
THE AMBIENT ORGANIC AEROSOL SOLUBLE IN WATER: 
MEASUREMENTS, CHEMICAL CHARACTERIZATION, AND AN 

INVESTIGATION OF SOURCES 
 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 

By 
 
 
 

Amy P. Sullivan 
 
 
 
 

In Partial Fulfillment 
Of the Requirements for the Degree 

Doctor of Philosophy in Atmospheric Chemistry 
 
 
 
 
 
 

Georgia Institute of Technology 
August 2006 

 



THE AMBIENT ORGANIC AEROSOL SOLUBLE IN WATER: 
MEASUREMENTS, CHEMICAL CHARACTERIZATION, AND AN 

INVESTIGATION OF SOURCES 
 

 

 

 

 

 

 

 

 

 

Approved By: 
 
Dr. Rodney J. Weber, Advisor   Dr. Martial Taillefert 
School of Earth and Atmospheric   School of Earth and Atmospheric 
Sciences      Sciences 
Georgia Institute of Technology   Georgia Institute of Technology 
 
Dr. Michael H. Bergin    Dr. Paul H. Wine 
School of Earth and Atmospheric   School of Earth and Atmospheric 
Sciences and School of Civil and              Sciences and School of Chemistry 
Environmental Engineering    and Biochemistry 
Georgia Institute of Technology   Georgia Institute of Technology 
 
Dr. L. Gregory Huey     Date Approved: April 19, 2006 
School of Earth and Atmospheric 
Sciences 
Georgia Institute of Technology 



 iii

ACKNOWLEDGEMENTS 
 
 
 
 First and foremost, I would like to thank my advisor Dr. Rodney J. Weber.  It has 

been my pleasure to work for him during the past six years.  Through my work with 

Rodney I have not only been able to learn from his expertise, but have been given many 

amazing opportunities to investigate in the lab and field.  The experience has been 

invaluable in the development of my skills as a research scientist.  But most importantly, 

I would like to thank him for always believing in me and encouraging me to push the 

limits. 

I would also like to acknowledge a number of fellow colleagues in Earth and 

Atmospheric Sciences.  I would like to thank Drs. Jason D. Ritchie and E. Michael 

Perdue for their insights regarding the XAD-8 and SEC columns and procedures, Drs. 

Poulomi Sannigrahi and Ellery D. Ingall for their help with the 13C-NMR sample 

preparation and analysis, Akua Asa-Awuku and Dr. Athanasios Nenes for the surface 

tension measurements, Bo Yan, Dr. Mei Zheng, and Dr. Armistead Russell for the 

generous use of the Hi-Volume Samplers and help in collecting the paired experiment 

samples, and Dr. Karsten Baumann (now at RTI International) for providing the biomass 

burning samples.  I would also like to thank my fellow past and present group members, 

especially Richard E. Peltier who helped run the PILS-TOC during the NEAQS/ITCT 

2004 Study. 

 I would also like to acknowledge a number of people I worked with during 

various field campaigns.  I thank Andrea L. Clements (now at the California Institute of 

Technology) and Dr. Jay R. Turner of Washington University in St. Louis for assistance 



 iv

with the St. Louis – Midwest Supersite measurements, Drs. Min-Suk Bae (now at the 

University at Albany, State University of New York) and James J. Schauer of the 

University of Wisconsin–Madison for the St. Louis – Midwest Supersite OC data, Dr. 

Eric Edgerton of Atmospheric Research and Analysis, Inc. for his assistance in arranging 

the Yorkville sampling, and the NOAA WP-3D crew, support team, and collaborators 

during NEAQS/ITCT 2004, especially Drs. Charles A. Brock, Joost A. de Gouw, John S. 

Holloway, Carsten Warneke, and Adam G. Wollny of the Chemical Sciences Division at 

the NOAA Earth Systems Research Laboratory and Cooperative Institute for Research in 

Environmental Sciences and Dr. Elliot L. Atlas of the University of Miami. 

I also thank the Air Quality System, Office of Air Quality Planning and 

Standards, U.S. EPA for the ozone, PM2.5 mass, and PAMS VOC data.  The 

interpretations based on this data are those solely of the author.  I also gratefully 

acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the 

HYSPLIT transport and dispersion model and/or READY website 

(http://www.arl.noaa.gov/ready.html) used in this thesis. 

 



 v

TABLE OF CONTENTS 
 
 
 
ACKNOWLEDGEMENTS…………………………………………………………....…iii 

 
LIST OF TABLES……………………………………………………………………..…ix 

 
LIST OF FIGURES…………………………………………………………………...…xii 

 
LIST OF ABBREVIATIONS……………………………………………………………xv 

 
SUMMARY…………………………………………………………………………......xix 

 
CHAPTER 1: INTRODUCTION………………………………………………………....1 

 
1.1. Importance of Water-Soluble Organic Carbon………………………………1 

 
1.2. Current Methods and the Need for Real-time Measurements……………….5 

 
1.3. WSOC Composition and Speciation………………………………………....8 

 
CHAPTER 2: INSTRUMENT DESIGN…………………………………………….…..12 

 
2.1. Particle Collection Method…………………………………………………12 

 
2.2. Removal of Organic Gases………………………………………………....13 

 
2.3. Instrument Background Interferences………………………………………14 

 
2.4. Liquid Handling System……………………………………………………17 

 
2.5. TOC Analyzer……………………………………………………………....18 

 
2.6. Artifacts, Limit of Detection, and Measurement Uncertainty…………...…20 

 
2.7. Modified Liquid Flowrates to Improve Response Times………………..…22 

 
CHAPTER 3: GROUND-BASED RESULTS………………………………………......25 

 
3.1. Site Details…………………………………………………………….....…25 

 
3.2. Carbonaceous Aerosol Seasonal Trends, June to October…..……………...25 

 
3.3. Diurnal Trends in the WSOC to OC Ratio…………………………...….…26 

 



 vi

3.4. Summary…………………………………………………………………....29 
 

CHAPTER 4: AIRBORNE RESULTS……………………………………………….....31 
 

4.1. Results during NEAQS/ITCT 2004……………………………………...…31 
 

4.2. Biomass Burning WSOC………………………………………………..….35 
 

4.3. Non-Biomass Burning WSOC…………………………………………..….38 
 

4.3.1. WSOC-CO Correlation………………………………………......39 
 

4.3.2. Urban versus Background Rural……………………………..…..39 
 

4.3.3. WSOC Evolution in an Urban Plume……………………………43 
 

4.4.  Summary……………………………………………………………………49 
 

CHAPTER 5: ISOLATION OF HYDROPHILIC AND HYDROPHOBIC 
FRACTIONS WITH A XAD-8 RESIN……………………………………..…..51 

 
5.1. XAD-8 Separation Methods…………………………………………….….51 

 
5.2. WSOC Speciation Results from Urban Sites…………………………….....57 

 
5.3. Summary…………………………………………………………………....68 

 
CHAPTER 6: ISOLATION OF ACID, NEUTRAL, AND BASIC FRACTIONS 

BY MODIFIED SIZE-EXCLUSION CHROMATOGRAPHY………..……..…71 
 

6.1. Methods…………………………………………………………………......71 
 

6.1.1. Particulate Collection…………………………...………………..71 
 

6.1.2. Size-Exclusion Chromatography………...………………………74 
 

6.1.3. Measurement Approach…………………………………….....…82 
 

6.1.4. Measurements of OC, EC, and Light Organic Acids…………….82 
 

6.2. Ambient Results………………………………………………………….....84 
 

6.2.1. Analysis of OC, WSOC, and XAD-8 fractions WSOCxp and  
WSOCxrr…………………...…………………………………....84 

 
6.2.2. SEC of WSOC, WSOCxp, and WSOCxrr……………...……..…86 



 vii

 
6.2.2.1.  SEC Chromatograms of Ambient Samples…...……..….86 

 
6.2.2.2.  Quantitative Determination of Functional Groups……..89 

 
6.2.2.3.  SEC Recoveries of Ambient Samples……………..……91 

 
6.2.2.4.  Eluent Artifacts…………………………………………91 

 
6.2.3. Ancillary Measurements: Comparison of SEC and 13C-NMR…..95 

 
6.2.3.1.  Comparisons Between WSOCxp Compounds……….....99 

 
6.2.3.2   Comparisons Between WSOCxrr Compounds.……….100 

 
6.2.4. Speciation of the WSOC in Summer, Winter, and Biomass 

Burning Samples: Overall Results……………..……………….104 
 

6.2.5. Correlations Between Functional Groups and Possible Sources 
of WSOC……………………………………………….……….108 

 
6.2.6. Unrecovered Compounds…………………………………….…114 

 
6.2.6.1.  WSOCxp_u and WSOCxrr_u…………………………114 

 
6.2.6.2.  WSOCxru: Biogenic versus Anthropogenic WSOC….115 

 
6.3.  Summary…………………………………………………………………..117 

 
CHAPTER 7: SOURCES OF WSOC IN ATLANTA, GA…………………………….120 

 
7.1.  Motivation…………………………………………………………………120 

 
7.2. Methods……………………………………………………………………122 

 
7.3. Ambient Results…………………………………………………………...123 

 
7.3.1. Airborne Measurements…………..........................………….…123 

 
7.3.1.1.  Measurements over Atlanta…………………………...123 

 
7.3.1.2.  Comparison of Atlanta to Northeastern Cities………...126 

 
7.3.2.  Ground-based Measurements of Carbonaceous Aerosol 

 Chemical Components…………………...…………………….130 
 



 viii

 7.4.  Summary…………………………………………………………………..139 
 

CHAPTER 8: FUTURE WORK……………………………………………………….141 
 

CHAPTER 9: CONCLUSIONS………………………………………………………..144 
 

APPENDIX A: CONCENTRATION CALCULATIONS……………………………..148 
 

 A.1.  Calculations for On-line Measurements……………...………………..…148 
 

  A.1.1.  OC and/or EC…………………………………………………...148 
   

  A.1.2.  WSOC and/or WSOCxp………………………………………..148 
 

  A.1.3.  WSOCxr……………………………………………………...…149 
 

  A.1.4.  WIOC…………………………………………………………...150 
 

 A.2.  Calculations for Integrated Filter Measurements………...……………….150 
 

  A.2.1.  OC and/or EC…………………………………………………...150 
   

  A.2.2.  WSOC and/or WSOCxp…………………………………...…...151 
 

  A.2.3.  WSOCxr……………………………………………………...…151 
 

  A.2.4.  WSOCxrr and WSOCxru…………………………………….…152 
 

  A.2.5.  Integration of SEC Chromatograms………………………….…153 
 

   A.2.5.1.  WSOC and/or WSOCxp SEC Integral………………..153 
 

   A.2.5.2.  WSOCxrr SEC Integral……………………………….154 
 

A.2.5.3.  WSOCxp_a, WSOCxp_n, WSOCxp_b, WSOCxrr_a, 
and WSOCxrr_n………………………………....……155 

 
   A.2.5.4.  WSOCxp_u and WSOCxrr_u………………………...155 

 
  A.2.6.  WIOC…………………………………………………………...156 

 
REFERENCES……………………………………………………………………...….157 



 ix

LIST OF TABLES 
 
 
 
Table 2.1. Summary of the operational differences for ground-based and 

airborne PILS-TOC measurements……………………………..……......22 
 
Table 3.1. Mean and standard deviations (in parenthesis) of PM2.5 EC, OC, 

WSOC, and the WSOC/OC ratio for June, August, and October 2003 
at the St. Louis - Midwest Supersite.  Concentrations are reported in 
µg C/m3......................................................................................................26 

 
Table 3.2. Number of data points (N), slope and intercept (both with 95% 

confidence limits), and R2 value for linear regressions of the 
WSOC/OC ratio versus O3 concentration for various periods during  
June 2003 in St. Louis………………………………………………...….29 

 
Table 4.1. Characteristics of four major biomass plumes intercepted by the WP-

3D.  Included are the mean, in parenthesis the maximum and 
minimum values, and in brackets the average concentration increase 
within the plume relative to local background (all based on 1 minute 
averaged data).  Date is given as month/date/year and local time is  
EDT = UTC – 4 hours…..………………………………………………..36 

 
Table 4.2. WSOC and CO concentrations in two selected rural air masses.  Mean 

concentrations, with maximum in parenthesis, are shown for both air 
masses.  All data have been merged to a one minute average.  Date is  
given as month/day/year and local time is EDT = UTC – 4 hours……....43 

 
Table 4.3. Results for WSOC evolution in urban plumes.  Concentrations are 

mean concentrations within the plume based on 3 s data.  As an 
indicator of variability the ± standard deviation is shown.  Date is 
given as month/day/year and local time is EDT = UTC – 4 hours.   
N/A = not applicable*………………………………...……………….....45 

 
Table 5.1. Results of the XAD-8 penetration and recovery tests for a variety of 

water-soluble organic compounds listed by functional groups, where 
WSOCxp=hydrophilic, WSOCxrr=hydrophobic recovered, and 
WSOCxru=hydrophobic unrecovered.  Listed in parenthesis is the 
number of carbon atoms per molecule for the series of mono- and 
dicarboxylic acids and carbonyls.  Fractions that were not measured  
are left blank……………………………………………………………..54 

 
Table 5.2. Comparison between typical Atlanta summer 2004 and summer 2004 

poor air quality event due to a stationary high-pressure system.  The 



 x

table contains the mean with ± standard deviation (as a measure of the 
variability), and in parenthesis the peak value measured during the  
time period.  All ratios are based on carbon mass…………….…………61 

 
Table 5.3. Comparisons of median ratios with the ± standard deviation for 

typical winter 2004 in St. Louis, winter event in St. Louis, typical 
summer 2004 in Atlanta, and summer event in Atlanta.  All ratios are  
based on carbon mass…………………………………………….………64 

 
Table 6.1. SEC recovery efficiencies for various calibration water-soluble 

organic compounds listed by functional groups, where 
WSOCxp=hydrophilic, WSOCxrr=hydrophobic recovered, and 
WSOCxru=hydrophobic unrecovered.  Mean and standard deviation  
are listed at the bottom of the table for these three classes……………....77 

 
Table 6.2. SEC recovery efficiencies for the WSOC, WSOCxp, and WSOCxrr 

for all summer, winter, and biomass burning samples.  Upstream = 
concentration applied to the SEC column, SEC Integral = 
concentration determined from the integral over the chromatogram,  
Recovery = (SEC Integral)/Upstream………………...……………….....92 

 
Table 6.3. Comparison of SEC and 13C-NMR for WSOCxp and WSOCxrr 

fractions of summer and biomass burning samples.  Both the SEC and 
13C-NMR functional group results are given as a percent of the total 
WSOCxp and WSOCxrr fractions.  For the 13C-NMR, only the top 4 
spectral regions for each measurement are shown.  A more complete 
table on the 13C-NMR results can be found in Sannigrahi et al.  
[2006]…………………………………………………………………….98 

 
Table 6.4. Concentrations of OC, EC, and the various functional groups for all 

summer, winter, and biomass burning samples.  Table 6.2 shows the 
WSOC concentrations that can be used with this data to calculate the 
concentrations of WSOCxp_u and WSOCxrr_u.  NA = not applicable, 
ND = not detected…………………………………….………………...105 

 
Table 7.1. Ratios of median concentrations recorded over Atlanta to the median 

of the concentrations in 9 plumes advecting from urban centers in the  
northeastern U.S.  VOC data are all from whole air samples…………..127 

 
Table 7.2. Mean ± standard deviation from two separate experiments involving 

simultaneous measurements of carbonaceous aerosol components.  In 
the first experiment four separate daytime (10:00 to 22:00 EDT) 
integrated filter measurements were conducted simultaneously next to 
a major expressway (I-75/85) and a site located on the GIT campus ~ 
400 m from the expressway site.  Sampling was conducted on 15, 16, 
17, 18 June 2005.  In the second experiment, four 24 hour integrated 



 xi

measurements were made at Yorkville, ~ 80 km west of GIT (see 
Figure 7.1) starting on 23 July 2005 at 10:00 and ending 27 July 2005  
at 10:00 EDT.  All concentrations are in µg C/m3……………….……..132 

 
Table 7.3. Mean and ± standard deviation of the carbonaceous aerosol, based on 

24 hour integrated filter samples collected in the summers of 2004 
and 2005 at GIT, as well as daily peak ozone and 24 hour mean PM2.5 
mass.  The 2004 samples were from a range of days in June (7 days), 
August (13 days) and one day in September.  The GIT Polluted 2004 
data are three days during the 2004 sampling campaign having daily 
peak O3 higher than 85 ppbv.  The 2005 data are the GIT component 
of the Yorkville/GIT paired experiment recorded over four 
consecutive poor air quality days (July 23 through 27).  All  
carbonaceous aerosol concentrations are in µg C/m3…………….….…137 

 
 



 xii

LIST OF FIGURES 
 
 
 
Figure 2.1. Schematic of the Particle-into-Liquid Sampler coupled to a Total 

Organic Carbon analyzer for measurement of bulk fine particle (PM1  
or PM2.5) water-soluble organic carbon……………………………….....13 

 
Figure 2.2. Measured TOC liquid concentrations of ambient fine particle WSOC 

and on-line background measurements (filtered air) for (a) ground-
based measurements conducted in June 2003 in St. Louis and (b)  
airborne measurements from a flight conducted on 27 July 2004…….....16 

 
Figure 2.3. Response time of the TOC analyzer in Turbo mode for an optimized  

sample flowrate of 1.2 ml/min………………………………………...…24 
 
Figure 3.1. Time series of PM2.5 OC, WSOC, the fraction of OC that was water-

soluble, and O3 concentration for two 14 day periods (June and  
August 2003)……………… ………………………...………………......27 

 
Figure 4.1. (a) Map of the aircraft flight paths during NEAQS/ITCT 2004.  

Identified are the various biomass burning (BB1 through BB4) 
plumes discussed in the analysis.  (b) Back trajectory for rural plumes 
(R1, R2) discussed in the analysis.  The back trajectories are based on  
the NOAA ARL HYSPLIT Trajectory Model………………….……..…32 

 
Figure 4.2. One minute averaged PM1 WSOC concentrations as a function of 

altitude for all data collected during the experiment.  Data are 
separated into (a) biomass burning (acetonitrile > 250 pptv) and (b)  
non-biomass burning (acetonitrile < 250 pptv) WSOC…………….…....34 

 
Figure 4.3. Time series of 3 s WSOC, fine particle volume, carbon monoxide, 

and acetonitrile recorded in the biomass plume BB1 on 9 July  
2004………………………………………………………………….…...37 

 
Figure 4.4. Correlation between one minute averaged WSOC and CO for all non-

biomass burning influenced measurements (acetonitrile < 250 pptv)  
recorded below 2 km altitude during the experiment…………………....40 

 
Figure 4.5. Characteristic air mass back trajectories for each of the 9 urban  

plumes discussed in the analysis……………………………………....…41 
 
Figure 4.6. Time series of 3 s WSOC, carbon monoxide, and altitude for (a) two 

urban plumes intercepted on 20 July 2004 and (b) one urban plume on  
21 July 2004 identified in Figure 4.5…………………...……………..…42 

 



 xiii

Figure 4.7. Ratio of (a) ∆WSOC to ∆CO and (b) ∆Volume to ∆CO as a function 
of estimated advection time from the urban center to the measurement  
site for the plumes identified in Figure 4.5 and Table 4.3……….……....47 

 
Figure 5.1. Schematic of the PILS-TOC system coupled with a XAD-8 resin  

column for sequential on-line WSOC and WSOCxp measurements…….58 
 
Figure 5.2. Time series of the OC, WSOC, and WSOCxp for (a) typical winter in 

St. Louis (March 6-18) and a winter event (March 19-24), (b) typical  
summer in Atlanta, and (c) a summer event in Atlanta…………..……...62 

 
Figure 5.3. Percentage in carbon mass each fraction contributes to total OC,  

based on means, for the four periods shown in Figure 5.2……….……...65 
 
Figure 5.4. WSOC versus OC concentrations, and WSOCxp and WSOCxr 

fractions versus WSOC concentrations, for the four periods shown in  
Figure 5.2………………………………………………………………...66 

 
Figure 5.5. Seasonal trends in the WSOCxp and WSOCxr fractions based on  

carbon mass……………………………………………………………....67 
 
Figure 6.1. Comparison between the undenuded Hi-Volume 24 hour integrated 

filter measurement of OC and WSOC to denuded on-line systems  
using similar analysis and detection schemes………………..………..…73 

 
Figure 6.2. Normalized SEC chromatograms from calibrations with (a) 

hydrophilic acids (WSOCxp_a), (b) hydrophilic neutrals 
(WSOCxp_n) and bases (WSOCxp_b), (c) recovered hydrophobic 
acids (WSOCxrr_a), (d) recovered hydrophobic neutrals 
(WSOCxrr_n), and (e) unrecovered hydrophobic (WSOCxru) water- 
soluble organic compounds, where Tr is the retention time……...…...…78 

 
Figure 6.3. Schematic diagram of the WSOC fractions isolated first by XAD-8  

and then by SEC…………………………………………………..……...83 
 
Figure 6.4. Correlations based on linear regressions forced through zero of 

WSOC versus OC for (a) summer and (c) winter, and WSOCxp, 
WSOCxr, and WSOCxrr versus WSOC for (b) summer and 
(d) winter………………………………………………………………....85 

 
Figure 6.5. Examples of typical SEC chromatograms from a (a) summer (Atlanta 

August 29, 2004), (b) winter (Atlanta December 19, 2004), and (c) 
biomass burning sample (Fort Benning, Columbus, GA April 29,  
2004)…………………………………………………………………..…87 

 



 xiv

Figure 6.6. Example of fitting of (a) WSOCxp and (b) WSOCxrr, for the summer 
sample shown in Figure 6.5a, to obtain concentrations for the various  
functional groups……………………………………………..…….……90 

 
Figure 6.7. SEC chromatograms and percentage each functional group 

contributes to the total WSOC for the 13C-NMR (a) summer and (b)  
biomass burning samples……………………………………………...…97 

 
Figure 6.8. Pie charts showing the carbon mass percentage that each functional 

group contributes to the WSOC and total OC based on the average of  
all (a) summer, (b) winter, and (c) biomass burning samples………..…107 

 
Figure 6.9. Linear regressions forced through zero and correlations of the various  

SEC functional groups for the (a) summer and (b) winter samples…….110 
 
Figure 7.1. Map of aircraft flight path over Atlanta and the surrounding region  

colored by CO concentrations………………………...………………...124 
 
Figure 7.2. Airborne measurements of fine particle WSOC, gases CO and 

acetylene, and altitude recorded over Atlanta and the surrounding  
region…………………………………………..……………………….125 

 
Figure 7.3. Boundary layer WSOC versus CO from the flight over Atlanta and  

the surrounding region………………………………..……………...…129 
 
Figure 7.4. Comparison between 24 hour integrated filter measurements at GIT  

and the Yorkville site…………………………………….…………..…133 
 
Figure 7.5. Correlation between major fractions of WSOC from 12 and 24 hour 

integrated filter measurements collected at GIT in 2004 and 2005,  
Yorkville, and the expressway………………………………………….135 

 
Figure 7.6. Mean XAD-8/SEC isolated fractions of WSOC from 24 hour 

integrated Hi-Volume PM2.5 samples collected at GIT.  The three data 
sets are (a) 18 samples collected in the summer of 2004, (b) 3 samples 
collected in the summer of 2004 during more polluted conditions, and 
(c) 4 consecutive day samples during the 2005 Yorkville/GIT  
comparison, a period of poor air quality…………………….………….138 

 



 xv

LIST OF ABBREVIATIONS 
 
 
 
13C-NMR = 13Carbon-Nuclear Magnetic Resonance 

AMS = aerosol mass spectrometer 

ARL = Air Resources Laboratory 

CCN = cloud condensation nuclei 

CO = carbon monoxide 

CST = central standard time 

DI Water = deionized water 

EC = elemental carbon 

EDT = eastern daylight time 

EPA = Environmental Protection Agency 

FTIR = Fourier transform infrared 

GC = gas chromatography 

GC/MS = gas chromatography/mass spectroscopy 

GIT = Georgia Institute of Technology 

HCl = hydrochloric acid 

H-NMR = proton-nuclear magnetic resonance 

HULIS = humic-like substances found in the aerosol 

IC = ion chromatograph 

ICARTT = International Consortium for Atmospheric Research on Transport and 
Transformation 

 
LC/MS = liquid chromatography/mass spectroscopy 

LOD = limit of detection 



 xvi

LTI = low turbulence inlet 

MACR = methacrolein 

MVK = methyl vinyl ketone 

NaOH = sodium hydroxide 

NEAQS/ITCT = New England Air Quality Study/Intercontinental Transport and 
Chemical Transformation 

 
(NH4)2S2O8 = ammonium persulfate 

NOAA = National Oceanic and Atmospheric Administration 

NOM = natural organic matter 

O3 = ozone 

OC = organic carbon 

OPC = optical particle counter 

PAMS = Photochemical Assessment Monitoring Stations 

PEEK = polyetheretherketone 

PILS = Particle-into-Liquid Sampler 

PM1 = particles with aerodynamic diameters less than 1 µm 

PM2.5 = particles with aerodynamic diameters less than 2.5 µm 

PTR-MS = proton transfer reaction – mass spectrometer 

SEC = size-exclusion chromatography 

SOA = secondary organic aerosol 

SO2 = sulfur dioxide 

SO4
-2 = sulfate 

SPE = solid phase extraction 

TOC = Total Organic Carbon (analyzer) 



 xvii

TOT = thermal/optical transmission 

UTC = coordinated universal time 

UV = ultraviolet (light) 

VOC(s) = Volatile Organic Compound(s)  

WIOC = water-insoluble organic carbon (calculated from OC – WSOC) 

WSOC = water-soluble organic carbon 

WSOCxp = hydrophilic water-soluble organic carbon, compounds that penetrate the 
XAD-8 column at pH 2 adjusted by 0.1 M HCl (measured with Total Organic 
Carbon (TOC) analyzer) 

 
WSOCxp_a = hydrophilic aliphatic acids, includes mono-/di-/oxocarboxylic acids with 

less than 4 or 5 carbons (measured with TOC analyzer) 
 
WSOCxp_b = hydrophilic bases (measured with TOC analyzer) 

WSOCxp_n = hydrophilic neutrals, includes saccharides, polyols, and carbonyls with 
less than 4 or 5 carbons (measured with TOC analyzer) 

 
WSOCxp_u = SEC unrecovered hydrophilic compounds (calculated from WSOCxp – 

WSOCxp_a – WSOCxp_n – WSOCxp_b) 
 
WSOCxr = hydrophobic water-soluble organic carbon, compounds that are retained on 

the XAD-8 column (calculated from WSOC – WSOCxp) 
 
WSOCxrr = recovered hydrophobic water-soluble organic carbon, compounds that are 

retained on the XAD-8 column and subsequently recovered from the XAD-8 
using 0.1 M NaOH at pH 13 (measured with TOC analyzer) 

 
WSOCxrr_a = recovered hydrophobic acids, includes aromatics with no O-H groups 

(i.e., no N/O substituted aromatic bonds) or other compounds with similar 
properties as determined by interactions with XAD-8 resin (measured with TOC 
analyzer) 

 
WSOCxrr_n = recovered hydrophobic neutrals, includes aromatics with at least one N/O 

substituted aromatic bond, such as phenols, or other compounds with similar 
properties as determined by interactions with XAD-8 resin (measured with TOC 
analyzer) 

 



 xviii

WSOCxrr_u = SEC unrecovered hydrophobic compounds, includes non-ionizable 
compounds with large log Kow (calculated from WSOCxrr – WSOCxrr_a – 
WSOCxrr_n) 

 
WSOCxru = unrecovered hydrophobic water-soluble organic carbon, compounds that 

are retained on the XAD-8 column and are not recovered from the XAD-8 in the 
0.1 M NaOH at pH 13, includes organic nitrates, cyclic acids, and mono- and 
dicarboxylic acids with greater than 3 or 4 carbons (calculated from WSOC – 
WSOCxp – WSOCxrr) 



 xix

SUMMARY 
 
 
 

This thesis characterizes the ambient fine organic carbon (OC) aerosol and 

investigates its sources through the development and deployment of new analytical 

measurement techniques.  Recognizing that OC is highly chemically complex, the 

approach was to develop methods capable of quantitatively measuring a large chemical 

fraction of the aerosol instead of specific chemical speciation.  The focus is on organic 

compounds that are soluble in water (WSOC) since little is known about its chemical 

nature.  The results from this thesis show that WSOC has mainly two sources: biomass 

burning and secondary organic aerosol (SOA).  In urban areas, WSOC increases with 

plume age, and tracks other photochemically produced compounds.  Chemical analysis of 

WSOC suggests that in urban Atlanta, the SOA is mainly small-chain aliphatic 

compounds indirectly linked to vehicle emissions. 

A method was first developed for quantitative on-line measurements of WSOC by 

extending the application of the Particle-into-Liquid Sampler (PILS) from inorganic to 

organic aerosol measurements.  In this approach a PILS captures ambient particles into a 

flow of purified water, which is then forced through a liquid filter and the carbonaceous 

content quantified on-line by a Total Organic Carbon (TOC) analyzer.  An instrument 

was first developed for ground-based measurements and then modified for airborne 

deployment. 

Ground-based measurements at the St. Louis - Midwest Supersite during the 

summer of 2003 showed that the fraction of OC that is water-soluble can have a highly 

diurnal pattern with WSOC to OC ratios reaching 0.80 during the day and lows of 0.40 
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during the night.  During extended periods under stagnation pollution events, this pattern 

was well correlated with ozone concentrations.  The results are consistent with formation 

of SOA. 

Airborne PILS-TOC measurements from the NOAA WP-3D during the New 

England Air Quality Study/Intercontinental Transport and Chemical Transformation 

(NEAQS/ITCT) 2004 program investigated WSOC sources over the northeastern U.S. 

and Canada.  Two main sources were identified: biomass burning emissions from fires in 

the Alaska/Yukon region and emissions emanating from urban centers.  Biomass burning 

WSOC was correlated with carbon monoxide (CO) and acetonitrile (R2 > 0.88).  Apart 

from the biomass burning influence, the highest concentrations were at low altitudes in 

distinct plumes of enhanced particle concentrations from urban centers.  WSOC and CO 

were highly correlated (R2 > 0.78) in these urban plumes.  The ratio of the enhancement 

in WSOC relative to that of CO was found to be low (~ 3 µg C/m3/ppmv) in plumes that 

had been in transit for a short time, and increased with plume age, but appeared to level 

off at ~32 µg C/m3/ppmv after approximately one day of transport from the sources.  The 

results suggest WSOC in fine particles is produced from compounds co-emitted with CO 

and that these emissions are rapidly converted to organic particulate matter within ~1 day 

following emission. 

