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SUMMARY 

Component randomization tes t s of s t a t i s t i c a l hypotheses have good 

mathematical properties and are d i s t r ibut ion- f ree . While the power of 

these t e s t s i s well known for asymptotically large samples, l i t t l e i s 

known for f i n i t e sample s i z e s . This research studies the power of the 

component randomization t e s t of location in the paired sample design 

for f i n i t e sample s i z e s . 

The component randomization t e s t i s computationally d i f f i c u l t , 

requiring approximately the e f for t of 2 n Student t t e s t s , where n i s 

sample sir.e. Previously Monte Carlo studies were not applied d irec t ly 

since the thousands of samples necessary for adequate resul ts would 

require an unreasonable amount of computer e f f o r t . Methods of Monte 

Carlo d is tr ibut ion sampling are developed to allow the Monte Carlo 

approach to be used. Areas of in teres t include quanti le est imation, 

process generation, methods of performing the component randomization 

t e s t e f f i c i e n t l y , and variance reduction. 

Quantile estimators are proposed for two cases: raw and grouped 

data. A l inear combination of order s t a t i s t i c s i s recommended for raw 

data and interpolat ion within the group i s recommended for grouped 

data. Confidence intervals and the e f fec t of sample s i ze are also 

treated. 

Eight c r i t e r i a for general process generation, the transfor­

mation of U(0,1) values to a d is tr ibut ion having any of a wide range 

of f i r s t four moments with only one functional form and four parameters, 



xi 

are given. A transformation i s given and developed which w i l l attain 

any f i r s t four moments using only four parameters and one functional 

form. 

A bas ic method and improvements are given to t e s t the location 

hypothesis in the paired samples design using the component randomi­

zation t e s t . The bas ic method allows generation of signs without 

tabled values through the use of modular arithmetic , while the improve­

ments increase the computational speed. 

The use of the "randomization sample," the 2 n dependent com­

ponents aris ing from each sample in performing the component randomi­

zation t e s t , as a variance reduction technique for estimating quanti les 

of the d is tr ibut ion of a sum of symmetric random variables i s proposed 

and shown to be va l id . The e f f i c i ency , examined in some d e t a i l , i s 

shown to about 1000 times that attained when simply using a s ing le 

value from each sample for n = 3 di f ferences . 

The power of the component randomization tes t and the correspond­

ing, but usually unknown, parametric t e s t i s given in the form of oper­

ating character i s t ic curves for various underlying dis tr ibut ions and 

sample s i z e s . The power of the d i s tr ibut ion- free component randomi­

zation tes t i s seen to not be dominated by the corresponding parametric 

t e s t . 
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CHAPTER I 

INTRODUCTION 

Dig i ta l computer simulation, widely applied to analyze problems 

too d i f f i c u l t for closed form so lu t ions , has benef i t ted greatly from 

the increased capabi l i t i e s of computers in the las t few years. Faster 

computation times and increased memory have made poss ible the study of 

problems too complex for analysis a few years ago. New languages have 

eased the burden of coding the model. 

But no matter how fas t computer capabi l i t i e s expand, the com­

plex i ty of problems keeps pace. Therefore, d i g i t a l computer simulation 

techniques have had to be developed to make more e f f i c i en t use of the 

computer. Model bui lding, through the development of simulation lan­

guages and packages, has been the focus of simulation methodology de­

velopment unt i l the l a s t few years when emphasis sh i f ted somewhat toward 

the p r o b a b i l i s t i c and s t a t i s t i c a l analysis associated with simulation. 

While developments in model building s implify placing the model on the 

computer, s t a t i s t i c a l methodology allows va l id interpretat ion of the 

resul ts ( e . g . time ser ies a n a l y s i s ) , as well as more e f f i c i en t use of 

the computer ( e .g . variance reduction techniques) . Probabil i ty i s im­

portant in generating the random elements of the simulation (process 

generation) , as well as sometimes providing a closed form analysis of 

a subsystem of the model ( e . g . , s tochast ic processes ) , thereby reducing 

the simulation e f f o r t . 

The main focus of this work i s to develop and apply the 
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p r o b a b i l i s t i c and s t a t i s t i c a l methodology necessary for the study of 

the power of several t e s t s o f hypothesis appropriate for the paired 

sample design, with part icu lar emphasis on Fisher's component randomi­

zation t e s t , using Monte Carlo techniques. While asymptotic properties 

of nonparametric permutation t e s t s , of which component randomization 

tes t s are a specia l case, are well-known, l i t t l e i s known about the 

power of these t e s t s for f i n i t e sample s i z e s . Puri and Sen [1971] point 

out 

The study of the power properties of nonparametric tes t s poses 
certain problems. F i r s t , . . . under sui table hypotheses of in -
variance, the dis tr ibut ion of the nonparametric t e s t s t a t i s t i c 
does not depend on the parent population. But when the nul l 
hypothesis i s not true, the sampling dis tr ibut ion of nonpara­
metric s t a t i s t i c s depends on the parent d is tr ibut ion in some way 
or other. Second, . . . permutation tes t s . . . are e s sen t ia l l y 
conditional t e s t s , and the study of the ir power properties de­
mands the knowledge of the unconditional d is tr ibut ion of the 
a l l i e d t e s t s t a t i s t i c s . The evaluation of the exact uncondi­
t ional non-null d is tr ibut ion often becomes quite a laborious 
task, i f not impracticable. For th is reason, the growth of the 
l i t era ture on the small-sample power properties of nonparametric 
t e s t s i s not at a l l sa t i s fac tory . 

Since exact methods have not been successful in studying the small 

sample power properties of permutation t e s t s , Monte Carlo analysis ap­

pears appropriate. While Monte Carlo methods are straightforward to 

apply to most permutation t e s t s , the component randomization t e s t poses 

computational problems which makes the direct application of these 

methods in feas ib le for a l l but the smallest of samples. In f a c t , while 

the component randomization t e s t i s known to have the best mathematical 

properties of the permutation tes t s (as discussed in the next chapter) , 

i t s computational e f for t i s so great (the equivalent of 2 n t t e s t s , 

where n is sample s i ze ) that the t e s t i s not widely used. As an 

example, according to Hamm [1974] 116 CPU minutes were used to t e s t 
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one hypothesis with n = 24 on a UNIVAC1108to obtain a resul t for 

Deutsch and Hamm [ 1 9 7 5 ] , But to perform a Monte Carlo analys i s , thou­

sands of observations are necessary for reasonably accurate conclusions. 

I t i s therefore necessary to develop e f f i c i e n t methodologies for 

many aspects of the Monte Carlo study. In par t i cu lar , a technique for 

performing the component randomization tes t i s needed which i s very 

e f f i c i e n t and variance reduction techniques become very important. The 

estimation of quanti les of the d is tr ibut ion of the tes t s t a t i s t i c i s a 

central problem, with accurate estimation of the quanti les at a premium 

due to the great expense of each observation. Since power i s a function 

of the underlying d is tr ibut ion of the observations, techniques for 

generating random values from a wide variety of d is tr ibut ions are also 

of in t ere s t . 

Following Chapter I I , where background material and a l i t erature 

survey are given, quanti le estimation resul ts are developed in Chapter 

I I I . Point estimators with associated variance formulae are proposed 

for two cases: raw and grouped data. The e f f e c t of sample s i ze on 

estimation techniques i s analyzed in some d e t a i l . In Chapter IV process 

generation, the transformation of uniformly d is tr ibuted random variables 

to other distr ibut ions of i n t e r e s t , i s considered. In par t i cu lar , the 

problem of using only one functional form of two parameters to generate 

values having any given third and fourth moments i s discussed. Cr i t er ia 

for general process generators are proposed and one such generator i s 

given. 

Chapters V, VI , and VII study the small-sample power properties 

of various t e s t s of location s h i f t for the paired sample case, with 
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special emphasis on Fisher's component randomization t e s t . Chapter V 

develops a methodology for studying the component randomization t e s t . 

An e f f i c i e n t algorithm for generating a l l 2 n combinations of n signs 

i s developed, as well as the approach used to estimate the power of 

various paired sample t e s t s . Chapter VI discusses the moments of the 

"unconditional d is tr ibut ion of the a l l i e d tes t s t a t i s t i c s , " in this 

case X^n~/a. The moments are used as necessary conditions in estimating 

the d is tr ibut ion of X^ri/a for various underlying d is tr ibut ions and 

sample s i z e s . Chapter VII uses the methodologies of Chapters V and 

VI to evaluate the performance of the component randomization tes t com­

pared to the appropriate parametric t e s t and the inappropriate normal 

and t t e s t s . Last ly , Chapter VIII discusses conclusions and direct ions 

for future research. 
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CHAPTER II 

LITERATURE REVIEW 

As discussed in the introduction, aspects of quanti le est imation, 

process generation, and s t a t i s t i c a l hypothesis t e s t ing , with emphasis on 

Fisher's component randomization t e s t , are the subject of th is research. 

A general overview of hypothesis tes t ing i s given in Section 2 .1 to 

lay the framework of the problem set t ing considered in subsequent chap­

t e r s . This i s followed by a discussion of the component randomization 

t e s t in Section 2 . 2 . A review of the l i t era ture related to Chapters 

V, V I , and VII [the paired sample randomization t e s t , the d is tr ibut ion 

of X for various underlying dis tr ibut ions of X^, and the power of various 

t e s t s , respect ive ly) i s given in Section 2 . 3 . The l i t erature s p e c i f i ­

ca l ly associated with Chapter I I I (quanti le estimation) and Chapter IV 

(process generation) i s c i ted within those chapters as needed, allowing 

i t to be discussed in f u l l context a f ter necessary background and 

notation have been establ ished. 

2 . 1 S t a t i s t i c a l Hypothesis Testing 

S t a t i s t i c a l hypothesis t e s t ing has long been used for deciding 

whether or not to r e j e c t , based on a random sample of observations 

( x ^ , x 2 , . . . , x n ) a nul l hypothesis HQ in favor of an a l ternat ive hypothesis 

H^. I f the sample observations f a l l in the c r i t i c a l region, a subset of 

the sample space, the nul l hypothesis HQ i s re jec ted , otherwise HQ i s 

not re jec ted . I f HQ i s re jected when true, a type I error has occurred. 
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I f HQ i s not rejected when f a l s e , a type II error has occurred. The 

s ignif icance leve l of a t e s t , a, i s the probabi l i ty of a type I error 

and the power of a t e s t , (1-3) , i s the probabi l i ty of re jec t ing HQ. 

I d e a l l y , t e s t procedures would be designed so that the correct 

decision was always made. However, for a f i n i t e sample s i z e , n, error 

can occur. I t then becomes important to design the tes t procedure to 

make a and 3 as small as poss ib le . The probab i l i t i e s of error , a and 

3, are functions of HQ and H^, the sample s i z e , the c r i t i c a l region, and 

the underlying d is tr ibut ion from which the sample i s drawn. 

The underlying d is tr ibut ion i s usually determined by the s i t u ­

at ion, leaving the minimization of a and 3 dependent upon HQ and H^, 

sample s i z e , and c r i t i c a l region. In general, the larger the sample 

s i ze the less chance of error , i f everything e l se i s constant. There­

fore , in teres t i s re s tr i c t ed to some fixed sample s i ze n. The choice 

of HQ and H^ depends heavily on the s i tuat ion and i s e s s e n t i a l l y f ixed 

for a s p e c i f i c s i tuat ion . By convention, HQ and H^ are chosen such that 

the strong statement i s to r e j ec t HQ at a s ignif icance leve l of a, so 

interes t i s constrained to a f ixed value of a. 

The problem then reduces to minimizing 3 through the se lec t ion of 

a c r i t i c a l region for f ixed hypotheses, HQ and H^, s igni f icance leve l 

a, sample s i ze n, and underlying d i s tr ibut ion . This problem has a well 

known optimal solution for simple hypotheses through the application of 

the Neyman-Pearson Theorem, and a good, though not necessar i ly optimal, 

solut ion for composite hypotheses through the use of the l ike l ihood ra t io 

cr i t er ion . 

However, a solution to any problem may be incorrect i f any 
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parameters are incorrect ly spec i f ied . In hypothesis t e s t ing there i s 

l i t t l e doubt about the hypotheses, a l eve l and sample s i ze n, since a l l 

are spec i f ied by the experimenter to f i t the s i tuat ion of in t ere s t . 

What may be of doubt i s the underlying d i s tr ibut ion . Other than in 

Monte Carlo simulation or areas in which much experimentation has a l ­

ready occurred, the experimenter may be able only to assume the d i s t r i ­

bution of the observations. The assumption made often r e f l e c t s the 

a v a i l a b i l i t y , rather than appropriateness, of s t a t i s t i c a l techniques to 

analyze the data. I f the assumed underlying d is tr ibut ion i s incorrect , 

the experimenter may e i ther over-estimate or under-estimate the power 

and the s igni f icance of the t e s t . Since a bas ic purpose of s t a t i s t i c a l 

hypothesis t e s t ing i s to quantify the probabi l i ty of error , care needs 

to be taken to ensure that the underlying d is tr ibut ion assumption does 

not cause the experimenter to mislead himself or others. 

Commonly, the underlying d is tr ibut ion of the observations i s 

assumed to be the n dimensional mult ivariate normal with constant v a r i ­

ance and zero covariance. There are three assumptions involved here: 

(1) normality of each observation, (2) independence between observations, 

and (3) constant variance. 

2 

Under these assumptions, and the additional assumption that o i s 

a known constant, in a t e s t of location H ^ : u = u Q vs . : u = u^, the 

best c r i t i c a l region i s of the form x^ >_ c where the constant c i s 

set for the desired s ignif icance level a. That i s , i f HQ i s true , c 

i s the value such that HE?^ X. > c} = a. Under the above assumptions, 

E i = l X i ~ N ( n u

0 » n a 2 ) and therefore Sn(I - y ) / a - N(0 ,1 ) where X = 

^ i / n - Here the reference d is tr ibut ion of the t e s t s t a t i s t i c i s 
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the standardized normal. 

However, i f any of the three assumptions are f a l s e , problems 

ar i se . I f the underlying d is tr ibut ion i s not normal, ^ ^ s n o t 

normally dis tr ibuted and the tabled values may be inappropriate, a l ­

though the central l imit theorem guarantees asymptotic normality. I f 

the observations are not independent, the variance of the sum i s not 

2 2 n n 
no , but rather a n + 2E. a . , where a. . i s the covariance of X. i = l j>i i j i j I 

and X . . Non-zero a. . leads to under-estimation or over-estimation of 

the variance of the tes t s t a t i s t i c , and in turn the s ignif icance and 

power of the t e s t . I f the variance of each observation i s not constant, 

n 2 2 
then the true variance i s E. . a . where the variance of X. i s a . . i = l I i i 

These problems are compounded when more than one assumption i s f a l s e . 

With Student's development of the t d is tr ibut ion in 1908, the 

2 

condition that a must be known was relaxed. In the t t e s t , the s ta­

t i s t i c v*n(x - Vq)/s i s compared to a c r i t i c a l region defined in terms 
2 n 2 2 

of the well-known t d i s t r ibut ion , where s = (^^_^ x ^ ~ n x ) / ( n ~ l ) i- s 

2 
an estimate of the unknown variance a . The additional v a r i a b i l i t y in 

2 

the te s t s t a t i s t i c due to estimating a from the sample i s re f l ec ted 

by using the t , rather then the normal, as the reference d i s tr ibut ion . 

However, the assumptions of normality, independence, and constant v a r i -
2 

ance affect the resul ts here as in the previous case where a i s known. 

Similar comments may be made about other parameteric t e s t s o f hypothesis 

such as those based on the chi-squared and F reference d i s tr ibut ions . 

In s i tuat ions in which the underlying d is tr ibut ion i s unknown, 

t e s t procedures which are robust to incorrect assumptions become valu­

able . I d e a l l y , procedures would be used which are d i s tr ibut ion- free 
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but s t i l l minimize 3, or, equivalent ly , maximize power. However, t e s t s 

which make use of the exact form of the underlying d is tr ibut ion are 

generally more powerful. Thus there ex i s t s a trade-of f between power 

and robustness. 

This t rade-of f i s made when d i s tr ibut ion- free Cor non-parametric) 

t e s t s are used. These are t es t s in which the c r i t i c a l region i s defined 

independently from considerations of underlying d i s tr ibut ion , allowing 

the values of both a and 3 to be correct ly evaluated. In a s i tuat ion 

where the normality and independence assumptions do hold, the power of 

the parametric t e s t i s greater than the non-parametric t e s t and the 

calculat ions of a and 3 are correct . However, the parametric t e s t w i l l 

be misleading in terms of a and 3 i f the observations are not normally 

d i s tr ibuted , and in fact i t may have less power. 

Returning to the problem of minimizing 3 for given hypotheses, 

sample s i z e , and s ignif icance l e v e l , but with no assumption about under­

lying d i s t r ibut ion , the many d i s tr ibut ion- free t e s t s may be compared on 

the basis of the ir power. Many common te s t s replace the sample obser­

vation x. by the rank of x . . These rank t e s t s lose power in this 

l l r 

transformation, but are d is tr ibut ion free and easy to apply, needing 

only simple calculat ions and a tabled reference d i s tr ibut ion . 

2.2 Fisher's Component Randomization Test 

A d i s tr ibut ion- free t e s t which i s more powerful than other such 

t e s t s , and asymptotically as powerful as the t t e s t even under normality, 

i s the component randomization t e s t . Here the t e s t s t a t i s t i c i s calcu­

lated from the sample observations x ^ , x 2 , • • • , x n , not from the i r ranks. 

I f under the nu l l hypothesis any M poss ib le values of the t e s t 
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s t a t i s t i c are equally l i k e l y and N of these values are more indicat ive 

of being true than the observed value of the t e s t s t a t i s t i c , H Q may 

be re jected i f a i s greater than N/M. 

Randomization tes t s may be used in many s i tuat ions , including 

two sample t e s t s of means and corre lat ion , randomized blocks and other 

ANOVA s i tua t ions , including mult ivariate appl icat ions . A special case 

of randomized blocks i s the paired sample t e s t of location s h i f t . As 

an example, consider the comparison of the accuracy of two types of 

guns. Accuracy i s measured in terms of distance (in feet) from the 

targe t , to the point of impact, and each gun i s f ired once at each of 

ten targets . I f the targets vary in distance from the guns, the variance 

of each shot cannot be assumed constant. Let X.-. be the feet from the 
J i 

i th target for j t h gun, j = 1 ,2 . I f the nul l hypothesis i s H ^ : = u 2 

and the a l ternat ive hypothesis i s H^: > \i^> & paired t e s t can be 

used on the data d^ = x ^ - x^^, i = 1 , 2 , . . . , 10. 

Consider the data shown in Table 1. 

Table 1. Distance from Target in Feet 

Target 

1 2 3 4 5 6 7 8 9 10 

x u 7 .40 6 . 8 8 7.12 7.42 7 .18 6 .64 6 .98 7 .13 6 . 9 3 7.36 

x 0 . 7 .32 6 .82 7.09 7 .43 7 .07 6 .66 6 .95 7 .08 6 . 8 8 7 .33 2 i 

d. + . 0 8 + .06 + . 0 3 - . 0 1 + .11 - . 0 2 + . 0 3 + . 0 5 + . 0 5 + . 0 3 l 

I f HQ i s t rue , then each d^ could jus t as l i k e l y be pos i t i ve or nega­

t i v e , s ince d. = x n . - x~. could j u s t as wel l have been defined d. = 
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x„. - x. . . . I f d i s used as a t e s t s t a t i s t i c , 2 or 1024 poss ib le 
2i l i r 

values of d could have occurred with equal l ike l ihood under HQ. Of 

these only three 

+ .08 + .06 + . 0 3 + .01 + .11 + .02 + . 0 3 + .05 + .05 + . 0 3 d^ = .047 

+ .08 + .06 + . 0 3 - . 0 1 + .11 + .02 + . 0 3 + .05 + .05 + . 0 3 d"2 = .045 

+ .08 + . 0 6 + . 0 3 + .01 + .11 - . 0 2 + . 0 3 + .05 + .05 + . 0 3 d"3 = .043 

tend to indicate H ^ i s true more than the observed value d = . 0 4 1 . 

Therefore, HQ may be rejected i f a i s greater than 3/1024 ~ . 003 . 

I f the parametric t e s t assumptions were made, the paired t t e s t 

with 9 degrees of freedom indicates that HQ may be rejected only i f a i s 

greater than 1 - .9957 = .0043 . 

The disadvantage of component randomization t e s t s which prevents 

them from being used extensively i s that the randomization reference 

d is tr ibut ion i s conditional upon the observed sample and therefore must 

be calculated each time the t e s t i s applied. Over many samples, th is 

reference d is tr ibut ion i s dependent upon two factors: the sample s i ze 

and the underlying dis tr ibut ion from which the samples come. Para­

metric t e s t reference dis tr ibut ions such as Student's t and Snedecor's F 

are also dependent on sample s i ze and d i s t r ibut ion , but the d is tr ibut ion 

i s assumed to be the normal. Since the randomization reference d i s t r i ­

bution i s calculated for each sample, i t i s automatically a function of 

the correct underlying d is tr ibut ion and therefore component randomization 

tes ts are d i s t r ibut ion- free . 

Three c r i t e r i a are then important in comparing tes t s of hypothesis: 

(1) lack of assumptions, (2) power, and (3) ease of ca lculat ion. The 
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general types of t e s t s discussed are each strong in two c r i t e r i a and 

weak in a th ird . Parametric t e s t s are dependent upon assumptions, 

rank randomization tes t s lack power, and component randomization tes t s 

require extensive ca lculat ions . 

2 . 3 Synopsis o f Technical Literature 

The pr inc ip le of randomization has been a primary consideration 

of experimentation since Fisher [1926] proposed i t s use to provide a 

va l id estimate of error. Fisher [1935 , 1936] suggested the use of 

randomization of components of an experiment for hypothesis tes t ing in 

the matched pairs design and extended the idea to two independent sam­

p le s . He advocated the use of randomization in hypothesis tes t ing to 

the point of s ta t ing , "conclusions have no j u s t i f i c a t i o n beyond the fact 

that they agree with those which could have been arrived at by this 

elementary method." 

Fisher's pr inc ip le of randomization was used by Pitman [1937a] 

to t e s t location in two samples of unequal s i z e , Pitman [1937b] to t e s t 

independence of two samples, Pitman [1937c] and Welch [1937] for ANOVA 

in randomized blocks experiments. Both Pitman and Welch used the 

moments of skewness and kurtosis to f i t the beta d is tr ibut ion for use 

as the ir reference d i s tr ibut ion , due to the extreme computation problem 

of applying the randomization t e s t d irec t ly . 

Nair [1940] considered the randomization tes t using s t a t i s t i c s 

other than the mean. He found the d is tr ibut ion of the sample median 

(bel l -shaped) , midpoint (U-shaped), and range (J-shaped) and noted that 

these randomization tes t s could be performed without the calculat ion 

problems encountered using the sample mean. He suggested that of these 
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three s t a t i s t i c s the median would in general have the best propert ies , 

although not as good as the mean. Ear l i er Pearson [1937] showed that 

for the rectangular d i s tr ibut ion , the midpoint i s more e f f i c i e n t than 

the mean, and therefore the unquestioning use of the mean in the 

randomization t e s t should be avoided. 

Attention then turned to the s t a t i s t i c a l properties of the t e s t s . 

Almost invariably the tes t s t a t i s t i c considered was the sample mean, 

since most resul ts were for asympotic large samples and were poss ib le 

only through the use of the central l imi t theorem applied to the sample 

mean. Lehmann and Stein [1949] determined that the component randomi­

zation t e s t i s as e f f i c i e n t as the t t e s t for normal populations. 

Hoeffding [1952] showed that the component randomization t e s t i s 

asymptotically as powerful as the corresponding parametric t e s t . 

Kempthorne [1955] discussed randomization theory in the design 

and analysis of experiments and concluded that at that time the gaps 

in the theory were: 

(1) the accuracy of the approximation to randomization t e s t s by 
F t e s t s 

(2) the rather s tr ingest ro le of addi t iv i ty (which i s a lso present 
in the case of normal law inferences) 

(3) the power of the randomization analysis of variance t e s t 

(4) the consideration of a l ternat ive t e s t c r i t e r i a . 

Wilk [ 1 9 5 5 ] , Wilk and Kempthorne [ 1 9 5 6 ] , Zyskind [ 1 9 6 3 ] , Kempthorne 

[1966] and Kempthorne, Zyskind, Basson, Martin, Doerf ler , and Carney 

[1966] considered randomization based ANOVA procedures in great d e t a i l . 

C o l l i e r and Baker [1963, 1966] generated 1000 random observations to 

study the power of the F t e s t under non-normality for the randomized 

blocks and s p l i t - p l o t design, respect ive ly . 

Box and Anderson [1955] and Box and Watson [1962] used 
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randomization in studies of robustness and F dis tr ibut ion approximation, 

respect ive ly . 

Barton and David [1961] and Arnold [1964] extended the pr inc iple 

to the mult ivariate case. Arnold considered a s t a t i s t i c equivalent to 

2 
Hote l l ing ' s T under normality. Mardia [1971] gave a mult ivariate 

2 
randomization t e s t based on the Mahalonobis distance D . Chung and 

Fraser [1958] used randomization methods to develop an a l ternat ive for 

2 

the mult ivariate two-sample problem, since T i s not applicable when 

there are only a few observations involving a large number of var iab les . 

In addit ion, Chung and Fraser also suggested using subgroups of 

permutations (rather than a l l permutations) to reduce computations. The 

subgroup idea stemmed from Dwass [1957] who suggested using a random 

sample of the permutations. Hei ler and Weichselberger [ 1 9 6 9 ] , consider­

ing the two independent sample location randomization t e s t , developed 

algorithms to determine the combinations in the c r i t i c a l region and 

l imi t points of the confidence in terva l . 

Kempthorne and Doerfler [1969] compared the randomization t e s t 

to the sign t e s t and the Wilcoxin tes t in the paired design. They 

concluded the randomization t e s t i s more powerful than the Wilcoxin 

t e s t , which in turn i s more powerful than the sign t e s t . Bhattacharyya, 

Johnson, and Neave [1971] used Monte Carlo analysis to show that the 

power of the two sample Wilcoxin-type rank t e s t "substant ia l ly exceeds" 
2 

the power of Hote l l ing ' s T for some normal s h i f t a l t ernat ives , an 
2 

interest ing resul t because i n t u i t i v e l y the parametric T t e s t should 

dominate the nonparametric Wilcoxin-type t e s t . 

Much o f this research i s concerned with the d is tr ibut ion of 
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Y/n/a and Y^n/S corresponding to the normal t e s t and Student's t t es t 

of the location s h i f t , respect ive ly . Much combinatorial work has been 

done on the problem of expressing sampling dis tr ibut ions in terms of 

cumulants of the underlying d i s tr ibut ion . Fisher [1928] found the 

equations connecting the moment functions of the underlying and sampling 

d is tr ibut ion using cumulants for the case of X. Thiele [1931] a lso 

used cumulants to re la te the two d i s tr ibut ions . Welker [1947] used the 

f i r s t four cumulants to provide a one-to-one re lat ionship between the 

underlying d is tr ibut ion and the d is tr ibut ion of the sample mean for the 

spec i f i c case of Pearson curves. Reitsma [1963] developed approximations 

of means from non-normal populations by using a d i f f eren t ia l equation of 

the moment generating function of the sample mean and sample variance 

for samples from Perason type populations, both skewed and symmetric. 

Bradley [1971] used Monte Carlo techniques to take 10,000 samples each 

of s i ze 2 , 4 , 8 , . . . , 1 0 2 4 from both L-shaped and normal dis tr ibut ions to 

study convergence of the central l imit theorem. 

The d is tr ibut ion of the t s t a t i s t i c Xv^n/S was invest igated by 

Sophister [1928] and Pearson [1929] using sampling experiments with 

random number tab le s . Bart le t t [1935] showed that skewness a f fects the 

d is tr ibut ion of t more than kurtos i s . Perlo [1933] derived the exact 

d is tr ibut ion of t for samples of s i ze 3 from a rectangular d i s tr ibut ion . 

Gayen [1949] derived the theoret ica l d i s tr ibut ion of X^n/S from non-

normal samples of any s i z e , ignoring moments higher than order four, 

for any underlying dis tr ibut ion expressed by a number of terms of the 

Edgeworth s e r i e s . Tiku [1963] obtained the d is tr ibut ion of t in terms 

of population cumulants up to the eighth order using Hermite and 
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Laguerre polynomials. Rac t l i f f e [1968] used Monte Carlo techniques to 

conclude that 

extreme non-normality can as much as double the value of t at the 
2 - 1 / 2 per cent (one t a i l ) probabi l i ty l eve l for small samples, but 
increasing the sample s i ze to 80, 5 0 , 30 , and 15 wi l l for prac t i ca l 
purposes remove the e f fec t of extreme skewness, moderate skewness, 
extreme f la tnes s , and moderate f l a tnes s , respect ive ly . 
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CHAPTER I I I 

ESTIMATION OF THE pTH QUANTILE 

In Chapter VI the dis tr ibut ion of X, denoted by F, for various 

underlying d i s tr ibut ions , i s estimated using Monte Carlo analys is . 

Since Monte Carlo analysis cannot y i e l d a closed form expression for F, 

the pth quant i l e , F * ( p ) , must be estimated for any values of p of 

in teres t . This chapter addresses the problem of estimating the pth 

quanti le given observations of the random var iable . In addition to 

the ir use in Monte Carlo analys i s , the resul ts of this chapter may be 

used with data generated by a system simulation or by a physical process . 

In fact the resul ts may be more important in the case of physical pro­

cesses where observations are often more expensive and therefore fewer. 

In Monte Carlo analysis a sample of X values i s generated, the 

value of the random variable of in teres t i s calculated from the sample, 

and a counter associated with the appropriate c e l l of a histogram i s 

incremented. After repeating many t imes, the resul t ing histogram i s 

used for estimation. In system simulation a s imi lar approach i s 

followed, except that one value of the random variable of in teres t 

resul ts from one simulation run. Given the observed values , whatever 

the ir source, the method of combining them into quanti le estimates i s 

considered here for two all-encompassing cases: (1) large c e l l widths 

where the entries of the histogram have los t the ir ident i ty through 

grouping, and ( 2 ) smaller c e l l widths where the entries of the histogram 

are s t i l l e s s e n t i a l l y separate e n t i t i e s . In the second case each c e l l 
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contains only zero or one entries with an occasional double or t r i p l e 

entry. This case arises when the c e l l widths are very small or when 

the number of observations are few, such as when estimating quanti les 

in the extreme t a i l s of a d i s tr ibut ion . In the f i r s t case c e l l widths 

are larger or the number of observations i s r e l a t i v e l y large , as i s 

common in estimating quantiles in the body of the d i s tr ibut ion . The 

methods of estimation for these two cases d i f f e r , since in the f i r s t 

case the problem i s to minimize the loss of information caused by group­

ing and in the second case the problem i s how to interpolate between 

sparse en tr i e s . 

In th i s chapter, point est imators , with corresponding variance 

est imates , for the pth quantile are proposed for both cases. Section 

3 .1 considers estimators and confidence intervals for grouped data, 

the f i r s t case above. The second case, sparse e n t r i e s , i s treated in 

Section 3 . 2 . The impact of sample s i ze i s discussed in some de ta i l for 

both cases. 

3 . 1 Quantile Estimation from Grouped Data 

Let F (s ) be the cumulative d is tr ibut ion function, cdf, of S , n n n 

evaluated at s , where S i s a function of X . , X „ , . . . , X . Suppose k 
n* n 1' 2 n r r 

observations of S have been placed in a histogram with c. observations n r & I 

in the i th c e l l , i = 1 , 2 , . . . , Q . The problem considered here i s the 

estimation of the pth quanti le of the d i s tr ibut ion of S^, F * ( p ) . 

3 . 1 . 1 A Point Estimator 

A reasonable, but crude, estimator of F "̂ "(p) i s 
n 

a + bq 
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where a = lower l imit of the f i r s t c e l l , 

b = c e l l width, and 
q 

q = smallest integer such that E c .> [ p ( k + l ) ] = r 

i = l 1 

where [X] indicates the largest integer less than or equal to X. The 

random variable q i s simply the c e l l in which the rth order s t a t i s t i c 

f a l l s . Figure 1 shows graphically the relat ionship of a, b , and q. 

1 2 3 q-1 q q+1 

• • • • • • 

Q 

a a+bq 

Figure 1. Relationship of a, b , and q 

I t i s obvious from the figure that a + b q represents the upper boundary 

of the c e l l in which the rth sample order s t a t i s t i c l i e s and therefore 

tends to be biased high. 

