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SUMMARY

Component randomization tests of statistical hypotheses have good
mathematical properties and are distribution-free. While the power of
these tests is well known for asymptotically large samples, little is
known for finite sample sizes. This research studies the power of the
component randomization test of location in the paired sample design
for finite sample sizes.

The component randomization test is computationally difficult,
requiring approximately the effort of 2" student t tests, where n is
sample size. Previously Monte Carlo studies were not applied directly
since the thousands of samples necessary for adequate results would
require an unreasonable amount of computer effort. Methods of Monte
Carlo distribution sampling are developed to allow the Monte Carlo
approach to be used. Areas of interest include quantile estimation,
process generation, methods of performing the component randomization
test efficiently, and variance reduction.

Quantile estimators are proposed for two cases: raw and grouped
data. A linear combination of order statistics is recommended for raw
data and interpolation within the group is recommended for grouped
data. Confidence intervals and the effect of sample size are also
treated.

Eight criteria for general process generation, the transfor-
mation of U(0,1) values to a distribution having any of a wide range

of first four moments with only one functional form and four parameters,



xi

are given. A transformation is given and developed which will attain
any first four moments using only four parameters and one fumctional
form.

A basic method and improvements are given to test the location
hypothesis in the paired samples design using the component randomi-
zation test. The basic method allows generation of signs without
tabled values through the use of modular arithmetic, while the impfove—
ments increase the computational speed.

The use of the "randomization sample,' the 2" dependent com-
ponents arising from each sample in performing the component randomi-
zation test, as a variance reduction technique for estimating quantiles
of the distribution of a sum of symmetric random variables is proposed
and shown to be valid. The efficiency, examined in some detail, is
shown to about 1000 times that attained when simply using a single
value from each sample for n = 3 differences.

The power of the component randomization test and the correspond-
ing, but usually unknown, parametric test is given in the form of oper-
ating characteristic curves for various underlying distributions and
sample sizes. The power of the distribution-free component randomi-
zation test is seen to not be dominated by the corresponding parametric

test.



CHAPTER 1
INTRODUCTION

Digital computer simulation, widely applied to analyze problems
too difficult for closed form sclutions, has benefitted greatly from
the increased capabilities of computers in the last few years. Faster
computation times and increased memory have made possible the study of
problems too complex for analysis a few years ago. New languages have
eased the burden of coding the model.

But no matter how fast computer capabilities expand, the com-
plexity of problems keeps pace. Therefore, digital computer simulation
techniques have had to be developed to make more efficient use of the
computer. Model building, through the development of simulation lan-
guages and packages, has been the focus of simulation methodology de-
velopment until the last few years when emphasis shifted somewhat toward
the probabilistic and statistical analysis associated with simulation.
While developments in model building simplify placing the model on tﬁe
computer, statistical methodology allows valid interpretation of the
results (e.g. time series analysis), as well as more efficient use of
the computer (e.g. variance reduction techniques). Probability is im-
portant in generating the random elements of the simulation (process
generation), as well as sometimes providing a closed form analysis of
a subsystem of the model (e.g., stochastic processes), thereby reducing
the simulation effort.

The main focus of this work is to develop and apply the



probabilistic and statistical methodology necessary for the study of

the power of several tests of hypothesis appropriate for the paired
sample design, with particular emphasis on Fisher's component randomi-
zation test, using Monte Carlo techniques. While asymptotic properties
of nonparametric permutation tests, of which component randomization
tests are a special case, are well-known, little is known about the
power of these tests for finite sample sizes. Puri and Sen [1971] point
out

The study of the power properties of nonparametric tests poses

certain problems. First, . . . under suitable hypotheses of in-
variance, the distribution of the nonparametric test statistic
does not depend on the parent population. But when the null
hypothesis is not true, the sampling distribution of nonpara-
metric statistics depends on the parent distribution in some way
or other. Second, . . . permutation tests . . . are essentially
conditional tests, and the study of their power properties de-
mands the knowledge of the unconditional distribution of the
allied test statistics. The evaluation of the exact uncondi-
tional non-null distribution often becomes quite a laborious
task, if not impracticable. For this reason, the growth of the
literature on the small-sample power properties of nonparametric
tests is not at all satisfactory.

Since exact methods have not been successful in studying the small
sample power properties of permutation tests, Monte Carlo analysis ap-
pears appropriate. While Monte Carlo methods are straightforward to
apply to most permutation tests, the component randomization test poses
computational problems which makes the direct application of these
methods infeasible for all but the smallest of samples. In fact, while
the component randomization test is known to have the best mathematical
properties of the permutation tests (as discussed in the next chapter),
its computational effort is so great (the equivalent of 2" ¢ tests,

where n is sample size) that the test is not widely used. As an

example, according to Hamm [1974)] 116 CPU minutes were used to test



one hypothesis with n = 24 on a UNIVAC1108 to obtain a result for
Deutsch and Hamm [1975]. But to perfomm a Monte Carlo analysis, thou-
sands of observations are necessary for reasonably accurate conclusions,

It is therefore necessary to develop efficient methodologies for
many aspects of the Monte Carlo study. In particular, a technique for
performing the component randomization test is needed which is very
efficient and variance reduction techniques become very important. The
estimation of quantiles of the distribution of the test statistic is a
central problem, with accurate estimation of the quantiles at a premium
due to the great expense of each observation. Since power is a function
of the underlying distribution of the observations, techniques for
generating random values from a wide variety of distributions are also
of interest.

Following Chapter II, where background material and a literature
survey are given, quantile estimation results are developed in Chapter
ITI. Point estimators with associated variance formulae are proposed
for two cases: raw and grouped data. The effect of sample size on
estimation techniques is analyzed in some detail., In Chapter IV process
generation, the transformation of uniformly distributed random variables
to other distributions of interest, is considered. In particular, the
problem of using only one functional form of two parameters to generate
values having any given third and fourth moments is discussed. Criteria
for general process generators are proposed and one such generator is
given.

Chapters V, VI, and VII study the small-sample power properties

of various tests of location shift for the paired sample case, with



special emphasis on Fisher's component randomization test. Chapter V
develops a methodology for studying the component randomization test.
An efficient algorithm for generating all 2" combinations of n signs

is developed, as well as the approach used to estimate the power of
various paired sample tests. Chapter VI discusses the moments of the
"unconditional distribution of the allied test statistics,” in this
case KVEYU. The moments are used as necessary conditions in estimating
the distribution of XVn/o for various underlying distributions and
sample sizes. Chapter VII uses the methodologies of Chapters V and

VI to evaluate the performance of the component randomization test com-
pared to the appropriate parametric test and the inappropriate normal
and t tests. Lastly, Chapter VIII discusses conclusions and directions

for future research.



CHAPTER 1I
LITERATURE REVIEW

As discussed in the introduction, aspects of quantile estimation,
process generation, and statistical hypothesis testing, with emphasis on
Fisher's component randomization test, are the subject of this research.
A general overview of hypothesis testing is given in Section 2.1 to
lay the framework of the problem setting considered in subsequent chap-
ters. This is followed by a discussion of the component randomization
test in Section 2.2. A review of the literature related to Chapters
V, VI, and VII (the paired sample randomization test, the distribution
of X for various underlying distributions of Xis and the power of various
tests, respectively) is given in Section 2.3. The literature specifi-
cally associated with Chapter III (quantile estimation) and Chapter IV
(process generation) is cited within those chapters as needed, allowing
it to be discussedrin full context after necessary background and

notation have been established.

2.1 Statistical Hypothesis Testing

Statistical hypothesis testing has long been used for deciding
whether or not to reject, based on a random sample of observations

(xl,xz,...,xn] a null hypothesis H, in favor of an alternative hypothesis

H If the sample observations fall in the critical region, a subset of

1

the sample space, the null hypothesis Hy is rejected, otherwise H is

not rejected. If HO is rejected when true, a type I error has occurred.




If HO is not rejected when false, a type Il error has occurred. The

significance level of a test, o, is the probability of a type I error

and the power of a test, (1-B), is the probability of rejecting HO'
Ideally, test procedures would be designed so that the correct

decision was always made. ﬁowever, for a finite sample size, n, error

can occur. It then becomes important to design the test procedure to

make o and 8 as small as possible. The probabilities of error, d and

B, are functions of HO and Hl, the sample size, the critical region, and

the underlying distribution from which the sample is drawn.

The underlying distribution is usually determined by the situ-
ation, leaving the minimization of o and B dependent upon Hy and H,,
sample size, and critical region. in general, the larger the sample
size the less chance of error, if everything else is constant. There-
fore, interest is restricted to some fixed sample size n. The choice
of H0 and H1 depends heavily on the situation and is essentially fixed
for a specific situation. By convention, HO and Hl are chosen such that
the strong statement is to reject H, at a significance level of a, so
interest is constrained to a fixed value of a.

The problem then reduces to minimizing B through the selection of
a critical region for fixed hypotheses, H0 and Hl’ significance level
o, sample size n, and underlying distribution. This problem has a well
known optimal solution for simple hypotheses through the application of
the Neyman-Pearson Theorem, and a good, though not necessarily optimal,
solution for composite hypotheses through the use of the likelihood ratio
criterion.

However, a solution to any problem may be incorrect if any



parameters are incorrectly specified. In hypothesis testing there is
little doubt about the hypotheses, o level and sample size n, since all
are specified by the experimenter to fit the situation of interest.
What may be of doubt is the underlying distribution. Other than in
Monte Carlo simulation or areas in which much experimentation has al-
ready occurred, the experimenter may be able only to assume the distri-
bution of the observations. The assumption made often reflects the

availability, rather than appropriateness, of statistical techniques to

analyze the data. If the assumed underlying distribution is incorrect,
the experimenter may either over-estimate or under-estimate the power
and the significance of the test. Since a basic purpose of statistical
hypothesis testing is to quantify the probability of error, care needs
to be taken to ensure that the underlying distribution assumption does
not cause the experimenter to mislead himself or others.

Commonly, the underlying distribution of the observations is
assumed to be the n dimensional multivariate normal with constant vari-
ance and zero covariance. There are three assumptions involved here:
(1) normality of each observation, (2) independence between observations,
and (3) constant variance.

Under these assumptions, and the additional assumption that o is
a known constant, in a test of location HO: M= Mg vs. Hl: U= ul, the
best critical region is of the form Z?=1 X, > ¢ where the constant c is
set for the desired significance level a. That is, if Ho is true, ¢

is the value such that P{22=1 X; > ¢l = ¢. Under the above assumptions,

Z?=1 Xi ~ N(nuo,noz) and therefore ﬁ?(f - uo)/c ~ N{0,1) where X =

n . . . L.
Zi=1 Xi/n. Here the reference distribution of the test statistic is




the standardized normal.

However, if any of the three assumptions are false, problems
arise. If the umderlying distribution is not normal, 82=1 Xi is not
normally distributed and the tabled values may be inappropriate, al-
though the central limit theorem guarantees asymptotic normality. If
the observations are not independent, the variance of the sum is not

2 2 n N . .
no~, but rather ¢'n + 2I,_,L.._ . ¢.. where 0,. is the covariance of X,
i=173>1 7ij ij i
and Xj. Non-zero Uij leads to under-estimation or over-estimation of
the variance of the test statistic, and in turn the significance and
power of the test. If the variance of each observation is not constant,
then the true variance is E?zl Ui where the variance of Xi is Oi.
These problems are compounded when more than one assumption is false.
With Student's development of the t distribution in 1908, the

o 2
condition that 0 must be known was relaxed. In the t test, the sta-

tistic v/n(x - Hog)/s is compared to a critical region defined in terms

n

2 —2 .
121 Xj - DX 1/ (n-1) is

of the well-known t distribution, where 52 = (%
an estimate of the unknown variance 02. The additional variability in
the test statistic due to estimating o from the sample is reflected
by using the t, rather then the normal, as the reference distribution.
However, the assumptions of normality, independence, and constant vari-
ance affect the results here as in the previous case where % is known.
Similar comments may be made about other parameteric tests of hypothesis
such as those based on the chi-squared and F reference distributions.

In situations in which the underlying distribution is unknown,

test procedures which are robust to incorrect assumptions become valu-

able. Ideally, procedures would be used which are distribution-free




but still minimize B, or, equivalently, maximize power. However, tests
which make use of the exact form of the underlying distribution are
generally more powerful. Thus there exists a trade-off between power
and robustness.

This trade-off is made when distribution-free (or non-parametric)
tests are used. These are tests in which the critical region is defined
independently from considerations of underlying distribution, allowing
the values of both o and B to be correctly evaluated. In a situation
where the normality and independence assumptions do hold, the power of
the parametric test is greater than the non-parametric test and the
calculations of o and B are correct. However, the parametric test will
be misleading in terms of o and B8 if the observations are not normally
distributed, and in fact it may have less power,

Returning to the problem of minimizing B for given hypotheses,
sample size, and significance level, but with no assumption about under-
lying distribution, the many distribution-free tests may be compared on
the basis of their power. Many common tests replace the sample obser-
vation X; by the rank of X; . These rank tests lose power in this
transformation, but are distribution free and easy to apply, needing

only simple calculations and a tabled reference distribution.

2.2 Fisher's Component Randomization Test

A distribution-free test which is more powerful than other such

tests, and asymptotically as powerful as the t test even under normality,

is the component randomization test. Here the test statistic is calcu-

lated from the sample observations X] s X X not from their ranks.

IERE
If under the null hypothesis any M possible values of the test
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statistic are equally likely and N of these values are more indicative
of Hl being true than the cbserved value of the test statistic, HO may
be rejected if o is greater than N/M.

Randomization tests may be used in many situations, including
two sample tests of means and correlation, randomized blocks and other
ANOVA situations, including multivariate applications. A special case
of randomized blocks is the paired sample test of location shift. As
an example, consider the comparison of the accuracy of two types of
guns. Accuracy is measured in terms of distance (in feet) from the
target, to the point of impact, and each gun is fired once at each of
ten targets. If the targets vary in distance from the guns, the variance
of each shot cannot be assumed constant. Let in be the feet from the
ith target for jth gun, j = 1,2. Tf the null hypothesis is HO: pl = M,

and the alternative hypothesis is H M > My, @ paired test can be

l:

used on the data di = X, . - X i=1,2,...,10.

1i 2i?

Consider the data shown in Table 1.

Table 1. Distance from Target in Feet

Target
1 2 3 4 3 6 7 8 9 10
X154 7.40 6.88 7.12 7.42 7.18 6.64 6.98 7.13 6.93 7.36
Xy 7.32 6.82 7.09 7.43 7.07 6.66 6.95 7.08 6.88 7.33
di +.08 +.06 +.03 -.01 +.11 -.02 +.03 +.05 +.05 +.03

If HO is true, then each di could just as likely be positive or nega-

tive, since di = X,. - X

1i could just as well have been defined di =

2i
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X " X1

values of d could have occurred with equal likelihood under HO. of

If T is used as a test statistic, 2'0 or 1024 possible

these only three

+.08 +.06 +.03 +.01 +.11 +.02 +.03 +.05 +.05 +.03 Ei = ,047

+,08 +.06 +.03 -.01 +.11 +.02 +.03 +.,05 +.05 +.03 Eé = .045

+.08 +.06 +.03 +.01 +.11 -.02 +.03 +.05 +.05 +.03 '33 = ,043
tend to indicate H, is true more than the observed value d = .041.

Therefore, H. may be rejected if o is greater than 3/1024 = .003.

0
If the parametric test assumptions were made, the paired t test

with 9 degrees of freedom indicates that H, may be rejected only if a is

0
greater than 1 - .9957 = ,0043.

The disadvantage of component randomization tests which prevents
them from being used extensively is that the randomization reference
distribution is conditional upon the observed sample and therefore must
be calculated each time the test is applied. Over many samples, this
reference distribution is dependent upon two factors: the sample size
and the underlying distribution from which the samples come. Para-
metric test refsrence distributions such as Student's t and Snedecor's F
are also dependent on sample size and distribution, but the distribution
is assumed to be the normal. Since the randomization reference distri-
bution is calculated for each sample, it is automatically a function of
the correct underlying distribution and therefore component randomization
tests are distribution-free,

Three criteria are then important in comparing tests of hypothesis:

{1) lack of assumptions, (2) power, and (3) ease of calculation. The
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general types of tests discussed are each strong in two criteria and
weak in a third, Parametric tests are dependent upon assumptions,
rank randomization tests lack power, and component randomization tests

require extensive calculations.

2.3 Synopsis of Technical Literature

The principle of randomization has been a primary consideration
of experimentation since Fisher [1926] proposed its use to provide a
valid estimate of error. Fisher [1935, 1936] suggested the use of
randomization of components of an experiment for hypothesis testing in
the matched pairs design and extended the idea to two independent sam-
ples. He advocated the use of randomization in hypothesis testing to
the point of stating, "conclusions have no justification beyond the fact
that they agree with those which could have been arrived at by this
elementary method."

Fisher's principle of randomization was used by Pitman [1937a]
to test location in two samples of unequal size, Pitman [1937b] to test
independence of two samples, Pitman [1937c] and Welch [1937] for ANOVA
in randomized blocks experiments. Both Pitman and Welch used the
moments of skewness and kurtosis to fit the beta distribution for use
as their reference distribution, due to the extreme computation problem
of applying the randomization test directly,.

Nair [1940] considered the randomization test using statistics
other than the mean. He found the distribution of the sample median
(bell-shaped), midpoint (U-shaped), and range (J-shaped) and noted that
these randomization tests could be performed without the calculation

problems encountered using the sample mean. He suggested that of these
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three statistics the median would in general have the best properties,
although not as good as the mean. Earlier Pearson [1937] showed that
for the rectangular distribution, the midpoint is more efficient than
the mean, and therefore the unquestioning use of the mean in the
randomization test should be avoided.
Attention then turned to the statistical properties of the tests.
Almost invariably the test statistic considered was the sample mean,
since most results were for asympotic large samples and were possible
only through the use of the central 1limit theorem applied to the sample
mean. Lehmann and Stein [1949] determined that the component randomi-
zation test is as efficient as the t test for normal populations.
Hoeffding [1952] showed that the component randomization test is
asymptotically as powerful as the corresponding parametric test.
Kempthorne [1955] discussed randomization theory in the design

and analysis of experiments and concluded that at that time the gaps
in the theory were:

(1) the accuracy of the approximation to randomization tests by

(2) ihgei::her stringest role of additivity {(which is also present

in the case of normal law inferences)

{3) the power of the randomization analysis of variance test

{4) the consideration of alternative test criteria.
Wilk [1955], Wilk and Kempthorne [1956]}, Zyskind [1963), Kempthorne
[1966] and Kempthorne, Zyskind, Basson, Martin, Doerfler, and Carney
[1966] considered randomization based ANOVA procedures in great detail.
Collier and Baker [1963, 1966] generated 1000 random observations to
study the power of the F test under non-nomality for the randomized

blocks and split-plot design, respectively.

Box and Anderson [1955] and Box and Watson [1962] used
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randomization in studies of robustness and F distribution approximation,
respectively.

Barton and David [1961] and Arnold [1964] extended the principle
to the multivariate case. Arnold considered a statistic equivalent to
Hotelling's T under normality. Mardia [1971] gave a multivariate
randomization test based on the Mahalonobis distance Dz. Chung and
Fraser [1958] used randomization methods to develop an alternative for
the multivariate two-sample problem, since T2 is not applicable when
there are only a few observations involving a large number of variables,

In addition, Chung and Fraser also suggested using subgroups of
permutations (rather than all permutations) to reduce computations. The
subgroup idea stemmed from Dwass [1957] who suggested using a random
sample of the permutations. Heiler and Weichselberger [1969], consider-
ing the two independent sample location randomization test, developed
algorithms to determine the combinations in the critical region and
limit points of the confidence interval.

Kempthorne and Doerfler [1969] compared the randomization test
to the sign test and the Wilcoxin test in the paired design. They
concluded the randomization test is more powerful than the Wilcoxin
test, which in tum is more powerful than the sign test. Bhattacharyya,
Johnson, and Neave [1971] used Monte Carlo analysis to show that the
power of the two sample Wilcoxin-type rank test 'substantially exceeds"
the power of Hotelling's T2 for some nonmal.shift alternatives, an
interesting result because intuitively the parametric T2 test should
dominate the nonparametric Wilcoxin-type test.

Much of this research is concerned with the distribution of
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X/n/o and Xvn/S corresponding to the normal test and Student's t test

of the location shift, respectively. Much combinatorial work has been
done on the problem of expressing sampling distributions in terms of
cunulants of the underlying distribution. Fisher ({1928] found the
equations connecting the moment functions of the underlying and sampling
distribution using cumulants for the case of X. Thiele [1931] also

used cumulants to relate the two distributions. Welker [1947] used the
first four cumulants to provide a one-to-one relationship between the
underlying distribution and the distribution of the sample mean for the
specific case of Pearson curves. Reitsma [1963] developed approximations
of means from non-normal populations by using a differential equation of
the moment generating function of the sample mean and sample variance
for samples from Perason type populations, both skewed and symmetric.
Bradley [1971] used Monte Carlo techniques to take 10,000 samples each
of size 2,4,8,...,1024 from both L-shaped and normal distributions to
study convergence of the central limit theorem.

The distribution of the t statistic Xvn/S was investigated by
Sophister [1928] and Pearson [1929] using sampling experiments with
random number tables. Bartlett [1935] showed that skewness affects the
distribution of t more than kurtosis. Perlo [1933] derived the exact
distribution of t for samples of size 3 from a rectangular distribution.
Gayen [1949] derived the theoretical distribution of Xvn/S from non-
normal samples of any size, ignoring moments higher than order four,
for any underlying distribution expressed by a number of terms of the
Edgeworth series., Tiku [1963] obtained the distribution of t in terms

of population cumulants up to the eighth order using Hermite and
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Laguerre polynomials. Ractliffe [1968] used Monte Carle techniques to
conclude that

extreme non-normality can as much as double the value of t at the
2-1/2 per cent (one tail) probability level for small samples, but
increasing the sample size to B0, 50, 30, and 15 will for practical
purposes remove the effect of extreme skewness, moderate skewness,
extreme flatness, and moderate flatness, respectively.
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CHAPTER I1I
ESTIMATION OF THE pTH QUANTILE

In Chapter VI the distribution of X, denoted by F, for various
underlying distributions, is estimated using Monte Carlo analysis.
Since Monte Carlo analysis cannot yield a closed form expression for F,
the pth quantile, F_ltp), must be estimated for any values of p of
interest. This chapter addresses the problem of estimating the pth
quantile given observations of the random variable. In addition to
their use in Monte Carlo analysis, the results of this chapter may be
used with data generated by a system simulation or by a physical process.
In fact the results may be more important in the case of physical pro-
cesses where observations are often more expensive and therefore fewer.

In Monte Carlo analysis a sample of X values is generated, the
value of the random variable of interest is calculated from the sample,
and a2 counter associated with the appropriate cell of a histogram is
incremented. After repeating many times, the resulting histogram is
used for estimation. In system simulation a similar approach is
followed, except that one value of the random variable of interest
results from one simulation run. Given the observed values, whatever
their source, the method of combining them into quantile estimates is
considered here for two all-encompassing cases: (1) large cell widths
where the entries of the histogram have lost their identity through
grouping, and (2) smaller cell widths where the entries of the histogram

are still essentially separate entities. In the second case each cell
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contains only zero or one entries with an occasional double or triple
entry. This case arisés when the cell widths are very small or when

the number of observations are few, such as when estimating quantiles

in the extreme tails of a distribution. In the first case cell widths
are larger or the number of cbservations is relatively large, as is
common in estimating quantiles in the body of the distribution. The
methods of estimation for these two cases differ, since in the first
case the problem is to minimize the loss of information caused by group-
ing and in the second case the problem is how to interpolate between
sparse entries.

In this chapter, point estimators, with corresponding variance
estimates, for the pth quantile are proposed for both cases. Section
3.1 considers estimators and confidence intervals for grouped data,
the first case above. The second case, sparse entries, is treated in
Section 3.2. The impact of sample size is discussed in some detail for

both cases.

3.1 Quantile Estimation from Grouped Data

Let Fn(sn) be the cumulative distribution function, cdf, of Sn’
evaluated at 5.3 where Sn is a function of Xl,Xz,...,Xn. Suppdse k
observations of Sn have been placed in a histogram with ¢y observations
in the ith cell, i = 1,2,...,Q. The problem considered here is the

-1

estimation of the pth quantile of the distribution of Sn’ Fn (p).

3.1.1 A Foint Estimator

A reasonable, but crude, estimator of F;l(p) is

a + bqg
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where a = lower limit of the first cell,
b = cell width, and
q
q = smallest integer such that I «c; > [p(k+1}] = x

i=1
where [X] indicates the largest integer less than or equal to X. The
random variable q is simply the cell in which the rth order statistic

falls. Figure 1 shows graphically the relationship of a, b, and q.
1 2 3 -1 q gl Q

P T

a a+bq

Figure 1. Relationship of a, b, and q

It is obvious from the figure that a + bq represents the upper boundary
of the cell in which the rth sample order statistic lies and therefore
tends to be biased high.

An alternative estimator is a + b(q-1), but similar reasoning
indicates this estimate is biased low. A common compromise is to use
the midpoint, a + b(q-.5), which is better but still leads to problems
as discussed further in this chapter. These problems arise due to the
effect of grouping and subsequent representation of the group by the
midpoint (q-.5).