To further chemically investigate the organic constituents of WSOC, a method for 

group speciation of the WSOC into hydrophilic and hydrophobic fractions has been 

developed using a XAD-8 resin column.  XAD-8 resin coupled with a TOC analyzer 

allows for direct quantification.  Based on laboratory calibrations with atmospherically 

relevant standards and 13C-NMR (13Carbon-Nuclear Magnetic Resonance) analysis, the 
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hydrophilic fraction (compounds that penetrate the XAD-8 with near 100% efficiency at 

pH 2) is composed of short-chain carboxylic acids and carbonyls and saccharides.  The 

fraction of WSOC retained by XAD-8, termed the hydrophobic fraction, includes 

aromatic acids, phenols, organic nitrates, cyclic acids, and carbonyls and mono-

/dicarboxylic acids with greater than 3 or 4 carbons.  Only aromatic compounds (or 

aromatic-like compounds with similar properties) can subsequently be extracted from 

XAD-8 with high efficiency and are referred to as the recovered hydrophobic fraction. 

By coupling a PILS with this technique, on-line measurements of WSOC, 

hydrophilic WSOC, and hydrophobic WSOC are possible.  Urban measurements from St. 

Louis and Atlanta, on a carbon mass basis, show an increase in the mean WSOC fraction 

from winter (51%) to summer (61%), due to increases in the hydrophilic WSOC to OC 

ratio from 0.25 to 0.35.  During a summer Atlanta PM event, WSOC to OC was 0.75, 

driven largely by increases in the hydrophilic WSOC fraction.  The results are consistent 

with the view that in the summer there are increased amounts of oxygenated polar 

compounds, that are mainly hydrophilic and possibly from SOA production.  These 

compounds can account for an even larger fraction of OC during stagnation events. 

The XAD-8 resin can also be used in the first step of a two-step off-line method to 

isolate chemical fractions of ambient organic aerosol based on acid, neutral, and basic 

functional groups.  The second step is a newly developed method involving size-

exclusion chromatography (SEC) to separate the hydrophilic WSOC and recovered 

hydrophobic WSOC compounds by organic functional group.  Calibrations show that 

hydrophilic WSOC separates into short-chain aliphatic acids, neutrals (e.g. saccharides, 
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polyols, and short-chain carbonyls), and organic bases.  The recovered hydrophobic 

compounds are separated into acids (e.g., aromatic) and neutrals (e.g., phenols). 

 Comparisons are made between XAD-8/SEC results from urban Atlanta summer 

and winter, and biomass burning samples.  During the summer in Atlanta, approximately 

20% of the OC (on a carbon mass basis) is due to hydrophilic aliphatic acids and 

recovered hydrophobic acids.  The hydrophilic aliphatic acids are additionally the largest 

isolated fraction of Atlanta summer WSOC (29% µg C/µg C), suggesting aliphatic acids 

of less than C4 or C5 are the dominant SOA product, and are also correlated with the 

recovered hydrophobic acids (R2 = 0.74), elemental carbon (R2 = 0.64), CO (R2 = 0.73), 

and VOCs (Volatile Organic Compounds) expected from mobile source emissions such 

as isopentane (R2 = 0.67) and acetylene (R2 = 0.61).  Biomass burning samples, however, 

were dominated by the hydrophilic and recovered hydrophobic neutral compounds.  In 

the winter, when the WSOC is much lower, the samples tended to be a combination of 

the other two sample types. 

 Combining the results of these various WSOC measurements over Atlanta and its 

surrounding regions, the data indicate that the source of WSOC is indirectly linked to 

vehicle emissions.  Aircraft measurements show that WSOC is correlated with CO over 

large regions, and that the ratio of the metropolitan Atlanta ∆WSOC/∆CO is similar to 

that in urban plumes in the northeastern U.S.  Over a wide geographical region (~100 

km) WSOC is comprised of three major chemical groups (> 70%) that increase in 

concentration under more polluted conditions, and appear to be linked to a similar source.  

The fraction of the organic aerosol that is water-soluble varies between roughly 0.40 and 
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0.75 depending on the location, with higher ratios in regions further from mobile source 

emissions. 
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CHAPTER 1 
INTRODUCTION 

 
 
 
1.1.  Importance of Water-Soluble Organic Carbon 

 The carbonaceous component remains one of the least well-understood chemical 

fractions of ambient particles.  These compounds are important because they can 

comprise a large fraction of the fine particle mass, 10 to 70% [Andrews et al., 2000], and 

may influence atmospherically important properties of aerosol particles.  Organic carbon 

(OC) is directly emitted from a wide range of sources including combustion of fossil 

fuels, direct injection of unburnt fuel and lubricants, industrial emissions, plant matter, 

biomass burning, and biogenic emissions [Jacobson et al., 2000].  Studies suggest that 

under certain conditions a large fraction of the ambient OC can be produced from 

secondary organic aerosol (SOA) formation from biogenic emissions and combustion 

sources.  The organic aerosol has been found to be highly chemically complex including 

compounds ranging from relatively water-soluble to insoluble. 

Traditionally, chemical characterization of the organic aerosol has been 

performed on an individual compound basis.  Although techniques such as gas 

chromatography/mass spectroscopy (GC/MS) can provide detailed information on a wide 

range of specific compounds, only a small fraction of these compounds have been 

characterized [Schauer et al., 1996; Hamilton et al., 2004].  For example, Hamilton et al. 

[2004] isolated 10,000 individual organic compounds with a wide range of chemical 

functionalities in the urban aerosol using thermal desorption coupled with gas 

chromatography (GC) and time of flight – mass spectroscopy.  However, only a fraction 

of these compounds could be identified and quantification was not even attempted. 
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A potential solution to this problem is to isolate the organic aerosol into broad and 

comprehensive chemical fractions.  This would simplify the complexity and provide 

samples for further analysis.  One approach is to focus on the fraction of organic aerosol 

that is soluble in water.  The water-soluble organic carbon (WSOC) fraction tends to be 

an operationally-defined quantity since solubility of some (although likely a small) 

fraction of the organic aerosol may depend on the solution concentrations, which are 

determined by the experimental procedure, and the pH of all protolyzable compounds.  

However, by employing a consistent extraction method, significant changes in the water-

soluble fraction over time will provide evidence for changes in aerosol composition over 

time.  WSOC in aerosol particles is not well understood in part because most previous 

organic carbon analyses have involved GC separation methods that are not readily 

applicable to polar compounds. 

The water-soluble fraction is of interest for a number of reasons.  WSOC can at 

times be a large fraction of the carbonaceous component.  Zappoli et al. [1999] found, 

based on integrated filter measurements, that fine particle WSOC accounted for 77, 48, 

and 65% of the fine particle organic carbon in European background, rural, and polluted 

sites, respectively.  A seasonal study of WSOC in the Po Valley, Italy found that WSOC 

in the summer and fall accounted for 50 and 47% of the fine particle organic carbon, 

respectively [Decesari et al., 2001]. 

Water is an ubiquitous atmospheric component and its interaction with aerosols 

has significant and wide-ranging consequences.  In liquid clouds, water-soluble organic 

compounds may contribute to or impede the ability of aerosol particles to act as cloud 

condensation nuclei (CCN) [Novakov and Penner, 1993; Novakov and Corrigan, 1996; 
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Facchini et al., 1999].  These compounds may also affect particles’s hygroscopicity, the 

uptake of water vapor (or lack of) under sub-saturated conditions.  Saxena et al. [1995] 

have provided evidence that particle-phase organics enhance water uptake by 

atmospheric particles in some locations and inhibit or retard water uptake in other 

locations.  In a non-urban area (the Grand Canyon) the presence of organic compounds 

enhanced water absorption by particles and accounted for 25 to 40% of the total water 

uptake.  In an urban area (Los Angeles) the presence of organic compounds inhibited 

water uptake by about 25 to 35%.  These interactions between particle chemistry and 

water vapor can affect visibility and the global radiation budget.  The hygroscopic nature 

of individual particles can also influence their life spans, which is often dictated by 

precipitation scavenging. 

WSOC can have unique physical properties.  For example, Facchini et al. [2000] 

have shown that the WSOC fraction can significantly depress the surface tension of 

aqueous solutions.  This may be one way that organic compounds can affect ambient 

particles’s hygroscopicity and their ability to serve as CCN as discussed above. 

Finally, it is believed that one of the major sources of WSOC is through SOA 

formation [Saxena and Hildemann, 1996], a process that is not well understood.  SOA 

generally refers to the organic compounds that partition from the gas-phase to the aerosol 

phase from products of gas-phase oxidation reactions of parent organic compounds.  This 

occurs because gas-phase organic compounds can often undergo oxidation processes in 

the gas-phase.  These processes will lead to low vapor pressure products which, in turn, 

are able to partition to the aerosol phase.  Condensed-phase multifunctional organic 

products are expected from the oxidation of larger (carbons > 5) alkenes, cyclic alkenes, 
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and aromatic hydrocarbons [Grosjean and Seinfeld, 1989; Grosjean, 1992].  Often these 

SOA products are oxygenated, and hence water-soluble.  WSOC compounds formed via 

these reactions can include dicarboxylic acids, oxocarboxylic acids, dicarbonyls, organic 

nitrates, and aromatic acids. 

SOA formation is generally studied by running controlled smog chamber 

experiments.  Organic gaseous precursors are mixed with oxidants such as ozone or the 

hydroxyl radical.  The particle products formed can be analyzed off-line by collection of 

integrated filters or on-line using such techniques as a PTR-MS (Proton Transfer 

Reaction – Mass Spectrometer) or an AMS (Aerosol Mass Spectrometer).  Although 

these smog chamber studies have provided useful information, often the conditions are 

not representative of the atmosphere.  For example, precursor concentrations are 

generally considerably higher than what is typically found in the atmosphere so that 

reaction products can be detected [Kanakidou et al., 2005]. 

 SOA reactions, determined from smog chamber studies, which are likely to form 

water-soluble organic compounds are discussed below.  Larger gaseous alkenes are 

mainly emitted to the atmosphere by anthropogenic sources, including motor vehicle 

exhaust and gasoline.  Cyclic gaseous alkenes can also be emitted from motor vehicle 

exhaust and gasoline.  These larger alkenes can form via oxidation processes straight-

chain aldehydes, monocarboxylic acids, and lactones [Forstner et al., 1997a].  Whereas 

the cycloalkenes can form straight-chain dicarboxylic acids, oxocarboxylic acids, and 

dialdehydes.  The transformation of the aerosol in the particle phase is likely to be 

dialdehyde to oxocarboxylic acid to dicarboxylic acid [Hatakeyama et al., 1987]. 
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Cyclic gaseous alkenes also include terpenes and sesquiterpenes, which are 

emitted from biogenic sources.  These terpenes and sesquiterpenes also produce 

dicarboxylic acids, oxocarboxylic acids, and aldehydes, although the aerosols produced 

via oxidation from these biogenic hydrocarbons are often in their cyclic form [Glasius et 

al., 2000].  Until recently it was believed non-cyclic biogenic alkenes, such as isoprene, 

at low concentrations lead to insignificant SOA production [Pandis et al., 1991; Edney et 

al., 2005].  However, under high-NOx conditions it may be significant [Kroll et al., 

2005]. 

 Aromatic gaseous hydrocarbons are generally derived from anthropogenic 

sources.  These include gasoline and engine oil vapors, and automobile exhaust.  Of 

particular importance is the oxidation of benzene, toluene, xylenes, ethylbenzene, and 

1,2,4-trimethylbenzene, the dominant aromatic hydrocarbons in ambient air.  SOA 

reactions of aromatic hydrocarbons can produce ring-retaining products (aromatic and 

non-aromatic) as well as ring opening products.  The aromatic ring retaining products can 

include acids, multifunctional phenols, and nitrogen containing compounds.  Lactones 

and cyclohexenes are likely non-aromatic ring reserved products.  Ring opening products 

identified have included carbonyls, hydroxy-carbonyls, and oxocarboxylic acids 

[Forstner et al., 1997b; Jang and Kamens, 2001]. 

 

1.2.  Current Methods and the Need for Real-time Measurements 

The most widely used WSOC sampling technique involves collection of aerosol 

particles on pre-baked quartz fiber filters followed by manual extraction and analysis.  

However, in order to obtain sufficient mass for analysis of organic carbon, sampling 
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times on the order of hours or greater are typical.  These long sampling times limit 

investigations into the WSOC sources and the processes that affect ambient 

concentrations since concentrations cannot be followed over time.  Additionally, 

extended sampling periods can also lead to positive artifacts since collected gas-phase 

carbonaceous material is analyzed with the particulate matter.  Negative artifacts are 

caused by the loss of semi-volatile organic material collected on a filter during sampling.  

Long sampling periods tend to enhance these losses by exposing collected particles to 

wider ranges of ambient conditions during the sampling period [McDow and Huntzicker, 

1990]. 

There is a need for real-time measurements of WSOC to alleviate the tedious 

work and much of the uncertainties associated with making manual filter measurements.  

Also atmospheric processes that affect fine particulate carbon concentrations usually have 

a time scale of minutes to hours.  A faster time resolution measurement would allow 

transient events to be detected, which filter measurements often miss.  Near real-time 

measurements could provide information relevant to human exposure and acute health 

effects.  Additionally, quantitative airborne measurements of the carbonaceous fraction 

can be of significant value since it would provide information on spatial distributions and 

facilitate the study of aerosol plume chemical evolution. 

Generally, airborne measurements of organic carbon are scarce.  Measurements 

were made over the east coast of the United States [Novakov et al., 1997], the Indian 

Ocean [Mayol-Bracero et al., 2002a], over southern Africa during the dry biomass 

burning season [Kirchstetter et al., 2003], and in Asian outflow [Huebert et al., 2004].  In 

all cases particles were collected onto pre-baked quartz filters.  Huebert et al. [2004] used 
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an off-line Sunset Labs thermal/optical analyzer for the carbon analysis (Forest Grove, 

Oregon), whereas the other three studies used evolved gas analysis.  Maria et al. [2002, 

2003] have made airborne measurements of organic carbon functional groups with 

Fourier transform infrared (FTIR) analysis of solvent extracted filters.  Kawamura et al. 

[2003] measured specific water-soluble dicarboxylic acids over east Asia and the western 

North Pacific using GC/MS analysis of quartz filter extracts.  These methods were 

generally limited by long sampling times leading to few data points and poor spatial 

resolution.  Detection limits were typically poor and artifacts a significant issue. 

Measurements based on mass spectrometers have recently been used to 

quantitatively measure carbonaceous aerosol on-line from aircraft [Bahreini et al., 2003].  

These methods provide unique size-resolved data of the volatile fraction of the aerosol 

particles, and chemically group the carbonaceous material by their mass spectra and not 

by specific compound or physical property.  For 1 minute averaged organic data a 

detection limit of 11.7 µg/m3 was reported. 

In the research presented in this dissertation, a new method has been developed 

for quantitative semi-continuous on-line measurements of WSOC both on the ground and 

airborne.  The approach is an extension of the method used for on-line measurements of 

water-soluble inorganic compounds involving a Particle-into-Liquid Sampler (PILS) 

coupled directly to ion chromatographs (IC) [Weber et al., 2001; Orsini et al., 2003].  For 

this new technique, however, the PILS is connected to a Total Organic Carbon (TOC) 

Analyzer.  A detailed description of the components of this method will be provided in 

chapter 2.  Results showing its capabilities both on the ground in St. Louis and airborne 

during the New England Air Quality Study/Intercontinental Transport and Chemical 
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Transformation (NEAQS/ITCT) 2004 mission conducted in the northeastern U.S. will be 

presented in chapters 3 and 4 respectively. 

 

1.3.  WSOC Composition and Speciation 

Studies have shown that WSOC is composed of compounds such as aliphatic and 

aromatic carboxylic acids, carbonyls, polyols, organic nitrates, and amines.  WSOC is 

likely mainly oxygenated compounds with functional groups such as COOH, COH, C=O, 

COC, CONO2, CNO2, and CNH2 [Saxena and Hildemann, 1996, and references within]. 

There are many known primary and secondary sources, biogenic as well as 

anthropogenic, for these compounds.  Motor vehicle emissions can directly produce 

aliphatic and aromatic acids and aldehydes.  Aliphatic acids and aldehydes can also be 

directly emitted from vegetation.  Emitted gaseous aliphatic and aromatic anthropogenic 

hydrocarbons can produce aliphatic and aromatic carboxylic acids and aldehydes via 

SOA formation [Kawamura et al., 1985; Khwaja, 1995; Forstner et al., 1997b; Seinfeld 

and Pandis, 1998; Finlayson-Pitts and Pitts, 2000].  Biogenic volatile organic 

compounds (VOCs), such as pinene, can produce cyclic acids and long-chain aldehydes 

as SOA products [Seinfeld and Pandis, 1998; Glasius et al., 2000]. 

In particular, many biomass burning compounds have been found to be water-

soluble [Novakov and Corrigan, 1996; Narukawa et al., 1999; Graham et al., 2002; 

Mayol-Bracero et al., 2002b].  Biomass burning WSOC has been shown to be 

predominately aliphatic, composed mainly of oxygenated compounds [Graham et al., 

2002].  A minor content of aromatic compounds containing carboxylic acids and phenols 

has also been observed. 
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A variety of different off-line methods have been developed to try to characterize 

these various compounds and functional groups within the WSOC.  Decesari et al. 

[2000] developed a technique involving chromatographic separation of the WSOC using 

an anion exchange diethylaminoethyl (DEAE)-TSK gel column to give three groups: FR1 

(Fraction 1, neutral and/or basic compounds), FR2 (Fraction 2, mono- and dicarboxylic 

acids), and FR3 (Fraction 3, polyacidic compounds).  Proton-Nuclear Magnetic 

Resonance (H-NMR) suggested that FR1 was composed of polyols or polyethers, FR2 

hydroxylated aliphatic acids, and FR3 unsaturated polyacidic compounds of 

predominately aliphatic character, with minor content of hydroxyl-groups.  Though some 

compounds may not be separated into their expected groups [Chang et al., 2005].  Using 

this method it has been observed in the Po Valley, Italy, that the polycarboxylic acids 

were the most abundant in all seasons, except for the summer when the mono- and 

dicarboxylic acids dominated [Decesari et al., 2001]. 

Krivácsy et al. [2001] have developed a two-step SPE (solid phase extraction) 

technique using Merck LiChrolut RP-18 SPE columns to give three fractions: Fraction I 

(slightly hydrophilic, partly acidic, highly polyconjugated), Fraction II (moderately 

hydrophilic, acidic, moderately polyconjugated), and Fraction III (very hydrophilic, 

neutral, slightly polyconjugated).  This study found that there were two main fractions in 

ambient fine particles, highly polyconjugated weak polyacids (or humic-like substances, 

often referred to as HULIS) and slightly polyconjugated, very hydrophilic, neutral 

compounds, that were each approximately 50% of WSOC. 

A one-step SPE on a Waters Oasis HLB column to separate the WSOC into 

moderately hydrophilic (retained on the column) and strongly hydrophilic (passed 
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through the column) was developed by Kiss et al. [2002].  They observed that the 

hydrophilic fraction that passed through the column contained more polar functional 

groups than the fraction retained on the column and lacked polyconjugated structures, 

suggesting a composition of short-chain carboxylic acids, hydroxy-acids, or polyhydroxy 

compounds. 

These speciation methods of Decesari et al. [2000], Krivácsy et al. [2001], and 

Kiss et al. [2002] have all suggested the presence of HULIS in the WSOC aerosol, 

apparently associated with the hydrophobic WSOC fraction.  These compounds are of 

interest since they have unique properties, including light absorption and surface activity 

[Havers et al., 1998; Facchini et al., 2000].  HULIS has been found in biomass burning 

[Mukai and Ambe, 1986; Mayol-Bracero et al., 2002b], soot oxidation [Decesari et al., 

2002], secondary aerosol formation via heterogeneous reaction of isoprenoid and 

terpenoid compounds catalyzed by sulfuric acid aerosols particles [Limbeck et al., 2003], 

and photooxidation of aromatics that leads to polyacids after ~20 hours [Kalberer et al., 

2004].  Therefore HULIS can be both primary and secondary in nature. 

These methods have provided unique quantitative information, however, the main 

sources of these compounds have not been identified and important atmospheric 

processes that may alter chemical and physical properties remains unknown.  In this 

study, new methodologies to group speciate the water-soluble organic carbon aerosol 

using XAD-8 resin and size-exclusion chromatography (SEC) have been developed.  

First, an on-line quantitative method that couples a PILS-TOC with a XAD-8 column in 

order to group speciate the WSOC into its hydrophilic and hydrophobic fractions is 

described in chapter 5.  Ambient results from urban sites are presented as well.  Second, 
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an off-line method that uses SEC to further separate samples by functional group, which 

have first been fractionated by the XAD-8, is described in chapter 6.  Results from 

samples collected from urban Atlanta during the summer and winter are compared to 

biomass burning samples collected in rural Georgia in a region of prescribed burning.  

The goals are to assess these methods, chemically identify a large portion of the ambient 

fine particle organic aerosol in urban environments, and investigate possible sources. 

As previously mentioned since the organic aerosol is so complex the sources of 

WSOC have not been well understood.  Therefore, in chapter 7 all the information gained 

by these techniques to analyze and speciate WSOC will be used to better characterize the 

sources of WSOC in the southeastern U.S. 
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CHAPTER 2 
INSTRUMENT DESIGN 

 
 
 
 This chapter provides a detailed description of the components of the Particle-into 

Liquid Sampler – Total Organic Carbon (PILS-TOC) system.  This instrument can be 

used to make quantitative semi-continuous on-line measurements of WSOC both on the 

ground and when airborne. 

 

2.1.  Particle Collection Method 

 The PILS [Weber et al., 2001; Orsini et al., 2003] is an approach that combines 

two proven aerosol technologies: particle growth in a mixing condensation particle 

counter and droplet collection by a single jet inertial impactor.  Ambient particles smaller 

than 1 µm or 2.5 µm aerodynamic diameter are collected with the PILS by rapidly mixing 

saturated water vapor with ambient aerosol, which is collected at a flowrate of 15 L/min.  

(Note, generally a 1 µm size cut MOUDI impactor is used for airborne measurements and 

a 2.5 µm sharp cut URG cyclone is used for ground-based measurements.)  The resulting 

supersaturated water vapor condenses on all ambient particles larger than approximately 

10 to 30 nm.  Activated particles grow to a size of roughly 1 to 5 µm diameter, which are 

then easily collected by an inertial impactor.  An accurately metered and adjustable flow 

of deionized water (DI Water) is pumped over the top of the impaction plate, flows 

around its perimeter, and merges with the liquid from the droplets.  This produces a 

continuous liquid sample that can be analyzed and quantified by an on-line technique. 

The PILS has been used extensively to measure the inorganic aerosol particle bulk 

composition by coupling it to ion chromatographs (IC) [e.g., Orsini et al., 2003].  In 
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order to adapt the PILS for a WSOC measurement, minor modifications were made to the 

PILS-IC method.  This included different denuders to remove organic gases, a method for 

on-line and frequent background measurements, syringe pumps for delivery of the liquid 

sample, and an in-line liquid filter.  A schematic of the system is shown in Figure 2.1. 

 

 

 
 

 

 
Figure 2.1.  Schematic of the Particle-into-Liquid Sampler coupled to a Total Organic 
Carbon analyzer for measurement of bulk fine particle (PM1 or PM2.5) water-soluble 
organic carbon. 

 

 

 

2.2.  Removal of Organic Gases 

The removal of some portion of gaseous organic carbon interferences was done 
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organics by diffusion to an absorbent surface.  For removal of organic gases typically 

activated carbon is used for the absorbent surface. 

Both Eatough parallel plate carbon denuders [Eatough et al., 1993] and MAST 

monolith carbon denuders (MAST Carbon Ltd., Surrey, UK) have been tested.  A 12 inch 

long Eatough parallel plate activated carbon denuder is used in the PILS-TOC system.  

The MAST denuders were found to produce artifacts through catalytic cracking, which 

occurs when larger molecular weight organics are broken down to lower molecular 

weight organics.  Because gaseous lower molecular weight organics are often water-

soluble unlike their larger molecular weight counterparts, the carbon monolith denuder 

results in an increase in background concentrations and poorer measurement sensitivity. 

 

2.3.  Instrument Background Interferences 

 A number of issues must be resolved for making quantitative measurements of 

WSOC.  This includes minimizing and measuring interferences from background 

carbonaceous material in the sampling system.  Background organic carbon in the PILS-

TOC system comes from the organic carbon found in DI Water, organic carbon that can 

desorb from the walls of the liquid sample lines, and any organic gases not removed by 

the denuder.  To determine the concentration of only particulate organic carbon, the real 

background was determined using a dynamic blank and subtracted from the ambient 

measurement.  This is similar to approaches used in other on-line carbonaceous 

measurements [Lim et al., 2003].  A normally opened actuated value was periodically 

closed, via an external timer (ground-based) or computer with appropriate interface 

(airborne), forcing the sample air flow through a Teflon filter (Zefluor, 47 mm diameter, 
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2 µm pore size).  Other studies [McDow and Huntzicker, 1990; Turpin et al., 1994] have 

suggested that Teflon is an appropriate choice since it efficiently removes particles but 

not the interfering gases that could effect the WSOC measurement. 

For ground-based studies, a background measurement was made every 4 hours for 

a half hour, whereas for airborne operation a background measurement was made every 

two hours for 10 minutes.  Liquid concentrations from ambient ground-based 

measurements made at the St. Louis – Midwest Supersite during June 2003 are shown in 

Figure 2.2a.  The difference between the measured (or ambient) and filtered air 

(background) was interpreted as the ambient aerosol particle WSOC concentration.  

(Note, the equation used to calculate the WSOC concentration can be found in Appendix 

A.1.2.)  Periodically injecting DI Water directly into the TOC analyzer, independent of 

the PILS, produced the same background as the filtered air measurements.  This indicates 

that the organic carbon in the DI Water apparently controls the background, and not the 

absorption of gases.  Additionally, no changes were observed in the background when the 

denuder was removed (not shown).  This suggested that positive artifacts due to 

absorption of gases within the PILS during the aerosol particle measurement were likely 

minimal in the WSOC measurements. 

In the case of airborne measurements, Figure 2.2b shows liquid carbon 

concentrations for ambient and background measurements from a flight conducted on 27 

July 2004 during the NEAQS/ITCT 2004 experiment.  As with ground measurements, 

there was a clear background that was different from the measured signal.  There was no 

evidence for an altitude dependence on background concentrations, and the background 

measurements within a single flight were fairly steady.  At 18:10 UTC (14:10 EDT) a  
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Figure 2.2.  Measured TOC liquid concentrations of ambient fine particle WSOC and 
on-line background measurements (filtered air) for (a) ground-based measurements 
conducted in June 2003 in St. Louis and (b) airborne measurements from a flight 
conducted on 27 July 2004.  The difference between these curves was the carbon 
associated with the ambient aerosol.  In 2.2a DI water periodically injected directly into 
the TOC analyzer is also shown.  The data gap was due to routine instrument 
maintenance and replenishing of the water used to operate the instrument.  This 
resulted in a drop in the filtered air due to water with lower organic carbon 
concentrations.  In 2.2b aircraft altitude for the WP-3D is also shown and local time is 
EDT = UTC – 4 hours. 
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background measurement that was made in an urban plume where ambient WSOC 

concentrations were high, is only slightly higher than backgrounds made in clean 

conditions (~5 ppb C higher than average of other background measurements within that 

flight).  These results are consistent with the ground-based measurements that most 

background was from interferences in the purified water employed in the PILS system.  

Greatest background variation was found between flights due to differences in the DI 

Water purity. 

 

2.4.  Liquid Handling System 

 The liquid sample obtained from the PILS was filtered in-line prior to TOC 

measurement to remove any insoluble particles.  Both 0.5 µm PEEK 

(polyetheretherketone) and 0.22 µm polypropylene filters have been tested.  Little 

difference was observed between the two filter sizes.  Therefore, all the work previous to 

the speciation measurements (chapters 5 and 6) was conducted with a 0.5 µm filter.  

During summer ground-based urban continuous measurements, a 0.5 µm filter required 

daily changes to limit pressure drops across the filter.  During the airborne experiment the 

0.5 µm filter was changed every second or third flight. 

Employing a liquid filter requires that the liquid sample be pressurized to force it 

through the filter.  A continuous flow of liquid sample was pushed through the liquid 

filter and delivered to the TOC analyzer using two Kloehn Versa 3 syringe pumps (Las 

Vegas, NV) in “handshaking” mode.  (For ground-based measurements all syringes used 

were 1 ml and for airborne measurements 2.5 ml syringes were used.)  In addition, two 
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similar pumps were used to supply the transport DI Water to the top of the PILS 

impaction plate. 

Use of glass syringe pumps versus a peristaltic pump with polymer tubing appears 

to also help reduce background WSOC.  Two different types of peristaltic pump tubing 

were tested: Tygon and Santoprene.  Santoprene is a non-toxic medical grade rubber.  It 

was found to have a background about half of that of Tygon tubing and was about 20 to 

40 ppb C higher than the organic carbon naturally found in DI Water. 

All liquid sample lines were narrow bore (0.5 mm ID) PEEK tubing.  PEEK is a 

flexible tubing that is biocompatible and chemically inert.  It is used in place of stainless 

steel, which is the preferred tubing for organic aerosol sampling, for most analytical 

systems.  Unlike Teflon, PEEK was found not to absorb organic compounds. 