An a l ternat ive estimator i s a + b ( q - l ) , but s imi lar reasoning 

indicates this estimate i s biased low. A common compromise i s to use 

the midpoint, a + b ( q - . 5 ) , which i s be t ter but s t i l l leads to problems 

as discussed further in this chapter. These problems arise due to the 

e f f ec t of grouping and subsequent representation of the group by the 

midpoint ( q - . 5 ) . 

Since the c e l l q i s simply the location of the rth order s ta ­

t i s t i c , the impact of grouping on the properties of order s t a t i s t i c s 

i s of i n t e r e s t . David and Mishriky [1968] discuss the e f f ec t of 

grouping on the mean and variance of order s t a t i s t i c s , concluding 

that "the e f f ec t of grouping . . . i s . . . of minor importance for 
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h • 0 .6 which represents quite course grouping." However, the ir re­

su l t s do indicate that the variance i s sometimes reduced as much as 

70% of i t s value. The e f fec t s of grouping on the mean and variance i s 

discussed in more deta i l in Section 3 . 1 . 4 . A poss ib ly more important 

problem i s the discreteness of ( q - . 5 ) caused by using only midpoint 

values. A discrete estimator (in th i s case the midpoints) of a con­

tinuous parameter (in th i s case a quanti le) i s consistent only i f the 

true value of the parameter f a l l s exactly at one of the poss ib le 

estimator values , even though i t may be e s sent ia l ly unbiased and possess 

the same variance as a related continuous (ungrouped) estimator. 

These undesirable properties may be e s sent ia l l y eliminated by 

using the more complex estimator 

F" X (p) = a + b[q - ( I c - p(k+l) + l ) / ( c + 1 ) ] =• a + b [q-u] 
n i = l " 

The ra t io u i s always between zero and one. I t s purpose i s to r e f l e c t 

the degree to which the inequality c. > r i s s a t i s f i e d in the de f i ­

n i t ion of q. Let a denote p(k+l) - [ p ( k + l ) ] . I f E?_^ c^ = r , then 

F (p) = a + b[q - ( l - a ) / ( c +1) ] since the ent ire contents of the qth 
n 4 

c e l l are needed to s a t i s f y the inequal i ty . On the other hand, i f the 

f i r s t entry in the qth c e l l s a t i s f i e s the inequal i ty , then c^ - r = 

c - l and the estimate i s a + b[q - (c - a ) / ( c +1)]—almost a whole c e l l 

width reduction compared to the previous case. 

While F n (p) appears quite a lo t more complicated than a + b ( q - . 5 ) , 

2* . c. i s known from the calculat ion of q, as i s p ( k + l ) . Thus the only 

added complexity i s a subtraction and a d iv i s ion . Note that the def in i t ion 
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of Fn*(p) assumes the f i r s t case, grouped entr ies . I t does not work 

well for the second case, wide-spread en tr i e s , since i t i s based on the 

idea of interpolat ing within a c e l l rather than between c e l l s . 

3 . 1 . 2 Expected Value and Variance of the pth Quantile Estimator 

Idea l ly F^Cp) would be defined such that ECF^Cp)} = F^Cp). 

Unbiasedness, however, depends on the underlying population. 

S p e c i f i c a l l y . 

E { ^ ( p ) } = E{a + b[q - u] } (1) 

= a + bE{q - u} 

Q q 
= a + b{ I [q - E{( E c - p(k+l) + l ) / ( c + l ) } ] P ( q ) } 

q=l i = l 1 4 

where P(q) i s the probabi l i ty the rth order s t a t i s t i c l i e s in the qth 

c e l l , a function of the underlying d i s tr ibut ion . 

As a special case, consider a = 0 , b = 1, and a U(0,1) under­

lying d i s tr ibut ion . P( l ) = 1 since a l l observations f a l l in the f i r s t 

c e l l , and therefore 

y \ Q q 
EfF (P)> = a + b{ Z [q - E{( 2 c. - p(k+l) + l ) / ( c + l ) > ] P ( q ) > 

n q=l i = l 1 q 

= 0 + - (k - p(k+l) + l ) / ( k + l ) ] l } 

= 1 - (1-p) = p = F^Cp) . 

While F *(p) i s unbiased in th is case, i t i s not an unbiased estimator n r 

in generaJ, since commonly E?_^ ¥ and also p ¥ F *(p) except for 
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the unit uniform dis tr ibut ion . 

The variance of F (p) may be calculated as 

V { F ^ ( p ) } = V{a + b[q - u ] } (2) 

= b 2 V{q - u} 

{ Z q ( P ( q ) } 2 + J2-] 
q=l 

2 Cov{q,u}] 

assuming u ~ U(0 ,1) and independent of q. 

Let p^ = F n (a+bi ) - F^(a + b ( i - l ) ) , the probabi l i ty that any one 

observation f a l l s in the i th c e l l , i = 1 , 2 , . . . , Q . Numerical values for 

the p^ are not known, since the problem at hand i s to determine F * ( p ) . 

However, each p. may be estimated from the histogram c e l l counts using 

or more complicated estimators using smoothing rules to circumvent the 

problem of c^ = 0 not implying = 0 in general. 

Now q and the Q c^ values are random variables whose d is tr ibut ions 

depend on the underlying d is tr ibut ion and the def in i t ion of S n through 

the p^ values. While the d is tr ibut ion of the c^ i s simply multinomial 

with N = k and probabi l i t i e s p^, i = 1 , 2 , . . . , Q , inclusion of this varia­

b i l i t y in the numerical calculat ion of the expected value or variance 

would require conditioning over a l l Q of the c^ values. Thus the 

s implifying assumptions of uniformity and independence were made to 

obtain eq. 2 . I f P ( q ) , q = 1 , 2 , . . . , Q were known, E{a+bq} and V{a+bq} 

p . = Ci/k 
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could be calculated using eqs. 1 and 2 to provide bounds on 

E{F (p) } and V{F ( p ) i . A bound for the expected value i s 

E{a + b ( q - l ) } = a + bE{q} - b < E{f~ (p) } < a + bE{q} = E{a+bq} 

A bound for the variance i s 

V{a + bq} = b 2 V { q } < VCF^Cp)} < b 2 [ V { q } + 1/4] 

since the minimum variance of the correction factor i s zero and the 

maximum variance i s 1 /4 . 

3 . 1 . 3 Distribution of the Cel l Containing the pth Quantile Estimator 

To use the bounds of the las t section for the expected value and 

variance, the values of P ( q ) , the probabi l i ty of the estimator f a l l s in 

c e l l q, q = 1 , 2 , . . . , Q , must be known in terms of the p^ values , the 

probabi l i ty of any one observation f a l l i n g in c e l l i , i = 1 , 2 , . . . , Q . 

For q = 1, at least r = [p (k+ l ) ] observations must f a l l in the 

f i r s t c e l l . With a to ta l of k observations, and of them in c e l l i , 

p ( l ) = Prob{c, >_ r } 

since the independent observations lead to a sum of binomial proba­

b i l i t i e s . Now for q > 2 
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q-1 q 
P(q) = Prob{ Z c. < r _< Z c. } 

i = l 1 i = l 1 

(3) 

q-1 q-1 
= Prob{c a > r - Z c. and Z c. < r } 

4 i = l 1 i = l 1 

r-1 q-1 
= Z [Prob{c a > r - j } ] [ P r o b { Z c. = j } ] by conditioning 

j=0 4 ~ k=l 1 

r-1 
Z 

j=0 

k- j 

i = r - j 

k - j 
q-1 

1 - Z p 
£=1 > 

1 f 
1 - _9L 

q-1 
1 - Z p 

£=1 

k - j - i 

'q-1 
Z p 

£=1 

q-1 
1 " E P £ £=1 * 

r-1 
Z 

j=0 

k z j 

i = r - j 
]fk] r P i i rq-i 

E Pi? 

[£=1 *J 

j r 

,i 
q-1 

" E P £-
£=1 * 

rq-i 
E Pi? 

[£=1 *J 
1 -

q-1 

£=1 * 

q-1 
1 - Z p 

£=1 

k - j 

r-1 
Z 

j=0 

k - j 

i = r - j 

[q-1 1 j f 4 1 k - j - i 

, p q 
^ Po 
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where 
k 

= k ! / [ i ! j ! ( k - i - j ) ! ] . 

Appendix A contains a proof that Z^_ P(q) - 1 and that eq. 3 i s 
q— l 

therefore a va l id d i s tr ibut ion . 

A heur i s t i c approach to determining P(q) i s to note that each 

observation may f a l l to the l e f t of c e l l q, in c e l l q, or to the right 
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of c e l l q. For k observations there are ways that j observations 

are to the l e f t of c e l l q, i observations are in c e l l q, and k - j - i 

observations are to the right of c e l l q. Equation 3 may therefore 

be viewed as trinomial probabi l i t i e s summed over a l l i + j = r with 

i _> 0 and j •> 0. 

Note that P(q) depends on p only through r = [ p ( k + l ) ] . There­

fore , i f a + b(q- .5 ) i s the estimator used, for three places accuracy 

in p , k must be at l eas t 1000 due to the discrete nature of ( q - . 5 ) . The 

use of the correction factor regains some of this accmracy. 

The above resul ts may be used to calculate approximate confidence 

intervals on Fn*"(P)* Assuming normality ( this assumption i s discussed 

in Section 3 .2 ) and given a histogram with k observations, the p. values 

could be estimated, P(q) values calculated, and bounds on V{r (p ) } 

calculated in turn. An approximate confidence interval would be 

^ C P ) t Z / / b 2 [ V { q } + A . ] a/2 ' " L " ^ J 12 

2 

where b /12 corresponds to an assumption of a uniform dis tr ibut ion of 

observation within the qth c e l l . 

The analysis of the next sect ion indicates that this approach 

may work well for small b , but for larger b values the confidence inter­

val could be quite inaccurate. 

3 . 1 . 4 Effect of Cell Width and Sample Size on Estimation 

At f i r s t glance equations 1 and 2 may appear to indicate that 

as c e l l width b goes to zero 

lim E{F 1 ( p ) } = a 
b-K) n 
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and 

lira V(F (p)} = 0 . 
b+0 

However, P(q) depends on the value of b . As b goes to zero the 

use of a histogram becomes equivalent to e x p l i c i t l y saving, rather than 

grouping, a l l values and using order s t a t i s t i c s rather than c e l l counts. 

This case i s considered in Section 3 . 2 . 

The value of b does af fect the expected value and variance, how­

ever. Using the formulae derived above, the e f fec t of b on E{a + b ( q - . 5 ) } 

and V(a + b ( q - . 5 ) } may be examined. The special case of normally d i s t r i ­

buted observations with zero mean and unit variance i s considered. 

3 . 1 . 4 . 1 Effect on the Expected Value. Table 2 shows the e f fec t 

on expected value for various numbers of observations k. Quantile 

values of . 5 , . 7 , . 9 , . 9 5 , and .99 are considered for each k. The two 

entries in each c e l l of the table corresponds to a = - 4 with b = 1 and 

b = . 1 , respect ive ly . The most important point to not ice i s that the 

pos i t ion of F A (p ) in the histogram c e l l i s the dominating factor . I f 

the c e l l s are labeled in ascending order from l e f t to r i g h t , ( . 7 ) = 

.5025 i s very close to the center of the f i f t h c e l l for b = 1, but l i e s 

on the boundary of c e l l s 45 and 46 for b = . 1 . For a l l values of k 

shown in the tab le , the estimate using the larger b i s less biased than 

the estimate using the smaller b value for p = . 7 . 

Of course, everything e lse constant, smaller b values are be t ter . 

For example, F n

A ( . 5 ) = 0 .0 which l i e s on c e l l boundaries for both b = 1 

and b = . 1. In this case b = .1 dominates b = 1 in terms of unbiased-

ness . Since the value of F A ( p ) i s not known in appl icat ion, i t s 
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Table 2. Values of E{a + b(q-h) |k,p} for b = 1 and b = . 1 

.5 .9 .95 .99 

0.0 

.038 

.0126 

5025 

500 
509 

1.281 

1.435 
1.249 

1.645 

1.526 
1.491 

2.330 

2.175 
2.148 

.0561 

.025 
500 
494 

1.327 
1.218 

1.596 
1.629 

2.236 
2.220 

.0722 

.0415 
493 
473 

1.228 
1.179 

1.612 
1.616 

2.025 
2.025 

.0884 

.062 
471 
448 

1.146 
1.131 

1.425 
1.408 

1.859 
1.856 

516 
516 

1.258 
1.258 

1.733 
1.727 

134 
123 

388 
376 

.997 
1.001 

1.538 
1.533 

357 
353 

1.350 
1.348 

496 
495 

1.161 
1.160 

297 
297 

297 
297 

1.028 
1.027 

845 
845 

564 
564 

564 
563 
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posi t ion in relat ion to c e l l boundaries i s unknown. Certainly the 

e f fec t i s minimized in general by smaller values of b . 

Smaller c e l l s widths, however, lead to more c e l l s and in turn 

more computer memory requirements. The value of b should be set as small 

as poss ib le while s t i l l allowing the histogram to be kept in core. With 

large computers th i s i s l i t t l e problem. For example b = .0020 requires 

5000 c e l l s for a range of ten standard deviat ions , which should be plenty 

for a l l but very heavy t a i l e d dis tr ibut ions . However, with the expanding 

use of minicomputers, or for applications requiring many histograms to 

be stored at once, se t t ing b to small values may be d i f f i c u l t . In these 

cases the correction factor i s important, s ince i t s function can be seen 

to be the reduction of the c e l l border e f f e c t . 

3 . 1 . 4 . 2 Effect on the Variance. The importance of the correction 

factor may also be seen in terms of V{a + b ( q - . 5 ) } . Table 3 i s analogous 

to the previous t a b l e , but entries correspond to k * V{a + b ( q - . 5 ) } . 

The variance i s mult ipl ied by the number of observations k to eliminate 

the e f fec t of k on the variance. Note again the i rregu lar i ty for p = . 7 

due to F R ^(p) f a l l i n g at the center of a c e l l for b = 1 and on a c e l l 

boundary for b = . 1 . For k > 20 the correct c e l l i s almost always 

se lected for b = 1, while for b = .1 the c e l l containing F n * ( « 7 ) i- s f a r 

from certain even for k = 100 resul t ing in a higher variance for b = . 1 . 

Again the correction factor tends to el iminate the c e l l border e f f e c t . 

A f inal point on the value of the correction factor can be made 

by examining the entries for k = 4 and p = .5 and , 7 in both tab les . 

Since r = 2 for e i ther value of p , the entries are ident i ca l . The cor­

rection factor uses additional information in the histogram to provide 



Table 3 . Values of k*V{a + b(q-Jg)|k,p} for b = 1 and b = . 1 

.5 .7 .9 .95 .99 

2 4 . 8 4 
1.676 

.0175 
1.841 

6 .085 
2 .942 

2 .713 
4 .257 

23 .606 
9 .790 

12.342 
1.607 

.341 
1.753 

7.251 
2 .765 

5 .286 
4 .329 

19 .438 
17.384 

7.345 
1.577 

1.067 
1.708 

6 .222 
2 .620 

5.270 
4 .160 

11.345 
9 .551 

4.862 
1.557 

1.719 
1.670 

4 .985 
2 .475 

4 .423 
3 .210 

7.440 
6.406 

3 .804 
1.539 

2 .018 
1.691 

4 .121 
2 .700 

5 .820 
4 .986 

2 .610 
1.519 

2 .198 
1.589 

3 .131 
2 .154 

4 .352 
3 .633 

2 .165 
.2113 

2 .078 
1.544 

3 .385 
2 .827 

1.875 
1.438 

1.958 
1.562 

2 .675 
2 .276 

1.776 
1.445 

1.776 
1.445 

2.309 
1.990 

1.597 
1.349 

1.932 
1.690 

1.529 
1.365 

1.531 
1.368 
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estimates which dist inguish between F n ( . 5 ) and F^ ( . 7 ) . 

3 .2 Quantile Estimation Using Order S t a t i s t i c s 

Section 3 .1 discussed estimation of F - 1 ( p , where observations were 
n r 

grouped in histogram c e l l s of width b . Consider the l imit ing case as b 

approaches zero. The number of ce l l s Q becomes large and the number of 

observations in the i th c e l l , c^, becomes small . At the l imi t each 

observation i s known exactly and the sample order s t a t i s t i c s may be 

used d irec t ly to estimate F * ( p ) . 

Recording each observation and la t er sorting into ascending order 

to determine the various order s t a t i s t i c s i s p o s s i b l e , but time consum­

ing for large sample s ize k. Therefore, the value of the resul ts of this 

section may l i e more in the case where b i s not zero, but rather where 

the value of b i s so small that E{c^} < 1 for almost a l l i = 1 , 2 , . . . , Q . 

In this case the e f fec t of grouping i s n e g l i g i b l e . At the same time 

the correction factor (^^_^ - p(k+l) + 1 ) / ( c^+1) makes l i t t l e sense 

and the formulae of the las t section for confidence intervals cannot be 

used numerically since the calculat ion of P(q) for q = 1 , 2 , . . . , Q requires 

too much e f f o r t for small values of b . Therefore a new estimator of 

F n *(p) and a di f ferent technique for estimating the variance of the 

estimate of F^Cp) i s necessary for the case of small b values. Section 

3 . 2 . 1 presents a point est imator, Section 3 . 2 . 2 discusses the e f f ec t of 

sample s i z e on est imation, and Section 3 . 2 . 2 discusses the confidence 

interval for the pth quanti le . 

3 . 2 . 1 Point Estimation of F~*(p) Using Order S t a t i s t i c s 

A common estimator for F *(p) i s the rth order s t a t i s t i c , denoted 
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X f . or X , , where r = [ p ( k + l ) ] . This est imator, however, i s biased 

low as can be seen by considering a special case. Let p = .8 and k = 10, 

Then r = 8. The .8 quantile i s the point where 80% of the d is tr ibut ion 

i s to the l e f t and 20% i s to the r ight . In this case, however, the 

estimate i s the point where 70% of the sample i s to the l e f t , and 

20% i s to the r ight . Crudely a l locat ing the 10% represented by X ^ to 

the l e f t and right of X ^ indicates that X ^ may be a be t ter estimator 

of F " 1 ( . 7 5 ) than of F _ 1 ( . 8 ) . n v J n v ' 

An a l ternat ive i s to use X. .«, as the est imator, but a s imi lar 
(r+1) 

problem a r i s e s , but with pos i t ive b i a s . I t should be noted that as the 

sample s i ze increases , the bias in using e i ther order s t a t i s t i c dimin­

ishes . 

A be t ter estimator may be based on 

E{X , } ~ F " 1 ( r / ( k + l ) ) r: k n ' 

which i s an exact equality for a uniform dis tr ibut ion [Gibbons, 1971, 

p. 3 6 ] . Define F n

A ( p ) as ( l - a ) X r . k + a X r + 1 : k where r = [ p ( k + l ) ] , 

a = p(k+l) - [p (k+ l ) ] and p e [ l / ( k + l ) , k / ( k + l ) ] . Values of p outside 

th i s interval resul t in the indicated use of the non-existent zero and 

k+1 order s t a t i s t i c s . Estimation of F *(p) outside the above interval 

i s poss ib le by making assumptions on the form of F n or increasing k. 

F^ (p) i s unbiased for uniformly dis tr ibuted observations, s ince 

E t f ' ^ p ) } = E { ( l - a ) X r . k + a X r + 1 ; k } 

= ( l - a ) E { X r . k } + a E { X r + 1 : k ) 
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Now approximately for all distributions and exactly for the uniform 

For the uniform ( 0 , 1 ) dis tr ibut ion 

= ( l - a ) ( r / ( k + l ) ) + a ( (r+l ) / (k+l ) ) 

( r + a ) / ( k + l ) = p ( k + l ) / ( k + l ) = p = F ^ ( p ) 

F^ (p) i s analogous to the grouped data estimator a + b[q -

^ i - 1 C i ~ P ( ^ + x ) + 1 ) / c q + i ) ] discussed in the l a s t section in that 

both make the estimate less discrete by assuming, as an approximation, 

a uniform distr ibut ion of observations in the area of the estimate. 

However, here interpolat ion i s being performed between c e l l s rather 

than within c e l l s . 

3 . 2 . 2 Effect of Sample Size 

The expected values of and X ^ r + ^ become close for asymptoti­

ca l ly large samples. Therefore there i s some number K such that for 

k > K the added accuracy of using the l inear combination of order s t a ­

t i s t i c s , rather than one or the other, i s small enough that the extra 

e f for t i s not worthwhile. 

Section 3 . 2 . 2 . 1 examines the e f f ec t of sample s i ze on the ex­

pected difference of X, . and X, . . . Section 3 . 2 . 2 . 2 examines the 
(r) (r+1) 

e f f ec t on the variance of the order s t a t i s t i c s . Techniques are 

developed in both sections to determine the value of K necessary to 

use only one order s t a t i s t i c for sa t i s fac tory r e s u l t s . 

- l -l 
E<F CP)-' = ( l - a ) F V r / ( k + l ) ) + oF M

A ((r+l) /Ck+l)) 
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3 . 2 . 2 . 1 Effect on the Expected Difference of X, . and X, . . . 
1 (r ] (r+1) 

Table 4 shows the relat ionship of k and E { X ^ } and F~*(p) f ° r P = 

. 8 , .9 in the special case of uniformly distr ibuted observations. 

The weighting of the two order s t a t i s t i c s eliminates the f luctuation in 

the estimates for both p values. The use of the weighted estimates in 

calculat ing the values of Table 2 would have eliminated the f luctuation 

under p = . 5 , where nonzero values occur for a l l even sample s i zes and 

a l l odd sample s izes have zero entries due to using the r = [ p ( k + l ) ] 

order s t a t i s t i c rather than a weighted average of X ^ and X ( r + i ) . Since 

E(X , } ~ F x ( r / k + l ) for a l l d i s t r ibut ions , Table 4 also indicates less 
r:k n ' 

f luctuation and bias for arbitrary d i s tr ibut ions . 

The necess i ty of the a correction factor becomes less as k becomes 

larger for constant b , since as k increases , E{c^} increases for each i 

and the expected difference between X, . and X. becomes small , mak-
(r) (r+1) 

ing interpolat ion not worthwhile. I t i s of in teres t to study the mini­

mum sample s i ze K necessary for 

| E { X ( r ) } - E { X ( r + 1 ) } | < 6 

for some given 6 > 0 and a l l k > K. K, of course, depends on both the 

value of p and the d is tr ibut ion of observations. 

Figure 2 shows the re lat ionship between sample s i ze k and 

E(X,. for p = .9 and .99 and for the uniform and normal d i s t r ibu-
(r) 

t ions . The uniform results were obtained d irec t ly using ElX^.^} = 

r / ( k + l ) while the normal d is tr ibut ion resul ts were calculated using 

numerical integration as fo l lows: 



Table 4. Relationship of Sample S i z e , Expected Values of Order S t a t i s t i c s , and F n (p) = 
( l -a )E{X k > + aE^X 1 > k > for p = .8 and p = .9 and U(0 ,1) Observations 

S 9 10 11 12 13 14 15 16 17 

P k 6 . 4 7.2 8 8 .8 9 . 6 10 .4 11 .2 12 12 .8 13 .6 

r = [ p ( k + l ) ] 7 8 8 9 10 11 12 12 13 14 

r+1 8 9 9 10 11 12 13 13 14 15 

E { X r ; k } = r / ( k + l ) .778 .8 .727 .75 .769 .786 .8 .75 .765 .778 

E { X r + 1 . k } = ( r + l ) / ( k + l ) .889 .9 .817 .833 .846 .857 .867 .813 .823 .833 

a = p(k+l) - [ p ( k + l ) ] .2 0 .8 .6 .4 .2 0 .8 .6 . 4 

.8 .8 .8 .8 . 8 .8 .8 . 8 . 8 . 8 

8 9 10 11 12 13 14 15 16 17 

P k 7.2 8 .1 9 9 .9 10 .8 1 1 . 7 12.6 13 .5 14 .4 1 5 . 3 

r = [ p ( k + D ] 8 9 9 10 11 12 13 14 15 16 

r+1 9 10 10 11 12 13 14 15 16 17 

E { X r ; k > = r / ( k + l ) .889 .9 .818 .833 .846 .857 .867 .875 .882 .889 

E ( X r + l : k } = C r + l ) / ( k + l ) 1 1 .909 .917 .923 .929 .933 .938 .941 .944 

a = p ( k + l ) - [ p ( k + l ) ] . 1 0 .9 .8 .7 .6 .5 . 4 . 3 .2 

F n ^ .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 
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Figure 2 . Sample Size vs . Expected Value Using Cel l Midpoints 
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E { X r - k } = / X f X 0 0 d x 

-°o r:k 

0 0 

A{ Z (X . + i A ) P f v (X . + i A ) } 
. , mm J X , mm J 

i = l r: k 

0 0 

A{ Z (X . + i A ) P [ k ! / ( r - l ) l (k -r ) ! ] [ F V (X . + i A ) ] 1 " 1 

^ = 1

V mm J K ' J L X v mm ' J 

f v (X . + iA)[1 - F Y (X . + i A ) ] k ' r } X v mm J L X mm J J 

[ \ 0 0 

k { Z (X . + i A ) P [ F Y (X . + i A ) ] 
r . , mm L X v mm J 

J i = l 

r-1 

f v (X . + i A ) [ l - F v (X . + i A ) ] k _ r } X v mm J L X v mm J J 

where A i s a small pos i t ive value and X . i s F f• 001") or l e s s . 
r mm n 

I t i s obvious from Figure 2 that the behavior of E ( X ^ } depends 

heavi ly on both p and the dis tr ibut ion of the observations, with in t er ­

action e f f e c t s . Consider f i r s t p = . 9 9 . The f luctuation in EiX. 
(r) 

i s much greater for the normal d is tr ibut ion than for the uniform, be­

cause the short t a i l s of the uniform dis tr ibut ion and high value of p 

provide l i t t l e freedom for variat ion. On the other hand, for p = .9 

the f luctuation depends much less on dis tr ibut ion type since the f i n i t e 

upper bound on the observations in the uniform case plays a l e s ser role 

with the smaller value of p. 

I t i s desirable to have a simpler method of studying this 

f luctuation than the numerical integration and graphing technique 

jus t described. The minimum sample s i ze K necessary to bound the 
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f luctuation below some given 6 > 0 may be calculated as fol lows: 

Noting the longest f luctuations occur where k increases by one 

but r remains the same, consider 

E{X - E{X , } r : k - l r:k 

* F ' ^ r / k ) - F ' ^ r / C k + l ) ) 

= F^Cr/k) - F ' ^ r / k - r / ( k ( k + l ) ) ) 

z p - ^ E i k + l ^ _ p^Cpd - l / ( k + l ) ) 

n k ' n 

I f th is f luctuation i s to be bounded by 6 > 0 , then 

F ^ ( p ( k + l ) / k ) < 6 + F ' ^ p ) 

This re lat ionship , though approximate, gives good numerical 

r e s u l t s , since the error in approximating E{X , . } by F A ( r / k ) i s 

s imi lar to the error in approximating E{X , } by F x ( r / ( k + l ) ) , y ie ld ing 

an approximate difference with l i t t l e error. 

As an example, consider N ( 0 , 1 ) , p = .99 and 6 = . 0 1 . Then 

F^(p (k+ l ) /k ) < 6 + F _ 1 ( p ) 

implies 

F ^ 1 ( . 9 9 ( k + l ) / k ) < + .01 + F - 1 ( . 9 9 ) 
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F " 1 ( . 9 9 ( k + l ) / k ) < .01 + 2 .324 = 2 .334 

Solving by t r i a l and error for the smallest k sa t i s fy ing this re la t ion­

ship , gives K * 3000. For 6 = .1 a value of K * 300 i s obtained. 

Reference to Figure 2 provides the same r e s u l t s . The conclusion i s 

^ \ -1 
that for k < K, F (p) should be used to estimate F (p) rather than 

n r n r 

X, ,. or X, .. >.. (r) (r+1) 

3 . 2 . 2 . 2 Effect on the Difference of the Variance. I f an e s t i ­

mate of the variance of the estimate of F n ^(p) i s desired, an analysis 

analogous to that for the expected value must be performed, since 

V{X . } can d i f f e r greatly from V{X . The value of k must be 
r:k & ' r : k - l 

large enough to reduce this f luctuation below some value 6 > 0 for the 

simpler order s t a t i s t i c estimators to be applicable . 

Figure 3 i s a p lo t of sample s i ze k vs . k*V{X , } . (The variance 
r . K 

i s mult ipl ied by the sample s i ze to eliminate the e f fec t of k . ) Here 

again the resul ts are highly dependent upon both p and the d is tr ibut ion 

of the observations, with interact ion e f f e c t s . The least amount of 

f luctuation i s for p = .99 and the uniform d i s tr ibut ion , the greatest 

amount of f luctuation i s for p = .99 and the normal d i s tr ibut ion . The 

point here i s not the spec i f i c f luctuat ions , but that the f luctuation 

depends heavily on both sample s i ze and p. Calculations s imi lar to 

those for expected value can be used to find K such that k ^} -

V(X } | < 6 for a given 6 > 0 and a l l k > K . Using 

y { X } * r(k-r+l) { [ F / ^ r / C k + l ) ) ] } - 2 

r , K ( k + l ) z ( k + 2 ) A * 

[Gibbons, 1971, p . 36] and r = [ p ( k + l ) ] , consider 
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Figure 3. Sample Size vs . Standardized Variance Using Cel l 
Midpoints 
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l V { X r : k - l } " V { X r : k } l 

s | r f k = r i _ { f t F - l C r / k ) ] } - 2 -
 T<*Z**V { f t F - 1 ^ ) ] } " 2 ! 

k^(k+l) n (k+ir(k+2) n K 1 

. ĵ ja. |*a*n { f [ F - i ( £Ci ia ] } - 2 - ̂ fg^j- < f [ F > ] r 2 i 

= pl k ( l - p ) - p { . r - l f p ( k * l ) . 1 } - 2 _ ( k + l ) ( l - p ) { £ r F - l r P 1 1 } - 2 | 
r | 2 l r l n 1 k (k+l ) (k+2) 1 1 n 1 ) 1 1 1 

- p ( l - p ) | i { f t F ^ C 2 2 ^ ) ] } " 2 " ^ t f C F ^ C P ) ] } " 2 ! 

K £( lp I | { f [ F - l ( £(k l l i ) ] } -2 . { £ [ P - 1 C P ) ] } - 2 | 

Sett ing this quantity less than 6 > 0 , the f luctuation i s bounded 

to the desired level for a l l k larger than K, the smallest k sa t i s fy ing 

the inequal i ty . For example, i f the observations are normally d i s t r i ­

buted, p = . 9 9 , and 6 = . 0 0 1 , t r i a l and error indicates k ~ 3800. This 

value i s ver i f i ed by Figure 3 . 

3 . 2 . 3 Confidence Intervals Using Order S t a t i s t i c s 

Blum and Rosenblatt [1963, 1963b] discuss the existence of mult i ­

stage estimation procedures for finding a confidence interval of pre -

assigned length and confidence for quant i les . Since multistage proce­

dures do not ex i s t for a l l d i s t r ibut ions , the resu l t s are not of direct 

in teres t here. 

Gibbons [1971 , pp. 4 0 - 3 ] , among others , discusses d i s tr ibut ion-
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free confidence intervals for quanti les based on order s t a t i s t i c s . In 

part icu lar 

1 - a= P(X . < F" 1 (p) < X , ) - E ( k 

v r:k n r s:k . 1 i = r ^ 

i r . . k - i 
P (1-P) 

which i s solved for r and s to minimize X . - X . o r s - r for a given 
s : K r '• K 

a. This confidence interval has the four disadvantages that: (1) i t 

i s not unique, (2) i t i s determined by t r i a l and error, (3) i t assumes 

the order s t a t i s t i c s are from independent observations, and (4) i t i s 

not as short as parametric confidence in terva l s . The f i r s t two d i s ­

advantages are obvious. The third i s a disadvantage since in Monte 

Carlo studies many variance reduction techniques are based on causing 

correlat ion between the observations, y ie lding this confidence interval 

inva l id . Observations from computer simulation or real world pro­

cesses are often dependent a l s o , due to the ir time series nature. The 

fourth disadvantage stems from the d i s tr ibut ion- free nature of the 

interval which corresponds to the two-tai led sign tes t for quant i les . 

While the sign t e s t i s UMPU for an unspecified d is tr ibut ion [Kendall 

and Stuart , 1973, pp. 5 3 3 - 6 ] , a va l id normal theory confidence interval 

would certainly have be t ter propert ies , corresponding to the greater 

power associated with knowledge of the d is tr ibut ion of the estimator of 

F " 1 ( p ) . 