Since the cell q is simply the location of the rth order sta-
tistic, the impact of grouping on the properties of order statistics
is of interest. David and Mishriky [1968] discuss the effect of

grouping o¢n the mean and variance of order statistics, concluding

that 'the effect of grouping . . . is . . . of minor importance for
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h = 0.6 which represents quite course grouping.' However, their re-
sults do indicate that the variance is sometimes reduced as much as
70% of its value. The effects of grouping on the mean and variance is
discussed in more detail in Section 3.1.4. A possibly more important
problem is the discreteness of (q-.5) caused by using only midpoint
values. A discrete estimator (in this case the midpoints) of a con-
tinuous parameter (in this case a quantile) is consistent only if the
true value of the parameter falls exactly at one of the possible
estimator values, even though it may be essentially unbiased and possess
the same variance as a related continuous (ungrouped) estimator.

These undesirable properties may be essentially eliminated by

using the more complex estimator

21 q
F(p) =2+blq- (2

e - POD) + D/(egeD)] = a v bla-ul

The ratio u is always between zero and one. Its purpose is to reflect
the degree to which the inequality Z?:l ¢, >ris satisfied in the defi-
nition of q. Let a denote p(k+1) - [p(k+1)]. If Egzl c, =T, then
F;l(p) = a+ bfq - (I—aj/(cq+1)] since the entire contents of the qth
cell are needed to satisfy the inequality. On the other hand, if the
first entry in the qth cell satisfies the inequality, then Zg=1 ¢, - T =

Cq - 1 and the estimate is a + bfq - (cq—a)/(cq+1]]--almost a whole cell
width reduction compared to the previous case.

While ;l(p) appears quite a lot more complicated than a + b(g-.5),
Zg=l ¢y is known from the calculation of q, as is p(k+1). Thus the only

added complexity is a subtraction and a division. Note that the definition
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of Fgl(p) assumes the first case, grouped entries. [t does not work
well for the second case, wide-spread entries, since it is based on the
idea of interpolating within a cell rather than between cells.

3.1.2 Expected Value and Variance of the pth Quantile Estimator

A1\ “ -

Ideally Fnl(p) would be defined such that E{f:T?b)} = Fnl(p).
Unbiasedness, however, depends on the underlying population.
Specifically.

E{ﬁii?b)} = E{a + b[q - u]} (1)

a + bE{q - u}

a + b ? [a- B ¢ - plkel) » /(e + DIP@]
q=1 i=1
where P(q) is the probability the rth order statistic lies in the qth
cell, a function of the underlying distribution.
As a special case, consider a = 0, b = 1, and a U(0,1) under-
lying distribution. P(1) = 1 since all observations fall in the first

cell, and therefore

Q q
a+b{Z [q-E(I ¢ ~plkel) + /(g + DIIP(@)}

B{Ffl\(p)}
g=1 i=1

0+ 1{[1 ~ (k - p(k+1) + 1)/(k+1}]1}

! (P

I

1 - (1-p) =p = Fn

While F;l[p) is unbiased in this case, it is not an unbiased estimator

in general, since commonly Zg=1 s # ¢, and also p # F-l(p) except for

q
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the unit uniform distribution,

The variance of F;l(p] may be calculated as

V{ﬁiT?b)}= v{a + b[q - u]} (2)

bZV{q - u}

bz[v{q} + V{u} - 2 Coviq,u}]

Q Q
b[ I q°P(a) - 1T qP(@}* + 115]
q:l q=1

n

assuming u ~ U(0,1) and independent of q.

Let p; = Fn(a+bi) - Fn(a + b(i-1)), the probability that any one
observation falls in the ith cell, i = 1,2,...,3. Numerical values for
the p; are not known, since the problem at hand is to determine Fgl(p].

However, each p; may be estimated from the histogram cell counts using
P, = ci/k

or more complicated estimators using smoothing rules to circumvent the
problem of c; = 0 not implying P; © 0 in general.

Now q and the Q 4 values are random variables whose distributions
depend on the underlying distribution and the definition of Sn through
the P values. While the distribution of the = is simply multinomial
with N = k and probabilities P;» i=1,2,...,Q, inclusion of this varia-
bility in the numerical calculation of the expected value or variance
would require conditioning over all Q of the ¢ values. Thus the
simplifying assumptions of uniformity and independence were made to

obtain eq. 2. 1If P(q), q = 1,2,...,Q were known, E{a+bq} and V{a+bg}
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could be calculated using eqs. 1 and 2 to provide bounds on

PN AT\ ,
E{F_"(p)} and V{F_"(p)}. A bound for the expected value is

E{a + b(q-1)} = a + bE{gq} - b f_EfﬁiT?i]} < a + bE{q} = E{a+bq}

A bound for the variance is

via + bql = bZV{q} < v{p;/lg)} < bZ[V{q} + 1/4]

since the minimum variance of the correction factor is zero and the
maximum variance is 1/4.

3.1.3 Distribution of the Cell Containing the pth Quantile Estimator

To use the bounds of the last section for the expected value and
variance, the values of P(q), the probability of the estimator falls in
cell q, q = 1,2,...,Q0, must be known in terms of the P values, the
probability of any one observation falling in cell i, i = 1,2,...,Q.

For q = 1, at least r = [p(k+1)] observations must fall in the

first cell, With a total of k observations, and ¢y of them in cell i,
p(l) = Prob{c:1 > r}

k-1

lg k i (1 )
i pl 'Pl
i=r

since the independent observations lead to a sum of binomial proba-

bilities. Now for q > 2
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q-1 q
P(q)} = Prob{ L c; << I ci} (3)
i=1 i=]
q-1 q-1
= Prob{cq 2r- L c oand I ¢ < r}
i=1 i=1
r-1 q-1
= z [Prob{cq > r-j}][Prob{ £ ¢, = j}] by conditioning
. = i
j=0 k=1
r-1] k-3 7 . P yi o k-j-i
= I i Lo P e
N P i gq-1 q-1
J=0l1=1-] 1- I p, 1- 1 p,
. f=1 L g=1

-1 —k- 5 -1 i k-j-i
e I L] L] S W L (S b PR :
j=0 |i=p-j L1 U -1 g1 * q-1
- 1- £ p,) - 1- I p
— g=1 * =1 %
[ qil k-j
. 1 - p
. =1t
r-1] k-j K i g-1 j q k-j-i
= L z (1] P z Py 1 - I 12
j=0fi=r-j W) 7% =1 =1

where [;}}= KI/[i15 1 (k=i-7) 1.

Appendix A contains a proof that Zgzl P(q) = 1 and that eq. 3 is
therefore a valid distribution.
A heuristic approach to determining P(q) is to note that each

observation may fall to the left of cell q, in cell q, or to the right
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of cell q. Feor k observations there are (;}] ways that j observations
are to the left of cell g, i observations are in cell q, and k-j-i
observations are to the right of cell q. Equation 3 may therefore

be viewed as trinomial probabilities summed over all i+j = r with
i>0and j >0,

Note that P(q) depends on p only through r = [p(k+1)]. There-
fore, if a + b(g-.5) is the estimator used, for three places accuracy
in p, k must be at least 1000 due to the discrete nature of (q-.5). The
use of the correction factor regains some of this accmracy.

The above results may be used to calculate approximate confidence
intervals on Fgl[p). Assuming normality (this assumption is discussed
in Section 3.2) and given a histogram with k observations, the 1 values
could be estimated, P(q) values calculated, and bounds on V{Fgl(p)}

calculated in turn. An approximate confidence interval would be

LN 7] 1
)+ Za/z/b [via} + o ]

where b2/12 corresponds to an assumption of a uniform distribution of
cbservation within the qth cell.

The analysis of the next section indicates that this approach
may work well for small b, but for larger b values the confidence inter-
val could be quite inaccurate.

3.1.4 Effect of Cell Width and Sample Size on Estimation

At first glance equations 1 and 2 may appear to indicate that

as cell width b goes to zero

lin  E{f 1(p)) = a
b0
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and

lim V{Ffl\(p)} - 0.

b0

However, P(q) depends on the value of b. As b goes to zero the
use of a histogram becomes equivalent to explicitly saving, rather than
grouping, all values and using order statistics rather than cell counts.
This case is considered in Section 3.2.

The value of b does affect the expected value and variance, how-
ever. Using the formulae derived above, the effect of b on E{a + b(q-.5)}
and V{a + b(q-.5)} may be examined. The special case of normally distri-
buted observations with zero mean and unit variance is considered.

3.1.4.1 Effect on the Expected Value. Table 2 shows the effect

on expected value for various numbers of observations k. Quantile
values of .5, .7, .9, .95, and .99 are considered for each k. The two
entries in each cell of the table corresponds to a = -4 with b = 1 and
b = .1, respectively. The most important point to notice is that the
position of F;l(p) in the histogram cell is the dominating factor. If
the cells are labeled in ascending order from left to right, F;l(.7) =

.5025 is very close to the center of the fifth cell for b = 1, but lies

on the boundary of cells 45 and 46 for b .1. For all values of k
shown in the table, the estimate using the larger b is less biased than
the estimate using thé smaller b value for p = .7.

Of course, everything else constant, smaller b values are better,
For example, F;I(.S) = 0.0 which lies on cell boundaries for both b = 1

and b = .i, In this case b = .1 dominates b = 1 in terms of unbiased-

ness. Since the value of F;l(p) is not known in application, its



Table 2. Values of E{a + b(q-%)|k,p} for b = 1 and b = .1
P
K .5 .7 .9 .95 .99
F;l(p) 0.0 5025 .281 645 330
100 -.038 .500 .435 .526 175
-.0126 . 509 .249 .491 .148
50 -.0561 . 500 327 .596 236
-.025 .494 ,218 .629 .220
30 -.0722 .493 .228 612 .025
-.0415 .473 .179 .616 .025
20 -.0884 .471 . 146 .425 . 859
-.062 .448 .131 .408 .856
15 0 .516 .258 .733
0 . 516 .258 .727 -
10 -,134 .388 .997 .538
-.123 .376 .001 .533 -
7 0 . 357 . 350
0 . 353 . 348 >
5 0 . 496 .161
0 .495 . 160 -
4 -.297 .297 .028
-.297 .297 027
3 0 . 845
0 . 845 >
5 -.564 .564
-.564 .563 -

oo

Y

\F

27
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position in relation to cell boundaries is unknown. Certainly the
effect is minimized in general by smaller values of b.

Smaller cells widths, however, lead to more cells and in turn
more computer memory requirements. The value of b should be set as small
as possible while still allowing the histogram to be kept in core. With
large computers this is little problem. For example b = .0020 requires
S000 cells for a range of ten standard deviations, which should be plenty
for all but very heavy tailed distributions. However, with the expanding
use of minicomputers, or for applications requiring many histograms to
be stored at once, setting b to small values may be difficult. In these
cases the correction factor is important, since its function can be seen
to be the reduction of the cell border effect.

3.1.4.2 Effect on the Variance. The importance of the correction

factor may also be seen in terms of V{a + b(q-.5}}. Table 3 is analogous
to the previous table, but entries correspond to k * V{a + b(q-.5)1}.

The variance is multiplied by the number of observations k to eliminate
the effect of k on the variance. Note again the irregularity for p = .7

due to F;l(p} falling at the center of a cell for b = 1 and on a cell

boundary for b = .1, For k > 20 the correct cell is almost always
selected for b = 1, while for b = .1 the cell containing F;I(.7] is far
from certuin even for k = 100 resulting in a higher variance for b = .1.

Again the correction factor tends to eliminate the cell border effect.
A final point on the value of the correction factor can be made

by examin:ng the entries for k = 4 and p = .5 and .7 in both tables.

Since r = 2 for either value of p, the entries are identical. The cor-

rection fuctor uses additional information in the histogram to provide
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Table 3. Values of k*V{a + b(q-%)|k,p} for b = 1 and b = .1

P . .99
;\\\\ .5 .7 .9 95

100 24.84 .0175 6.085 2.713 23.606
1.676 1.841 2.942 4,257 9.790
50 12.342 341 7.251 5.286 19.438
1.607 1.753 2.765 4.329 17.384

30 7.345 1.067 6.222 5.270 11.345
1.577 1.708 2.620 4.160 9.551
20 4.862 1.719 4.985 4.423 7.440
1.557 1.670 2.475 3.210 6.406

1s 3.804 2.018 4.121 5.820 >
1.539 1.691 2.700 4.986 >
10 2.610 2.198 3.131 4.352 >
1.519 1.589 2.154 3.633 >
7 2.165 2.078 3.385 >
2113 1.544 2.827 >
5 1.875 1.958 2.675 >
1.438 1.562 2.276 >
4 1.776 1.776 2,309 >
1.445 1.445 1.990 >
3 1.597 1.932 >
1.349 1.690 >~
5 1.529 1.531 >
1.365 1.368 >
) 1.083 -+
1.0008 —
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estimates which distinguish between F;l(.S) and F;I(.7).

3.2 Quantile Estimation Using Order Statistics

Section 3.1 discussed estimation of F;l(p) where observations were
grouped in histogram cells of width b. Consider the limiting case as b
approaches zero. The number of cells Q becomes large and the number of
observations in the ith cell, ¢ becomes small. At the limit each
observation is known exactly and the sample order statistics may be
used directly to estimate F;l[p).

Recording each observation and later sorting into ascending order
to determine the various order statistics is possible, but time consum-
ing for large sample size k. Therefore, the value of the results of this
section may lie more in the case where b is not zero, but rather where
the value of b is so small that E{ci} < 1 for almest all i = 1,2,...,Q.
In this case the effect of grouping is negligible. At the same time

the correction factor (Z?_l c.

i p(k+1) + l)/(cq+l) makes little sense

and the formulae of the last section for confidence intervals cannot be
used numerically since the calculation of P(q) for q = 1,2,...,Q requires
too much effort for small values of b. Therefore a new estimator of
F;l(p) and a different technique for estimating the variance of the
estimate of F;l(p) is necessary for the case of small b values. Section
3.2.1 presents a point estimator, Section 3.2.2 discusses the effect of
sample size on estimation, and Section 3.2.2 discusses the confidence
interval for the pth quantile.

3.2.1 Point Estimation of F;l(p) Using Order Statistics

A common estimator for F;l(p) is the rth order statistic, denoted
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X(r) or xr:k’ where Tt = [p(k+1)]. This estimator, however, is biased
low as can be seen by considering a special case. Let p = .8 and k = 10.
Then r = 8. The .8 quantile is the point where 80% of the distribution
is to the left and 20% is to the right. In this case, however, the
estimate X(B) is the point where 70% of the sample is to the left, and
20% is to the right. Crudely allocating the 10% represented by x(8) to
the left and right of x(8) indicates that X(S) may be a better estimator
of F.'(.75) than of F'(.8).

An alternative is to use X(r+l) as the estimator, but a similar
problem arises, but with positive bias. It should be noted that as the
sample size increases, the bias in using either order statistic dimin-
ishes.

A better estimator may be based on

E{X .} = F;l(r/(k+1))

which is an exact equality for a uniform distribution [Gibbons, 1971,
p. 36]. Define Fii?}) as (l-a)xr:k + axr+1:k where r = [p(k+1)],

a = pk+l) - [p(k+1)] and p € [1/(k+1), k/(k+1)]. Values of p outside
this interval result in the indicated use of the non-existent zero and
k+1 order statistics. Estimation of F;l(p) outside the above interval
is possible by making assumptions on the form of Fn or increasing k.

Fgl(p) is unbiased for uniformly distributed observations, since

)

B{(L-o) Xy * oXpyagd

1]

(l-a)E{xr:k} ¥ 0tE{Xr+1:k}
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Now approximately for all distributions and exactly for the uniform

. -1 -1
EF (p) 7 = (o) FL 0 (r/ (k1)) + ofT((re1)/ (ke 1))

For the uniform (0,1) distribution

(1-0) (x/(k+1}) + a((r+1)/(k+1))

(3+0)/(k#1) = p(k+1)/(k+1) = p = B ' (p)

F;l[p) is analogous to the grouped data estimator a + b[q -

(Eg=1 c; - p(k+1)+1)/cq+1)] discussed in the last section in that
both make the estimate less discrete by assuming, as an approximation,
a uniform distribution of observations in the area of the estimate.
However, here interpolation is being performed between cells rather
than within cells.

3.2.2 Effect of Sample Size

The expected values of X(r) and X( become close for asymptoti-

r+1)
cally large samples. Therefore there is some number K such that for
k > K the added accuracy of using the linear combination of order sta-
tistics, rather than one or the other, is small enough that the extra
effort is not worthwhile.

Section 3.2.2.1 examines the effect ¢f sample size on the ex-
pected difference of x(r) and X(r+1). Section 3.2.2.,2 examines the
effect on the variance of the order statistics. Techniques are

developed in both sections to determine the value of K necessary to

use only one order statistic for satisfactory results.
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3.2,2.1 Effect on the Expected Difference of X(r) and x(r+l)'

Table 4 shows the relationship of k and E{X(r)} and Fgl(p) for p =

.8, .9 in the special case of uniformly distributed observations.

The weighting of the two order statistics eliminates the fluctuation in
the estimates for both p values. The use of the weighted estimates in
calculating the values of Table 2 would have eliminated the fluctuation
under p = .5, where nonzero values occur for all even sample sizes and
all odd sample sizes have zerc entries due to using the r = [p(k+1)]
order statistic rather than a weighted average of X(r) and x(r+l)' Since

E{xr ;o= F;l(r/k+1) for all distributions, Table 4 also indicates less

'k
fluctuation and bias for arbitrary distributions.

The necessity of the o correction factor becomes less as k becomes
larger for constant b, since as k increases, E{ci} increases for each i
and the expected difference between X(r) and X(r+1) becomes small, mak-

ing interpolation not worthwhile. It is of interest to study the mini-

mum sample size K necessary for

} - E{X H o<

|E{X {r+1)

(r)

for some given & > 0 and all k > K. K, of course, depends on both the
value of p and the distribution of observations.
Figure 2 shows the relationship between sample size k and

E{ } for p = .9 and .99 and for the uniform and normal distribu-

X
(r)

tions., The uniform results were obtained directly using E{Xr_k} =

r/(k+1) while the normal distribution results were calculated using

numerical integration as follows:



7\
of Sample Size, Expected Values of Order Statistics, and Fy (p) =
} for p= .8 and p = .9 and U(0,1) Observations

+ oE{X

r+l:k

10

Table 4. Relationshi
(l-a)E{Xr:k
D 8 9
=.8
pk 6.4 7.2
r = [p(k+1)] 7 8
r+1 8 9
E{xr:k} = t/(k+1) .778
E{xr+1:k} = (r+1)/(k+1)] .889
a = p(k+1) - {p(k+1)] 2 0
~1
ﬁ:\?p) -8
k

p=.9 8 9
pk 7.2 8.1
r = [p(k+1)] 8 9
r+l 9 10
E{Xr:k}= T/ (k+1) . 889
E{Xr+l:k} = (r+1)/(k+1)|1 1
a = p(k+1) - [p(k+1)] 1 0

. 818

.909

127



Expected Value

Figure

1.4 4

35

//;/Z/L”Mth&ormal (0,1) p = .99

Uniform (M = 0, 6% = 1)

b ettt s 4
- p= .99

Uniform (= O, 02 = 1) p=.9

f//f/%;ﬂ; Normal (0,1) p = .9

(" L I

o

L
L T r T L

10 10 103 104 10°
Sample Size

Sample Size vs. Expected Value Using Cell Midpoints



36

E{X

;X5 (0dx

tk ~00 Tk

(X in * ia)}

A P . -1
A{ifl(XMin + 14) [k!/(r-—l)!(k—r)l][FX (xmin + iA)]

. k-
£, (X, + 30 [1 - By O, + 18)] T}

k ® ..\ P ] T-1
Ar(r]{ifl(xmi“ + 1i4A) [FX (xmin + iA)]

£ (X .+ i0)[1 - F « 18)1%°T)

X (xm'

X in

where A is a small positive value and xmin is F;l(.001) or less.

It is obvious from Figure 2 that the behavior of E{X(r)} depends
heavily on both p and the distribution of the observations, with inter-
action effects. Consider first p = .99. The fluctuation in E{X(r)}
is much greater for the normal distribution than for the uniform, be-
cause the short tails of the uniform distribution and high value of p
provide little freedom for variation. On the other hand, for p = .9
the fluctuation depends much less on distribution type since the finite
upper bound on the observations in the uniform case plays a lesser role
with the smaller value of p.

It is desirable to have a simpler method of studying this
fluctuation than the numerical integration and graphing technique

just described. The minimum sample size K necessary to bound the
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fluctuation below some given & > 0 may be calculated as follows:
Noting the longest fluctuations occur where k increases by one

but r remains the same, consider

E{xr:k—l} " E{xr:k}

4

Fole/k) - B (r/ (k1))

PR/ - Bk - r/ k(o))

PG - Flpa - 1/0e)

p“l(BL%Illa - Fgl(p)

n

'

a

If this fluctuation is to be bounded by & > 0, then

1

Fl(p(ks1)/K) < 6 + F7 1 (p)

This relatidnship, though approximate, gives good numerical
results, since the error in approximating E{xr:k-l} by Fgl(r/k) is
similar to the error in approximating E{Xr:k} by F;l(r/(k+1)), yielding
an approximate difference with little error.

As an example, consider N{(0,1), p = .99 and § = .0l. Then
-1 -1
Foo(p(k+1)/K) <6 + F " (p)
implies

F;I[.Qg(k+1)/k) <+ .01 + Fl(o9)
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FL(.99(k+1)/k) < .01 + 2.324 = 2.334

Solving by trial and error for the smallest k satisfying this relation-
ship, gives K » 3000. For § = .1 a value of K ~ 300 is obtained.
Reference to Figure 2 provides the same results. The conclusion is
that for k < K, ﬁii?p) should be used to estimate Fgl(p] rather than

X or X

(1) (r+1}’

2.2.2.2 Effect on the Difference of the Variance. If an esti-

mate of the variance of the estimate of F;I(p) is desired, an analysis
analogous to that for the expected value must be performed, since

. .}. The value of k must be
r:k-1

large enough to reduce this fluctuation below some value ¢ > {0 for the

V{Xr_k} can differ greatly from V{X

simpler order statistic estimators to be applicable.

Figure 3 is a plot of sample size k vs. k*V{Xr:k}. (The variance
is multiplied by the sample size to eliminate the effect of k.) Here
again the results are highly dependent upon both p and the distribution
of the observations, with interaction effects. The least amount of
fluctuation is for p = .99 and the uniform distribution, the greatest
amount of fluctuation is for p = .99 and the normal distribution. The
point here is not the specific fluctuations, but that the fluctuation
depends heavily on both sample size and p. Calculations similar to
those for expected value can be used to find K such that |V{xr:k—l} -

V{xr'k}|< § for a given § > 0 and all k > K, Using

vix b x 2O g p oy gen) 13

r:k (k+1)2(k+23

[Gibbons, 1971, p. 36] and r = [p(k+1)], consider
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Setting this quantity less than § > 0, the fluctuation is bounded
to the desired level for all k larger than K, the smallest k satisfying
the inequality. For example, if the observations are normally distri-
buted, p = .99, and § = .001, trial and error indicates k = 380Q. This
value is verified by Figure 3.

2.2.3 Confidence Intervals Usingforder Statistics

Blum and Rosenblatt [1963, 1963b] discuss the existence of multi-
stage estimation procedures for finding a confidence interval of pre-
assigned length and confidence for quantiles. Since multistage proce-
dures do not exist for all distributions, the results are not of direct
interest here.

Gibbons [1971, pp. 40-3], among others, discusses distribution-
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free confidence intervals for quantiles based on order statistics. In

particular

-1
1-a=PX g <Fo(p) <X ,40 =

[l;]pi (1-p<

T

which is solved for r and s to minimize Xo.p -~ X g ors-r for a given
. This confidence interval has the four disadvantages that: (1) it
is not unique, (2) it is detemrmined by trial and error, (3) it assumes
the order statistics are from independent observations, and (4) it is
not as short as parametric confidence intervals. The first two dis-
advantages are obvious. The third is a disadvantage since in Monte
Carlo studies many variance reduction techniques are based on causing
correlation between the observations, yielding this confidence interval
invalid. Observations from computer simulation or real world pro-
cesses are often dependent also, due to their time series nature. The
fourth disadvantage stems from the distribution-free nature of the
interval which corresponds to the two-tailed sign test for quantiles.
While the sign test is UMPU for an unspecified distribution [Kendall
and Stuart, 1973, pp. 533-6], a valid normal theory confidence interval
would certainly have better properties, corresponding to the greater

power associated with knowledge of the distribution of the estimator of

1

F " (p).

Consider the possibility of using a normal theory confidence
interval based on m independent estimates F;i(p) i=1,2,...,m, where

AN
each Fni(p) is defined as the [pf]th sample order statistic of &

AT\ AT\
observations. Define Fnl(p) = E?=1 Fni(p)/m based on k = ml
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ZT\

cbservations., Then if each Fni(p) is normally distributed with unknown

variance, a 100(1-0)% confidence interval on the pth quantile is

|
n ®) 2 ta/2,m-1

2

* S/m

where

) _
s = [z €10 - pf%);?-’/(m-l)] Yz

i=1

This confidence interval is unique and closed form, obvious
advantages over the distribution-free confidence interval. In addi-
tion, only the F;i(p) values must be independent, rather than each
observation, thereby allowing the use of variance reduction techniques
or, in system simulation, the ith run. Finally, this confidence inter-
val has better properties if, in fact, the normality assumption is
valid.

Gibbons [1971, p. 40] shows that as % + « and p = r/% remains
fixed, the distribution of X(r) tends to normality with mean Fgl(p)

and standard deviation [p(l-p)/ﬂ,]l/2

[f(F;l(p))]-l, where £ is the
density function corresponding to Fn('). Thus for 2 "large enough',
the normal theory confidence interval based on m independent estimates
is valid.

