is corrected in step 9 by testing the stored signs of the real and 

imaginary values (those stored in step 6). The phase angle 4 )" is the corrected mean 

phase angle that will be used in the scattering matrix. 

The calculation of 4)Y x  is accomplished in step 10 by using the same procedure 

outlined in steps 2 through 9 with one exception. The 'P and 'Q' values used to calculate 

4)Y come from the even pulse group. Therefore the pulse number of the 'I' and 'Q' values 

will run from 2 to 32 instead of 1 to 31, as in the previous example. 

The phase angle (1)YY is computed starting with step 11. The general form of the 

equation used in this calculation is shown in step 11, and the general equation with 

substituted 'I' and 'Q' values are shown in step 12. The 'I' and 'Q' values are taken from 

both the odd and even pulses in the calculation of 4 )" . The 'P and 'Q' values are grouped 

as shown in step 13 and the 'j' term is removed algebraically. The sums of the real and 

imaginary terms are taken in step 14 using all 32 samples in the order shown. The signs 

are stored in step 15 for use in step 18. The ratio of the real and imaginary values is 



taken in step 16 and assigned to the variable VYY. The phase angle 4 )YY  is computed in 

step 17 by taking the inverse tangent of variable VYY. The quandrant ambiguity is 

removed in step 18 by use of the truth table. The unambigious phase angle 7"  can now 

be used in the scattering matrix. Step 19 shows that after the computation and 

correction of (I) XX there are 3 phase angles for use in the scattering matrix. 

The general form of the EEC scattering matrix is shown in step 20. There are 4 

signal amplitude values Sxx -xy , 	, Syx  , and SYY and three phase values. The phase 

value (I) XX has been subtracted from each phase term in the matrix. The subtraction 

process of 4) XX sets the phase term associated with S XX's to zero. The term e  is 

computed in a two step process in sps 21 and 22. 

The mean Doppler frequency fd yy  and fdxx  computed by the pulse pair processor 

(shown in the November report) are recalled and averaged in step 21. This averaging 

produces variable f
d 

which represents the average Doppler frequency of the two mean 

Doppler frequency estimates fd yy  and fdxx. The mean phase angle e  , is computed using 

the averaged Doppler velocity, i c  computed in step 21. The mean Doppler frequency is 

converted to phase angle 9 (in units of radians) in step 22 in order to have units that are 

equivalent to the phase terms in the scattering matrix. 

The elements of the scattering matrix, as defined by EEC, are shown in step 23. 

The phase term associated with amplitude term S xx  is set to zero. The phase term 

associated with amplitude term S xY is shown as (i) xY  . The phase term associated with 

SYx  is the sum of phase angles 4) Yx  and op YY , minus the phase angle 072 . The phase 

term associated with amplitude term SYY is 4 )  yy  minus 0 /2 . 

The term 0 must be subtracted from 2 elements in the matrix to remove all 

contribution of phase shift between channels due to Doppler induced phase shift. 



Ideally, all amplitude and phase terms in the matrix would be taken during a single 

pulse. However, these terms are generated over successive pulse pairs by switching 

polarization in the EEC/DFVLR radar. Therefore, twice the Doppler phase appears in 

the phase terms in the scattering matrix and must be removed before the polarimetric 

phase can be determined. The removal of the Doppler phase term theoretically removes 

all non-polarimetric phase information, except the polarimetric phase between channels 

due to effects of the medium. After the Doppler phase term has been removed, the 

polarmetric phase can be resolved to a high degree of accuracy for a single point target, 

using this technique. We suspect that spectral broadening (due to multiple velocities 

being present in a rainfall distribution) will degrade the cancellation of the Doppler phase 

term, and this may prohibit using the scattering matrix, as presently derived, to observe 

small polarimetric phase shifts on the order of 5 °. 

C. Questions about the EEC processing Technique  

The term 6/2 appears in the scattering matrix. It is EEC's contention that the 

reason that 6 is divided by 2 is because 6 is computed over two pulse pairs and therefore 

the equivalent mean Doppler angle is twice its proper value. We believe that 6 should 

not be divided by 2 because the phase angle represented by Ti is the correct mean 

Doppler frequency. Perhaps we do not fully understand the processing procedure, but 

this would be a good point to check with EEC. 