Consider the p o s s i b i l i t y of using a normal theory confidence 

interval based on m independent estimates F . (p ) i = l , 2 , . . . , m , where 

each F

n ^ ( p ) i s defined as the [p&]th sample order s t a t i s t i c of I 

observations. Define F^Tp) = E1? , F/T(p)/m based on k = m£ 
n K i f J i = l m v r / 
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observations. Then i f each F ^ ( p ) i s normally dis tr ibuted with unknown 

variance, a 100(l-a)% confidence interval on the pth quanti le i s 

(p) + t • S/m n ^ J - a/2,m-1 

where 

S = 
i = l 

1/2 

This confidence interval i s unique and closed form, obvious 

advantages over the d i s tr ibut ion- free confidence in terva l . In addi­

t i on , only the F^Cp) values must be independent, rather than each 

observation, thereby allowing the use of variance reduction techniques 

or , in system simulation, the i th run. F ina l ly , this confidence in ter ­

val has be t t er properties i f , in f a c t , the normality assumption i s 

v a l i d . 

Gibbons [1971, p. 40] shows that as i 0 0 and p = r/l remains 

f ixed , the dis tr ibut ion of X, . tends to normality with mean F \ p ) 
(r) } n V J 

and standard deviation [ p ( l - p ) / I ] [ f C F ^ C p ) ) ] where f i s the 

density function corresponding to F N CO» Thus for I "large enough", 

the normal theory confidence interval based on m independent estimates 

i s va l id . 

Consider the a l locat ion of the k observations into m groups of I 

for fixed k = mJL Asymptotical ly, 
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- [F"2(F;1(P))P(L-P)A]/M 

• F2(F'1(P))P(L-P)/(M^) 

Therefore the a l locat ion does not a f fect the variance of the estimate 

for asymptotically large k. For purposes of calculat ing the normal 

theory confidence i n t e r v a l , however, the a l locat ion i s important. 

Certainly m > 2 i s necessary to make poss ible the computation, and 

m > 5 i s desirable since the value of t / n , increases so rapidly 
a /2 ,m- l r 3 

for m < 5 . The tradeoff , however, i s that each F

n ? ( p ) i s more c lose ly 

normal for large made poss ib le by small m. 

I f the confidence interval i s being used as a stopping r u l e , 

approximate resu l t s are acceptable and some non-normality causes no 

harm. Especia l ly i f intervals are being calculated for several values 

of p at once for purposes of determining when suf f i c i ent accuracy has 

been obtained, approximate resu l t s are acceptable since the v a r i a b i l i t y 

depends so much upon the value of p as shown in Figures 2 and 3 . 

In applications where va l id confidence intervals are needed, the 

normal theory approach could be misleading. However, in Monte Carlo 

s tudies , K i s usually at l eas t in the thousands. The analysis of 3 . 2 . 1 

indicated that large sample s i zes are necessary to reduce f luctuation 

in expected value and variance of X ^ . For the large samples, normal­

i t y i s probably not a bad assumption, since 100 observations i s usual ly 

plenty for appeal to the central l imit theorem for confidence intervals 
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on the mean. Therefore, even i f accurate confidence intervals are 

needed, the normal theory approach could be considered. 
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CHAPTER IV 

PROCESS GENERATION FROM ( f ^ , ^ ) 

In order to provide the observations used to estimate quantiles 

in Chapter I I I and to perform the Monte Carlo work of Chapters V, V I , 

and V I I , a method must be avai lable to generate random values having 

spec i f i c propert ies . Techniques for generating values from spec i f i c 

d is tr ibut ions are discussed in many p laces , for example Naylor et a l . 

[1966] or Lewis [ 1 9 7 5 ] . 

This chapter considers the problem of generating random variables 

having any spec i f ied f i r s t four central moments , u 2 > u^ , and u^ . 

While the f i r s t four moments do not completely characterize a d i s t r i ­

but ion, d i f ferent dis tr ibut ions with common lower order moments tend 

to have s imi lar propert ies . Thus the capabi l i ty of generating random 

variables having any spec i f ied f i r s t four moments would allow one 

technique to be used to approximate a l l common d i s tr ibut ions . In addi­

tion s e n s i t i v i t y analysis would be s impl i f ied since generation of random 

values having moments + e ^ , u 2 + + e ^ , and + would be 

no more d i f f i c u l t than u^ , u 2 > u^ , and u^ . The capabi l i ty of generating 

a wide variety of random variables i s used in the current work to gener­

ate observations having speci f ied propert ies . The f i r s t four moments 

are used to measure the difference between underlying dis tr ibut ions in 

Chapters V , V I , and V I I . 

Section 4 .1 discusses the well-known relat ionships between 

dis tr ibut ions in terms of the third and fourth moments, which are 
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measures of skewness and ta i lweight , respect ive ly . Section 4 .2 gives 

c r i t e r i a for comparing process generation techniques. Section 4 . 3 

discusses ex is t ing techniques of generating random variables having 

spec i f ied f i r s t four moments and compares them in terms of the c r i ­

t e r i a of Section 4 . 2 . F ina l ly , Section 4 .4 presents a process generator 

designed to generate random values from a wide range of d i s tr ibut ions . 

This generator i s the one of several t r i e d which s a t i s f i e s the most 

c r i t e r i a of Section 4 . 2 . 

4 .1 The ( f t j ^ ) Plane and Common Distributions 

In this section the interpretat ion of the f i r s t four moments and 

the i r re lat ionship to some common distr ibut ions i s examined. Insight 

into th i s re lat ionship i s the basis for desiring a generator capable of 

producing values having any f i r s t four moments. Section 4 . 1 . 1 discusses 

standardized moments and the ir interpretat ion. Section 4 . 1 . 2 discusses 

the relat ionship of these moments to common d i s tr ibut ions . 

4 . 1 . 1 Interpretation of Moments 

Any dis tr ibut ion with f ixed parameters has a unique set of 

moments. That i s , i f i s the rth raw moment of a random variable X, 

then û , i s unique for a l l r 0 , which i s obvious from the def in i t ion 

of the rth raw moment 

oo 

V = / x r f ( x ) d x 
_oo 

Thus, any dis tr ibut ion may be represented by the point (u|,ujj> • • • ,T-^) 

in an s dimensional Euclidean space i f the f i r s t s moments are f i n i t e . 
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The uniqueness does not follow in the reverse d irect ion , however, 

since more than one dis tr ibut ion may f a l l at the point (û ,...,up, 
even i f s i s arb i t rar i l y large. A common example i s the lognormal d i s tr i ­

bution, which cannot be defined by i t s moments, as shown by Heyde [ 1 9 6 3 ] . 

Despite this nonuniqueness, insight into the relat ionship between d i s t r i ­

butions may be gained by observing where various dis tr ibut ions are 

located in terms of their moments. Commonly the f i r s t four moments 

are considered, since four i s the maximum number of moments which may 

be analyzed graphical ly . The graphical analysis i s made poss ible by 

using standardized moments 

° r E V y 2 / 2 r = l > 2 > ' -

where u i s the rth central moment. The standardized moments do not r 

depend on e i ther (the mean) or (the var iance) , as may be seen 

from the equivalent def in i t ion of a 

a = j 
r J 

_00 
(x-up 1/2 

f (x ) dx r > 0 

Thus any dis tr ibut ion with f i n i t e f i r s t four moments may be 

placed on a plane with axes and a^, without regard to the f i r s t or 

second moments since = 0 and OL, = 1 for a l l d i s t r ibut ions . The 

third and fourth standardized moments are int imately re lated to the 

shape of the d i s tr ibut ion . Both are invariant to variance (scale) and 

mean ( l o c a t i o n ) . The third standardized moment i s often used as a 

measure of skewness. I t s value i s negative for a t a i l to the l e f t and 

pos i t ive for a t a i l to the r ight . A l l symmetric d is tr ibut ions have 
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ctg = 0 , but otg =: 0 i s not a necessary condition for symmetry. However, 

otg = 0 for asymmetric d is tr ibut ions only rare ly . The fourth standard­

ized moment i s a measure of t a i l weight, a more d i f f i c u l t concept because 

i t i s so eas i l y confused with variance, and i s discussed in Section 

4 . 1 . 2 in the context of spec i f i c examples. 

4 . 1 . 2 Common Distributions on the ( 3 ^ > 3 2 ) Plane 

The interpretation of the standardized moments becomes more c lear 

when considering the location of common dis tr ibut ions on the third and 

fourth standardized plane. From knowledge of the shapes of these common 

dis tr ibut ions (as discussed in Johnson and Kotz [1969, 1970a, 1970b] , 

for example), a feel ing for the re lat ionship becomes more c lear . 

2 

Figure 4 shows the third and fourth moment plane, using 3^ = 3 1 1 ^ 

3 2 = <*4 as the scales for the two axes. The posi t ions of the common 

dis tr ibut ions placed on the plane indicate the re lat ionship between the 

shape of a d is tr ibut ion and the values of i t s third and fourth moments. 
2 

Consider the l ine 3^ = a 3 = 0 . The beta d i s t r ibut ion , with 

equal parameters, f a l l s on this axis for 3 2 such that 1 _< 3 2 _£ 3 . A 

special case is the equally l i k e l y Bernoulli t r i a l which i s located at 

^ 1 ' ^ 2 ^ = corresponding to the l imit as p = q goes to zero. 

Another specia l case i s the uniform dis tr ibut ion (p = q = 1) at ( fc^,^) = 

( 0 , 1 . 8 ) . The normal d is tr ibut ion f a l l s at ( 0 , 3 ) , the double exponential 

at ( 0 , 6 ) , the t d is tr ibut ion with f ive degrees of freedom at ( 0 . 9 ) , and 

the t d is tr ibut ion with four degrees of freedom at ( O , 0 0 ) . 

Note that 3 2> the kurtos i s , increases as the weight of the t a i l s 

of the d is tr ibut ion increases. This i s i l l u s t r a t e d in Figure 5 . D i s t r i ­

butions with f i n i t e range, such as the beta , have kurtosis less than 
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0 1 2 3 1 4 * 5 6 

Figure 4. Common Distributions and the (B, ,0- ) Plane 
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three. The normal d is tr ibut ion has the l ightes t t a i l s poss ib le with an 

i n f i n i t e range at 3 2

 = 3 . The double exponential has s t i l l thinner 

"shoulders" and heavier t a i l s . Note that $ 2 i s also a measure of the 

"peakedness" of the d i s tr ibut ion . 

Just as 3 2 measures t a i l weight or peakedness, i s a measure 

of skewness. Several common skewed dis tr ibut ions are shown in Figure 4 . 

The gamma, Weibul l , and lognormal d is tr ibut ions correspond to s tra ight 

2 

l ines . (Note that had rather than 3^ = a 3 D e e n use& o n t n e hor i ­

zontal s c a l e , these s tra ight l ines would be curves, thereby explaining 

the use of 3^ . ) The exponential d i s t r ibut ion , located at (3>^2^ = 

( 4 , 9 ) , i s a specia l case of both the gamma and Weibul l , so both of these 

l ines pass through this point . The normal d is tr ibut ion i s the l imit ing 

case of both the lognormal and the gamma d i s t r ibut ions , forcing these 

l ines to intersect at ( 0 , 3 ) . The beta d i s tr ibut ion , which i s much 

more f l e x i b l e , covers the entire area above the gamma l ine . Special 

cases include skewed Bernoulli t r i a l s on the l ine 3 2

 = 3-̂  + 1 (as p 

and q approach zero in a fixed rat io ) and the gamma dis tr ibut ion (as 

p and q approach i n f i n i t y at a f ixed r a t i o ) . 

From knowledge of the general shapes of these dis tr ibut ions i t 

i s seen that 3^ i s an increasing function of skewness. Since skewness 

and kurtos i s , as measured by 3-̂  and 32> are so int imately re lated with 

the shape of the d i s tr ibut ion , a random generator capable of producing 

values having any speci f ied 3-̂  and 32 i s a lso capable of producing values 

from a very wide range of d is tr ibut ion shapes. 
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4 .2 Cr i ter ia for General Process Generators 

Any process generation technique oriented toward a wide range of 

^ 1 *^2^ v a l u e s > rather than a part icular common d i s tr ibut ion , w i l l be 

cal led a "general process generator" in the remainder of th i s chapter. 

Without specifying the spec i f i c technique, a general process generator 

may be denoted 

* x = GiX^,X^,... »^j e»Pi»P2» • • •) 

where the k A^ values are parameters, {p^} i s a sequence of U(0 ,1 ) 

values , and G i s e i ther a closed form expression or an i t e r a t i v e 

algorithm. 

Eight c r i t e r i a for comparing general process generators are given 

and discussed in th is sect ion. Not included are c r i t e r i a common to a l l 

process generators, such as computational speed, core requirements, 

cycle length, and reproducibi l i ty . I t i s assumed that any technique 

considered w i l l not require extensive t a b l e s , w i l l have long cyc les , 

and w i l l be reproducible. Computational speed i s almost always a con­

s iderat ion , espec ia l ly in Monte Carlo appl icat ions , but does not need 

to be belabored here. The eight c r i t e r i a pertinent to general process 

generation are now discussed. 

4 . 2 . 1 One Functional Form 

Ideal ly the process generator should have only one functional 

form. That i s , G i s the same for a l l (fB^f^)* d i f fer ing only in the 

values of the parameters A^. The use of several forms of G to obtain 

a wide range of {fiyQ^} values complicates the l o g i c , making error more 

l i k e l y . In addition, several forms necess i ta te several parameter 
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estimation methods, one for each form. 

4 . 2 . 2 Number of Parameters 

A technique should require only one parameter for each moment 

to be f i t . That i s , to obtain any f i r s t four moments the generator 

should be of the form 

x = A 1 + G ( A 3 , A 4 , p 1 , p 2 > . . 0 * A 2 

where A^ determines the mean ( l o c a t i o n ) , A 2 determines the variance 

( s c a l e ) , and A 3 and A^ determine skewness and kurtos i s . Finding a 

functional form for G using only two parameters to f i t a wide range 

of , 3 2 ) values i s complicated by many of the following c r i t e r i a . 

4 . 2 . 3 Express ib i l i ty of F in Closed Form 

Ideal ly the cdf of X, F, may be expressed in closed form. That 

i s , G should be such that the pth quanti le of X i s given by 

p = F ( A 3 , A 4 , ( x - A 1 ) / A 2 ) 

Usual ly , although not always, th is cr i ter ion implies that X i s a func­

t ion of only a s ing le U(0 ,1) value p^. That i s , 

x = A x + G ( A 3 , A 4 , p 1 ) * A 2 

Of course, the use of only one U(0 ,1) value also increases the compu­

tat iona l speed of the technique. The value of being able to express 

the cdf, and the density function, in closed form arises in re lated 

s t a t i s t i c a l analyses, such as maximum l ike l ihood estimation to estimate 

the parameter values or to determine the quanti le of a part icular value 
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of X. 

4 . 2 . 4 Express ib i l i ty of F * in Closed Form 

I f G i s a closed form function of only one U(0,1) value, then G 

i s simply the inverse cdf, F of the standardized random variable 

(X-A^) /A2. W h e n F * can be expressed in closed form the inverse trans­

formation technique can be used. This technique has several advantages 

over the other three techniques mentioned e a r l i e r , including a b i l i t y to 

evaluate the pth quantile d i r e c t l y , ease of coding, and ease of apply­

ing variance reduction techniques such as s t r a t i f i e d sampling (see d i s ­

cussion of the subroutine STRAT in Chapter V I ) . 

4 . 2 . 5 The Moments as Functions of the Parameters 

The form of G should allow the moments to be expressed as a 

closed form expression of the parameters. The simpler the re la t ionsh ip , 

the b e t t e r , since (1) i t i s often desirable to provide the parameter 

values to a computer routine to have the moment values calculated, and 

(2) roundoff error can be a problem in complicated functions. 

4 . 2 . 6 The Parameters as Functions of the Moments 

I t i s desirable that , given the spec i f ied f i r s t four moments, 

the appropriate parameter values may be eas i ly determined. Ideal ly a 

closed form expression i s obtained, although only seldom i s th i s poss ib l e . 

Commonly, having determined X^ and X^ for spec i f i ed ( f t ^ ^ ) by nonlinear 

programming techniques, t a b l e s , or by t r i a l and error , the appropriate 

X^ value for the desired variance and the appropriate X^ value for the 

desired means have closed form so lut ions . 

4 . 2 . 7 Symmetry 

Symmetric dis tr ibut ions are an important specia l case of random 
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var iables . The general form of G should be such that some parameter 

values provide symmetric random var iables . In par t i cu lar , the s p e c i f i ­

cation of 3^ = 0 i s often meant to imply symmetry. Therefore a favor­

able character i s t ic of a technique i s that 3^ = 0 implies symmetry. 

4 . 2 . 8 Shape 

The dis tr ibut ion should have a "nice" shape. That i s , given the 

conditions which the dis tr ibut ion must s a t i s f y , such as certain spec i f ied 

moments, 

1. the mode (or antimode) should be unique, 

2 . the range of X should be continuous, 

3 . f (x ) should be continuous, 

4. f ( x ) / d x should ex i s t for a l l x, and 

5 . f ( x ) / d x should be continuous for a l l x. 

These f ive properties are given in a rough order of importance. 

Obviously the conditions are not always des irable , since a Bernoulli 

t r i a l , for example, s a t i s f i e s none of them. 

4 . 3 General Process Generation 

Many techniques of process generation are avai lable for generating 

values from a wide range of third and fourth moment values—some de­

signed for th i s purpose and some not . In this section some of these 

techniques are compared in terms of the c r i t e r i a of Section 4 . 2 . 

Uniformly distr ibuted random values on the ( 0 , 1 ) interval are 

the bas ic elements of randomness in d i g i t a l computer simulation and 

Monte Carlo work. Process generation i s the transformation of these 

uniform ( 0 , 1 ) values to the dis tr ibut ion of in t ere s t . Common transfor­

mation techniques include: 
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1. reject ion methods, where a random observation x i s used with 

probabi l i ty f ( x ) / c , where c >̂ max f ( x ) , 
x 

2. composition methods, where the cdf of the d is tr ibut ion of 

interes t i s approximated by piece-wise l inear segments, which 

i s equivalent to using a mixture of uniform d i s t r ibut ions , 

3. application of s t a t i s t i c a l re la t ionships , such as summing 

several uniform random values to approximate the normal 

d is tr ibut ion using the central l imit theorem, and 

4. the inverse transformation technique, which uses the inverse 

cdf x = F *(p) as a d irect transformation from p ~ U(0,1) to 

x having cdf F ( x ) . For example, 

x = - l n ( l - p ) / X 

may be used to generate exponentially dis tr ibuted random 

values with parameter X. 

In terms of the eight c r i t e r i a of the las t sect ion , the inverse 

transformation technique appears to be the superior approach for general 

process generators, since a l l of the c r i t e r i a are poss ib le with this 

technique. Rejection methods do not work wel l with heavy t a i l e d d i s t r i ­

butions due to the assumption of f i n i t e range. Composition methods re ­

quire many parameters, in part icu lar the pos i t ion of each l inear seg­

ment of the cdf approximation. The use of s t a t i s t i c a l re lat ionships i s 

by i t s nature applied to a spec i f i c d i s tr ibut ion . 

Despite th is apparent super ior i ty , many methods used to study 

dis tr ibut ions over a wide range of moments use other approaches. Most 

of these were not designed for random number generation but are sometimes 
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used. These methods are now studied in terms of the c r i t e r i a of Section 

4 . 2 . 

4 . 3 . 1 The Pearson System 

The most well-known system of d is tr ibut ions covering the whole 

( ^ , $ 2 ) plane i s that due to K. Pearson [ 1 8 9 5 ] . He used seven density 

functions p ( x ) , a l l sa t i s fy ing a d i f f e r e n t i a l equation of form 

1 dp a + x 
p dx ^ 2 R CQ + c^x + c 2 x 

where the four parameters determine the shape of the d i s tr ibut ion . Of 

course any mean and variance can be attained by the usual transformation 

y = b ( x + c ) . While seven types are used, there are no d iscont inui t ies 

in the system owing to their derivation. 

In terms of the c r i t e r i a of Section 4 . 2 , however, th is system 

does not fare too wel l . The method of estimating a, CQ, C^, and c 2 , 

given (3^ and 8 2 , d i f f ers by region of the plane and i s complicated by 

the necess i ty of determining four parameters. The system was not de­

vised for e f f i c i e n t generation of random values , although Cooper, Davis, 

and Dono [1965] have created a computer program for producing random 

variables having Pearson type d i s tr ibut ions . F ina l ly , in several cases 

neither the cdf nor inverse cdf have a closed form. 

4 . 3 . 2 The Johnson System 

Johnson [1949] used three transformations of a normal random 

variable to cover the ( $ j , 3 2 ) plane: one above the lognormal l i n e , the 

lognormal, and one below the lognormal l ine . In terms of the c r i t e r i a 

of Section 4 . 2 , the disadvantages of the Johnson system for process 
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generation are the use of multiple functional forms, and the lack of a 

closed form for the cdf and the inverse cdf. Random values can be 

generated using any of several techniques to generate a normal random 

value and making the appropriate transformation, although the compu­

tat ional e f for t i s high. 

4 . 3 . 3 Bessel Function Distributions 

McKay [1932] described two d i s t r ibut ions , which are based on 

modified Bessel functions, that cover the whole ( 3 ^ > 3 2 ) plane. The 

solut ion of a cubic equation leads to the appropriate parameter values 

given $ j and 3 2 > a de f in i te advantage to this approach. Disadvantages 

are mult iple functional forms and lack of closed form cdf and inverse 

cdf. I t would appear d i f f i c u l t to generate random values from these 

d i s tr ibut ions . 

4 . 3 . 4 The Burr Distribution 

Burr [1942, 1973] considers the c .d . f . 

where c and k are constants determining shape. The standard transfor­

mation of y gives the desired mean and variance. This approach i s well 

suited to random value generation by se t t ing 

1 - U+y") 
Cs -k (0 < y) (k > 0) 

p = 1 - O y " ) 
c. -k 

where p ~ U(0 ,1) 

to obtain 
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This expression may be used to generate values of y from values 

of p using the inverse transformation technique. Here the qth quanti le 

of y i s calculated using p = 1-q, a property which i s good for checking 

the accuracy of approximations to data or known d i s tr ibut ions . 

Disadvantages of the d is tr ibut ion in terms of the c r i t e r i a are 

few. The greatest i s that the U-shaped (3 X + 3 2 5 1 , s ) r e S i o n o f t h e 

(3^>3 2) plane i s not access ib le . Less important i s that the d i s t r i ­

bution i s always asymmetric and extensive tables are needed to deter­

mine c and k given 3-̂  and 3 2 -

4 . 5 . 5 The Generalized Lambda Distribution 

Ramberg and Schmeiser [1972, 1974] proposed using 

A A. 
x = \ + (p * - (1-p) 4 ) * A 2 

where p ~ U ( 0 , 1 ) , which i s a generalization of Tukey's lambda d i s t r i ­

bution. A l l c r i t e r i a are s a t i s f i e d except: 

1. the cdf does not ex i s t in closed form, 

2 . l ight t a i l e d dis tr ibut ions cannot be generated, 

3 . the parameters A^ and A^ are not closed form functions 

of the moments. 

The generalized lambda dis tr ibut ion covers more of the ( B ^ ^ ) plane 

than the Burr dis tr ibut ion and includes symmetric d is tr ibut ions as a 

special case (A^ = A^) , which the Burr dis tr ibut ion does not . 

4 .4 The Absolute Lambda Distribution 

Several general inverse cdf ' s were analyzed in an attempt to find 

one which dominated the techniques of Section 4 . 3 in terms of the 
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c r i t e r i a of Section 4 . 2 . While none dominated, the one which performed 

best i s described in this sect ion. This generator has one functional 

form, the property that only four parameters are needed to provide any 

f i r s t four moments, a closed form cdf, a closed form inverse cdf, a 

r e l a t i v e l y simple parameter-moment re la t ionship , symmetry as a special 

case, and computational speed which i s be t ter than any technique of 

Section 4 . 3 . 

Section 4 . 4 . 1 discusses the d i s tr ibut ional properties of the 

absolute lambda d i s t r ibut ion , Section 4 . 4 . 2 discusses i t s re lat ionship 

to the ( 3 ^ , 3 2 ) plane, and Section 4 . 4 . 3 discusses a variat ion of the 

absolute lambda dis tr ibut ion with somewhat d i f ferent re lat ionship to 

the third and fourth moment plane. 

4 . 4 . 1 Distr ibut ional Properties 

The absolute lambda dis tr ibut ion i s based on the inverse cdf 

where p i s distr ibuted U ( 0 , 1 ) , - 0 0 _< A^ _< °°, 0 _< A^ _< 1, and A 2 has the 

same sign as Ay 

The density function, in terms of the inverse cdf, i s 

[dF *(p) /dp] which may be eas i ly seen from 

x = F _ 1 ( p ) = XX + p ' ( A 3 , A 4 ) * A 2 

where 

i f p < A 4 

i f p > A 4 



/ " f ( x ) d x = / [ ^ E i - ] " 1 t ^ p ^ l d p - / d p • 1 

Therefore 

f ( x ) = f f F ^ C p ) ) = [ d F ' ^ p ? ] - ! = C x 2 x 3 ) - 1 | p _ x i | 1 * 3 

The cdf, F, may be expressed in closed form as 

F X R X L 1/A 

F(x) = p = { 

-A4 + 

3 i f A. - A 0 A „ X 3 < x < A, 
1 2 4 — — 1 

1/A- A 
i f A x < x < X L + A 2 ( l - A 4 ) 

by simply solving for p in the expression x = F ^ (p ) . 

Therefore the density function of X can be expressed in terms 

x, in addition to the previous expression in p. In part icular 

f (x ) = _ dF(x) _ I V X I ( 1 ~ A 3 ) / A 3 
dx = [ - T — ] 

Aj Aj 
for a l l x e [A.̂  - A 2A^ , X^ + A 2 ( l - A 4 ) ] . 

For A^ = 0 the kth raw moment of the d is tr ibut ion i s 

E { X k } = / x k f ( x ) d x 
—oo 

1 1 V 
= / [ F ' ^ p ) ] ^ 

0 

= / 4 [ - ( V P ^ 3 A

2 ^ d P + I1 ^V'K^5
 A J k d p 

0 4 1
 A, 
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k k k X "? r1
 k X 3 

= X 9

k [ ( - 1 ) K / 0

4 (X 4-p) 3dp + / (p-X 4) *dp] 
l 4 

Then i f kX 3 > -1 

E { X k } = X 2

k 

k k X 3 + 1 

C-l) CA4-p) 3 

L. 

t 4 kX + l 
C P - A 4 ) 

+ kX„ + 1 

= X. 

kX +1 kX +1 
( -1 ) K X 4

 6 

+ 
kX3 . 1 kX3 + 1 

, kX +1 kX-+l 
( -1 ) K X 4 + (1-X 4 ) 

X 2

k ( k X 3 + 1) 

for A = 0. 

4.4.2 Relationship to the ( B l f 3 2 ) Plane 

The third and fourth standardized moments may be calculated by 

their definition 

/ 3 X = a 3 = u 3 / u 2 

3/2 

and 

g 2 = a 4 = u 4 / u 2 

As illustrated in Figure 6 this distribution completely covers 

the ( $ j . $ 2 ) plane using only X 3 _> 0. The contour lines relate values of 
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X^ and X^ to the corresponding moment values. Several properties of 

th i s d is tr ibut ion are i l l u s t r a t e d in Figure 5 . 

1. The uniform distr ibut ion i s a special case, corresponding 

to )ij 5 1 and any X^ e [0*1] • For th is reason the con­

tours col lapse on ( 0 , 1 . 8 ) for a l l X^ as X^ approaches 1. 

2 . The Bernoulli d is tr ibut ion i s a special case, corresponding 

to = 0 and X^ = p. Thus X^ = 0 corresponds to points on 

the l ine 3 2 = 3 X + 1. 

3 . The distr ibut ion i s symmetric i f and only i f X^ = 1 / 2 . 

4 . For A 3 > 1, a l l points below the l ine 3 2 ~ ( 5 / 4 ) 3 X + 1 

can be obtained by adjusting X^. 

5 . For X 3 < 1, a l l points above the l ine 3 2 ~ ( 5 / 4 ) 3 j + 1 

and much of the rest of the plane can be obtained by adjust­

ing A 4 . 

Thus (3^,3 2 ) does not uniquely determine X^ and X^, but the 

parameters do uniquely determine the moments. The contours may be used 

to determine appropriate X^ and X^ values. More exact values may be 

found by t r i a l and error or by solving 

Min(3 x - 3 : * ) 2 + ( 3 2 - 3 2 * ) 2 

using a two-dimensional unconstrained search technique, where 3^* and 

3 2 * are the desired moments and 3^ and 3 2 are functions of X^ and X^. 

Using the approximate graphical solution as a s tart ing po int , the 

object ive value can be reduced as close to zero as desired. 

4 . 4 . 3 The Absolute Lambda Distribution (Type I I ) 

The above discussion has centered on the properties of the 
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d is tr ibut ion for >̂  0 . Figure 7 shows X^ and X^ contours on the 

( $ ^ , $ 2 ) plane for X^ _< 0. Here there i s a one to one correspondence 

between parameter values and moments. In addition the contours are 

much s tra ighter . Thus solving for the parameters in terms of the 

moments i s eas ier for 0 . 

The resul ts for X„ •> 0 s t i l l apply, except that the range i s now 

(-00, X x - X 2 X 4 ° ) for p < X 4 and + A 2 ( l - A 4 ) ,<») for p < X 4 > Thus 

the range of X for A < 0 has a gap corresponding exactly to the range 
-1 -1 - 3 

of X for A 3 > 0 . In par t i cu lar , F (0) = F ( X ^ = X : - X 2 X 4 , 

-1 + A 3 -1 
F ( X 4 ) = XL + A 2 ( l - X 4 ) , and F (1) = °°. Thus the dis tr ibut ion i s 

bimodal. For XL = 0 , X 2 = 1 / - 1 . 5 7 4 9 7 , X 3 = - . 2 2 4 7 4 5 , and X 4 = 1 / 2 , 

the f i r s t four moments match the normal d is tr ibut ion with zero mean, 

unit variance, zero skewness, and a kurtosis of three. Figure 8 shows 

the shape of the d is tr ibut ion for these parameter values. Table 5 

gives the quanti le values for the same d i s tr ibut ion , the normal d i s t r i ­

bution, and for X^^ = 0 , X 2 = 1 / . 0 4 1 1 9 , A 3 = 2 . 2 2 4 7 4 , and A 4 = 1 / 2 . 

These l a t t e r parameter values a lso have the same f i r s t four moments as 

the normal d i s tr ibut ion , but with A 3 >̂ 0 . The s imi lar i ty of the two 

A 3 values appear to be coincidental . 

Table 5 indicates that while A 3 = 2 .22474 may be an adequate 

approximation of the normal d is tr ibut ion for some appl icat ions , A 3 = 

- . 224745 i s not even s imi lar in shape to the normal d i s tr ibut ion . 

Thus A 3 _< 0 has l i t t l e application as a too l for approximating common 

d i s tr ibut ions . On the other hand, A 3 <_ 0 i s exce l lent for checking 

the adequacy of the f i r s t four moments to measure the difference 

between the underlying d is tr ibut ions in Chapters V, V I , and V I I . I f 
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- . 7 4 1 9 .7419 

Figure 8. Shape of the ALD ( I I ) Density with Same Firs t Four 
Moments as the Normal Distribution 

e s s e n t i a l l y the same resul ts are obtained from the normal d is tr ibut ion 

and from the dis tr ibut ion corresponding to X^ = - . 2 2 4 7 4 5 , then the 

f i r s t four moments would appear to capture the properties of the under­

lying d is tr ibut ion important in the current study. 



68 

Table 5 . Comparison of Quantiles for the Standardized Normal 
and the Two Corresponding Absolute Lambda D i s t r i ­
butions 

P N(0 ,1) X 3 = 2 .2247 A 3 = - . 2 2 4 7 

.9999 3 .75 5 .03 

.9995 3.29 3 .50 

.999 3.09 3 .00 

.995 2 .58 2 .33 2 .09 

.99 2 .33 2 .26 1.79 

.975 1.96 2 .09 1.45 

.95 1.64 1 .83 1.24 

.9 1.28 1 .38 1.06 

.8 .84 .91 

. 7 .52 . 83 

.6 .26 .78 

.55 .13 .76 

.5 0 0 [ - . 7 4 1 9 , 
.7419] 
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CHAPTER V 

THE RANDOMIZATION TEST 

The component randomization t e s t for the paired sample design is 

the subject of th is chapter. Section 5 .1 considers the computational 

problem of tes t ing the hypothesis given a sample of s i ze n, while Sec­

t ion 5 .2 considers the problem of determining the power of the t e s t under 

various conditions using Monte Carlo techniques. The computer program 

which performs the Monte Carlo analysis based on the resul ts of th i s 

section and the techniques of Chapters I I I and IV i s used to compare 

the power of the randomization t e s t with the power of the corresponding 

parametric t e s t in Chapter V I I . 