Consider the allocation of the k observations into m groups of £

for fixed k = mi. Asymptotically,
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V{ﬁiz?ﬁ)}/m

[£72 ¢ p))p(1-p) /21 /m

vif 1))

€21 (p))p(1-p)/ ()

Therefore the allocation does not affect the variance of the estimate
for asymptotically large k. For purposes of calculating the normal
theory confidence interval, however, the allocation is important.
Certainly m > 2 is necessary to make possible the computation, and

m > 5 is desirable since the value of t / increases so rapidly

af2,m-1
for m < 5. The tradeoff, however, is that each F;;(p) is more closely
normal for large %, made possible by small m.

If the confidence interval is being used as a stopping rule,
approximate results are acceptable and some non-normality causes no
harm. Especially if intervals are being calculated for several values
of p at once for purposes of determining when sufficient accuracy has
been obtained, approximate results are acceptable since the variability
depends so much upon the value of p as shown in Figures 2 and 3.

In applications where valid confidence intervals are needed, the
normal theory approach could be misleading. However, in Monte Carlo
studies, k is usually at least in the thousands. The analysis of 3.2.1
indicated that large sample sizes are necessary to reduce fluctuation
in expected value and variance of X(r). For the large samples, normal-

ity is probably not a bad assumption, since 100 observations is usually

plenty for appeal to the central limit theorem for confidence intervals



onn the mean. Therefore, even if accurate confidence intervals are

needed, the normal theory approach could be considered.

44
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CHAPTER 1V
PROCESS GENERATION FROM (81,82)

In order to provide the observations used to estimate quantiles
in Chapter III and to perform the Monte Carlo work of Chapters V, VI,
and VII, a method must be available to generate random values having
specific properties. Techniques for generating values from specific
distributions are discussed in many places, for example Naylor et al.
[1966] or Lewis [1975].

This chapter considers the problem of generating random variables
having any specified first four central moments Mps Hys Mg, and My
While the first four moments do not completely characterize a distri-
bution, different distributions with common lower order moments tend
to have similar properties. Thus the capability of generating random
variables having any specified first four moments would allow one
technique to be used to approximate all common distributions. In addi-
tion sensitivity analysis would be simplified since generation of random
values having moments Mot El’ By * 62, Hy * €4, and Uy * gy would be
no more difficult than Uiy Bys Mg, and My The capability of generating
a wide variety of random variables is used in the current work to gener-
ate observations having specified properties. The first four moments
are used to measure the difference between underlying distributions in
Chapters V, VI, and VII.

Section 4.1 discusses the well-known relationships between

distributions in terms of the third and fourth moments, which are
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measures of skewness and tailweight, respectively. Section 4.2 gives
criteria for comparing process generation techniques. GSection 4.3
discusses existing techniques of generating random variables having
specified first four moments and compares them in terms of the cri-
teria of Section 4.2. Finally, Section 4.4 presents a process generator
designed to generate random values from a wide range of distributions.
This generator is the one of several tried which satisfies the most

criteria of Section 4.2.

4.1 The (81,82) Plane and Common Distributions

In this section the interpretation of the first four moments and
their relationship to some common distributions is examined. Insight
into this relationship is the basis for desiring a generator capable of
producing values having any first four moments. Section 4.1.1 discusses
standardized moments and their interpretation. Section 4.1.2 discusses
the relationship of these moments to common distributions.

4.1,1 Interpretation of Moments

Any distribution with fixed parameters has a unique set of
moments. That is, if u; is the rth raw moment of a random variable X,
then p; is unique for all T > 0, which is obvious from the definition

of the rth raw moment

0

ue = f X" £(x)dx

-00

Thus, any distribution may be represented by the point (pi,ué,...,ué)

in an s dimensional Euclidean space if the first s moments are finite.
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The uniqueness does not follow in the reverse direction, however,
since more than one distribution may féll at the point (ui,ué,...,u;),
even if s is arbitrarily large. A common example is the lognormal distri-
bution, which cannot be defined by its moments, as shown by Heyde [1963].
Despite this nonuniqueness, insight into the relationship between distri-
butions may be gained by observing where various distributions are
located in temms of their moments. Commonly the first four moments
are considered, since four is the maximum number of moments which may
be analyzed graphically. The graphical analysis is made possible by

using standardized moments

Y _
o, = ur/u2 r=1,2,...

where ur is the rth central moment. The standardized moments do not

depend on either ui (the mean) or H, (the variance), as may be seen

from the equivalent definition of o

@ {x-uq)

T E00 & 20
Ha

00

Thus any distribution with finite first four moments may be
placed on a plane with axes g and Cty s without regard to the first or
second moments since o = 0 and Oy = 1 for all distributions. The
third and fourth standardized moments are intimately related to the
shape of the distribution. Both are invariant to variance (scale} and
mean {location). The third standardized moment is often used as a
measure of skewness. Its value is negative for a tail to the left and

positive for a tail to the right. All symmetric distributions have
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0, but o, = 0 is not a necessary condition for symmetry. However,

3

0 for asymmetric distributions only rarely. The fourth standard-

Uz

o

3

ized moment is a measure of tail weight, a more difficult concept because
it is so easily confused with variance, and is discussed in Section
4.1.2 in the context of specific examples.

4.1.2 Common Distributions on the (81,82) Plane

The interpretation of the standardized moments becomes more clear
when considering the location of common distributions on the third and
fourth standardized plane. From knowledge of the shapes of these common
distributions (as discussed in Johnson and Kotz [1969, 1970a, 1970b],
for example), a feeling for the relationship becomes more clear.

Figure 4 shows the third and fourth moment plane, using Bl = ag and
B, = a, as the scales for the two axes. The positions of the common
distributions placed on the plane indicate the relationship between the
shape of a distribution and the values of its third and fourth moments.

Consider the line 81 = ag = (0. The beta distribution, with
equal parameters, falls on this axis for 82 such that 1 < 8, < 3. A
special case is the equally likely Bernoulli trial which is located at
(8,,8,) = (0,1), corresponding to the limit as p = q goes to zero.
Another special case is the uniform distribution (p = q = 1) at (B,,8,) =
(0,1.8). The normal distribution falls at (0,3), the double exponential
at (0,6), the t distribution with five degrees‘of freedom at (0.9), and
the t distribution with four degrees of freedom at (0,=).

Note that 82, the kurtosis, increases as the weight of the tails

of the distribution increases. This is illustrated in Figure 5. Distri-

butions with finite range, such as the beta, have kurtosis less than
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three. The normal distribution has the lightest tails possible with an
infinite range at B, = 3. The double exponential has still thinner
"shoulders' and heavier tails. Note that 82 is also a measure of the
"peakedness' of the distribution.

Just as 82 measures tail weight or peakedness, ﬁl is a measure
of skewness. Several common skewed distributions are shown in Figure 4.
The gamma, Weibull, and lognormal distributions correspond to straight
lines. ({Note that had Oy rather than Bl = a§ been used on the hori-
zontal scale, these straight lines would be curves, thereby explaining
the use of Bl.) The exponential distribution, located at (81,82) =
(4,9), is a special case of both the gamma and Weibull, so both of these
lines pass through this point. The normal distribution is the limiting
case of both the lognormal and the gamma distributions, forcing these
lines to intersect at_(O,S). The beta distribution, which is much
more flexible, covers the entire area above the gamma line. Special
cases include skewed Bernoulli trials on the line 82 = Bl + 1 (as p
and q approach zero in a fixed ratio) and the gamma distribution (as
p and q approach infinity at a fixed ratio).

From knowledge of the general shapes of these distributions it
is seen that Bl is an increasing function of skewness. Since skewness
and kurtosis, as measured by Bl and 82, are so intimately related with
the shape of the distribution, a random generator capable of producing
values having any specified Bl and B, is also capable of producing values

from a very wide range of distribution shapes.
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4.2 Criteria for General Process Generators

Any process generation technique oriented toward a wide range of
(81,52) values, rather than a particular common distribution, will be
called a "'general punocess generator' in the remainder of this chapter.
Without specifying the specific technique, a general process generator

may be denoted

i X = G(AI,AZ,...,lk,pl,pz,...)

where the k A; values are parameters, {pi} is a sequence of U(0,1)
values, and G i's either a closed form expression or an iterative
algorithm.

Eight criteria for comparing general process generators are given
and discussed in this section. Not included are criteria common to all
process generators, such as computational speed, core requirements,
cycle length, and reproducibility. It is assumed that any technique
considered will not require extensive tables, will have long cycles,
and will be reproducible. Computational speed is almost always a con-
sideration, especially in Monte Carlo applications, but does not need
to be belabored heré. The eight criteria pertinent to general process
generation are now discussed.

4.2.1 One Functional Form

Ideally the process generator should have only one functional
form. That is, G is the same for all (81,82), differing only in the
values of the parameters Ai. The use of several forms of G to obtain
a wide range of (81,82) values complicates the logic, making error more

likely. 1In addition, several forms necessitate several parameter
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estimation methods, one for each form.

4,2.2 Number of Parameters

A technique should require only one parameter for each moment
to be fit. That is, to obtain any first four moments the generator

should be of the form
X = Al + G(A3,14,p1,p2,...) . Az

where A, determines the mean (location), A, determines the variance

1 2
(scale), and A3 and h4 determine skewness and kurtosis. Finding a
functional form for G using only two parameters to fit a wide range

of (81,82) values is complicated by many of the following criteria.

4.2.3 Expressibility of F in Closed Form

Ideally the cdf of X, F, may be expressed in closed form. That

is, G should be such that the pth quantile of X is given by
P = F(Assxd‘:(x")\l)/kz)

Usually, although not always, this criterion implies that X is a func-

tion of only a single U(0,1) value P;- That is,
X = Al + G(AB,A4,p1)*AZ

0f course, the use 6f only one U(0,1) value also increases the compu-
tational speed of the technique. The value of being able to express
the c¢df, and the density function, in closed form arises in related
statistical analyses, such as maximum likelihood estimation to estimate

the paramcter values or to determine the quantile of a particular value
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of X.

4.2.4 Expressibility of F! in Closed Form

If G is a closed form function of only one U(0,1) value, then G

1, of the standardized random variable

is simply the inverse cdf, F_
(X—Al)/lz. When F"1 can be expressed in closed form the inverse trans-
formation technique can be used. This technique has several advantages
over the other three techﬂiques mentioned earlier, including ability to
evaluate the pth quantile directly, ease of coding, and ease of apply-

ing variance reduction techniques such as stratified sampling (see dis-

cussion of the subroutine STRAT in Chapter VI).

4.2.5 The Moments as Functions of the Parameters

The form of G should allow the moments to be expressed as a
closed form expression of the parameters. The simpler the relationship,
the better, since (1) it is often desirable to provide the parameter
values to a computer routine to have the moment values calculated, and
(2) roundoff error can be a problem in complicated functions.

4,2.6 The Parameters as Functions of the Moments

It is desirable that, given the specified first four moments,
the appropriate parameter values may be easily determined. Ideally a
closed form expression is obtained, although only seldom is this possible.
Commonly, having determined AS and A4 for specified (81,82) by nonlinear
programming techniques, tables, or by trial and error, the appropriate
AZ value for the desired variance and the appropriate A, value for the
desired means have closed form solutions.

4.2.7 Symmetry

Symmetric distributions are an important special case of random
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variables. The general form of G should be such that some parameter
values provide symmetric random variables. In particular, the specifi-
cation of Bl = 0 is often meant to imply symmetry. Therefore a favor-
able characteristic of a technique is that Bl = 0 implies symmetry.

4,2.8 Shape

The distribution should have a ''nice'' shape. That is, given the
conditions which the distribution must satisfy, such as certain specified
moments,

1. the mode (or antimode) should be unique,

2. the range of X should be continuous,

3. f(x) should be continuous,

4, f(x)/dx should exist for all x, and

5. f(x)/dx should be continuous for all x.

These five properties are given in a rough order of importance.
Obviously the conditions are not always desirable, since a Bernoulli

trial, for example, satisfies none of them.

4.3 General Process Generation

Many techniques of process generation are available for generating
values from a wide range of third and fourth moment values--some de-
signed for this purpose and some not. In this section some of these
techniques are compared in terms of the criteria of Section 4.2.

Uniformly distributed random values on the (0,1} interval are
the basic elements of randomness in digital computer simulation and
Monte Carlo work. Process generation is the transformation of these
uniform (0,1) values to the distribution of interest. Common transfor-

mation techniques include:
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1. rejection methods, where a random observation x is used with
probability f(x)/c, where ¢ > max f(x),

2, composition methods, where the zdf of the distribution of
interest is approximated by piece-wise linear segments, which
is equivalent to using a mixture of uniform distributions,

3. application of statistical relationships, such as summing
several uniform random values to approximate the normal
distribution using the central limit theorem, and

4, the inverse transformation technique, which uses the inverse

cdf x = F'l(p) as a direct transformation from p ~ U(0,1) to

x having cdf F(x). For example,
x = - In(l-p}/A

may be used to generate exponentially distributed random
values with parameter A.

In terms of the eight criteria of the last section, the inverse
transformation technique appears to be the superior approach for general
process generators, since all of the criteria are possible with this
technique. Rejection methods do not work well with heavy tailed distri-
butions due to the assumption of finite range. ‘Composition methods re-
quire many parameters, in particular the position of each linear seg-
ment of the cdf approximation. The use of statistical relationships is
by its nature applied to a specific distribution.

Despite this apparent superiority, many methods used to study
distributions over a wide range of moments use other approaches. Most

of these were not designed for random number generation but are sometimes
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used. These methods are now studied in terms of the criteria of Section

4.2,

4.3.1 The Pearson System

The most well-known system of distributions covering the whole
(BI’BZ) plane is that due to K. Pearson [1895]. He used seven density

functions p(x), all satisfying a differential equation of form

1
P C

where the four parameters determine the shape of the distribution. Of
course anv mean and variance can be attained by the usual transformation
y = b{x+c). While seven types are used, there are no discontinuities

in the system owing to their derivation.

In terms of the criteria of Section 4.2, however, this system
does not fare too well. The method of estimating a, Cys € and Cys
given Bl and BZ’ differs by region of the plané and is complicated by
the necessity of determining four parameters. The system was not de-
vised for efficient generation of random values, although Cooper, Davis,
and Dono [1965] have created a computer program for producing random
variables having Pearson type distributions. Finally, in several cases
neither the cdf nor inverse cdf have a closed form.

4.3.2 The Johnson System

Johnson [1949] used three transformations of a normal random
variable to cover the (81,82) plane: one above the lognormal line, the
lognormal, and one below the lognormal line. In terms of the criteria

of Section 4.2, the disadvantages of the Johnson system for process
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generation are the use of multiple functional forms, and the lack of a
closed form for the cdf and the inverse cdf. Random values can be
generated using any of several techniques to generate a normal random
value and making the appropriate transformation, although the compu-
tational effort is high.

4.3.3 Bessel Function Distributions

McKay [1932] described two distributions, which are based on
modified Bessel functions, that cover the whole (61,62] plane. The
solution of a cubic equation leads to the appropriate parameter values
given Bl and Bz, a definite advantage to this approach. Disadvantages
are multiple functional forms and lack of closed form cdf and inverse
cdf. It would appear difficult to generate random values from these
distributions.

4.3.4 The Burr Distribution

Burr [1942, 1973] considers the c.d.f.
1 c, -k
- (+y7) T (0 <y) (k> 0)

where ¢ and k are constants detemining shape. The standard transfor-
mation of y gives the desired mean and variance. This approach is well

suited to random value generation by setting
c.-k
pP=1-(1+y") where p ~ U(0,1)

to obtain
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This expression may be used to generate values of y from values
of p using the inverse transformation technique. Here the qth quantile
of y is calculated using p = 1-q, a property which is good for checking
the accuracy of approximations to data or known distributions.

Disadvantages of the distribution in terms of the criteria are
few. The greatest is that the U-shaped (8, + B, < 1.8) region of the
(61,62) plane is not accessible. Less important is that the distri-
bution is always asymmetric and extensive tables are needed to deter-
mine c and k given B, and B,.

4.3,5 The Generalized Lambda Distribution

Ramberg and Schmeiser [1972, 1974] proposed using

A A
X = Al + (p 3 (1-p) 4)*12

where p ~ U(0,1), which is a generalization of Tukey's lambda distri-
bution. All criteria are satisfied except:

1. the cdf does not exist in closed form,

2. light tailed distributions cannot be generated,

3. the parameters A3 and A4 are not closed form functions

of the moments.

The generalized lambda distribution covers more of the (81,82) plane
than the Burr distribution and includes symmetric distributions as a

special case (ks = A4), which the Burr distribution does not.

4.4 The Absolute Lambda Distribution

Several general inverse cdf's were analyzed in an attempt to find

one which dominated the techniques of Section 4.3 in terms of the
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criteria of Section 4.2. While none dominated, the one which performed
best is described in this section. This generator has one functional
form, the property that only four parameters are needed to provide any
first four moments, a closed form cdf, a closed form inverse cdf, a
relatively simple parameter-moment relationship, symmetry as a special
case, and computational speed which is better than any technique of
Section 4.3.

Section 4.4.1 discusses the distributional properties of the
absolute lambda distribution, Section 4.4.2 discusses its relationship
to the (Bl’BZJ plane, and Section 4.4.3 discusses a variation of the
absolute lambda distribution with somewhat different relationship to
the third and fourth moment plane.

4.4.1 Distributional Properties

The absolute lambda distribution is based on the inverse cdf
x = F L) = &+ bt A)
P 1" P Mgy Ay

where

where p is distributed U(0,1), -= < AS <, 0 f_l4 <1, and lz has the
same sign as J\3.
The density function, in terms of the inverse cdf, is

[dF-l(p)/dp]'l; which may be easily seen from
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fm £(x)dx = j‘l [dF-l(p).'-l [dF‘l(PJ1d = Jfl dp = 1
- 0 ap dp | P 0 P
Therefore
£ = £ ) = EA® Y - oy e, |
P)) = 173 = Mty 1Py
The cdf, F, may be expressed in closed form as
A, -x}1/A
1 3 . A
A4 - Az if Al - A2l4 3<x=x Al
\ J
F(x) =p =
fe 3 )
A v |- M| if A < x <A+ A (l-A )A3
4 L AZ 1—-—"-="1 2 4
/

by simply solving for p in the expression x = F-l(p).
Therefore the density function of X can be expressed in terms of

x, in addition to the previous expression in p. In particular

dF(x) _ [|Al-x|](1-)\3)/x3

dx Az

f(x) =

AS AS
for all x e [Al - A2A4 s Al + Az(l—k4) ].

For Al = 0 the kth raw moment of the distribution is

[0}

EOXN) = f e dx
1
-/ (F o)1
pl
4 A 1 A
- 0w 3 ag0%ap + [ 1Ey 3 a,1%p

4



kA 1

kA

A
k k ¢4 3 3
=3, DT [T (e Cdp v [ (p-2y) Tdp]
A
4
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kA_+1[A ki _+1|1
k
denfom 2t ey B
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4.4.2 Relationship to the (81,82) Plane

The third and fourth standardized moments may be calculated by

their definition

o _ 3/2
and
_ 3 2
By = oy = W/

As illustrated in Figure 6 this distribution

completely covers

62

the (81,82) plane using only A3 > 0. The contour lines relate values of
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Figure 6.

Absolute Lambda Distribution
Type I(k3.i 0)

h,=.47

Absolute Lambda Distribution on the (81,82) Plane

(85 2 0)



AS and A4 to the corresponding moment values. Several properties of
this distribution are illustrated in Figure 5.
1. The uniform distribution is a special case, corresponding

to A, = 1 and any A4 € [0,1]. For this reason the con-

3
tours collapse on (0,1.8) for all 14 as AS approaches 1.

2. The Bernoulli distribution is a special case, corresponding
to A; = 0 and A, = p. Thus l3 = 0 corresponds to points on
the line B, = B, + 1.

3. The distribution is symmetric if and only if A4 = 1/2.

4., For 13.3 1, all points below the line B, = (5/4)81 + 1
can be obtained by adjusting A4.
5. For AS < 1, all points above the line 82 x (5/4)51 + 1

and much of the rest of the plane can be obtained by adjust
ing A4.
Thus (81,82) does not uniquely determine 13 and 14, but the
parameters do uniquely determine the moments. The contours may be use
to determine appropriate As and A4 values. More exact values may be

found by trial and error or by solving

. Z 2
Mln(Bl - Bl*) + (82 - 32*)
using a two-dimensicnal unconstrained search technique, where Bl* and
82* are the desired moments and Bl and 82 are functions of 13 and A4.
Using the approximate graphical solution as a starting point, the
objective value can be reduced as close to zero as desired.

4.4.3 The Absolute Lambda Distribution (Type II)

The above discussion has centered on the properties of the

64

d
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distribution for A, > 0. Figure 7 shows A, and A, contours on the

3 3 4

(81,82) plane for AS < 0. Here there is a one to one correspondence
between parameter values and moments, In addition the contours are
much straighter. Thus solving for the parameters in terms of the

moments is easier for ls_i 0.

The results for As > 0 still apply, except that the range is now
A

3 3
(-, Al - A2A4 } for p < A4 and (Al + AZCI—A4) »2) for p < A4. Thus
the range of X for XB < 0 has a gap corresponding exactly to the range
A
. -1 -1.,- 3
of X for As_z 0. In particular, F "(0) = -=, F (A4] = Al - A2A4 ,

FROG) = A+ 2,03 A3, and F-1(1) = ». Thus the distribution is
bimodal. For 11 =0, AZ = 1/-1.57497, A3 = -.224745, and A4 = 1/2,

the first four moments match the normal distribution with zero mean,
unit variance, zero skewness, and a kurtesis of three. Figure 8 shows
the shape of the distribution for these parameter values. Table 5
gives the quantile values for the same distribution, the normal distri-

bution, and for Al =0, AZ = 1/.04119, A, = 2.22474, and A4 = 1/2.

3
These latter parameter values also have the same first four moments as
the nomal distribution, but with AS > 0. The similarity of the two
A3 values appear toc be coincidental.

Table 5 indicates that while A3 = 2.22474 may be an adequate
approximation of the normal distribution for some applications, AS =
-.224745 is not even similar in shape to the normal distribution.
Thus KS < 0 has little application as a tool for approximating common
distributions. On the other hand, As_i 0 is excellent for checking

the adequacy of the first four moments to measure the difference

between the underlying distributions in Chapters V, VI, and VII. If
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Impossible Region

Absolute Lambda Distribution
Type Il (13 < 0)

10 1

11 ¥

12 ¢

13 1

14 4

Figure 7. Parameter Contours on the (81,62) Plane (l3.£ )
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£(x)

-.7419 .7419

Figure 8. Shape of the ALD (II) Density with Same First Four
Moments as the Normal Distribution

essentially the same results are obtained from the normal distribution

and from the distribution corresponding to hs = -,224745, then the

first four moments would appear to capture the properties of the under-

lying distribution important in the current study.



68

Table 5. Comparison of Quantiles for the Standardized Normal
and the Two Corresponding Absolute Lambda Distri-
butions
P N(0,1) A, = 2.2247 Ay = -.2247
.9999 3.75 5.03
.9995 3.29 3.50
.999 3.09 3.00
.995 2.58 2.33 2.09
.99 2.33 2.26 1.79
.975 1.96 2.09 1.45
.95 1.64 1.83 1.24
.9 1.28 1.38 1.06
.8 . 84 .91
.7 .52 .83
.6 .26 .78
.55 .13 .76
.5 0 0 [-.7419,

.7419]
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CHAPTER V
THE RANDOMIZATION TEST

The component randomization test for the paired sample design is
the subject of this chapter. Section 5.1 considers the computational
problem of testing the hypothesis given a sample of size n, while Sec-
tion 5.2 considers the problem of determining the power of the test under
various conditions using Monte Carlo techniques. The computer program
which performs the Monte Carlo analysis based on the results of this
section and the techniques of Chapters III and IV is used to compare
the power of the randomization test with the power of the corresponding

parametric test in Chapter VII.

5.1 Testing the Paired Hypothesis

Despite the good mathematical properties of the component randomi-
zation test, other distribution-free tests are more often used due to
their computational simplicity, since the computation of the 2" values
22=1 + di is formidable for even small samples. However, the values
may be computed in a reasonable amount of time for samples of moderate
size (about n < 20) with an efficient procedure. Such a procedure is
discussed in this chapter.

Unfortunately, programs to perform this analysis are rare. None
of the common statistical packages (SSP, SAS, Biomed, Univac STATPACK,
or SPSS) liave such a program. The only technique alluded to in the

literature for generating the 2" combinations of signs is reasonable
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for only very small values of n, since it is quite slow and requires
nzn_l tabled binary values. Therefore it appears than an efficient
algorithm, in terms of both speed and memory, would be valuable. More
importantly for the purposes at hand, the logic used in such an algorithm
could serve as the nucleus of Monte Carlo analyses involving the paired
randomization test.

Section 5.1.1 discusses the logic of the component randomization
test in flow chart form. Section 5.1.2 discusses desirable and feasible
values of sample size n for consideration. The basic proposed algorithm
is developed in Section 5.1.3 and modifications are added in Section

5.1.4

5.1.1 The Component Randomization Test

This section discusses the logic of the component randomization

test. Figure 9 is a flow chart of the logic, which at this level is

straightforward. The n differences are read, the test statistic

o4 di is calculated, the number of the 2" values of 22=1 + di less

i=1 -

than or equal to the test statistic is counted, and the quantile of the
test statistic in the randomization sample is p, the count divided by
2", If o is the preselected value cf the Type I error, then the null
hypothesis is rejected or not depending upon the value of a and the

form of the alternative hypothesis Hl. In particular if
H,: w <0 then reject HO if p < a,
if

H.: uw >0 then reject H, if p > l-q,

0
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Read n Differences d. = x, - y.
1 1 1

Calculate D, = Z? d.