 

2.5.  TOC Analyzer 

A Sievers Model 800 Turbo TOC analyzer (Boulder, CO) was used to determine 

the organic carbon in the aqueous samples containing the soluble components of the 

ambient aerosol.  The TOC analyzer measures the organic carbon content of a liquid 

sample by on-line conversion of organic carbonaceous material to carbon dioxide using 

chemical oxidation via a combination of ultraviolet (UV) light and ammonium persulfate 

((NH4)2S2O8).  The carbon dioxide formed diffuses through a semi-permeable membrane 

into a flow of DI Water and is quantified by conductivity detection.  The increase in 

conductivity of the DI Water is proportional to the concentration of aqueous carbon 

dioxide in the DI Water stream, which is proportional to the concentration of aqueous 

carbon dioxide formed from the sample.  The instrument has two separate channels to 
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compute total organic carbon by the difference in total carbon (channel where oxidation 

takes place) and total inorganic carbon (unaltered channel).  The analyzer allows for a six 

minute integrated measurement when run in on-line mode and a 3 s measurement when 

run in Turbo mode.  This persulfate-ultraviolet oxidation method produces similar results 

as methods employing combustion conversion to carbon dioxide gas with infrared 

detection.  However, unlike the combustion method the persulfate-ultraviolet oxidation 

approach is suitable for concentrations less than 1 ppm C [Clesceri et al., 1989].  The 

TOC analyzer runs off of an internal calibration performed in the factory.  This 

calibration was periodically verified with an oxalic acid standard.  The oxalic acid 

calibration was typically found to be within 5% of the factory calibration (example data: 

slope = 1.04 ± 0.06 ppb C/ppb C, intercept = 59 ± 18 ppb C (± is one standard deviation).  

Note, the intercept is due to the previously mentioned organic carbon that naturally 

occurs in DI Water.) 

TOC Analyzer Coupling to PILS: 

A continuous liquid sample flow is drawn into the TOC analyzer by an internal 

peristaltic pump for analysis.  Since syringe pumps are used to force the liquid sample 

through a filter, and exact flow matching is not possible, the liquid sample line cannot be 

directly coupled to the TOC.  As shown in Figure 2.1, a “tee” was added downstream of 

the liquid filter prior to the TOC analyzer with one leg going to waste.  Additionally, this 

means during airborne measurements the liquid sample is near cabin pressure prior to 

entering the TOC analyzer.  This enables the TOC analyzer to operate in its normal mode 

and to control the sample flow by its internal pump.  The transport flow is adjusted so 

that the “tee’s” waste leg flowrate is minor (less than 0.1 ml/min) and the TOC never 
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draws air.  The debubbler and “tee” were constructed of Pyrex with an internal volume of 

0.05 ml or less. 

 

2.6.  Artifacts, Limit of Detection, and Measurement Uncertainty 

The use of denuders and background corrections will minimize positive artifacts 

due to absorption of gases.  As previously discussed and shown, positive artifacts due to 

absorption of gases within the PILS during the aerosol particle measurements are likely 

minimal in the WSOC measurements. 

Negative artifacts associated with evaporation of semi-volatile organics using this 

method have not been systematically assessed.  Elevated temperature in the droplets 

formed, and on collection surfaces in the PILS, could lead to volatility losses of organic 

compounds.  For airborne measurements, evaporation of semi-volatile organic material 

may happen due to ram heating at the inlet or due to heat transfer in the sample lines 

between the inlet and the instrument.  (Measurements of sample temperature at the PILS 

inlet indicate that sample air was typically 12 K higher than ambient for measurements at 

altitudes up to 2 km, and 30 K for measurements between 3 and 4 km.  These are the 

altitudes where WSOC concentrations are investigated in most detail in chapter 4.)  Not 

accounting for negative artifacts, if they do exist, would lead to systematic under 

measurement of WSOC. 

Based on three times the background standard deviation, the limit of detection 

(LOD) for this system is estimated to be about 1 µg C/m3.  However, through 

comparisons with other aerosol measurements, such as particle volume, useful WSOC 

data are available down to 0.1 µg C/m3.  Thus, data down to 0.1 µg C/m3 are included, 
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but it is recognized that concentrations between 0.1 and 1 µg C/m3 are much more 

uncertain. 

The uncertainty associated with the WSOC measurement can be estimated by 

combining the uncertainties in the method for determining the liquid concentration, 

uncertainties due to background variability, and uncertainties in various flowrates.  For 

measurements of ionic aerosol composition with the PILS-IC system, dilution due to 

added liquid from collected drops and wall condensate to the impactor plate was 

accurately determined by spiking the transport flow with lithium.  Recording the change 

in lithium measured upstream and downstream of the impactor provided a measure of 

dilution.  A similar approach cannot be used in the PILS-TOC for measurement of 

WSOC.  Therefore, a constant dilution factor of 1.17 is assumed, which is based on 

experiments where a PILS-IC was operated identically to the PILS-TOC.  The 

uncertainty in assuming a constant value is estimated to be ± 4%.  Since the background 

is assumed to be constant between consecutive background measurements, variability in 

backgrounds can lead to uncertainty.  This component of the uncertainty is estimated to 

be typically ± 5% (or ± 0.3 µg C/m3).  The overall measurement uncertainty, based on 

combining the known uncertainties, is estimated to be approximately 10% (5% flows, 4% 

dilution, 5% background, and 5% TOC calibration).  The true uncertainty due to 

unknown factors is likely to be higher.  For concentrations between 0.1 and 1 µg C/m3, 

where backgrounds are a larger fraction of the measured value, uncertainties are 

estimated to be at least ± 20%. 
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2.7.  Modified Liquid Flowrates to Improve Response Times 

As previously mentioned, the PILS-TOC can be deployed for either ground-based 

or airborne measurements.  However, for aircraft measurements a rapid sampling rate is 

desired since the aircraft can cover a large sampling area in a short time, which often 

results in encountering quick changes in the various air masses sampled.  As will be 

discussed in more detail below, to improve system response times and permit TOC 

operation at a faster sampling rate, the liquid flowrates were increased.  The major 

operational differences for a system run for 3 s (airborne) or 6 minutes (ground-based) 

are summarized in Table 2.1. 

 

 

 

Table 2.1.  Summary of the operational differences for ground-based and airborne 
PILS-TOC measurements. 

 Ground-Based Airborne 
Flowrate of Transport Water over 
impactor (ml/min) 

0.6 1.4 
 

Flowrate of sample out of the impactor 
and through the liquid filter (ml/min) 

0.5 1.3 

TOC analyzer sample flowrate (ml/min) 0.4 1.2 
TOC analyzer sample mode and 
integrated sample time 

On-line 
6 minutes 

Turbo 
3 seconds 

Duration of background measurement 30 minutes 10 minutes  
 

 

 

 

Liquid-based systems may respond slowly to rapidly changing concentrations due 

to mixing in the various components that transmit the collected sample to the detector, 
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and within the detector itself [Sorooshain et al., 2005].  Improved response times can be 

achieved in the liquid transport components by minimizing volumes.  For example using 

narrow bore tubing, and small volume syringe pumps, debubblers, and liquid filters could 

help. 

For the TOC analyzer, higher flowrates are the only feasible way to improve 

response times and help alleviate smearing of the measured concentrations that could 

occur when sampling inside and outside of a plume.  By injecting an oxalic acid standard 

into the TOC analyzer to simulate a concentration change, experiments on TOC response 

time were performed to determine optimal liquid sample flowrates.  The resulting change 

in measured concentration was recorded and the response time for a concentration change 

from 10% to 90% of the step increase (B minus A in Figure 2.3) determined.  It was 

found that the TOC analyzer response time was approximately inversely proportional to 

the sample flowrate.  Doubling the specified Turbo mode flowrate of the TOC analyzer 

from 0.6 to 1.2 ml/min improved the response time of our analyzer to approximately 1 

minute (see Figure 2.3).  The higher liquid flowrate improves the responsiveness of the 

complete system, however, this also results in a more dilute sample. 

To assess response time of the complete system, comparisons were made between 

a 1 s measurement of carbon monoxide (CO) and the 3 s WSOC.  Based on an analysis of 

two plumes with sharp edge transitions (the plumes shown in Figures 4.3 and 4.6b and 

discussed in chapter 4) the response time is estimated to be in the range 45 to 65 s.  Slow 

response is believed to be mainly from mixing in the syringe pumps. 
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Figure 2.3.  Response time of the TOC analyzer in Turbo mode for an optimized 
sample flowrate of 1.2 ml/min.  A and B are the average initial and final 
concentrations, respectively. 
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CHAPTER 3 
GROUND-BASED RESULTS 

 
 
 

Results of near real-time measurements of WSOC obtained at the St. Louis - 

Midwest Supersite during the summer and autumn of 2003 are presented. 

 
3.1.  Site Details 

The PILS-TOC was deployed at the St. Louis - Midwest Supersite from June 

2003 through April 2004.  (This chapter will focus on the data from June through October 

2003.  The data from March 2004 will be discussed later in chapter 5.)  This urban site is 

located in East St. Louis, IL approximately 3 km to the east of the city of St. Louis, MO 

central business district.  It is in a residential area with light commercial activity and is 

periodically impacted by industrial sources within a few kilometers to the south.  

Along with the PILS-TOC, hourly-integrated PM2.5 (Sunset Labs cyclone) OC 

and elemental carbon (EC) were measured for alternate hours using a field ECOC 

analyzer (Sunset Laboratory Inc., Forest Grove, Oregon).  This instrument quantifies OC 

and EC using the thermal/optical transmission (TOT) method [Birch and Cary, 1996].  It 

was run following the method of Bae et al. [2004].  In order to minimize positive 

artifacts, the ECOC measurements used the same type of denuder as the PILS-TOC [Bae 

et al., 2004]. 

 

3.2.  Carbonaceous Aerosol Seasonal Trends, June to October 

Monthly means of EC, OC, WSOC, and the ratio of WSOC to OC for June, 

August, and October are summarized in Table 3.1.  Mean OC concentrations were fairly  
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Table 3.1.  Mean and standard deviations (in parenthesis) of PM2.5 EC, OC, WSOC, 
and the WSOC/OC ratio for June, August, and October 2003 at the St. Louis - Midwest 
Supersite.  Concentrations are reported in µg C/m3. 

Month EC OC WSOC WSOC/OC 
June 0.80 (0.57) 4.76 (2.53) 2.87 (1.41) 0.64 (0.13) 

August* 0.62 (0.51) 4.04 (1.75) 2.40 (0.78) 0.61 (0.16) 
October 1.11 (1.01) 4.55 (3.62) 1.33 (0.75) 0.31 (0.11) 

*Measurements averaged over only August 1 to 17. 
 

 

 

 

similar during these three months.  Although based on standard deviations the mean 

WSOC concentration changed significantly.  Compared to June and August, in October 

the WSOC was approximately 50% lower, and thus the ratio of WSOC to OC was also 

about 50% lower.  This is consistent with the view that much of the WSOC may be from 

SOA formation, a process that would be less vigorous in the fall when actinic fluxes to 

drive photochemical activity are lower. 

 

3.3.  Diurnal Trends in the WSOC to OC Ratio 

For the majority of the time, in St. Louis the WSOC tracks OC (e.g., for June, 

hourly-integrated OC regressed on hourly-averaged WSOC yields a R2 = 0.81).  To 

further demonstrate this behavior, Figure 3.1 shows the OC and WSOC concentrations, 

WSOC to OC ratio, and ozone (O3) concentrations for 14 day periods in June and August 

2003.  A number of interesting features were observed both within and between these 

periods. 

The time series for OC revealed a 3-to-7 day trend with a diurnal cycle 

superimposed.  Although not shown, the EC trends were qualitatively similar to OC  
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Figure 3.1.  Time series of PM2.5 OC, WSOC, the fraction of OC that was water-soluble, 
and O3 concentration for two 14 day periods (June and August 2003).  Dashed vertical 
lines represent midnight CST. 

 

 

 

trends.  The longer-term trend was dictated by precipitation events.  Over the multi-day 

period following a precipitation event (e.g. 6/13/03 and 6/19/03 in Figure 3.1), the OC 

increased from approximately 1-4 µg C/m3 up to about 10-15 µg C/m3; subsequently, the 

OC concentrations rapidly dropped back to approximately 1-4 µg C/m3 apparently due to 

precipitation scavenging (or washing out) of the aerosol.  The steady increase in OC 

concentrations would resume again after the rain event.  This cycle was observed three 

times in June 2003.  In addition to this multi-day pattern the OC concentrations exhibited 

a distinct diurnal profile with a minimum during the day and maximum during the night.  

These trends are often observed in urban regions and interpreted as a result of continuous 

sources (day and night) combined with limited dispersion at night due to a nocturnal 

temperature inversion and thermally-driven daytime mixing.  In contrast, for the period of 
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August 1-17, 2003 there was no discernable day-to-day buildup in the OC concentration 

and therefore the aforementioned diurnal profiles were only weakly discernible.  October 

featured a combination of the trends observed for the June and August periods. 

WSOC/OC trends also differed between June and August.  In June there was a 

large and consistent variation in the daily WSOC/OC.  For extended periods in June, 

often associated with the diurnal OC trends but ~12 hours out of phase, there was a clear 

temporal pattern in WSOC/OC with levels reaching ~0.80 during the day and dropping to 

near 0.40 at night.  In several instances the water-insoluble fraction (WIOC) dominated at 

night (WIOC = OC - WSOC and thus WIOC/OC = 1 - WSOC/OC).  As previously 

mentioned, in the past most WSOC measurements have been made using 24 hour 

integrated filter measurements that are incapable of resolving diurnal variability.  The 

elucidation of subdaily WSOC patterns and its coupling to OC and other parameters 

represents a unique observation for an urban site and demonstrates the insights gained 

from near real-time measurements. 

This site was also periodically influenced by strong local point sources.  One such 

event can be seen in Figure 3.1 just prior to midnight on 8/5/03.  The hourly-averaged OC 

concentration spiked to over 20 µg C/m3, yet the WSOC concentration did not 

significantly increase.  Thus the WSOC to OC ratio was very low (i.e., the WIOC 

fraction was high) suggesting that most of the carbonaceous aerosol was likely fresh 

primary OC. 

During the periods of persistent diurnal trends in June, the WSOC to OC ratio was 

fairly well correlated with O3.  Table 3.2 summarizes linear regression results for the 

entire month of June, and for each period of OC concentration buildup observed between  
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Table 3.2.  Number of data points (N), slope and intercept (both with 95% confidence 
limits), and R2 value for linear regressions of the WSOC/OC ratio versus O3 
concentration for various periods during June 2003 in St. Louis. 

Period in June N Slope* Intercept R2 
Entire Month 328 3.52 ± 0.26 0.53 ± 0.01 0.41 
June 15 – 18 47 2.60 ± 0.30 0.53 ± 0.01 0.72 
June 21 – 25 59 4.09 ± 0.50 0.48 ± 0.02 0.54 
June 27 – 30 39 3.57 ± 0.51 0.57 ± 0.02 0.57 

*Units are ppm-1. 
 

 

 

precipitation events.  WSOC/OC to ozone correlations may suggest that a significant 

fraction of the June daytime WSOC was associated with SOA.  In contrast, diurnal trends 

in OC and WSOC/OC were not as prominent in August and no correlation was found 

between WSOC/OC and O3 (R2 = 0.02).  The observed contrasts between June and 

August could be due to a number of factors, including different atmospheric chemical and 

meteorological processes, and emissions.  Thus, significant chemical differences may 

exist between the WSOC measured in June and August.  (Note, measurements of species 

which could potentially reveal more about the chemistry of June versus August, such as 

the hydroxyl radical or VOCs, were not made at this site.) 

 

3.4.  Summary 

Overall, these results show that on-line measurements of aerosol water-soluble 

organic carbon, coupled with equally rapid measurements of aerosol organic carbon, 

provided unique information into the sources and atmospheric processing of fine 

particulate organic compounds soluble in water.  These results also suggest that at an 

urban site WSOC may, under certain conditions, be mainly from SOA formation.  If so, 
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then these data indicate that SOA is often a large fraction (up to 80%) of the ambient OC.  

In the next chapter, the on-line WSOC measurements are extended to airborne 

measurements. 
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CHAPTER 4 
AIRBORNE RESULTS 

 
 
 
 Results from ground-based studies of WSOC are expanded through airborne 

experiments, which provide new insights into sources and spatial distributions of WSOC 

and its evolution in distinct plumes. 

 

4.1.  Results during NEAQS/ITCT 2004 

The National Oceanic and Atmospheric Administration (NOAA) sponsored 

NEAQS/ITCT 2004 airborne mission was part of the larger International Consortium for 

Atmospheric Research on Transport and Transformation (ICARTT).  The NOAA WP-3D 

aircraft was operated out of Portsmouth, NH from 9 July to 15 August 2004.  As part of 

this multi-investigator field study, measurements were made of a suite of aerosol particle 

physical and chemical properties, and of several reactive and trace gases.  The aerosol 

measurements included bulk concentrations of the ionic constituents and WSOC 

(reported at 1 atmosphere and 293 K) of particles with aerodynamic diameters < 1.0 µm 

(PM1) using the PILS-IC and TOC systems, respectively.  Several flights focused on 

investigating sources, transport, mixing, and chemical transformations of anthropogenic 

emissions from the Boston/New York corridor.  A map of the flight paths is shown in 

Figure 4.1a. 

The PILS-TOC sampled from a Low Turbulence Inlet (LTI) [Wilson et al., 2004], 

as did the PILS-IC system, the AMS, and a coarse mode optical particle counter.  The 

PILS-IC, PILS-WSOC, and AMS shared a sample line running from the LTI through a 

non-rotating MOUDI impactor [Marple et al., 1991] with 50% transmission efficiency at  
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Figure 4.1.  (a) Map of the aircraft flight paths during NEAQS/ITCT 2004.  Identified 
are the various biomass burning (BB1 through BB4) plumes discussed in the analysis.  
(b) Back trajectory for rural plumes (R1, R2) discussed in the analysis.  The back 
trajectories are based on the NOAA ARL HYSPLIT Trajectory Model. 
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1.0 µm at 1 atmosphere ambient pressure.  The combined flow to these instruments was 

30.5 L/min. 

The focus of the following analysis is on the sources of submicron WSOC during 

the experiment.  Additional measurements used in the analysis include gaseous organic 

compounds measured by a PTR-MS approximately every 18 s [de Gouw et al., 2003a], 1 

s CO [Holloway et al., 2000], and PM1 volume with 1 s resolution (determined from 

integrating particle number distributions measured by combining a 5-channel 

condensation particle counter, a modified LasAir 1001A laser optical particle counter 

(OPC), and a white light OPC [Brock et al., 2000, 2004]). 

During this study, substantially enhanced WSOC concentrations were associated 

with biomass burning plumes and plumes emanating from urban centers.  Figures 4.2a 

and 4.2b show the measured WSOC concentration as a function of altitude, delineated 

into biomass and non-biomass influenced air masses.  Acetonitrile was used as a unique 

biomass burning tracer [de Gouw et al., 2003b].  Air masses with a biomass burning 

influence were identified when acetonitrile concentrations were above 250 pptv, 

assuming 250 pptv and below are background acetonitrile concentrations.  It cannot be 

completely excluded that some biomass burning influence may persist in the data with 

below 250 pptv acetonitrile, but it is likely to play a very minor role.  Figure 4.2a shows 

that most concentrated biomass plumes were detected in layers generally between 

altitudes of 3 and 4 km, however, evidence of a biomass influence (based on acetonitrile 

above 250 pptv) was observed over all measured altitudes.  For non-biomass burning 

data, WSOC concentrations were highest near the surface and decreased with altitude, 

similar to sulfate, the other major aerosol chemical constituent during this study. 
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Figure 4.2.  One minute averaged PM1 WSOC concentrations as a function of altitude 
for all data collected during the experiment.  Data are separated into (a) biomass 
burning (acetonitrile > 250 pptv) and (b) non-biomass burning (acetonitrile < 250 pptv) 
WSOC. 
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4.2.  Biomass Burning WSOC 

A variety of studies report that significant fractions of biomass burning smoke 

particles have carbonaceous components that are soluble in water [Novakov and 

Corrigan, 1996; Narukawa et al., 1999; Graham et al., 2002; Mayol-Bracero et al., 

2002b].  A similar result was observed in this experiment; measured WSOC was highly 

correlated with fine particle volume and known gaseous biomass burning emissions, such 

as acetonitrile and carbon monoxide. 

The locations of four large and distinct biomass plumes are given in Table 4.1 and 

identified on the map in Figure 4.1a.  These plumes were all intercepted within layers 

between 3 and 4 km altitude (see Figure 4.2a).  A Lagrangian air particle dispersion 

model (FLEXPART, [Stohl et al., 2002]) indicated that these plumes were from biomass 

burning in the Alaska/Yukon region and transported to the point of measurement over 

periods ranging from 4 to 10 days.  In all cases the WSOC was highly correlated with 

acetonitrile and CO, with R2 ranging between 0.88 and 0.96 (see Table 4.1).  An 

exception was the biomass plume intercepted on 21 July 2004 (BB3) over Boston with a 

lower WSOC-CO R2 of 0.71.  Overall, these biomass plumes contained the highest 

concentrations of WSOC and PM1 volume observed throughout the entire airborne 

experiment. 

As an example of a specific biomass plume interception, Figure 4.3 shows the 

time series of the WSOC, fine particle volume, CO, and acetonitrile for the biomass 

plume intercepted on 9 July 2004 (BB1, Table 4.1 and Figure 4.1a).  It can be seen that 

all four of these measurements are highly correlated within the plume and that the WSOC 

represented approximately 10% (µg C/m3)/(µm3/cm3) of the fine particle volume.  This 
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Table 4.1.  Characteristics of four major biomass plumes intercepted by the WP-3D.  
Included are the mean, in parenthesis the maximum and minimum values, and in 
brackets the average concentration increase within the plume relative to local 
background (all based on 1 minute averaged data).  Date is given as month/date/year 
and local time is EDT = UTC – 4 hours. 

 07/09/04 
20:06 to 

20:20 UTC 
(BB1)* 

07/20/04 
17:22 to 

17:37 UTC 
(BB2) 

07/21/04 
19:51 to 

20:03 UTC 
(BB3) 

07/28/04 
16:42 to 

16:56 UTC 
(BB4) 

WSOC (µg C/m3) 8.13 
(0.57, 18.00) 

[7.76] 

14.54 
(5.83,18.45) 

[11.36] 

12.56 
(5.54, 16.70) 

[11.58] 

13.24 
(6.04, 17.63) 

[10.42] 
CO (ppbv) 362 

(110, 633) 
[11] 

325 
(216, 410) 

[164] 

278 
(136, 419) 

[111] 

299 
(177, 363) 

[197] 
Acetonitrile (pptv) 844 

(279, 1491) 
[469] 

775 
(278, 904) 

[463] 

709 
(292, 947) 

[447] 

555 
(372, 627) 

[344] 
PM1 Volume 

(µm3/cm3) 
80.6 

(3.47, 181) 
[74.4] 

70.3 
(9.58, 91.8) 

[63.0] 

65.1 
(19.5, 103) 

[59.6] 

78.1 
 (14.1, 104) 

[68.0] 
Transport Time** 

(days) 
6 to 8 8 to 10 8 to 10 4 to 5 

Latitude (degrees) 52.32 41.42 41.98 50.32 
Longitude (degrees) -67.90 -76.71 -69.99 -65.87 

Altitude (m) 3936 3161 3200 3197 
WSOC-Acetonitrile 

R2 
0.95 0.92 0.93 0.89 

WSOC-CO R2 0.96 0.92 0.71 0.89 
∆WSOC/∆CO*** 
(µg C/m3/ppmv) 

39.4 69.4 125.6 78.7 

*BB1, BB2, BB3, and BB4 are used to identify the specific biomass plumes in Figure 
4.1a. 
**Calculated based on the FLEXPART Model. 
***This ratio is the change in WSOC relative to CO within the plume above the local 
background concentrations.  Background concentrations were determined from 
measurements at roughly the same altitude near each plume. 
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Figure 4.3.  Time series of 3 s WSOC, fine particle volume, carbon monoxide, and 
acetonitrile recorded in the biomass plume BB1 (identified in Figure 4.1a) on 9 July 
2004.  Local time is EDT = UTC – 4 hours. 
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ratio ranged between ~10 and 22% for the large biomass plumes detected in this study 

(can be inferred from Table 4.1). 

Other less distinct biomass burning plumes were also present throughout the 

study.  Some were observed at lower altitudes and mixed with local anthropogenic 

sources.  Back trajectory analysis [Stohl et al., 2002] suggests all of these air masses were 

from the Alaska/Yukon fires.  Although the aircraft did not measure down to the surface, 

other analysis shows that these emissions influenced ground-level local air quality during 

the period of the measurement campaign [R.B. Pierce and J. Szykman, personal 

communication]. 

 

4.3.  Non-Biomass Burning WSOC 

Although biomass plumes occasionally led to greatly enhanced WSOC 

concentrations throughout the study domain, as previously discussed, other known major 

sources of WSOC are secondary and possibly primary organic compounds from biogenic 

emissions and mobile sources.  The St. Louis ground-based results suggest a source of 

WSOC is urban settings.  To investigate these other non-biomass burning sources of 

WSOC, the biomass burning events were removed by considering only data for which 

acetonitrile was below 250 pptv (see Figure 4.2b).  Apart from biomass burning 

emissions, SOA from biogenic and anthropogenic precursors will both lead to WSOC.  

Emission inventories for biogenic compounds, such as isoprene and terpenes, suggest that 

significant sources exist in the northeastern states, especially the northern part of Maine, 

and northern regions of Ontario and Quebec 

(http://map.ngdc.noaa.gov/website/al/emissions/viewer.htm).  Air masses from these 



 39

regions were sampled during this experiment.  In the following analysis only 

measurements made below 2 km altitude are analyzed to investigate these biogenic and 

anthropogenic surface sources for WSOC. 

 

4.3.1.  WSOC-CO Correlation 

As in the biomass burning plumes, WSOC was also found to be correlated with 

CO.  This correlation was found to be driven by emissions from urban plumes without a 

biomass burning influence.  For all data measured when altitude was below 2 km and 

acetonitrile less than 250 pptv, WSOC and CO are positively correlated (R2 = 0.55, see 

Figure 4.4).  A number of individual plumes from urban centers, such as New York City, 

Boston, and Philadelphia, were intercepted at various times during the experiment.  The 

measurement locations for 9 different plumes are shown in Figure 4.5 and the WSOC and 

CO concentration time series for three selected plumes are shown in Figure 4.6.  WSOC 

and CO were well correlated in these specific urban plumes (R2 > 0.78) and have higher 

correlations than the combined mission data set (see Table 4.3, which will be discussed in 

more detail in section 4.3.3, for a summary).  Since CO in urban centers is mainly from 

vehicle emissions [EPA, 1997], these data suggest that mobile sources are linked to the 

observed WSOC. 

 

4.3.2.  Urban versus Background Rural 

To contrast the urban WSOC concentrations to more rural background air masses, 

the FLEXPART Lagrangian air particle dispersion model [Stohl et al., 2002] was used to 

identify air masses lacking significant influences from urban CO sources.  As an  
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Figure 4.4.  Correlation between one minute averaged WSOC and CO for all non-
biomass burning influenced measurements (acetonitrile < 250 pptv) recorded below 2 
km altitude during the experiment.  Uncertainties associated with the least squares 
regression are one standard deviation. 

 

 

 

example, concentrations measured in two air masses are shown in Table 4.2.  The air 

masses were sampled during two flights, 25 July 2004 and 6 August 2004.  The locations 

where they were encountered and representative air mass back trajectories are shown in 

Figure 4.1b.  These air masses had passed over Canada and the Great Lakes, or Canada 

and New England, at altitudes between 800 and 1800 m within two days of the 

measurement. 

Emission inventories for the regions where these air masses had recently advected 

over show significant biogenic VOC sources.  Estimated relative emission levels are 

between ~50-173 (moles of isoprene)/(km2 hr) or ~0.68-11.50 (moles of terpenes)/(km2 

hr) (http://www.epa.gov/asmdnerl/biogen.html).  It is likely that the air masses contain 
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Figure 4.5.  Characteristic air mass back trajectories for each of the 9 urban plumes 
discussed in the analysis.  The back trajectories are based on the NOAA ARL 
HYSPLIT Trajectory Model. 

 

 

 

aerosol particles that are representative of the background aerosol found in the 

northeastern U.S. and Canada, with potentially a significant biogenic influence.  These 

rural air masses were found to have some of the lowest low altitude (< 2 km) CO and 

WSOC concentrations of the mission (see Table 4.2).  Τhe CO ranged from 99 to 177 

ppbv.  The 25 percentile for CO was 117 ppbv.  For WSOC the range was from 0.43 to 

2.13 µg C/m3, with the WSOC 25 percentile at 0.72 µg C/m3. 
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Figure 4.6.  Time series of 3 s WSOC, carbon monoxide, and altitude for (a) two urban 
plumes intercepted on 20 July 2004 and (b) one urban plume on 21 July 2004 identified 
in Figure 4.5.  Local time is EDT = UTC – 4 hours. 
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Table 4.2.  WSOC and CO concentrations in two selected rural air masses.  Mean 
concentrations, with maximum in parenthesis, are shown for both air masses.  All data 
have been merged to a one minute average.  Date is given as month/day/year and local 
time is EDT = UTC – 4 hours. 

Air Mass* Measurement Date 
and UTC Time 

WSOC 
(µg C/m3) 

CO 
(ppbv) 

New 
England/Canada 

(R1)** 

07/25/04 
14:30 to 16:30, 
20:55 to 21:30 

1.32 
(2.13) 

133 
(177) 

Great 
Lakes/Canada 

(R2) 

08/06/04 
16:30 to 20:25 

0.85 
(1.70) 

120 
(141) 

*FLEXPART and NOAA ARL HYSPLIT Trajectory Model 
indicate that the air mass originates from or passed through the 
given locations within two days of the measurement. 

**R1 and R2 are used to identify the rural plumes in Figure 4.1b. 
 

 

 

4.3.3.  WSOC Evolution in an Urban Plume 

As was shown during NEAQS/ITCT 2004, urban centers were a major source of 

WSOC with concentrations factors of 2 to 3 times higher than background air masses 

(compare Tables 4.2 and 4.3).  The range of WSOC concentrations observed for the 

urban influenced air during this study is comparable to the concentrations previously 

presented for ground-based measurements in urban St. Louis (chapter 3), which had 

typical summer concentrations from 2 to 4 µg C/m3. 