5 .1 Testing the Paired Hypothesis 

Despite the good mathematical properties of the component randomi­

zation t e s t , other d i s tr ibut ion- free t e s t s are more often used due to 

the ir computational s impl i c i ty , since the computation of the 2 n values 

L n .. + d. i s formidable for even small samples. However, the values i = l - i r 

may be computed in a reasonable amount of time for samples of moderate 

s i ze (about n <̂  20) with an e f f i c i en t procedure. Such a procedure i s 

discussed in this chapter. 

Unfortunately, programs to perform this analysis are rare. None 

of the cornmon s t a t i s t i c a l packages (SSP, SAS, Biomed, Univac STATPACK, 

or SPSS) have such a program. The only technique alluded to in the 

l i t erature for generating the 2 n combinations of signs i s reasonable 
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for only very small values of n, since i t i s quite slow and requires 

n 2 n 1 tabled binary values. Therefore i t appears than an e f f i c i en t 

algorithm, in terms of both speed and memory, would be valuable. More 

importantly for the purposes at hand, the log ic used in such an algorithm 

could serve as the nucleus of Monte Carlo analyses involving the paired 

randomization t e s t . 

Section 5 . 1 . 1 discusses the log ic of the component randomization 

t e s t in flow chart form. Section 5 . 1 . 2 discusses desirable and feas ib le 

values of sample s i ze n for consideration. The bas ic proposed algorithm 

i s developed in Section 5 . 1 . 3 and modifications are added in Section 

5 . 1 . 4 

5 . 1 . 1 The Component Randomization Test 

This section discusses the log ic of the component randomization 

t e s t . Figure 9 i s a flow chart of the l o g i c , which at this level i s 

straightforward. The n differences are read, the t e s t s t a t i s t i c 

. + d. i s calculated, the number of the 2 n values of Z n , + d. less i = l - I ' i = l - l 

than or equal to the t e s t s t a t i s t i c i s counted, and the quanti le of the 

t e s t s t a t i s t i c in the randomization sample i s p , the count divided by 

2 n . I f a i s the preselected value of the Type I error , then the nul l 

hypothesis i s rejected or not depending upon the value of a and the 

form of the a l ternat ive hypothesis H^. In part icu lar i f 

H^: u < 0 then re jec t i f p < a, 

i f 

H . : u > 0 then re jec t H n i f p > 1 - a , 
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Read n Differences d. - x. - y. 

n 
Calculate D, = E. , d. 

1 i = l I 

I 
Determine k, the number of the 

E? . + d. values less than or 
i = l - l 

equal to D, 

t 

p = k / 2 n . Reject H( 

i f p > 1-a 

Figure 9 . Logic Flow to Apply the Component Randomization Test 
for the Alternat ive Hypothesis H ^ u > 0 

and i f 

Hji u 4 0 then re jec t HQ i f p < a /2 or i f p > 1 - a / 2 . 

5 . 1 . 2 Desirable and Feasible Sample Sizes 

The only d i f f i c u l t y in tes t ing the hypothesis of no treatment 

difference involves the third box in Figure 9: The 2 n values of 

E*?_^ + d^ must be calculated. The manner in which this i s performed 

determines the f e a s i b i l i t y of applying the component randomization 

t e s t , since this operation i s the only one requiring nontr iv ia l computer 

e f f o r t . The e f for t required doubles each time the sample s i ze increases 

by one, so i f a sample of s i ze n requires one cpu second, a sample of 

s i ze n+6 requires one minute, and a sample of s i z e n+12 requires 
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about one hour. However, for large n, the central l imit theorem appl ies , 

allowing the normal theory paired t t e s t to be used. Thus a program 

capable of performing the randomization t e s t for "small n" i s s u f f i c i e n t . 

The su f f i c i ent value of n i s d i f f i c u l t to determine. Hines and 

Montgomery [1972] s ta te that n > 4 i s probably su f f i c i ent for b e l l -

shaped d i s t r ibut ions , n _> 12 i s probably suf f i c i ent for uniformly 

dis tr ibuted observations, and n _> 100 may be necessary for U-shaped 

d i s tr ibut ions . However, these guidelines can be misleading in certain 

instances. For example, very heavy t a i l e d bel l -shaped d i s tr ibut ions , 

such as the Cauchy, w i l l not converge for any value of n. Thus the 

def ini t ion of "small n" must be determined with care. With respect to 

the current i n t e r e s t , a program to perform the randomization tes t must 

be able to handle as large an n as poss ib l e . 

The most straightforward technique of generating the 2 n values 

of + d\ , next to e x p l i c i t l y coding 2 n statements, i s to create an 

n by 2 n matrix A containing elements a ^ = +1 or a ^ = - 1 , with each 

column of A corresponding to one + d^ value. Figure 10 i l l u s t r a t e s 

the matrix A for n = 4. 

A = 

- 1 +1 - 1 +1 - 1 +1 - 1 +1 -1 +1 -1 +1 - 1 +1 -1 +1 

-1 -1 +1 +1 -1 -1 +1 +1 - 1 -1 +1 +1 -1 -1 +1 +1 

-1 - 1 -1 - 1 +1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 

-1 -1 -1 - 1 -1 - 1 -1 - 1 +1 +1 +1 +1 +1 +1 +1 +1 

Figure 10. Matrix for Calculating Z^_^ + d^ for n = 
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Simpli f icat ion resul ts by noting that the j th and n - j + l t h columns 

n 1 

of A are exactly the reverse of each other. Therefore only n2 values 

are needed. Such a modification allows the sample s i ze to be one larger 

for the same amount of e f f o r t . 

Using the elements of A, the j t h value of + d^ may be calcu­

lated d irec t ly as 
n n 

[ I + d . ] . = I a . .d . 
i = l J i = l J 

In actual implementation, the n mult ipl icat ions can be eliminated by 

keying on the value of a ^ to branch ei ther to a subtraction statement 

or to an addition statement. However, while conceptually simple, the 

matrix A approach i s not feas ib le for sample s izes much larger than 

f i v e , when the creation of the A matrix becomes a problem. Here the 

brute force creation by inputting the n 2 n values i s time consuming and 

d i f f i c u l t to ver i fy . 

A gain in feas ib le sample s i ze can be made by using some form of 

binary counting, such as the algorithm developed in the next sec t ion , 

to automatically generate the elements of the A matrix as needed. Core 

requirements and inputting e f for t then cease to be problems. Time of 

generation of the a ^ values then becomes the important cr i t er ion . 

5 . 1 . 3 An Algorithm for Testing the Paired Hypothesis 

This section develops an algorithm to perform the paired sample 

component randomization t e s t of location s h i f t . Since the computational 

f e a s i b i l i t y of the t e s t revolves around the generation of the conditional 

reference d is tr ibut ion [the 2 n equally l i k e l y values of the t e s t 
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s t a t i s t i c ) , the development focuses on an e f f i c i en t technique for 

generating the 2 n combinations of s igns . 

The algorithm, using modular arithmetic , i s based on treat ing 

each -1 of the A matrix as a zero and each +1 as a one. The j t h 

column may then be viewed as the binary representation of j - 1 . For 

example, column j = 4 i s 

(+1 +1 -1 - 1 ) T 

which becomes binary three. Now the binary element in the i th row of 

the j th column is -1 i f 2 1 * > Mod ( j - 1 , 2 ^ ) and i s +1 otherwise. This 

re lat ionship may be seen to be va l id by considering spec i f i c values of 

i . 

For i = 1, the relat ionship i s 

-1 i f 1 > M o d ( j - l , 2 ) 

and 

+1 otherwise. 

The sign changes for each increment of column j , as desired. For i = 2 , 

the relat ionship i s -1 i f 2 M o d ( j - l , 4 ) and +1 otherwise, thereby chang­

ing the sign every second increment of j . The systematic nature of the 

sign change as a function of i and of j i s s imi lar for higher values of 

i and j . 

An algorithm for generating the j th value of + d^ i s shown 

in Figure 11. For each i = l , 2 , . . . , n the re lat ionship i s checked and 

the log ic branches to the appropriate subtraction or addition statement. 



Sum = 0 

i = 0 

— r 

i+1 

Yes i \ No 
,2 1 ' i >ModCj- l ,2 1 3 

Sura Sura - di Sum-*— Si im + d^ 

1 < 
Yes 

No 

r 

D. = Sum 
1 

Figure 11. Logic to Calculate the j t h of the 2 n E ? = 1 + d. 
Values Using Modular Arithmetic ~ 1 
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5 . 1 . 4 Modifications to the Algorithm 

Using the above technique the a ^ values are generated impl i c i t l y 

for any value of n. For n < 10 this approach works we l l . However, the 

computational e f for t of calculat ing the 2n exponentials and the n modu­

lar values for each of the 2 n component values becomes noticeably time 

consuming for larger samples. 

This bas ic technique can be made s ign i f i cant ly fas ter in several 

ways: 

1. The powers of two are calculated using 2 1 = 2 1 " 1 + 2 1 " 1 

rather than using exponentials. A l t ernat ive ly , the powers of two 

are predetermined and placed in a vector ITWO(I) = 2**(1-1) for 

I = 1 , 2 , . . . , n + l . 

2 . The modular arithmetic i s unnecessary, s ince 

. fMod(j - l ,2 1 ) i f 2 1 ' 1 > ModU-1,2 1 ) 
ModU-1 ,2 1 " 1 ) = < 

[ M o d ( j - l , 2 1 ) - 2 1 otherwise. 

This i s true since i f 2 1 goes into j - 1 exact ly m ( integer) t imes, then 

2 1 1 goes into j - 1 e i ther 2m or 2m+l times. The remainder, the value 

of the mod operation, remains the same i f the quotient i s 2m and de­

creases by 2 1 1 i f the quotient i s 2m+l. For example, 

Mod(12 ,2 5 ) = 12 

Mod(12 ,2 4 ) = 12 

Mod(12 ,2 3 ) = 4 

Mod(12 ,2 2 ) = 0 

Mod(12 ,2 1 ) = 0 
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This re lat ionship i s va l id as i decreases, but not as i increases , so 

the log ic of the algorithm i s reversed to consider row i = n f i r s t . The 

f i r s t modular value needed i s then 

M o d ( j - l , 2 n ) = j - 1 

which i s always true since j = l , 2 , . . . , 2 n . Thus no e x p l i c i t modular 

arithmetic i s needed. 

3 . As can be seen by examining Figure 10, the pattern of signs 

in the A matrix repeats i t s e l f 2 times i f only rows l , 2 , . . . , n - k are 

considered. The e f f o r t of generating the same pattern 2 times can be 

reduced to one generation i f the pattern i s matched with a l l combi­

nations of signs from the l a s t k rows when i t i s f i r s t generated. For 

k = 1, th i s corresponds to noting the right ha l f of A i s the same as 

the l e f t ha l f , not considering the las t row, the resu l t used previously 

to el iminate need for ha l f of the A matrix. For k = n, this modifi­

cation corresponds to e x p l i c i t l y coding 2 n statements, one for each 

value of T 1 } , + d . . 
i = l - I 

Using k = 2 or k = 3 leads to s ign i f i cant savings without much 

extra coding e f f o r t . Consider k = 2 . Four l ines of code provide the 

2 n 2 
2 values corresponding to p^ = + Y * n par t i cu lar , using 

FORTRAN-like equations, 

p . = p . + d , + d r j r j n-1 n 
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and 

p. = p . - d\ n - d r j r j n-1 n 

n-k 

This procedure involves the calculat ion of 2 columns, each using only 

rows i = 1 , 2 , . . . , n - k . 

The value of k determines the tradeoff between coding s impl ic i ty 

and execution time as may be seen by examining Figure 12. Figure 12 

i s the FORTRAN code of the interact ive program to perform the t e s t of 

hypothesis given n dif ferences . The logic follows that of Figure 9 

exact ly , implementing the techniques discussed here. Eight e x p l i c i t 

l ines of code, corresponding to k = 3 are used. Definit ion of variables 

include IEVEN = 2 1 , IEVEN2 = 2 1 " 1 , and ITERM = M o d C j - 1 , 2 1 ) . 

Other techniques could doubtless be applied. An important method, 

for tes t ing the hypothesis , i s to apply heur i s t i c rules to find sets of 

+ d^ which are less than, or greater than the tes t s t a t i s t i c . For 
example, i f E?~? + d. + E? . , | d . I < E? . Id.l, then the counter may be r i = l - I i = n - j + l 1 I 1 i = l l ir 7 

incremented by 7?, corresponding to the 1? values of E ? _ n + 1 + d^. 

However, for a Monte Carlo study of the randomization sample, a l l 2 n 

values are needed e x p l i c i t l y , so techniques of grouping are not pursued 

further. 

Figure 13 may shed some l ight on the quest for speed in a pro­

gram performing 2 n operations. Using semi-logarithmic paper, the cpu 

seconds required to t e s t an hypothesis vs . the sample s i z e n i s p lo t t ed . 

The times are for Univac 1108. Three plots are shown corresponding to 

1. Expl ic i t calculat ion of the modular values 

2 . Impl ic i t calculation of the modular values and with k = 1 
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c-. -

Figure 12. Program to Test the One-Sided Paired Sample Location 
Hypothesis Using Component Randomization 

C TC POiraRH THE C0MP0NENT RAND0M1 ZATX 0N TSST 0F KYP0TMESIS 
C 0N N GIVEN DIFFERENCES. 

DIMENSION 0(100)* ITV0CIC0> 
DATA DC2)/O./.DC3)/O./.ITV0C3)/O/ 

C 
C*«***ENTER DATA. INITIALIZE* AND CALCULATE TEST STATISTIC 
C 

WRITE (6,1) 
1 F0RMAT <* ENTER SAMPLE SUE N AND N DIFFERENCES.*) 

READ <5*2) N. CDCl),I»l.N) 
2 F0RHAT <) 

X0UNT • 0 
D22 - DCS) • DC2) 
032 • DCS) * DC3) 
023 • 022 • D32 
DSUM - -DO) - 0C2) -. 0C3) 
TU0N • 2**N 
STAT - 0 
00 100 IM.N 
ITU0CI) • 2»*<N-I) 

100 STAT - STAT • DC I) 
M - ITV0C3) 
IT CN .GT. 3) G0 T0 200 
«J - TV0N 
SUM - DSUM 
G0 T0 (10* 20. 30). N 

.200 J * 0 
C 
C»****DETERMINE THE J TH C0MSINATI0N 0F SIGNS F0R C0MP0NENTS 1-4... ./K 
C 

1000 J • J • 1 
SUM - DSUM 
IEVEN2 - M 
ITERM - J 
D0 400 I-4.N 
1 even - I even2 
ieve:;2 - itvocd 
if c i even • l t . i term) itep.m - i term - i even 
if citerm .gt. ieven2) g0 t0 300 
SUM « SUM r DC I) 
G0 T0 400 

300 SUM « SUM • DC I) 
400 C0NTINUE 

C 
C*****F0R THIS C0MBINATI0N 0F SIGNS. CONSIDER ALL 8 POSSIBILITIES C 

30 X • SUM • 032 
IF CX .LE. STAT) X0UNT - K0UNT + 1 
IF C-X .LE. STAT) K0UNT • KGUNT • 1 
X - SUM • D23 
IF CX .LE. STAT) K0UNT « K0UNT • 1 
IF C-X .LE. STAT) K0UNT » K0UNT • I 

20 X - SUM * D22 
IF CX .LE. STAT) K0UNT • K0UNT • 1 
IF C-X .LE. STAT) KBUNT « K0UNT • 1 

10 IF CSUM .LE. STAT) K0UNT «= K0UNT • i 
IF (-SUM .LE. STAT) K0UNT » K0UNT • 1 
IF CJ .LT. M) G0 T0 1000 

C 
C*****PRINT RESULTS 
C 

RAT10 - K0UNT / TW0N 
WRITE (6.3) K0UNT. TV0N. RATI0 

3 F0RMAT C K0UNT «•. 115. / • 2**N • ' . F17.0/' RAT10 F10.7) STOP 
END 



Sample Size (n) 

Figure 13. CPU Seconds to Perform the Component Randomization Test 
as a Function of Sample Size 
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corresponding to looping 2 t imes, and 

3. Impl ic i t calculation of the modular values and with k = 2 

n - 2 

corresponding to looping 2 times. 

From Figure 13 i t i s seen that n = 10 i s a f a i r l y t r i v i a l problem, 

requiring only .1 second even when e x p l i c i t l y calculat ing a l l modular 

values. Recall that n = 10 i s quite a formidable problem using an ex­

p l i c i t A matrix due to storage and inputting requirements. For n ^ 15 

the comparison of times between the three variations of the algorithm 

is c lear . For any n the ra t io of the required time remains constant. 

Using the e x p l i c i t calculat ion of a l l modular values as a standard, the 

subst i tut ion of impl ic i t calculat ions with k s t i l l equal to one requires 

only one-third the time. Increasing k to three requires only 9% of the 

time. Larger values of k can obviously reduce the time s t i l l further, 

but the program quickly becomes long due to the necess i ty of e x p l i c i t l y 

considering 2 k values. 

5 .2 Determination of the Power of the 
Component Randomization Test 

I t i s well known that the asymptotic r e l a t i v e e f f ic iency of the 

component randomization t e s t i s one for the paired sample case. That 

i s , for large n, the component randomization t e s t re jec t s the nul l 

hypothesis with the same probabi l i ty as the corresponding parametric 

t e s t . 

For f i n i t e sample s i z e s , however, a price i s paid in terms of 

power for using the d i s tr ibut ion- free randomization t e s t . Kempthorne 

and Doerfloer [1969] show that the loss i s less than in using the rank 

permutation or the sign permutation t e s t . However, the exact power 
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loss for the randomization t e s t i s not known. The remainder of this 

chapter, and the next two chapters, considers the problem of determin­

ing the power loss for various sample s i z e s , underlying d i s t r ibut ions , 

and a l ternat ive hypotheses. In this section the power of the randomi­

zation t e s t i s discussed, Chapter VI discusses the power of the corres­

ponding parametric t e s t , and Chapter VII brings together the techniques 

of Chapters V and VI to compare the power of the two t e s t s . 

In parametric t e s t s the power may be determined by considering 

the d i s tr ibut ion of the t e s t s t a t i s t i c under the a l ternat ive hypothesis 

and evaluating the probabi l i ty of the t e s t . s ta t i s t i c being in the c r i t i ­

cal region under H ^ . But since the c r i t i c a l region for the component 

randomization t e s t i s not defined in terms of the d is tr ibut ion of the 

tes t s t a t i s t i c , the power must be evaluated d i f f erent ly . Section 5 . 2 . 1 

is a general discussion of the power of the randomization t e s t . Section 

5 . 2 . 2 describes the Monte Carlo approach used to study the power in 

Chapter V I I . 

5 . 2 . 1 The Power of the Component Randomization Test 

The power of a t e s t i s the probabi l i ty of re jec t ing the nul l 

hypothesis when the a l ternat ive hypothesis i s true, or equivalent ly , 

one minus the Type II error (3, the probabi l i ty of not re jec t ing HQ 

when HQ i s f a l s e . In the case of the component randomization t e s t 

for Hy u > 0 

Power = 1 - 3 

n n 
= Prob { Z d. > [ ( l - a ) 2 n ] of the 2 n Z + d. values} 

i = l 1 i = l ' 1 
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However, the 2 n values of + cL are not independent (see Section 

6 . 3 . 3 ) , making d i f f i c u l t the calculat ion of the power in terms of this 

probabi l i ty . 

Some insight i s gained by considering the power for small sample 

s izes (n = 1 , 2 ) , but general resul ts do not eas i ly fol low. Consider 

n = 1 and H-: u > 0. Then Z n . d. = d. and the other of the 2 n = 2 
1 i = l l 1 

components i s -d^. The power i s 

Power = 1 - 3 

l l n 

= Prob {d1 > [ (1 -002 ] of the 2 I + d. values} 
i = l 

= Prob {d j > d^ or d^ > - d 1 or both} for any a _> . 5 } 

= Prob { d 1 > 0 } 

The power i s therefore simply the probabi l i ty that the observed value d^ 

i s p o s i t i v e , a direct function of the underlying d i s tr ibut ion . 

Consider n = 2 and the one sided a l ternat ive hypothesis. The 

power i s 

Power = 1 - 3 

2 2 2 

= Prob {d + d 9 > [ ( l - a ) 2 ] of the 2 Z + d. values} 

1 1 i = l " x 

= Prob { d 1 + d 2 < - d 1 + d 2 or d 1 + d 2 < d 1 - d 2 or 

dj + d 2 < - d^ - d 2 or combinations} i f a £ .25 

Since the sums are dependent upon each other, th is probabi l i ty i s 

d i f f i c u l t to evaluate, even i f the dis tr ibut ion of the differences 
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i s known. For larger values of n, the direct determination of the 

power i s not feas ib le because the number of dependent events that might 

occur increases exponentially. 

5 . 2 . 2 The Monte Carlo Approach 

Since closed form resul ts are not a t ta inable , the Monte Carlo 

approach seems appropriate to determine the power of the component 

randomization t e s t . A discussion of the methodology i s given in this 

sect ion . The general log ic i s discussed in Section 5 . 2 . 2 . 1 , the v a r i ­

ance of the power estimate i s given in Section 5 . 2 . 2 . 2 and a method of 

determining the number of samples N necessary for a given variance of 

the estimate i s given in Section 5 . 2 . 2 . 3 . 

5 . 2 . 2 . 1 Program Logic. Given a sample s i ze n, the underlying 

d i s t r ibut ion , and the value of E{d} = E{d^} i = l , 2 , . . . , n , the Monte 

Carlo method can be used to determine the power of the component 

randomization t e s t . Figure 14 i s a flow chart of the necessary log ic 

for Hy y > 0. 

The logic consists of two loops. The f i r s t loop, repeated N 

t imes, f i l l s a histogram with the pos i t ion j , j = l , 2 , . . . , 2 n , of 

d^ by incrementing a counter c. by one. The second loop then 

analyzes the histogram, for each given value of a, to calculate the 

estimate of the power, 1-3 , and the variance of th is est imate. The 

formulae used are 

/ \ [ U - a ) 2 n ] 
1 - 3 = 1 - I c . /N 

3 = 1 > 

and 
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Read sample size n, distribution of the 
observations, expected difference, correlation^ 
and the number of samples. 

- 0 j - 1 ,2 , . ..,2* 

k - 0 

k*-k*l 

Generate two samples, and Yi i = i , 2 , . . . , n , 
having the specified expected difference and 
correlation from the underlying distribution. 

V*" x i - Y i 1 • l ' 2 n 

Determine j , the number of + d̂  values 

less than or equal to Z" . d. 
n i=l I 

c ^ c . + 1 

Yes ^ / k < N S 

Read a 

A [Cl-a)2 n ] 
1-3 * 1 - Z c./N 

j - 1 3 

V(1^3) = 3(1-6) /N 

Write answer 

Yes ^ <<''Anothersxs^ 

No 

Figure 14. Monte Carlo Determination of Power for Component 
Randomization Test 
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V(l - 3) = V{(3} = 3 ( l - 3 ) / N 

The formula for the power estimate i s simply the number of times the 

t e s t re jec t s HQ divided by the number of t e s t s performed, N. The 

formula for the variance of the estimate i s derived in Section 5 . 2 . 2 . 2 . 

The log ic assumes Hy u > 0 , but i f Hy u < 0 i s the desired 

a l ternat ive hypothesis , the estimate of the power i s simply one minus 

the estimate of the power provided by the program when the spec i f ied 

value of a i s one minus the type I error. The variance of the estimate 

i s not changed. For e i ther a l ternat ive hypothesis , the process i s re­

peated unt i l the variance of the estimate i s s u f f i c i e n t l y small . A 

program to implement this log ic i s given in Appendix B, including a 

description of the required input. 

5 . 2 . 2 . 2 Variance of the Estimate of the Power. I t i s important 

to have an estimate of the variance of the estimate of the power to 

determine the accuracy of the r e s u l t s . While repl icat ing the analysis 

several times and averaging the power estimate of each repl icat ion may 

be used to estimate the variance and to calculate confidence intervals 

based on the central l imit theorem, a simpler approach i s to determine 

the variance ana ly t i ca l l y . The derivation of the variance i s the 

subject of this sect ion. 

As discussed e a r l i e r , the obvious estimate of the power i s 

y\ M 

i - e = i - z c . /N 
j - i J 

where M = [ ( l - a ) 2 n ] . The variance of this estimate i s ( l -3 )3 /N . This 

may be seen d irec t ly as fol lows: 
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VCHS} = V{g> 

M 
= V{ E c . /N) 

N 

M M M 
Z V ( c ) + E E Cov{c. , c . } 

j = l i = i j = i i 3 

M M M 
2 N p . ( l - p . ) + Z Z C-Np.p.) 

j = l 3 3 i = l j = l 1 J _ 

where p.. i s the probabi l i ty of Z?_^ d^ being less than or equal to j of 

the 2 n values of E^_ 1 + d^, since the c_.'s are multinomial random var i ­

ables . Continuing 

~ M M 2 M M 
( Z p . - Z p . ) - Z Z p .p . 

_ j = l 3 j = l 3 i = l j = l 3 

M M M 
Z p. - Z Z p . p . 

j - i PJ i - i j - i P l 7 

M M 
(1 - Z p , ) Z p 

j = l 3 j = l l l 

= (1-3)B/N 

and the resul t i s shown. An estimate of the variance i s then (1-3)3/N, 

Note that under H Q , V { l - 3 ) = a ( l - a ) / N , and therefore the variance i s 

known exact ly . 
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5 . 2 . 2 . 3 The Required Number of Samples. In performing Monte 

Carlo studies i t i s convenient to be able to est imate, or place a 

bound, on the length of run necessary to obtain resu l t s of a spec i f ied 

accuracy. An upper bound for N, the number of samples, i s derived in 

th i s sect ion. 

In general , 3 decreases as moves away from Hq. But i f 3 

decreases, V { 1 - ^ } = 3 ( l - 3 ) / N decreases, i f a < . 5 . Therefore the maxi­

mum v a r i a b i l i t y occurs under Hq when V{1-^} = a ( l - a ) / N as shown in the 

previous sect ion. The variance for a l l H ^ may then be bounded by 

se t t ing N such that 

a ( l - a ) / N < k 

or 

N > a ( l - a ) / k 

where k i s a spec i f ied required variance of the est imate. I f several a 

values are of i n t e r e s t , the largest value (a £ .5 ) may be used to deter­

mine N. The true probabi l i ty of type I error , rather than the nominal 

alpha value, should be used. Misleading resul t s may be obtained i f 

a 4 m/2 n for some m = 1 , 2 , . . . , 2 n - l , since the discrete reference 

d is tr ibut ion allows only these discrete a values. For example, a must 

be greater than 2 n since re jec t ing Hq only when Z^_^ d^ i s the largest 

of the 2 n components + cL i s the extreme p o s s i b i l i t y . 

As an example, i f a = .05 and a = .01 are to be considered, and 

V { ! H 3 } < .0001 = k i s desired, then 

N > . 0 5 ( . 9 5 ) / . 0 0 0 1 = . 0 4 7 5 / . 0 0 0 1 = 475 
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Variance reduction techniques may reduce the necessary value of N, 

although the above calculat ions s t i l l provide an upper bound. 
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CHAPTER VI 

THE DISTRIBUTION OF E ? = 1 d\ 

Having developed the methodology to determine the power of the 

component randomization t e s t in Chapter V, the power of the correspond­

ing parametric t e s t i s now considered. This t e s t i s performed by com­

paring the s t a t i s t i c E?_j d^ to i t s d i s tr ibut ion under the nul l hypothe­

s i s . While such a t e s t i s conceptually straightforward and has more 

power than the randomization t e s t , the sum of differences d i s tr ibut ion 

(sdd) i s not often known. An important special case where the sdd i s 

known, of course, i s normally distr ibuted observations resul t ing in the 

sdd being normal. But i f the underlying dis tr ibut ion i s not normal, 

the parametric t e s t incurs the combined problem of (1) uncertainty of 

the underlying d i s tr ibut ion , and (2) i f the underlying dis tr ibut ion i s 

known, having to determine the corresponding sdd. 

The analyt ica l determination of the sdd from the underlying 

d is tr ibut ion i s well known for only a few dis tr ibut ions other than the 

normal. I f the differences are Cauchy, the sdd i s Cauchy. I f the 

differences are uniform, the sdd i s known, but complicated. D i f f e r ­

ences with ident ica l gamma dis tr ibut ions resul t in a gamma sdd, but 

since the differences are assumed symmetric, the Cauchy and uniform 

are the only common applicable r e s u l t s . 

While there are doubtless other examples among less used d i s t r i ­

butions, i t i s obvious that even i f the underlying d is tr ibut ion i s 

known, application of the parametric t e s t may be d i f f i c u l t . This 
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d i f f i c u l t y i s often overcome by using the normal theory t e s t , which i s 

asymptotically va l id as n becomes large by the central l imit theorem, 

as discussed in Chapter V. 

A general methodology for determining the sdd given a sample of 

s i ze n and an underlying dis tr ibut ion would be valuable for (1) use of 

the parametric t e s t when the underlying d is tr ibut ion i s known, and (2) 

comparing the power of the randomization t e s t (as discussed in Chapter 

V) to the power of the parametric t e s t . 

The power of the parametric tes t may be determined ana ly t i ca l ly 

i f the sdd i s known, since 

n 
Pover = Prob { E d± _> c|ll : E(d i ) = u} 

i = l 

n 
- Prcb { E u. + r.y > c | H n : E(d. ) = 0} 

1 1 — o 1 

1-1 

n 

= Prub { E d. •> c - nu |H n } 
i - 1 1 

= 1 - F(c - ny) 

where F i s the cdf of the sdd and c i s the c r i t i c a l value. 

This chapter develops a methodology of determining the sdd for 

an arbitrary underlying dis tr ibut ion and sample s i z e . An approach, 

which i s implemented via a computer program, i s developed to determine 

any desired quantiles of the sdd, the form of the d is tr ibut ion needed 

for hypothesis t es t ing . Section 6 .1 discusses the moments of the sdd 

as functions of the moments of the d i f ferences , and the moments of the 

differences as functions of the underlying d i s tr ibut ion . Section 6 .2 



92 

discusses some well-known analyt ic , but approximate, methods of deter­

mining the sdd, including asymptotic expansions and Chebyshev type 

bounds on quant i les . The estimation of the sdd moments and quantiles 

using dependent, rather than independent, observations i s developed 

in Section 6 . 3 . The use of dependent observations as a variance reduc­

tion technique makes feas ib le the use of Monte Carlo techniques for 

determining the sdd. The Monte Carlo approach i s developed in Section 

6 . 4 . 

6 .1 Moments of the sdd 

In any analys i s , closed form resul ts are more desirable than 

Monte Carlo r e s u l t s , due to the general i ty of the analyt ical resul ts 

and the cost in time and money of the Monte Carlo approach. In the con­

text of determining the quantiles of the sdd, th is implies that a closed 

form expression of the cdf, the inverse cdf, and/or the density function 

i s desired. 

As described in Chapter IV, the moments, espec ia l ly the mean, 

variance, standardized third moment, and standardized fourth moment, 

are e f f ec t ive in describing a d i s tr ibut ion . Of course, the more moments 

known, theore t i ca l ly the more known about the shape and quantiles of the 

d i s tr ibut ion . The "problem of moments" i s the determination of the cdf, 

inverse cdf, and/or density function in terms of the moments. Since th i s 

problem has been studied extens ive ly , i t seems reasonable to study the 

moments of the sdd even though quantiles are the ultimate goal . 

The moments of the sdd are now discussed. Section 6 . 1 . 1 derives 

the standardized moments of the differences as functions of the under­

lying d i s tr ibut ion moments. The standardized moments of the sdd are 
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then given in terms of the moments of the differences in Section 

6 . 1 . 2 . 

6 . 1 . 1 Moments of the Differences 

In this section the higher order moments of the differences d^ 

are derived as functions of the moments of the observations X^ and Y^, 

where d^ = X^ - Y^. This re lat ionship i s important because: 

1. an experimenter sometimes has a be t ter idea of the 

d is tr ibut ion of the observations than of the d i f ferences , 

2 . the differencing operation resul t s in d^ being more 

normally distr ibuted than e i ther X. or Y . , and 
' i i 

3 . the resul ts are needed l a t e r in this chapter in the develop­

ment of the Monte Carlo approach of determining the sdd. 