If there are questions regarding this explanation please let me know. 

Yours truly. 

Gene Greneker III 

cc: EKR, JLE, NCC, JDE, YMP, Pat Heitmuller 
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Figure 1. Method used by EEC to compute variance 
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Figure 2. Computation of Scattering Matrix 



Elements that comprise the equation for the solution of (1) xY 

* 
cl)xy A  Arg 	Z A7 	. 	(Aix ) 	Th• 1 

i --::: 1, 3, 5 	N - 1 _..I 

Substitution of mathematical operators and 'I' and 'Q' Values 

A 	 i- 
cpxy 	= 	Arg I  Z ( IXY 	ie,Y ) 	(i ).`x - jex) 

1 	1, 3, 5 	N - I 

(4) 	Multiplication and collection of Ixx, Ixy , Qxx and Qxy terms. 

(ITY x 	 (p).cY x 	Ixi x) - ( pxY x 	oxi x) - 	x 	11/4,xx )  

(Qxi Y x Q3icx) 

I. 	x Iix ( J QTY x 	 (Q)icy x Q7) - 	, Q 
. xx) 
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(5) Sum the real and imaginary terms using 16 odd numbered pulses from the 32 
pulses transmitted using the relationship: 
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Store signs of REAL and IMAG 

Save sign for quandrant test 

Save sign for quadrant test 
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Solve for V" 

vxy _ (  I MAG )  

Solve for (1) xy  

4)" = Tan -1  (V") 

Correct (I)" to (oxy 

By Correcting Tan -1  Quandrant 
Ambiguity using truth table. 

IMAG 	REAL 	Corrected cO xY 
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(10) 	Compute 4)Y x  using same algorithm as shown in steps 2 through 9 



(11) Elements that comprise the equation for the solution of P 

ctfYY 	Arg Z AYI Y (A)i" x 1 ) *  

i = 2, 4, 6 	 

(12) Substitution of mathematical operators and 'I' and 'Q' values for the I xx , IYY, 
QXX , and QYY terms 

sr' 	Arg Z (I YY  + jQTY ) x (Irc i  - i(27 1 ) 
i = 2, 4, 6, 

(13) Multiplication and collection of terms 
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(IiY x 1-1
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jqicx i ) — (IlrY x jQ35ix_i) 



(14) 	Sum the real and imaginary terms using all 16 of the even numbered Pulses 
(YY) and all 16 of the odd numbered Pulses (xx) using the following 
relationship: 

IMAG = (QYY  x I xx ) - (I YY  x Qxx ) 	(QY Y x I xx ) - (IYY x Qxx ) 2   
2 	1 	 4 	3 	 4 	3 
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(15) 	Store signs for Real 	and Imaginary 

Save sign for quadrant test 

Save sign for quadrant test 



(16) Solve for VYY 

IMAG 
VYY  = REAL 

(17) Solve for co" 

9YY = Tan -1  (VYY ) 

(18) Correct 9YY  to 9YY by correcting Tan -1  quadrant ambiguity using truth table. 

truth table 

IMAG REAL Corrected trYY 

+ + 4)YY  = otYY  

- + 9YY - If = (IP/  

- - ir - 9YY = 9YY 

+ - 2ir - 9YY = 9YY 

(19) 	The average phase, in units of radians, has been computed for 

coxy 9  .xx, and 9YY 



j (4)Yx  + tt•YY  - 672) 

j (4)YY - (72-) 

(20) 	Computation of the mean values in the scattering matrix where the matrix 
elements are defined as: 

SYx  

SYY e 

       

   

S XX 

   

S = 

      

   

S" e j  (xY 

       

(21) Average the velocity values of fd yy  and fdxx  that were computed by the pulse 
pair processor. 

fd = 
fd

YY 
+ fdXX 
2 

(22) Convert average frequency (fd) to angle in units of radians 

73. = 2 ir x f d 

PRF 



(23) 	Substituting values in matrix 

S . 

    

sxx A  syx / (1)yx 	+/ ctiyy -/i7--- 

SxY / (13,3cY 	 SYY 
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