Secondary organic aerosol formation is expected to produce WSOC, and thus 

WSOC to CO ratios may be expected to increase with plume age.  To investigate relative 

changes in CO and WSOC within these urban plumes, an estimate of the background 

concentrations of CO and WSOC is required.  Analysis of rural air masses advecting 

toward the urban regions suggest background concentrations of the order of 125 ppbv for 
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CO and 1 µg C/m3 for WSOC.  Background concentrations can also be estimated from 

measurements made near the various plumes.  For example, in Figure 4.6b regions of low 

CO likely representative of background conditions are recorded near the identified urban 

plumes.  Background conditions near the urban plumes were near 141 ppbv for CO and 

1.28 µg C/m3 for WSOC, similar to values in the rural air mass R1 that was intercepted 

near the urban centers along the east coast.  Since in some cases the urban plumes do not 

have as clear an increase from the background conditions as those in Figure 4.6b, the 

background concentrations shown in Figure 4.6b (CO 121 ppbv, WSOC 0.75 µg C/m3) 

will be used for the remainder of the analysis. 

The changes in WSOC concentration relative to CO above background levels 

(i.e., ∆WSOC/∆CO) are summarized in Table 4.3, where the background WSOC and CO 

was assumed to be the same in all cases.  The influence of assuming a constant 

background concentration on ∆WSOC/∆CO is small.  For example, based on the standard 

deviation on what are considered background concentrations measured at various 

locations, the variability in ∆WSOC/∆CO is ± 1.2 µg C/m3/ppmv.  The variability in 

∆WSOC/∆CO given in Table 4.3 is the standard deviation of the ratio in the plume, 

assuming constant background.  Variability in the plume is higher than the assumption of 

constant backgrounds, however, both are relatively small.  (Note that ∆WSOC/∆CO can 

also be determined from the slope of WSOC versus CO for data recorded within and in 

the vicinity of a specific plume.  The two methods lead to similar ∆WSOC/∆CO ratios.  

This will be demonstrated later in chapter 7.)
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Table 4.3.  Results for WSOC evolution in urban plumes.  Concentrations are mean concentrations within the plume based on 3 s 
data.  As an indicator of variability the ± standard deviation is shown.  Date is given as month/day/year and local time is EDT = 
UTC – 4 hours.  N/A = not applicable* 

Plume ID Measurement 
Date and 

UTC Time 

Advection Time 
from Urban 

Center (hours)** 

Altitude 
(m) 

WSOC 
(µg C/m3) 

CO 
(ppbv) 

∆WSOC/∆CO 
(µg C/m3/ppmv) 

WSOC-
CO R2 

0720A 7/20/04 18:27 
to 18:29 

1 ± 0 1078 3.46 ± 0.35 362 ± 21 11.3 ± 4.1 0.92 

0720B 7/20/04 18:40 
to 18:42 

3 ± 1 1010 2.59 ± 0.13 316 ± 17 8.5 ± 1.2 0.81 

0814A 8/14/04 16:29 
to 16:35 

13 ± 1 85 1.08 ± 0.12 233 ± 20 3.1 ± 1.1 0.83 

0814A’ 8/14/04 16:40 
to 16:45 

13 ± 1 86 1.44 ± 0.45 201 ± 6 7.2 ± 5.0 N/A 

0814B’ 8/14/04 19:21 
to 19:29 

18 ± 1 72 2.29 ± 0.50 195 ± 14 19.5 ± 5.0 0.89 

0814B 8/14/04 19:31 
to 19:36 

20 ± 0 73 3.50 ± 0.16 249 ± 17 21.8 ± 2.7 0.86 

0721A 7/21/04 15:17 
to 15:29 

26 ± 1 279 4.98 ± 0.71 272 ± 27 28.8 ± 6.8 N/A 

0721B 7/21/04 16:29 
to 16:43 

33 ± 3 456 4.20 ± 0.51 227 ± 11 31.8 ± 4.1 0.89 

0722A 7/22/04 18:34 
to 18:50  

55 ± 1 742 3.21 ± 0.32 199 ± 9 32.0 ± 4.1 0.78 

*A background was made either during the rise into or fall out of the plume. 
** Calculated based on the average of NOAA ARL HYSPLIT back trajectories run at the beginning, in 
the middle, and at the end of each plume. 
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Based on estimates of plume transport age calculated from the NOAA Air 

Resources Laboratory (ARL) HYSPLIT Trajectory Model [Draxler and Rolph, 2003; 

Rolph, 2003], a general trend in ∆WSOC/∆CO is observed.  Figure 4.7a shows 

∆WSOC/∆CO versus an estimate of the advection time of the plume from the urban 

region to the measurement site.  All plumes were measured during the day, however, 

because some advection times are longer than one day, they will include periods of low 

photochemical activity.  Figure 4.7a shows a number of interesting features.  First, for 

this data set, ∆WSOC/∆CO ranged from approximately 3 to 32 µg C/m3/ppmv.  The 

observations that lowest ratios were generally observed in fresher plumes in measurement 

regions closer to the urban center, and that these ratios tended to approach zero, suggest 

that much of the WSOC is a secondary product from compounds co-emitted with CO 

(e.g., vehicles).  Results from other experiments involving measurements next to 

highways (i.e., source) also indicate that this ratio should approach zero.  In a more recent 

study, which will be discussed in more detail in chapter 7, WSOC measured within ~1 m 

of a major expressway was found to be similar to that of the background air, leading to a 

∆WSOC of approximately zero.  Moreover, ∆OC/∆CO measured in the Caldecott Tunnel 

was also approximately zero, due to extremely high CO concentrations relative to 

primary OC [Kirchstetter et al., 1999].  In contrast to the fresh plumes, Figure 4.7a shows 

that in the more aged and distant plumes from the city, after approximately one day of 

advection time, ∆WSOC/∆CO appears to level out approaching a constant value of about 

32 µg C/m3/ppmv, possibly due to a depletion of SOA precursors.  As an interesting 

contrast to the WSOC behavior, fine particle sulfate (SO4
-2) continued to increase in these 

regions.  For example, plumes 0721A and 0721B also contained significant  
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Figure 4.7.  Ratio of (a) ∆WSOC to ∆CO and (b) ∆Volume to ∆CO as a function of 
estimated advection time from the urban center to the measurement site for the plumes 
identified in Figure 4.5 and Table 4.3.  The advection time was calculated from the 
NOAA ARL HYSPLIT Trajectory Model.  Based on the FLEXPART Model, two of 
the plumes (solid circles) were apparently influenced by Philadelphia whereas the other 
seven (open circles) were influenced primarily by New York City.  Uncertainties are 
the ± standard deviation of the ratios calculated from variability within the plume (y-
axis) and of the advection time calculated from variability in back trajectories 
calculated at the start, in the middle, and at the end of each of the nine plumes (x-axis).  
Included in (a) for comparison, is the ∆OC/∆CO ratio calculated as a function of 
photochemical age (solid line) during the NEAQS 2002 study from de Gouw et al. 
[2005] (note, units are the same as ∆WSOC/∆CO). 
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concentrations of sulfur dioxide (SO2) and sulfate aerosol.  For plumes 0721A and 

0721B, ∆SO4
-2/∆CO increased from 89 to 116 µg/m3/ppmv, respectively (assuming for 

this simple analysis that background sulfate is zero), whereas ∆WSOC/∆CO only 

increased from 29 to 32 µg C/m3/ppmv.  Thus unlike SOA formation, which rapidly 

depleted precursors, secondary formation of SO4
-2 could continue for long periods due to 

ample supply of the critical precursor, SO2. 

For comparison with a previous study in this region, Figure 4.7a also shows the 

∆OC to ∆CO ratio calculated as a function of photochemical age during the NEAQS 

2002 experiment [de Gouw et al., 2005].  (∆OC/∆CO was calculated from the data 

presented in Figure 14b of de Gouw et al. [2005] multiplied by the ratio of acetylene to 

CO to permit a direct comparison with the results from the above analysis.)  It is 

noteworthy that the results from the above analysis are consistent with those of de Gouw 

et al. [2005], which employed different measurement techniques and method of analysis.  

Note that a systematically larger ∆OC to ∆CO ratio compared to ∆WSOC/∆CO may be 

expected due to contributions from primary OC that are not included in the WSOC 

measurement. 

Formation of SOA should lead to increased aerosol volume.  Figure 4.7b shows 

the ∆Volume/∆CO for the same plumes in which ∆WSOC/∆CO was evaluated and 

volume data were available.  (A constant volume background of 7.15 µm3/cm3 was 

assumed and obtained from the background period identified in Figure 4.6b.)  The similar 

trends in ∆WSOC/∆CO and ∆Volume/∆CO in Figures 4.7a and 4.7b, especially the 

inflection point at about 25 to 30 hours advection time, suggest that the increase in 

WSOC with plume age was due to gas-to-particle conversion and not solely conversion 
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of primary OC to WSOC.  As previously discussed, the ∆SO4
-2/∆CO continued to 

increase with advection time, which would account for a continued increase in 

∆Volume/∆CO past 30 hours (note larger variability in ∆Volume/∆CO with plume age). 

 

4.4.  Summary 

Two main sources for WSOC were identified: biomass burning from long-range 

transport and emissions from populated regions.  Both sources were correlated with CO. 

Distinct biomass plumes were intercepted between 3 to 4 km altitude over eastern 

U.S. and Canada.  Back trajectory analysis indicates that all large biomass plumes 

encountered during the mission were from fires in the Alaska/Yukon region.  WSOC was 

highly correlated with CO and acetonitrile (R2 typically > 0.88), and the highest fine 

particle volume and WSOC concentrations were recorded in these plumes.  WSOC 

typically comprised from ~10 to 22% (µg C/m3)/(µm3/cm3) of the fine particle volume. 

For air masses not influenced by biomass burning, highest concentrations of 

WSOC were recorded at lower altitudes, generally below 1000 m, and typically ranged 

from 2 to 6 µg C/m3.  WSOC showed a rapid concentration decrease with increasing 

altitude over the entire measurement domain with concentrations typically less than 1 µg 

C/m3 above 3 km.  Highest WSOC concentrations were observed in distinct plumes 

emanating from urban centers.  In these plumes WSOC was highly correlated with CO 

with coefficients of correlation (R2) larger than 0.78.  Rural air masses had WSOC 

concentrations from the lower detection limit of ~0.1 to about 2 µg C/m3; significantly 

less than those measured in urban emissions.  In some cases inventories suggest 

significant biogenic emissions associated with these rural air masses. 
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Changes in ∆WSOC/∆CO as a function of plume transport time from urban 

centers showed that the ratio was generally lower (~ 3 µg C/m3/ppmv) for fresh plumes, 

increased with increasing plume age, and leveled off to about 32 µg C/m3/ppmv after 

approximately one day.  The data suggests that the WSOC associated with PM1 particles 

measured in this mission was likely produced from compounds co-emitted with CO, such 

as could be found in motor vehicle emissions, and that these emissions were rapidly 

converted to secondary aerosol particle products within approximately one day.  No 

evidence was found for a strong biogenic source for PM1 WSOC. 

Thus far, the results from both the ground-based and airborne measurements 

suggest WSOC can be produced by SOA.  The aircraft study also shows that biomass 

burning can be a source of WSOC.  Therefore, in the next two chapters to further 

investigate whether WSOC is produced by SOA, methods for chemically speciating 

WSOC are presented. 
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CHAPTER 5 
ISOLATION OF HYDROPHILIC AND HYDROPHOBIC FRACTIONS WITH A 

XAD-8 RESIN 
 
 
 

In this and the following chapter, methods for comprehensive speciation of 

WSOC are developed and presented.  These methods are used to investigate the major 

chemical components of urban WSOC. 

 

5.1.  XAD-8 Separation Method 

Group separation of WSOC can be performed by solid phase extraction (SPE) 

with direct TOC analysis, if no carbonaceous eluents are employed.  The SPE method 

employed here involves the partitioning of organic solutes from the polar mobile phase 

(i.e., aqueous sample with dissolved aerosol components) into a XAD-8 resin, the non-

polar solid phase.  This resin’s primary partitioning force is hydrophobic interactions.  

Therefore, the organic compounds retained are the most hydrophobic components of the 

ambient WSOC.  Organic compounds not retained and that penetrate the column are the 

more hydrophilic fraction.  XAD-8 resin is an uncharged but slightly polar resin 

comprised of polymerized methyl ester of polyacrylic acid.  It is used extensively by 

geochemists for extraction of humic substances from natural waters by separating 

inorganic substances from the humic material [Thurman and Malcolm, 1981]. 

For this application a 6 mm ID x 10 cm long glass column hand-packed with resin 

and fitted on each end with 25 µm polyethylene frits is used.  The column is prepared 

between sample runs via a 1 hour equilibrium period in which no eluent is run over the 

column, followed by 1 hour of 0.1 M NaOH (sodium hydroxide) and then 15 minutes of 
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0.1 M HCl (hydrochloric acid), both at a flowrate of 1.2 ml/min.  (When performing on-

line measurements, this regeneration cycle is typically performed after 3.5 hours of 

operation since under the current operating conditions the maximum sample volume that 

can be passed over the column before regeneration is necessary is 4 hours.)  A 10-port 

actuated valve in combination with syringe pumps performed this regeneration 

automatically. 

When the column is separating samples, a liquid sample is passed over the XAD-

8 at a flowrate of 1.2 ml/min.  Just prior to sample loading, the pH of the sample is 

adjusted to 2 by adding in 0.1 ml/min of 0.1 M HCl via a peristaltic pump.  This is done 

to neutralize most organic compounds so that they are not in their ionic form (i.e., not 

deprotonated) and able to interact with the neutral XAD-8 resin.  The result is that 

hydrophobic acid and “neutral” compounds are adsorbed to the resin, whereas 

hydrophobic bases are not.  Adsorbed compounds are referred to as the hydrophobic 

fraction.  On the other hand, the compounds that penetrate (or elute from) the XAD-8 

column and are measured directly with the TOC analyzer are composed of hydrophobic 

bases and all hydrophilic compounds (acids, bases, and neutrals).  Here, these compounds 

are referred to as the hydrophilic fraction.  (Note that experiments to further speciate 

these fractions, which will be discussed in chapter 6, show that the contribution of 

organic bases to the hydrophilic fraction is typically very small (<1%), thus hydrophobic 

bases have little influence on the hydrophilic fraction.) 

Some of the hydrophobic components retained on the XAD-8 resin can 

additionally be extracted by passing a pH 13 eluent of 0.1 M NaOH over the column at 

1.2 ml/min for 15 minutes.  Practically all compounds that are desorbed are recovered in 



 53

the first 5 minutes of the extraction procedure.  Some fraction of the hydrophobic 

material remains adsorbed to the resin and cannot be recovered by this method.  

Experiments show that for this particular column (6 mm ID x 10 cm long glass column) 

at least 25 µg C must be loaded onto the column in order to achieve near 100% recovery 

with pH 13 eluent.  Backflushing the column did not improve or change the recovery and 

therefore was not employed. 

To characterize the performance of the XAD-8 resin, penetration and recovery 

tests were performed with a variety of different water-soluble organic compounds 

relevant to atmospheric aerosols.  Table 5.1 summarizes these results.  Three sets of 

chemical groups are separated by this method.  They include hydrophilic compounds in 

the WSOC that pass through the column at pH 2 (WSOCxp), recovered hydrophobic 

compounds, which are compounds that are retained on the column at pH 2 and 

subsequently recovered with pH 13 eluent (WSOCxrr), and unrecovered hydrophobic 

compounds, compounds that are retained on the column at pH 2 but not recovered with 

high efficiency with pH 13 eluent (WSOCxru).  In general the hydrophobic compounds 

were less soluble than the hydrophilic compounds, which often instantaneously dissolved 

in water. 

These experiments showed that for the series of mono- and dicarboxylic acids and 

carbonyls, the transition from hydrophilic to hydrophobic occurs for compounds with 

approximately 4 to 5 carbons in the chain (see upper part of Table 5.1).  Based on our 

limited calibrations, also included in this hydrophilic group are oxocarboxylic acids, 

amines, polyols, and all saccharides.
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Table  5.1.  Results of the XAD-8 penetration and recovery tests for a variety of water-soluble organic compounds listed by 
functional groups, where WSOCxp=hydrophilic, WSOCxrr=hydrophobic recovered, and WSOCxru=hydrophobic unrecovered.  
Listed in parenthesis is the number of carbon atoms per molecule for the series of mono- and dicarboxylic acids and carbonyls.  
Fractions that were not measured are left blank. 

Functional 
Group 

Compound Initial 
Concentration 

(µg C/L) 

Penetration (%) Recovered 
in NaOH 
wash (%) 

Comment 

Monocarboxylic 
acid 

Formic Acid (1) 51, 100, 131 110, 117, 112  WSOCxp 

 Acetic Acid (2) 45, 55, 82, 84 102, 107, 116, 101  WSOCxp 
 Butyric acid (4) 70 0  WSOCxru 
 Caproic acid (6) 87 0 15 WSOCxru 
Dicarboxylic acid Oxalic Acid (2) 23, 105, 148, 149, 

150 
100, 102, 103, 98, 

100 
 WSOCxp 

 Malonic Acid (3) 58, 69, 76 114, 101, 104  WSOCxp 
 Succinic Acid (4) 29, 46 124, 102  WSOCxp 
 Maleic acid (4) 77 100  WSOCxp 
 Fumaric acid (4) 2120 0  WSOCxru 
 Glutaric acid (5) 87 0  WSOCxru 
 Adipic acid (6) 2220 0  WSOCxru 
 Pimelic acid (7) 88 0  WSOCxru 
 Azelaic acid (9) 80 0 21 WSOCxru 
Carbonyls Glyoxal (2) 98 100  WSOCxp 
 Methyl glyoxal (3) 74 100  WSOCxp 
 Propanal (3) 91 112  WSOCxp 
 Butanal (4) 58 0 16 WSOCxru 
Oxocarboxylic 
acid 

Glyoxylic acid 2055 102  WSOCxp 

Amines Ethanolamine 39, 41, 73, 79 133, 102, 100, 96  WSOCxp  
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Table 5.1.  Continued. 

Polyols 1,2-Ethanediol 40, 67 117, 108  WSOCxp 
Saccharides Levoglucosan 45, 86 101, 104  WSOCxp 
 Inositol 1860 103  WSOCxp 
 Sucrose 2070 100  WSOCxp 
Phenols Catechol 90 0 70 WSOCxrr 
 Vanillin 97 0 78 WSOCxrr 
 Syringaldehyde 91 0 66 WSOCxrr 
 Salicylic acid 2100 0  WSOCxrr 
 3-Hydroxybenzoic 

acid 
107 0 99 WSOCxrr 

Aromatic Acids Benzoic acid 1540, 2000 0, 0 80 WSOCxrr 
 Phthalic acid 1960 0 87 WSOCxrr 
Cyclic Acids Pinic acid 1960 0 25 WSOCxru 
 cis-Pinonic acid 1980 0 20 WSOCxru 
Humic-Like Suwannee River 

Fulvic 
99,176,220,1577 0, 0, 0, 0 93 WSOCxrr 

 Suwannee River 
Humic 

45, 95, 208, 235, 
1477 

0, 0, 0, 0, 
0 

88 WSOCxrr 

Organic Nitrates Isobutyl nitrate 980 0 10 WSOCxru 
 Isopropyl nitrate 1270 0 8 WSOCxru  
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The lower part of Table 5.1 shows organic functional groups that are water-

soluble but were completely retained at pH 2 (hydrophobic).  Some functional groups are 

subsequently recovered in the pH 13 eluent and some not.  Approximately 80% of the 

phenolic compounds could be recovered, 85% of the aromatic acids, and 90% of the 

humic substances.  These recovered hydrophobic compounds are identified as WSOCxrr 

in Table 5.1.   Unrecovered hydrophobic compounds, identified as WSOCxru in Table 

5.1, include mono- and dicarboxylic acids and carbonyls with greater than ~3 to 4 

carbons, organic nitrates, and cyclic acids, since only approximately 20% or less could be 

recovered in the pH 13 eluent.  It must be kept in mind that these calibration results 

should only be viewed as a guide to the types of compounds in the ambient aerosol that 

will be separated into these three fractions, since much of the WSOC in organic aerosols 

remains unidentified. 

The results of these experiments suggest that all aromatic-containing compounds 

are in the WSOCxrr fraction.  This is consistent with results obtained from solid-state 

13C-NMR (13Carbon-Nuclear Magnetic Resonance) performed on ambient aerosol total 

WSOC, WSOCxp, and WSOCxrr fractions obtained from integrated filter samples.  

Aromatic carbon was only identified in the WSOC and WSOCxrr fraction, whereas the 

WSOCxp fraction showed no evidence for aromatic carbon peaks [Sannigrahi et al., 

2006].  The ambient WSOCxrr fraction may, however, contain other aromatic-like 

compounds with similar properties as determined by the interactions with XAD-8 resin.  

More discussion on the comparisons with 13C-NMR can be found in section 6.2.3. 

The uncertainty for the reported WSOCxp and WSOCxrr fractions is estimated at 

± 10%, obtained by calculating the propagation of all known quantifiable errors.  
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Interestingly for on-line XAD-8 measurements (as will be discussed below), this is 

similar to what was reported for the uncertainty in the WSOC measurements from the 

PILS-TOC.  The additional flowrate of sample over the column and sample dilution 

volume cause minimal effects because of the high precision syringe pumps employed. 

 

5.2.  WSOC Speciation Results from Urban Sites 

The on-line PILS-TOC system previously discussed in chapter 2 was coupled to a 

XAD-8 column.  Therefore, WSOC and the WSOCxp could be sequentially measured by 

either passing the PILS liquid sample containing the dissolved carbonaceous material 

directly to the TOC or first through the XAD-8 column to strip out the hydrophobic 

fraction (WSOCxr).  A valve was programmed to switch between these measurements to 

give 4 complete cycles per day, where a cycle was 2.5 hours of WSOC measurements 

followed by 3.5 hours of column measurements.  During WSOC measurements, the 

XAD-8 column was regenerated.  For this system, blank measurements were performed 

for 30 minutes every 3 hours so two background measurements would be made per cycle, 

one for WSOC and one for WSOCxp.  A schematic of the modified system can be seen in 

Figure 5.1. 

For a period in the summer of 2004, dual PILS-TOC systems were operated in 

parallel, one dedicated to measurement of WSOC (no XAD-8 column), the other 

measuring WSOCxp (XAD-8 column in-line).  In the following analysis, for both set-

ups, the XAD-8 column was not recovered (i.e., no data obtained for WSOCxrr and 

WSOCxru) because the loaded concentrations were insufficient for efficient recovery  
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Figure 5.1.  Schematic of the PILS-TOC system coupled with a XAD-8 resin column for 
sequential on-line WSOC and WSOCxp measurements.  Dynamic blanks are performed 
every three hours for one-half hour via a programmed actuated valve that directs sample 
air through a Teflon filter prior to sampling.  Liquid containing the ambient aerosol is 
pumped through a 0.22 µm liquid filter and then can either be measured directly by the 
TOC analyzer for a measurement of WSOC or first conducted through the XAD-8 resin 
column for a measurement of the WSOCxp fraction. 
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(see XAD-8 Separation Method above).  Therefore, reported here are the measured 

WSOC, WSOCxp, and the difference in WSOC and WSOCxp to calculate WSOCxr.  

(Note, the equations used to calculate these concentrations can be found in Appendix 

A.1.)  However, results from integrated filter samples where the WSOCxr fraction is 

further divided into WSOCxrr and WSOCxru will be presented in chapter 6. 

Measurements were made during March 2004 at the St. Louis – Midwest 

Supersite and then the instrumentation moved to the Environmental Science and 

Technology Building rooftop laboratory at the Georgia Institute of Technology located in 

metro Atlanta, where it was operated April through September 2004.  Measurements 

from both cities have been included to provide a greater seasonal contrast; from 

beginning of March to mid-September.  As previously discussed in section 3.1, in St. 

Louis hourly-integrated PM2.5 OC was measured using a field Sunset Labs ECOC 

analyzer.  In Atlanta, this instrument was also used.  The set-up was similar with the 

exception that 45 minute integrated OC was determined starting at the beginning of every 

hour. 

A comparison of the OC, WSOC, WSOCxp, and WSOCxr is made for four 

periods in these urban environments: winter, a winter event, summer, and a summer 

event.  Both the winter and summer events were chosen based on the presence of 

stationary high-pressure systems residing over the urban regions, making them times 

when local emissions likely play a larger role in the measured aerosols compared to other 

periods.  These events also provide a contrast to the average conditions during each 

season.  This is especially true for the summer event.  Although Atlanta’s summer of 

2004 was atypically clean, from about July 19 to 24 a persistent stagnation condition 
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existed resulting in a buildup of ozone and PM2.5.  Peak PM2.5 levels reached 

concentrations of 50-60 µg/m3 in early morning hours, at least twice that measured for 

most of the summer.  As shown in Table 5.2, during this period the highest PM2.5, ozone, 

and temperature were recorded for the entire summer. 

The discussion is based on the following analysis.  Time series showing diurnal 

variability of the organic aerosol and isolated fractions are shown in Figure 5.2.  Pie 

charts of the WSOCxp, WSOCxr, and water-insoluble fractions of OC (WIOC) based on 

means for each period are provided in Figure 5.3, and more details of these statistical 

results, based on the medians for these periods, are given in Table 5.3.  Scatter plots with 

linear regression fits for data collected during these periods are shown in Figure 5.4.  

Note that in all cases these results are based on measurements of OC, WSOC, and 

WSOCxp.  Calculated values include: WSOCxr = WSOC – WSOCxp and WIOC = OC – 

WSOC.  Also, for the measurements from a single PILS-TOC, WSOC data were linearly 

interpolated since in this case the WSOC and WSOCxp measurements were made 

sequentially, not simultaneously. 

The time series plots of Figure 5.2 show clear differences between winter and 

summer diurnal profiles in OC, WSOC, and WSOCxp.  In winter, a prominent feature is 

the nighttime OC peaks, likely a result of reduced dispersion of emissions due to shallow 

nocturnal wintertime boundary layers.  These nocturnal OC peaks often occurred near 

midnight (Figure 5.2a).  In the typical summer period of 2004 (Figure 5.2b) much of this 

structure is less distinct, but it is clearly visible again in Figure 5.2c.  In this summer 

event the OC peaks alternatively tend to occur early in the morning, coinciding with rush- 
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Table 5.2.  Comparison between typical Atlanta summer 2004 and summer 2004 poor air quality event due to a stationary high-
pressure system.  The table contains the mean with ± standard deviation (as a measure of the variability), and in parenthesis the peak 
value measured during the time period.  All ratios are based on carbon mass. 

 OC 

(µg C/m3) 

WSOC 

(µg C/m3) OC
WSOC PM2.5 

(µg/m3) 

Ozone*  

(ppbv) 

Temperature  

(oC) 

Typical 
Summer 

June 13-
27 

3.22±1.12 

 

(8.23) 

1.98±1.00 

 

(6.52) 

0.60±0.13 

 

(0.89) 

12.54±6.30 

 

(31.71) 

22.4±18.4

 

(75) 

 

25.6±4.0 

 

(32.9) 

Summer 
Event 

July 19-
24 

6.78±2.41 

 

(11.71) 

4.76±1.97 

 

(9.30) 

0.74±0.08 

 

(0.91) 

34.35±14.88 

 

(65.20) 

35.1±38.0

 

(136) 

28.9±5.2 

 

(39.8) 

*Ozone data is from a Georgia EPA site in South DeKalb in Atlanta, approximately 20 km southeast 
of the aerosol measurements. 
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Figure 5.2.  Time series of the OC, WSOC, and WSOCxp for (a) typical winter in St. 
Louis (March 6-18) and a winter event (March 19-24), (b) typical summer in Atlanta, 
and (c) a summer event in Atlanta.  The WSOCxr is equal to the shaded area bounded 
by the WSOC and WSOCxp (i.e., WSOCxr = WSOC - WSOCxp). 
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hour traffic.  (Note, OC peaks are generally only associated with morning rush hour since 

this occurs before the boundary layer breaks-up and mixing occurs.) 

The WSOC to OC ratio (based on carbon mass) is generally lower in the winter 

than summer, but the more averaged data tends not to deviate too significantly from a 

50:50 split.  In March the medians and standard deviation of the WSOC to OC ratio was 

0.56 ± 0.18 compared to June values of 0.58 ± 0.14.  The mean winter and summer 

WSOC to OC ratios were 0.51 and 0.61 respectively.  The nighttime values associated 

with the peaks in Figure 5.2a had somewhat lower WSOC to OC ratios, ranging from 

0.30 to 0.40 (0.60 to 0.70 WIOC/OC).  Although there was only a modest increase in 

WSOC/OC from March versus June 2004, for the winter and summer events a dramatic 

difference is seen in this ratio; in the winter event the mean WSOC to OC ratio was 0.36 

compared to 0.75 in the summer event. 

The winter WSOCxp and WSOCxr fractions were highly variable but on average 

about evenly split.  (See Table 5.3 for WSOCxp to WSOCxr ratios and the pie charts of 

Figure 5.3.  All ratios are based on carbon mass.)  However, during the winter event 

when WSOC/OC was lowest, the WSOCxr fraction was nearly twice the WSOCxp 

fraction (Figure 5.3b).  In the summer as WSOC/OC increased, the WSOCxp fraction 

becomes the more dominant component and a larger fraction of the fine particle OC.  As 

shown in Figure 5.3d, this trend continued into the summer event when the WSOCxp 

fraction was nearly twice the WSOCxr fraction and comprised nearly 50% of the OC.  

These observations are likely due to the fact, as the calibrations also suggest, the 

WSOCxp fraction contains the small-chain species that are more likely produced via 

SOA, a process that is more important during the summer.  More insights into these  
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Table 5.3.  Comparisons of median ratios with the ± standard deviation for typical 
winter 2004 in St. Louis, winter event in St. Louis, typical summer 2004 in Atlanta, and 
summer event in Atlanta.  All ratios are based on carbon mass. 

Event 

OC
WSOC

 
WSOC

WSOCxp
 WSOC

WSOCxr
 WSOCxr

WSOCxp
 

Typical Winter 
March 6-18 

0.56±0.18 0.49±0.13 0.51±0.13 0.98±0.67 

Winter Event 
March 19-24 

0.36±0.11 0.32±0.21 0.68±0.21 0.47±1.41 

Typical Summer 
June 13-27 

0.58±0.14 0.61±0.13 0.39±0.13 1.53±1.37 

Summer Event 
July 19-24 

0.75±0.08 0.65±0.08 0.35±0.08 1.83±0.65 
 

 

 

 

observations will be provided in chapter 6.  An interesting observation seen in Figure 5.3 

is that for this data, the mean WSOCxr fractions of OC were similar in all four cases 

studied, at approximately 25% of the OC. 