Consider d = X - Y where the subscript i has been suppressed. 

Now under the nul l hypothesis and assumptions of the randomization t e s t , 

E{X} = E{Y} 

and e i ther higher order moments of X and Y are ident ica l or both X and 

2 
Y have a l l zero odd moments. Let o* ,a> , a . denote the variance 

x 3x 4x 
2 

and higher order standardized moments of X and of Y and l e t O ,A^,A^,... 
denote the same for the di f ferences . Then 

E{d} = E{X} - E{Y} = 0 

and 

a 2 = V{X-Y} = V{X} + V{Y} + 2 Cov{X,Y} = 20 2 

x 

The third and a l l higher odd moments are zero since d i s symmetric about 
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zero, as discussed in Section 5 . 1 . 1 . 1 . 

and 

I tQ4x + 3 ] 

cc, = E { d 6 / a 6 } 

= E { ( X - Y ] 6 / ( 2 a x

2 ) 3 } 

= E{(X 6 - 6X5Y + 15X 4Y 2 - 20X 3 Y 3 + 15X 2Y 4 - 6XY5 + Y 6 ) / 8 0 6 } 

' J [ a 6 x " 0 + 1 5 a 4 x ( 1 > - 2 0 a 3 x a 3 x + 1 5 a 4 x ( 1 ) " 0 + ° 6 x ] 

- i [ a 6 x * 1 5 a 4 x - 1 0 a 3 x ] 

a 0 = E { ( X - Y ) 8 / a 8 } 

1 t a 8x + 2 8 0 t 6 x " S 6 a 3 x a 5 x + 3 S 0 l 4 x ] 

An important point i s that the differencing operation tends to 

normalize the di f ferences; that i s , the differences are more nearly 

normal than X and Y. For any normal d is tr ibut ion a 4 = 3 , = 15 , 

I f X and Y are ident i ca l ly d i s tr ibuted , the higher order even 

moments of d are 

a 4 = E { d 4 / a 4 > (4) 

= E { ( X - Y ) 4 / ( 2 a x

2 ) 2 } 

= E { ( X 4 - 4X 3Y + 6 X 2 Y 2 - 4XY 3 + Y 4 ) / ^ 4 } 

= i [ a 4 x - 0 + 6(1) (1) - 0 + a 4 x ] 
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a Q = 105 and a l l odd standardized moments are zero due to symmetry. 
o 

The difference being symmetric, even i f X and Y are skewed, certainly 

i s a factor in making the differences more nearly normal. 

But not ice also the even moments. Clearly from equation 4 

neither 3 < a. < a. or a. < a. < 3. S imi lar ly , i f a = 3 and a_ = 0 — 4 — 4x 4x — 4 — 3 * 4 3 

as for the normal, then e i ther 15 _< <̂  or _< £ 15. Of 

course, a. = a. for i = 3 , 4 , . . . i f the a. values are those of the * 1 ix ' ' ix 

normal d i s tr ibut ion . 

6 . 1 . 2 Moments of the sdd 

The moments of the sdd as functions of the moments of the d i f f e r ­

ences are discussed in this sect ion. Knowledge of th i s functional r e ­

lat ionship i s important since i t appears to be the only closed form link 

between the underlying dis tr ibut ion and the ssd. These resu l t s are used 

for val idat ion of the Monte Carlo approach developed la t er in this chap­

t e r . 

Cumulants are an important tool when working with sums of random 

var iables . The standardized moments of any sum may be found ind irec t ly 

as a function of the underlying standardized moments by transforming 

the underlying moments to cumulants, using the re lat ionship 

n n 
K ( £ X . ) = Z K (X . ) for a l l r 

r . , y . , r i 
3=1 J 3=1 J 

where i s the rth cumulant, and transforming back to moments using 

the relat ionships 
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U 4 = K 4 + 3 K 2 

and 

° i = V i . ^ 7 . 2 £ o r 1 = 2 ' 3 ' * * * 

A complete discussion of cumulants, including higher order transfor­

mation re la t ionships , may be found in Kendall and Stuart [1969, Chapter 

3 ] . 

Simplication of analyses resul ts from being able to re la te the 

underlying standardized moments d irec t ly to the sdd moments. Letting 

CL be the i th standardized moment of the sdd, Burr [1974] shows 

and 

a 4 = ( a 3 - 3 ) / n + 3 

but the relat ionships for higher order moments do not seem to appear in 

the l i t e ra ture . Since these higher order moments are needed for v a l i ­

dation of the Monte Carlo approach, they are derived d irec t ly using 

straightforward, though tedious , algebra. The resul ts are 

3/2 
a 5 = ^ a 5 " 1 0 a 3 ) / n + lOa^/viT 
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_ CL, - 2 1 a 5 - 3 5 a 4 a 3 + 210a 3 2 1 a 5 + 3 5 a 4 a 3 - 415a 3 105a 3 

a 7 = ~S]2 + 1372 + ~JJ2 
n n n 

and 

2 2 3 
f a 0 - 28a. - 5 6 a , a c - 35a„ + 420a. + 560a, - 630) /n 

8 6 3 5 4 4 3 

+ ( 2 8 a 6 + 5 6 a 3 a 5 + 35a 2 - 630a 4 - 840a 2 + 1 1 5 5 ) / n 2 

(210a 4 + 280a 3 - 630) /n + 105 

These resul ts may be summarized by 

a = n - P / 2 

£=1 Ull A. 
I 

I 
I A.=p 

i=l 1 

A.>1 
l— 

n a 

i=l A 

p 

A, A, ^ A 1 A 2 . A 

n 

n„n„ . . . n ^"1"2 

where n, i s the number of times a. appears in a, aA . . . . 
K 1 A, An 

. . . a 
1 ' v2 Ai 

The general resul t eliminates the need for lengthy algebra which resul ts 

from the complexity of expanding d^) . 

6 .2 Quantiles of Distributions Having 
Known Moments 

This section considers the p o s s i b i l i t y of using the moments of 

the sdd, developed in Section 6 . 1 , to d i rec t ly determine the quanti les 

of the sdd. I t would be convenient i f a closed form function g could 

be found such that 

- 1 2 
F (P) = gCp^ . c , a 3 , a 4 , . . . ) 

where u,a , a 3 , a 4 , . . . are the mean, variance, and standardized moments 
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of the sdd, and F i s the cdf of the sdd. 

Unfortunately some common d i s t r ibut ions , such as the log normal, 

are not uniquely determined by their moments. Kendall and Stuart [1969] 

discuss this topic in some d e t a i l , including necessary conditions for 

uniqueness. Any distr ibut ion having f i n i t e range is uniquely charac­

ter ized by i t s moments. As a rule of thumb, sets of moments less than 

or equal to the moments of the normal d is tr ibut ion uniquely determine 

a d i s tr ibut ion . Due to the p o s s i b i l i t y of a given set of moments 

mapping onto several d i s tr ibut ions , the general closed form function g 

described above does not ex i s t . 

While a set of moments may not specify a unique d i s tr ibut ion , i t 

does provide quite a lot of information about shape, s c a l e , and locat ion. 

Therefore i t i s reasonable to approximate quanti les using knowledge of 

some or a l l of the moments. Commonly only the f i r s t m moments are used. 

Two types of methods are commonly used to approximate F ^(p) given some 

or a l l of the moments: (1) asymptotic approximation, and (2) Chebyshev-

type inequa l i t i e s . Asymptotic approximations are discussed in Section 

6 . 2 . 1 and inequal i t i es are discussed in Section 6 . 2 . 2 . 

6 . 2 . 1 Asymptotic Approximations to Distributions 

Let F N M be the cdf of d^. Then an asymptotic approxi­

mation of F fx") i s 
n^ J 

F (x) * £ A ( x ) / n l / 2 

n i=0 1 

where the A^(x) terms are functions of moments or cumulants, the spec i f i c 

form of which arises from the spec i f i c expansion used. The relat ionship 

can be inverted to find F * ( p ) , again depending upon the spec i f i c 
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technique. The errors s a t i s f y the condition 

r i / 2 O D / 2 F (X) - Z A (x ) /n 
n i=0 1 

1 C r ( x ) / n 

where the bound Ĉ CX) may or may not depend upon X. 

The use of asymptotic approximations to determine the sdd, or 

any d i s tr ibut ion , has two disadvantages: (1) poss ib le non-convergence 

and (2) no measure of error. Quoting from Wallace [1958] on convergence; 

For any fixed n, the i n f i n i t e ser ies may be convergent, but in 
s t a t i s t i c a l application usually i s not . . . . though the addition 
of the next term w i l l for s u f f i c i e n t l y large n improve the approxi­
mation, for any prescribed n i t may not do so . Typical ly the 
bounds C r ( x ) increase rapidly with r , and for small n only the 
f i r s t few terms are improvements. 

Wallace also s tates that "only the order of magnitude of the errors i s 

known and only rarely are e x p l i c i t bounds known, and these are far from 

sharp." 

To i l l u s t r a t e these problems consider the special case of Cornish-

Fisher expansions, where an i n f i n i t e series gives F ^(p) as a function 

of the pth quantile of the normal d i s tr ibut ion U . Cornish and Fisher 

[1937, 1960] give detai led formulae through the eighth cumulant. The 

f i r s t few terms are 

where i s the i th cumulant of the d i s tr ibut ion . Kendall and Stuart 

[1969] and Johnson and Kotz [1970a] discuss this expansion in more 

d e t a i l . 
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The problem of determining the .95 quantile of the average n 

random variables X ^ ^ , . . . ,X i s considered, where each X^ i s exponen­

t i a l l y dis tr ibuted with mean 1/X. Although the differences of the 

randomization t e s t are symmetric by assumption, the exponential d i s t r i ­

bution i s used here since the average ( ° r sum of the X^/n) has a known 

d i s tr ibut ion . Table 6 shows the .95 quantiles of the d is tr ibut ion of 

E1? , X . / n = X and the Cornish-Fisher expansion for various values of n. i = l i n r 

Table 6. The Cornish-Fisher Expansion Approximation of the 
.95 Quantile of a Sum of Exponentially Distributed 
Random Variables 

n 
Actual Cornish-Fisher 

n 
C X

2 ( 2 n ) / 2 n ) (29 terms—eight moments) 

1 3 .00 wild f luctuation 

2 2 .37 2 . 1 - 2 . 3 

3 2 .10 1.97 

4 1.94 1.84 

5 1.83 1.74 

7 1.69 1.63 

10 1.57 1.52 

15 1.46 1.43 

25 1.35 1.33 

50 1.24 1 .23 

The values in the "actual" column are the .95 quanti les of the 

2 

X d is tr ibut ion divided by 2nX where X = 1. That this i s correct i s 

seen as fo l lows: 
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n 
Z X. ~ T(n,A) 

i - 1 1 

= ^ X n ~ r(n,nA) 

= > 2nAX ~ r(n, .5) 
n 

= > X ~ X 2 (2n) /2nA 
n v ' 

The value in the "Cornish-Fisher" column for each n i s the sum of 

the f i r s t 29 terms of the Cornish-Fisher expansion, which involves the 

f i r s t eight cumulants (moments) of the exponential d i s tr ibut ion . Note 

that while the approximation i s progressively be t t er as n increases , for 

small n the resul ts are not accurate. In f a c t , for n = 1 each term 

added changes the resul t d r a s t i c a l l y . The problems aris ing here are 

general to asymptotic expansions, as noted by Wallace. In addit ion, 

there i s no theory avai lable to indicate the error of the approximation. 

6 . 2 . 2 Chebyshev-type Inequal i t ies 

Bounds may be placed on F~*(p) when the f i r s t m moments are 

known. A well-known example, corresponding to m = 2 , i s Chebyshev's 

2 
inequal i ty . I f u and a are f i n i t e and k i s a pos i t ive number, then 

Prob { | X - u | >_ k} < 1 / k 2 

whether X i s discrete or continuous. 

Royden [1953] discusses the general case of the f i r s t m moments 

given, c i t ing the resul ts of Markoff [1884] and S t i e l t j e s [ 1 8 8 4 ] . The 

technique given i s in terms of finding bounds on the cdf, but by t r i a l 

and error the technique could be inverted to place bounds on F*" 1(p). 
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The t r i a l and error procedure i s cumbersome, however, since the tech­

nique of bounding the cdf involves finding the zeroes of a 2n degree 

polynomial. 

I f the bounds obtained are inadequate for a given purpose, more 

moments may be used. However, the convergence of the bounds may be 

quite slow for the same reasons the asymptotic approximations sometimes 

converges slowly or not at a l l . Due to the disadvantages of the 

asymptotic approximations and the Chebyshev-type inequal i t i es discussed 

here, Monte Carlo methods appear appropriate for the problem of deter­

mining the dis tr ibut ion of the sum of the di f ferences . This approach 

i s considered in Section 6 . 3 . 

6 . 3 Estimation of the sdd Using 
Dependent Observations 

Monte Carlo techniques may be used to determine the sdd given any 

sample s i ze n and underlying d i s tr ibut ion . The most straightforward 

method i s to generate many samples of s i ze n from the underlying d i s t r i ­

bution, for each sample to calculate , t 0 u s e t f t e appropriate 

order s t a t i s t i c s to estimate desired quanti les of the sdd. By generating 

enough samples any degree of accuracy (within the l imits of the com­

puter) may be obtained and confidence intervals may be placed on the 

r e s u l t s , d i s t inc t advantages over the methods of Section 6 . 2 . 

The major disadvantage of this Monte Carlo approach i s the com­

puter e f for t involved. Many observations of cL are needed for 

accurate estimation of sdd quant i les , with each one requiring the 

generation of a sample of s i z e n. The computational e f for t may or may 

not be proh ib i t i ve , depending upon the complexity of generating each 
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of the n sample values , the sample s ize n, the required accuracy, and 

the quanti les of in teres t . 

This section invest igates the use of dependent, rather than 

independent, observations to estimate the sdd. The dependent obser-

h n 

vations are the 2 values of 2^_^ + d^ associated with each sample. 

The genesis of the dependent observations i s described in Section 

6 . 3 . 1 , the marginal d is tr ibut ion of each observation i s discussed in 

Section 6 . 3 . 2 , the form of dependence i s derived in Section 6 . 3 . 3 , 

the expected values of the sample moments are derived in Section 6 . 3 . 4 , 

the variance of the second sample moment i s derived in Section 6 . 3 . 5 , 

and the v a l i d i t y of estimating sdd quanti les from the dependent obser­

vations i s establ ished in Section 6 . 3 . 6 . 

6 . 3 . 1 The Randomization Sample 

Determining the sdd i s a special case of the problem of deter­

mining the d is tr ibut ion of a sum of random var iables . I t i s special 

in that for this sum of d i f ferences , i t i s known that 

1. E { d . } = 0 for i = 1 , 2 , . . . ,n 
l 

and 

2 . Each i i s a symmetric random var iable . 

From these assumptions of the randomization t e s t i t i s c lear that i f 
Z1? , d. i s observed, then each of the 2 n values of E n , + d. could i = l l i = l - l 

have occurred with equal probabi l i ty . These 2 n values of Z * ^ + ^± 

may be thought of as components of a rea l izat ion of a 2 n dimensional 

random vector. 

An approach to determine the sdd using these components, shown 

to be va l id in Section 6 . 3 . 2 , i s to use 2 n histograms of Z n , + d. 
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component values. Here each histogram contains one value of + cL 

from each sample of s i ze n. From each of the 2 n histograms estimates 

of the sdd moments and quantiles may be obtained using the sample 

moments and the resul ts of Chapter I I I , since the values within each 

histogram are independent. While the 2 n estimators are dependent, they 

may s t i l l be averaged to provide one estimate which i s biased as l i t t l e 

as any of the individual estimators but uses much more information. In 

par t i cu lar , the symmetry about zero i s explo i ted . 

While this approach i s v a l i d , the impract ica l i ty of using 2 n 

histograms makes i t unappealing. Of course, m <̂  2 n histograms could be 

used, but then avai lable information in the form of the other 2 n -m 

components i s l o s t , because the ir values are not used. 

Define the "randomization sample" as the m2 n dependent component 

values E^.-i + d^ aris ing from m samples of s i z e n. I t i s tempting to 

treat the randomization sample from m samples as independent obser­

vations of d^ by placing them into a s ing le histogram, thereby 

using only a reasonable amount of core and a l l avai lable information. 

Using the technique described in Section 5 . 1 . 2 the 2 n dependent values 

from one sample may be determined with much less computer e f f o r t than 

generating 2 n samples of s i ze n to obtain the 2 n independent observations. 

However, i t i s not true in general that a sample of independent 

observations has the same properties as a sample of dependent components 

of a multivariate random variable with dependencies among the components, 

even i f the marginal d is tr ibut ion of a l l components i s the same. For 

example, the properties of a sample of distances between random points 

within a c i r c l e d i f f er s depending on whether each observation i s from 
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two independent points or the ^ distances corresponding to m points . 

Thus i t i s not necessari ly c lear that treat ing the randomization sample 

as independent observations i s a va l id approach to determine the sdd. 

But certainly the d is tr ibut ion of the t e s t s t a t i s t i c E n , d . , J i = l 1 

the sdd, and the randomization sample are c lose ly re la ted , since the 

randomization tes t has the mathematical properties of the parametric 

t e s t as n becomes large . Therefore the next few sect ions examine the 

v a l i d i t y of using the randomization sample to estimate the moments and 

quanti les of the sdd. 

6 . 3 . 2 Marginal Distribution of the Components £ n _^ + cL 

That the components ^ - ^ - ^ + *L for k * l , 2 , . . . , 2 n a l l have the 

same marginal d is tr ibut ion i s important in showing the re lat ionship of 

the randomization sample and the sdd in Section 6 . 3 . 5 . The approach 

taken i s to show that the moments of each D. i s the same as the moments 
k 

of D. = . d . , the t e s t s t a t i s t i c . 
1 i= 1 I 

The def in i t ion of the nul l hypothesis and the assumptions of the 

randomization tes t lead t r i v i a l l y to a l l odd moments of each D^ being 

zero. Under H Q treatment e f fec t s are zero and therefore the i th pair of 

observations and both have the same mean. By assumption X^ and Y^ 

are e i ther ident i ca l l y distr ibuted or both symmetric. Therefore d^ i s 

symmetric about zero. Symmetry follows since d^ = X^ - Y^ could have 

been d. = Y. - X . . That the E { d . } = 0 i s seen from 
i i i I 

E { d . } = E{X. - Y . } = E{Y. - X . } = 0 
l i i i i 

i f the mean of Xj and Y^ e x i s t s . Since d^ i s symmetric, a l l odd moments 

of d. are zero. Therefore a l l odd moments of each D, = , + d. 
I k i = l - I 
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are zero. 

n- j n 
E d . - E d. 

i = l i = n - j + l 

Th e pth moment of the arbitrary component i s 

r n-j n 
E d . - E 

i=l 1 i = n - j + l j 
(5) 

wh i l e the pth moment of the observed t e s t s t a t i s t i c D. = E. . d. i s r 1 i = l I 

n 
E d. 

i = l 1 

I f these moments are shown to be equal, then there i s one common mar­

ginal d is tr ibut ion for a l l the D^. 

Now expression (5) may be expanded with each term being of the 

form 

A. A 9 AQ 

E(a
 xb . . . e (6) 

where i = 1 , 2 , . . . , or p , each l e t t e r represents + d^, and 

E A. = p and A. > 1 for i = 1 , 2 , . . . , A 
1=1 1 1 -

The expression (6) i s equal to 

Now consider the pth central moment, where p i s even, and an 

arbitrary component having j minus signs (and n- j plus s i g n s ) . For 

s impl ic i ty l e t the j minus signs be the las t of the n pos i t ions . The 

value may then be represented by 
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since each of the cL values are independent. 

I f any X^ i s odd, the associated expected value i s zero, due to 

the symmetry of the d^'s. But whenever a l l X^ values are even, the 

minus signs have no e f fec t on the expected value of the term. There­

fore the only nonzero terms in the expansion of expression (5) are the 

same whether -d . or +d. i s used. Since the moments of each of the 2 n 

1 l 

poss ib le component values are the same, the 2 n marginal d is tr ibut ions 

are the same. 

6 . 3 . 3 Dependence Among the Components D^ 

As noted e a r l i e r , the component values D^, k = l , 2 , . . . , 2 n , 

corresponding to each sample of s i ze n can be viewed as one rea l i za t ion 

of a 2 n dimensional mult ivariate random var iable . In the l a s t section 

the marginal d is tr ibut ions of the D^'s were shown to be i d e n t i c a l . The 

form of dependence among the components i s the other facet of the mul t i -

variable d is tr ibut ion necessary for th is study. This dependence i s 

developed in this sect ion. 

Three resul ts pertaining to the dependence among the D^'s are 

important for current purposes: 

1. 
k=l "k 

D, = 0 for any sample 

2 . Corr (D . ,D . ) = (n-2£) /n 

where I - 1 , 2 , . . . , or n i s number of conf l i c t ing signs 

3 . 

between D. and D. , and 3 k 
2 n 2 n 

I . , 1 , , Corr (D.,D ) = 0 for any sample. 
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The f i r s t resul t i s c lear ly true, s ince for each there is a 

corresponding component D.. = -D^ with n conf l ic t ing s igns . Thus any 

sum of these pairs i s zero, including the sum of a l l components from any 

sample. 

The second resu l t may be derived by considering any two arbitrary 

components, D. and D, , with signs conf l i c t ing in Z of the n pos i t ions . 3 K 

Let these posi t ions be the las t I for convenience. Then 

Cov (D . ,D . ) = E{D.D,} - E{D.}E.{D.} 
J K J K J K 

= E{D^D^} since the components have mean zero under 

Ho 

n-l 2 n 2 
= E { Z d . - E d . + crossproducts} 

i = l 1 i=n-£+l 1 

= (n - Z)C2
 - £ a 2 + 0 

= (n - 2J0a2 

2 
where o i s the variance of the common marginal d is tr ibut ion of the com­

ponents; that i s , 

a 2 •= V{Q.} = V{D k> 

Therefore the correlat ion between the two arbitrary components with 

conf l i c t ing signs i s 
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Note that and -D^ have perfect negative correlat ion of - 1 

since £ - n. I f n/2 signs c o n f l i c t , the correlat ion i s zero. In 

general each conf l ic t ing sign reduces the correlation by 2 /n . 

The third resul t involving the sum of a l l 2 2 n correlat ions 

associated with any sample of s i z e n, 

2 n 2 n 

Z Z Corr ( D . , D J = o 
j = l k=l j - k ' 

may be shown to be true by noting this sum i s equal to 

2 n r n 

L i 0 

n - 0 fn] n-2 (n 
n [ l j n + [2 

n-4 n-2n 
n (7) 

s ince the f i r s t summation only f ixes D.., thereby set t ing a reference for 

D^. The correlat ion i s dependent only upon the number of conf l ic t ing 

igns between D.. and D^, hence the factor 2 n replaces the f i r s t si s i ;um-

n values D. have a correlat ion with D. of 
k J 

mation. Now for each D . , , ~ 
J 10 

, that one value being = D. . Likewise the ( £ + 1 ) th term 

Hz21 

i 

times. 

n - — resul ts from dif fer ing from D.. by exactly £ signs j ^ j 

Proceeding d irec t ly now 

,n 

Z Z Corr (D . ,D , ) 
j = l k=l 3 K 

n 
2 n [ Z 

£ = 0 

2 n n ! n 

(n-2 A) 

[ Z ( n - 2 £ ) / £ ! ( n - £ ) I] 
£ = 0 

2 n n ! M2] , n-2£ 
n 

T ( N ~ 2 Z n-2(n-£) . , 
^ Q

 L £ ! ( n - £ ) ! ( n - £ ) ! £ ! J J 
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2 n n l ^ 0 , 
n L ^ Q £ ! ( n - £ ) ! J 

= 0 

whereby proving the third re su l t . 

A more general resu l t i s that the sum of any m correlat ions with 

a t o t a l of mn/2 conf l ic t ing signs i s zero since 

m m n-2£. 1 m 
E Corr ( D . , D J = E = - [ran - 2 E £ . ] 

i = l i = l i = l 

= ^ [mn - 2(mn/2)] = 0 

where i s the number of conf l i c t ing signs in the i th corre lat ion. 

6 .3 .4 Properties of the Randomization Sample Moments 

In this section i t i s shown that the randomization sample moments 

are unbiased estimators of the moments of the sdd. This resu l t i s used 

in the next section to show that sdd quantiles may be estimated from the 

randomization sample much as i f the n2 n component values are independent. 

F irs t consider the odd moments. Since the sdd i s symmetric about 

zero, a l l odd dis tr ibut ion moments are zero. The odd moments of the 

randomization sample are very good estimators of the sdd odd moments 

( in a t r i v i a l sense) , s ince the randomization sample i s symmetric for 

any m samples. Letting denote the kth component from the £th sample, 

the odd randomization moments may be seen to be zero since for each 

observed, = - D ^ i s also observed, causing symmetry about zero in 

the sample. Having a symmetric sample to estimate properties of a 
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symmetric dis tr ibut ion i s certainly appealing. 

m I 
Z Z 

£=1 k=l 

m 2 
Z Z D 

£=1 k=l IK 
'IK m2 n 

m2 
p = 2 , 4 , 6 , 

are unbiased estimators of the even moments of the sdd. Note that the 

denominator m2 n would be m 2 n - l i f m2 n independent observations were 

being used. The degree of freedom for estimating the mean i s not l o s t 

in the randomization sample since the sum of the differences i s known 

to be exactly zero for each of the m samples. 

The resul t is f i r s t proved for the variance for c l a r i t y and then 

2 

proved for a l l general even moments for general i ty . I f a i s the v a r i ­

ance of the sdd, then for each sample I = l , 2 , . . . , m 

O 2 - VIZ d . } - V { D j l l } = V { D , k } - E { D £

2 } 
1=1 

and therefore 

EID2} = E 

0 n m 2 
Z Z 

I=L k=l 

I=L k=l 
'9X 

'IK m2 n 

m2 n 

Z D 

= E 
1=1 k=l IK 

m2 n 
since Z D n i = 0 

i = l IK 

Now consider the even moments. The main resu l t is that the 

central even moments of the randomization sample 
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m 2 ~ 
E E E{D f) 

JUl k=l * K 

m2 n 

m 
E E a' 

£=1 k=l 

m2 n 
= a 

The resul t may be generalized to the higher even moments u^, 

p = 2 , 4 , 6 , . . . as fol lows: 

r 
0 n 

m 2 
f £ E 
k=l k=l ^ 

0 n m 2 
£ E D 

£=1 k=l £k 

£k 

m2 n J 
m2 

= E 

m 2 n 

E E D£kl L=l k=l K | 

m2 n 

,n m 2 1 

= E E ij / m 2 n from Section 6 . 3 . 2 
£=1 k=l p 

= u 
The dependent observations must be taken as a group, since 

,n 
otherwise Z^- i D ^ does not vanish, thereby changing the moments. Dwass 

[1957] suggested taking a random sample of the 2 n observations when 2 n 

was so large that calculat ion of a l l values required too much e f f o r t . 

However, i t i s easy to see that the expected value of the even moments 

i s affected by such a procedure, result ing in the reference d is tr ibut ion 
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being di f ferent than the dis tr ibut ion of E. . d. , the t e s t s t a t i s t i c . 6 i = l I 

Chung and Fraser [1958] suggested using subgroups of the 2 n components 

whose sum is zero thereby leaving the moments unchanged. 

6 . 3 . 5 Eff ic iency of the Randomization Sample Approach 

Having established the v a l i d i t y of estimating moments of the sdd 

using the randomization sample rather than independent observations in 

Section 6 . 3 . 4 , the value of randomization sample estimation i s examined 

here. In par t i cu lar , the value of calculat ing the 2 n - l additional com­

ponent values associated with each sample i s quantif ied in Section 6 . 3 . 5 . 1 
2 

by deriving the variance of the randomization sample estimator of a = 

V { Z ^ _ ^ d^} and comparing to the corresponding independent observation 

variance. Further the randomization sample estimators are shown to be 

consistent . The tradeoff between the reduction in variance and the 

e f f o r t of calculat ing the additional component values for each sample 

is examined in some deta i l in Section 6 . 3 . 5 . 2 , concluding that for 

samples of s i ze n _< 15 the randomization sample requires less compu­

tat ion for the same accuracy. 

6 . 3 . 5 . 1 Variance and Consistency of the Randomization Sample 
2 

Estimators. The variance of the unbiased estimator of a based on the 

randomization sample, denoted here by v̂ * i s 

V{p 2 > = [ u 4 - ( 3 - 2 n ) a 4 ] / m 

This variance may be derived as fol lows: 
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m2 2n 

2 n 2 n 2 n "~ 
E V { D 2 } + Z Z Cov{D?,D 2 } 

LK=1 j=l k=l 3 . 

m2 2n 

2 n 2 n 

(y - a ) + Z Z y -
n _ 

where £ i s the number of conf l ic t ing signs between D. and D , , by resul ts 
J k 

of Appendix E 

m2 

1 ronr 0 n._n w 4. 2 n 8 a 4 !! in [2 (y. - a ) + 2 (2 -1 ) (y. - a ) — Z 
2n n £=1 

( n - £ ) £ l 

using log i c s imi lar to that used to derive expression (7] 

4 

^ [CP4 - a 4 ) + ( 2 n - l ) ( y / 1 - a 4 ) - ( 2 n - 2 n ( n - l ) ) ] 
m2 n 

by resu l t s of Appendix E 

2 n 

- [CP, - c j 4 ) - 2 ( — ) a 4 ] m L 4 ' v n J 

£ [u 4 - C3-2/n)a 4] 

thereby proving the re su l t . As the number of samples, m, becomes large 

the variance goes to zero. Recall ing that the estimator i s unbiased 
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establ ishes consistency since then 

- i 

which i s the def ini t ion of a consistent sequence of est imators. 

Note that m - 1 sample y ie lds a va l id estimate of the variance of 

the components and the variance of the estimate i s defined for m = 1. 

This i s not true for independent observations. Wilkes [1962] shows the 

variance of the estimate of the variance based on independent obser-

2 
vat ions , denoted here by 6" , to be 

which i s undefined for m = 1. 

Let m1 be the number of randomization samples and l e t m be the 

number of samples using independent observations. The reduction in 

variance of the estimate due to calculat ing the additional 2 n - l com­

ponent values for each sample i s 

He2} - V(a2> = a 4 [ ( 3 - 2 n ) - j^]/m' 
which i s always nonnegative. The impact of this variance reduction i s 

that fewer samples are needed using the randomization sample than when 

using independent observations. The variances of the estimates are 

equal when 

^ 4 * m̂f °4]/m = [ y 4 " 0 2 n ) a 4 ] / m ' 

or when 

lim | F m

A ( p ) - F m

A ( p ) | < e 
m-*» 
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m[a. - ( 3 - 2 / n ) ] 
m' 

K - ^ 1 
L 4 m-1 J 

4 
where a. = uA/o i s the fourth standardized moment. 

4 4 

Since m must be large for an accurate estimate of the variance, 

m-3 , 
m-1 * 

and 

[ a 4 - ( 3 - 2 / n ) ] ^ m , 

For normally dis tr ibuted D^'s, = 3 and 

— ~ 1/n m 

This ra t io i s smaller for l ight t a i l e d dis tr ibut ions and larger for 

heavy t a i l e d d i s tr ibut ions , but never i s greater than one. 

6 . 3 . 5 . 2 Tradeoff Considerations. The tradeoff between the use 

of the randomization sample and independent observations i s now ex­

amined. Let be the e f for t (work) of generating each difference d^. 

Then the e f for t to generate one sample i s nW^. Let W2 be the e f f o r t 

of calculat ing each + d^ component and placing i t in a histogram. Then 

nW^ + 2 n W 2 i s the e f f o r t associated with each sample using dependent 

observations and nW^ + W2 i s the e f for t per sample using independent 

observations. 

Nov to obtain the same variance when the D^'s are normally 
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d is tr ibuted mf * m/n. The to ta l e f for t i s then - [nW^ + 2 n W 2 J for 

dependent components and m[nW^ + W^] for independent observations. The 

dependent component approach requires less e f for t i f 

£ [nWx + 2 n W 2 ] < m[nW1 + W ] 

or 

2 - n 1 
n ( n - l ) W2 

The ra t io W^/W^, the e f f o r t to generate one d^ value divided by 

the e f f o r t to deal with one + d^ component, i s much greater than one. 

i s much larger than W2 in general since the generation of random 

values requires the higher order operations of exponentiation and 

mult ip l icat ion while only log ic statements and addition are required 

for dealing with the components. Commonly the ra t io W^/W2 i s in the 

interval ( 2 0 0 , 2 0 0 0 ) . 