N

Determine k, the number of the

£+ d. values less than or
i=1 - 1

equal to D

1

)

p = k/2". Reject H
if p> 1-a

0

Figure 9. Logic Flow to Apply the Component Randomization Test
for the Alternative Hypothesis Hl; v >0

and if
Hy: W # 0 then reject Hy if p < of2 or if p > 1 - /2.

5.1.2 Desirable and Feasible Sample Sizes

The only difficulty in testing the hypothesis of no treatment
difference involves the third box in Figure 9: The 2" values of
22=1 + di must be calculated. The manner in which this is performed
determines the feasibility of applying the component randomization
test, since this operation is the only one requiring nontrivial computer
effort. The effort required doubles each time the sample size increases

by one, so if a sample of size n requires one cpu second, a sample of

size n+6 requires one minute, and a sample of size n+12 requires
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about one hour. However, for large n, the central limit theorem applies,
allowing the normal theory paired t test to be used. Thus a program
capable of performing the randomization test for ''small n" is sufficient.

The sufficient value of n is difficult to determine. Hines and
Montgomery [1972] state that n > 4 is probably sufficient for bell-
shaped distributions, n > 12 is probably sufficient for uniformly
distributed observations, and n > 100 may be necessary for U-shaped
distributions. However, these guidelines can be misleading in certain
instances. For example, very heavy tailed bell-shaped distributions,
such as the Cauchy, will not converge for any value of n. Thus the
definition of "small n" must be determined with care. With respect to
the current interest, a program to perform the randomization test must
be able to handle as large an n as possible.

The most straightforward technique of generating the 2" values

of 22=1 + di’ next to explicitly coding 2" statements, is to create an
n by 2" matrix A containing elements aji = +1 or aji = -1, with each
column of A corresponding to one Z?=1 + di value. Figure 10 illustrates

the matrix A forn = 4.

(21 41 =1 #1 =1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1
-1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1
-1 -1-1-1+1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1

-1 -1-1-1-1-1-1-1+1+1 +1 +1 +1 +1 +1 +1

Figure 10. Matrix for Calculating 22 +d. forn =4

=1
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Simplification results by noting that the jth and n-j+1th columns
of A are exactly the reverse of each other. Therefore only nzn'1 values
are needed. Such a modification allows the sample size to be one larger
for the same amount of effort.

Using the elements of A, the jth value of 22=1 + di may be calcu-

lated directly as

—
n~ms
+
o
| S )
1
n s
o

i

In actual implementation, the n multiplications can be eliminated by
keying on the value of aji to branch either to a subtraction statement
or to an addition statement. However, while conceptually simple, the
matrix A approach is not feasible for sample sizes much larger than
five, when the creation of the A matrix becomes a problem. Here the
brute force creation by inputting the n2" values is time consuming and
difficult to verify.

A gain in feasible sample size can be made by using some form of
binary counting, such as the algorithm developed in the next section,
to automatically generate the elements of the A matrix as needed. Core
requirements and inputting effort then cease to be problems. Time of
generation of the a., values then becomes the important criterion.

5.1.3 An Algorithm for Testing the Paired Hypothesis

This section develops an algorithm to perform the paired sample
component randomization test of location shift. Since the computational
feasibility of the test revolves around the generation of the conditional

reference distribution (the 2" equally likely values of the test
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statistic), the development focuses on an efficient technique for
generating the 2" combinations of signs,

The algorithm, using modular arithmetic, is based on treating
each -1 of the A matrix as a zero and each +1 as a one. The jth
column may then be viewed as the binary representation of j-1. For

example, colum j = 4 is
(+1 +1 -1 -l)T

which becomes binary three. Now the binary element in the ith row of

the jth colum is -1 if 2271 > Mod (§-1,21) and is +1 otherwise. This
relationship may be seen to be valid by considering specific values of
i.

For i = 1, the relationship is
-1 if 1 > Mod{j-1,2)
and
+1 otherwise.

The sign changes for each increment of column j, as desired. For i = 2,
the relationship is -1 if 2 Mod(j-1,4) and +1 otherwise, thereby chang-
ing the sign every second increment of j. The systematic nature of the
sign change as a function of i and of j is similar for higher values of
i and j.

An algorithm for generating the jth value of 22=1 + di is shown
in Figure 11. For each i = 1,2,...,n the relationship is checked and

the logic branches to the appropriate subtraction or addition statement.



Sum = 0
i=0
i - i+l -
\
Y _-_ 3 . N
es 241> Mod (-1, 24 Y
Sum - Sum - di Sum-«— Sum + di

‘ﬁ
i<n Yes

N

No

Figure 11, Logic to Calculate the jth of the 2" 2221 + di
Yalues Using Modular Arithmetic

75



76

5.1.4 Modifications to the A;gprithm

Using the above technique the aji values are generated implicitly
for any value of n, For n < 10 this approach works well. However, the
computational effort of calculating the 2n exponentials and the n modu-
lar values for each of the 2" component values becomes noticeably time
consuming for larger samples.

This basic technique can be made significantly faster in several
ways:

1. The powers of two are calculated using Zi = Zi-l + 2-1_1
rather than using exponentials. Alternatively, the powers of two
are predetermined and placed in a vector ITWO(I) = 2**(I-1) for

I=1,2,...,n+1,

2. The modular arithmetic is unnecessary, since

oy [ModGi-1,2Yy if 2th s od(§-1,2h)
Mod(j-1,2"") =

Mod(j-1,2%) - 2'71 otherwise.
This is true since if 2% goes into j-1 exactly m (integer} times, then

21—1

goes into j-~1 either 2m or 2m+1 times. The remainder, the value
of the mod operation, remains the same if the quotient is 2m and de-

creases by 2*"1 if the quotient is 2m+l1. For example,

Mod(12,2°) = 12
4
Mod(12,2%) = 12
3
Mod(12,2%) = 4
2
Mod(12,2°) = 0
1
Mod(12,2°) = O
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This relationship is valid as 1 decreases, but not as i increases, so
the logic of the algorithm is reversed to consider row i = n first. The

first modular value needed is then
Mod(j-1,2") = j-1

which is always true since j = 1,2,...,2“. Thus no explicit modular
arithmetic is needed.

5. As can be seen by examining Figure 10, the pattern of signs
in the A matrix repeats itself Zk times if only rows 1,2,...,n-k are
considered. The effort of generating the same pattern Zk times can be
reduced to one generation if the pattern is matched with all combi-
nations of signs from the last k rows when it is first generated. For
k =1, this corresponds to noting the right half of A is the.same as
the left half, not considering the last row, the result used previously
to eliminate need for half of the A matrix. For k = n, this modifi-
cation corresponds to explicitly coding 2" statements, one for each
value of Ep_ +.d,.

i=]l - "1
Using k = 2 or k = 3 leads to significant savings without much

extra coding effort. Consider k = 2. Four lines of code provide the

2« d),

5 In particular, using

22 values corresponding to Pj

FORTRAN-1like equations,
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and
Py =Py - dp g -4y

This procedure involves the calculation of 2n-k colums, each using only
Tows i = 1,2,...,n-k.

The value of k determines the tradeoff between coding simplicity
and execution time as may be seen by examining Figure 12. Figure 12
is the FORTRAN code of the interactive program to perform the test of
hypothesis given n differences. The logic follows that of Figure 9
exactly, implementing the techniques discussed here. Eight explicit
lines of code, corresponding to k = 3 are used. Definition of variables
include IEVEN = 2i, IEVENZ = 21”1, and ITERM = Mod(j—l,zi).

Other techniques could doubtless be applied. An important method,

for testing the hypothesis, is to apply heuristic rules to find sets of

n

Ei=1 + di which are less than, or greater than the test statistic. For
. n-j n n
example, if Lo ¥ d; + Zi=n-j+1|di| < EizlldiL then the counter may be

incremented by 27, corresponding to the 27 values of 22=n-j+1 +

di‘
However, for a Monte Carlo study of the randomization sample, all 2"
values are needed explicitly, so techniques of grouping are not pursued
further.

Figure 13 may shed some light on the quest for speed in a pro-
gram performing 2" operations. Using semi-logarithmic paper, the cpu
seconds required to test an hypothesis vs. the sample size n is plotted.
The times are for Univac 1108. Three plots are shown corresponding to

1. Explicit calculation of the modular values

2. Implicit calculation of the modular values and with k = 1
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T# PERFIRH THE CANPENINT RANDSMIZATION TEST OF HYPETHESIS
8N N GIVEN DIFFERENCES.
DIMENSION DC1006)., ITWOCICO)
DATA D(2)/0./.D¢C)70./,1TWRCI) /707

ana

[+ ) .
CowassENTER DATA, INITIALIZE, AND CALCULATE TEST STATISTIC
c

WRITE (6.3) - .
1 FORMAT (* ENTER SAMPLE SIZE N AND N DIFFERENCES."')
READ (35,2 N» (D{l)al=1.N) :
2 FPRMAT ¢)

KQUNT = 0
Dag = D(R) + D(2)
DI2 = DCIY + DCDD
D2) = D22 + D2
DSUM = =D{})1) ~ D(R2) = BCI)
TUON = 2saN
S5TAT = 0
D@ 100 I=l.N
JITVB(1) = 2=w(N=I)

100 STAT = STAT +« D(1)
M= 1TWRCD)
IF (N «GTs 3) GO T2 200
J = TUWIN
SUM = DSUM
G@ T2 (10, 20, 30), W

200 9 = 0

c .
Cess04DETERMINE THE J TH COMBINATION @F SIGNS FOR COMPORENTS Iwdsevsah
C

1000 4 = g + |

SUM = DStUM
IEVENZ = N
ITERM = 4
D@ 400 I=&.N
IEVEN = JEVEN2
IEVENZ = ITVG(I)
IF (IEVEN .LT. ITERM) ITERM = ITER{] - 1EVEN
IF CITEFH .GT. IEVEN2) G@ T@ 300
SUM = SUM = D(I)
GO T a00
300 SuM = SUM + DC1)
400 CeNTINUE
c
g-tt-t!‘ﬂﬂ TH1S COMBINATIBN BF SIGNS., CONSIDER ALL 8 PRSSIBILITIES

30 X = S5UM ¢+ D32
IF (X .LE. STAT) KPUNT = K@UNT + 1
IF {~X .LE. STAT} KBUNT = KQUNT + |
X = SUM + D23
1F X .LE. STAT) KOUNT = KBUNT + ]
IF (-X .LE. STAT} KOQUNT = KGUNT + |
20 X = SUM + b22
IF (X .LE. STAT) KPUNT = HQUNT + |
IF (-X JLE. STAT) KEUNT = KQUNT + 1
10 IF (SUM .LE. S5TAT} K@UNT = K@UNT + |
IF (=5UH .LE. STAT) KQUNT = KAUNT + 1
c IF (J +LT. M) GR T lDQO
C*ea22PRINT RESULTS
c .
RATI® = KOUNT / Twen
WRITE (6.3) K@UNT., TW@N. RATIR
3 gg:gar C* KBUNT =*, 115, / ' 2%%N =*, F17.0/* RATIZ =*, Fi0.7)
END

Figure 12. Program to Test the One-Sided Paired Sample Location
Hypothesis Using Component Randomization
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Figure 13. CPU Seconds to Perform the Component Randomization Test
as a Function of Sample Size
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corresponding to looping 2! times, and

3. Implicit calculation of the modular values and with k = 2

corresponding to looping "% times.

From Figure 13 it is seen that n = 10 is a fairly trivial problem,
requiring only .1 second even when explicitly calculating all modular
values. Recall that n = 10 is quite a formidable problem using an ex-
plicit A matrix due to storage and inputting requirements. For n > 15
the comparison of times between the three variations of the algorithm
is clear. For any n the ratio of the required time remains constant.
Using the explicit calculation of all modular values as a standard, the
substitution of implicit calculations with k still equal to one requires
only one-third the time. Increasing k to three requires only 9% of the
time. Larger values of k can obviously reduce the time still further,
but the program quickly becomes long due to the necessity of explicitly

considering Zk values.

5.2 Determination of the Power of the
Component Randomization Test

It is well known that the asymptotic relative efficiency of the
component randomization test is one for the paired sample case. That
is, for large n, the component randomization test rejects the null
hypothesis with the same probability as the corresponding parametric
test.

For finite sample sizes, however, a price is paid in terms of
power for using the distribution-free randomization test. Kempthorne
and Doerfloer [1969] show that the loss is less than in using the rank

permutation or the sign permutation test. However, the exact power
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loss for the randomization test is not known. The remainder of this
chapter, and the next two chapters, considers the problem of determin-
ing the power loss for various sample sizes, underlying distributions,
and alternative hypotheses. In this section the power of the randomi-
zation test is discussed, Chapter VI discusses the power of the corres-
ponding parametric test, and Chapter VII brings together the techniques
of Chapters V and VI to compare the power of the two tests.

In parametric tests the power may be determined by considering
the distribution of the test statistic under the alternative hypothesis
and evaluating the probability of the test statistic being in the criti-
cal region under Hl' But since the critical region for the component
randomization test is not defined in terms of the distribution of the
test statistic, the power must be evaluated differently. Section 5.2.1
is a general discussion of the power of the randomization test. Section
5.2.2 describes the Monte Carlo approach used to study the power in

Chapter VII.

5.2.1 The Power of the Component Randomization Test

The power of a test is the probability of rejecting the null
hypothesis when the alternative hypothesis is true, or equivalently,
one minus the Type II error B, the probability of not rejecting H0
when H, is false. In the case of the component randomization test

0

for le u>0

Power

1-8

=

f

n
Prob { I d, > [(1-a)2"] of the 2" I + d, values}
i=1 i=1 "



83

However, the 2" values of E?=1 + di are not independent (see Section
6.3.3), making difficult the calculation of the power in terms of this
probability.

Some insight is gained by considering the power for small sample
sizes (n = 1,2), but general results do not easily follow. Consider
n =1 and Hl: u > 0. Then 22=1 di = d1 and the other of the 2" = 2

components is —dl. The power is

1]
—
|
w

Power

Prob {d, > [(1-0)2'] of the 2’

5]

n
+ d. values!’

2o 2%

i=1

Prob {d1 >dyord, >-d or both} for any o > .5}

Prob {dl > 0}

The power is therefore simply the probability that the observed value dl
is positive, a direct function of the underlying distribution.
Consider n = 2 and the one sided alternative hypothesis. The

power is

Power 1 -8

Prob {dl + d2 > [(1-a)22] of the 22 * di values}

H ™~

i=1

Prob {d1 + d2 < - dl + d2 or d1 + d2 < d1 - d2 or

d1 + d2 < - dl - d2 or combinations} if @ < .25

Since the sums are dependent upon each other, this probability is

difficult to evaluate, even if the distribution of the differences
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is known. For larger values of n, the direct determination of the
power is not feasible because the number of dependent events that might
occur increases exponentially,

5.2.2 The Monte Carlo Approach

Since closed form results are not attainable, the Monte Carlo
approach seems appropriate to determine the power of the component
randomization test. A discussion of the methodology is given in this
secticn. The general logic is discussed in Section 5.2.2.1, the vari-
ance of the power estimate is given in Section 5.2.2.2 and a method of
determining the number of samples N necessary for a given variance of

the estimate is given in Section 5.2.2.3.

5.2.2.1 Program Logic. Given a sample size n, the underlying
distribution, and the value of E{d} = E{di} i=1,2,...,n, the Monte
Carlo method can be used to determine the power of the component
randomization test. Figure 14 is a flow chart of the necessary logic
for Hl: u > 0.

The logic consists of two loops. The first loop, repeated N

times, fills a histogram with the position j, j = 1,2,...,2n, of
Z?=l di by incrementing a counter cj by one. The second loop then

analyzes the histogram, for each given value of o, to calculate the
estimate of the power, 1-B, and the variance of this estimate. The

formulae used are

PN [(1-;0 2"

1-B=1- /N
B cJ/

j=1

and



. Read sample size n, distribution of the
observations, expected difference, correlation4
and the number of samples.

¢, =0 j=1,2,.,.,2"

£,
R
| k=0

3

k-« kel

Generate two samples, X; and Yj i=1i,2,...,n,
having the specified expected difference and
correlation from the umderlying distribution.

di-l- Xi - Yi i=1,2,...,n

Detemmine j, the number of Zt;‘l + di. values

n
less than or equal to Ii’l di

C. c, + 1
%

J

Read o
A [(1-e)2™M)
1-§ = 1 - L cj/N

j=1

Fa ~ -
V(1-8) = B(1-B)/N

Write answer

STOP

Figure 14. Monte Carlo Determination of Power for Component
Randomization Test
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V{l/-\B} = V{B} = 8(1-B)/N

The formula for the power estimate is simply the number of times the
test rejects Hy divided by the number of tests performed, N. The
formula for the variance of the estimate is derived in Section 5.2.2.2.

The logic assumes le u>40, but if le U < 0 is the desired
alternative hypothesis, the estimate of the power is simply one minus
the estimate of the power provided by the program when the specified
value of o is one minus the type I error. The variance of the estimate
is not changed. For either alternative hypothesis, the process is re-
peated until the variance of the estimate is sufficiently small. A
program to implement this logic is given in Appendix B, including a
description of the required input.

5.2.2.2 Variance of the Estimate of the Power. It is important

to have an estimate of the variance of the estimate of the power to
determine the accuracy of the results. While replicating the analysis
several times and averaging the power estimate of each replication may
be used to estimate the variance and to calculate confidence intervals
based on the central limit theorem, a simpler approach is to determine
the variance analytically. The derivation of the variance is the
subject of this section.

As discussed earlier, the obvious estimate of the power is

T/T\E =1 - ? cj/N

=1

where M = [(1—&]2“]. The variance of this estimate is (1-B}B/N. This

may be seen directly as follows:
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V{R}

<
—~
fa—y
1
w
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M
=Vv{ZI e¢./N}
j=1 7

M M ,
V(e,) + L L Covie,,c.
1 7 i=1 =1 1)
i#j

1
o
n o=

NT 3

b

MM
Np.(l-p.} + L I (-Np,p.)
e o
i#]

|
|H
Nt =

2

where pj is the probability of 22=1 di being less than or equal to j of

the 2" values of 2221 + di’ since the cj's are multinomial random vari-

ables. Continuing

V{TCB} %

2

Z|—

M M
(1 - 2 P; )L p;]
j=1 j=1

= {1-B)B/N

and the result is shown. An estimate of the variance is then (l—é)é/N.
Note that under HO’ V{l—é} = ®(l-a)/N, and therefore the variance is

known exactly.
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5.2.2.3 The Required Number of Samples. In perfoming Monte

Carlo studies it is convenient to be able to estimate, or place a
bound, on the length of run necessary to obtain results of a specified
accuracy. An upper bound for N, the number of samples, is derived in
this section.

In general, f decreases as Hl moves away from HO. But if 8
decreases, V{ifh} = B(1-B)/N decreases, if a < .5. Therefore the maxi-

mum variability occurs under H. when V{ijé} = a{l-a)/N as shown in the

0
previous section. The variance for all Hl may then be bounded by

setting N such that

afl-o) /N < kK
or

N > a(l-0)/k

where k is a specified required variance of the estimate. If several o
values are of interest, the largest value (o < .5) may be used to deter-
mine N. The true probability of type I error, rather than the nominal
alpha value, should be used. Misleading results may be obtained if
o # m/2n for some m = 1,2,...,2“-1, since the discrete reference
distribution allows only these discrete o values. For example, o must
be greater than 27" since rejecting H0 only when E?:l di is the largest
of the 2" components z?=1 + di is the extrcme possibility.

As an example, if o = .05 and o = .01 are to be considered, and

N
v{1-B} < .0001 = k is desired, then

N > .05(.95)/.0001 = .0475/.0001 = 475



Variance reduction techniques may reduce the necessary value of N,

although the above calculations still provide an upper bound.
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CHAPTER VI

THE DISTRIBUTION QF 22=1 di

Having developed the methodology to determine the power of the
component randomization test in Chapter V, the power of the correspond-
ing parametric test is now considered. This test is performed by com-
paring the statistic 22=1 di to its distribution under the null hypothe-
sis. While such a test is conceptually straightforward and has more
power than the randomization test, the sum of differences distribution
{sdd) is not often known. An important special case where the sdd is
known, of course, is normally distributed observations resulting in the
sdd being normal. But if the underlying distribution is not normal,
the parametric test incurs the combined problem cf (1) uncertainty of
the underlying distribution, and (2) if the underlying distributiocn is
known, having to determine the corresponding sdd.

The analytical determination of the sdd from the underlying
distribution is well known for only a few distributions other than the
normal. If the differences are Cauchy, the sdd is Cauchy. If the
differences are uniform, the sdd is known, but complicated. Differ-
ences with identical gamma distributions result in a gamma sdd, but
since the differences are assumed symmetric, the Cauchy and uniform
are the only common applicable results.

While there are doubtless other examples among less used distri-
butions, it is obvious that even if the underlying distribution is

known, application of the parametric test may be difficult. This
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difficulty is often overcome by using the normal theory test, which is
asymptotically valid as n becomes large by the central limit theorem,
as discussed in Chapter V,

A general methodology for determining the sdd given a sample of
size n and an underlying distribution would be valuable for (1) use of
the parametric test when the underlying distribution is known, and (2}
comparing the power of the randomization test (as discussed in Chapter
V) to the power of the parametric test.

The power of the parametric test may be determined analytically

if the sdd is known, since

n
Pover = Prob { & di

v

clul: E(d,) = "

i=1
n
= Prch { T . + wu > clH,: E{d.) = 0}
. 1 _ u 1
i-1
n
= Prub L.Z di > c - nu HOI
i=1
=1 - F(c - nu

where F is the cdfi of ihe sdd and ¢ is the critical value.

This chapter develops a methudology of determining the sdd for
an arbitrary underlying distribution and sample size. An approach,
which is implemented via a computer program, is developed to determine
any desired quantiles of the sdd, the form of the distribution needed
for hypothesis testing. Section 6.1 discusses the momeuts of the sdd
as functions of the woments of the difrfercnces, and the woments of Lhe

differences as fuanctions of the undcrlying distribution. Section €.2
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discusses some well-known analytic, but approximate, methods of deter-
mining the sdd, including asymptotic expansions and Chebyshev type
bounds on quantiles. The estimation of the sdd moments and quantiles
using dependent, rather than independent, observations is developed

in Section 6.3. The use of dependent observations as a variance reduc-
tion technique makes feasible the use of Monte Carlo techniques for
determining the sdd. The Monte Carlo approach is developed in Section

6.4.

6.1 Moments of the sdd

In any analysis, closed form results are more desirable than
Monte Carloc results, due to the generality of the analytical results
and the cost in time and money of the Monte Carlo approach. In the con-
text of determining the quantiles of the sdd, this implies that a closed
form expression of the cdf, the inverse cdf, and/or the density function
is desired.

As described in Chapter IV, the moments, especially the mean,
variance, standardized third moment, and standardized fourth moment,
are effective in describing a distribution. Of course, the more moments
known, theoretically the more known about the shape and quantiles of the
distribution. The "problem of moments' is the determination of the cdf,
inverse cdf, and/or density function in terms of the moments. Since this
problem has been studied extensively, it seems reasonable to study the
moments of the sdd even though quantiles are the ultimate goal.

The moments of the sdd are now discussed. Section 6.1.1 derives
the standardized moments of the differences as functions of the under-

lying distribution moments. The standardized moments of the sdd are
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then given in terms of the moments of the differences in Section

6.1.2.

6.1.1 Moments of the Differences

In this section the higher order moments of the differences d-1
are derived as functions of the moments of the observations Xi and Yi,
where di = Xi - Yi. This relationship is important because:

1. an experimenter sometimes has a better idea of the

distribution of the observations than of the differences,

2. the differencing operation results in di being more

normally distributed than either Xi or Yi’ and

3. the results are needed later in this chapter in the develop-

ment of the Monte Carlo approach of determining the sdd.

Consider d = X - Y where the subscript i has been suppressed.

Now under the null hypothesis and assumptions of the randomization test,
E{X} = E{Y}

and either higher order moments of X and Y are identical or both X and
Y have all zero odd moments. Let oxz,asx,u4x,... denote the variance
and higher order standardized moments of X and of Y and let Gz,as,a4,...

denote the same for the differences. Then
E{d} = E{X} - E{Y} =0

and

2 2

o = V{X-Y} = v{X} + v{Y} + 2 Cov{X,Y} = 2ox

The third and all higher odd moments are zero since d is symmetric about
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zero, as discussed in Section 5.1.1.1.
If X and Y are identically distributed, the higher order even

moments of d are
= e{a*/oh (4)
- E{(X—Y)4/(20x2)2}

= B{ox?t - axdy + ex®y? - axy® Y4)/4Ux4}

= 3 [0y, - 0+ 6(1(1) - 0+ q, ]

~

1
) [u4x + 3]
o = E{d®/c%)

- E{(x-YJ6/(2cx2)3}

= B{0® - 6x%y + 15x%? - 20x%Y3 + 15x%Yt - exy® + Y6)/80x6}
= 5 logy = 0+ 150, (1) - 20ag ag + 150, (1) - 0 + o ]
= %-[a6x + 15a, - 10a3i]
and
0g = E{(x-¥)%/0%)
= % [as + 28a6 - 560t3 o.. + 35a 2]
X X X 5% 4x

An important point is that the differencing operation tends to
normalize the differences; that is, the differences are more nearly

normal than X and Y. For any normal distribution 0, = 3, g = 15,
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as = 105 and all odd standardized moments are zero due to symmetry.