Scatter plots showing ambient concentrations and linear regressions for WSOC 

versus OC, and WSOCxp and WSOCxr versus WSOC are shown in Figure 5.4.  This 

linear regression analysis produces similar results to those discussed above based on 

means and medians.  The WSOC and OC are highly correlated for all four cases.  The 

lowest WSOC to OC slopes are associated with the winter event, and during this time the 

WSOCxr component dominated.  The WSOCxr fraction is also more highly correlated 

with WSOC than the WSOCxp fraction.  In contrast, during the summer event, the period 

of highest OC, WSOC, and WSOCxp concentrations, the WSOC to OC slope and 

fraction of WSOC that was WSOCxp were highest. 
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Figure 5.3.  Percentage in carbon mass each fraction contributes to total OC, based on 
means, for the four periods shown in Figure 5.2.  WIOC=water-insoluble OC (i.e. 
WIOC = OC – WSOC and WSOC is the sum of WSOCxp and WSOCxr). 
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Figure 5.4.  WSOC versus OC concentrations, and WSOCxp and WSOCxr fractions 
versus WSOC concentrations, for the four periods shown in Figure 5.2. 
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The seasonal progression in the changing dominance of the WSOCxr to WSOCxp 

fraction from late winter through summer and into early fall, using combined St. Louis 

and Atlanta data, is shown in Figure 5.5.  The short periods analyzed and discussed above 

fit with the general seasonal trend observed in this figure.  The WSOCxr fraction 

dominated in the winter, but starting roughly in April, the WSOCxp fraction increased 

relative to the WSOCxr fraction.  The fractions were in equal proportions sometime in 

May, and then the WSOCxp fraction dominated throughout the summer.  In late August, 

the WSOCxp fraction began to steadily decrease relative to the WSOCxr fraction and by 

September the fractions were back to 50:50 again.  Even though there is an apparent 
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Figure 5.5.  Seasonal trends in the WSOCxp and WSOCxr fractions based on carbon 
mass.  Data were grouped into 14 day periods and the ratio determined by linear 
regression with zero intercept.  All data are from urban Atlanta, except for the month of 
March, where measurements were made in St. Louis.  The time periods shown in 
Figure 5.2 correspond to 1=typical winter, 2=winter event, 3=typical summer, and 
4=summer event. 
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seasonality, no correlation with temperature for any of the fractions was observed.  The 

observed seasonal trends may depend largely on changes in the dominant sources for 

each season. 

Although the summer of 2004 in Atlanta was unusually clean with only 11 poor 

air quality days compared to typically 37 (summer averaged from 1987 to 2004), these 

data do provide evidence for a general shift in fine organic particle sources from winter to 

summer, and suggest that processes, such as SOA formation, which is likely more 

vigorous in the summer, produce significant levels of hydrophilic compounds that add 

substantially to the fine particle fraction of the organic aerosol.  Because semi-volatile 

SOA compounds may not be efficiently measured with this approach (as previously 

mentioned this has not been tested), and they are likely to be small hydrophilic species, 

the WSOCxp fraction of OC may be even more significant during periods of active SOA 

production.  In chapter 6, further chemical speciation of the WSOCxp and WSOCxr 

fractions provides insights into the sources of these compounds, including a more 

thorough discussion on SOA reactions and their likely products. 

 

5.3.  Summary 

Aqueous extracts of the water-soluble organic fraction of atmospheric aerosols 

can be isolated into WSOCxp and WSOCxr fractions by XAD-8 resin.  Because no 

organic eluents are employed, carbon mass can be quantified directly with a Total 

Organic Carbon analyzer, without intermediate isolation steps, and can be performed on-

line with systems that collect particles into water, such as the PILS-TOC. 
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Laboratory calibrations suggest that WSOCxp is composed of compounds that 

include saccharides and amines as well as carbonyls and aliphatic mono-/dicarboxylic 

acids with less than 4 or 5 carbons.  WSOCxr compounds are composed of aromatic acids 

and phenols, as well as organic nitrates, cyclic acids, and carbonyls and mono-

/dicarboxylic acids with greater than 3 or 4 carbons.  However, only aromatic compounds 

(or aromatic-like compounds with similar properties) can be extracted from the XAD-8 

with high efficiency in the pH 13 eluent (WSOCxrr).  For the most part, the remaining 

compounds (WSOCxru; organic nitrates, cyclic acids, and carbonyls and mono-

/dicarboxylic acids with greater than 3 or 4 carbons) are not recovered.  This method 

allows for a comprehensive and quantitative separation of the organic aerosol into distinct 

fractions from which a range of atmospherically relevant properties could be gained by 

applying additional analytical techniques. 

Urban measurements showed both diurnal and seasonal changes in the WSOC 

and WSOCxp fractions of OC (on a carbon mass basis) between winter and summer.  

Overall, there is a general progression of increasing ratios of WSOC to OC and WSOCxp 

to OC from winter to summer, with highest ratios observed during a summer stagnation 

event.  Mean ratios of WSOC to OC in winter versus a summer PM event were 0.36 and 

0.75, respectively, and mean WSOCxp/OC for these two periods were 0.13 and 0.47.  

However, the WSOCxr fraction showed only a slight increase from 0.23 in winter to 0.28 

during the summer event.  It follows that the sources for the WSOC fraction of OC, and 

especially the WSOCxp fraction of OC, are strongest in the summer and a large 

contributor to the OC during pollution in urban Atlanta PM events.  One possible 

explanation is SOA production, either from biogenic or anthropogenic emissions, or both.  
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This seems possible since, as the data and chapter 1 alluded to, SOA reactions often 

produce water-soluble organic compounds that are small-chains and based on the XAD-8 

calibrations are part of the WSOCxp group. 

This XAD-8 technique alone, however, cannot determine which groups of 

compounds that comprise the hydrophilic and hydrophobic WSOC fractions are 

responsible for the observed trends.  In the next chapter, a method to further group 

speciate the hydrophilic and hydrophobic WSOC fractions using size-exclusion 

chromatography is presented. 
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CHAPTER 6 
ISOLATION OF ACID, NEUTRAL, AND BASIC FRACTIONS BY MODIFIED 

SIZE-EXCLUSION CHROMATOGRAPHY 
 
 
 

To further investigate the chemical nature and possible sources of WSOC, the 

hydrophilic and hydrophobic fractions of WSOC isolated with XAD-8 resin are each 

further divided into acid, neutral, and basic groups.  The approach involves a newly 

developed method based on size-exclusion chromatography. 

 

6.1.  METHODS 

6.1.1.  Particulate Collection 

A Thermo Anderson Hi-Volume Air Sampler was used to collect ambient 

particles on quartz filters for off-line analysis.  Twenty-four hour integrated samples 

starting at midnight were collected during the summer (June and August 2004) and 

winter (December 2004 through February 2005) in Atlanta, GA.  Samplers were located 

approximately 25 m above ground level on the rooftop of the Environmental Science and 

Technology Building on the Georgia Institute of Technology campus.  Situated in the 

center of urban Atlanta, the site is heavily impacted by light-duty vehicle emissions due 

to close proximity (~400 m) to a major transportation corridor through the city center that 

prohibits most diesel-truck traffic.  Two hour integrated samples were also collected 

directly within regions of prescribed burning conducted in Georgia at Fort Gordon and 

Fort Benning during April 2004.  Shorter integration times were used for these samples 

due to much higher OC content. 
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The Hi-Volume sampler draws ambient air at nominally 1.13 m3/min through a 

two-filter assembly to isolate and collect size fractions of the ambient aerosol.  An 

impactor in combination with a slit filter collects PM10 particles, followed by a 20.3 cm x 

25.4 cm filter to collect the PM2.5.  The quartz filters were wrapped in aluminum foil and 

pre-baked in an oven where the temperature was ramped up to 550oC over a 12 hour 

cycle and then cooled naturally for an additional 24 hours to prevent the filters from 

absorbing water vapor.  These pre-baked filters were stored in plastic bags in a sealed box 

until loaded into the filter holder.  The filter holder was cleaned with isopropanol before 

filter loading.  Only the PM2.5 filter was analyzed.  One quarter of the PM2.5 filter was 

extracted in 125 ml of DI Water in a Nalgene Amber HDPE bottle, sonicated with heat 

[Baumann et al., 2003] for 1.25 hours, and then filtered using a 0.45 µm PTFE syringe 

filter to remove any quartz filter fibers.  Similar to the on-line system described in chapter 

5, the liquid extracts were passed through a 0.22 µm pore liquid filter as part of the 

analysis procedure to remove insoluble particles. 

Hi-Volume samples are not denuded making them susceptible to positive artifacts 

from organic vapor absorption to the collected aerosol particles and quartz filter fibers.  

Comparisons to denuded on-line measurements may provide some measure of the extent 

of this artifact.  Figure 6.1 compares the summertime OC and WSOC from the Hi-

Volume filter samples to the co-located on-line denuded measurements of OC and 

WSOC presented in chapter 5.  Observed differences in OC and WSOC between these 

methods can be due to a host of variables including particle losses in sampling trains, 

sample flowrates, PM2.5 cut sizes, and positive/negative artifacts.  Figure 6.1 shows that 

based on linear regression slopes forced through zero, the Hi-Volume samplers are  
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Figure 6.1.  Comparison between the undenuded Hi-Volume 24 hour integrated filter 
measurement of OC and WSOC to denuded on-line systems using similar analysis and 
detection schemes.  The 1 hour OC and 6 minute WSOC measurements were averaged 
over the Hi-Volume sampling period for the comparison.  Only summertime data is 
plotted.  Zero-intercept linear regression slopes are shown. 
 

 

 

generally higher than the on-line measurements and largest discrepancies are for the OC.  

On-line measurements were not performed during the winter sampling and so no 

assessment can be made of possible sampling artifacts during this time.  In this analysis, 

all comparisons between WSOC and its fractions with OC are made using the Hi-Volume 

measurements. 

In addition to positive artifacts, semi-volatile organic compounds associated with 

aerosol particles may be lost from the Hi-Volume filter samples during the 24 hour 

integration period.  These types of compounds are likely not measured efficiently with 

this method. 
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Possible interferences from blanks were assessed by measurement of pre-baked 

quartz filters set-aside during the sampling periods (i.e., field blanks).  The blank OC 

measurements averaged 0.20 µg C/cm2 for a filter punch, which translates to 0.05 µg 

C/m3 ambient concentration.  For the WSOC, filter background effects and background 

interferences from carbonaceous material in the purified water were insignificant 

compared to the concentrations of the aerosol analyzed and did not need to be considered. 

 

6.1.2.  Size-Exclusion Chromatography 

SEC is traditionally used to measure the molecular size distribution of organic 

compounds and has recently been applied to organic aerosols [Krivácsy et al., 2000; 

Andracchio et al., 2002].  The approach is based on the use of a stationary phase 

consisting of porous particles.  Molecules in the aqueous liquid sample that are smaller 

than the pore’s size can enter the pores between particles and therefore have a longer path 

and transit time through the column than larger molecules that cannot enter the pores.  In 

theory larger molecules are retained the least and will elute before smaller molecules, but 

in practice retention time also depends on hydrophobic and electrostatic interactions 

between the analytes and the stationary phase [Krivácsy et al., 2000 and references 

within]. 

SEC is often employed to determine the molecular weight of humic substances in 

natural organic matter (NOM).  In this application a solution of strong ionic strength is 

necessary to reduce interactions between the column and NOM [Her et al., 2002b].  

Direct application of this method to aerosol particle WSOC, however, was found to 

produce large dips in the SEC chromatograms, apparently from salting out effects from 
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the ionic strength adjustment.  By not adjusting the solution ionic strength to minimize 

electrostatic interactions, it was found that the SEC provides a useful means of separating 

WSOC components by functional group.  Previous studies have recognized that SEC 

does separate organic carbon functional groups [Andracchio et al., 2002]. 

Low pressure SEC was performed with a 1 cm ID x 30 cm length glass column 

hand-packed with SuperdexTM-30 resin (Amersham Pharmacia Biotech, Stockholm, 

Sweden).  This resin has a slightly cationic property.  The eluent used was a phosphate 

buffer with pH 6.8.  Phosphate buffer was chosen because it has been used by other 

groups [e.g., Her et al., 2002a] who previously worked with this resin for analysis of 

NOM.  Since this method worked with the TOC detector, due to the phosphate buffer 

being an inorganic eluent, and did not seem to cause artifacts, no other eluents were 

tested.  However, it is noted that once phosphate is introduced into a sample it is very 

hard to remove. 

A sample volume of 1 ml from the extracted Hi-Volume filter (i.e., for SEC on 

total WSOC) or XAD-8 isolated fractions was injected onto the column by the eluent at a 

flowrate of 1.3 ml/min.  Each elution took approximately 1 hour to ensure the sample had 

passed through the entire column volume, however, as will be seen in the chromatograms 

only ~25 minutes are required for the separations.  The TOC analyzer in Turbo mode, 

with a flowrate of 1.2 ml/min, was used as the detector to quantify the separated WSOC 

compounds on-line.  It was found that a minimum analyte concentration of approximately 

2 ppm C (2 µg C) was needed for this SEC analysis.  The column was cleaned 

periodically with 0.1 M HCl, then 0.1 M NaOH, and lastly DI Water, each for 1 hour at a 
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flowrate of 1.3 ml/min to remove organics that were non-elutable in the phosphate eluent 

and had adsorbed to the resin. 

The SEC column was calibrated using the same group of water-soluble organic 

compounds tested on the XAD-8 column (see section 5.1).  SEC recovery efficiencies are 

given in Table 6.1.  The results show that practically all compounds tested are recovered 

with ~85% efficiency within the column volume (50 minutes after injection).  

Syringaldehyde and catechol were not recovered within the column volume (eluted 54 

and 64 minutes after the injection respectively), apparently because they do not ionize in 

the buffered aqueous sample.  Saccharides are also non-ionizable, however, they have 

small octanol-water partitioning constants (log Kow) unlike syringaldehyde and catechol.  

The larger the log Kow value the less soluble in water the compound and the more likely 

the compound will have hydrophobic interactions with the SEC resin causing longer 

retention times.  Other non-ionizable compounds with large log Kow values may also not 

elute within the column volume for similar reasons. 

Chromatographic separations of the various calibration compounds are shown in 

Figure 6.2.  For the most part, individual chromatograms show compounds for a given 

functional group.  These experiments indicate that SEC separates compounds by 

functional group, and that within most groups, higher molecular weight compounds elute 

first, due to size-exclusion processes within the column.  For this application, the interest 

is in the SEC column’s ability to isolate by functional groups the compounds within the 

hydrophilic and hydrophobic fractions recovered from the XAD-8 resin.  For example, 

within the WSOCxp fraction, aliphatic mono-, di-, and oxocarboxylic acids eluted 

between 25 to approximately 32 minutes (WSOCxp_a, Figure 6.2a), then neutral 
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Table 6.1.  SEC recovery efficiencies for various calibration water-soluble organic 
compounds listed by functional groups, where WSOCxp=hydrophilic, 
WSOCxrr=hydrophobic recovered, and WSOCxru=hydrophobic unrecovered.  Mean 
and standard deviation are listed at the bottom of the table for these three classes. 

Functional Group Compound [SEC calc] 
(ppb C) 

[Measured] 
(ppb C) 

% 
Recovery 

Comment 

Monocarboxylic 
acid 

 
Formic acid 

 
1659 

 
1573 

 
105 

 
WSOCxp 

 Acetic acid 1364 1467 93 WSOCxp 
 Butyric acid 1488 1823 82 WSOCxru
 Caproic acid 1581 1750 90 WSOCxru
Dicarboxylic 
acid 

 
Oxalic Acid 

 
1803 

 
2175 

 
83 

 
WSOCxp 

 Malonic acid 1553 2030 77 WSOCxp 
 Succinic acid 1308 1790 73 WSOCxp 
 Glutaric acid 1770 1785 99 WSOCxru
 Azelaic acid 1356 1690 80 WSOCxru
Carbonyls Glyoxal 1716 2183 79 WSOCxp 
 Propanal 1227 1540 80 WSOCxp 
 Butanal 1322 1520 87 WSOCxru
Oxocarboxylic 
acid 

Glyoxylic acid 1495 2000 75 WSOCxp 

Amines Ethanolamine 1689 1620 104 WSOCxp 
Saccharides Levoglucosan 1512 1883 80 WSOCxp 
 Inositol 1520 1810 84 WSOCxp 
 Sucrose 1580 2030 78 WSOCxp 
Phenols Catechol* 1376 1930 71 WSOCxrr 
 Salicylic Acid 1382 2000 69 WSOCxrr 
 3-

Hydroxybenzoic 
acid 

1317 1670 79 WSOCxrr 

Aromatic Acids Benzoic Acid 1545 1970 78 WSOCxrr 
 Phthalic acid 1670 1975 85 WSOCxrr 
Cyclic Acids Pinic Acid 1736 1955 89 WSOCxru
Organic 
Nitrates 

Isopropyl 
nitrate 

262 294 89 WSOCxru

  Mean ± standard 
deviation 

84 ± 11 
78 ± 7 
88 ± 6 

WSOCxp 
WSOCxrr 
WSOCxru

*Catechol does not elute within the column volume. 
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Figure 6.2.  Normalized SEC chromatograms from calibrations with (a) hydrophilic 
acids (WSOCxp_a), (b) hydrophilic neutrals (WSOCxp_n) and bases (WSOCxp_b), 
(c) recovered hydrophobic acids (WSOCxrr_a), (d) recovered hydrophobic neutrals 
(WSOCxrr_n), and (e) unrecovered hydrophobic (WSOCxru) water-soluble organic 
compounds, where Tr is the retention time.  Recoveries of these various compounds 
are given in Table 6.1.  Listed in parenthesis is the number of carbon atoms per 
molecule for the series of mono- and dicarboxylic acids and carbonyls.  The black 
lines represent the retention times before or after each group elutes. 
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Figure 6.2.  Continued. 
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compounds such as saccharides and carbonyls elute from 32 to approximately 38 minutes 

(WSOCxp_n, Figure 6.2b).  Finally, between 38 to approximately 45 minutes the bases 

are eluted from the column (WSOCxp_b, Figure 6.2b).  The WSOCxrr fraction tends to 

split into acids such as aromatic acids (WSOCxrr_a, Figure 6.2c), which eluted before 

about 34 minutes, and neutral compounds such as phenols that came out after 34 minutes 

(WSOCxrr_n, Figure 6.2d).  For the WSOCxru fraction, compounds such as cyclic and 

mono- and dicarboxylic acids with greater than 3 or 4 carbons eluted before 

approximately 32 minutes (Figure 6.2e).  Unrecovered XAD-8 organic nitrates eluted 

between 38 to about 45 minutes (Figure 6.2e).  The separations are clearly not ideal since 

there is overlap between groups due to peak tailing.  This is not unusual for a hand-

packed column.  Significant improvements might be expected with commercially 

available high pressure SEC columns.  The hand-packed column, however, served the 

purpose for exploratory work to provide chemical insights into the WSOCxp and 

WSOCxrr fractions. 

The general trend for all functional groups tested is that more acidic compounds 

elute from the column first, basic compounds elute last, and more neutral compounds 

elute somewhere between these extremes.  This elution pattern can be largely explained 

by the sample buffering and charge interactions between the mobile and stationary 

phases.  Specht and Frimmel [2000] showed that the retention times of various organic 

compounds on SEC columns are effected by how the sample is buffered.  This method 

differs from traditional SEC methods in that the electrostatic interactions between the 

mobile and stationary phase are not suppressed.  At pH 6.8 most carboxylic groups carry 

a negative charge and therefore are subject to ion-exclusion interactions that reduce 
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retention times.  Molecules with several carboxylic acid groups enhance the ion-

exclusion interactions and result in even shorter retention times.  The calibrations show 

this trend for both the aliphatic and aromatic acids, where compounds with dicarboxylic 

acids come off the column before groups with monocarboxylic acid groups.  Amino 

groups are, however, positively charged and can undergo ion exchange reactions with the 

stationary phase, which increases retention times.  Neutral compounds in the mobile 

phase will not experience charge interactions with the stationary phase.  Therefore, acids 

elute first, bases last, and neutrals in the middle.  Hydroxyl groups are also known to 

increase the retention time and can enhance the attractive interactions of an aromatic ring 

[Specht and Frimmel, 2000], hence phenolic compounds elute after aromatic acids. 

It should be pointed out that although the molecular weight of the organic 

compounds found in the aerosol is a subject of much debate, it is likely that the 

compounds are all within the 10,000 Dalton molecular weight cutoff for this resin.  For 

example, Kiss et al. [2003] has provided experimental evidence that the molecular weight 

of HULIS, which is considered to be the high molecular weight component of organic 

aerosols, is between 200-300 Daltons.  Since the groupings discussed above are based 

only on atmospherically relevant compounds that calibration standards are available for 

and as previously mentioned size-exclusion properties are observed, it is possible that 

larger molecular weight compounds from one group could be eluting in the previous 

group.  However, there is confidence in these groupings since some of the largest 

molecular weight compounds in each group that have been observed in the atmosphere 

were tested. 
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A measure of the precision (reproducibility) for the SEC column was determined 

based on the standard deviation of the peak areas for multiple injections of the same 

ambient sample.  Repeating for each XAD-8 fraction, the standard deviations were 

±2.5%, ±5.8%, and ±8.1% for WSOC, WSOCxp, and WSOCxrr respectively.  During 

these injections, no shifts in the retention time were noted. 

 

6.1.3.  Measurement Approach 

A total of 21 summer, 10 winter, and 2 biomass burning integrated filter samples 

were analyzed.  A portion of each filter was extracted for the WSOC component.  A 

series of measurements were then performed on each aqueous sample.  In all cases, the 

WSOC content was measured directly by the TOC analyzer.  Following the method 

described in section 5.1, a XAD-8 resin column was used to isolate the WSOCxp 

(hydrophilic) and WSOCxrr (recovered hydrophobic) fractions.  The WSOCxru 

(unrecovered hydrophobic) fraction was determined by difference (= WSOC - WSOCxp - 

WSOCxrr).  The three samples, WSOC, WSOCxp, and WSOCxrr, were then each further 

analyzed by SEC with TOC detection.  The equations used to calculate these various 

concentrations can be found in section A.2 of Appendix A.  To help clarify the various 

functional groups delineated by the XAD-8 and then by SEC, Figure 6.3 shows a 

schematic of the break down of the various groups. 

 

6.1.4.  Measurements of OC, EC, and Light Organic Acids 

OC and EC concentrations for each Hi-Volume sample were determined on a 1.4 

cm2 filter punch using the bench top model of the Sunset Labs ECOC analyzer described  
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Figure 6.3.  Schematic diagram of the WSOC fractions isolated first by XAD-8 and 
then by SEC.  In the first step the XAD-8 is used to isolate WSOCxp from WSOCxr.  
Only a fraction of the WSOCxr compounds retained on the XAD-8 column can be 
recovered, and these are referred to as WSOCxrr.  Those not recovered are WSOCxru.  
Tables 5.1 and 6.1 summarize the types of compounds in WSOCxp, WSOCxrr, and 
WSOCxru based on single compound calibrations.  Fractions WSOCxp and WSOCxrr 
are then divided into functional groups by the SEC method.  Abbreviation definitions 
are listed in the List of Abbreviations. 

 

 

 

in section 3.1.  The instrument was operated following NIOSH Method 5040 [Eller and 

Cassinelli, 1996]. 

Concentrations of oxalate, formate, and acetate were also measured in the 

WSOCxp liquid extracts using a dual-channel Dionex DX-500 ion chromatograph with 

EG40 potassium hydroxide eluent generator and AG11-HC IonPac analytical column (2 
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GP50 gradient pump. 
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6.2.  Ambient Results 

6.2.1.  Analysis of OC, WSOC, and XAD-8 fractions WSOCxp  and WSOCxrr 

For the data used in the following SEC analysis, Figure 6.4 shows results of linear 

regressions between WSOC and OC, and between the hydrophilic and hydrophobic 

fractions and WSOC, for data segregated into summer and winter periods.  In both 

seasons the WSOC and OC are highly correlated, as are the WSOCxp, WSOCxr, and 

WSOCxrr fractions of WSOC.  The WSOC to OC ratio was higher in the summer (slope 

= 0.47) than in the winter (slope = 0.42), which was similar to observations for the on-

line data discussed in section 5.2.  In other studies [e.g., Zappoli et al., 1999] the 

difference in summer and winter WSOC to OC ratios are typically much larger than what 

was observed here.  Lower WSOC to OC ratios may be related to the unusually wet and 

clean conditions during the summer of 2004, which resulted in Atlanta having the fewest 

poor air quality days since 1998.  Also, as a southern city, winter/summer seasonal 

differences are likely to be less dramatic than urban areas located at higher latitudes. 

Along with the somewhat higher summer WSOC/OC, the summer hydrophilic 

(WSOCxp) fraction was greater than the hydrophobic fractions, whereas the opposite is 

observed in the winter.  The analysis of the hydrophobic compounds has been extended 

beyond that discussed in section 5.2 in that the WSOCxrr fraction is now included.  By 

comparing zero-intercept slopes, the average fractions of WSOCxp, WSOCxrr, and 

WSOCxru of the WSOC can be determined for summer and winter.  In summer these 

fractions of WSOC are: WSOCxp 61%, WSOCxrr 23%, and WSOCxru 16%.  For winter 

the fractions are: WSOCxp 46%, WSOCxrr 29%, and WSOCxru 25%.  The data are 

consistent with greater summertime oxidation processes leading to larger fractions of 
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Figure 6.4.  Correlations based on linear regressions forced through zero of WSOC 
versus OC for (a) summer and (c) winter, and WSOCxp, WSOCxr, and WSOCxrr 
versus WSOC for (b) summer and (d) winter.  All are based on 24 hour integrated filter 
measurements.  The slope uncertainty is one standard deviation. 
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WSOC.  The fact that WSOCxp increases in the summer suggests that more oxidation 

occurs.  All these fractions are based on 24 hour integrated filter measurements, which 

will tend to suppress larger variations due to any day/night differences.  Moreover, these 

are average conditions for the summer and winter periods investigated.  Differences in 

these ratios are much more dramatic under PM events (see section 5.2).  SEC is now 

applied to the WSOCxp and WSOCxrr fractions to investigate changes in functional 

group concentrations from winter to summer. 

 

6.2.2.  SEC of WSOC, WSOCxp, and WSOCxrr 

6.2.2.1  SEC Chromatograms of Ambient Samples 

SEC was performed on the XAD-8 fractions obtained from the Hi-Volume 

samples.  Figure 6.5 shows an example of the SEC data from a summer, winter, and a 

biomass burning filter sample.  The summer and winter WSOCxp chromatograms display 

three modes, whereas the WSOCxrr chromatograms have two modes.  Based on retention 

times of the ambient samples compared to calibration compounds shown in Figure 6.2, 

the modes that appear in the chromatograms can be related to various functional groups. 

Based on our limited calibrations, acids are found mainly to the left of the 32 

minute line, more neutral compounds to the right of 32 minutes, and basic compounds 

come out last.  Peaks for the acid and neutral compounds can be seen in each of the total 

WSOC chromatograms.  The calibrations suggest that for the WSOCxp fraction the peaks 

in order of increasing retention time are: short-chain aliphatic acids, neutrals (such as 

saccharides, short-chain carbonyls, and polyols), and finally a small peak from organic  
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Figure 6.5.  Examples of typical SEC chromatograms from a (a) summer (Atlanta 
August 29, 2004), (b) winter (Atlanta December 19, 2004), and (c) biomass burning 
sample (Fort Benning, Columbus, GA April 29, 2004). 

 



 88

bases.  In the WSOCxrr chromatogram the two peaks are not as well resolved.  The first 

peak is likely associated with acids and the second peak neutral compounds. 

It cannot be precluded that other unknown compounds are also associated with 

these various peaks since the ambient organic aerosol is highly chemically complex and 

calibrations were performed with only a limited number of compounds that must be 

viewed as at best, only representative of true ambient compounds.  However, the 

summer, winter, and biomass burning chromatograms are consistent with current views 

on aerosol sources.  Oxidation processes, either in the gas or aerosol phase, leads to 

formation of acidic aerosol particle compounds [Grosjean and Friedlander, 1980; 

Hatakeyama et al., 1985, 1987], and Figure 6.5 shows that WSOC acidic compounds 

(WSOC peak to the left of the 32 minute line) dominant in the summer sample compared 

to the winter sample (i.e., compare WSOC in Figures 6.5a and 6.5b).  In contrast, single 

component analysis has shown that biomass aerosol particles contain saccharides 

(WSOCxp_n) and phenolic compounds (WSOCxrr_n) and in Figure 6.5c the second 

WSOC peak (to the right of the 32 minute line) dominates, the region where these types 

of compounds elute.  The winter sample could be viewed as a combination of the summer 

and biomass in that the WSOC chromatogram’s two peaks were typically near the same 

height, possibly suggesting a larger contribution from more biomass-like components in 

the winter, but still contributions from sources (oxidation processes) that produce acidic 

compounds.  Note that for these data the winter concentrations are much lower than the 

summer values. 
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6.2.2.2.  Quantitative Determination of Functional Groups 

To calculate the carbon mass concentrations for the various organic functional 

groups isolated by SEC, chromatographic peaks that eluted first were fit with a Gaussian 

function using data from the leading edge to slightly following its maximum value.  The 

second peak was then taken as the difference in the ambient chromatogram and the 

Gaussian function.  Bases, if they existed, were subtracted from the second peak by 

fitting with a linear baseline.  Figures 6.6a and 6.6b show an example of this fitting for 

the WSOCxp and WSOCxrr fractions respectively. 

The calibration data show that for single components the chromatograms are not 

symmetrical but are skewed to higher retention times and known as a tailing Gaussian.  

Fitting with lognormal, Weibull, or inverse-normal distributions to better capture this 

asymmetry did not significantly improve the overall fit to the ambient chromatograms 

and were not employed for the sake of simplicity.  Algorithms, such as PEAKFIT (Jandel 

Scientific) can be used to deconvolute overlapped chromatographic peaks, but again were 

not employed for this initial analysis. 