The values of n corresponding to ( 2 n - n ) / ( n ( n - l ) ) f a l l i n g in th is 

interval are approximately n = 16, 17, 18 , and 19. Thus for the smaller 

values of n considered in th is research the use of the randomization 

sample i s more e f f i c i e n t . The impact of th is increased e f f ic iency i s 

more apparent when considering spec i f i c values of n. For n = 3 and 

Wj/W 2 = 1000, the e f f o r t associated with the randomization sample i s 

only .001 that of independent observations as can be seen by taking 

the ra t io of the t o t a l e f f o r t formulae. For n = 7 the ra t io of e f f o r t 

is about . 0 0 3 . Thus brute force application of the Monte Carlo tech­

nique, by using independent observations, would require orders of 
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magnitude more computer time for the same accuracy. 

6 . 3 . 6 Estimation of sdd Quantiles Using the Randomization Sample 

As mentioned in Section 6 . 3 . 1 , i t i s not va l id in general to use 

dependent observations as i f they were independent, except for the mean. 

An argument i s now advanced that the randomization sample of dependent 

components may be used to estimate quanti les of the sdd as i f the com­

ponents were independent observations, based on the v a l i d i t y of randomi­

zation sample moment estimation establ ished in Section 6 . 3 . 4 and the 

consistency of the estimators establ ished in Section 6 . 3 . 5 . 

Consider the m2 n dependent components of the randomization sample 

aris ing from m samples of s i z e n. As m approaches i n f i n i t y the moments 

of the randomization sample converge to the moments of the sdd, since 

the randomization moments are unbiased and consistent estimators of 

the sdd moments. Then, for large m, the randomization sample has the 

same properties as the sample of independent observations. Therefore, 

for large m, the quanti les of the sdd may be estimated d irec t ly from the 

randomization sample. (The techniques of Chapter I I I may be used.) 

Another argument, poss ibly more r igorous, i s based on Cornish-

Fisher expansions, discussed previously in Section 6 . 2 . F ir s t note that 

since the randomization sample moments are consistent estimators of the 

sdd moments, simple transformations of these estimators are consistent 

estimators of the cumulants of the sdd, since cumulants and moments have 

a one-to-one re lat ionship . 

As seen in Section 6 . 2 , a quanti le F *(p) of an arbitrary d i s t r i ­

bution having known cumulants i = 1 , 2 , . . . , may be expressed in 

terms of the corresponding normal quanti le U by 



119 

F"A(P) = U p + d / 6 ) (U^ - 1 ) K 3 + (1 /24) (U 3 - 3 U p ) K 4 

+ ( 1 / 3 6 ) ( 2 U 3 - 5U p)K* + . . . 

Since the randomization sample may be used to estimate each cumulant 

_ i 

cons i s tent ly , a consistent estimator of the pth quantile F (p) i s ob­

tained by subst i tut ing cumulant estimates for each . 

Thus, for large m, quant i les , l ike moments, may be estimated 

using the randomization sample as i f the components were independent 

observations. 

6 . 4 Monte Carlo Determination of the sdd 

This section discusses some aspects of the determination of the 

d is tr ibut ion of the sum of d i f ferences , the sdd, using Monte Carlo 

techniques. Variance reduction techniques are the topic of Section 

6 . 4 . 1 and confidence intervals of moments and quantiles are discussed 

in Section 6 . 4 . 2 . The computer program which implements the logic d i s ­

cussed here i s described in more de ta i l in Appendix D. 

6 . 4 . 1 Variance Reduction Techniques 

When the Monte Carlo approach i s used to estimate a parameter, 

variance reduction techniques can often be used to reduce the variance 

of the estimate of the parameter. Since the variance can be reduced by 

simply lengthening the computer run, interes t centers around minimizing 

the variance for a given run length. 

The parameters being estimated in this study are the quanti les of 

the sdd. Three variance reduction techniques are applied to the e s t i ­

mation of the pth quanti le: (1) use of the randomization sample rather 
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than independent observations, (2) s t r a t i f i e d sampling, and (3) ant i ­

the t i c var iables . The use of the randomization sample and the corres­

ponding reduction of variance was discussed in Section 6 . 3 . In Section 

6 . 4 . 1 . 1 s t r a t i f i e d sampling i s discussed and ant i thet ic variables are 

discussed in Section 6 . 4 . 1 . 2 . 

6 . 4 . 1 . 1 S t r a t i f i e d Sampling. S t r a t i f i e d sampling, a variance 

reduction technique commonly used in survey sampling, may be used in 

Monte Carlo studies to increase the accuracy of the estimate of a 

parameter without increasing the computer e f f o r t . While some increase 

in coding e f for t i s necessary to implement s t r a t i f i e d sampling log ic in 

a computer program, the savings in computer execution time may be worth 

the e f f o r t . A discussion of s t r a t i f i e d sampling in the context of sur­

vey sampling may be found in Cochran [1966] . Klienjen [1974] and Moy 

[1966] discuss s t r a t i f i e d sampling and other variance reduction tech­

niques in the context of simulation and Monte Carlo s tudies . 

In this study the observations and are s t r a t i f i e d to ensure 

that each segment of the d is tr ibut ion i s represented in the correct 

proportion. Each random variable i s part i t ioned into K s t ra ta with 

probabi l i ty p^ = 1/K of any part icu lar observation f a l l i n g in the kth 

stratum. Every N observations exact ly n^ = N/K observations are se lected 

from stratum k, k = 1 , 2 , . . . , K . 

S t r a t i f i c a t i o n causes dependence among the observations, since 

i f X^ i s known to have come from stratum k, then X.. has a l e s ser proba­

b i l i t y of coming from stratum k than i f nothing is known about X^. Care 

must be taken to ensure that the n observations of X^ and of Y^ in any 

given sample are taken independently (although X. and Y. may be 
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corre la ted) . 

The log ic of the s t r a t i f i c a t i o n process in subroutine STRAT 

(Appendix D) ensures independence. One i n i t i a l i z a t i o n c a l l to the sub­

routine i s required at which time each p^ i s set to 1/K and the number 

of observations to be taken in the kth stratum n^ i s set to a pre­

determined value M = N/K and the t o t a l number of observations NT i s 

set to N. After i n i t i a l i z a t i o n , the subroutine i s ca l led once each 

time n independent observations are needed. For each of the n values , 

a U(0,1) value r i s generated, the stratum i s determined as the largest 

k such that r < Z. , p . . Then n, i s reduced by one to r e f l e c t that one — i = l r i k J 

less value i s to be generated from stratum k in the future. The value 

r in the (0,1) interval i s transformed to the same re la t ive pos i t ion in 

the kth stratum ( ( k - l ) / K , k / K ) by 

k-1 
r = [k - 1 + (r - Z p . ) / p k ] / K 

i = l 1 K 

The n independent values of r are la ter passed to the process generator, 

resul t ing in n independent values of or of having the desired 

d i s tr ibut ion . 

Af ter the n independent values of r are generated, the number of 

observations yet to be taken NT is decreased by n and the stratum 

probabi l i t i e s p^ are modified to re f l ec t the number of observations 

s t i l l to be taken from stratum k by 

P k = \ / N T k = 1 , 2 , . . . , K 

These new p^ values are then used in the next c a l l to the subroutine. 

I f NT < n the p^ values are r e i n i t i a l i z e d to 1/K and NT i s reset to N. 
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Subroutine STRAT in Appendix D performs this log ic with the minor 

difference that Z^_^ p^ i s stored as a variable rather than storing 

each p^ separately . 

6 . 4 . 1 . 2 Ant i thet ic Variables . Another variance reduction 

technique which i s straightforward to apply i s ant i the t i c , or nega-

t i v e l y correlated, variables . I f two values 6^ and 6 2

 a r e unbiased 

estimates of a parameter 5, they may be combined to form one unbiased 

estimate 

6 = + 6 2 ) / 2 

with 

V { 6 . } + V { 6 0 } + 2 CovOS.,6,,} 
V{g} = — J L - L _ 2 

The variance of the estimate 6 i s then less i f 6^ and 6 2 are negatively 

correlated than i f they are independent. 

Negative correlation is commonly induced by making two Monte 

Carlo runs using the same random number seeds, but adding the addi­

t iona l log ic 

r = 1 - r 

each time a U(0 ,1) value r i s generated. Thus i f the f i r s t run i s based 

on a disproportionately large number of small values of r , the second 

run should be biased high. The averaged resu l t i s then more accurate 

than i f two independent runs had been made. 

A problem arises in the current study, however, s ince both r 
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and 1-r map onto the same 2 randomization component values. This i s 

true because i s symmetric about zero, implying that i f r maps onto 

+X^ then 1-r maps onto -X^. The Y^ values are s imi lar ly reversed. 

Therefore the differences in the second run are exactly the negative 

of the differences in the f i r s t run. The 2 n component values are there­

fore ident i ca l . 

Ant i thet ic observations may be generated for randomization samples 

by using 

Then r = .4 becomes r = .9 and r = .6 becomes r = . 1 , resul t ing in 

ant i thet ic observations. They have negative correlat ion because d i s ­

tance from the mean i s the property of the random observations which 

af fects the 2 n component values. 

6 . 4 . 2 Confidence Intervals 

Confidence intervals are needed for estimates to be properly 

interpreted. In Chapter V a closed form resul t was used to calculate 

the variance of the estimate of the power of the randomization t e s t . 

No s imi lar resu l t is avai lable here due to the use of variance reduc­

tion techniques. 

The variance of the estimators of the quantiles and moments of 

the sdd are obtained by rep l i cat ion . That i s , a f ter N samples are 

generated and analyzed, one independent estimate 6^ i s calculated for 

each parameter from this rep l i ca t ion . A s ing le composite estimate i s 

calculated af ter the Mth repl icat ion by averaging the previous 

r - 1/2 i f r > 1/2 

r + 1/2 i f r < 1/2 

A 
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repl icat ion estimates 

M „ 
6 = E 6 . /M 

i - 1 1 

The variance of the composite estimate i s eas i ly estimated by the sample 

2 

variance S since the repl icat ion estimates are independent. The aver­

aged estimate i s asymptotically normally dis tr ibuted by the central l imit 

theorem, so a 100(l-a)% confidence interval i s 

The e f fec t s of the variance reduction techniques do not have to 

be dealt with d irec t ly using the repl icat ion technique since they are 

buried within the rep l i ca t ions . The randomization components are inde­

pendent between samples and therefore between rep l i ca t ions . The s t r a t i ­

f i cat ion of observations begins anew each rep l i ca t ion , so the obser­

vations are independent between rep l i ca t ions . The ant i thet ic variables 

e f f ec t on variance may be placed within each repl icat ion i f , instead 

of using separate runs, immediately after a sample i s generated and 

analyzed the ant i thet ic sample i s generated within the same rep l i ca t ion . 

Confidence intervals based on repl icat ions may be placed on both 

quantiles and moments. Although the moments are known from Section 6 . 1 , 

confidence intervals may be placed on the known values to provide a 

mechanism for ver i f i ca t ion of the computer program and val idat ion of 

the theory. The confidence intervals should bound the known values 

100(l-o0% of the time. I f they do not , an error in programming or 

theory i s indicated, since the estimators of the moments were shown to 
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be consistent in Section 6 .3 .4 . By de f in i t ion , a consistent estimator 

must converge to the true value. The confidence interval provides the 

s ignal that convergence to the true value i s or i s not taking p lace . 
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CHAPTER VII 

THE POWER OF PAIRED SAMPLE TESTS 

In Chapters V and VI methods were developed to study the com­

ponent randomization t e s t and the corresponding parametric t e s t , respec­

t i v e l y . The methods are general in that they are appropriate for any 

underlying d is tr ibut ion and sample s i z e . The techniques of these two 

chapters are implemented here, using also the methods of quantile e s t i ­

mation discussed in Chapter I I I and of process generation discussed in 

Chapter IV, to estimate the power of various tes t s o f location for the 

paired sample design. 

S p e c i f i c a l l y , the t es t s considered are the component randomi­

zation t e s t , the corresponding parametric t e s t , and the commonly used 

normal t e s t . The "corresponding parametric test" i s to r e j ec t HQ i f 

the t e s t s t a t i s t i c i s greater than the (1-a] quanti le of the d i s t r i ­

bution of the t e s t s t a t i s t i c . In the case of normally d is tr ibuted 

observations, the parametric t e s t and the normal t e s t are one and the 

same. 

Section 7 .1 discusses these t e s t s and the ir re lat ionship to each 

other. Section 7.2 i s an overview of the ara lys i s performed for each 

underlying d is tr ibut ion and sample s i ze in la ter sect ions . Section 7 .3 

contains analyses of the power of these t e s t s under several spec i f i c 

d is tr ibut ions and sample s i z e s . 
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7.1 The Tests 

As noted in the introduction, l i t t l e study of the power of com­

ponent randomization tes t s has been undertaken for f i n i t e sample s i z e s . 

Knowledge of the power i s important for evaluating the tradeoffs be­

tween the robustness and computational ease of the various t e s t s . The 

component randomization t e s t , the most powerful d i s tr ibut ion- free t e s t , 

has the disadvantage of requiring great computational e f f o r t . The 

corresponding parametric t e s t , which assumes knowledge of the exact form 

of the d is tr ibut ion of the tes t s t a t i s t i c , would be expected to have 

more power than d i s tr ibut ion- free t e s t s which do not make use of th is 

information, but knowledge of this d is tr ibut ion i s rare . The normal 

tes t i s of interes t because i t i s widely used and uniformly most power­

ful in the case of normally dis tr ibuted observations. 

Quantifying the difference in power between the f i r s t two t e s t s 

i s helpful in deciding which t e s t to use in a part icu lar s i tuat ion . 

The power of the normal te s t under the nul l hypothesis , which i s the 

probabi l i ty of type I error , i s important ir. determining the degree of 

inappropriateness of the normal t e s t for various underlying d i s t r i ­

butions . 

7.2 Analysis Methodology 

Before looking at spec i f i c r e s u l t s , the steps necessary to deter­

mine the powers of the tes t s of interes t are now discussed. Conceptually 

the approach i s straightforward, requiring only two steps: 

1. Determine F * ( p ) , the pth quantile of the reference d i s t r i ­

bution F for the parametric t e s t . The power of the parametric 
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t e s t or the normal t e s t may then be determined from 1 - 3 = 

1 - F(C - v^n Eid./a}) where C i s the ( 1 - a ) quanti le of F 
a I a \ * -i 

or the normal d i s tr ibut ion . 

2 . Generate N samples of s i ze n from the d is tr ibut ion of in ter ­

est with spec i f ied expected di f ferences . For each sample 

perform the four tes t s and update a counter for each t e s t 

which re jec t s H Q . The count divided by N i s then the 

estimate of the power of the tes-c. 

Thus the power of the parametric t e s t s may be determined from 

ei ther phase. Note that the power of the component randomization t e s t 

may be determined only from Phase 2 . 

The complexity of implementation arises only because the s t ra ight ­

forward technique requires an unreasonable amount of computational 

e f f o r t . The resul ts of Chapter VI and Chapter I I I , may be used to per­

form Phase I more e f f i c i e n t l y , while Chapter V may be used for Phase 2 . 

Process generation, as discussed in Chapter IV, i s used in both phases 

to generate random observations having desired propert ies . Phase 1 i s 

implemented using the computer program in Appendix D and Phase 2 i s 

implemented using the program in Appendix B. 

7.3 The Power of Certain Tests 

In th i s section the resul ts aris ing from the techniques developed 

previously are presented. The probabi l i ty of type II error , 3, which i s 

one minus the power, i s given in both tabular and graphical form for 

each of the t es t s for various underlying d is tr ibut ions and sample s i z e s . 

The aim of this section i s to examine some spec i f i c examples to deter­

mine the relat ionship of power to other factors in a general way. The 
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normal, exponential , uniform, and absolute lambda (as discussed in 

Chapter IV) cases are examined in Sections 7 . 3 . 1 , 7 . 3 . 2 , 7 . 3 . 3 , and 

7 . 3 . 4 respect ive ly . These distr ibut ions were se lected to i l l u s t r a t e 

the e f f ec t of t a i l weight and shape on the power of the t e s t s . 

In each section resul ts are given in the form of operating 

character i s t i c (O.C.) curves. The curves for sample s izes 4 , 7, 11 , and 

15 are grouped by underlying dis tr ibut ion and a value. The values of a 

considered are 1 /128, 1 /16 , and 1 /8 , the c loses t values to . 0 1 , . 0 5 , 

and .1 of the form m / 2 n where n i s integer. These values are necessary 

since a can take on only values of th is form for permutation t e s t s . 

7 . 3 . 1 Normal Observations 

In this section the power of the tes t s of i n t e r e s t , presented in 

the form of O.C. curves, are compared for the case of normally d i s t r i ­

buted observations. Since the appropriate parametric t e s t i s the normal 

t e s t , only the component randomization and normal t e s t s are of interes t 

here. 

Figure 15 shows graphical ly the resul ts of this sect ion , which 

are also presented in tabular form in Table 6. Several observations 

can be made from the graphs corresponding to a = 1 /128 , 1 / 1 6 , and 1 / 8 , 

respect ive ly: 

1. The value of 3 decreases as sample s i ze increases . 

2 . The value of 3 decreases as E{d^/a} increases . 

3. The value of 3 decreases as a increases . 

4 . The normal t e s t , which dominates the component randomization 

t e s t in th is case of normally dis tr ibuted observations, has asymptoti­

ca l l y the same power as the component randomization t e s t . The dominance 
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0 .S 1.0 l.S 2.0 
E{d, } / 0 

3 

3 

2.0 

2.0 
E { d i >/*<!. 

L 

Figure 15. Operating Characterist ic Curves from Normal 
Observations 
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Table 7. Type II Error (3) of Randomization and Parametric 
Test (Standard Deviations Are Shown in Parentheses) 

n 
0 . 5 1.0 1 .5 

X ,Y ~ N ( 0 , . 5) 

a = 1/128 = .0078125 z = 2 .417 
a 

7 
.991875 
.991875 

. 9 3 ( . 0 0 4 6 ) 

.86 
. 7 1 ( . 0 0 8 3 ) 
.41 

. 3 8 ( . 0 0 8 8 ) 

.06 

11 .991875 
.991875 

. 8 4 ( . 0 0 8 1 ) 

.78 
. 3 5 ( . 0 1 5 ) 
.18 

. 036 ( .0059 ) 

.005 

15 
.991875 
.991875 

.76 ( .017) 

.69 
. 1 5 ( . 0 1 3 ) 
.07 

neg 
neg 

a = 1/16 = .0625 za = 1.534 

4 
.9375 
.9375 

. 7 7 ( . 0 0 6 6 ) 

.70 
. 5 0 ( . 0 0 7 9 ) 
.32 

. 2 4 ( . 0 0 6 7 ) 

.07 

7 .9375 
.9375 

. 6 4 ( . 0 0 8 8 ) 

.58 
. 1 9 ( . 0 0 7 2 ) 
.13 

. 0 2 ( . 0 0 2 6 ) 

.01 

11 .9375 
.9375 

. 4 9 ( . 0 1 1 ) 

.45 
. 0 5 1 ( . 0 0 7 0 ) 
.04 

neg 
neg 

15 .9375 
.9375 

. 3 8 ( . 0 2 0 ) 

.35 
. 0 1 2 ( . 0 0 4 0 ) 
.01 

neg 
neg 

a = 1/8 = . 125 = 1.150 

4 
.875 
.875 

. 6 1 ( . 0 0 7 7 ) 

.56 
. 2 7 ( . 0 0 6 9 ) 
.20 

. 075( .0042) 

.03 

7 
.875 
.875 

. 4 6 ( . 0 0 9 1 ) 

.43 
. 0 9 ( . 0 0 5 1 ) 
.07 

. 005 ( .0013 ) 

.002 

11 
.875 
.875 

. 3 3 ( . 0 1 0 ) 

.31 
. 0 1 6 ( . 0 0 4 0 ) 
.015 

neg 
neg 

15 
.875 
. 875 

. 2 2 ( . 0 1 7 ) 

.22 
. 0038( .0022) 
.003 

neg 
neg 
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of the normal t e s t decreases as a increases and as n increases. This 

i s l og ica l since many observations are needed for the t a i l areas of the 

randomization reference dis tr ibut ion to be well developed. An a value 

far out in the t a i l requires more observations for the same power. 

Thus for normally distr ibuted observations the largest loss of power in 

using the component randomization t e s t i s for small n and small a. 

7 . 3 . 2 Exponential Observations 

Results are given here for exponentially distr ibuted observations. 

The form of the resul ts i s the same as for the normal case of the las t 

sec t ion , except here the parametric tes t i s d i s t inc t from the normal 

t e s t . 

Figure 16 shows the parametric reference d is tr ibut ion for the 

parametric t e s t under exponential observations as determined by Phase 1. 

The upper ha l f of the reference dis tr ibut ion i s p lot ted on normal proba­

b i l i t y paper for sample s izes n = 4 , 7, 11 , 15, and i n f i n i t y . The 

reference d is tr ibut ion as n approaches i n f i n i t y i s the normal d i s t r i ­

bution (the s tra ight l ine in the figure) with the difference between the 

normal d is tr ibut ion and the parametric reference dis tr ibut ion for f i n i t e 

sample s izes being greatest for small samples. For a l l sample s izes the 

normal d is tr ibut ion l i e s above the parametric reference d is tr ibut ions 

above approximately the 95% quanti le and below the parametric reference 

dis tr ibut ion otherwise. 

Table 7 contains the resu l t s of this section in tabular form. 

Three tables are shown, corresponding to a = 1 /128, 1 /16 , and 1 /8 , 

respect ive ly . Each of the entries are the probabi l i ty of type II error , 

3, for various values of n and E { d . / a } . Results for the component 
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T a b l e 8 . T y p e I I E r r o r ( B ) f o r R a n d o m i z a t i o n ( R ) , P a r a m e t r i c ( P ) , a n d N o r m a l ( N ) T e s t s 

A r i s i n g f r o m E x p o n e n t i a l O b s e r v a t i o n s 

w 0 . 5 1 . 0 1 . 5 
r 

n \ R P N R P N R P N R P N 
" a 

X , Y - E x p 

o - 1 / 1 2 8 - . 0 0 7 8 1 2 5 2 . 4 1 7 

7 
1 2 7 1 2 7 

1 2 8 1 2 8 
. 9 9 0 

. 8 6 

( . 0 0 6 3 ) 
. 8 9 . 8 6 

. 5 9 

( . 0 0 9 0 ) 
. 4 8 . 4 0 

. 3 4 

( . 0 0 8 6 ) 
. 0 7 . 0 6 

2 
( 

. 5 4 

. 0 2 ) 

1 1 
1 2 7 1 2 7 

T H " 1 2 8 
. 9 9 0 

. 7 6 

( . 0 1 3 ) 
. 8 0 . 7 9 

. 3 0 

( . 0 0 8 9 ) 
. 2 0 . 1 8 

. 0 7 

( . 0 0 4 6 ) 
. 0 0 8 . 0 0 7 

2 

( 

. 4 9 

. 0 1 ) 

I S 
1 2 7 1 2 7 

1 2 8 1 2 8 
. 9 9 1 

. 6 6 

( . 0 2 4 ) 
. 7 0 . 6 9 

. 1 3 

( . 0 2 3 ) 
. 0 8 . 0 7 n e g n e g n e g 

2 

( 

. 4 7 

. 0 3 ) 

a « 1 / 1 6 » . 0 6 2 5 
z a ' 

1 . 5 3 4 

4 . 9 3 7 5 . 9 3 7 5 . 9 4 0 
. 6 7 

( . 0 0 7 4 ) 
. 7 0 . 6 9 

. 4 0 

( . 0 0 7 7 ) 
. 3 0 . 3 1 

. 2 1 

( . 0 0 6 5 ) 
. 0 6 . 0 7 

1 

( 

. 5 1 

. 0 0 4 ) 

7 . 9 3 7 5 . 9 3 7 5 . 9 3 9 
. 5 4 

( . 0 0 9 1 ) 
. 6 1 . 6 1 

. 1 7 

( . 0 0 6 9 ) 
. 1 2 . 1 3 

. 0 3 5 

( . 0 0 3 4 ) 
. 0 1 . 0 1 

1 

( 

. 5 2 

0 0 7 ) 

1 1 . 9 3 7 5 . 9 3 7 5 . 9 3 8 
. 4 2 

( . 0 1 6 ) 
. 4 5 . 4 5 

. 0 6 8 

( . 0 0 4 6 ) 
. 0 4 . 0 4 

. 0 0 5 

( . 0 0 1 3 ) 
. 0 0 0 5 . 0 0 0 5 

1 

( 
5 3 

0 0 4 ) 

1 5 . 9 3 7 5 . 9 3 7 5 9 3 8 
. 3 4 

( . 0 1 9 ) 
. 3 4 . 3 4 

. 0 1 

( . 0 0 7 ) 
. 0 1 . 0 1 n e g n e g n e g 

1 

( 

5 3 

0 2 ) 

a = 1 / 8 * 1 . 2 5 2 = 1 . 
a 

1 5 0 

4 . 8 7 5 . 8 7 5 8 9 
. 5 1 

( . 0 0 7 9 ) 
. 5 4 . 5 6 

. 2 2 

( . 0 0 6 5 ) 
. 1 6 . 1 8 

. 0 8 

( . 0 0 4 3 ) 
. 0 3 . 0 3 5 

1 

( 
. 0 9 

. 0 0 4 ) 

7 . 8 7 5 . 8 7 5 88 . 4 0 

( . 0 0 9 0 ) 
. 4 3 . 4 1 

. 0 9 

( . 0 0 5 2 ) 
. 0 6 . 0 7 

. 0 1 3 

( . 0 0 2 ) 
. 0 0 5 . 0 0 5 

1 

( 

1 1 

0 0 6 ) 

1 1 . 8 7 5 . 8 7 5 . 8 8 
. 2 9 

( . 0 1 4 ) 
. 3 0 . 3 0 

. 0 3 

( . 0 0 3 1 ) 
. 0 1 . 0 1 

. 0 0 2 

( . 0 0 0 8 ) 
n e g n e g 

1 

( 
1 3 

0 0 6 ) 

1 5 . 8 7 5 . 8 7 5 . 8 8 
. 2 0 

( . 0 1 6 ) 
. 2 0 . 2 0 n e g n e g n e g n e g n e g n e g 

1 

( 
1 4 

0 1 ) 
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randomization tes t are in the columns labeled "R". Similarly the para­

metric t e s t resul ts are under "P" and the normal t e s t resul ts are under 

"N". For the randomization t e s t the estimate of the standard deviation 

of the resul t i s given in parentheses. The resul ts for "P" and "N" are 

determinist ic calculat ions from the resul ts of Phase 1. The c r i t i c a l 

values used for the parametric t e s t are determined from Figure 16 and 

are given in the right-hand column under C^. 

The most surprising aspect of these resu l t s i s that the power of 

the parametric t e s t does not dominate the power of the component randomi­

zation t e s t . Especial ly for a l ternat ive hypotheses close to HQ, the 

component randomization t e s t has more power for a l l n and values of a. 

At f i r s t glance this i s counter- intu i t ive , s ince the usual circumstance 

i s that power i s l o s t in obtaining d i s tr ibut ion- free propert ies . Note 

that over the range of values of E { d ^ / a } , however, the parametric t e s t 

i s indeed more powerful. 

An i n t u i t i v e rat ionale for the greater power of the component 

randomization t e s t for a l ternat ive hypotheses close to the nul l hypothe­

s i s i s as fol lows: the reference d is tr ibut ion for exponential obser­

vations has heavier t a i l s than the normal ( a 4 = 3 .75 for n = 4 , and the 

normal value i s = 3) while the randomization reference d is tr ibut ion 

has l i ght t a i l s (o^ < 3) since i t s range i s always f i n i t e . As discussed 

in Chapter IV, a d is tr ibut ion with a high value of i s more peaked 

and has heavier t a i l s than a d is tr ibut ion with smaller a . . Small a . 
4 4 

values indicate l ight t a i l s and heavy shoulders. Now an a l ternat ive 

hypothesis close to the nul l hypothesis i s more e a s i l y detected by the 

dis tr ibut ion with heavy shoulders, in this case the randomization 
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reference d i s tr ibut ion , since many observations are close to the mean. 

On the other hand, a l ternat ive hypotheses in the t a i l s are more eas i ly 

detected by the parametric t e s t due to i t s reference dis tr ibut ion having 

more observations in the t a i l s . 

Note that the power of the normal theory t e s t i s very s imi lar to 

the parametric t e s t . While not appropriate for exponential observations, 

the nominal value of a i s not far from the true value, as indicated in 

the columns under E{d^/a} = 0 . The power of the normal tes t i s s imi lar 

to the power of the parametric t e s t for a l l a l ternat ive hypotheses and 

sample s i z e s , although the greatest difference i s for small sample s izes 

where the parametric reference dis tr ibut ion d i f f ers the most from the 

normal d i s tr ibut ion . 

Note also that as the sample s ize increases the resu l t s of a l l 

three t e s t s converge to the same values. This must be true for the 

parametric and normal t e s t s due to the central l imit theorem. This i s 

equivalent to the reference d is tr ibut ions becoming the same in Figure 16 

for large sample s i z e s . The component randomization t e s t also converges 

to the same power for large sample s i z e s , since this t e s t i s asymptoti­

ca l ly the normal theory t e s t for large sample s i z e s . However, the 

nonnormality in terms of sample s i ze i s of in teres t here. 

Figure 17 shows graphically the values of Table 7 for the para­

metric and component randomization t e s t s . Ihe normal t e s t i s not shown 

since i t i s only approximately correct for this case and since the 

resu l t s are so s imi lar to the parametric t e s t . A l l of the same general 

re lat ionships between a, n, and E{d^/a} are true here as for the normal 

case. 3 decreases as any of the three factors increase. The s tr ik ing 
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Figure 17. Operating Characterist ic Curves from Exponential 
Observations 
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difference is that the parametric t e s t does not dominate the component 

randomization t e s t , as jus t discussed. 

I t i s of in teres t to compare the resul ts of this section to those 

of the las t section for normal observations. The power of the com­

ponent randomization t e s t i s generally greater for exponential obser­

vations than for normal observations, the greatest difference being .1 

for n = 4 , a = 1 /16 , and E{d^/a} = . 5 . However, for large values of 

Eld^/a} and/or for large n the normal observations lead to the greater 

power. In these cases the power i s so great for both t e s t s , however, 

that the difference i s not usually important. Thus i t appears that the 

component randomization t e s t actual ly has be t ter overal l power for 

exponential observations than for normal observations. 

This re lat ionship does not hold true for the parametric t e s t . For 

small a , the parametric t e s t performs best under normal observations. 

For a = 1/16 the tes t has s imi lar power for both types of observations 

and for large a values the parametric t e s t performs best for exponential 

observations. That th is should be true i s obvious from Figure 16. The 

reference dis tr ibut ions a l l cross the normal d is tr ibut ion around the .95 

quant i le . Since power of the parametric t e s t depends on this d i s t r i ­

bution only through the (1-a) quant i le , power should indeed be s imi lar 

for a = 1/16. 

Note that the resul t of a l l the parametric reference d is tr ibut ions 

having the same .95 quantile i s that the normal theory t e s t i s very close 

to exactly va l id for exponential observations for any sample s i ze i f 

a ~ . 0 5 . Smaller or larger values of a lead to inaccuracies in the 

normal t e s t . 
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7 . 3 . 3 Uniform Observations 

Results corresponding to those of the l a s t sect ion are given here 

for uniformly distr ibuted observations. Figure 18 shows the reference 

d is tr ibut ions for sample s i zes n = 4 , 7 , 11 , 15 , and i n f i n i t y aris ing 

from uniform observations. Again the s tra ight l i n e , the normal d i s t r i ­

bution, i s the l imit ing d is tr ibut ion as n approaches i n f i n i t y . Not 

shown i s the l imit ing case of n = 1, the d is tr ibut ion of the difference 

between two uniformly distr ibuted random var iab les , which i s the t r i ­

angular d i s tr ibut ion . A l l of these reference dis tr ibut ions have a 

f i n i t e upper bound and therefore l i e above the normal l i n e , whereas the 

exponential reference dis tr ibut ions were below the normal d i s tr ibut ion . 

Note that , for the a values considered, the reference dis tr ibut ion i s 

e s s e n t i a l l y ident ica l with the normal. Only for a greater than .01 i s 

the difference noticeable in Figure 18 and even there i t i s not as great 

as in the case of exponential observations. 