The difference being symmetric, even if X and Y are skewed, certainly
is a factor in making the differences more nearly normal.

But notice also the even moments. Clearly from equation 4
neither 3 < Gy < Oy OT Oy 2oy < 3. Similarly, if 0, = 3 and Qg = 0
as for the normal, then either 15 < a6_§ Uy OT gy f_aﬁ <15, of
course, O = O for i = 3,4,... if the s o values are those of the

normal distribution.

6.1.2 Moments of the sdd

The moments of the sdd as functions of the moments of the differ-
ences are discussed in this section. Knowledge of this functional re-
lationship is important since it appears to be the only closed form link
between the underlying distribution and the ssd. These results are used
for validation of the Monte Carlo approach developed later in this chap-
ter.

Cumulants are an important tool when working with sums of random
variables. The standardized moments of any sum may be found indirectly
as a function of the underlying standardized moments by transforming
the underlying moments to cumulants, using the relationship

n

(T X)) =
r . .
j=1

[ e =

. K, (Xj) for all r

where K. is the rth cumulant, and transforming back to moments using

the relationships

=

— -
i
Fat

—
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and

/2

i .
a, = ui/uz for i = 2,3,...

A complete discussion of cumulants, including higher order transfor-
mation relationships, may be found in Kendall and Stuart [1969, Chapter
3].

Simplication of analyses results from being able to relate the
underlying standardized moments directly to the sdd moments. Letting
Ei be the ith standardized moment of the sdd, Burr [1974] shows

O3

n

as/ﬁT

and

&
{

= (a3—3)/n+3

but the relationships for higher order moments do not seem to appear in
the literature. Since these higher order moments are needed for vali-
dation of the Monte Carlc approach, they are derived directly using

straightforward, though tedious, algebra. The results are

(og - l(Jcaas)/nS/2 + 10a3/ﬁ7

<
o
1

o - 150, - 1005 + 30 150, + 100° - 45

— % 4 3 4 3

o, = + +15
6 n2 n
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a., - 2la. - 350,00, + 210 21la,. + 35a4a3 - 4150 IOSa3

~ % 5 %3 3 5 3
o, = + +
7 572 377 172
and
T = (0 - 280, - 5600, - 350° + 420q, + 5600° - 630)/n°
g = (% 6 3% 4 4 3

2 2 2
+ (28&6 + 56a3u5 + 350L4 - 6300, - 8400:3 + 1155)/n

+ (2100, + 28005 - 630)/n + 105

4

These results may be summarized by

py2 (/2] 2 p n
S, =n P/2 7y L { T o
g1 lall Ay (L=l A2, o Aglamy oeong

b3

L A =p

i=1 *
A>1
1—

where n, 1is the number of times o, appears in Oy Oy e O

1 2 2
The general result eliminates the need for lengthy algebra which results

from the complexity of expanding (Z?zl di)P.

6.2 Quantiles of Distributions Having
Known Moments

This section considers the possibility of using the moments of
the sdd, developed in Section 6.1, to directly determine the quantiles
of the sdd. It would be convenient if a clesed form function g could

be found such that

-1 2
Fo(p) = g(p,u,0 ,05,0,,...)

2 , .
where U,0 s0i350y,. .. are the mean, variance, and standardized moments
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of the sdd, and F is the cdf of the sdd.

Unfortunately some common distributions, such as the log normal,
are not uniquely determined by their moments. Kendall and Stuart [1969]
discuss this topic in some detail, including necessary conditions for
uniqueness. Any distribution having finite range is uniquely charac-
terized by its moments. As a rule of thumb, sets of moments less than
or equal to the moments of the normal distribution uniquely determine
a distribution. Due to the possibility of a given set of moments
mapping onto several distributions, the general closed form function g
described above does not exist.

While a set of moments may not specify a unique distribution, it
does provide quite a lot of information about shape, scale, and location.
Therefore it is reasonable to approximate quantiles using knowledge of
some or all of the moments. Commonly only the first m moments are used.
Two types of methods are commonly used to approximate F_l(p) given some
or all of the moments: (1) asymptotic approximation, and (2) Chebyshev-
type inequalities. Asymptotic approximations are discussed in Section
6.2.1 and inequalities are discussed in Section 6.2.2.

6.2.1 Asymptotic Approximations to Distributions

Let Fn(x) be the cdf of 22=1 di' Then an asymptotic approxi-

mation of Fn(x) is

T i/2
F (x) = £ A.(X)/n
n . i
1=0
where the Ai(x) terms are functions of moments or cumulants, the specific

form of which arises from the specific expansion used. The relationship

can be inverted to find Fn’l(p), again depending upon the specific
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technique. The errors satisfy the condition

r 3
0 - = aom?| <c omh/?

i=0
where the bound Cr(x) may or may not depend upon X.
The use of asymptotic approximations to determine the sdd, or
any distribution, has two disadvantages: (1) possible non-convergence
and (2) no measure of error. Quoting from Wallace [1958] on convergence;
For any fixed n, the infinite series may be convergent, but in
statistical application usually is not. . . . though the addition
of the next term will for sufficiently large n improve the approxi-
mation, for any prescribed n it may not do so. Typically the
bounds C.(x) increase rapidly with r, and for small n only the
first few terms are improvements.
Wallace also states that "only the order of magnitude of the errors is
known and only rarely are explicit bounds known, and these are far from
sharp."
To illustrate these problems consider the special case of Cornish-
Fisher expansions, where an infinite series gives F_l(p) as a function
of the pth quantile of the normal distribution Up. Cornish and Fisher

[1937, 1960] give detailed formulae through the eighth cumulant. The

first few terms are
Flp = U+ (1/6) (UP-1yx, + (1/24) (W>-30 )k
p p "3 p p 4
3 2
+ (1/36) (2U7-5U0 k. + .
(1/36) (20_-5U )k
where Ks is the ith cumulant of the distribution. Kendall and Stuart

[1969] and Johnson and Kotz [1970a) discuss this expansion in more

detail.



100

The problem of determining the .95 quantile of the average n
random variables Xl,Xz,...,Xn is considered, where each Xi is exponen-
tially distributed with mean 1/A. Although the differences of the
randomization test are symmetric by assumption, the exponential distri-
bution is used here since the average (or sum of the xi/n) has a known

distribution. Table 6 shows the .95 quantiles of the distribution of

n

Zi=1

Xi/n = ih and the Cornish-Fisher expansion for various values of n.

Table 6. The Cornish-Fisher Expansion Approximation of the
.95 Quantile of a Sum of Exponentially Distributed
Random Variables

Actual Cornish-Fisher
’ (Xz(zn)/zn) (29 terms--eight moments)

1 3.00 wild fluctuation
2 2.37 2.1-2.3
3 2.10 1.97
4 1.94 1.84
5 1.83 1.74
7 1.69 1.63
10 1.57 1.52
15 1.46 : 1.43
25 1.35 1.33
30 1.24 1.23

The values in the "actual" column are the .95 quantiles of the
x? distribution divided by 2nA where A = 1. That this is correct is

seen as follows:
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X, ~ I'(n,})
1 1

[ (T o 1

i

= X ~ I'(n,nd)

n

> 2nlf£ ~ I'(n,.5)

e Yh ~ x2(2n3/2nk

The value in the "Cornish-Fisher" column for each n is the sum of
the first 29 terms of the Cornish-Fisher expansion, which involves the
first eight cumulants (moments) of the exponential distribution. Note
that while the approximation is progressively better as n increases, for
small n the results are not accurate. In fact, forn = 1 each temm
added changes the result drastically. The problems arising here are
general to asymptotic expansions, as noted by Wallace. In addition,
there is no theor& available to indicate the error of the approximation.

6.2.2 Chebyshev-type Inequalities

Bounds may be placed on F‘l(pJ when the first m moments are
known. A well-known example, corresponding to m = 2, is Chebyshev's

inequality. If u and 02 are finite and k is a positive number, then
2
Prob {|X-u| > k} < 1/k

whether X is discrete or continuous.

Royden [1953] discusses the general case of the first m moments
given, citing the results of Markoff [1884] and Stieltjes [1884]. The
technique given is in terms of finding bounds on the cdf, but by trial

and error the technique could be inverted to place bounds on F-l(p).
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The trial and error procedure is cumbersome, however, since the tech-
nique of bounding fhe cdf involves finding the zeroces of a 2n degree
polynomial.

If the bounds obtained are inadequate for a given purpose, more
moments may be used. However, the convergence of the bounds may be
quite slow for the same reasons the asymptotic approximations sometimes
converges slowly or not at all. Due to the disadvantages of the
asymptotic approximations and the Chebyshev-type inequalities discussed
here, Monte Carlo methods appear appropriate for the problem of deter-
mining the distribution of the sum of the differences. This approach
is considered in Section 6. 3.

6.3 Estimation of the sdd Using
Dependent Observations

Monte Carlo techniques may be used to determine the sdd given any
sample size n and underlying distribution. The most straightforward
method is to generate many samples of size n from the underlying distri-
bution, for each sample to calculate E?=l di’ and to use the appropriate
order statistics to estimate desired quantiles of the sdd. By generating
enough samples any degree of accuracy (within the limits of the com-
puter]) may be obtained and confidence intervals may be placed on the
results, distinct advantages over the methods of Section 6.2.

The major disadvantage of this Monte Carlo approach is the com-
puter effecrt involved. Many observations of‘Z?zl di are needed for
accurate estimation of sdd quantiles, with each one requiring the
generation of a sample of size n. The computational effort may or may

not be prohibitive, depending upon the complexity of generating each
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of the n sample values, the sample size n, the required accuracy, and
the guantiles of interest.

This section investigates the use of dependent, rather than
independent, observations to estimate the sdd. The dependent obser-
vations are the 2h values of Z?zl + di associated with each sample.
The genesis of the dependent observations is described in Section
6.3.1, the marginal distribution of each cobservation is discussed in
Section 6.3.2, the form of dependence is derived in Section 6.3.3,
the expected values of the sample moments are derived in Section 6.3.4,
the variance of the second sample moment is derived in Section 6.3.5,
and the validity of estimating sdd quantiles from the dependent obser-
vations is established in Section 6.3.6.

6.3.1 The Randomization Sample

Determining the sdd is a special case of the problem of deter-
mining the distribution of a sum of random variables. It is special
in that for this sum of differences, it is known that

1. E{di} =0 fori=1,2,...,n
and

2. Each di is a symmetric random variable.

From these assumptions of the randomization test it is clear that if

z?_ d, is observed, then each of the 2" values of Zp_ + d. could
i=1 i i=1 - 7i
have occurred with equal probability. These 2" values of Z?zl * di

may be thought of as components of a realization of a 2" dimensional
random vector.
An approach to determine the sdd using these components, shown

to be valid in Section 6.3.2, is to use 1 histograms of 22=1 + di
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component values. Here each histogram contains one value of Eg=1 + di
from each sample of size n. From each of the 2" histograms estimates
of the sdd moments and quantiles may be obtained using the sample
moments and the results of Chapter III, since the values within each
histogram are independent. While the 2" estimators are dependent, they
may still be averaged to provide one estimate which is biased as little
as any of the individual estimators but uses much more information. In
particular, the symmetry about zero is exploited.

While this approach is valid, the impracticality of using 2"
histograms makes it unappealing. Of course, m f_Zn histograms could be
used, but then available information in the form of the other 2" m
components is lost, because their values are not used.

Define the '"randomization sample'" as the m2" dependent component
values E?zl + di arising from m samples of size n. It is tempting to
treat the randomization sample from m samples as independent obser-
vations of Zg=1 di by placing them into a single histogram, thereby
using only a reasonable amount of core and all available information.
Using the technique described in Section 5.1.2 the 2" dependent values
from one sample may be determined with much less computer effort than
generating 2" samples of size n to obtain the 2" independent observations.

However, it is not true in general that a sample of independent
observations has the same properties as a sample of dependent components
of a multivariate random variable with dependencies among the components,
even if the marginal distribution of all components is the same. For
example, the properties of a sample of distances between random points

within a circle differs depending on whether each observation is from
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two independent points or the (g] distances corresponding to m points.
Thus it is not necessarily clear that treating the randomization sample
as independent observations is a valid approach to determine the sdd.
But certainly the distribution of the test statistic 22=1 di’
the sdd, and the randomization sample are closely related, since the
randomization test has the mathematical properties of the parametric
test as n becomes large. Therefore the next few sections examine the
validity of using the randomization sample to estimate the moments and

quantiles of the sdd.

€.3.2 Marginal Distribution of the Components Z?=1 + di

That the components Dk5522=1 + di for k = _1,2,...,2n all have the

same marginal distribution is important in showing the relationship of
the randomization sample and the sdd in Section 6.3.5. The approach

taken is to show that the moments of each Dk is the same as the moments

- Il
of D1 = Ei=l

The definition of the null hypothesis and the assumptions of the

di’ the test statistic.

randomization test lead trivially to all odd moments of each Dk being

zero. Under H, treatment effects are zero and therefore the ith pair of

0
observations X{ and Y5 both have the same mean. By assumption X5 and Yi
are either identically distributed or both symmetric. Therefore d, is
symmetric about zero. Symmetry follows since d.l = Xi - Yi could have

been di =Y, - X That the E{di} = 0 is seen from

E{di} = E{x.l - Yi} = E{Yi - xi} =0

if the mean of X and Yi exists. Since di is symmetric, all odd moments

n

of di are zero. Therefore all odd moments of each Dk = zi=l + di
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are zero.
Now consider the pth central moment, where p is even, and an
arbitrary component Dk having j minus signs (and n-j plus signs). For
simplicity let the j minus signs be the last of the n positions. The
value may then be represented by
n-j n

z di - z di
i=1 i=n-j+1

The pth moment of the arbitrary component D, is
n-j n P
EqQ| 2 d - L (5)
i=1 i=n-j+1

while the pth moment of the observed test statistic Dy = Z?zl di is
n P
E< L d,
=1t

If these moments are shown to be equal, then there is one common mar-

ginal distribution for all the Dk'

Now expression {5) may be expanded with each term being of the

form

A A A
E{a b 2...e Y} (6)

where & = 1,2,..., or p, each letter represents + di’ and

A, =pand A, > 1 fori=1,2,...,%
1 1 i~

n 1=

i

The expression (6) is equal to



107

(Eta DESs 2} Ee
since each of the di values are independent.

If any Ai is odd, the associated expected value is zero, due to
the symmetry of the di‘s. But whenever all Ai values are even, the
minus signs have no effect on the expected value of the term. There-
fore the only nonzero terms in the expansion of expression (5) are the
same whether -di or +di is used. Since the moments of each of the 2"
possible component values are the same, the 2" marginal distributions
are the same.

6.3.3 Dependence Among the Components Dk

As noted earlier, the component values Dk’ k = 1,2,...,2“,

corresponding to each sample of size n can be viewed as one realization
of a 2" dimensional multivariate random variable. In the last section
the marginal distributions of the Dk's were shown to be identical. The
form of dependence among the components is the other facet of the multi-
variable distribution necessary for this study. This dependence is
developed in this section.

Three results pertaining to the dependence among the Dk's are
important for current purposes:

21’1

L. Ly Dy

= 0 for any sample

2. Corr (Dj,Dk) = {n-20)/n
where 2 = 1,2,..., or n is number of conflicting signs
between Dj and Dk’ and

2" 27
3. Ej=lzk=1 Corr (Dj,Dk) = 0 for any sample.
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The first result is clearly true, since for each Dk there is a
corresponding component Dj = -Dk with n conflicting signs. Thus any
sum of these pairs is zero, including the sum of all components from any
sample.

The second result may be derived by considering any two arbitrary
components, Dj and Dy s with signs conflicting in & of the n positions.

Let these positions be the last & for convenience. Then

Cov (Dj,D = E{DjDk} - E{Dj}E{Dk}

"

E{DjDk} since the components have mean zero under

=E{Z df - L Q> crossproducts}
i=1 i=n-g+1 1

(- Ve - 162 + 0

(n - 28)02

where ¢~ is the variance of the common marginal distribution of the com-

ponents; that is,

2 _ -
g” = V{Dj} = V{Dk}

Therefore the correlation between the two arbitrary components with
conflicting signs is

K (m-2000° _ n- 20

):

Cov (Dj,D

Corr (Dj,D
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Note that D, and -Dy have perfect negative correlation of -1

k
since £ = n. If n/2 signs conflict, the correlation is zero. 1In
general each conflicting sign reduces the correlation by 2/n.'

The third result involving the sum of all 22n correlations
associated with any sample of size n,

2]’1 211

z L Corr (D,,D,) =0
j=1 k=1 Ik

may be shown to be true by noting this sum is equal to
ngfni n-0 n) n-2 ni{ n-4 nf n-2n
e e R e e R

since the first summation only fixes Dj’ thereby setting a reference for

D The correlation is dependent only upon the number of conflicting

K
signs between Dj and Dk’ hence the factor 2" replaces the first sum-

mation. Now for each Dj’ (E] values Dk have a correlation with Dj of

n-0

T that one value being D, = Ds. Likewise the (£+1) th term

(E] E-‘fﬁresults from Dk differing from Dj by exactly % signs [2]

times.

Proceeding directly now

2t o n
I ¢ Corr (D.,Dk) = 2" [ £ (2] Lﬂ:gfﬁﬂ
j=1 k=1 J 2=0
SO N
=200 1y (me20) /80 (n-9) (]
=0

2™ [[“ézl (=2 n-2(n-d) |
n Ll Grenrt mnnr )




110

Znnl [n/2] 0
AECESRL

n 2=0

whereby proving the third result.

A more general result is that the sum of any m correlations with

a total of mn/2 conflicting signs is zero since

nms
|
[ =
'_l
1
=R
1
[ ]
't*‘l
b
H.
e

Corr (Dj,Dk)

i=1

%—[mn - 2(mn/2)] = 0

where li is the number of conflicting signs in the ith correlation.

6.3.4 Properties of the Randomization Sample Moments

In this section it is shown that the randomization sample moments
are unbiased estimators of the moments of the sdd. This result is used
in the next section to show that sdd quantiles may be estimated from the
randomization sample much as if the n2" component values are independent.

First consider the odd moments. Since the sdd is symmetric about
zero, all odd distribution moments are zero. The odd moments of the
randomization sample are very good estimators of the sdd odd moments
(in a trivial sense), since the randomization sample is symmetric for
any m samples. Letting Dzk denote the kth component from the &th sample,
the odd randomization moments may be seen to be zero since for each ng

observed, D -ng is also observed, causing symmetry about zeroc in

Lj -
the sample. Having a symmetric sample to estimate properties of a
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symmetric distribution is certainly appealing.

Now consider the even moments. The main result is that the

central even moments of the randomization sample

m 20 P
n 2n z ) an
I=1 k=1
z L Dzk R
=1 k=1 — m2 p = 2,4,6,...

are unbiased estimators of the even moments of the sdd. Note that the
denominator m2" would be m2"-1 if m2" independent observations were
being used. The degree of freedom for estimating the mean is not lost
in the randomization sample since the sum of the differences is known
to be exactly zero for each of the m sampies.

The result is first proved for the variance for clarity and then
proved for all general even moments for generality. If 02 is the vari-

ance of the sdd, then for each sample £ = 1,2,...,n

n
2 = = = 2
o° = v{iz1 di} = V{DRI} v{nﬂk} E{ng}
and therefore
m 2" ]p
m 2n z b Dng
2=1 k=1
LI Dy -
E{6%) = Eq LKL mZ
n
m2
m 2n 2
ﬁz L Dy o0
=1 k=1 X
= E{———"——>since &L ng =0
m2" i=1
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m 2n 2
r I E{ng}
_ &=1 k=1
mzn
£ T ol
_ =1 k=; - 52
m2

The result may be generalized to the higher even moments up,

p=2,4,6,... as follows:

m 2" p
0 2n & ) D!Z,k
2=1 k=1
b z D - —
2k n
J£=1 k=1 m2
E{f } = =
P m2
m 2n n
= £ I u_ /m2 from Section 6.3.2
2=1 k=1
= up

The dependent observations must be taken as a group, since
otherwise Zi:l Dzk does not vanish, thereby changing the moments. Dwass
[1957] suggested taking a random sample of the 2" observations when 2"
was so large that calculation of all values required too much effort,

However, it is easy to see that the expected value of the even moments

1s affected by such a procedure, resulting in the reference distribution
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being different than the distribution of Z?zl di’ the test statistic.
Chung and Fraser [1958] suggested using subgroups of the 2" components
whose sum is zero thereby leaving the moments unchanged.

6.3.5 Efficiency of the Randomization Sample Approach

Having established the validity of estimating moments of the sdd
using the randomization sample rather than independent observations in
Section 6.3.4, the value of randomization sample estimation is examined
here. In particular, the value of calculating the 2"-1 additional com-

ponent values associated with each sample is quantified in Section 6.3.5.1

by deriving the variance of the randomization sample estimator of 02
V{212=1 di} and comparing to the corresponding independent observation
variance. Further the randomization sample estimators are shown to be
consistent. The tradeoff between the reduction in variance and the
effort of calculating the additional component values for each sample
is examined in some detail in Section 6.3.5.2, concluding that for
samples of size n < 15 the randomization sample requires less compu-
tation for the same accuracy.

6.3.5.1 Variance and Consistency of the Randomization Sample

Estimators. The variance of the unbiased estimator of 02 based on the

randomization sample, denoted here by ﬁz, is

VB, } = [u, - (3-2m)a*1/m

This variuance may be derived as follows:

m 2n 2

R Py
vin,} =vlf-1—kf-}l-——-'——
m2
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n
D vz ol
= viZI D
m2™? k=1 ¥
i A0 n n
2 2" 2 .
= gn [kz V{Di} + T I Cov{D?,DiE]
m2 =1 j=1 k=1 J
j#k
1 |.n . 27 8(n-2) % 4
=—= (2, -0)+ L Iy - {—==—+1k
m2 j#k n

where % is the number of conflicting signs between Dj and Dk‘ by results

of Appendix E

n, 4

_ 1 n 4 n,.n 4 2 8

= 55 [P0y, - 0N+ 2@y - 0N - S
m2 n £

(E](n-l)ﬁ]

n
X
=1

using logic similar to that used to derive expression (7)

4
= ln [Cyy - 04) + (Zn-l)(u4 - 04) - §%—-(ZH-Zn(n—l))]
m2 n

by results of Appendix E

1 4, 2™'nm-1ny 4

= 5 LGy - oY - SR o)
2 n
1 4 n-1, 4
== [y, -0) - 2(590]

= £ [u, - (3-2/m)0?]

thereby proving the result. As the number of samples, m, becomes large

the variance goes to zero. Recalling that the estimator is umbiased
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establishes consistency since then

LD -1

lin [F °(p) - F"(p)| <¢

m-»eo
which is the definition of a consistent sequence of estimators.

Note that m = 1 sample yields a valid estimate of the variance of

the components and the variance of the estimate is defined for m = 1.
This is not true for independent observations. Wilkes [1962] shows the
variance of the estimate of the variance based on independent obser-

vations, denoted here by 62, tc be

V6’ = [u, - 222 o%)/m

which is undefined for m = 1.

Let m' be the number of randomization samples and let m be the
number of samples using independent observations. The reduction in
variance of the estimate due to calculating the additional 2"-1 com-

ponent values for each sample is
2 _ ~ _ 4 _ a m-3 '
vig®} - vifl,} = o [(3-2n) - —1/m

which is always nonnegative. The impact of this variance reduction is
that fewer samples are needed using the randomization sample than when
using independent observations. The variances of the estimates are

equal when

[uy - 222 6% /m = [u, - (3-20)0"]/m"

=]

or when



116

nle, - (3-2/n)]
=nm'

m-3
(o - 51 !

where o, = u4/04 is the fourth standardized moment.

Since m must be large for an accurate estimate of the variance,

m-3 1

—— R

-1

g

and

[o, - (3-2/n)]

a4 -1

m|
“m
For normally distributed Dk‘s, 0y = 3 and
m' 1
w5

This ratio is smaller for light tailed distributions and larger for
heavy tailed distributions, but never is greater than one.

6.3.5.2 Tradeoff Considerations. The tradeoff between the use

of the randomization sample and independent observations is now ex-
amined. Let W1 be the effort (work) of generating each difference di'
Then the c¢ffort to generate one sample is nwW, . Let W, be the effort
of calculating each + di component uand placing it in a histogram. Then
nW, + 2“w2 is the effort associated with each sample using dependent
observations and nw1 + W2 iz the effort per sample using independent

observations.

Now to obtain the same variance when the Dk's are normally
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distributed m' = m/n. The total effort is then E-[nwl + 2nW2] for
dependent components and m[nwl + WZ] for independent observations. The
dependent component approach requires less effort if

m I
= [nWy + 2,1 < m[nw, + W]

or

2n -n El

n(h-1) W,

The ratio WI/WZ’ the effort to generate one di value divided by
the effort to deal with one + d.1 component, is much greater than one.
Wl is much larger than Wz in general since the generation of random
values requires the higher order operations of exponentiation and
multiplication while only logic statements and addition are required
for dealing with the components. Commonly the ratio wl/WZ is in the
interval (200,2000).

The values of n corresponding to (Zn—n)/(n(n-l)) falling in this
interval are approximately n = 16, 17, 18, and 19. Thus for the smaller
values of n considered in this research the use of the randomization
sample is more efficient. The impact of this increased efficiency is
more apparent when considering specific values of n. For n = 3 and
w1/w2 = 1000, the effort associated with the randomization sample is
only .001 that of independent observations as can be seen by taking
the ratio of the total effort formulae. For n = 7 the ratio of effort

is about .003. Thus brute force application of the Monte Carlo tech-

nique, by using independent observations, would require orders of
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magnitude more computer time for the same accuracy.