It is noted that this approach will lead to a minor under estimation of compounds 

associated with the first peak (WSOCxp_a and WSOCxrr_a) and over estimation of 

compounds associated with the second peak (WSOCxp_n and WSOCxrr_n) due to the 

Gaussian fit to the asymmetrical actual tailing chromatograms.  Thus, these results should 

be treated as first order estimates. 
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Figure 6.6.  Example of fitting of (a) WSOCxp and (b) WSOCxrr, for the summer 
sample shown in Figure 6.5a, to obtain concentrations for the various functional 
groups.  WSOCxp_a and WSOCxrr_a in (a) and (b), respectively, are the Gaussian fits 
to the first peak.  The peak resulting from subtracting the Gaussian fit from the original 
chromatogram is also plotted.  The baseline for determining hydrophilic bases is also 
shown in (a). 
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6.2.2.3.  SEC Recoveries of Ambient Samples 

Ambient concentrations of WSOC and isolated fractions for the integrated filters 

analyzed are summarized in Table 6.2.  Also included in this table are the recoveries from 

the SEC analysis of ambient samples of WSOC, WSOCxp, and WSOCxrr.  (Note, the 

WSOCxrr data in Table 6.2 are corrected for an eluent artifact, which will be discussed in 

more detail below.)  Recoveries are calculated through a carbon mass balance by 

comparing the carbon mass concentration from the integral over the SEC chromatogram 

to the carbon mass concentration measured in the liquid sample applied to the SEC 

column.  Once corrected for an artifact, with the exception of the biomass burning and 

winter WSOCxrr samples, the WSOC, WSOCxp, and WSOCxrr fractions all had 

recoveries better than about 75%, similar to the results with the calibration standards (see 

Table 6.1).  The lower recovery for the biomass burning and winter WSOCxrr is likely 

due to significant concentrations of non-ionizable compounds, possibly all associated 

with biomass burning smoke.  For example, the calibrations showed compounds such as 

catechol, a known biomass burning product [Simoneit, 2002], did not elute in the column 

volume. 

 

6.2.2.4.  Eluent Artifacts 

Unlike the laboratory test with calibration compounds, the ambient WSOCxrr 

samples contained NaOH, the eluent used to recover hydrophobic compounds from the 

XAD-8 column.  For most of the ambient WSOCxrr samples, the SEC recovery was over 

100%.  For example, for WSOCxrr compounds the mean ± standard deviations for 

recoveries for summer, winter, and biomass burning samples were 131 ± 32%, 100 ± 
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Table 6.2.  SEC recovery efficiencies for the WSOC, WSOCxp, and WSOCxrr for all summer, winter, and biomass burning 
samples.  Upstream = concentration applied to the SEC column, SEC Integral = concentration determined from the integral over the 
chromatogram, Recovery = (SEC Integral)/Upstream 

Filter # WSOC 
Upstream 
(µg C/m3) 

WSOCxp 
Upstream 
(µg C/m3) 

WSOCxrr 
Upstream 
(µg C/m3) 

WSOC 
SEC 

Integral 
(µg C/m3) 

WSOCxp 
SEC 

Integral 
(µg C/m3) 

WSOCxrr 
SEC 

Integral 
(µg C/m3) 

% 
WSOC 

recovery 

% 
WSOCxp 
recovery 

% 
WSOCxrr 
recovery 

Summer          
F2 (6/11) 4.33 3.28 0.96 4.17 2.48 0.80 98 76 83 
F3 (6/13) 3.30 1.86 0.66 2.63 1.57 0.59 80 84 89 
F5 (6/17) 2.50 1.09 0.52 1.65 1.10 0.43 66 101 82 
F6 (6/19) 3.33 1.94 0.70 1.69 0.93 0.44 51 48 63 
F7 (6/21) 3.46 1.82 0.63 1.75 1.14 0.48 51 63 76 
F8 (6/23) 1.99 0.95 0.37 1.07 0.55 0.29 54 58 79 
F10 (6/27) 2.24 1.22 0.41 1.67 0.87 0.46 75 71 113 
F2B (8/8) 3.30 1.97 0.85 1.87 0.89 0.46 57 45 54 
F3B (8/10) 4.10 2.69 0.99 4.58 1.59 0.76 112 59 77 
F4B (8/12) 1.74 0.91 0.45 1.48 0.99 0.77 89 109 170 
F5B (8/14) 2.95 1.54 0.77 2.82 0.87 0.62 96 56 81 
F6A (8/15) 2.57 1.53 0.55 2.53 1.30 0.62 98 85 113 
F7B (8/16) 2.47 1.41 0.65 1.61 1.05 0.43 65 74 66 
F8B (8/17) 3.59 2.21 0.96 3.97 2.04 1.13 111 92 118 
F9B (8/19) 4.86 3.53 1.16 5.01 2.71 1.21 103 77 104 
F12B (8/23) 3.41 2.14 0.82 3.23 1.84 0.78 95 86 95 
F13B (8/25) 3.36 2.15 0.81 3.11 1.99 0.75 93 93 94 
F14B (8/27) 3.90 2.17 1.03 2.54 1.27 0.74 65 59 72 
F15B (8/29) 3.05 1.93 0.77 2.52 1.42 0.61 83 74 80 
F16B (8/31) 2.91 1.72 0.68 3.13 1.31 0.75 108 76 110 
F17B (9/2) 2.02 1.14 0.48 1.92 0.71 0.40 95 62 82 
    mean ± standard deviation 80±20 76±17 91±25  
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Table 6.2.  Continued. 

Winter          
F1BB (12/11) 0.70 0.35 0.25 0.73 0.31 0.15 104 89 59 
F2BB (12/19) 2.13 0.88 0.61 1.55 0.77 0.44 73 88 72 
F3BB (1/11) 2.95 1.61 0.78 2.52 1.47 0.91 85 91 117 
F4BB (1/13) 2.32 0.93 0.62 1.70 0.77 0.46 73 83 74 
F5BB (1/18) 1.86 0.67 0.53 1.01 0.50 0.31 54 75 58 
F6BB (1/20) 3.54 1.69 1.09 2.76 1.20 0.70 78 71 64 
F7BB (1/23) 1.08 0.52 0.34 1.14 0.39 0.20 106 75 58 
F8BB (1/25) 3.71 1.67 1.12 2.80 1.31 0.73 75 78 66 
F9BB (1/28) 1.67 0.71 0.48 1.31 0.54 0.32 78 76 67 
F10BB (2/2) 1.91 0.83 0.81 1.39 0.63 0.37 73 76 46 
    mean ± standard deviation 80±15 80±7 68±19 
Biomass  Burning         
GT14 (4/16) 1236 607 303 797 459 218 64 76 72 
GT46 (4/29) 938 471 248 593 426 152 63 90 61 
    mean ± standard deviation 64±1 83±10 67±6  
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23%, and 83 ± 6% respectively.  Subsequent experiments showed that the SEC recoveries 

higher than 100% were due to interference from the NaOH from the XAD-8 extraction 

procedure.  To correct for this artifact, experiments were performed in which single 

synthetic compounds were run through the complete extraction procedure (XAD-8 plus 

SEC).  Two recovered hydrophobic acids (benzoic and phthalic acid) and neutrals (3-

hydroxybenzoic and salicylic acid) were passed over the XAD-8 at various 

concentrations, recovered in NaOH eluent, and then injected onto the SEC column and 

the resulting chromatograms integrated.  The slopes of actual concentrations versus 

integrated SEC concentrations were 0.59, 0.76, 0.95, and 1.08 for phthalic, benzoic, 

salicylic, and 3-hydroxybenzoic acids, respectively, with all R2 values greater than 0.99.  

In this experimental data (as was also observed in the ambient data), the NaOH 

interference mainly affects the WSOCxrr_a region of the SEC chromatogram.  Based on 

these results, the integrated concentrations for WSOCxrr_a were multiplied by 0.59 and 

for the WSOCxrr_n by 0.95 (the lower of the two slopes from each group).  Clearly this 

eluent interference leads to most uncertainty in the WSOCxrr_a concentrations; estimated 

to be on the order of ± 20%.  However, these corrections seem valid since, as shown in 

Table 6.2, after the correction is applied the recoveries for summer samples of WSOC, 

WSOCxp, and WSOCxrr all are within similar values (WSOC 80%, WSOCxp 76%, and 

WSOCxrr 91%) and comparable to calibration results performed with no NaOH eluent 

(Table 6.1). 
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6.2.3.  Ancillary Measurements: Comparison of SEC and 13C-NMR 

Interpretation of the ambient SEC chromatograms based solely on the synthetic 

calibration standards could be misleading since actual compounds in the ambient WSOC 

aerosol remain largely unknown and the standards may not represent the real aerosol.  

However, ancillary measurements seem to support the calibrations. 

The WSOCxrr fraction was found to absorb visible light.  This indicates the 

presence of conjugated bonds (e.g., aromatic compounds).  Straight-chain compounds can 

also contain conjugated bonds, but would require there to be at least four carbons in the 

chain.  Based on the XAD-8 calibrations, both of these types of compounds were found 

to be hydrophobic. 

Tensiometer measurements, which determine the reduction of droplet surface 

tension as a function of solution carbon mass, showed that the recovered hydrophobic 

(WSOCxrr) fraction also exhibited surfactant properties.  In contrast, the hydrophilic 

(WSOCxp) fraction did not demonstrate either of these properties.  It has been shown that 

long-chain (> C5), nonpolar groups attached to polar tails (e.g. carboxylic acids and 

carbonyls) can have surfactant properties and form a surface film on droplets by lining up 

with the polar ends in the water and nonpolar, hydrophobic ends projecting into the air 

[Gill et al., 1983].  Interestingly, as mentioned in chapter 5, the XAD-8 calibration results 

showed that for the series of mono- and dicarboxylic acids and carbonyls, the transition 

from hydrophilic to hydrophobic occurred for compounds with approximately 4 to 5 

carbons in the chain. 

Additionally, as a means to further identify compounds in WSOC, and to compare 

with our isolated fractions, solid-state 13C-NMR was performed on WSOC, WSOCxp, 
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and WSOCxrr samples separated by XAD-8 resin.  13C-NMR was performed on samples 

from two sources: a sample of pooled summer filters and a biomass burning sample. 

Liquid samples for each of the three fractions were vacuum freeze dried and the 

resulting solids collected.  For the summer sample, eight individual PM2.5 Hi-Volume 

integrated filters from June and August were extracted separately, freeze dried, and then 

combined to obtain sufficient mass for the analysis (minimum of 3 mg C is required).  

Following the 13C-NMR analysis, the freeze dried solid from the total WSOC sample was 

reconstituted in 125 ml deionized water and then separated through the XAD-8 column to 

collect WSOCxp and WSOCxrr fractions for subsequent SEC analysis.  The 13C-NMR 

biomass burning sample was easier to prepare due to the much higher filter loadings than 

the urban samples.  This sample was prepared by extracting a quarter of 4 different Hi-

Volume integrated filters together and freeze drying a portion of the liquid extract.  

Therefore, in this case, liquid extracts were available for SEC analysis of WSOC, 

WSOCxp, and WSOCxrr, and no reconstitution of solid samples was required.  A more 

detailed description of the 13C-NMR sample preparation, method, and results can be 

found in Sannigrahi et al. [2006]. 

The SEC chromatograms for the 13C-NMR summer and biomass burning samples 

are shown in Figures 6.7a and 6.7b respectively.  Concentrations of the various functional 

groups were determined from the chromatograms and shown as pie charts in Figures 6.7a 

and 6.7b.  The most prominent 13C-NMR spectral peaks for the WSOCxp and WSOCxrr 

fractions of the summer and biomass sample are shown in Table 6.3.  This table gives the 

percentage of peak area for the top four out of seven 13C-NMR spectral peak regions.  

Integration of 13C-NMR spectra has been shown to provide quantitative information on  
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Figure 6.7.  SEC chromatograms and percentage each functional group contributes to the 
total WSOC for the 13C-NMR (a) summer and (b) biomass burning samples.  Note in (a) 
and (b), due to the differences in sample preparation, the summer SEC chromatogram is 
presented in liquid concentration and the biomass burning sample in air concentrations.  
For comparison with 13C-NMR results in Table 6.3, the boxed percentages show each 
fraction relative to their respective groups (WSOCxp or WSOCxrr) instead of as a 
fraction of WSOC. 
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Table 6.3.  Comparison of SEC and 13C-NMR for WSOCxp and WSOCxrr fractions of summer and 
biomass burning samples.  Both the SEC and 13C-NMR functional group results are given as a percent 
of the total WSOCxp and WSOCxrr fractions.  For the 13C-NMR, only the top 4 spectral regions for 
each measurement are shown.  A more complete table on the 13C-NMR results can be found in 
Sannigrahi et al. [2006]. 

 Summer 
 

Biomass Burning 

 SEC 
 

13C-NMR SEC 13C- NMR 

58% WSOCxp_a 60% C-alkyl 67% WSOCxp_n 76 % O-alkyl 
23% WSOCxp_n 24% O-alkyl 28% WSOCxp_u 24% N-alkyl 
16% WSOCxp_u 10% carboxylic 5% WSOCxp_a All others 0 

 
WSOCxp 

2% WSOCxp_b 
 

7% N-alkyl 0% WSOCxp_b  

54% WSOCxrr_u 60% C-alkyl 53% WSOCxrr_u 36% C-alkyl 
34% WSOCxrr_a 18% O-alkyl 47% WSOCxrr_n 22% alkyl aromatic 
11% WSOCxrr_n 9% carboxylic 0% WSOCxrr_a 12% anomeric/acetal C 

 
WSOCxrr 

- 8% alkyl aromatic - 9% N/O aromatic, O-
alkyl* 

*9% N/O aromatic and 9% O-alkyl 
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the fraction, in terms of carbon mass, of the bonds between carbon and various functional 

groups, for all molecules in the sample [Wilson, 1987; Hedges et al., 2002; Sannigrahi et 

al., 2005].  Thus, unlike the XAD-8 and SEC, which isolates compounds based on 

composition of individual molecules, in 13C-NMR one molecule can contribute to many 

spectral regions. 

An overall result from the 13C-NMR is that for both the summer WSOCxp and 

WSOCxrr fractions, the C-alkyl group is by far the most common (~60%), followed by 

O-alkyl (~20%), and then carboxylic acids (~15%).  Table 6.3 compares the 13C-NMR 

results on the two XAD-8 isolated fractions of WSOC to the various functional groups 

isolated by SEC performed on the same XAD-8 fractions.  The WSOCxp fraction is 

compared first, then the WSOCxrr fraction. 

 

6.2.3.1.  Comparisons Between WSOCxp Compounds 

For the most part, the SEC and 13C-NMR for the summer and biomass WSOCxp 

samples qualitatively agree.  Table 6.3 shows that the WSOCxp fraction from the 

summer sample is mainly WSOCxp_a with a smaller amount of WSOCxp_n.  The 13C-

NMR results show that the carbonaceous material in the sample is composed of 

molecules with mostly C-alkyl bonds, followed by O-alkyl, then carboxylic acids.  C-

alkyls are expected in both the WSOCxp_a and WSOCxp_n since these groups can be 

composed of aliphatic acids and carbonyls.  Thus a high C-alkyl fraction is expected.  O-

alkyls could be mostly associated with the WSOCxp_n since carbonyls, saccharides, and 

polyols contain larger fractions of oxygenated aliphatic carbons.  Although not shown in 

Table 6.3, no aromatic peaks were found in the WSOCxp 13C-NMR spectra; alkyl-
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substituted aromatics and N/O substituted aromatics were both zero.  This agrees with the 

XAD-8 calibration results that aromatic compounds are only separated into the WSOCxrr 

fraction. 

For the biomass burning sample, the SEC result shows the WSOCxp fraction is 

composed mainly of WSOCxp_n compounds and the 13C-NMR gives mainly O-alkyl 

bonds.  These observations seem to be in agreement since biomass burning is known to 

be composed of saccharides.  WSOCxp_a makes only a minor contribution and 13C-NMR 

detects no carboxylic acids (at this sensitivity).  N-alkyls, which make up 24% of the 

WSOCxp group, may be associated with aliphatic amines [Graham et al., 2002].  Again, 

the calibrations suggest no aromatic compounds are associated with hydrophilic species 

and none are found in the WSOCxp 13C-NMR results.  Overall, similar functional groups 

have been observed using H-NMR on biomass burning aerosols in Amazonia [Graham et 

al., 2002].   

 

6.2.3.2.  Comparisons Between WSOCxrr Compounds 

Calibrations with synthetic samples have indicated that only compounds with 

aromatic groups that are retained on the XAD-8 column are recovered (WSOCxrr).  

Hence a large fraction of the 13C-NMR spectra for the WSOCxrr class would be expected 

to contain aromatic groups, however, this is not the case.  Considering first the summer 

WSOCxrr sample, SEC shows that the largest fraction is unrecovered hydrophobic 

(WSOCxrr_u) compounds.  That is, compounds recovered from the XAD-8 (i.e., possibly 

aromatic), but not recovered by the SEC (non-ionizable).  The next largest fraction from 

the SEC is WSOCxrr_a, and then WSOCxrr_n.  (Note that this sample is unusual and 
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could be a result of having to reconstitute the sample following 13C-NMR analysis.  For 

the summer average, WSOCxrr_a = 52%, WSOCxrr_n = 39%, and WSOCxrr_u = 9% of 

the WSOCxrr.)  13C-NMR shows that the C-alkyl group is by far the largest fraction, and 

then to lesser extents O-alkyls, carboxylic acids, and alkyl-substituted aromatics at only 

8%.  Thus, there are significant differences between the SEC and 13C-NMR; a high 

fraction of aromatic groups are expected, but instead C-alkyl groups dominate.  SEC and 

13C-NMR both agree that there were few phenol-like compounds; SEC puts WSOCxrr_n 

last and no peak was observed in the 13C-NMR for the N/O substituted aromatics. 

For the WSOCxrr biomass sample, SEC shows that the largest fractions are 

WSOCxrr_u and the WSOCxrr_n.  WSOCxrr_a is near zero.  However, again the largest 

13C-NMR peak area for this group is associated with the C-alkyl region and the 13C-NMR 

shows that N/O substituted aromatics (includes phenolic compounds) at 9% are a smaller 

fraction than the alkyl-substituted aromatics (includes aromatic acids) at 22%.  Thus, 

there are two discrepancies here when comparing the 13C-NMR to SEC biomass burning 

results.  First, like the summer sample, there are high levels of C-alkyls in the 13C-NMR 

when SEC suggests mainly aromatics.  Secondly, the SEC gives a high fraction of 

WSOCxrr_n and no WSOCxrr_a, whereas 13C-NMR has higher levels of aromatic acids 

(alkyl-substituted aromatics). 

The first discrepancy could be explained by the fact that the calibrations do not 

prove that the WSOCxrr fraction is exclusively associated with molecules that contain 

aromatics.  The calibration data show that aromatics are found only in the WSOCxrr 

fraction, but it cannot be proved that the WSOCxrr fraction for ambient aerosol particles 

is exclusively composed of molecules containing at least one aromatic ring.  It is well 
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known that readily available calibration compounds are likely not representative of 

ambient particulate organic constituents.  Thus, as-of-yet unknown compounds may also 

be in this fraction and contribute to the large fraction of observed C-alkyl bonds.  Another 

possibility is that the WSOCxrr fraction contains aromatic compounds that have a high 

degree of substitution by other functional groups.  Other investigators [e.g., Krivácsy et 

al., 2001] have found evidence for highly polyconjugated weak polyacids (humic-like 

substances) and these types of compounds are expected in the WSOCxrr fraction.  

(Recall, XAD-8 has been used extensively to isolate humic material from natural waters 

[Thurman and Malcolm, 1981].)  Similar reasoning applies to the summer WSOCxrr, 

where C-alkyls dominate over aromatic groups.  Additional chemical analysis is required 

to further investigate this. 

The second discrepancy is more easily explained.  Based on the SEC calibration 

with synthetic compounds (see Figures 6.2c and 6.2d), if an O-H group is present on an 

aromatic ring the retention time of that compound will be shifted to longer times (e.g. 

benzoic acid with zero O-H groups has a retention time of 32 minutes, salicylic acid with 

one ortho position O-H group has a retention time of 38 minutes).  Thus, any aromatic 

with an O-H group is called WSOCxrr_n, despite the presence of additional functional 

groups including carboxylic acids.  Aromatics with no O-H group, but some carboxylic 

acid groups, are found only in the WSOCxrr_a fraction.  A reason why SEC has more 

WSOCxrr_n than WSOCxrr_a, whereas the 13C-NMR displays it the opposite, could be 

because 13C-NMR spectra quantify the fraction of various bonds, whereas SEC appears to 

separate compounds by the presence of specific functional groups associated with single 

molecules.  A scenario consistent with the observations is that most of the aromatic 



 103

molecules in this biomass burning sample display at least one O-H functional group (the 

SEC result of high WSOCxrr_n and no WSOCxrr_a), but also many additional aromatic 

carboxylic acid functional groups (the 13C-NMR results).  Within the actual 13C-NMR 

spectra a number of unresolved peaks were observed in the C-alkyl region, indicating the 

presence of different forms of aliphatic carbon that could be associated with a variety of 

aliphatic as well as aromatic compounds.  These arguments are also consistent with 

highly substituted aromatic compounds as discussed above. 

The comparisons are also complicated by influences from WSOCxru compounds 

from the XAD-8 separation.  Recall that the WSOCxru compounds include acids and 

carbonyls with greater than 3 or 4 carbons, cyclic acids, and organic nitrates (see Table 

6.1).  These calibrations show that up to approximately 20% of these WSOCxru 

compounds are included in the WSOCxrr (see Table 5.1) and will be analyzed by the 13C-

NMR in the WSOCxrr fraction.  Many of these compounds are likely to be aliphatic and 

would contribute to the observed hydrophobic C-alkyl peaks.  However, this is not likely 

to explain all of the C-alkyl dominance since from the summer SEC results, WSOCxru is 

only 20% of the WSOC, thus its maximum influence on the WSOCxrr would be ~ 4% of 

the WSOC (20% of 20%) or for comparison to Table 6.3, ~ 10% as a fraction of the 

WSOCxrr.  This effect would be even less significant for the biomass sample, since 

WSOCxru is only 9% of WSOC in this case (20% of 9% = 2%), and ~ 5% of the 

WSOCxrr. 
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6.2.4.  Speciation of the WSOC in Summer, Winter, and Biomass Burning Samples: 

Overall Results 

Group speciation of the WSOC aerosol with XAD-8 and SEC identifies a large 

fraction of the chemical components of ambient particles.  As shown in section 5.2, this is 

especially true in periods when the WSOC is a large fraction of OC, often the case in 

Atlanta summer during PM events when apparently significant aerosol production by 

oxidation processes lead to greater fractions of WSOC.  Table 6.4 gives the 

concentrations of various groups of WSOC isolated by XAD-8/SEC for all the filter 

samples previously mentioned.  The mean percentage that each of these functional group 

contributes to the WSOC and total OC is shown as pie charts in Figures 6.8a for summer, 

6.8b for winter, and 6.8c for biomass burning samples. 

Different isolated fractions of WSOC dominated in each group of samples.  In the 

summer the dominant WSOC group was WSOCxp_a, in winter WSOCxru, and in 

biomass smoke WSOCxp_n.  In the summer when gas phase and heterogeneous 

oxidation processes are expected to contribute larger fractions to the ambient WSOC (i.e., 

SOA formation), the WSOCxp_a and WSOCxrr_a dominate their respective groups.  

This is especially true for the WSOCxp_a, which accounts for 14% of the summer OC 

and combined these two acid groups account for 20% of the OC.  In contrast, in winter 

these two acid groups make up 14% of OC.  The larger summertime organic acid 

fractions are consistent with smog chamber studies, which show that SOA formation 

often leads to generation of carboxylic acids [Grosjean and Friedlander, 1980; 

Hatakeyama et al., 1985, 1987]. 

In contrast to the summer, the WSOCxp fraction of the biomass burning sample is 
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Table 6.4.  Concentrations of OC, EC, and the various functional groups for all summer, winter, and biomass burning samples.  
Table 6.2 shows the WSOC concentrations that can be used with this data to calculate the concentrations of WSOCxp_u and 
WSOCxrr_u.  NA = not applicable, ND = not detected 

Filter # 
(month/day) 

OC  
(µg C/m3) 

EC 
(µg C/m3) 

WSOCxp_a 
(µg C/m3) 

 WSOCxp_n 
(µg C/m3) 

WSOCxp_b 
(µg C/m3) 

 WSOCxrr_a 
(µg C/m3) 

WSOCxrr_n 
(µg C/m3) 

 WSOCxru 
(µg C/m3) 

Summer         
F2 (6/11) 9.94 1.03 1.63 0.80 0.04 0.46 0.36 0.09 
F3 (6/13) NA NA 0.87 0.69 0.02 0.35 0.24 0.79 
F5 (6/17) NA NA 0.56 0.49 0.05 0.21 0.22 0.89 
F6 (6/19) 6.20 0.41 0.76 0.16 0.02 0.33 0.11 0.69 
F7 (6/21) 5.27 0.46 0.76 0.36 0.02 0.34 0.13 1.00 
F8 (6/23) 3.84 0.39 0.37 0.16 0.02 0.19 0.11 0.67 
F10 (6/27) 3.35 0.16 0.46 0.39 0.02 0.18 0.29 0.61 
F2B (8/8) 6.76 0.29 0.72 0.16 0.01 0.35 0.11 0.48 
F3B (8/10) 9.04 0.80 1.07 0.50 0.02 0.49 0.27 0.42 
F4B (8/12) 3.59 0.44 0.58 0.40 0.01 0.35 0.41 0.39 
F5B (8/14) NA NA 0.66 0.20 0.01 0.12 0.50 0.64 
F6A (8/15) 4.86 0.19 0.83 0.45 0.02 0.35 0.27 0.49 
F7B (8/16) 5.10 0.25 0.89 0.16 ND 0.33 0.10 0.41 
F8B (8/17) 7.73 1.06 1.27 0.74 0.03 0.68 0.45 0.42 
F9B (8/19) 11.96 1.01 1.72 0.97 0.02 0.80 0.41 0.17 
F12B (8/23) NA NA 1.15 0.67 0.03 0.48 0.30 0.44 
F13B (8/25) 6.26 0.65 1.27 0.70 0.03 0.49 0.27 0.40 
F14B (8/27) 8.81 0.60 0.98 0.30 ND 0.48 0.26 0.69 
F15B (8/29) 5.95 0.41 0.92 0.45 0.04 0.43 0.18 0.35 
F16B (8/31) 6.86 0.87 0.88 0.39 0.03 0.43 0.32 0.52 
F17B (9/2) 3.93 0.36 0.41 0.29 0.01 0.26 0.14 0.41 
mean ± 
standard 
deviation  

6.44±2.42 0.55±0.30 0.89±0.36 0.45±0.23 0.02±0.01 0.39±0.16 0.26±0.12 0.53±0.22 
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Table 6.4.  Continued. 

Winter         
F1BB (12/11) 2.14 0.30 0.14 0.17 ND 0.07 0.08 0.14 
F2BB (12/19) 4.77 0.40 0.45 0.32 0.01 0.32 0.12 0.63 
F3BB (1/11) 7.25 0.93 0.82 0.64 0.01 0.37 0.55 0.56 
F4BB (1/13) 4.26 0.52 0.43 0.32 0.02 0.26 0.20 0.77 
F5BB (1/18) 4.07 0.55 0.29 0.20 0.02 0.19 0.11 0.66 
F6BB (1/20) 8.87 1.03 0.66 0.53 0.01 0.40 0.30 0.76 
F7BB (1/23) 1.96 0.12 0.19 0.21 ND 0.08 0.11 0.22 
F8BB (1/25) 9.28 1.06 0.73 0.57 0.01 0.39 0.34 0.91 
F9BB (1/28) NA NA 0.27 0.28 ND 0.21 0.11 0.47 
F10BB (2/2) 3.74 0.27 0.34 0.29 ND 0.19 0.18 0.54 
mean ± 
standard 
deviation 

5.15±2.71 0.58±0.35 0.43±0.23 0.35±0.17 0.01±0.01 0.25±0.12 0.21±0.15 0.57±0.24 

Biomass  Burning        
GT14 (4/16) 1367 23.47 80.11 379 12.81 52.87 165 326 
GT46 (4/29) 1309 108 62.33 363 0.86 13.96 139 219 
mean ± 
standard 
deviation 

1338±41 66±60 71.22±12.57 371±11 6.34±7.74 33.41±27.52 152±19 273±76 
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Figure 6.8.  Pie charts showing the carbon mass percentage that each functional group 
contributes to the WSOC and total OC based on the average of all (a) summer, (b) 
winter, and (c) biomass burning samples. 

 

(a) Summer 

 (c) Biomass Burning 

 (b) Winter 
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predominately WSOCxp_n and the WSOCxrr fraction is WSOCxrr_n.  The average of 

the winter samples is somewhere between the summer and biomass burning samples.  

This seems likely since although oxidation processes can still occur in the winter they are 

not as strong, but there is generally an increase in burning possibly due to heating of 

homes for the winter. 

 

6.2.5.  Correlations Between Functional Groups and Possible Sources of WSOC 

Correlations between the various isolated functional groups and other relevant 

atmospheric parameters is undertaken to investigate their possible sources.  It is 

recognized, however, that the use of 24 hour integrated data restricts this type of analysis 

compared to what is possible with time-resolved measurements, and thus the following 

only provides rough linkages between various components. 

Correlations between the isolated WSOC functional groups and total WSOC show 

that in the summer most of the 24 hour averaged variability in WSOC concentration was 

due to WSOCxp_a and WSOCxrr_a with R2 values of 0.74 and 0.55, respectively, the 

highest for each group.  Similarly, compared to OC, the R2 values for the WSOCxp_a and 

WSOCxrr_a were 0.78 and 0.71 respectively.  In the winter, correlations of the SEC 

isolated functional groups to WSOC and OC were actually higher than in summer.  The 

R2 values for the various functional groups versus WSOC were 0.86 for WSOCxp_a, 

0.82 for WSOCxp_n, 0.92 for WSOCxrr_a, and 0.57 for WSOCxrr_n, and versus OC 

were 0.86 (WSOCxp_a), 0.84 (WSOCxp_n), 0.88 (WSOCxrr_a), and 0.57 

(WSOCxrr_n).  It may be that a combination of both oxidation and biomass burning 
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sources combined with limited dispersion accounts for high correlations amongst all 

wintertime WSOC fractions. 