Table 8 shows the probabi l i ty of type I I error for various 

sample s izes and al ternat ive hypotheses Eid^/o] for the component ran­

domization and parametric t e s t s . From the table i t would appear that 

the normal te s t works well in this case as an approximation to the true 

parametric t e s t , even for small sample s i z e s . 

The resul ts for uniform observations are s imi lar to those of the 

pr ior two cases, with 3 decreasing as a function of n, a, and E{d^/o}. 

Again of interest i s that the component randomization t e s t has greater 

power ( l e s s e r 3) for E { d i / a } = .5 and a = 1/16 and a = 1/8 than the 

parametric t e s t . That i s , even though the parametric tes t has be t t er 

power for most combinations of n, a, and E { d . / a } , i t does not dominate 
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Table 9. Type II Error (0) for Randomization (R), Parametric (P), and Normal (N) Tests 
Arising from Uniform Observations 

0 .5 1.0 1.5 
r 

n \ R P N R P N R P N R P N 
La 

X,Y ~ Uniform 
O « 1/128 » .0078125 .417 

7 127 127 
128 128 

.99 .93 
(.004) .85 .85 .74 

(.008) 
.40 .41 .42 

(.009) 
.06 .06 2 .39 

11 127 127 
128 128 

.99 .87 
(.01) 

.80 
(.01) .80 .40 

(.015) 
.19 

(.012) 
.19 .03 

(.005) 
.004 

(.002) .004 2 .40 

15 127 127 
128 128 

.99 .81 
(.03) 

.67 
(.04) .67 neg neg 2 .41 

a - 1/16 • .0625 za = 1.534 

4 .9375 .9375 .94 .68 
(.006) .70 .70 .54 

(.007) 
.32 

(.007) .32 .27 
(.006) 

.07 
(.003) .07 1 .53 

7 .9375 .937S .96 .65 
(.009) .57 .58 .21 

(.007) 
.14 .14 .02 

(.002) .005 .006 1 .53 

11 .9375 .9375 .96 .50 
(.02) 

.45 
(.02) .45 .05 

(.006) 
.04 

(.005) 
neg 1 .53 

15 .9375 .9375 .94 .34 
(.04) 

.29 
(.04) .29 neg neg 1 .53 

a * 1/8 * .125 \- 1 .150 

4 .875 .875 .87 .52 
(.006) .56 .56 .30 

(.006) 
.19 

(.006) 
.19 .08 

(.004) 
.03 

(.003) 
.03 1 15 

7 .875 .875 .87 .47 
(.009) .43 .43 .09 

(.005) .07 .07 neg neg neg 1 15 

11 . 875 .875 .87 .32 
(.01) 

.30 
(.01) .30 .01 

(.004) 
.01 

(.004) neg 1. 15 

15 .875 .875 .87 .19 
(.03) 

.18 
(.03) .18 neg neg 1. 15 
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the component randomization t e s t . 

I t i s apparent by comparing Tables 6 and 8 that the normal t e s t 

does indeed approximate the properties of the parametric t e s t well in 

this case. The power never d i f f ers by more than .01 except for large 

values of E{d^/a} where the difference in t a i l weights between the 

uniform and exponential d is tr ibut ions has an e f f e c t . I f , however, an 

value of .0001 and a small sample s i ze were used, Figure 18 shows that 

the normal t e s t i s not so good an approximation since c gggg* equal to 

3 .35 for n = 4 , does d i f f e r from the normal value z gggg - 3 . 4 5 , r e s u l t ­

ing in a biased indication of the true a value. 

7 . 3 . 4 Absolute Lambda Observations 

In the previous three sections the power of the component 

randomization t e s t and the corresponding parametric t e s t has been 

examined for normal, exponential , and uniform observations. These 

three d is tr ibut ions were se lected as three dis tr ibut ions representing 

a wide range of t a i l weights. The uniform has the l i gh te s t t a i l s 

($2 ~ I - 8 ) , the normal has medium t a i l s (3 2

 = 3 ) , and the exponential 

d is tr ibut ion has heavy t a i l s (3 2

 = 9) • A question of interes t i s 

whether t a i l weight, as measured by the fourth standardized moment, 

i s rea l ly the central factor in determining the e f f ec t of underlying 

dis tr ibut ion on the power of the t e s t s . 

An analysis s imi lar to the las t three sections i s performed here 

to gain insight into the fourth moment's impact on power. In par t i cu lar , 

observations are generated from the absolute lambda dis tr ibut ion ( d i s ­

cussed in Chapter IV) with moments one through four ident ica l to the 

standardized normal d i s tr ibut ion . Despite having the same skewness 
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and kur tos i s , this density function has a shape quite unlike the normal, 

as shown in Figure 8. 

Figure 19 shows the reference dis tr ibut ion aris ing from the 

absolute lambda distr ibut ion with parameters X^ - 0 , - - 1 . 5 7 5 , 

= - . 2 2 4 7 , and X^ = . 5 for a sample s i ze of four. The reference 

dis tr ibut ions for larger sample s izes are not shown since in the figure 

they would not be dist inguishable . Also included, for comparative 

purposes, i s the normal d is tr ibut ion which appears as a s tra ight l i n e . 

While the difference between the reference d is tr ibut ion shown and the 

normal i s s l i g h t , compared to previous examples, i t i s s i gn i f i cant . 

The major difference between this and previous examples i s that the 

nonnormality occurs in the body, rather than the t a i l , of the d i s t r i ­

bution. 

Table 10 shows the resul ts of the Monte Carlo determination of 

the power of the component randomization and the parametric tes ts for 

th i s underlying d i s tr ibut ion . The resul ts for the normal t e s t and the 

parametric t e s t are ident ica l to two places of accuracy, and therefore 

the resul ts are given only for the parametric t e s t . For the cases 

studied, the power of the t e s t does not d i f f e r noticeably from the 

resu l t s for normally dis tr ibuted observations. Note, however, that 

the power of the component randomization tes t i s somewhat less for 

these observations than for normal observations. The discontinuity of 

the underlying dis tr ibut ion seems to a f fec t the component randomization 

t e s t while not af fect ing the parametric t e s t . 
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Table 10. Type II Error (3) for Randomization (R) , Parametric 
(P) , and Normal (N) Tests Aris ing from Absolute 
Lambda Observations ( 0 , 2 . 2 2 7 , - . 2 2 4 7 4 5 , .5) 

\ 6 / a . 5 1 .0 1.5 

n \ R P R P R P 

a = 1/128 = .0078125 z = a 2 417 

7 .89 .87 .87 .42 .30 .06 

11 .87 .78 .36 .19 neg 

15 .72 
( .036) 

.68 .14 .08 
( .028) 

neg 

a = 1/16 = .0625 z = 1.534 
a 

4 .71 , 6 7 .68 .32 .18 06 

7 .66 .59 .21 .14 .013 007 

11 .52 .47 .04 .03 neg 

15 .37 .34 .013 .013 neg 
( .039) ( .009) 

neg 

a = 1/8 = .125 z 
a 

= 1.150 

4 .66 .58 29 .20 .06 03 

7 .49 .45 09 .07 .003 001 

11 .33 .32 01 .01 neg 

15 .29 
( .035) 

.23 006 
006) 

0 neg 
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CHAPTER VIII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This research i s directed toward studying the power of t e s t s of 

location in the paired samples design, but also involves several aspects 

of Monte Carlo dis tr ibut ion sampling with wider a p p l i c a b i l i t y . For 

example, the quanti le estimation procedures discussed in Chapter I I I are 

not l imited to the study of power or even to data generated by Monte 

Carlo s tudies . In addit ion, the process generation, the topic of 

Chapter IV, i s applicable in e i ther systems simulation of Monte Carlo 

s tudies . However, Chapters V, V I , and V I I , are applicable only to 

component randomization and as a set consider the component randomi­

zation t e s t , the reference dis tr ibut ion of the corresponding parametric 

t e s t , and the power of these t e s t s . A more complete summary of the 

resul ts of the research i s given in Section 8 . 1 , followed by conclu­

sions in Section 8 . 2 , and recommendations for future research in 

Section 8 . 3 . 

8 .1 Summary of Results 

A summary of the resul ts of th i s research i s given here. The 

resul ts are l i s t e d in the same order as presented in the body of th i s 

work. The section upon which the resul t i s based i s given in parentheses. 

8 . 1 . 1 Chapter I I I . Estimation of the pth Quantile 

1. Given grouped data, 

F A ( p ) = a + b[q - ( I c - p ( k + l ) + l ) / ( c + 1 ) ] 
i = l 1 q 
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i s recommended as an improvement over the midpoint of the 

qth c e l l as an estimator of the pth quanti le of the d i s t r i ­

bution of ( 3 . 1 . 1 ) the cdf. 

The expected value and variance of this estimator i s derived 

in terms of P ( q ) , the probabi l i ty of the estimator f a l l i n g 

in c e l l q ( 3 . 1 . 2 ) . 

P(q) i s derived as a function of the probabi l i ty of an 

arbitrary observation f a l l i n g in c e l l i , i = 1 , 2 . . . . . . Q 

( 3 . 1 . 3 and Appendix A ) . 

The impact of c e l l width and sample s ize i s analyzed. I t i s 

shown why the recommended estimator i s less biased and pro­

vides a more accurate estimate of the v a r i a b i l i t y ( 3 . 1 . 4 ) . 

For raw data, 

F _ 1 ( p ) = ( l - a ) X . , + aX r 

^fj ^ j ( r ) (r+1) 

where r = [p (k+ l ) ] and a = p(k+l) - r 

i s recommended for estimating the pth quanti le ( 3 . 2 . 1 ) . 

This estimator i s shown to be unbiased assuming a uniform 

approximation in the region of the estimate (but not neces­

s a r i l y a uniform dis tr ibut ion of the observations) ( 3 . 2 . 1 ) . 

The e f fec t of sample s i ze on the performance of the quanti le 

estimator i s studied. Rules are given to determine the 

sample s i ze necessary for the use of a simple order s t a t i s t i c 

to provide a desired accuracy ( 3 . 2 . 2 ) . 
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8 . 1 . 2 Chapter IV. Process Generation from (B^f^) 

8. Cr i t er ia for comparing general process generators are pro­

posed ( 4 . 2 ) . 

9 . The absolute lambda dis tr ibut ion i s presented, including 

d i s tr ibut ional properties and i t s use in generating random 

values having any desired skewness and kurtosis ( 4 . 4 ) . 

8 . 1 . 3 Chapter V. The Randomization Test 

10. A basic method and improvements are given to t e s t the paired 

samples location hypothesis in the paired samples design 

using the component randomization t e s t . The basic method 

allows generation of signs without tabled values through the 

use of modular arithmetic , while the improvements increase 

the computational speed by making the modular arithmetic 

i m p l i c i t . A FORTRAN program to implement the method i s 

given ( 5 . 1 ) . 

11. An approach for estimating the power of the component randomi­

zation t e s t (using the las t resul t ) i s developed, including 

the variance of the estimate and minimum sample s i ze neces­

sary for a desired accuracy ( 5 . 2 ) . 

8 . 1 . 4 Chapter VI . The Corresponding Parametric Test 

12. The standardized moments of the differences are given as a 

function of the moments of the observations ( 6 . 1 . 1 ) . 

13. The standardized moments of the sum of differences are 

given as a function of the moments of the differences ( 6 . 1 . 2 ) . 

14. The inadequacy of asymptotic expansions and Chebyshev-type 

inequal i t i e s as general solution procedure i s i l l u s t r a t e d ( 6 . 2 ) . 
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15. The use of the randomization sample, the 2 n dependent 

components aris ing from each sample, as a variance reduc­

tion technique for quanti le estimation i s proposed and 

shown to be va l id ( 6 . 3 ) . 

16. The decrease in computational e f for t aris ing from this 

technique i s quantif ied ( 6 . 3 . 5 ) . 

8 . 1 5 . Chapter V I I . The Power of Paired Sample Tests 

17. The power of the component randomization t e s t and the para­

metric t e s t i s given in the form of operating character i s t i c 

curves for normal, exponential , uniform, and absolute lambda 

observations ( 7 . 3 ) . 

8 .2 Conclusions 

Conclusions aris ing from the overal l research are as fo l lows: 

1. The recommended estimators of the pth quanti le reduce bias 

and provide a more accurate variance estimate than the common 

approach of using c e l l midpoints. The e f fec t i s greatest for 

small samples with raw data and large samples for grouped 

data. 

2 . Based on the c r i t e r i a of Section 4 . 2 , the Burr d i s t r ibut ion , 

the generalized lambda d i s t r ibut ion , and the absolute lambda 

dis tr ibut ion each have advantages not possessed by the others. 

The absolute lambda d i s tr ibut ion , presented in Section 4 . 4 , 

i s the only technique known which w i l l provide random var i -

ates having any desired skewness and kurtosis using only two 

parameters and one functional form. 
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3. The algorithm proposed for performing the component randomi­

zation tes t makes feas ib le the use of th is t e s t for samples 

as large as n = 25 . 

4 . A useful variance reduction technique, using component 

randomization, for finding the d i s tr ibut ion of a sum of 

symmetric random variables can reduce computational e f for t 

as much as 99.9%. 

5 . The power of the component randomization t e s t and the para­

metric t e s t may be studied using Monte Carlo techniques in a 

reasonable amount of computational e f for t by using the tech­

niques of Chapters I I I , V, V I , and V I I . In addit ion, the 

resul ts of Chapter IV make the se lect ion of underlying 

dis tr ibut ion simpler. 

6 . The power of the component randomization t e s t i s usual ly less 

than the power of the appropriate parametric t e s t , but i s not 

dominated for a l l a l ternat ive hypotheses. That i s , in some 

cases , the d i s tr ibut ion- free randomization t e s t has more 

power than the parametric t e s t which assumes knowledge of 

the exact d is tr ibut ion of the observations, including v a r i ­

ance. 

7. The robustness of the normal test, of locat ion , a well-known 

property, i s observed in relatior. to the performance of the 

correct parametric t e s t . The difference in reference 

d is tr ibut ions i s seen to be greatest in the t a i l s of the 

d is tr ibut ions for common d i s tr ibut ions . 

8. The power of the component randomization t e s t i s d i f ferent 
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for normal and absolute lambda observations, even though 

both have ident ica l f i r s t four moments. The power of the 

parametric t e s t , on the other hand, i s e s sent ia l ly the same 

for both types of observations. 

9 . Since in pract ice the appropriate parametric t e s t i s not 

known, the component randomization t e s t i s a viable a l t e r ­

native to the normal te s t for samples no larger than 25 . 

Especial ly when the variance i s unknown the component ran­

domization tes t costs l i t t l e in terms of power l o s s . 

8 . 3 Recommendations for Future Research 

The avenues for future research based on this work are perceived 

to be: 

1. A dis tr ibut ion for general process generation sat i s fy ing a l l 

the c r i t e r i a of Section 4 .2 i s needed. 

2 . The component randomization tes t in the paired samples 

design may be made s t i l l more computationally e f f i c i e n t by 

perhaps considering techniques which do not e x p l i c i t l y con­

s ider each of the 2 n components of the sample. 

3. The method of generating a l l 2 n combinations of signs may 

have application to other areas. For example, the two sample 

component randomization t e s t requires s imi lar l og i c . 

Another area of application i s seen by noting that the 2 n 

combinations of signs i s an exact analogue of e x p l i c i t l y 

enumerating the solutions of an n item knapsack problem. 

4. The procedures of Chapter V I I , based on Chapters V and V I , 
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may be used to study the power of the t e s t s for other 

spec i f i c underlying dis tr ibut ions and sample s i z e s . 
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APPENDIX B 

PROGRAM LISTING FOR CHAPTER V 
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C R A N D O M I Z A T I O N T E S T 

D I M E N S I O N I T W O ( R O ) . D ( s O ) # A t P H A ( ? n ) ' I C R l T ( 2 n ) » C ( P O ) t 

* 2 ( ? 0 ) » T ( 2 0 ) » I r C ( 2 0 ) . I P C ( ? 0 ) » I N C ( ? 0 ) » I T C ( 2 0 ) 

c 
C * * * * * F N T E R P A R A M E T E R S A N D I N I T I A L I Z E 

C 

1 5 W R I T E ( 6 , 1 ) 

1 F O R M A T ( • E N T E R S A M P L F S T 7 E N » f X P f C T E D D t F F p r E n C F > C n R R F L A T l O N » ' 

* / t tf O F S A M P L E S , R A N D O M tt < ; E E D » D l s T R l B i j T I n N T Y P E . ' / 

* » A N D F O U R P A R A M E T E R * ; . < T , X . X , T » I . I ' X » X » x » X ) • ) 

R E A D ( 5 t 2 » E N D = 9 q ) N » X M l ) » r h O » N 3 I G , I < ; E E D , i D i S T . P l # P ? » P 3 . ° u 

2 F O R M A T ( ) 

N T W O = 2 * * N 

N A = 0 

1 1 N A = N A + 1 

W R I T E ( 6 . 3 ) 

3 F O R M A T ( • E N T E R A L P H A , C , Z » A n o T « ) 

R E A D ( 5 » 2 , E N D = 1 ? ) A L P h a ( n A ) , C ( n A ) . Z ( N A ) , T r M A ) 

I R C ( N A ) = 0 

I P C ( N A ) = 0 

T N C ( N A ) = 0 

I T C ( N A ) = 0 

T C R l T ( N A ) = ( l - A L P H A ( N A ) ) * N T W O 

G O T O 1 1 

1 2 N A = N A - 1 

N T O T A L = 0 

F R H O = S O R T ( 1 - R H O * R H O ) 

S U M D ? = 0 

0 0 5 0 I = 1 , N 

5 0 T T W O ( I ) = 2 * * ( N _ I ) 

c 
C * * * * * P E R F 0 R M T E S T N B I G T I M E S , 

C * * * * * F l R S T G E N E R A T E R A N D O M D I F F E R E N C E S a N & C A L C U L A T E T f S t S T A T I S T I C 

C 

2 5 N T O T A L = N T O T A L + N l B l G 

T O T A L = N T O T A L 

D O 5 0 0 K = 1 » N B I G 

S T A T - 0 

T S U M 0 2 ~ 0 

D O 6 0 0 I = 1 , N 



160 

CALL DATAIN ( i D l S T . P l , P 2 . P 3 » P 4 » T S E F O * X ) 
CALL DATAIN ( I D l S T . P l . P 2 . P 3 » P 4 , i S E F D » Y ) 
y = Y * F R H O + y * RHo 

f l ( I ) = X - / + jfMU 
TSUM02 = TSUMD2 + D ( I ) * 0 ( 1 ) 

ftftO STAT = STAT + D ( I ) 
SUMO? = SUM02 + TSUMD? 

C 

C * * * * * P E R F O R M THREE PARAMETRIC TESTS ( I D F A ^ , N O R M A I ' • ANn T ) 

C 

S2 = (TSUMD2 - STAT*STAT/NJ) / 
TSTAT = STAT / SQRT ( S ? * N ) 

PSTAT = STAT / SQRT(N) 
7STAT = STAT / SGRT(N) 
oo 6n I = I » N A 

TF < P S T A T . L T . C ( I ) ) I P C ( I ) = l P C r T ) + 1 
IF ( Z S T A T . L T . 7 ( D ) I N C ( I ) = i N C r l ) + 1 
IF ( T S T A T . L T . T ( I ) > l T f ! ( I ) = I T C ( I > + 1 

ftO CONTINUE 
C 

C * * * * * I N I T I A L I Z E F O R PERFORMING TEST 
C 

KOUNT = 0 
0 2 2 = D ( 2 ) + D ( ? ) 
0 3 2 = 0 ( 3 ) + 0 ( 3 ) 
0 2 3 = 0 2 2 + 0 3 2 
• S U M = - D ( D - 0 ( 2 ) - 0 ( 3 ) 
M = I T W 0 ( 3 ) 
IF ( N . G T . 3 ) GO TO ?nO 
J = N T W O 

SUM = DSUM 
GO TO ( 1 0 » 20* 3 0 ) . N 

POO J = 0 
C 

C*"****r>ETERMINE THE J TH COMBINATION oF S l G N S FoR P O M P O M E N I T * ; 1 = 4 . . . . - » N 

C inoo j = j + I 
SUM = DSUM 
IEVEN2 = M 
TTERM = J 
0 0 HOO I=tv,N 
TEVEN = IEVEN2 
IEVEN2 = I T W O ( I ) 
IF (lEVEN . L T . ITERM) ITFR.'I = ITERM - lEvEN 
IF (ITERM . G T . I E V E N 2 ) GO TO 3f)0 
SUM = SUM - D ( I ) 
G O TO 4 0 0 

3 0 0 SUM = SUM + D d ) 
4 0 0 CONTINUE 

C 
C*****FOR THIS COMBINATION OF SIGNS' CONSIDER ALL a P o S S l R l t I T I E S 
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3 0 X = S U M + D 3 2 

T F ( X .LE. S T A T ) K O U N J T = KOljNT + 1 

I F U X . L E . S T A T ) KOUNT = K O U N T + 1 

X - SUM + D 2 3 

I F ( X .LE. STAT) KOUNT r KOUNT + 1 
I F ( - X .LE. S T A T ) K O U N T r K O U N T + 1 

2 0 X = SUM + D 2 2 

I F ( X . L E . S T A T ) KOUNT r KOljMT + 1 

I F ( - X . L E . S T A T ) KOUNT = K O U N T + 1 

1 0 IF (SUM . L E . S T A T ) K O U N T = K O U N T + * 

I F ( - S U M . L E . S T A T ) K O U N T = KOUNT + 1 

I F ( J . L T . M ) GO TO inOn 
C 

C * * * * * l ) P D A T E A C C U M U L A T O R S R E F L E C T I N G RESuLTS O F T H T S T E S T 

C 

00 500 I = 1 » N A 

I F ( K O U N T . L E . I C R I T ( D ) I R C < I ) = I R C ( D + i 
500 C O N T I N U E 

C 

C « * * * * O E T E R M I N E A N D P R I N T R E S U L T S F O R D E < ; I R E D V A L U F S O F A L P H A 

c 
V A R = SUMD2/(NToTAL*N) -XMU*xMlJ 

W R I T E ( 6 , 6 > V A R 

6 F O R M A T ( » V A R I A N C E O F T H E D I F F E R E N C E 5 = • f Fin.1*) 
DO 9n0 I = 1 , N A 

BR = I R C ( I ) / T O T A L 

S B R = S O R T ( B R * ( 1 - B R ) / T O T A L ) 

R C = I P C ( I ) / T O T A L 

S B C = S Q R T t B C * ( l - 9 C ) / T O T A L ) 

R N = I N C ( D / T O T A L 

S B N = S Q R T ( B M * ( 1 - 3 N ) / T O T A L ) 

B T = iTCd) / T O T A L 

S B T = S Q R T < 3 T * ( l - 3 T ) / T O T A L ) 

C C = I C R I T ( I ) 

900 WRITE ( 6 , 4 ) ALPHA(I) , C C » C ( I ) # Z ( I ) ' T ( J ) , B R » B C . B N . 5 T » 

* S B R , S 3 C » S g N » q R T 

4 F O R M A T ( » A L P H A r» , Fin.ft/ 
* • R A N D O M I Z A T I O N pARA n O R M A L T V 
* • C V A L U E S ' »<+Fi 0. * B E T A S » , U F l 0 . 6 / » S T D BfTASt m F m . 6 / > 

C 

C*****ENTErt N U M B E R OF A D D I T I O N A L S A M P L E S T° B E T E S T E D 

C 

WRITE ( 6 . 5 ) 
5 F O R M A T (• HOW MANY M O R E S A M P L E S ? ( I ) ' ) 

READ ( 5 » 2 » E N D = 1 5 ) NBIG 
IF (NBIG) 9 9 , 1 5 , 2 5 

C 

99 S T O P 

E N D 
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C PKOCESS GENERATOR FOR VARTOUS NISTRLBUTLONS 
SUBROUTINE DATAIN <IDLST»PL»P2FP3»P4»IS£ED»X) 
GO TO (1.2»3»<+)P IDIST 

C 
C*****IDIST r 1 TMPLITS THE GENERALIZED LAMBDA DISTRIBUTION 
C 

1 P = RANDOM(ISEEU) 
X = PI •*• (P**P3 - <1-P)**P<H / P2 
RETURN 

C 
C*****IOIST = ? TMPLITS NORMAL (PJ,STD=P2) 
C 

2 PA = RANDOM(ISETD) 
PB = RANDOM(ISELD) 
X = <-2*ALOG<PA)>**.5 * C0S(6.28318*PB> 
X = PI -f X*P2 
RETURN 

C 
C*****IDIST = 3 TMPLITS THE ABSOLUTE LAMBDA DISTRIBUTION C 

3 P = RANDOM(ISEEu) 
IF TP .LT. P4) X = - (P4-P)**P3 
IF CP .GF. P4> X - (P-P4)**P3 
X = PI + X/P2 
RETURN 

C 
C*****IDIST = U IMPLIES THE EXPONENTIAL DISTRIBUTION 
C 

4 P = RANDOM(ISEEJ) 
X = -ALOG(P) * PI 
RETURN 
END 
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APPENDIX C 

RESULTS FOR SECTION 6 . 3 . 5 

2 2 
In Section 6 . 3 . 5 Cov { D . , D , } , where D. and D. have I conf l i c t ing 

3 k j k 6 

s igns , was used in the derivation of the variance of the randomization 

2 
sample estimator of a . The value of this covariance i s now derived. 

Yn-£ 
Cov { D 2 , D 2 } = Cov 3 K 

n 2 fn 1 
d. - Z d i Z d. 

1 i=n-£+l 

r 
I fn-£ 1 2 fn-£ 1 Z d. - 2 Z d. 

li-i lJ 
F n > 

2~ f n 1 
+ Z d. 2 d. 

ki=n-£+l l 
> 

( i=n-£+l 

- E { D 2 } E {D.2 } 
3 k 

= E 
f f n - £ n - i l n - £ 

Z d + Z Z d .d. 
(j l i=l 1 i . l j - 1 1 3 

n-£ n 
- 2 Z Z d .d. 

i = l j=n-£+ l 1 3 

n ? n n 
Z d. + Z Z d.d 

(jl=n-£+l 1 i=n-£+ l j=n-£+ l 1 

n n n 
Z df + Z Z d .d . 

Li- i 1 i = l j = i 1 I 
i^3 

- c 
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= fi­
ll ? n-£ n 
Z d7 - 2 Z Z d.d. 

L i = l 1 i = l j=n-£+ l 1 3 

n n 
Z Z d.d. 

[1=1 j - 1 1 J 
i* j 

n-£ n 
2 Z Z d.d. 

i = l j=n-£+ l 1 3 

n n 
Z df + Z Z d.d. 

1=1 1 1=1 j = l 1 3 

- a 

= E 
frn 7 n-£ n n n 

Z d7 - 4 Z Z d.d. + Z Z d.d 
i = l 1 1=1 j = n - £ + l 1 J i = l j = l 1 \ 

i * j 

" n ? n n 
Z d 7 + Z Z d.d. 

1=1 1 i = l j = l 1 JJ 
i^j J - a 

= E 
(r-, n-£ n 

D* - 4 Z Z d.d. 

K • 1 • n i 1 3 
1=1 j = n - £ + l i 

- a 
which, with su f f i c i en t ins ight , may be written d irect ly . 

= E 
n-£ n 

4 Z Z d.d. 
i = l j = n - £ + l 1 3 

n „ n n 
Z d 7 + Z Z d.d. 

i = l 1 i = l j - 1 1 3 - a 
= y„ - 4E 

rn-£ 
Z Z Z d.d.d" 

i = l j = n - £ + l k=l 1 3 

n-£ n n n 
+ 2 Z Z Z Z d .d .e ld ) . - a 

i = l j = n - £ + l k=l m=k+l 1 3 K m 
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V 4 " 8 

n n-£ 
E E{d,d d . d . } 

LK=1 m=k+l i=l j=n-£+l _ 
- a 

since E{d^d.d^} = 0 for i^j 

P 4 - 8 
Tl-£ 

k=l m-n-£+l 
E{d? d 2 } 

K m - a 

= u. - 8 [ ( n - £ ) £ ( a 2 / n ) 2 ] - a 4 

r 8 ( n - £ ) £ . , 4 

n 

thereby showing the resu l t used in Section 6 . 3 . 5 

The resu l t 

£=1 & 
(n-£)£ = 2 n " 2 n ( n - l ) 

was also used in Section 6 . 3 . 5 . The v a l i d i t y of this resul t i s 

establ ished as fol lows: 

n 

Z £ 
£=1 ^ 

n-1 
(n-£)£ = I n 

£=1 ^ ! ( n - £ ) ! 
(n-£)£ 

n-1 
= n ( n - l ) I 

(n -2 ) ! 
z = 1 ( £ - D ' ( n - £ - l ) ! 

n -2 

= n ( n - l ) I 
(n-2) ! 

k = Q (k!)(n-k)! 

= n ( n - l ) 2 n " 2 
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since the summation i s the number of a l l poss ib le combinations of n -2 

things. 
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APPENDIX D 

PROGRAM LISTING FOR CHAPTER VI 

C MAIN P R O G R A M FOR P E R F O R M I N G MONTE CARLO S I M U L A T I O N 

C TO DETERMINE I HE D I S T R I B U T I O N OF ( S U M D ( I ) / S O R T ( N ) ) 
C 

D I M E N S I O N ICHlSr ( 5 0 0 0 ) » I H I S T ( 5 0 0 0 ) r X C M 0 M ( 8 ) , X M O M ( f i ) , 
* A ( 1 0 0 ) , R ( 1 0 0 ) , D ( 1 0 0 ) , P ( 5 0 ) , A A ( 8 ) , R A < 8 ) » A A D I F ( 8 ) , A M 0 M ( 8 , 2 ) , 
* A H I S T ( 5 0 r 3 ) r l T W O ( l O O ) 

C 
NCELLS = 5 0 0 0 
HT1 = - 5 . 
HW = , 0 0 ? 
WRITE ( 6 , 3 ) 

3 FORMAT(UlTO PERFORM M O N T E C A R L O S I M U L A T I O N TO DETERMINE T H E • / 

« ' D I S T R I P U T I O N uF ( S U M D ( I ) / S O R T ( N ) ) • ) 
1 0 0 WRITE ( 6 » 1 B ) 

18 F O R M A T L « E N T E K T H E P A R E N T P O P U L A T I O N I N D I C A T O R « » / 

* • F O U R P A R A M E T E R V A L U E S , V 

* • A N D THFC. I N I T I A L R A N D O M N U M B E R ( I , X , X , X , X » I ) • / ) 

R E A D ( 5 » 1 , E N 0 = 9 * ) I D I S T , P 1 » P 2 , P 3 , P 4 , J S E E D 
1 FORMAT ( ) 

I ISEED = I S E E D 

I N I T S = I S E E D 

C 
2 0 0 W R I T E ( 6 , 4 ) 

4 FORMAT* M I E M T E R S A M P L E S I Z E ( N O . O F O B S E R V A T I O N D I F F E R E N C E S ) ( I ) • / ) 

READ ( 5 , l , E N D = l u 0 ) N O 
C 
C C L E A R C U M U L A T I V E . M O M E N T A C C U M U L A T O R S A N D H I S T O G R A M 

C 
S Q R T N O = S O R T ( N O ) 

DO O00 I r l , N C E L J - S 
3 0 0 I C H i S T t I ) = 0 

NS = 0 
DO 4 0 0 1 = 1 , 8 
DO H10 J = l , 2 

4 1 0 AMOM(I»J ) = 0 . 
4 0 0 X C M O M ( I ) r 0 . 

W R I T E ( 6 . 3 5 ) 

3 5 F O R M A T ( ' O C U M U L A T I V E H I S T O G R A M A N D MOMENTS A R E Z E R O E D . ' / ) 

D O 4 2 0 I r l . N O 
4 2 0 I T W O ( I ) r 2 * * ( N O - I ) 
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450 WRITE ( 6 , 1 9 ) 

1 9 FORMAT (• TO C H M N G E PERCENTILE TO BE EVALUATED*ENTER NEW 
* • NUMBER OF PEKCENTILES. II) ELSE HIT RETURN.') 

READ l5,l,END=2u0> I I 
IF I I I . L E . 0) GO TO 465 
N P s I I 

WRITE (6 ,17) NH 
1 7 FORMAT (•OENTERN 1 3 , • NEW PERCENTILE VALUES X , X , . . . M 

READ 15,1,END=2U0> ( P 1 1 ) • 1 = 1 , N P ) 
465 DO 460 1 = 1 , N P 

AHISTUrl) = 0 . 
AHIST(I,2) = 0 . 