6.3.6 Estimation of sdd Quantiles Using the Randomization Sample

As menticned in Section 6.3.1, it is not valid in general to use
dependent observations as if they were independent, except for the mean.
An argument is now advanced that the randomization sample of dependent
components may be used to estimate quantiles of the sdd as if the com-
ponents were independent observations, based on the validity of randomi-
zation sample moment estimation established in Section 6.3.4 and the
consistency of the estimators established in Secticn 6.3.5.

Consider the m2" dependent components of the randomization sample
arising from m samples of size n. As m approaches infinity the moments
of the randomization sample converge to the moments of the sdd, since
the randomization moments are unbiased and consistent estimators of
the sdd moments. Then, for large m, the randomization sample has the
same properties as the sample of independent observations. Therefore,
for large m, the quantiles of the sdd may be estimated directly from the
randomization sample. (The techniques of Chapter III may be used.)

Another argument, possibly more rigorous, is based on Cornish-
Fisher expansions, discussed previously in Section 6.2. First note that
since the randomization sample moments are consistent estimators of the
sdd moments, simple transformations of these estimators are consistent
estimators of the cumulants of the sdd, since cumulants and moments have
a one-to-one relationship.

As seen in Section 6.2, a quantile Ftl(p) of an arbitrary distri-
bution having known cumulants Ky i=1,2,..., may be expressed in

terms of the corresponding normal quantile Up by
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S DI 2 . 3
Flp) = U+ (/6) (U2 - kg + (1/24) (U5 - 3U )k,
. [1/36)(2ug - 5Up)“§ ..

Since the randomization sample may be used to estimate each cumulant
consistently, a consistent estimator of the pth quantile F-l(p) is ob-
tained by substituting cumulant estimates for each Ky

Thus, for large m, quantiles, like moments, may be estimated
using the randomization sample as if the components were independent

observations.

6.4 Monte Carlo Determination of the sdd

This section discusses some aspects of the determination of the
distribution of the sum of differences, the sdd, using Monte Carlo
techniiques. Variance reduction techniques are the topic of Section
6.4.1 and confidence intervals of moments and quantiles are discussed
in Section 6.4.2. The computer program which implements the logic dis-
cussed here is described in more detail in Appendix D.

6.4.1 Variance Reduction Techniques

When the Monte Carlo approach is used to estimate a parameter,
variance reduction techniques can often be used to reduce the variance
of the estimate of the parameter. Since the variance can be reduced by
simply lengthening the computer run, interest centers around minimizing
the variance for a given run length.

The parameters being estimated in this study are the quantiles of
the sdd. Three variance reduction techniques are applied to the esti-

mation of the pth quantile: (1) use of the randomization sample rather
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than independent observations, (2) stratified sampling, and (3) anti-
thetic variables. The use of the randomization sample and the corres-
ponding reduction of variance was discussed in Section 6.3. 1In Section
6.4.1.1 stratified sampling is discussed and antithetic variables are
discussed in Section 6.4.1.2.

6.4.1.1 Stratified Sampling. Stratified sampling, a variance

reduction technique commonly used in survey sampling, may be used in
Monte Carlo studies to increase the accuracy of the estimate of a
parameter without increasing the computer effort. While some increase
in coding effort is necessary to implement stratified sampling logic in
a computer program, the savings in computer execution time may be worth
the effort. A discussion of stratified sampling in the context of sur-
vey sampling may be found in Cochran [1966]. Klienjen [1974] and Moy
[1966] discuss stratified sampling and other variance reduction tech-
niques in the context of simulation and Monte Carlo studies.

In this study the observations Xi and Yi are stratified to ensure
that each segment of the distribution is represented in the correct
proportion. Each random variable is partitioned into K strata with
probability Py = 1/K of any particular observation falling in the kth
stratum. Every N observations exactly n = N/K observations are selected
from stratum k, k = 1,2,...,K.

Stratification causes dependence among the observations, since
if Xi is known to have come from stratum k, then Xj has a lesser proba-
bility of coming from stratum k than if nothing is known about Xi. Care
must be taken to ensure that the n observations of Xi and of Yi in any

given sample are taken independently (although Xi and Yi may be
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correlated).

The logic of the stratification process in subroutine STRAT
(Appendix D) ensures independence. One initialization call to the sub-
routine is required at which time each Py is set to 1/K and the number
of observations to be taken in the kth stratum n is set to a pre-
determined value M = N/X and the total number of observations NT is
set to N. After initialization, the subroutine is calied once each
time n independent observations are needed. For each of the n values,

a U(0,1) value r is generated, the stratum is determined as the largest

k
i=1 Py

less value is to be generated from stratum k in the future. The value

k such that r < % Then n is reduced by cone to reflect that one

r in the (0,1) interval is transformed to the same relative position in

the kth stratum ((k-1)/K,k/K) by

k-1

r=|k-1+(r- Z pi)/pk]/K

i=1
The n independent values of r are later passed to the process generator,
resulting in n independent values of Xi or of Yi having the desired
distribution.

After the n independent values of r are generated, the number of

observations yet to be taken NT is decreased by n and the stratum

probabilities py are modified to reflect the number of observations

still to be taken from stratum k by

P = Ny /NT k=1,2,...,K

These new Py values are then used in the next call to the subroutine.

If NT < n the Py values are reinitialized to 1/K and NT is reset to N.
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Subroutine STRAT in Appendix D performs this logic with the minor-

difference that Z§=1 P; is stored as a variable rather than storing

each P; separately.

6.4.1.2 Antithetic Variables. Another variance reduction

technique which is straightforward to apply is antithetic, or nega-
tively correlated, variables. If two values 31 and 32 are unbiased
estimates of a parameter §, they may be combined to form one unbiased

estimate
§ = (81 + 82)/2
with

V{Gl} + V{Gz} + 2 COV{GI,SZ}

v{§} = 7

The variance of the estimate § is then less if @1 and 62 are negatively
correlated than if they are independent.
Negative correlation is commonly induced by making two Monte

Carlo runs using the same random number seeds, but adding the addi-

tional logic

each time a U(0,1) value r is generated. Thus if the first run is based
on a disproportionately large number of small values of r, the second
run should be biased high. The averaged result is then more accurate
than if two independent runs had been made.

A problem arises in the current study, however, since both r
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and l-r map onto the same 2" randomization component values. This is
true because X; is symmetric about zero, implying that if r maps onto
+Xi then 1-r maps onto —Xi. The Yi values are similarly reversed.
Therefore the differences in the second run are exactly the negative

of the differences in the first run. The 2" component values are there-
fore identical.

Antithetic observations may be generated for randomization samples

by using
r-1/2ifr>1/2
T =
r+1/2 if r < 1/2
Then r = .4 beccmes r = .9 and r = .6 becomes r = .1, resulting in

antithetic observations. They have negative correlation because dis-

tance from the mean is the property of the random observations which
n

affects the 2= component values.

6.4.2 Confidence Intervals

Confidence intervals are needed for estimates to be properly
interpreted. In Chapter V a closed form result was used to calculate
the variance of the estimate of the power of the randomization test.
No similar result is available here due to the use of variance reduc-
tion techniques.

The variance of the estimators of the quantiles and moments of
the sdd are obtained by replication. That is, after N samples are
generated and analyzed, one independent estimate gi is calculated for

each parameter from this replication. A single composite estimate is

calculated after the Mth replication by averaging the previous
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replication estimates

The variance of the composite estimate is easily estimated by the sample
variance S2 since the replication estimates are independent. The aver-
aged estimate is asymptotically normally distributed by the central limit

theorem, so a 100(1-0)}% confidence interval is

6 + ta/Z’M_l(S/ﬂT}

The effects of the variance reduction techniques do not have to
be dealt with directly using the replication technique since they are
buried within the replications. The randomization components are inde-
pendent between samples and therefore between replications. The strati-
fication of observations begins anew each replication, so the obser-
vations are independent between replications. The antithetic variables
effect on variance may be placed within eack replication if, instead
of using separate runs, immediately after a sample is generated and
analyzed the antithetic sample is generated within the same replication.

Confidence intervals based on replications may be placed on both
quantiles and moments. Although the moments are known from Section 6.1,
confidence intervals may be placed on the known values to provide a
mechanism for verification of the computer program and validation of
the theory. The confidence intervals should bound the known values
100(1-a)% of the time. If they do not, an error in programming or

theory is indicated, since the estimators of the moments were shown to
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be consistent in Section 6.3.4. By definition, a consistent estimator
must converge to the true value. The confidence interval provides the

signal that convergence to the true value is or is not taking place.
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CHAPTER VII
THE POWER OF PAIRED SAMPLE TESTS

In Chapters V and VI methods were developed to study the com-
ponent randomization test and the corresponding parametric test, respec-
tively. The methods are general in that they are appropriate for any
underlying distribution and sample size. The techniques of these two
chapters are implemented here, using also the methods of quantile esti-
mation discussed in Chapter III and of process generation discussed in
Chapter IV, to estimate the power of various tests of location for the
paired sample design.

Specifically, the tests considered are the component randomi-
zation test, the corresponding parametric test, and the commonly used
normal test. The "corresponding parametric test" is to reject H0 if
the test statistic is greater than the (1-a) quantile of the distri-
bution of the test statistic. In the case of normally distributed
observations, the parametric test and the normal test are one and the
same.

Section 7.1 discusses these tests and their relationship to each
other. Section 7.2 is an overview of the aralysis performed for each
underlying distribution and sample size in later sections. Section 7.3
contains analyses of the power of these tests under several specific

distributions and sample sizes.
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7.1 The Tests

As noted in the introduction, little study of the power of com-
ponent randomization tests has been undertaken for finite sample sizes.
Knowledge of the power is important for evaluating the tradeoffs be-
tween the robustness and computational ease of the various tests. The
component randomization test, the most powerful distribution-free test,
has the disadvantage of requiring great computational effort. The
corresponding parametric test, which assumes knowledge of the exact form
of the distribution of the test statistic, would be expected to have
more power than distribution-free tests which do not make use of this
information, but knowledge of this distribution is rare. The normal
test is of interest because it is widely used and uniformly most power-
ful in the case of normally distributed cbservations.

Quantifying the difference in power between the first two tests
is helpful in deciding which test to use in a particular situation.

The power of the normal test under the null hypothesis, which is the
probability of type I error, is important ir. determining the degree of
inappropriateness of the normal test for various underlying distri-

butions.

7.2 Analysis Methodology

Before looking at specific results, the steps necessary to deter-
mine the powers of the tests of interest are now discussed. Conceptually
the approach is straightforward, requiring cnly two steps:

1. Determine F;I(p), the pth quantile of the reference distri-

bution F for the parametric test. The power of the parametric
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test or the normal test may then be determined from 1 - B =
1 - F(C, - Vn E{d,/0}) where C_ is the (1-0) quantile of F
or the normal distribution.

2. Generate N samples of size n from the distribution of inter-
est with specified expected differences. For each sample
perform the four tests and update a counter for each test
which rejects Hy- The count divided by N is then the
estimate of the power of the tes=.

Thus the power of the parametric tests may be determined from
either phase. Note that the power of the component randomization test
may be determined only from Phase 2.

The complexity of implementation arises only because the straight-
forward technique requires an unreasonable amount of computational
effort. The results of Chapter VI and Chapter III, may be used to per-
form Phase I more efficiently, while Chapter V may be used for Phase 2.
Process generation, as discussed in Chapter IV, is used in both phases
to generate random observations having desired properties. Phase 1 is
implemented using the computer program in Appendix D and Phase 2 is

implemented using the program in Appendix B.

7.3 The Power of Certain Tests

In this section the results arising from the techniques developed
previously are presented. The probebility of type II error, B, which is
one minus the power, is given in both tabular and graphical form for
each of the tests for various underlying distributions and sample sizes.
The aim of this section is to examine some specific examples to deter-

mine the relationship of power to other factors in a general way. The
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normal, exponential, wniform, and absolute lambda (as discussed in
Chapter IV) cases are examined in Sections 7.3.1, 7.3.2, 7.3.3, and
7.3.4 respectively. These distributions were selected to illustrate
the effect of tail weight and shape on the power of the tests.

In each section results are given in the form of operating
characteristic (0.C.) curves. The curves for sample sizes 4, 7, 11, and
15 are grouped by underlying distribution and o« value. The values of «
considered are 1/128, 1/16, and 1/8, the closest values to .01, .05,
and .1 of the form m/2n where n is integer. These values are necessary
since o can take on only values of this form for pemutation tests..

7.3.1 Normal Observations

In this section the power of the tests of interest, presented in
the form of 0.C. curves, are compared for the case of normally distri-
buted observations. Since the appropriate parametric test is the normal
test, only the component randomization and normal tests are of interest

here.

Figure 15 shows graphically the results of this section, which
are also presented in tabular form in Table 6. Several observations
can be made from the graphs corresponding to o = 1/128, 1/16, and 1/8,
respectively:

1. The value of [ decreases as sample size increases.

2. The value of £ decreases as E{di/o} increases.

3. The value of E decreases as @ increases.

4. The normal test, which dominates the component randomization
test in this case of normally distributed observations, has asymptoti-

cally the same power as the component randomization test. The dominance
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Figure 15. Operating Characteristic (urves from Normal
Observations
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Table 7. Type II Error (B) of Randomization and Parametric
Test (Standard Deviations Are Shown in Parentheses)
§/0 0 .5 1.0 1.5
n
X,Y ~ N(D,.5)
o = 1/128 = 0078125 zOl = 2,417
7 .991875 .93(.0046) .71(.0083) .38(.0088)
.991875 . 86 .41 .06
11 .991875 .84(.0081) .35(.015) .036(.0059)
.991875 .78 .18 .Q05
15 .991875 .76 (.017) .15(.013) neg
.991875 .69 .07 neg
o= 1/16 = .0625 Zg = 1.534
A .9375 .77(.0066) .50(.0079) .24(.0067)
L9375 .70 .32 .07
. .9375 .64(.0088) .19(.0072) .02(.0026)
.9375 .58 .13 .01
11 .9375 .49(.011) .051(.0070) neg
.9375 .45 .04 neg
15 .9375 .38(.020) .012(.0040) neg
| .9375 .35 .01 heg
i |
oa=1/8 = .125 1.150
4 . 875 LB61(.0077) .27(.0069) .075(.0042)
.875 .56 .20 .03
7 . 875 .46(.0091) .09(.0051) .005(.0013)
. 875 .43 .07 .002
; 1 .875 .33(.010) .016(.0040) neg
. 875 .31 .015 neg
1s . 875 .22(.017) .0038(.0022) neg
. 875 .22 .003 neg
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of the normal test decreases as o increases and as n increases. This
is logical since many cbservations are needed for the tail areas of the
randomization reference distribution to be well developed. An o value
far out in the tail requires more observations for the same power.

Thus for normally distributed observations the largest loss of power in
using the component randomization test is for small n and small .

7.3.2 Exponential Observations

Results are given here for exponentially distributed observations.
The form of the results is the same as for the normal case of the last
section, except here the parametric test is distinct from the normal
test.

Figure 1G¢ shows the parametric reference distribution for the
parametric test under exponential observations as determined by Phase 1.
The upper half of the reference distribution is plotted on normal proba-
bility paper for sample sizes n = 4, 7, 11, 15, and infinity. The
reference distribution as n approaches infinity is the normal distri-
bution (the straight line in the figure) with the difference between the
normal distribution and the parametric reference distribution for finite
sample sizes being greatest for small samples. For all sample sizes the
normal distribution lies above the parametric reference distributions
above approximately the 95% quantile and below the parametric reference
distribution otherwise.

Table 7 contains the results of this section in tabular form.
Three tables are shown, corresponding to o = 1/128, 1/16, and 1/8,
respectively. Each of the entries are the probability of type II error,

B, for various values of n and E{di/c}. Results for the component
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Table 8. Type 1I BError (B) for Randomization (R}, Parsmetric (P}, and Normal (N} Tests
Arising from Exponential Observations
84 0 .5 1.0 1.5
c
a\ R P N R P N R P N R P N @
X,Y ~ Exp '
a= 17128 = .0078125 zct = 2,417
127 127 .86 .59 .34 2.54
71138 28 099 [ (loosm *B¥ -8 | (loog0y 48 %0 | (logesy ‘07 (08 (.02)
127 127 .76 .30 .07 2.49
o135 38 0% s % -7 | Coossy 20 <18 | (loossy 998 097 | ony
127 127 .66 .13 2.47
15 138 138 .991 (.024) .70 .69 (.023) .08 .07 neg neg neg (.03)
a=1/16 = .062 z, = 1.534
67 .40 .21 1.51
4 | 9375 .9375 .940 (.0074) .70 .69 (.0077) .30 .31 (.0065) .06 .07 (.004)
.54 .17 035 1.52
7 19375 .9375 .939 (.0091) .61 .61 (.0069) A2 .13 (.0034) .01 .01 (.007)
.42 .068 .008 1.53
11 L9375 .9375 .938 (.016) .45 .45 (.0046) .04 '.04 (.0013) .0005 .0005 (.004)
.34 .01 1.53
1S L9375 .9375 .938 (.019) .34 .34 (.007) .01 .01 neg neg neg (.02)
a=1/8 = 1.25 z, = 1.150
.51 .22 .08 1.09
4 875 .B75 .89 (.0079) .54 .56 (. 0065) .16 .18 (.0043) .03 .035 (.004)
.40 .09 .013 1.11
7 |.875 .875 .88 (.0090) .43 41 (.0052) 06 .07 (.002) .005 .005 (.006)
.29 .03 .092 1.13
11 [.875 .875 .88 (.014) L300 .30 (.0031) .01 .ol (.0008) neg neg (.006)
15 1.875 B75 88 .20 20 .20 ne neg ne ne ne ne 1.14
. . . (.016) . E g g g 2 4 (.01
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randomization test are in the columns labeled "R'". Similarly the para-
metric test results are under "P" and the normal test results are under
"N'". For the randomization test the estimate of the standard deviation
of the result is given in parentheses. The results for "P" and '"N" are
deterministic calculations from the results of Phase 1. The critical
values used for the parametric test are determined from Figure 16 and
are given in the right-hand colum under Ca'

The most surprising aspect of these results is that the power of
the parametric test does not dominate the power of the component randomi-
zation test. Especially for alternative hypotheses close to Hys the
component randomization test has more power ftor all n and values of a.
At first glance this is counter-intuitive, since the usual circumstance
is that power is lost in obtaining distribution-free properties. Note
that over the range of values of E{di/o}, however, the parametric test
is indeed more powerful.

An intuitive rationale for the greater power of the component
randomization test for alternative hypotheses close to the null hypothe-
sis is as follows: the reference distribution for exponential obser-
vations has heavier tails than the normal (a4 = 3,75 for n = 4, and the
normal value is 0y = 3) while the randomization reference distribution
has light tails [a4 < 3) since its range is always finite. As discussed
in Chapter IV, a distribution with a high value of 0y is more peaked
and has heavier tails than a distribution with smaller 0y Small Oy
values indicate light tails and heavy shoulders. Now an alternative
hypothesis close to the null hypothesis is more easily detected by the

distribution with heavy shoulders, in this case the randomization
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reference distribution, since many observations are close to the mean.
On the other hand, alternative hypotheses in the tails are more easily
detected by the parametric test due to its reference distribution having
more observations in the tails.

Note that the power of the normal theory test is very similar to
the parametric test. While not appropriate for exponential observations,
the nominal value of o is not far from the true value, as indicated in
the columns under E{di/U} = 0. The power of the normal test is similar
to the power of the parametric test for all alternative hypotheses and
sample sizes, although the greatest difference is for small sample sizes
where the parametric reference distribution differs the most from the
normal distribution.

Note also that as the sample size increases the results of all
three tests converge to the same values. This must be true for the
parametric and normal tests due to the central limit theorem. This is
equivalent to the reference distributions becoming the same in Figure 16
for large sample sizes. The component randomization test also converges
to the same power for large sample sizes, since this test is asymptoti-
cally the normal theory test for large sample sizes. However, the
nonnormality in terms of sample size is of interest here.

Figure 17 shows graphically the values of Table 7 for the para-
metric and component randomization tests. The normal test is not shown
since it is only approximately correct for this case and since the
results are so similar to the parametric test. All of the same general
relationships between o, n, and E{di/o} are true here as for the normal

case. B decreases as any of the three factors increase. The striking
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difference is that the parametric test does not dominate the component
randomization test, as just discussed.

It is of interest to compare the results of this section to those
of the last section for normal observations. The power of the com-
ponent randomization test is generally greater for exponential obser-
vations than for normal observations, the greatest difference being .1
forn =4, o = 1/16, and E{di/o} = .5. However, for large values of
E{di/U} and/or for large n the normal cbservations lead to the greater
power. In these cases the power is so great for both tests, however,
that the difference is not usually important. Thus it appears that the
component randomization test actually has better overall power for
exponential observations than for normal observations.

This relationship does not hold true for the parametric test. For
small o, the parametric test performs best under normal observations.

For o = 1/16 the test has similar power for both types of observations
and for large a values the parametric test performs best for exponential
observations, That this should be true is cbvious from Figure 16. The
reference distributions all cross the normal distribution around the .95
quantile. Since power of the parametric test depends on this distri-
bution only through the (1-a} quantile, power should indeed be similar
for o = 1/16.

Note that the result of all the parametric reference distributions
having the same .95 quantile is that the normal theory test is very close
to exactly valid for exponential observations for any sample size if
o = .05. Smaller or larger values of o lead to inaccuracies in the

normal test.
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7.3.3 Uniform Observations

Results corresponding to those of the last section are given here
for uniformly distributed observations. Figure 18 shows the reference
distributions for sample sizes n = 4, 7, 11, 15, and infinity arising
from uniform observations. Again the straight line, the normal distri-
bution, is the limiting distribution as n approaches infinity. Not
shown is the limiting case of n = 1, the distribution of the difference
between two uniformly distributed random variables, which is the tri-
angular distribution., All of these reference distributions have a
finite upper bound and therefore lie above the normal line, whereas the
exponential reference distributions were below the normal distribution.
Note that, for the o values considered, the reference distribution is
essentially identical with the normal. Only for o greater than 01 is
the difference noticeable in Figure 18 and even there it is not as great
as in the case of exponential observations.

Table 8 shows the probability of type II error for various
sample sizes and alternative hypotheses E{di/o} for the component ran-
domization and parametric tests. From the table it would appear that
the normal test works well in this case as an approximation to the true
parametric test, even for small sample sizes.

The results for uniform observations are similar to those of the
prior two cases, with £ decreasing as a function of n, o, and E{di/O}'
Again of interest is that the component rancdomization test has greater
power (lesser B) for E{di/U} = .5 and a = 1/16 and o = 1/8 than the
parametric test. That is, even though the parametric test has better

power for most combinations of n, o, and E{di/o}, it does not dominate
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Table 9. Type II Error (B) for Randmmization (R), Parametric {P), and Normal (N) Tests
Arising from Uniform Observations
o 0 5 1.0 1.5
Ca
n R P N R P N R P N R P N
XY ~ Uniform
o= 1/128 = ,0Q078125 = 2.417
127 127 .93 .74 .42
7 138 128 .99 (.004) .85 .85 (.008) .40 .41 (.009} .06 .06 2.39
127 127 .87 .80 .40 .19 .03 .004
Uleg 28 % | cony  con "% oy o12)'!® | (oosy (.oozy 004 | 240
127 127 .81 N-¥)
15 128 138 .99 (.03) (.04) .67 neg neg 2.41
o= 1/16 = ,0625 z, = 1.534
.68 .54 .32 .27 07
419375 L9375 .94 | poe 27070 | Chaa Coon 32 | ooy (loozy -O7 1.3
.65 21 .02
71[.9375 .9375 .96 (.009) .57 .58 (.007) .14 .14 (.002) .005 .006 1.53
.50 .45 .08 .04
11[.9375 .9375 .96 (.02) (.02) .45 (.006) (.005) neg 1.53
.34 .29
15|.9375 .9375 .94 | ol 04 .29 neg neg 1.53
a=1/8=.125 7.cl = 1,150
: .52 .30 .19 .08 .03
41.875 .875 .87 (.006) .56 .56 (. 006} (.006]'19 (.004) {(.003) .03 1.15
7l.875 875 .87 { 47 a3 .43 { "9 07 07 | ne neg neg | 1.15
' (.o09) % - (.00s) ’ 8 g :
.32 .30 .01 .01
117.875 .875 .87 (.01) (.01) .30 (.004) (.004) neg 1.15
.15 .18
15/.875 .875 .87 (.03) (.03) .18 neg neg 1.15
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the component randomization test.

It is apparent by comparing Tables & and 8 that the normal test
does indeed approximate the properties of the parametric test well in
this case. The power never differs by more than .01 except for large
values of E{di/o} where the difference in tail weights between the
uniform and exponential distributions has an effect. If, however, an
value of .0001 and a small sample size were used, Figure 18 shows that
the normal test is not so good an approximation since ¢ 9999° equal to
3.35 for n = 4, does differ from the normal value Z 9999 = 3.45, result-
ing in a biased indication of the true a value.

7.3.4 Absolute Lambda Observations

In the previous three sections the power of the component
randomization test and the corresponding parametric test has been
examined for normal, exponential, and uniform observations. These
three distributions were selected as three distributions representing
a wide range of tail weights., The uniform has the lightest tails
[82 = 1.8), the normal has medium tails (62 = 3), and the exponential
distribution has heavy tails [Bz = 9). A question of interest is
whether tail weight, as measured by the fourth standardized moment,
is really the central factor in determining the effect of underlying
distribution on the power of the tests.