Scatter plots that include zero-intercept slopes and R2 values amongst the various 

isolated WSOC functional groups in summer and winter are shown in Figures 6.9a and 

6.9b.  WSOCxp_b is not included in the correlations because it was only periodically 

observed and comprised a very minor fraction of the WSOC and total OC.  Unrecovered 

fractions are not included since they were not measured directly but instead determined 

by difference.  In summer, the acids WSOCxp_a and WSOCxrr_a are the most highly 

correlated fractions (R2 = 0.74).  WSOCxp_n is moderately correlated with WSOCxp_a 

(R2 = 0.61) and WSOCxrr_a (R2 = 0.52).  WSOCxrr_n is not well correlated with any of 

the other species suggesting a different source. 

The correlations amongst the WSOCxp_a, WSOCxrr_a, and WSOCxp_n could at 

least in part be explained by current understanding of sources for these compounds.  

Many of the functional groups identified by the SEC have primary emissions (see Table 

13.8 in Seinfeld and Pandis [1998] for a summary).  However, and likely more 

importantly, secondary processes can also generate these compounds.  (Note, recent 

experiments in Atlanta, which will be discussed in more detail in chapter 7, suggest that 

in the absence of biomass burning influences, WSOC is mainly secondary.)  Short-chain 

aliphatic acids can be produced by SOA of cyclic olefins and aromatic hydrocarbons 

[Kawamura and Ikushima, 1993].  Oxidation of polycyclic aromatic hydrocarbons can 

produce aromatic acids [Jang and McDow, 1997; Fraser et al., 2003].  Moreover, some 

aromatic compounds (e.g., toluene) when oxidized can produce both aromatic acids and  
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Figure 6.9.  Linear regressions forced through zero and correlations of the various SEC 
functional groups for the (a) summer and (b) winter samples.  Indicated across the bottom 
is the x-axis and along the side the y-axis labels.  The slope uncertainty is one standard 
deviation. 
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Figure 6.9.  Continued. 
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short-chain aliphatic acids (e.g., oxocarboxylic acids) [Jang and Kamens, 2001].  These 

types of SOA mechanisms could in part account for the observed correlations between 

WSOCxp_a and WSOCxrr_a.  In addition, these SOA reactions also produce significant 

amounts of carbonyls (i.e., WSOCxp_n), consistent with observed correlations between 

WSOCxp_n and both WSOCxp_a and WSOCxrr_a. 

Given the expected large influence of light-duty vehicle emissions at this 

sampling site, these compounds could be mainly from SOA of mobile source emissions.  

There is evidence for a link between the major fractions of WSOC and mobile sources.   

WSOCxp_a and WSOCxrr_a were both correlated with elemental carbon (R2 = 0.64 to 

0.66) and daily maximum CO (R2 = 0.65 to 0.73).  The acid WSOC groups, WSOCxp_a 

and WSOCxrr_a, were also correlated with a number of VOCs measured at the Georgia 

EPA PAMS (Photochemical Assessment Monitoring Stations) site allocated at South 

DeKalb in Atlanta, approximately 20 km southeast of the aerosol measurements.  

WSOCxp_a and WSOCxrr_a were correlated with various pentanes (e.g., isopentane R2 

= 0.67 and 0.68 respectively) and acetylene (R2 = 0.61 and 0.56); compounds found in 

gasoline emissions [Harley et al., 1992]. 

WSOCxp_a is the largest summertime fraction of WSOC.  Some of the 

compounds that could be expected in this group can be readily measured with ion 

chromatography.  All samples of the WSOCxp were analyzed for acetate, formate, and 

oxalate.  Even though there was significantly higher summertime WSOCxp_a 

concentrations no noticeable difference was observed between summer and winter 

samples.  Acetate and formate were not detected in any sample.  Oxalate was detected in 

all samples, but only accounted for ~3% of the WSOCxp_a fraction and so cannot 
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explain the observed levels of WSOCxp_a.  The low concentrations of oxalate are similar 

to measurements made during the August 1999 Atlanta Supersite, where oxalate was 

generally close to or just above its detection limit of 0.02 ppbv (0.07 µg/m3) during non-

PM events [Baumann et al., 2003].  Malonic or succinic acids, compounds that could also 

comprise the WSOCxp_a (see Table 6.1), were not tested for.  Other urban studies have 

shown that these species are often at lower concentrations than oxalate [e.g., Kawamura 

and Ikushima, 1993].  It is possible that the WSOCxp_a is instead composed of more 

substituted short-chain acids, such as oxocarboxylic acids.  Jang and Kamens [2001] 

found these types of acids in the ring-opening products from photooxidation of toluene.  

Finally, no correlation was found between temperature and any of the summertime 

WSOC functional groups despite a daily average variability in temperature of 27 to 39oC 

for this data. 

For winter, all isolated fractions were highly correlated with each other (Figure 

6.9b), except for WSOCxrr_n versus WSOCxrr_a.  In Atlanta during the winter, SOA 

formation may still occur, albeit at a lower rate than summer.  Biomass burning 

contributions, however, are likely to be significantly higher in winter than summer.  Since 

SOA and biomass emissions can produce WSOC compounds that contribute to the same 

SEC isolated groups, co-variability between many functional groups may be expected 

when neither source dominates.  Thus, as in summer, SOA of wintertime mobile source 

emissions can lead to correlations between WSOCxp_a, WSOCxrr_a, and WSOCxp_n 

(e.g., carbonyls).  Biomass burning emissions could account for correlations between the 

WSOCxrr_n (known biomass burning markers [Simoneit, 2002]), WSOCxp_a (which can 

be produced from vegetation and biomass combustion of domestic and industrial heating 
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[Khwaja, 1995]), and the WSOCxp_n (which can include saccharides, i.e., levoglucosan).  

The least correlated compounds are the WSOCxrr_a and WSOCxrr_n (R2 = 0.53), which 

appear to come mainly directly or indirectly from different sources (WSOCxrr_a from 

refined fossil fuel hydrocarbons and WSOCxrr_n from biomass burning). 

 

6.2.6.  Unrecovered Compounds 

In the previous sections the focus was on the recovered fractions of the WSOC, 

here possible sources for the various unrecovered fractions are discussed.  These are 

divided into two groups: the unrecovered portions from the SEC analysis of hydrophilic 

(WSOCxp_u) and recovered hydrophobic (WSOCxrr_u) compounds and the group of 

compounds that could not be recovered from the XAD-8 (WSOCxru). 

 

6.2.6.1.  WSOCxp_u and WSOCxrr_u 

The WSOCxp_u and WSOCxrr_u fractions are both calculated assuming a carbon 

mass balance by taking the difference in the measured WSOCxp or WSOCxrr fractions 

and the corresponding integrated SEC chromatograms.  It should be noted these fractions 

are more uncertain since they are determined by the difference of two large numbers.  

Based on calibration compounds, generally only 80 to 90% of all species tested were 

recovered by the SEC (see Table 6.1).  The remaining 10 to 20% will be included in 

WSOCxp_u and WSOCxrr_u.  It can roughly be tested if these unrecovered fractions are 

due to this ~80% efficiency.  For example, if the percentage of unrecovered SEC 

compounds of the total WSOCxp and WSOCxrr fractions (i.e. WSOCxp_u of WSOCxp 

and WSOCxrr_u of WSOCxrr in Figure 6.8) is on the order of 10 to 20%, then most of 
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this unrecovered fraction is just due to SEC recovery inefficiencies and not some unique 

compound.  For the summer average, WSOCxp_u is ~ 30% of WSOCxp 

(WSOCxp_u/WSOCxp) and WSOCxrr_u is ~ 9% of WSOCxrr (WSOCxrr_u/WSOCxrr).  

For the winter average WSOCxp_u/WSOC is 20% and WSOCxrr_u/WSOCxrr is 29%, 

for the biomass sample WSOCxp_u/WSOCxp is 16% and WSOCxrr_u/WSOCxrr is 

34%.  Consequently, for the summer WSOCxrr and biomass WSOCxp, much of the 

unrecovered SEC fractions could be attributed to less than 100% efficiency of the SEC 

for all compounds, and not due to some other compounds that penetrate the SEC column 

with very low efficiency.  Although it is also possible it could be due to analytical error in 

the integration method used for the SEC peak analysis.  In contrast, for summer 

WSOCxp, winter WSOCxrr, and biomass WSOCxrr, it appears likely that some 

compounds were present in the WSOC that had low SEC penetration efficiencies.  (Note 

that these compounds with low SEC penetrations are not large fractions of the WSOC, 

likely accounting for at most 10 to 15% of each of WSOCxp or WSOCxrr.)  Non-

ionizable compounds produced in biomass burning could explain much of the 

WSOCxrr_u (e.g., catechol).  For WSOCxp_u, no hydrophilic compounds have yet been 

identified that penetrate the SEC with low efficiency. 

 

6.2.6.2.  WSOCxru: Biogenic versus Anthropogenic WSOC 

Experiments show compounds in the WSOCxru fraction can include organic 

nitrates, cyclic acids, and long-chain (carbons > 3 or 4) aliphatic acids and carbonyls.  As 

a percentage of OC, this group is actually lowest in the Atlanta summer (9%), higher in 

Atlanta winter (12%), and highest in the biomass burning sample (20%).  The trend may 
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partly be explained by the contributions of organic nitrates, which are high in winter 

[Zhang et al., 2002] and maybe high in biomass burning smoke. 

An interesting aspect of this classification is that biogenic emissions leading to 

SOA are thought to produce compounds that would mainly be in this group.  Kawamura 

and Sakaguchi [1999] and Mochida et al. [2003] have both suggested that longer chain 

carboxylic acids could be due to oxidation of fatty acids, which are emitted from plants, 

soils, and marine sources.  Cyclic acids and long-chain aldehydes can be SOA products 

from biogenic emissions.  Smog chambers show that pinonic and pinic acids are 

produced from oxidation of pinene, which is emitted from conifers [Glasius et al., 2000].  

Organonitrate functional groups have also been detected in smog chamber photooxidation 

experiments of isoprene and ß-pinene, both biogenic hydrocarbons [Palen et al., 1992].  

As of yet, no references have been found that show short-chain aliphatics can be 

produced via biogenic SOA formation.  Under the assumption that biogenics produce 

compounds that would appear exclusively in the WSOCxru, the data suggest that for this 

site during the summer of 2004, biogenic emissions contribute at most 20% to the WSOC 

and 9% to the OC.  For comparison, the WSOCxp_a and WSOCxrr_a, which may be 

linked through SOA formation of mobile source emissions, accounted for on average 

~20% of the OC.  Thus, not even considering the WSOCxp_n, which some fraction may 

also be linked to mobile sources (recall WSOCxp_n is also correlated to WSOCxp_a and 

WSOCxrr_a), by this analysis SOA from mobile source emissions are about a factor of 2 

greater than biogenic sources. 

Overall, these results are qualitatively consistent with a study previously 

mentioned in chapter 4, which investigated the carbon budget in polluted air masses 
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advecting from New England [de Gouw et al., 2005].  These authors report SOA mainly 

from anthropogenic sources and suggest that short-chain alkanes and alkenes may play a 

significant role.  In contrast, modeling and carbon isotope analysis have suggested 

biogenic emissions often dominate over anthropogenic.  For example, a modeling study 

on SOA formation in Houston, TX and surrounding regions show that biogenic SOA, 

mainly from pinenes, dominate over anthropogenic SOA, mainly from aromatics [Russell 

and Allen, 2005].  Carbon isotope analysis tends to support the conclusions of this study 

[Lemire et al., 2002].  One way to reconcile the discrepancy between the XAD-8/SEC 

observations versus modeling and radiocarbon analysis is that a significant fraction of the 

isolated functional groups that are attributed to anthropogenic sources have a biogenic 

source.  Possibly, functional groups with biogenic SOA products are the WSOCxp_u 

group, or possibly some fraction of WSOCxp_a.  Extending these measurements to 

regions where biogenic emissions are known to dominate over anthropogenic emissions 

could provide further insight into the validity of the assumption of estimating the relative 

contributions of secondary anthropogenic and biogenic sources. 

 

6.3.  Summary 

Based on calibrations with synthetic single component compounds, SEC separates 

the WSOCxp into short-chain acids, neutrals, and bases, and the WSOCxrr compounds 

into recoverable hydrophobic acids and neutrals.  All recoveries are typically 80% or 

better.  It is noted that the calibrations, and thus the labels for the groups, serve only as a 

guide to the types of ambient aerosol compounds that are actually isolated by this 

method. 
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WSOC was extracted from 24 hour integrated filter samples collected with a Hi-

Volume sampler at an urban Atlanta site during the summer and winter.  Samples 

collected within the midst of a prescribed burn are also used to contrast concentrations of 

various WSOC functional groups between urban and biomass burning aerosol particles.  

Comparisons of SEC and 13C-NMR for urban summer and a biomass burning sample are 

consistent with both expectations and the calibration results.  There is evidence, however, 

that the summer WSOCxrr_a and winter and biomass WSOCxrr_n are much more highly 

substituted than the simple calibration standards. 

Average WSOC to OC summertime ratios were near 50% (the year 2004 was 

unusually clean with the fewest poor air quality days since 1998).  The predominant 

summertime WSOC component was WSOCxp_a (short-chain aliphatic acids with less 

than approximately 4 or 5 carbons), comprising 29% ± 6% µg C/µg C (mean ± standard 

deviation) of WSOC.  Formate, acetate, and oxalate were small fractions of WSOC 

(<1%).  In the biomass burning sample, the WSOCxp_n (e.g., likely saccharides) 

dominated at 34% ± 6% µg C/µg C of WSOC.  The urban Atlanta winter samples could 

be described as a mixture of the summer and biomass results where a more equal 

distribution of these WSOC fractions was observed. 

Summer results are particularly interesting because more vigorous oxidation 

processes should lead to higher WSOC through SOA production.  Combined, on average, 

the acids WSOCxp_a and WSOCxrr_a accounted for ~20% µg C/µg C of the Atlanta 

summertime OC.  This data does not include any particularly strong PM events.  

However, as shown in chapter 5, it has been observed at the same site that WSOC can 

reach 75% µg C/µg C of OC under a stagnation-driven PM episode, and similar to this 
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data, WSOCxp was the dominant WSOC component (~60% µg C/µg C).  Thus, it is 

reasonable to expect that WSOCxp_a and WSOCxrr_a comprise substantially more than 

20% of the OC during Atlanta summer PM events, and that the short-chain aliphatic acids 

(WSOCxp_a) would dominate.  The acids, WSOCxp_a and WSOCxrr_a, were the most 

highly correlated of the WSOC isolated groups (R2 = 0.74).  They were also reasonably 

correlated (R2 values typically 0.5 to 0.7) with compounds expected from mobile sources, 

such as CO, EC, and various VOCs, including acetylene a tracer for mobile sources.  

Because these correlations are based on 24 hour integrated averages, they likely do not 

indicate WSOC from primary emissions, but instead point to possible linkages between 

the observed WSOC fractions and emissions from mobile sources that can form SOA.  

Well-known SOA products of biogenic precursors, such as long-chain aliphatic (carbons 

greater than 3 or 4) and cyclic acids contributed at most 18% µg C/µg C to the 

summertime WSOC and 9% µg C/µg C to the OC.  Overall the data imply that SOA 

production from mobile sources led to at least twice the aerosol carbon mass than SOA 

formation from biogenic compounds.  Biogenic SOA products that appear in functional 

groups in addition to the WSOCxru group would increase the estimate of biogenic 

contributions and be in better agreement with model predicted SOA production and 

carbon isotope analysis performed by other investigators. 

 In the next chapter the roles of biogenic versus anthropogenic sources on the 

formation of WSOC in the Atlanta metropolitan region is further explored based on a 

combination of airborne and ground-based measurements.  The airborne data includes 

highly time-resolved measurements of both WSOC and VOCs. 
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CHAPTER 7 
SOURCES OF WSOC IN ATLANTA, GA 

 
 
 
7.1.  Motivation 

The Atlanta, GA metropolitan region, smaller cities in the state (e.g. Macon, 

Augusta, Columbus), and many other locations in the southeastern U.S. have sufficiently 

high concentrations of fine particles to jeopardize compliance with standards set by the 

U.S. EPA. Consistently non-compliant communities must develop mitigation plans, 

which to be effective, requires reasonably accurate knowledge of aerosol particle sources.  

Measurements of fine particle composition in the southeast show that there are two major 

components to the ambient aerosol: sulfate and carbonaceous compounds.  It is well 

established that sulfate arises mainly from the oxidation of sulfur dioxide [Berresheim et 

al., 1995], which in the eastern U.S. is emitted largely by stationary power generation 

[EPA, 2004].  In urban areas like Atlanta, this sulfate can come from distance sources, or 

from relatively nearby coal-fired power plants [Brock et al., 2002], the latter readily 

identified by large localized enhancements in fine particle mass [Weber et al., 2003]. 

Unlike sulfate, the sources for the carbonaceous fraction are not well established.  

Carbonaceous aerosol is composed of EC and OC, with OC comprising about 80 to 90% 

of the total on a carbon mass basis [Lim and Turpin, 2002].  Since the OC fraction is 

composed of a myriad of compounds it has never been comprehensively characterized on 

an individual compound basis and its sources are not well known.  It is, however, known 

that OC is composed of directly emitted particles (primary), and those formed in the 

atmosphere (secondary) by gas-phase oxidation reactions that lead to products of lower 

volatility, which may condense and form organic particles.  Reactions in the condensed 
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phase may also influence the carbonaceous aerosol chemistry, however, this is not 

viewed as SOA formation and has not been as widely investigated.  Based on EC as a 

tracer for primary emissions, analysis of Atlanta OC and EC during summer suggests that 

about 50% of the OC is secondary and this can reach near 90% on short time scales [Lim 

and Turpin, 2002]. 

As previously discussed in chapter 1, SOA can have anthropogenic and biogenic 

sources.  Of the anthropogenic VOCs it is currently viewed that mobile emissions of 

aromatic compounds lead to the majority of anthropogenic SOA in urban centers [Odum 

et al., 1997; Seinfeld and Pandis, 1998].  Chamber studies also show that biogenic 

emissions, especially monoterpenes from conifers, are readily oxidized by ozone, and the 

hydroxyl radicals, to produce biogenic secondary organic aerosol [Hoffman et al., 1997; 

Griffin et al., 1999].  Particulate OC compounds observed in remote forested regions 

include various carboxylic acids, such as pinic (C9), pinonic (C10), and others of similar 

structure with high carbon number, and C9 and higher aliphatic dicarboxylic acids 

[Glasius et al., 2000; Sheesley et al., 2004; Anttila et al., 2005]. 

Interestingly, many urban centers and their surrounding regions in the south and 

southeast are densely forested with coniferous trees leading to speculation that biogenic 

precursors, like terpenes, are a major contributor to their SOA.  As mentioned in section 

6.2.6.2, a modeling study of SOA formation in Houston, TX, which like Atlanta, GA, has 

a combination of large anthropogenic and biogenic VOC emissions, indicated that most 

of the regional SOA is from biogenic sources.  Despite continued progress, it is still 

largely unclear as to what extent the organic aerosol in the urban southeast is from SOA 

formation, and what fraction of the SOA is from anthropogenic versus biogenic sources.  
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In this chapter further evidence is provided showing that WSOC is not directly emitted by 

cars but is closely linked to vehicle emissions. 

 

7.2.  Methods 

Comprehensive methods for chemically characterizing the products of SOA may 

provide new insights into its source; insights that have not been achieved so far by 

identifying relatively few single components.  Because the process of SOA formation 

leads to oxygenated compounds, many are expected to be soluble in water.  This implies 

that the methods previously discussed for separation and analysis of organic compounds 

in aqueous solutions can be applied to investigate products of SOA in the ambient 

aerosol.  For this analysis, this includes airborne WSOC measurements (chapter 4) and 

the two-step XAD-8/SEC speciation method (chapters 5 and 6) performed on 12 or 24 

hour integrated Hi-Volume filter samples. 

 OC and EC were determined from the Hi-Volume filters using the method 

discussed in section 6.1.4.  A host of biogenic and anthropogenic VOCs were measured 

on- and off-line.  On-line measurements were made using a PTR-MS (as discussed in 

section 4.1).  Off-line measurements were made from whole air samples using gas 

chromatography with a variety of detection methods. 
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7.3.  Ambient Results 

7.3.1.  Airborne Measurements 

7.3.1.1.  Measurements Over Atlanta 

On 15 August 2004, at the conclusion of the NEAQS/ITCT 2004 experiment, 

discussed in chapter 4, a series of low altitude over-flights of metro Atlanta and the 

surrounding regions were conducted.  At the time of the over-flight surface 

measurements in Atlanta indicated air quality was moderate with PM2.5 mass 

concentrations of 17.2 µg/m3, typical for the relatively clean summer of 2004.  These 

airborne measurements show a distinct and well-defined region of enhanced WSOC and 

CO concentrations as the aircraft entered the boundary layer.  A map and flight track 

colored by CO concentrations, and the time series of altitude and CO, acetylene, and 

WSOC concentrations are shown in Figures 7.1 and 7.2, respectively.  In regions where 

measured wind directions indicate air masses were from more rural sectors (e.g. regions 

to the south-east of the city, between points labeled A and B, and on the northbound leg 

labeled D in Figures 7.1 and 7.2), both CO and WSOC were lower, whereas in air masses 

residing over, or advecting from, more densely populated regions (e.g., the legs that 

include labels C and E) the CO and WSOC concentrations were significantly higher.  

Variability in WSOC and CO throughout these passes is likely not due to variations in 

concentration with altitude since the aircraft maintained a fairly constant altitude of near 

or below l km.  This region of high WSOC and CO mapped out by the aircraft covered a 

large section of northern Georgia, encompassing an area of approximately 15,000 km2.  

Superimposed on what appears to be the more regional CO are smaller areas of  

 



 124

 

 

 

35.0

34.5

34.0

33.5

33.0

La
tit

ud
e 

(d
eg

re
es

)

-85.5 -85.0 -84.5 -84.0 -83.5 -83.0

Longitude (degrees)

18016014012010080
 CO (ppbv)

 A
 B

 C
 D

 E
 Metropolitan Atlanta

 GIT

 Yorkville
80 km

Alabama

Tennessee N. Carolina

S.
Carolina

 
Figure 7.1.  Map of aircraft flight path over Atlanta and the surrounding region colored 
by CO concentrations.  GIT, which is located near the Atlanta urban center, and the 
rural Yorkville site are identified. CO and fine WSOC concentrations along the flight 
path are shown in Figure 7.2, along with the locations identified as A, B, C, D, and E. 
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Figure 7.2.  Airborne measurements of fine particle WSOC, gases CO and acetylene, and 
altitude recorded over Atlanta and the surrounding region.  Letters A, B, C, D, and E 
correspond to measurement locations shown in Figure 7.1.  Data during in-cloud 
sampling are excluded (region A).  Missing WSOC data at approximately 19:30 UTC is 
due to an automatic sample blank measurement.  CO was measured at 1 s, WSOC is a 3 s 
integrated measurement, and acetylene was measured following the mission from a 
whole air sampling system.  Horizontal bars indicate the interval over which average and 
± standard deviation of ∆WSOC to ∆CO ratios (µg C/m3/ppmv) are calculated.  Local 
time is EDT = UTC – 4 hours. 
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significantly higher CO concentrations.  The most striking of these areas is identified as 

point C in Figures 7.1 and 7.2, which was recorded when the aircraft sampled directly 

over urban Atlanta.  Although WSOC is correlated with the more regional CO trends (R2 

= 0.80, for all data in Figure 7.2), it does not track CO in what are likely fresher plumes; 

the correlation (R2) between WSOC and CO is higher at 0.86 when the fresh CO plumes 

are not included.  Biomass burning was also not a significant contributor to the observed 

CO and WSOC since acetonitrile, a known biomass burning tracer, was near background 

levels with an average concentration of 127 pptv. 

 

7.3.1.2.  Comparison of Atlanta to Northeastern Cities 

The airborne data collected over Atlanta are similar to those recorded in plumes 

from northeastern cities in that WSOC was correlated with CO (see Figure 4.4 and 

section 4.3.1).  However, due to differences in vegetation, Atlanta is expected to have 

much higher emissions of biogenic VOCs, and thus should have higher biogenic SOA. 

 In this analysis the concentrations of acetylene, iso-propyl nitrate, α-pinene, β-

pinene, isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) are examined.  

Acetylene and iso-propyl nitrate are mainly from anthropogenic sources whereas the 

others are from biogenic sources [de Gouw et al., 2005].  Acetylene is a relatively inert 

VOC and comes mostly from automobile emissions.  Iso-propyl nitrate has no direct 

emission sources and is formed in the atmosphere from the oxidation of propane and 

other anthropogenic VOCs.  MVK and MACR are mainly formed as oxidation products 

of isoprene. 
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Comparisons between the Atlanta and northeastern plumes (discussed in detail 

throughout section 4.3) show much higher biogenic VOC concentrations for Atlanta but 

no clear evidence for higher WSOC concentrations.  This is demonstrated in Table 7.1, 

which shows the ratios of WSOC, CO, and anthropogenic and biogenic VOCs recorded 

over Atlanta to concentrations measured in urban plumes advecting from urban regions in 

the northeastern U.S. 

From Table 7.1, it is noteworthy that all anthropogenic species (CO, acetylene, 

iso-propyl nitrate) were higher in the northeastern U.S. plumes by factors just larger than 

 

 

 

Table 7.1.  Ratios of median concentrations recorded over Atlanta to the median of 
the concentrations in 9 plumes advecting from urban centers in the northeastern U.S.  
VOC data are all from whole air samples. 
 

 Atlanta/Northeastern U.S. 
 

WSOC 0.55 

CO 0.61 

Acetylene 0.84 

Iso-propyl nitrate 0.57 

α-pinene 29 

β-pinene 7.4 

Isoprene 100 

MVK 14 

MACR 11 
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1 to ~2.  In contrast biogenic VOCs were much higher over Atlanta, often at least 10 

times greater than in the northeastern U.S. plumes.  WSOC concentrations tend to follow 

the trends in anthropogenic emissions, being approximately twice as high in the 

northeastern plumes, where anthropogenic emissions were higher by similar amounts. 

 A comparison can also be made between ∆WSOC/∆CO in the two regions.  

Recall the studies of plume evolution in the northeast (section 4.3.3) show that 

∆WSOC/∆CO increases from near zero close to the urban region to a fairly constant 

value of 32 ± 4 µg C/m3/ppmv after approximately 1 to 2 days of advection.  For 

comparison to this number, the ∆WSOC/∆CO ratio is calculated over Atlanta using two 

different methods. 

In the first analysis, the mean of WSOC and CO measured just above the 

boundary layer prior to entering and just after leaving the regions of elevated CO 

concentration is used as the background values to which the higher boundary layer values 

are compared.  A background value of 0.05 µg C/m3 (half the LOD) is used for WSOC, 

since the measurements were below the LOD, and 91 ppbv for CO.  Variability in CO, 

indicated by the CO standard deviation, in the regions just above the plume was 5 ppbv, 

leading to approximately 5% variability in ∆WSOC/∆CO.  The ratios of ∆WSOC and 

∆CO relative to this assumed constant background are also shown in Figure 7.2 and are in 

the range of 30 to 40 µg C/m3/ppmv. 

 Alternatively, the ratio of ∆WSOC to ∆CO can also be calculated from the slope 

of WSOC to CO.  These results are shown in Figure 7.3, where only boundary layer data 

are included (in-cloud sampling is also excluded since the WSOC was scavenged).  These  
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Figure 7.3.  Boundary layer WSOC versus CO from the flight over Atlanta and the 
surrounding region.  Data including and excluding the fresh CO plumes (B and C in 
Figure 7.2) are shown.  The slope of WSOC to CO can be used as a second method to 
calculate the ratio of ∆WSOC to ∆CO. 

 

 

 

data have been further subdivided to exclude periods when sampling in the fresh CO 

plumes identified as B and C in Figure 7.2.  For all boundary layer data ∆WSOC/∆CO is 

32 ± 1 µg C/m3/ppmv, and excluding fresh CO the ratio is 38 ± 1 µg C/m3/ppmv (± is 

slope 95% confidence interval). 

The two analyses produce similar results and both suggest that ratios over Atlanta 

and the surrounding region are very similar to 32 ± 4 µg C/m3/ppmv, the ratio in plumes 

that had advected for at least one day from urban centers in the northeast.  Since the 

biogenic VOCs are at much higher concentrations in Atlanta compared to the northeast 
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(Table 7.1) it is anticipated that Atlanta SOA (and hence WSOC) should have a 

significantly greater contribution of biogenic species compared to the northeast, and 

hence a substantially higher ∆WSOC to ∆CO ratio.  Overall the ratios are the same, and 

when sampling in fresh CO regions the Atlanta ratio is only ~20% higher.  It is possible 

that the Atlanta WSOC was still chemically evolving and that in more chemically aged 

air ∆WSOC/∆CO would be substantially higher, however, estimates of Atlanta WSOC 

photochemical age based on the toluene to benzene ratio indicate that the age is greater 

than roughly one day. 

 

7.3.2.  Ground-based Measurements of Carbonaceous Aerosol Chemical Components 

Integrated filters were collected and analyzed at a number of sites in urban 

Atlanta and the surrounding region in the summers of 2004 and 2005 to investigate 

sources of organic aerosols.  As discussed in chapter 6, in 2004 a series of measurements 

(21 total) were made at the Georgia Institute of Technology (GIT) campus over a range 

of days in June to September.  (Note, this includes the period of the NEAQS/ITCT 2004 

Atlanta over-flight on 15 August 2004.)  In 2005 two sets of simultaneous (paired) 

measurements were made to investigate spatial distributions.  In both experiments one 

sampler remained at GIT at the same site as the 2004 experiments.  In the first 

experiment, an identical system was situated within a meter of a major expressway (7 

traffic lanes in each direction, Interstate-75/85) that runs through Atlanta and which is 

located approximately 400 m from the GIT sampling site.  In the second experiment, 

conducted a number of weeks later, simultaneous samples were collected during a period 
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of poor air quality over four consecutive days at GIT and Yorkville, a rural site ~ 80 km 

west of Atlanta (see Figure 7.1). 

The airborne results point to mobile sources for much of the components 

comprising the fine particle WSOC.  This WSOC could be directly emitted by vehicles or 

through SOA formation of their emissions, or a combination of both.  Some studies 

indicate that WSOC compounds, such as n-alkanoic acids and aromatic aldehydes and 

acids, are directly emitted by vehicles [Rogge et al., 1993; Lawrence and Koutrakis, 

1996].  However, comparisons between carbonaceous aerosols measured at the 

expressway, at GIT, and in Yorkville suggest that only a minor fraction of WSOC was 

directly emitted, instead most appeared to be formed in the atmosphere, or from reactions 

in the condensed phase.  (Recall that this was also seen in the aircraft data of Figure 7.2, 

where WSOC tracked the regional CO but not the more variable fresh emissions.)  