460 AHISTlI.3) = 0 . 
C 

470 WRITE ( 6 , 3 3 ) 
3 3 FORMAT I'ODO YOU WANT TO USE ANTITHETIC VARIABLES?') 

REAJ(5»11»END=400) I 
IANTIT = - 1 
IF l l .EO. fYES • ) IANTIT = 1 

C 

500 WRITE ( 6 , 5 ) 
5 FORMAT I'OENTER « SAMPLES / MONTE CARLO REPLICATION. <I)» / ) 

REAJ 15,1,END=470) NR 
K2NR - NR 
IF (IANTTT .EG. 1 ) K2NR = 2*NR 

C 600 WRITE (6 ,6 ) K2N* 
6 FORMAT ( t ENTER " Y E S " TO GENERATE ANOTHERI6r• SAMPLES.M 

REAu ( 5 , 11,END=<:00> I 
1 1 FORMAT (A6) 

IF ( I #EO. »YES •) GO TO 690 
WRITE (6 ,6 ) K2NK 
READ(5,ll»END=2u0) I 
IF l l .NE. »YES •) GO TO 200 

C 
C CLEAR HISTOGRAM AND MOMENT ACCUMULATORS FOR THIS REPLICATION 
C 

690 DO 700 I=l»NCELuS 
700 IHISTU) = 0 

DO 600 1=1,6 
800 XMOMII) = 0 . 

C 

C GET NR MORE DIFFERENCE SAMPLES, EACH OF SIZE NO 
C 

610 NS = NS + 1 
IF IIANTTT .LT. 0) GO TO 990 
IF (IANTIT .EG. 0) GO TO 995 
IANTIT = 0 
IISEED = ISEED 
GO TO 990 

995 IANTIT = 1 
I S E L D = IISEED 
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990 CALL STRAT(NR.NUrNO.ISEEDfl.P) 
DO 900 K=1»NR 
CALL DATAIN (ID1ST»P1»P2iP3» P4»ISEED»A»NO»NS»NR»IANTlT*AA) 
CALL DATAIN (IDiST, PI •P2»P3»Pttt ISEEU»3»N0»NSfNR» IANTIT*AA ) 
DO 1000 I=l»NO 

1000 D(D = All) - BID 
IF INS .GT. 1 .OR. K .GT. 1) GO TO 1050 

C 
C CALCULATE MOMENIS FOR THE DIFFERENCES* AADIF, FROM 
C THE MOMENTS OF THE VALUES RETURNED FROM DATAIN, AA 
C 

AADIF U ) — 0. 
AADIF12) — SQRT(2*AA(2)*AA(2)) 
AADIF13) 0. 
AADIF(**) .5*(AA(4)+3) 
AADIF(5) — 0. 
AADIF(6) — •25*(AA(6)+15*AA(4)-l0*AA(3)*AA(3)) 
AADIF(7) 0. 
AADIF(8) — •125*(AA(8)+28*AA(6)-56*A A,(3)*AA (5)+35*AA(4)*AA(4)) c 

C CALCULATE THE MoMENTS OF THE RANDOMIZATION DISTRIBUTION. RA» 
C F R O M THE MOMENT̂  OF THE DIFFERENCES* AADIF 
C 

RA12) = AA0IF(2) 
R A ( 4 ) = AADIF13) / SQRTlNO) 
R A ( 4 ) r 3 . + ( A A D I F ( 4 ) - 3 . ) / NO 
R A t 5) = (AAOIF(^)-10*AADIF(3))/N0**1.5 + (10*AADIF(3))/ SQRT(NO) 
R A ( 6 ) = 15 + (15*AADIF(4)+lO*AADIF(o)*AADlF(3)-45)/N0 

* • <AADIF16)-15*AADIF(4)-10*AADIF<3)*AADIF(3)+30)/(NO*NO) 
R A ( 7 ) = (AAOIF(7)-2l*AADIF(5)-35*AAulF(4)*AADIF(3)+2lO*AADIF(3)) 

* / M0**2.5 
* + <2l*AADIF<5)*35*AADlF<H)*AADIF(3>-415*AAniF<3))/N0**1.5 
* + (105*AADIF(3) ) /SQfT(NO) 

R A < 8 ) = (AA0IF(<s)-26*AADIF(6)-56*AADlF(3)*AADlF(5)-35*AADIFU) 
* *AADIF(4) + 420*AADIF(U) 
* +560*AADIF(3)*AADlF(3)-630) / NO** 3 
*+(28*AADIF(b)+5o*AADIF(3)*AADIF(5)+35*AADIF(4)*AAD7F(4)-
* 630*AAOIF(4)-Q40**AADIF(3)*AADIFI5) 
* + ] 155)/(N0'*N0) 
* • (210*AADIF(4>+280*AADIF(3)*AADIF(3)-630) / NO + 105 

WRITE (6,31) (I»AA(I),AADIF(I) ,Irl ,b) 
31 FORMAT (»0M0MENiS . . . * / » PARENT POPULATION DIFFERENCES*/ 

* U3,2F15.4)) 
C 
C CALCULATE THE CuRNlSH-FISHEP EXPANSION OF THIS DISTRIBUTION 
C 

WRITE (6»112) 
112 FORMAT (» DO YOU WANT THE CORNISH-FISHER APPROXIMATION?*) 

REAu (5,U,END=i.050) I 
IF H .NF. * YES •) GO TO 1050 
WRITE 16,1039) 

1039 FORMAT I•OCORNIbH-FlSHER EXPANSION . . . » / 
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* • PERCENTILE N(O.l) THRU 4 THRU 6 THRU 8«/> 
XK4 = RA<4) - 3 
XK6 = RA<6) - l:>*RAt4) + 30 
XK8 s RA(8) - 2o*RA(6) - 35*RA(4)*RA( 4) + 420*RA<4> - 630 
DO 1040 I=liNP 
CALL NDTPKP(I) »XN»C»IER) 
XN3 = XN*XM*XN 
XN5 = XN3*XN*XN 
XN7 r XN5*XN*XN 
FIN4 = XN + XK4*(XN3-3*XN) / 24 

» - XK4*XK4*<3*XN5-24*XN3+29*XN> / 384 
* 4 XK4**3*(9*XN7-13l*XN5+45 *XN3-321*XN) / 3072 

FIN6 = FIN4 • XK6*(XN5-10*XM3+15*XN) / 720 
* + Xi\4*XK6*<XN7-17*XN5+69 XN3-57*XN) / 1152 

FlNd r FIN6 • X K 8 * ( X N 7 - 2 1 * X N 5 + 1 0 5 * X N 3 " " 1 Q 5 * X N ) / 40320 
1040 WRITE (6»1041) P(I)» XN» FIM4» FIN6, FIN8 
1041 FORMAT (5F10.6) 

C 

1050 M = ITWO(l) 
DO 1100 J=1»M 
SUM r -D(l) 
IEVEN2 = M 
ITEKM = J 
DO 1200 T=2»N0 
IEVEN = IEVEN2 
IEVtN2 = ITWOtlJ 
IF IIEVEN .LT. iTERM) ITERM r ITERM - IEVEN 
IF (ITERM .GT. 1EVEN2) GO TO 1280 
SUM = SUM - D<I) 
GO TO 1200 

1280 SUM = SUM + D(I) 
1200 CONTINUE 

SUM = SUM / SQR1NO 
SUM2 - - SUM 

C IF (NR •EQ. 1 . M N D . NS .EQ. 1) WRITE (6»29) SUM» SUM2 
29 FORMAT (2F10.4) 

C 
C UPDATE THE SAMPLE HISTOGRAM AND SAMPLE MOMENT ACCUMULATORS 
C 

INTERV = (SUM-HFD/HW + 2. 
IF IINTERV .LT. 1) INTERV = 1 
IF (INTERV .GT. NCELLS) INTERV = NCELLS 
IHIST(INTEPV) = IHIST(INTERV) + 1 
INTERV = (SUM2-nTl)/HW + 2. 
IF IINTERV .LT. 1) INTERV = 1 
IF IINTERV .GT. NCELLS) INTERV = NCELLS 
IHISTHNTEPV) = IHI ST (INTERV) + 1 
X = SUM*SUM 
XMOM12) = XMOM(ii) + X + X 
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1100 
900 

1300 

Y s X * X 
XM0M(4) = XM0M14) • Y • Y 
X = X * Y 
XMOM16) = XMOMlo) • X • X 
Y = Y * Y 
XM0M(8) = XMOMla) • Y • Y 
CONTINUE 
I F llANTIT .EQ. 0) GO TO 610 

UPDATE CUMULATIVE HISTOGRAM AND MOMENT ACCUMULATORS 

DO 1300 1= l.NCEuLS 
ICHIST(I) = ICHlST(I) • IHIST(I) 
XCMUM12) = XCM0M(2) XMOM(?) 
XCM0M(4) = XCM0M(4) XMOM(U) 
XCM0M(6) - X C M 0 M ( 6 ) XMOM(fe) 
XCMOM(8) = XCM0rt(8) XM0M(8) 

CALCULATE SAMPLc MOMENTS 

NTOTAL = K2NR *IM+M) 
SSTj r SORT(XM0M(2)/(NT0TAL-l)) 
X = XM0M(2) * XrtOM(2) 
SA4 r XM0M(4) * NTOTAL / X 
X = X * XMOM(2) 
SA6 = XM0M(6) * NTOTAL * NTOTAL / X 
X = X * XM0M(2) 
SA8 r XM0M(8) * NTOTAL*NTOTAL*NTOTAL / X 

CALCULATE SUM AND SUM OF SQUARES 

AM0M(2» 1) = AMOM(2 »1) SSTD 

AMOMI 21 
2) — AMOM(2 »2) SSTD*SSTD 

AM0M«4, 1) r AM0i«i(4 r l ) SA4 
AM0M(4, 2) r AM0.-i(4 , 2 ) SA4*SA4 
AMOM«6, 1) r AM0I«I(6 tl) SA6 
AM0M(6. 2) r AMOM(6 »2) SA6*SA6 
AM0M(8» 1) — AM0*(8 rl ) SA8 
AM0M18, 2) - AMOM ('8 »2) SA8*SA8 

FOR EACH SAMPLE MOMENT 

WRITE (6 .14) 
14 FORMAT (• PRINT RESULTS?') 

REAO (5.ll»END=o00) IPRINT 
IF (IPRINT •NE, »YES ») GO TO 139 

CALCULATE THE CUMULATIVE MOMENTS 

NT0TA2 = NS * NfOTAL 
IF (IANTIT •GE• 0) NT0TA2 r NTOTA2 * 2 
CMSTD = SQRT(XCM0M(2)/(NT0TA2-1)) 
X = XCM0MC2I * XCM0M(2) 
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C M A 4 = X C M 0 M 1 4 ) * N T 0 T A 2 / X 

X = X * X C M 0 M ( 2 ) 

C M A 6 = X C M 0 M I 6 ) * N T 0 T A 2 * M T O T A 2 / X 

X = X * X C M 0 M 1 2 ) 

C M A 8 = X C M O M ( 8 ) * N T 0 T A 2 * N T 0 T A 2 * N T 0 T A . 2 / X 

C 

C P R I N T R E S U L T S 

C 

N S A M = N S * N R 

N D I F = N O * N S A M 

N S H r N S 

N R 2 = N R 

I F I I A N T I T . E Q . - 1 ) G O T O 1 2 9 

N S H = N S / 2 

N R 2 : N R + N R 

1 2 9 W R I T E 1 6 - 2 0 ) I D I S T , p i » P 2 - P 3 » P 4 r I N I T S , N 0 » N R 2 » N S H » N S A M , N D l F » N T o T A 2 

2 0 F O R M A T ( * O P A R E N F P O P U L A T I O N = » » I 1 0 / 

* • W I T H P A R A M E T E R S ' » 4 F 1 0 . 6 / 

* • U S I N G I N I T I A L R A N D O M « b E r E D = * » 1 1 1 / 

* • S A M P L E S I Z E = 1 1 0 / 

* • S A M P L E S / M O N T E C A R L O R E P L . = • » 1 1 0 / 

* • R E P L I C A T I O N J U S T C O M P L E T E D = • » 1 1 0 / 

* • T O T A L n S A M P L E S G E N E R A T E D = • » 1 1 0 / 

* « T O T A L U D I F F E R E N C E S G E N E R A T E D 1 1 0 / 

* • T O T A L U T E S T S T A T . V A L U t £ G E N . = « » I 1 0 / > 
I F ( I A N T I T . G E . 0 ) W R I T E ( 6 , 3 4 ) 

3 4 F O R M A T ( • A N T I T H E T I C V A R I A B L E S U S E D . 1 / ) 

C 

C C A L C U L A T E M E A N M N D S T D O F S A M P L E M O M E N T V A L U E S 

C 

A 2 S T D = 0 . 

A 2 A 4 - 0 . 

A 2 A 6 = 0 . 

A 2 A 8 r 0 . 

C 

N S H < ! = ( N S H - 1 ) * N S H 

A S T D = A M 0 M ( 2 » 1 ) / N S H 

I F ( N S H . G T . 1 ) A 2 S T D = S O R T ( ( A M O M ( 2 » 2 ) - N S H * A S T D * A S T D ) / N S H 2 ) 

A A 4 = A M O M ( 4 , 1 ) / N S H 

I F ( N S H . G T . 1 ) A 2 A 4 = S O R T ( ( A M O M ( 4 • 2 ) - N S H * A A 4 * A A 4 > / N S H 2 ) 

A A 6 = A M 0 M ( 6 , 1 ) / N S H 

I F ( N S H . G T . 1 ) A 2 A 6 = S O R T ( ( A M O M ( 6 » 2 ) - N S H * A A 6 * A A 6 ) / N S H 2 ) 

A A 8 = A M 0 M ( 6 , 1 ) / N S H 

I F ( N S H . G T . 1 ) A 2 A 8 = S Q R T ( ( A M O M ( 8 » 2 ) - N S H * A A 8 * A A 8 ) / N S H 2 ) 

C 

W R I T E ( 6 » 2 1 ) R A ( ^ ) » C M S T D » A S T D t A 2 S T D f R A ( 4 ) , C M A 4 1 A A 4 , A 2 A 4 » 

* R A ( 6 ) » C M A 6 » A A o » A 2 A 6 # R A ( 8 ) , C M A 8 » A A o # A 2 A 8 

2 1 F O R M A T ( • R A N D O M I Z A T I O N D I S T R I B U T I O i M * / • M O M E N T S T R R O 

* • A L L R E P L I C A T I O N S * / 

* 2 4 X » » C U M M E A N S T D V 

* • S T O » , 4 F 1 0 . 3 / 
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* • A 4 « » 4 F 1 U . 3 / 

» • A 6 » . 4 F 1 0 . 3 / 

* • A 8 » » 4 F 1 0 . 3 / / 

* • P E R C E N T I L E S R < 0 » 1 ) » » 3 0 X > ' S T A N S T D V ) 

C 

C D E T E R M I N E A N D P K I N T P E R C E N T I L E I N F O R M A T I O N F R O M T H E T W O H I S T O G R A M S 

c 
I I S T E D = I S E E D 

1 3 9 0 I S U M = 0 

J = 1 

I S U M 2 = 0 

J 2 = 1 

D O 1 4 0 0 I = 1 » N P 

T H R T S H = P ( I ) * N T O T A L 

1 4 0 5 I O L U = J 

1 4 1 0 J = J + 1 

I F ( J . L E . N C E L U S ) G O T O 1 4 4 0 

X = 0 . 

G O T O 1 4 5 0 

1 4 4 0 I F I I H I S T ( J ) , L C 0 ) G O T O 1 4 1 0 

I S U M = I S U M + I N L S T I J ) 
I F I I S U M . L T . T H R E S H ) G O T O 1 4 0 5 

X = ( I O L D * I H I S T L I O L D ) • J * I H I S T ( J ) ) / ( I H I S T ( I O L H ) + I H I S T ( J ) ) 

X = ( X - 2 ) * H W • H T 1 

A H I S T L I . L ) = A H I S T ( I , L ) + X 

A H I S T H . 2 ) = A H L S T < I , 2 ) • X * X 

A H I S T ( I , 3 ) = A H I S T ( I » 3 ) + 1 . 

I F I I P R I N T . N E . • Y E S » ) G O T O 1 4 0 0 

A M E A N = 0 . 

A S T J - 0 . 

I F I A H I S T ( T » 3 ) . L T . . 5 ) G O T O 1 3 9 5 

A M E A N = A H I S T L I . L ) / A H I S T ( I , 3 ) 

I F I A H I S T I I . 3 ) . G T . 1 . 5 ) A S T D = S O R T ( ( A H I S T ( I » 2 ) 

* - A H I S T ( 1 . 3 ) * A H E A N * A M E A N ) / I A H I S T I I » 3 ) — 1 • ) ) 

A S T D = A S T D / S U R T ( A H I S T ( I . 3 ) ) 

C 

1 4 5 0 T H R T S H = P T I ) * N T 0 T A 2 

1 4 1 5 I 0 L U 2 R J 2 

1 4 2 0 J 2 = J 2 + 1 

I F I J 2 . L E . N C E L L S ) G O T O 1 4 6 0 

Y = 0 . 

A M E A N = 0 . 

A S T D = 0 . 

G O T O 1 3 9 5 

1 4 6 0 I F I I C H I S T ( J 2 ) . L E . 0 ) G O T O 1 4 2 0 

I S U M 2 = I S U M 2 + I C H I S T U 2 ) 

I F I I S U M 2 . L T . I H R E S H ) G O T O 1 4 1 5 

Y = < I 0 L P 2 * I C H I B T U 0 L D 2 ) 4 - J 2 * I C H L S T < J 2 ) ) / < I C H I S T < I 0 L D 2 ) + I C H I S T < > ) 

Y = ( Y - 2 ) * H W + H T 1 
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1 3 9 5 Z = Y / C M S T D 

XX s A S T P / C M S T O 

I F C I P R I N T « £ Q . * Y E S M W R I T E <6»22> P ( I > » Z » Y , A M E A N , A S T D , X X 

22 F O R M A T (F10.6.5K10.5) 
1 4 0 0 C O N T I N U E 

G O T O 600 
C 

9 9 S T O P 

E N D 

C T O GENERATE RANuOM SAMPLES OF SIZE N FROM THE DISTRIBUTION 
C INDICATED BY IDiST, WITH PARAMETERS Pl,P2»P3,P4» USING 
C RANOOM NUMBER ScED ISEED. THE RANDOM VALUES A*E PLACED IN X. 
C 

SUBKOUTINE D A T A i N ( I D I S T , P I , P 2 , P 3 , P 4 t T S E E D » X . N O » N S , M R , I A N T I T . A A ) 

DIMENSION XINO)» AA<8) tPUOOO) »RAW(8> 
IMPLICIT DOUBLE PRECISION ( B » D » R ) 
DP3 = P3 
D P 4 = P4 

C 
G O TO U»2»3f4) »IDIST 

C 
C IDISTrl INDICATES THE GENERALIZED LAMBDA DISTRIBUTION 
C 

1 N N O = NO 
CALL STRAT(NR»NO»NNO»ISEED»0-P) 
D O 10 I=l,NO 
IF (IANTTT .LE. 0) GO TO 10 
IF C P U ) .LE. .t>> PCI) = .5 - P(I) 
IF lP(I) .GT. .a) P(I) = 1.5 - P(I) 

10 X(I> = PI + ( P < A ) * * P 3 - ( l . - p c I ) / P2 
IF INS .GT. 1) RETURN 

C 
C CALCULATE THE FiRST EIGHT RAW MOMENT 
C 

B80 = 1 / (8*DPJ-H) 
B71 = BETA(7*DPo+l,DP4+l) 
B62 = BETAl6*DPo+l»2*DP4+l) 
B53 = BETA(5*DPo+l,3*DP4+l) 
B44 = BETA(4*DPo+l»4*uP4+l) 
B35 = BETA(3*DPJ+1»5*DP4+1) 
B26 = BETA(2*DPo+l,6*DP4+l) 
B17 r BETA(DP3+1»7*DP4+1) 
B08 r 1 / (8*DP4+1) 
B70 = 1 / (7*DPo+l) 
B61 = BETA 16*DP3+1,DP4+1) 
B52 = B E T A ( 5 * D P J + 1 » 2 * D P 4 + 1 ) 
B43 = BETA(4*DP^+l»3*DP4+l) 
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B34 = B E T A < 3 * D P J + 1 . 4 * D P 4 + 1 > 

B25 r B E T A ( 2 * D P J + 1 . 5 * D P 4 + 1 ) 

B 1 6 r B E T A ( D P 3 + l » 6 * Q P 4 + l ) 

B07 = 1 / ( 7 * D P 4 + 1 ) 

B 6 0 = 1 / ( 6 * 0 P J + 1 > 

B51 r B E T A ( 5 * D P J + 1 » D P 4 + 1 ) 

B42 = B E T A ( 4 * 0 P o + 1 . 2 * D P 4 + l ) 

B33 = B E T A ( 3 * D P J + 1 » 3 * D P 4 + 1 ) 

B24 r B E T A ( 2 * D P , i + 1 . 4 * 0 P 4 + l ) 

B15 r B E T A ( 0 P 3 + i » 5 * D P 4 + l ) 

B06 = 1 / < b * D P 4 + l ) 

B50 = 1 / ( 5 * D P o + l ) 

B 4 1 = B E T A ( 4 * D P o + l i D P 4 + l ) 

B32 = B E T A ( 3 * D P * + + 1 » 2 * D P 4 + 1 ) 

B23 = B E T A ( 2 * D P o + l » 3 * D P 4 + l ) 

B14 = B E T A ( L ) P 3 - H . 4 * D P 4 + 1 ) 

B05 = 1 / < 5 * D P 4 + 1 ) 

B 4 0 = 1 / ( 4 * D P o + l ) 

B 3 1 = B E T A 1 3 * D H 3 + 1 , D P 4 + 1 ) 

B 2 2 = B E T A 1 2 * D P 3 + 1 » 2 * D P 4 + 1 ) 

B 1 3 = B E T A l D P 3 - * - l » 3 * D P 4 + l ) 

B 0 4 = 1 / ( 4 * D P * + L ) 

B30 = 1 / < 3 * D P o + l ) 

B 2 1 = B E T A ' ( 2 * D P 3 + 1 » D P 4 + 1 ) 

B 1 2 = B E T A I D P 3 + 1 » 2 * D P 4 + 1 ) 

B 0 3 = 1 / ( 3 * D P H + 1 ) 

B 2 0 = 1 / ( 2 * D P ^ + 1 ) 

B l l = B E T A I D P 3 + 1 » D P 4 - H > 

B 0 2 = 1 / < 2 * D P 4 + 1 ) 

BIO = 1 / ( D P 3 + 1 ) 

BOl = 1 / ( D P 4 + 1 ) 

C 

Rl = BIO - BOl 
R2 = B 2 0 - 2 * B U • B 0 2 
R3 = B 3 0 - 3 * 8 2 1 + 3 * 6 1 2 - P 0 3 

R4 = B 4 0 - 4 * B 3 l + 6*B22 - 4 * 8 1 3 + 6 0 4 
R5 = B 5 0 - 5 * B 4 1 • 1 0 * B 3 2 - 1 0 * B 2 3 + 5 * B 1 4 - B 0 5 

R 6 = B 6 0 - b * B 5 1 + 1 5 * B 4 2 - 2 0 * B 3 3 + 1 5 * B 2 4 - 6 * B l 5 • B Q 6 

R 7 s B 7 0 - 7 * B 6 1 + 2 1 * B 5 2 - 3 5 * B 4 3 + 3 5 * B 3 4 - 2 1 * B 2 5 

* + 7 * B 1 6 - D 0 7 

R 8 = B 8 0 - 8 * B 7 i + 2 8 * B 6 2 - 5 6 * B 5 3 • 7 0 * B 4 4 - 5 6 * B 3 5 

* + 2 8 * B 2 6 - 8 * B 1 7 + B 0 8 

C 

C 

C C A L C U L A T E T H E S K E W N E S S AND K U R T O S I S F R O M T H E RAW M O M E N T S 

C 

1 0 0 A A U ) = P l + R 1 / P 2 

A V A R = R 2 - R l * K l 
A A < 2 ) = S Q P T ( A V A R / ( P 2 * P 2 ) ) 

A A < 3 ) = < R 3 - 3 * R 2 * K 1 + 2 * R 1 * * 3 ) / A V A R * * 1 . 5 

A A < 4 ) = ( R 4 - 4 * R 3 * R 1 + 6 * R 2 * R 1 * R 1 - 3 * R 1 * * 4 ) / A V A R * * 2 
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AAI5)s«R5-5*R4*Kl • 10*R3*R1*R1 - 10*R2*R1**3 • 4*Rl**4)/AVAR**.i.5 
AA«b)SlR6-6*R5*rtl+15*R |t«Rl*Rl-20*R3*Rl**3«r.l5*R2*Rl**4-5*Rl**5) 

* / AVAR**3. 
A A m = lR7-7*R6*Kl+21*R5*Rl*Rl-35*R4*ffl**3+35*R3*Rl**4-

* 21*R2*R1**3+6*R1**7) / AVAR**3. 
AAtd) = IR8-8*R7*Rl+28*R6*Rl*Rl-56*ri5*Rl**3+70*R4*Pl**4 

* -56*R3*R1**5+28*R2*R1**6-7*R1**8) / AVAR**4. 
RETURN 

IDIST = 2 FOR NORMAL RANDOM VARIABLE USING BOX-MULLER 

2 CALL STRAT (NR»HO»2*NO,ISEEP»0,P) 
DO <i0 1=1 r NO 
IF llANTIT . L E . 0) GO TO 15 
P ( 2 * I - 1 ) = 1 . - P ( 2 * I - 1 ) 
P ( 2 * I ) = 1 . - P ( 2 * I ) 

15 X(I) = ( - 2 * A L 0 G ( P ( 2 * I - 1 ) ) ) * * . 5 * C 0 S < o . 2 8 3 1 8 * P ( 2 * I > ) 
20 X(I) = P I + P 2 * A U ) 

AA(1) — PI 
AA t ^ J — P2 
AA(3) — 0. 
AA(4) — 3. 
AA(b) — 0. 
AAlo) — 1 5 . 
AAI7) — 0. 
AA(d) — 105. 
RETURN 

GENERATE USING THE ABSOLUTE LAMBDA DISTRIBUTION 

3 CALL STRAT(NR,NU.NO,ISEED»0,P) 
DO 40 1 = 1» MO 
IF 11ANTIT .LE. 0) GO TO 45 
IF IP(I) . L E . PU> = . 5 - P(I) 
IF lP(I ) .GT. ,3] P(I) = 1 . 5 - PCI) 

45 IF IPII) . L T . DP4) PP = - (DP4-P(I))**DP3 
IF CPU) ,GE. DP4) PP = (P (I) -DP4) **DP3 

40 XII) = PI + PP/H2 
IF INS .GT. 1) RETURN 

DO 50 1 = 1.8 
Y = I*DP3+1 
ISIGN = - 1 
IF (MOD(I»?) .EU. 0) ISIGN = 1 

50 RAW(I) = {ISIGN*DP4**Y + U-DP4)**Y) / Y 
Rl = RAW<1) 
R2 = RAW(2) 
R3 = RAW(3) 
R4 = RAW<<+) 
R5 = RAW(5) 
R6 = RAW(6) 
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R7 s RAW(7> 
R8 = RAWI8) 
GO TO 1 0 0 

C T O P E R F O R M S T R A U F E D S A M P L I N G G I V E N A U ( O . l ) R A N D O M G E N E R A T O R 

C K = N O F S T R A T A 

C M = U O B S E R V A T I O N S P E R S T R A T A 

C N = N U M B E R O F R M N D O M V A L U E S " T O B E G t J v J E R A T E D T H I S C * L L 

C P R O B A B I L I T I E S A R E U P D A T E D O N L Y A T E N D O F " O U T T N E , 

C S O T H E N V M L U E S G E N E R A T E D A R E I N D E P E N D E N T . 

C I F I K S T = 1 F O R I N I T I A L I Z A T I O N 

C = 0 F O R G E N E R A T I O N O F A R A N D O M V A L U E 

C R = THE R A N D O M V A L U E G E N E R A T E D 

C 
S U B R O U T I N E S T R A T ( K , M » N , I S E E D , I F I R S T t V A L U E ) 

D I M E N S I O N P 1 2 0 0 U ) » N O B S ( 2 0 0 0 ) , V A L U E 1 2 0 0 0 ) 

I F ( I F I R S T . E Q . 0 > G O T O 1 0 0 

C 
C * * * * * I N I T I A L I Z E P R O B A B I L I T I E S P ( I ) O F THc. R A N D O M V A L U E C O M I N G 

C F R O M S U B T N T E R V A u S 1 , 2 , . . . , I 

C A N D T H E N U M B E R O F O B S E R V A T I O N S N O B S ( I ) S T I L L T O C O ^ E 

C F R O M S U B I N T E R V A L . I , 1 = 1 , 2 , . . . , K 

C 
5 X K = K 

I F ( K . L E . 2 0 0 0 . A N D . N . L E . 2 0 0 0 ) S O T O 1 5 

W R I T E ( 6 , 1 ) K , N 

1 F O R M A T C O I N T H c S T R A T I F I E D S A M P L I N G S U B R O U T I N E » » S T R A T » » , * / 

* • T H E N U M B E R O F S T R A T A M U S T N O T E X C f E D 2 0 0 0 . Y O U H A V E • , I 1 0 / 

* • T H E N U M B E R O F R A N D O M V A L U E S M U S T NOT E X C E E D 2 0 0 0 . Y O U H A V E ' , I i U , 

* / • E X E C U T I O N T E R M I N A T E D . ' ) 

C GENERATE EXPONENTIAL RANDOM VALUES WITH MEAN Pl 
C 

4 CALL STRAT(NR,NO,NO,ISEED,0,P) 
DO 60 1=1,NO 
IF (IANTTT .LE* 0) GO TO 60 
IF lP( I ) .LE. . 0 ) PtI ) = . 5 - P ( I ) 
IF (P(I ) .GT. # o ) P<I> = 1 .5 - PCI) 

60 XII ) = -ALOG(PU)) * Pl 
IF INS .GT. 1) RETURN 
AAU) r Pl 
AA(2) = Pl 
AA<3) = ? 
AA(4) = 9 
AA(5) = 44 
AA(6) = 265 
AA(7) = 1854 
AA<8) = 14833 
RETURN 
END 

C 
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S T O P 7 7 7 

1 5 D O 1 0 I = 1 » K 

P C I ) = I / X K 

1 0 N O B S l I ) = M 

T O T O B S = M * X K 

R E T U R N 

C 

C » * * * * G E N E R A T E O N E V A u U E P D I S T R I P U T E D U ( 0 , 1 ) 

C T H E N D E T F R M I N E * H I C H S U B I N T E R V A L I T H E R A N D O M V A L U F 

C R W I L L C O M E F R O M » U S I N G C U R R E N T P ( I ) V A L U E S 

C 

1 0 0 D O 3 0 0 J J = 1 » N 

R = R A N D O M ( I S E E u ) 

D O 2 0 J = 1 » K 

I F I R . G T . P t J ) ) G O T O 2 0 

I = J 

G O T O 2 0 0 

2 0 C O N T I N U E 

I = K 

C 

C C A L C U L A T E W H E R E R F A L L S I N T H E I T H S U B I N T E R V A L 

C 

2 0 0 N O B S ( I ) = N O B S U ) - 1 

Y = 0 . 

I F t l , G T , 1 ) TT = P ( I - l ) 

R = ( R - Y ) / < P U ) - Y ) 

V A L U E I J J ) r ( I + K - l . ) / XK 

I F t V A L U E ( J J ) . L E , 0 ) V A L U E ( J J ) = . i E - 1 0 

I F t V A L U E U J ) , w E . 1 ) V A L U E C J J ) = 1 . - . I E - 1 0 

3 0 0 C O N T I N U E 

C 

C * * * * * R E V I S E T H E S U B I H T E R V A L P R O P E R T I E S F O R T H E N E X T C A L L 

C 

I F i T O T O R S . L E . N + . i ) G O T O 5 

T O T O B S = T O T O B S - N 

P l l ) = N O B S ( l ) / T O T O B S 

D O 30 I = 2 » K 

3 0 P l l ) = P ( I - l ) + N O B S l I ) / T O T O B S 

R E T U R N 

E N D 

C T O G E N E R A T E U N I F O R M < 0 r l ) R A N D O M N U M B E R S O N T H E U N I V A C 1 1 0 8 

C 

F U N C T I O N R A N D O M I I S E E D ) 

I S E t D = T S E E D * 1 3 1 0 7 5 

I F I I S E E D . L E . U ) I S E E D = I S E E D • 3 4 3 5 9 7 3 8 3 6 7 + 1 

R A N D O M = I S E E D * . 2 9 1 0 3 8 3 E - 1 0 

R E T U R N 

E N D 
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