An analysis similar to the last three sections is performed here
to gain insight into the fourth moment's impact on power. In particular,
observations are generated from the absolute lambda distribution (dis-
cussed in Chapter IV) with moments one through four identical to the

standardized normal distribution. Despite having the same skewness
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and kurtosis, this density function has a shape quite unlike the normal,
as shown in Figure 8.

Figure 19 shows the reference distribution arising from the
absolute lambda distribution with parameters Al = (, AZ = -1,575,

As = -,2247, and A4 = .5 for a sample size of four. The reference
distributions for larger sample sizes are not shown since in the figure
they would not be distinguishable. Also included, for comparative
purposes, is the normal distribution which appears as a straight line.
While the difference between the reference distribution shown and the
normal is slight, compared to previous examples, it is significant.

The major difference between this and previous examples is that the
nonnormality occurs in the body, rather than the tail, of the distri-
bution.

Tal:le 10 shows the results of the Monte Carlo determination of
the power of the component randomization and the parametric tests for
this underlying distribution. The results for the normal test and the
parametric test are identical to two places of accuracy, and therefore
the results are given only for the parametric test. For the cases
studied, the power of the test does not differ noticeably from the
results for normally distributed observations. Note, however, that
the power of the component randomization test is somewhat less for
these observations than for normal observations. The discontinuity of

the underlying distribution seems to affect the component randomization

test while not affecting the parametric test.
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Table 10. Type Il Error (B) for Randomization (R), Parametric
(P), and Normal (N) Tests Arising from Absolute
Lambda Observations (0, 2.227, -.224745, .5)

8/ .5 1.0 1.5
n R P R P R P
o= 1/128 = .0078125 z, = 2.417
7 . 89 . 87 . 87 .42 .30 .06
11 .87 .78 . 36 .19 neg
15 .72 .68 .14 .08 neg
(.036) (.028)
o= 1/16 = ,0625 .= 1,534
4 .71 .67 .68 .32 .18 .06
7 .66 .59 .21 .14 .013 .007
11 .52 .47 .04 .03 neg
15 .37 34 .013 .013 neg
(.039) (.009)
o= 1/8 = .125 z, = 1.150
4 .66 .58 .29 .20 .06 .03
7 .49 .45 .09 .07 .003 .001
11 .33 .32 .01 .01 neg
15 .29 23 .006 0 neg
{.035) (.006)
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CHAPTER VIII
SUMMARY, CONCLUSIONS, AND Ri:COMMENDATIONS

This research is directed toward studying the power of tests of
location in the paired samples design, but also involves several aspects
of Monte Carlo distribution sampling with wider applicability. For
example, the quantile estimation procedures discussed in Chapter III are
not limited to the study of power or even to data generated by Monte
Carlo studies. In addition, the process generation, the topic of
Chapter IV, is applicable in either systems simulation of Monte Carlo
studies. However, Chapters V, VI, and VII, are applicable only to
component randomization and as a set consider the component randomi-
zation test, the reference distribution of the corresponding parametric
test, and the power of these tests. A more complete summary of the
results of the research is given in Section 8.1, followed by conclu-
sions in Section 8.2, and recommendations for future research in

Section 8.3.

8.1 Summary of Results

A summary of the results of this research is given here. The
results are listed in the same order as precsented in the body of this
work. The section upon which the result is based is given in parentheses.

8.1.1 Chapter III. Estimation of the pth Cuantile

1. Given grouped data,

N q
F(p) = a+blg - ( El c; - p(k+1) + 1)/(cq + 1]
i=
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is recommended as an improvement over the midpoint of the
qth cell as an estimator of the pth quantile of the distri-
bution of (3.1.1) the cdf.

The expected value and variance of this estimator is derived
in terms of P(q), the probability of the estimator falling
in cell q (3.1.2).

P(q) is derived as a function of the probability of an
arbitrary observation falling in cell i, 1 = 1,2,...,Q
{3.1.3 and Appendix A).

The impact of cell width and sample size is analyzed. It is
shown why the recommended estimator is less biased and pro-
vides a more accurate estimate of the variability (3.1.4).

For raw data,
-1
F "(p) = (1—a)x(r) + ax(r+1)

where r = [p(k+1)] and a = p(k+1) - r

is recommended for estimating the pth quantile (3.2.1}.

This estimator is shown to be untiased assuming a uniform
approximation in the region of the estimate (but not neces-
sarily a uniform distribution of the abservations) (3.2.1).
The effect of sample size on the performance of the quantile
estimator is studied. Rules are given to determine the
sample size necessary for the use of a simple order statistic

to provide a desired accuracy (3.2.2).
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8.1.2 Chapter IV. Process Generation from (8,,8,)

8. Criteria for comparing general process generators are pro-
posed (4.2).

9. The absolute lambda distribution is presented, including
distributional properties and its use in generating random
values having any desired skewness and kurtosis (4.4).

8.1.3 Chapter V. The Randomization Test

10. A basic method and improvements are given to test the paired
samples location hypothesis in the paired samples design
using the component randomization test. The basic method
allows generation of signs without tabled values through the
use of modular arithmetic, while the improvements increase
the computational speed by making the modular arithmetic
implicit. A FORTRAN program to implement the method is
given (5.1).

11. An approach for estimating the power of the component randomi-
zation test (using the last result) is developed, including
the variance of the estimate and minimum sample size neces-
sary for a desired accuracy (5.2).

8.1.4 Chapter VI. The Corresponding Parametric Test

12. The standardized moments of the differences are given as a
function of the moments of the observations (6.1.1).
13. The standardized moments of the sum of differences are
given as a function of the moments of the differences (6.1.2).
14. The inadequacy of asymptotic expansions and Chebyshev-type

inequalities as general solution procedure is illustrated (6.2).
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The use of the randomization sample, the 2" dependent
components arising from each sample, as a variance reduc-
tion technique for quantile estimation is proposed and
shown to be valid (6.3).

The decrease in computational effort arising from this

technique is quantified (6.3.5).

8.15. Chapter VII. The Power of Paired Sample Tests

17.

The power of the component randomization test and the para-
metric test is given in the form of operating characteristic
curves for normal, exponential, uniform, and absolute lambda

observations (7.3).

8.2 Conclusions

Conclusions arising from the overall research are as follows:

1.

The recommended estimators of the pth quantile reduce bias
and provide a more accurate variance estimate than the common
approach of using cell midpoints. The effect is greatest for
small samples with raw data and large samples for grouped
data.

Based on the criteria of Section 4.2, the Burr distribution,
the generalized lambda distribution, and the absolute lambda
distribution each have advantages not possessed by the others.
The absolute lambda distribution, presented in Section 4.4,
is the only technique known which will provide random vari-
ates having any desired skewness and kurtosis using only two

parameters and one functional form.
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The algorithm proposed for performing the component randomi-
zation test makes feasible the use of this test for samples
as large as n = 25.

A useful variance reduction technique, using component
randomization, for finding the distribution of a sum of
symmetric random variables can reduce computational effort
as much as 99.9%.

The power of the component randomization test and the para-
metric test may be studied using Monte Carlo techniques in a
reasonable amount of computational effort by using the tech-
niques of Chapters III, V, VI, and VII. In addition, the
results of Chapter IV make the selection of underlying
distribution simpler.

The power of the component randomization test is usually less
than the power of the appropriate parametric test, but is not
dominated for all alternative hypotheses. That is, in some
cases, the distribution-free randomization test has more
power than the parametric test which assumes knowledge of
the exact distribution of the observations, including vari-
ance.

The robustness of the normal test of location, a well-known
property, is observed in relatior. to the performance of the
correct parametric test. The difference in reference
distributions is seen to be greatest in the tails of the
distributions for common distributions.

The power of the component randomization test is different
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for normal and absolute lambda observations, even though
both have identical first four moments. The power of the
parametric test, on the other hand, is essentially the same
for both types of observations.

Since in practice the appropriate parametric test is not
known, the component randomization test is a viable alter-
native to the normal test for samples no larger than 25.
Especially when the variance is unknown the component ran-

domization test costs little in terms of power loss.

8.3 Recommendations for Future Research

avenues for future research based on this work are perceived

A distribution for general process generation satisfying all
the criteria of Section 4.2 is needed.

The component randomization test in the paired samples
design may be made still more computationally efficient by
perhaps considering techniques which do not explicitly con-
sider each of the 2" components of the sample.

The method of generating all 2" combinations of signs may
have application to other areas. For example, the two sample
component randomization test requires similar logic.

Another area of application is seen by noting that the 2"
combinations of signs is an exact analogue of explicitly
enumerating the solutions of an n item knapsack problem.

The procedures of Chapter VII, based on Chapters V and VI,
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may be used to study the power of the tests for other

specific underlying distributions and sample sizes.
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APPENDIX A

VALIDITY OF THE DISTRIBUTION OF THE pTH

QUANTILE ESTIMATOR CELL
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APPENDIX A

VALIDITY OF THE DISTRIBUTION OF THE pTH

QUANTILE ESTIMATOR CELL

In Chapter III the distribution of P(q) is derived. The proof
that Z:=1 P(q) = 1 given here uses mathematical induction on [p(k+1)].
To establish the initial condition, let k' % k+1 = [p(k+1)] using the

notation of Chapter III.

Q Q Jk'-1p k'-jaay s(a-1 7 q k'-j-i
z P(q) L4z z (..]p z Pol |1 - L Py
q=1 q=1|3=0 li=r-j

q [k'-1 v ofg-1 1]
- s dx (k'](p '3 P,

q=1j=0 q =1 ")

ﬁ ' ' \

Q g-1 k q-1 k k ) Kod i
= ¥ P + I P2 - z PR since L [ lP Igd

q=1 ({ 1 =1 %=1 j=0

= (pvs)"

Q {a Y Q@ fq-1 K
= T L P -z P

q=l LQF]. % q=1 2=1 L
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Now assume 2321 P(q) = 1 if {pk] = m. That is

Q Q |m-11k-j k) 4 lazl ] q k-j-i|| =1

I P(qd= g E [i'] P I ppy (- L p (8)
q=1 q=1|3=0]i=m-j 1) 9 {221 g=1

Let [pk] = m-1, Then if

Q Q [m-2]k-J k) i a7t J q k-j-i
q=1 q=11j=0li=m-1-j 2=1 =1

the proof is complete. This may be done by showing that the difference

between the center expressions of eqs. 8 and 9 is zero as follows:

Q m~1\k-j k i q'l j q k-j-1
iz |z [i.] PlI pl|1- 2 B
q=11j=0li=m-3 VI 2 =1 g=1
m-2|k-j K ; (a1 j q k-j-i
- L] L (..] P z Pol |1 - z Py
j=0li=m~1-j )7 (=1 2=1

Q [k-m1 . RS qa  Yk-(m-1)-i
e L.(m—ﬂ] R P ) N

g=1|i=m- (m-1)
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APPENDIX B

PROGRAM LISTING FOR CHAPTER V
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APPENDIX B

PROGRAM LISTING FOR CHAPTER V

c TO PERFORM MONTE CaARLO £STIMaATION OF THE PAWER oF TuE
o RANDOMIZATION TEST
NIMENSION ITWO(SRG)e D{s0)e ALPHA(2a)*ICRIT(2n)e(20Y,
* 2(20)»T(20)»IRC(2D), TP (200 INC (207 rITC (201
o
Craxa®FNTER PARAMETERS AND TINITTALIZE
¢

15 WRITE (6,1)
1 FORMAT {* ENTER SAMPLF ST7E nv¢ FXPFCTED DIFFERENCF» CARAFLATIONS
* / v B OF SAMPLFS, RANNOw # <EEn, nISTRIBUTIAM TYPE, '/
= ' AND FOUR PARAMETERSG, T oXeXeToIl . I?XeXexoXyt)
READ (S5¢2,ENDZ9G) NeXMIIraHOrNBIGISEED,IDIST.P1,P2,P3.04
2 FORMAT ()
NTWO = 2»aN
NA = D
11 NA = NA + 1
WRITE (56,3)
3 FORMAT (* ENTER ALPHA, C, Z¢ AND To)
READ (5s2,ENDZ15) ALPHa{nNAY. CinAY, ZINA), Touh)
TRC(NA) 0}
TPCINA)
INCI(NAY
1TC (NA)
TCRIT(NA)
a0 To 11
12 NA = NA - 1
nNTOoTAL = o
FRHO = SQRT (1=RHO#RHO)
GUMD2 = 0
nd 50 I=1,N
§0 TTWO(I) = 2%&(NoT}

0
u
o

(1-ALPHAINA)) x NTWN

CexxkxpERFORM TEST NBIG TIMES,

C+xxxxFIRST GENERATE RAMDOM DIFFERENCES aND CALCULATE TrST <TATISTIC
c

25 NTOTAL = MTOTAL + NBIg
TOTAL = NTOTAL
nO 500 Kz1.NBIG
&TAT = 0
TSUMD2 = 0
No 600 I=1sN
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rALL DATAIN (IDTIST/P1,P2,P3sP4,TSEFD X}
cALL DATAIN (IDIST.P1,P2,P3+P4,TSEFD*Y)
=y x FRHO + ¥ » RHp
NLI) = %X = Y + xMU
TSUMD2 = TSUMDZ2 + D{I) = ntD
AND STAT = STAT + D(I)
SUMD? = SuMD2 + TSUMQD»
o
Casex2PERFORM THREE PARAMETRIC TESTS (INFAbe NORMA, AND T)
c
52 = (TSUMD2 - STATRSTAT/N) 7/ (N=1)
TSTAT = STAT / SQRT (goxnN)
PSTAT = STAT / gQRTIN)
75TAT = STAT / QORTI(N)
DO 60 I=1,NA
TIF {(PSTAT LT. C(I)) IPc(I) = IPCtI) + 1
IF (ZSTAT LT. 7Z(I}) INC(I) = INCeT) + 1
TIF (TSTAT .LT. T(I}) ITC(I) = ITC¢I) + 1
60 CONTINUE
¢
CussxxINITIALIZE FOR PERFORMING TEST
c

KOUNT = 0

n2z = D(2y + O(2)

p32 = D{3) + D(=x)

na3 = D22 + 032

NSUM = =0{1) - N2} = nix)
M= ITWO(3)

IF {N 6T, 3} 6O TO 2n0

J = NTwo

UM = DSUM

G0 To (106, 20r 30D} N
200 U= n

c
Cexxs*nETERMINE THE J TH COMRINATION oF SIGNS FOR rOMPONENTS Txote.aeel
c

1000 U = 4 + ¢

UM = DSUM
TEVENZ2 = M
ITERM = J

D0 4n0 I=fu.N
TEVEN = IEVENZ
IEVENZ = ITWO(I)
IF (IEVEN LT. ITERM) ITFRM = 1TEmRM - IEVEN
IF (ITERM .G6T. IEVENZ) &0 TO 3In0
SUM = SUM -~ DI(I)
60 TO 400
300 sUM = Sum + DI(I)
400 rONTINUE
c .
CxasxxFOR THIS COMBINATION nF SIGNSe CONSIDER ALL a PoSsImglLITIES
c
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Y = sUM + D32
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TF (X .LE. STAT) KOUNT = KOUMNT + 1
1IF (=X ,LEs STAT) KOUNT = KOUNT + 1

¥ = SUM + D23

IF (X oLE. STAT) KOUNT = KOUMT 4+ 1
IF (=X ,LEe. STAT) KOUNT = KOUNT + 1

X = UM 4+ D22

IF {X LLE, STAT) KOUNT = KOUMT + 1
IF (=X LEs STAT) KOUNT = KOUNT + 1

IF (sUM ,LE. STAT) KOUNT =

IF (=SUM _LE, 5TAT) KOUNT =

IF (J LT, M) GO TO 1n0On

KOUNT +
KOUNT + 1

Ceaxx*)PDATE ACCUMULATORS REFLECTING RESULTS OF THrS TEST

c

c

no 500 I=1.NA

IF {(KOUNT LLE. ICRIT(I)) IRC{1) = IRC(I} + ;4

500 CONTINUE

Cxx#s4DETERMINE AND PRINT RESULTS FOR DEGIRED VaLUFS OF ALPHA

c

c

4

VAR = SUMD2/ (NTOTAL*N) =XMUsxMy

WRITE (6s6) VAR

FORMAT (v VARIANCT OF THE DIFFERENCES ='» Fin.4)

DO 9n0 I=1eNA

BR = IRC(I) 7 ToTAL

SBR = SQRT (BR*(1=BR)/TOTALI
RC = IPC(I) / ToOTAL

5BC = SQRT (BC#*(1-8C) /TOTAL)
AN = INC(1) 7 ToTaL

GBN = SQRT (BN*(1-8N)/TOTAL)
AT = ITC(1} 7 TopTaAL

GBT = SQRT {BT+(1-8T),TOTAL)
cC = IcrIT(D)

* SBR,S3CrSANeSRT
FORMAT (* ALPHA =¢, Fin.A/
x * RANDOMIZATION

=t C, VALUES*,u4Fqp,4/% RETAS

900 WRITE (6+4) ALPHA{I)sCCrC(I)sZ(I)eT(I},BR,BC.BN,BT,

PARA NoRMA T'/
teir10.6/" STH BETASY»uF10.67)

Cakxk*kENTER NUMBER OF ADDITIONAL SaMpLES TO BE TESTED

¢

WRITE (6:¢5)

5 FORMAT (* HOW MANY MORE gaMPLES2 (1))

99

READ (5:2.,ENDZ1R) NBIg
IF (NBIG) 99,15,25

STOP
END
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¢ PROCESS GENERATOR FOR VARTOUS NISTRIBUTIONS
SUBROUTIME DATALN (IDISTPL1,P2,P3,PLe ISEED» X}
GO TO (1+2»3s43 IDIST ’
c
CaxtuxIDIST = Y IMPLIcS THE GENERALIZEND LAMADA DISTRIBUTTON
o

1 P = RANDOM(ISEEW)
X = Pl + (PxxP3 = (1~P)=xP4) s P2
RETURN

c
g-xttleIST = 2 TMPLIcS NORMAL (P),STD=P2)

2 PA = RANPOM{ISELD)
PB = RANROM{ISELD)
X = (=2xALOG(PA) }xx 5 % CO0S(6.28318xPR)
X = Pl + X=P2
RETURN

c
CaxxxxIDIST = 3 ITMPLI:S THE AHBSOLUTE LAMRDA DISTRIBUTION
c

3 P = RAMDOM{ISEEW)
IF (P ,L7. P4y X
IF (P .GF, P4) X

X = P1 + X/P2
RETURN

- (PU-P)=xxpP3
{P~PY4)x*p3

Cc
Caxx*xxIDIST = &4 THMPLIcS THE EXPONENTIAL DISTRIBUTION
C
4 P = RANDNOM(ISEEU)
= =ALDG(P) = P
RETURN
END
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APPENDIX C

RESULTS FOR SECTION 6€.3.5
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APPENDIX C
RESULTS FOR SECTION 6.3.5

In Section 6.3.5 Cov {Dg,Di}, where Dj and D, have £ conflicting
signs, was used in the derivation of the variance of the randomization

. pA . . . .
sample estimator of o°. The value of this covariance is now derived.

2 2 n-% n 2 n 2
Cov {D7,DI} = Cov T d, - ) d, , 1 £ d,
J i=} Y i=p-2+1 i=1 *t
f b
| (n-2 2 fn-9, n
- Eﬂ[{ ) diI 2| T 4 ( Ioq
Lli=1 i=1 1) li=n-g+1

n 20{ n } 9 5
X d. & d.|p - E'D)} E{D}
i - 3 k

2 I z d.d,
i=1 j=n-2+1 1]

n-4 2 n-% n-% n-4£ n
s i ijl "

n 2 n n
+ rodi+ I I d.d,
i=n-g+41 ' i=n-2+1 j=n-2+1 *J
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n n-% n
=R £ d°-2 I g d.d
| i=1 i=1 j=n-g+1 * 4
[ n n n-%£ n
+ | T £ dd, -2 I I d.d }}
i=1 j=1 i=1 j=n-i+l
i#j

n n n
[z &+ 1z dld} - gt
i=1 i=1 j=1 1 J

i#]

;
( n-4£ n

- E{Di -4 3 5 d.di' [n}ﬂ - o4
i i=1 j=n-2+1 1

which, with sufficient insight, may be written directly.

n-% n n n n
E‘£4 -4 3 T d.d.[ I d>+ 5 3 d.dj] - o

K i geneaer Viar b er e F
i#j
n- 4% n n 5
=, - 4EQ T z I d.d.d
i=1 j=n-4+1 k=1 *J
n-% n n n

4
+ 2 I z z by didjdkdm - g

i=1 j=n-L+1 k=1 m=k+1
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n n  n-2 n 4
u, - 8] Z z L z E{d, d d.d.%} - g
4 Eal mekel i1 jen-ge1 K M1

since E{didjdk} = 0 for i#j

h-£ n
2 .2 4
By - BI:E 5 E{d.k dm}} -0

k=1 m=n-L+1

4

b, - 8l-22ei/m?) - o

i

U4 _ [8(n-§ £ . 1]04
n

thereby showing the result used in Section 6.3.5.

The result

n-2 n(n-1)

LI e =

It
(n-2)% = 2
G

was also used in Section 6.3.5. The validity of this result is

established as follows:

n-1

n

9=1 g=1 *Hm-R)
n-1
) (n-2)!
= n{n-1) 251 (L-1) t(n-2-1)!
n-2
o (n-2)!
n{n-1) kio (k) (n-kK) !

= n(n-l)zm2
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since the summation is the number of all possible combinations of n-2

things.
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APPENDIX D

PROGRAM LISTING FOR CHAPTER VI
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APPENDIX D

PROGRAM LISTING FOR CHAPTER VI

MAIN PROGRAM FOR PERFORMING MONTE CARLO SIMULATION
TO DETERMINE THE DISTRIBUTION OF {(SUM D(I)/SORT(N))

DIMENSION ICHIST{5000) » IHIST (5000) ¢ XCMOM(8) ¢ XMOM(8) ,
*x  AL100)B1100),D(100),PI5SD) rAAIB) rRA(B) +AADIF(8) 1AMOM(8+2)
x  AHISTISD»3),1TWO(100)

NCELLS = 5000

HT1 - -5-

HW = ,002

WRITE (6+3)
3 FORMAT('0OTO PERrORM MONTE CARLO SIMULATION TO NETERMINE THE v/
x IRISTRIPUTION uF (SUM Di1) 7/ SE@RTIN))YY)

190 WRITE 16+18)
18 FORMAT { v ENTER THE PARENT POPULATION INDICATOR,t+/

= FOUR PARAMETER VALUES:'/

= ¢ AND THz INITIAL RAMDOM HNUMBZIR (IeXeXeXeXel)*/)
REAQ (5»1+END=9%) IDISTIP1sP2,FP3,PUsSEED

1 FORMAT ()

IISEED = ISEED
INITS = ISEED

200 WRITE t6+4)
4 FORMATt('OENTER SAMPLE SIZE (NO, OF URSERVATIOM DIFFEREMCES) (I)'/)
READ (Se1,END=1UD} NO

CLEAR CUMULATIVL MOMENT ACCUMULATORS AND HISTOGRAM

SGRTND = SORT(NU)
DO 500 I=1/NCELLS

300 ICHISTIIY = O
NS = 0
DO 400 I=1,8
DO 410 J=i.2

410 AMOM{I,J) = O,

400 XCMOM{I) = 0O,
WRITE (6+35)

35 FORMAT ('0CUMULATIVE HISTOGRAM AND MOMENTS ARE ZERDED.'/)

DO 420 I=1+NO

420 ITWOtI} = 2xx(Nu-I}
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s Nl g

450
19

i7
465

460

470
33

500
&00
6

11

690
700

800

610

995

WRITE 16,¢19)
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FORMAT (' TO CHANGE PERCENTILE TO BE EVALUATED»'/' ENTER NEW?

= ' NUMBER OF PERCENTILES, (1) ELSE HIT RETURN, ')
REAL (5¢1,END=201) IIX

IF (11 .LE., 0) GO TD 465
NP = 11

WRITE (6+17) NP :
FORMAT ('OENTER', I3, ' NEW PERCENTILE VALUES XiXress')
READ (Se1,END=2U0) (PLI}rI=1,NP}

DO uBd I=1.NP

AHIST(I,1) = O,

AHIST(I,2) = 0,

AHISTII«3} = O,

WRITE (6,33}

FORMAT (*0DO YOU WANT TO USE ANTITHETIC VARIABLES2')
REAU{5,11»END=420) I

IANTIT = -1%

IF +I .EG. 'YES *) IANTIT = 1

WRITE (6¢5)

FORMAT ('OENTER & SAMPLES 7/ MONTE CARLO REPLICATION, (TI)t/)
REAU 15¢1+END=47D} NR

K2NR = NR

IF LIANTTT EQ., 1) K2NR = 2=aNR

WRITE (6¢6) K2NK

FORMAT (' ENTER *'YES'' TO GENERATE ANOTHER',I6,* SAMPLES,')
REAL (S5r11,END=00) 1

FORMAT (AB)

IF (1 ,EO, 'YES ') GO TO &90

WRITE (6¢6) K2NR

READ(5,11+EiND=2u0) |

IF (1 _NE, 'YES *y GO TO 200

CLEAR HISTOGRAM AND MOMENT ACCUMULATORS FOR THIS REPLICATION

DO 700 I=1,NCELLS
IHIST(I} = O ’
DO 600 I=1,8
XMOMLTI) = O,

GET NR MORE DIFFERENCE SAMPLES, EACH OF SIZE NO

NS = NS + 1
IF §IANTIT LLT. 0) GO TO 990
IF {IANTIT .EG. D) GO TO 995

IANTIT = O
I1ISEED = ISEED
GO0 TO 990
IANTIT = 1

ISEED = TISEED
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990 CALL STRAT{NRyNUrNO,ISEEDr1+P)

DO 900 K=1:NR
CALL DATAIN (IDWSTsPLeP2,P3,PU4sISEECPAINOINSNRYTANTITrAA)

CALL DATAIN (IDLSTsPLrP2sP3 P4 ISEELr3eNQeNSyNRyTANTITrAA)
DO 1000 I=1¢NC

1000 DI} = AtI) - BiI)
IF INS ,6T, 1 UR. K 6T, 1} GO TO 1050

CALCULATE MOMENIS FOR THE DIFFERENCESs AADIF, FROM
THE MOMEMTS OF THE VALUES RETURNED FROM DATAIN» AA

AADIF (1) = 0,

AADIF(12) = SQRTi2=AAI2)=AA(2))

AADIF(3) = O.

AADIFI4) = .5=(AA(4)+3)

AADIF(S) = 0.

AADIF(B) = +25«{AA(B)+15%AA(4)=10=AA[J)*AA(3]))

AADIF(7) = 0O, )

AADIF(8) = ,125=(AA(B)+28%AA(6)-SEXAAMII*AA(SI+3I5xAA (4)YxAALL))

CALCULATE THE MUMENTS OF THE RANDOMIZATION ODISTRIB!UTION, RA»
FROM THE MOMENT> OF THE DIFFERENCES: AADIF

RAL2) = AADIF(2)

RAL3) = AADIFI(3) 7 SGRTINO)

RAL4) = 3, + (AADIF(4)=-3,) s NO

RAIS) = (AADIF{5)-10%xAADIF(3))/NO%x%x1.5 + (10xAADIF(3))/ SGRT({NQ)
RA16) = 15 + (1o=AADIFI4)+10xAADIF(2) *AADIF{3)=45)/NO
x + (AADIFI6)-15S%AADIF(4)~10%xAADIF{3)*=4ADIF(3)+30) /(MO*NO)
RALT) = (AADIF(7)~21%AADIF{5)-35=AALIF (4)*xAADIF{3)+210*AADIF(3))
= / MO=x2,5

x + (21=AADIF(S)+35«AA0DIF (41 *AADIF (3)~41S5%AANTF{3) 1 /NO**1.5
x + (105=sADIF(3))/5QRTIND)Y

RA18) = (AADIF(0)1=28*xAADIF (H)=56xAADIF (31 =AADIF(5)-35%xAADIF (1)
- *AADIFLL) + L420xAADIF(u4)

x  +560xAADIF(3)=AADIF(3)~630) / MNO%X%3
=4+ (28*AADIF{b)+SoxAADIF I3V =AADIF (D) +35%AADIF (4 *AADTF (4} -
x  630XAADIF(4) =840xxpADIFI3Y=AADIF L 3)
- + 1155)/71n0xNO)
= 4 (210«AADIF14)+280xAADIF(31%AADIF(3)-630) / NO + 105
WRITE t(6r31) LIvAALI)rAADRIFLI)¢I=10b)
31 FORMAT ('OMOMENIS . o+ «'/' PARENT POPULATION DIFFERENCES'/

= (13,2F15.4))

CALCULATE THE CuRNISH-FISHEP EXPANSIOM OF THIS DISTRIBUTION

WRITE (6s132)
112 FORMAT ¢' DO YOU WANT THE CORNISH~FISHER APPROXIMATION?')
REAU (S»11,END=L050) 1 .
IF (I NE, 'YES t) GO TO 1050
WRITE 16,1039)
1039 FORMAT {*0CORNISH-FISHER EXPANSION « o o'/
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1040
1041

1050

1280
1200

29

= ' PERCENTILE N(D,1) THRU 4 THRU 6 THRYU 8v/)
XK4 = RAI4) - 3

XKé = RAfe) = 1oxRA(4) + 30

XKB = RA18) = 20=RA(6) = 3IS=RA{4)1=RA{4) + 420%RA{4)} = 630
DO 1040 I=1.NP

CALL NDTRI(P(I}eXNeC»IER)

XN3 = XNEXN=XN

XN5 = XNIxXN=XN

XNT = XNSxXNeXN

FING = XN + XKu=[XN3=3%xXN) / 24

- - XKyxXKyx(IhXNS=24«XNT+29¥XN] / 384 :
= 4 XKYnx3x [ Qe XNT=131kXNS+45 XMNI-I21xXN) /7 3072
FING = FINY + XA6=(XNS=L0=XrI+15xXN] / 720

= + XRURXKE*(XNT=17xXNS+69 XNI=5T7%XN) / 1152

FING = FING + XABx{XN7=21%XN5+105=XnJ=105=XN) / 40320
WRITE (601041) P{I)s XN» FIM4s FINGe FINS
FORMAT (5F10.6)

Mz ITWOI1)

DO 1100 J=1.M

SUM = =Dt 1)

IEVEN2 = M

ITERM = J

DO 1200 I=2¢NO

IEVEN = IEVENZ

IEVENZ = ITWOL]}

IF ¢IEVEM .LT. LTERM} ITERM = ITERM - IEVEN
IF (ITERM _GT, 4EVENZ) GO TO 1280
SUM = SUM -~ Dt

GO TO 1200

SUM = SUM + DII)

CONTINUE

SUM = SuM s SGRINO

SUMZ2 = = SIM

FORMAT {2F10.4)

UPDATE THE SAMPLE HISTOGRAM AND SAMPLE MOMENT ACCUMULATORS

INTERV = (SUM-HT1)/HW + 2.
IF LINTERV LT, 1) INTERV = 1

IF {INTERY .G6T, NCELLS) INTERV = NCELLS
IHIST{INTEPV) = IHIST(INTERV) + 1

INTERY = (5UM2=nT1)/HW + 2,

IF 1INTERV LT, 1} INTERV = 1

IF (INTERV 6T, NCELLS) INTERV = NCFLLS
THISTLINTERV)Y = IHIST{INTERV) + 1

X = SUM*SUM

XMOM12) = XMOMte) + X + X

172
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oo

Nnon

OO0

1100
900

1300

14

Y =2 X = X
XMOMLY) =
X = X %Y
XMOMLGY =
Y=Ya=xyY
XMOM(8) =
CONTINUE

IF (IANTIT

UPDATE CUMULATIVE HISTOGRAM AND MOMENTY ACCUMULATORS

XMOM{4) + Y + ¥

XMOM{g) + X + X

¥

MOM(s) + Y + Y

+EG, 0}

DO 1300 I=1,/NCELLS
= ICH4STII) + IHIST(I}
XMOM( 2}
XCMOM(4) + XMOM{u)
XMOM (&)
XMOM(B)

ICHISTI)
XCMUM{2)
XCMOM (4)
XCMOM(6}
XCMOM{8)

ot

CALCULATE SAMPLc MOMENTS

XCMOmMt2) +

XCMOM(B) +
XCMOmM(8) +

NTOTAL = K2NR =(M+M)
SSTu = SORT(XMOM(2) /{NTOTAL~1))

= XMOMi2

}

= XMOM(2)

GO TO 610

SA4 = XMOM{4} = NTOTAL 7/ X

CALCULATE

AMOML 2,1}
AMOMIL 2,2}
AMOMt G, 1)
AMOMIL,2)
AMOM(E,1)
AMOMLiB) 2}
AMOMIEB, 1)
AMOM(8,2)

SUM aAnD SuM

Himwmaunnn

= X & XMOM({2)
= XMOMi{b) = NTOTAL = NTOTAL / X
= X = XMOM(2)
= XMOM(8} = NTOTALx*NTOTAL=NTOTAL / X

AMOM(2¢1)
AMOML2+2)
AMOim L el)
AMOML4,2)
AMOM{b, 1)
AMOM (62}
AMOM( B, 1)
AMOM LB 2)

WRITE (6y14) ‘
FORMAT (' PRINT RESULTS?')
REAU {5+¢11.END=000} IPRINT

IF tIPRINT

+NE, 'YES

OF SQUARES FOR EACH SAMPLE MOMENT

S P

S5TD
SSTN=SSTH
SA4
SAUxSAY
SAB
SA6*SA6
SAB
SA8%SA8

CALCULATE THE CuMULATIVE MOMENTS

NTOTAZ = NS = NIOTAL

IF LIANTIT

«GE. O

NTOTAZ = NTOTAZ2 x 2

CMSTD = SQRTIXCMOMI2)/INTOTA2-11)
X = XCMOM{2) = XCMOM(2)

G0 TO 139

173
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CMA4 = XCMOMi4) = NTOTA2/ X
X = X & XCMOM(2)
CMAG = XCMOMI6) = NTOTA2 = NTOTAZ2 / X

X = X = XCMOM(2)
CMAS = XCMOMI8) = NTOTA2=NTOTA2=NTOTA2 / X

PRINT RESULTS

- NSAM = NS x NR
NDIF = NO = NSAM
NSH = NS
NR2 = NR

IF fIANTIT .EG, -1} GO TO 129
NSH = NS 7 2
NRZ2 = NR + WR
129 WRITE (6,20) IDISTrPI'P2rP3oP49INITS,NO;NR2rNSHfNSﬂM.NDIFfNTOTAa

20 FORMAT ('OPARENI| POPULATION ='ell0/

TOTaL # DIFFERENCES GENERATED =', 110/

TOTAL # TEST STAT. VALULS GEN,.=', 110/
IF LIANTIT .GE, 0) WRITE (6.,34)

34 FORMAT (' ANTITRETIC VARIABLES USED.'/)

S * WITH PARAMETERS', 4F10.0/
- ' USInG INITIAL RANDOM # SEED =*, 111/
= ' SAMPLE SIZE =+, 110/
= * SAMMLES s MONTE CARLO REPL. =+, 110/
= t REPLICATION JUST COMPLETED =+, I10/
* * TOTAL H SAMPLES GENERATED =v, 110/
= ]

x 1]

CALCULATE MEAN aND STD OF SAMPLE MOMENT VALUES

A2STD = @,

AZA4 = Q0.

A2AB = 0.

A2A8 = O,

NSHZ (NSH=1)=NSH

ASTD = AMOML2+1) 7 NSH

IF (NSH .,G6T. 1) A25TD = SORT{ (AMOMUzs2)=-NSH=ASTD%ASTD) /NSH2)
AA4 = AMOM(4,1) / NSH

IF INSH .GT. 1) A2A4 = SORT({AMOM(4s2)-NSH*AAL*AALY /NSH2)
AAB = AMOM{G6+1) / MNSH .

IF (NSH .GT. 1) A2A6 = SORT((AMOM(6+2)=NSH*AAG*AAG) /NSH2)
AAB = AMDM(8,1) / NSH

IF INSH .GT. 1) A2A8 = SGRT((AMOM{Bs2)~NSH®AAB*AAR) /NSH2)

WRITE(6+21) RA(Z) rCMSTDYASTN,A2STDeRA{4) +CMALSAAU QAL
* RALB)CMADIAALIA2AGIRALB) yCMABAADIARAS
21 FORMAT (' RANDOWIZATION DISTRIBUTION'/' MOMENTS TRRD
* ! ALL REPLALCATICONS'/
= 24Xy YCUM MEAN STDOY/
= * STNY ,U4F10.37
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¢ Abt, 4F10,3/

' A6'y 4F10.3/

' AB'y UFLlU.3/7/

' PERCENTILES R(C»1)'» 30Xs *'STAN STD'/)

DETERMINE AND PrINT PERCENTILE INFOKMATION FROM THE TWO HISTOGRAMS

1ISCED = ISEED

ISUM = 0

o =1

ISUM2 = ©

J2 = 1

00 1400 Y=1NP

THRESH = Ptl) = NTOTAL

1405 I0LD = J
1810 Uy = J + 1

1440

1450
1415
1420

1460

X = D.

60 TO 1450

IF 1IHIST(J) «Lcs 0) GO TO 1410

ISUM = ISUM + InISTiW)

IF ¢ISUM LT, THRESH) GO Th 1405

X = (IOLD=THIST(IOLD) + J«IMIST(J}) / (IHIST(IOLN}+IHIST(J))
X = (X -2y = fuw + HTL

AHIST(I, 1) AHLST(I,1) + X

AHIST(I¢2) = AHLST(I2) + X=X
AHIST(I+3) = AHASTILI«3) + 1,

IF (IPRIMT .NE. 'YES *) 60 TO 1400
AMEAN = 0,

ASTLD = 0.

IF (AHIST(T:3) .iLT. .5 GO TO 1395

AMEAN = AHIST(I»1} 7 AHISTI(I,3)

IF {AHIST(I+¢3) 4GTs 1.5) ASTD = SORT(LAHIST(Ir2)
x = AHISTU(I,3)=AmEAN=AMEAN) / (AHIST(I+3)=1.1}}

ASTD = ASTD 7 SuRT(AHIST(I«3})

THRESH = P1I} = NTOTAZ2

IOLu2 = J2

J2 = U2 + 1 .

IF (J2 JLE, NCEWLLS) GO TO 1460
Y = 0,

AMEAN = 0O .

ASTD = 0.

60 TO 1395

IF {ICHISTtJ2) LE, 0) GO TO 1420

ISUM2 = 15UM2 + ICHISTJZ2)

IF (IsumM2 LT, THRESH) GO T0 141%

Y = (IOLN2+4ICHISTIIOLD2)+J2+ICHIST (J2) ) Z/LICHIST(IOLD2) +ICHIST (U2))
Y = 1Y=2)xHW + HT1
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1395

22
1400

99

10
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2 =Y s CMSTD

XX = ASTD 7 CMSTD

IF (IPRINT .EQ. *YES ') WRITE (6¢22) P(I)ey 2¢ Y, AMEANy ASTD:»
FORMAT (F1nN.6:5r10,5)

CONTINUE

GO TO 600

STOP
END

TO GENERATE RANUOM SAMPLES OF SIZE N FROM THE DISTRIBUTION
INDICATED RY IDLSTy WITH PARAMETERS P1,P2,P3,P%» USING
RANDOM NUMBER ScED ISEED. THE RANDUM VALUES ARE PLACED IN X,

SUBROUTINE DATAINC(IDIST,P1+P24P3,P4,TSEED s XeNONS,MR,IANTIT,AA)
DIMENSION X(NG)sAALB)PL100D) )RAWIE)

IMPLICIT DOUBLE PRECISION (B,DsR)

DP3 = P3

DP4 = Py

GO TO 11+2,304)21IDIST
I015T=1 INDICATES THE GENERALIZED LAMBDA DISTRIBUTTON

NNO = NO

CALL STRAT(NR¢NUsNNO, ISEED,0D,P)

DO 10 I=1,M0

IF tIANTIT LLE. O0) GO TO 10

IF (P‘I) DLE. =) PtlIy = 5 = P(I]

IF IP(1) .GT, .2) P11} = 1,5 = P(IN

XiI) = P1 % (Pli)*=P3 = (1.-P(1})=xty) s P2
IF (NS ,6T. 1} RETURN

CALCULATE THE FiRST EIGHT RAW MOMENT
1 / (8%DPo+1)

B8O =

B71 = BETA{7=DPo+1,DP4+1)
B62 = BETAtGxDPO+1)»2*xDP4+]1)
B53 = BETA(S%DPO+1,3=xDP4+])
B44 = BETA(4ADPO+1r4x0P4+1)
B35 = BETA(3x=DPo+1s5*DP4+1)
B26 = BETA(Z2xDPo+1lr6xDPL+1)
B17 = BETA{DP3+. 2 7*0PU+1)
B08 = 1 7/ {8=DP4+1)

B70 = 1 7 (7T=DPa+l)

B61 = BETA {(6%DH3+1,DP4+1)
BS2 = BETA(S=xDPu+1y2xDP4+1)

B43 BETA(4%DPs+1r32DPU+1)

XX



NOMO

B34
B25
Blé
BO7
B60
"B51
B&42
B33
B24
B15
BO6
BSO
B&1
B32
B23
Bl4y
805
B40
Ba1
822
B13
BO&4
B30
B21
Bl2
BO3
B20
B11
Bo2
B10
801

n||n||n||u||u|nu||llullullullullnllnllnllullnll

R1

R3
R4
RS
R6
R7?

nuounwnhn

R8

1

BETA{3=DP3+14%xDP4+1)
BETA{2%DPo+1,5%DP4+1)
BETA(DP3+4vbxDP4+1)

1 /7 (7xDP4+1i)

1 7 (6xDPa+1)
BETA(SxDPa+1DP4+1)
BETAt4ADPo+1s2xDPu+1)
BETAt3=DPo+1s 3=DPU+1)
BETA(2#0P3+14=DPy4+1)
BETA{DP3+4+5xDPU+1)

1 /7 (6xDP4+1)

1 /7 155DPO+1)
BETA(4=DPo+1,DP4+1)
BETA{3#DPuw+1s 2%DP4+1)
BETA(22DPo+1 e 3xDP4+1)
BETA(DP3+.s4xpP4+1)

1 7 (5=DPa+1)

1 7 (4=DPo+1)

BETA (3=DF3+1,DPu4+1)
"BETA (2=DP3+1,2*DP4+1}
BETA {DP3+1l+3xDPU+1)
1 7 t4=DPa+l)

1 7 (3=DPo+1)

BETA  (2=DP3+1,DPu4+1)
BETA (DP3+1s22DPd4+1)
1 7 (3xDP4+])

1 7 t12xDPo+1)

BETA (DP3+1:DP4+1}

1 7 12=DP4+1)

10=B23 + S=814 - BNS

1 /7 (DP3+1)
1 7 (DPu4+1)
Bto - Bo1l
B20 - 2=Bli + BO2
830 ~ 3=R21 + 3»B812 ~ AQ3
B40 = 4=xB31 + 6%xB22 ~ u=Bl3 + BO4
BS0 - S5xBuyy + 10*B32 -
B60 - 6=B5L + 15*B42 -

B70 = 7=Bali + 21%B52
+ 7*B16 - p0?7

BAO0 - 8xB7L + 2B8%xBo2 ~
+ 28xR26 - Bx*B17 + B8

20%833 + 15=B24 - H%E15 + Bpb
35%B43 + 35x834 - 21*p25

S6*BS3 + TO0*Bu4 -« S6%B3S

CALCULATE THE SKEWNESS AND KURTOSIS FROM THE RAW MOMENTS

100 AAtl)
AVAR
AAL2)
AALS)
AA(H)

= P1 + R1/P2
= R2 = R1=*rl
SORT(AVAR/(P2xP2))

{R3 = 3I=R2xRk] + 2=R1xx3) / AVAR*x1.5
{Ry =~ Z=R3%R1 + 6xR2xR1%R1 - IxR1xxy) / AVARE*2

177
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" AALD)Z{RS5~5%R4*rl + 1D0*R3#%R1xR] = 10¥R2KR1*x3 + UxRlasl)/AVARX*2.5
AAlO)=IRE=H*REx1+]15*RExR1 %R 1 ~204RI*R1wxI+154R2xR 1 *x=5xR1x%5)

= /7 AVARx=3, :
AAILTISIR7=-T2REAK]1+2]1%R5%R1%xR 1 ~35xRU xRl »x3+I5xRI*R | xxl—
= 21=R22R1=x5+6xR1x%xT) / AVAR%x3,

AAlG) = (RB=8=R/=R1+28%RExR1xR1=56+1S5%R1xxI+70%R4xP1axl
- =56*R3INR1x=x5+284R2xR1*x6=TeR1%x8) 7 AVAR®%&,

RETURN

IDIST = 2 FOR NuRMAL RANDOM VARIABLE USING BOX=-MULLER

CALL STRAT (NReiNO»2xNO,ISEED,0,P)

DO 20 I=1.NO

IF (IANTIT .LE, 0) GO TO 15

P(2x]-1) = 1, - P{2=]~=1)

P(2=I) = 1, - Pt12x1)

X(I) = (=2«ALOGLP(2%]I=1) ) )»=,S5%x(0S(0,.28318%P{2%])}
Xt1) = PL + P2%xall)

AALl) = P}
AALZ2) = P2
AA13) = 0.
AAl4) = 3,
AA{S) = 0,
AAto) = 15,
AALT) = O,
AAlz) = 105,
RETURN

GENERATE USING THE ABRSOLUTE LAMBDA UISTRIBUTION

CALL STRAT{NR,NUeNO,ISEED:0,P)

DO 40 I=1,M0O

IF LIANTIT .LE. 0) GO TO us5

IF lp(l) oLEo 03, p‘l} = 05 - P‘I,

IF iPtl) .GT. .2} PtI) = 1.5 = P(1)

IF (P1I) LT. DP8) PP = = (DP4=P(1))1x=xDP3
IF (Pt1) .GE. Dr4) PP = (PLI)-DPu4)%xxDP3}
XtI) = Pl + PPrr2

IF (NS .6T. 1) RETURN

00 50 I=1.+8B

Y = I=xDP3+1

ISIGN = -1

IF (MOD{T+?2) +Eu. 0y ISIGN = 1

RAW(I) = {ISIGN~DP4==Y + (1=DP4ixxY) / Y
R = RAWL1})

R2 = RAW(2)

R3 = RAW(Y)

R4 = RAW(4)

RS = RAW!S)

Ré RAWIG)
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R7 = RAW(T)
RB = RAW(S)
60 TO 100

GENERATE EXPONENTIAL RANDOM VALUES WITH MEAN P1

Nnon

4 CALL STRAT(NRsNUeNO, ISEED.Q,P)
DO 60 I=1,MNO
IF (IANTTIT JLE. 0} GO TO &0
IF (P{1) .6F, ,5) PtI) = 1.5 = Pt1)
60 X(I) = =ALOGI(P{L)) = P1
IF INS .GT. 1} RETURN
AALL)} P1
AAL2) Pl
AALD) 2
AA L) Q
AALD) 4y
AALG) 265
AALT) 1854
Al18) 14833
RETURN
END

I IR

TO PERFORM STRAIIFED SAMPLIMG GIVEN A U(G,1) RANDOM GENERATOR
K = # OF STRATA
M = # OBSERVATIUNS PER STRATA
‘N = NUMBER OF RANDOM VALUES 70 BE GoNERATED THTS cALL
PROSAAILITLES ARE UPDATED ONLY AT END OF ROUTINE,
S0 THE N VALUES GENERATED ARE INDEPENDENT.
IFIRST = 1 FOR INITIALIZATION
= 0 FOR GENERATION OF A RANDUM VALUE
R = THE RANDOM vALUE GENERATED

NDOoOOaAONOOON0

SUBROUTIME STRAT(KsMeNeISEED, IFIRST+VALUE)
DIMENSIOM PL200u) ¢NOBS(2000) » VALUE(2000)
IF (IFIRST +EG@, 0) GO TO 1nQ

*«xkxw INITIALIZE PROBABILITIES P(I1) OF THL RANDOM VALUE COMING

FROM SUBTNTERVALS 1r2reserl
AND THE NUMBER UF OgSERYATIONS NOBSII) STILL TO CovE

FROM SUBINTERVAL Iy IZ1e2r..40K

OO0

5 XK = K

WRITE (6el) KeN
1 FORMAT ('0IN THe STRATIFIED SAMPLING SUBROUTINE *+STRATed,t/

*= ¢ THE NUMRER OF STRATA MUST NOT EXCEED 2000, YOU HaVF*, 110/

=t THE NUMBER OF RANDOM VALUES MUST NOT EXCEED 2000, YOU HAVE',Ilu,
x /% EXECUTTON TcRMINATED.*)
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. sToP 777
15 00 .10 I=1.K
PII) = 1/XK
10 NOBSII) = M
TOTOUBS = M=XK

c RETURN
CaxxxxGENERATE ONE VALUE P DISTRIFUTED U(OQ,1)
¢ THEN DETFRMINE wHICH SUBINTERVAL [ THE RANDOM VALUF
¢ R WILL COME FROMs USING CURRENT P(I) VALUES
c
100 DO 300 JJ=1!N
R = RANDOM(ISEEW)
DO 20 J=1K
IF (R .GT., PtJ)} GO 7O 20
1 =J
GO TO 200
20 CONTINUE
1=K
c
c CALCULATE WHERE R FALLS IN THE I TH SUBINTERVAL
c
200 NOBS(I) = NOBS(l) - 1 -
Y = 0,
iIF I .67, 1} Y = PtI-1)
R = (R=Y) 7 (PLL)=~Y)
VALUE(JJ} = 1I+r=14) 7 XK
IF IVALUE(JJ} WLE. 0) VALUE(JJ) = LiE=10
IF (VALUE{JJ)} «uE. 1) VALUE(JJ] = 1. - J1E~10
300 CONTINUE
¢

CaaxxxxREVISE THE SUBIWTERVAL PROPERTIES FOR THE MEXT CaALL
C
IF (TOTORS LLE, N+,1) GO TO 5

TOTOBS = TOTOBS = N
Pti} = NOBS(1) s TOTOBS

DO 30 1=2+K
30 PtI) = PtI-1) + NOBS(I1) 7/ TOTOBS
RETURN ‘
END
Cc TO GENERATF UNIFORM (0r1) RANDOM NUMBERS ON THE UNTVAC'llUB

FUNCTION RANDOMUISEED)

ISEeD = TSEED = 131075

IF (ISEER LE. u) ISEED = ISEED + 34359738367 + 1
RANDOM = ISEED = .2910383E-10

RETURN

END
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