Particulate EC is a known primary component of vehicle emissions, and as expected 

highest concentrations are observed along the expressway and lowest at the rural 

Yorkville site (Table 7.2).  EC was a factor of about 10 larger at the expressway than at 

GIT, and a factor of 6 higher at GIT than Yorkville (also see Figure 7.4).  Organic carbon 

is known to be composed of both primary and secondary compounds, and as such 

exhibits less difference between the various sites.  OC was a factor of 1.4 higher at the 

expressway compared to GIT, and GIT was 1.2 times higher than Yorkville.  WSOC 

showed little variability.  Expressway WSOC was 1.1 times higher than GIT, and GIT 

was 1.07 times higher than Yorkville.  A paired t-test on the hypothesis that the WSOC is 

equal at both sites has an observed significant level (p-value) of 0.039 and 0.017 for the 

expressway/GIT and Yorkville/GIT experiments, respectively.  Side-by-side tests of the 
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Table 7.2.  Mean ± standard deviation from two separate experiments involving 
simultaneous measurements of carbonaceous aerosol components.  In the first 
experiment four separate daytime (10:00 to 22:00 EDT) integrated filter measurements 
were conducted simultaneously next to a major expressway (I-75/85) and a site located 
on the GIT campus ~ 400 m from the expressway site.  Sampling was conducted on 15, 
16, 17, 18 June 2005.  In the second experiment, four 24 hour integrated measurements 
were made at Yorkville, ~ 80 km west of GIT (see Figure 7.1) starting on 23 July 2005 
at 10:00 and ending 27 July 2005 at 10:00 EDT.  All concentrations are in µg C/m3. 
  

 EC OC WSOC 
Expressway 4.43 ± 1.02 10.82 ± 1.63 4.73 ± 0.69 

GIT 0.48 ± 0.10 7.83 ± 1.03 4.33 ± 0.79 
Yorkville 0.15 ± 0.01 8.51 ± 1.72 6.26 ± 1.29 

GIT 0.90 ± 0.24 10.50 ± 1.75 6.72 ± 1.41  
 

 

samplers and methods used in these paired experiments indicate an integrated filter 

WSOC measurement precision on the order of 5%.  Overall these results suggest little 

difference in WSOC between GIT and the other two sites.  Thus, it is concluded that most 

compounds comprising WSOC in this study are linked to mobile sources but are not 

directly emitted. 

The regional nature of the WSOC indicated by the aircraft CO and WSOC 

measurement is also demonstrated in the group speciated composition results.  Figure 7.4 

shows the Yorkville/GIT comparison during the four day consecutive measurement 

period in which air quality generally worsened.  Along with EC, OC, and WSOC, 

comparisons are made between the WSOC fractions WSOCxp_a, WSOCxp_n, and 

WSOCxrr_a.  At the GIT site during this four day experiment, these three groups 

comprised, on average, 72% of the WSOC (this is discussed further below).  These plots 

show that although primary species, EC and some portion of OC, vary between sites,  
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Figure 7.4.  Comparison between 24 hour integrated filter measurements at GIT and the 
Yorkville site. The three WSOC fractions plotted (WSOCxp_a, WSOCxp_n, and 
WSOCxrr_a) comprise over 70% of WSOC.  Uncertainties are based on side-by-side 
comparisons between the two instruments and extraction methods made prior to the 
experiment. 

 

 

 

WSOC and its major isolated chemical fractions have similar trends in urban Atlanta and 

at the rural Yorkville site. 

Poor air quality during this sampling period was caused by a stationary high-

pressure system resulting in hot stagnant conditions (average temperature was 88oF with 

afternoon temperatures as high as 110oF).  Average PM2.5 concentrations recorded in 

Atlanta during the measurement period were 36 µg/m3, with early morning 

concentrations greater than 40 µg/m3 and reaching 71 µg/m3.  Note that these are 

significantly larger than those recorded during the fly-over in August 2004, however, in 
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both cases high WSOC concentrations were measured considerable distances from the 

urban center. 

The three major components of WSOC isolated with the XAD-8/SEC method 

appear to be linked to a common source, or sources.  For all the ground-based data 

collected in both the summer 2004 and 2005 experiments, WSOCxp_a, WSOCxp_n, and 

WSOCxrr_a have correlations (R2) versus each other greater than 0.79 (Figure 7.5) and 

linear regressions have near-zero intercepts.  These results imply a common source, or 

possibly different sources that produce a similar array of chemical fractions in the fine 

particles.  There is, however, no evidence for a strong source for one specific group of 

these three fractions. 

These three chemical fractions of WSOC are also well correlated with WSOC 

concentrations.  For the data in Figure 7.5 the R2 between WSOC and each fraction is 

0.91, 0.81, and 0.84, for WSOCxp_a, WSOCxp_n, and WSOCxrr_a, respectively, and for 

the sum of these three fractions 0.92 (correlations not shown).  In contrast, the fractions 

WSOCxrr_n, and especially WSOCxru, are not as well correlated with other major 

WSOC chemical groups, or WSOC, and appear to have different sources.  For 

WSOCxrr_n the R2 is less than 0.46 when regressed against other chemical fractions, and 

0.42 when regressed against WSOC.  For WSOCxru, all R2 values are less than 0.20, and 

there is no correlation with WSOC (R2 = 0.05). 

Poor correlation between WSOCxru and the other major chemical groups of 

WSOC is intriguing.  As mentioned in chapter 5, calibrations of the XAD-8 method 

suggest that the WSOCxru fraction contains compounds such as organic nitrates, cyclic  
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Figure 7.5.  Correlation between major fractions of WSOC from 12 and 24 hour integrated filter measurements collected at GIT in 
2004 and 2005, Yorkville, and the expressway.  Linear regressions are for data at all sites combined, where I is the intercept, S the 
slope, and the uncertainty is ± one standard deviation. 
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acids, and aliphatic acids and carbonyls greater than C3 or C4, which are compounds often 

found in aerosols in remote regions with significant biogenic emissions.  The low 

correlation between WSOCxru and the other three major groups (WSOCxp_a, 

WSOCxp_n, and WSOCxrr_a) is due to WSOCxru concentrations tending to remain 

unchanged during more polluted conditions when EC, OC, and WSOC all increase in 

concentration.  Table 7.3 compares the mean concentration of the WSOC components 

from the summer of 2004 GIT data, divided into clean (daily peak O3 < 85 ppbv) and 

more polluted conditions (daily peak O3 > 85 ppbv), and the poor air quality period 

during the four day Yorkville/GIT measurements in 2005.  Table 7.3 shows that the three 

major isolated fractions of WSOC (WSOCxp_a, WSOCxp_n, WSOCxrr_a) were at 

higher concentrations during the measurement periods with higher O3 and PM2.5, whereas 

WSOCxru concentrations were not.  As a result, the pie charts of Figure 7.6 show that the 

three main components of WSOC dominate even more, and WSOCxru becomes a much 

smaller fraction during polluted conditions.  Poor air quality episodes during the summer 

generally develop due to stagnant conditions associated with high-pressure systems.  At 

these times local anthropogenic emissions may be expected to play a larger role in the 

formation of secondary organic aerosol, and biogenic precursors a smaller role.  This is 

consistent with the observations of higher EC levels during the polluted events, and 

higher concentrations of the three major WSOC components (Table 7.3).  In contrast, 

WSOCxru may be comprised of more biogenic SOA products and thus does not 

significantly change in concentration during stagnant conditions.  These observations are 

fairly robust, similar results are found for additional data not included in this analysis. 
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Table 7.3.  Mean and ± standard deviation of the carbonaceous aerosol, based on 24 hour 
integrated filter samples collected in the summers of 2004 and 2005 at GIT, as well as 
daily peak ozone and 24 hour mean PM2.5 mass.  The 2004 samples were from a range of 
days in June (7 days), August (13 days) and one day in September.  The GIT Polluted 
2004 data are three days during the 2004 sampling campaign having daily peak O3 higher 
than 85 ppbv.  The 2005 data are the GIT component of the Yorkville/GIT paired 
experiment recorded over four consecutive poor air quality days (July 23 through 27). 
All carbonaceous aerosol concentrations are in µg C/m3. 
 

 GIT 
2004 

GIT Polluted 
2004 

GIT Polluted 
2005 

Number of Samples 18 3 4 
Daily Peak O3, ppbv* 55.3 ± 16.4 96.0 ± 20.9 100.3 ± 24.5 
PM2.5*, µg/m3 16.0 ± 7.2 31.5 ± 12.5 36.0 ± 14.6 
EC 0.49 ± 0.26 1.02 ± 0.01 0.90 ± 0.24 
OC 5.84 ± 1.81 11.0 ± 1.4 10.5 ± 1.8 
WSOC 2.96 ± 0.69 4.05 ± 0.99 6.72 ± 1.41 

WSOCxru  0.56 ± 0.19 0.30 ± 0.30 0.51 ± 0.04 

WSOCxp_a (A) 0.82 ± 0.27 1.34 ± 0.59 2.46 ± 0.77 
WSOCxp_n (B) 0.42 ± 0.20 0.66 ± 0.40 1.40 ± 0.28 
WSOCxp_u 0.46 ± 0.36 0.77 ± 0.08 0.73 ± 0.18 

WSOCxrr_a  (C) 0.37 ± 0.13 0.46 ± 0.34 1.00 ± 0.23 
WSOCxrr_n 0.23 ± 0.10 0.41 ± 0.08 0.42 ± 0.22 

WSOCxrr_u  0.07 ± 0.17 0.09 ± 0.12 0.06 ± 0.20 

(A + B + C)/WSOC 0.54 ± 0.13 0.57 ± 0.21 0.72 ± 0.05 

WSOCxru/WSOC 0.20 ± 0.08 0.09 ± 0.11 0.08 ± 0.03 
*GIT ozone and PM2.5 data are from the allocated Georgia EPA site in South 
DeKalb in Atlanta, approximately 20 km southeast of the aerosol 
measurements. 
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Figure 7.6.  Mean XAD-8/SEC isolated fractions of WSOC from 24 hour integrated Hi-
Volume PM2.5 samples collected at GIT.  The three data sets are (a) 18 samples collected 
in the summer of 2004, (b) 3 samples collected in the summer of 2004 during more 
polluted conditions, and (c) 4 consecutive day samples during the 2005 Yorkville/GIT 
comparison, a period of poor air quality.  Concentrations are summarized in Table 7.3. 
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Finally, another consequence of a relatively uniform spatial distribution of WSOC 

compared to the more variable OC is a spatially variable WSOC to OC ratio.  For the two 

separate paired experiments, on average WSOC/OC was 0.74 in Yorkville compared to 

0.64 at GIT, and 0.56 at GIT compared to 0.42 at the expressway site.  Higher WSOC to 

OC ratios recorded at sampling sites further from mobile sources suggest that the ratio is 

not due mainly to rapid in-situ SOA formation, since WSOC was nearly the same at both 

paired sites (see Table 7.2), but instead due to lower OC concentrations.  Thus it appears 

that differences in primary OC between the sites is responsible for the spatial variability 

in WSOC/OC. 

 

7.4.  Summary 

In conclusion, these data suggest that much of the fine particle WSOC is linked 

indirectly to vehicle emissions and may be generated via SOA formation.  The current 

view is that aromatic VOCs from mobile sources are mostly responsible for 

anthropogenic SOA.  However, the emissions and current yields used for predicting 

aromatic SOA formation will likely not account for the observed WSOC concentration, 

suggesting that other anthropogenic VOCs involving unknown mechanisms may 

efficiently lead to SOA.  As previously mentioned, de Gouw et al. [2005] concluded that 

as plumes aged in the northeastern U.S. the decrease in alkanes was the only VOC with a 

sufficient mass change to account for the observed increases in the organic aerosol mass.  

It would seem likely, given the similar ∆WSOC/∆CO ratios between the northeastern 

urban cities and Atlanta, that similar processes apply in Atlanta. 
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It also needs to be considered, as previously mentioned, studies based on 

radiocarbon analysis suggest that in the south and southeast most of the SOA is biogenic.  

Perhaps both observations are correct.  It could be speculated that the SOA formation in 

Atlanta involves mainly biogenic VOCs, however, the process is limited by 

anthropogenic precursors.  In other words, there is some anthropogenic component, likely 

linked to vehicle emissions given the high correlation between WSOC and vehicle tracers 

(such as an alkane derivative), which must be present for the SOA to occur.  More 

extensive sampling in metropolitan Atlanta with additional measurement techniques 

should be undertaken to further investigate the extent of SOA formation and the relative 

roles of anthropogenic versus biogenic emissions. 
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CHAPTER 8 
FUTURE WORK 

 
 
 

The PILS-TOC has been shown to provide useful measurements of WSOC both 

on the ground and when airborne.  However, with liquid systems inevitably there is the 

issue of smearing (i.e., mixing of the liquid sample in the various components of the 

system).  Although due to the difference in sample time this issue is likely to be less of a 

factor for the ground-based WSOC measurements as opposed to the airborne WSOC 

measurements.  As previously mentioned some measures, such as small bore tubing and 

small volume debubblers and liquid filters, have been taken.  However, there still is room 

for improvement.  One of the easiest solutions may be using the smallest volume possible 

syringes for the liquid pumping system. 

The XAD-8 and SEC speciation methods do seem to provide much useful 

information about WSOC.  However, these methods have really only begun to help in 

better understanding WSOC.  The potential exists to continue to improve these 

techniques. 

The calibrations for the XAD-8 column suggest that the WSOCxru fraction is 

composed of biogenic SOA compounds.  Therefore, it would be ideal if this fraction 

could actually be determined directly rather than by difference (= WSOCxr – WSOCxrr).  

It has been suggested that an organic eluent, such as acetonitrile, could be used to recover 

these WSOCxru compounds.  Unfortunately, the TOC analyzer could not be used as the 

detector if organic solvents are used for this separation.  Perhaps making the XAD-8 

column smaller would allow the WSOCxru compounds to also be recovered with the 

inorganic eluent at pH 13. 
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 It would also be more ideal when performing on-line XAD-8 measurements if the 

WSOCxr fraction could also be determined on-line rather than by difference (= WSOC – 

WSOCxp).  Based on the calibration experiments a minimum mass of 25 µg C needs to 

be retained on the current XAD-8 column in order to achieve near 100% recovery with 

pH 13 eluent.  A 15 L/min PILS system cannot achieve such detection limits.  However, 

it may be possible to add a concentrator upstream of the PILS in the current set-up to 

improve the detection limit of the instrument.  Another possibility may be, again, 

reducing the size of the XAD-8 column to retain a smaller minimum mass on the XAD-8 

for efficient recovery of the WSOCxr fraction. 

 The current SEC column requires a minimum analyte concentration of 

approximately 2 ppm C (2 µg C) for the analysis.  Again, this has made on-line 

determination of the functional groups impossible.  On-line measurements of each 

fraction would be a very useful addition to the present capabilities of the technique.  

There are two possibilities to investigate.  One is a different column and/or resin.  

Keeping the same type of resin currently used, commercially available high pressure 

columns may provide significant improvements.  They are known to have better 

separation than hand-packed low pressure columns and also likely would require less 

mass.  Although since the current method uses the SEC column untraditionally, it is not 

clear that an appropriate high pressure column is available.  A different type of resin 

altogether may provide better separation and/or allow for on-line measurements.  The 

second possibility is that a modified version of the current PILS-TOC system could be 

used.  Again, a concentrator would need to be added upstream of the PILS.  For example, 

a concentrated XAD-8 separated sample could be collected for 1 hour in a sample loop 
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and then injected onto the SEC column.  Therefore, a time-resolved measurement of 

WSOCxp into functional groups would be obtained. 

 There is also the possibility to separate the XAD-8 fractions further with other 

analytical techniques.  It has been shown that the WSOCxp fraction is important during 

PM events.  Being able to determine important compounds in this fraction that perhaps 

are the driving force during these PM events would be a very useful piece of information.  

Performing LC/MS (liquid chromatography/mass spectroscopy) on the WSOC, 

WSOCxp, and WSOCxrr could be a first attempt.  Sample volume, liquid concentration, 

and the presence of salts in the sample are not an issue for LC-MS.  However, finding an 

optimum method can be a limitation. 

It was shown from performing 13C-NMR on the XAD-8 fractions how the spectra 

were simplified by performing the separation first.  Therefore, the possibility also exists 

to characterize the fractions obtained by SEC (WSOCxp_a, WSOCxp_n, WSOCxrr_a, 

and WSOCxrr_n) further by 13C-NMR or techniques such as LC-MS and carbon isotope 

analysis.  Experiments on specific SEC isolated fractions would likely provide even more 

insights than what can be gained by performing them on the complete sample group.  

Although a substantial amount of mass may need to be collected since the 1 ml sample 

injected onto the SEC column is diluted significantly in the eluent flowrate used in the 

current SEC method and these other techniques do require a higher carbon content than 

the TOC analyzer. 
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CHAPTER 9 
CONCLUSIONS 

 
 
 
 The organic carbon (OC) aerosol is chemically complex making it the least 

understood component of aerosol particles.  Since most previous analyses of the organic 

aerosol have dealt with the development and application of specific speciation methods, 

only a small fraction of the organic compounds present in the aerosol have been 

identified or attempted to be quantified.  A useful approach, as illustrated in this thesis, is 

to instead apply methods capable of quantitatively measuring and speciating a large 

chemical fraction of the aerosol.  Approaches aimed at group speciation rather than 

specific speciation not only provide new insights into the chemical makeup of a large 

fraction of the ambient organic aerosol, but the isolated fractions can also be analyzed for 

other properties of interest.  The main emphasis of this work is on the fraction of the 

organic aerosol that is soluble in water (WSOC).  WSOC is of interest for a number of 

reasons, especially since little is known about its chemical nature. 

In this work, first, a method for real-time measurements of WSOC is established.  

Then novel techniques to further speciate and chemically characterize the WSOC are 

developed.  The goals in developing these techniques include assessing various methods, 

chemically identifying a large portion of the ambient fine particle organic aerosol in 

urban environments, and investigating possible sources.  The major findings of this work 

are summarized below. 

A PILS-TOC (Particle-into-Liquid Sampler-Total Organic Carbon) system allows 

for quantitative measurements in near real-time of fine particle WSOC aerosols.  The 

PILS captures ambient particles into a flow of purified water, which is then forced 
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through a liquid filter and the carbonaceous content quantified by a TOC analyzer.  This 

system has a limit of detection of 0.1 µg C/m3 and uncertainty of approximately ± 10%.  

The results obtained with this instrument are the first real-time measurements of WSOC 

on the ground or when airborne. 

Using a PILS-TOC at an urban ground-based site in St. Louis, consistently higher 

WSOC to OC ratios were observed in summer than in autumn.  Under episodes when air 

quality worsened over periods of 5 to 7 days, a regular diurnal pattern in WSOC/OC was 

observed, ranging from approximately 0.40 at night to 0.80 at mid-day.  This trend was 

similar to other secondarily formed products, such as ozone, and consistent with the 

notion that at least some fraction of the WSOC was formed in the atmosphere by 

secondary processes.  The elucidation of the subdaily cycle of WSOC allows for a unique 

observation for an urban site and demonstrates the insights gained from near real-time 

measurements. 

 Aircraft measurements made with the PILS-TOC over the northeastern U.S. 

during the New England Air Quality Study/Intercontinental Transport and Chemical 

Transformation 2004 program found biomass burning and emissions emanating from 

urban centers as two main sources of WSOC.  Examination of urban plumes suggests 

WSOC is formed within approximately 1 day of emissions and may be produced from 

compounds co-emitted with carbon monoxide (CO). 

 To further speciate the WSOC, XAD-8 resin was found to provide a useful 

method.  XAD-8 can be coupled with a PILS-TOC for on-line speciation measurements 

or size-exclusion chromatography (SEC) for off-line speciation measurements.  The 

XAD-8 column itself separates the WSOC into its hydrophilic (pentrates the XAD-8 with 
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near 100% efficiency at pH 2) and hydrophobic (retained by the XAD-8 at pH 2) 

fractions.  Part of the hydrophobic fraction can subsequently be extracted from the XAD-

8 with high efficiently at pH 13 and is referred to as the recovered hydrophobic fraction.  

Calibrations with atmospherically relevant standards suggest hydrophilic compounds 

include aliphatic acids and carbonyls with less than 4 or 5 carbons, saccharides, and 

amines.  Recovered hydrophobic compounds include aromatic acids and phenols (or 

other aromatic-like compounds with similar properties).  Unrecovered hydrophobic 

compounds include aliphatic acids and carbonyls with greater than 3 or 4 carbons, 

organic nitrates, and cyclic acids.  SEC, if used, further resolves the XAD-8 hydrophilic 

and recovered hydrophobic fractions into acidic, neutral, and basic functional groups.  

Although other investigators have developed methods to speciate WSOC, the key to this 

approach is no organic eluents are needed and therefore quantitative data can be obtained 

directly from either the on-line or off-line separation using the TOC analyzer. 

On-line measurements of WSOC and the XAD-8 isolated hydrophilic and 

hydrophobic WSOC fractions in urban St. Louis and Atlanta were able to investigate 

daily and seasonal trends in WSOC, hydrophilic WSOC, and hydrophobic WSOC.  Both 

the WSOC to OC and hydrophilic WSOC to OC ratios increase from winter to summer 

and are found to be greatest in an Atlanta summer PM event under stagnant conditions.  

Mainly a greater portion of hydrophilic compounds cause this increase in the WSOC 

fraction.  These results are suggestive of an increase in summertime SOA production 

leading to a higher fraction of WSOC, and that most of these compounds are hydrophilic. 

Based on the analysis of SEC fractions from urban Atlanta summer, hydrophilic 

aliphatic and recovered hydrophobic acids appear to account for 20% µg C/µg C of the 
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OC and are correlated with each other (R2 = 0.74), with hydrophilic neutrals (R2 = 0.61), 

and with gaseous 24 hour averaged VOCs (Volatile Organic Compounds) expected from 

mobile sources (e.g., isopentane R2 = 0.67).  In biomass burning samples, hydrophilic 

neutrals (e.g., saccharides) and recovered hydrophobic neutrals dominate with minor 

fractions of recovered hydrophobic and hydrophilic aliphatic acids.  Atlanta winter 

samples tend to be a combination of summer and biomass samples. 

Combined speciation and airborne WSOC measurements over Atlanta and its 

surrounding region seem to indicate that the source of WSOC is indirectly linked to 

vehicle emissions.  This is supported by the comparison of aircraft measurements of 

urban plumes over metropolitan Atlanta and the northeastern U.S. which show similar 

ratios of ∆WSOC/∆CO even though Atlanta has much higher concentrations of biogenic 

VOCs.  Additionally, across Atlanta and its surrounding regions, WSOC is correlated 

with CO and appears to be comprised of three major chemical groups that are linked to a 

similar source and increase in concentration under more polluted conditions. 

Although there is still much to be learned about the organic aerosol, overall, this 

research shows that in addition to biomass burning, the other main source of WSOC is 

secondary organic aerosol.  From quantitative real-time measurements in urban areas, 

WSOC appears to track other photochemically produced compounds and increases with 

plume age.  The application of the speciation methods to the organic aerosol (especially 

in urban Atlanta) suggests that SOA is mainly composed of small-chain aliphatic 

compounds indirectly linked to vehicle emissions. 
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APPENDIX A 
CONCENTRATION CALCULATIONS 

 
 
 

This appendix summarizes the equations used to calculate various parameters 

presented in this thesis.  For each equation a sample calculation is performed using data 

from actual ambient samples presented in this thesis. 

 

A.1.  Calculations for On-line Measurements 

The following equations are used for the data presented in chapters 3, 4, 5, and 7. 

 

A.1.1  OC and/or EC 

Determined by the Sunset Labs calculation software. 

 

A.1.2.  WSOC and/or WSOCxp 

The concentrations of WSOC and WSOCxp in air are calculated using the difference in 

the Total and Filtered (background) air liquid concentration times the volumetric flowrate 

at the impactor, which includes a dilution factor, all divided by the flowrate of air.  The 

dilution factor comes about from the design of the PILS.  Liquid is added to the sample 

from condensing steam onto the impactor plate and the drops themselves.  In a PILS-IC 

system, the dilution was accurately determined by spiking the transport flow with lithium.  

Measuring the concentration of lithium upstream and downstream of the impactor 

provided a measure of the dilution.  A similar approach cannot be used to measure the 

dilution factor in the PILS-TOC system since the TOC analyzer makes a bulk 

measurement of organic carbon.  However, the dilution by a 15 L/min PILS system is 
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usually around 17% +/- 0.5%.  This is based on previous studies where a 15 L/min PILS-

IC was operated identically to the WSOC system.  Since the flowrate of liquid going over 

the impactor in the PILS-IC is known to be 0.17 ml/min, the volume of liquid added by 

the condensing steam and drops themselves can be determined.  It can be assumed that 

this additional volume of water in the PILS-IC is the same for the PILS-TOC since both 

systems are run in the same manner with the exception of the higher liquid flow rate over 

the impactor in the PILS-TOC.  Therefore, the volumetric flowrate is the flowrate of DI 

water over the impactor (0.61 ml/min) plus the volume of additional liquid from the 

condensing steam and drops themselves (((1.17 * 0.17 ml/min) – 0.17 ml/min)). 

 

3C/m g 4.26  [WSOC]

L/min 15
C ppb 100  ml/min)) 0.17 - ml/min) 0.17  ((1.17 ml/min  (0.61  [WSOC]

flowrateair 
ionconcentrat liquidair  Filtered
-ion concentrat liquid Total

 impactorat  flowrate volumetric
  [WSOC]

µ=

××+
=









×

=

 

 

A.1.3.  WSOCxr 

3

33

C/m g 1.57  [WSOCxr]

C/m g 2.69  - C/m g 4.26  [WSOCxr]

[WSOCxp] - [WSOC]  [WSOCxr]

µ=

µµ=

=
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Note, generally the WSOC data were linearly interpolated since the WSOC and WSOCxp 

measurements were made sequentially, not simultaneously.  The WSOCxp concentration 

used in the sample calculation is a typical ambient concentration presented in chapter 5. 

 

A.1.4.  WIOC 

3

33

C/m g 4.78  [WIOC]

C/m g 4.26  - C/m g 9.04  [WIOC]

[WSOC] - [OC]  [WIOC]

µ=

µµ=

=

 

 

A.2.  Calculations for Integrated Filter Measurements 

The following equations are used for the data presented in chapters 6 and 7. 

 

A.2.1.  OC and/or EC 

3

33

22

C/cm g 9.04  [OC]

cm 100
m 1 

L 1
cm 1000 min  1440 L/min  1104

cm 400.50  C/cm g 35.9  [OC]

n timeintegratio  flowrateair 
filter of area punch per  mass  [OC]

µ=







×××

×µ
=

×
×

=
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A.2.2.  WSOC and/or WSOCxp 

3C/m g 4.10  [WSOC]

1
4  

min 1440 L/min  1104
ml 125  C ppb 13050  [WSOC]

extracted piecesfilter  ofnumber 
piecesfilter  ofnumber  total

n timeintegratio  flowrateair 
 volumeextraction ion concentrat liquid  [WSOC]

µ=

×







×
×

=

×







×

×
=

 

 

A.2.3.  WSOCxr 

3

33

C/m g 1.41  [WSOCxr]

C/m g 2.69  - C/m g 4.10  [WSOCxr]

[WSOCxp] - [WSOC]  [WSOCxr]

µ=

µµ=

=

 

 

Note, the WSOCxp concentration used in the sample calculation is a typical ambient 

concentration presented in chapter 6. 

 

 

 

 

 

 

 



 152

A.2.4.  WSOCxrr and WSOCxru 

First, the mass of carbon expected to be and actually retained on the XAD-8 are 

determined. 

( )

8-XADover  sample  timeoflength 
    8-XADover  flowrate sample

 ionconcentrat liquid  WSOCxp-ion concentrat liquid WSOC  mass retained expected
×

×=
 

C g 161  mass retained expected

ml 1000
1L min  30 ml/min  1.2  C) ppb 8573 - C ppb (13050  mass retained expected

µ=

×××=

 

 

















+








 ×

×=

pHadjust   toadded HCl volume
OCxrrcollect WS time

 8-XADover  flowrate NaOH

ion concentrat liquid WSOCxrr  mass retained actual

 

( )( )

C g 113  mass retained actual

ml 1000
L 1  ml 4  min 5 ml/min  1.2  C ppb 11300  mass retained actual

µ=

×+××=

 

 

Then the ratio of the actual to expected retained mass is used to determine WSOCxrr and 

WSOCxru from WSOCxr. 

3

3

C/m g 0.99  [WSOCxrr]

C/m g 1.41  
C g 161
C g 113  [WSOCxrr]

[WSOCxr]  
mass retained expected

mass retained actual  [WSOCxrr]

µ=

µ×
µ
µ

=

×=
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3

3

C/m g 0.42  [WSOCxru]

C/m g 1.41  
C g 161
C g 113-1  [WSOCxru]

[WSOCxr]  
mass retained expected

mass retained actual - 1  [WSOCxru]

µ=

µ×







µ
µ

=

×







=

 

 

A.2.5.  Integration of SEC chromatograms 

A.2.5.1.  WSOC and/or WSOCxp SEC Integral 

( )

∑
=
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××
××

×

=
ft

 t i

extracted piecesfilter  ofnumber 
piecesfilter  ofnumber  total 

 
n timeintegratio  flowrateair    volumeloop sample

 volumeextraction  ionconcentrat liquid WSOC 
intervalt measuremenAnalyzer  TOC  flowrateeluent 

  Integral SEC [WSOC]
i

i

 

 

( )

3

t

 t i

C/m g 4.58 

 
1
4  

min 1440 L/min  1104  ml 1
ml 125  ionconcentrat liquid WSOC 

s 60
min 1  s 3 ml/min  1.3

  Integral SEC [WSOC]
f
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××
××

××

=∑
= i

i

 

where ti is when concentration initially starts to increase from baseline and tf is when 

concentration returns to baseline. 
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A.2.5.2.  WSOCxrr SEC Integral 
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∑
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  Integral SEC [WSOCxrr]
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where ti is when concentration initially starts to increase from baseline and tf is when 

concentration returns to baseline. 
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A.2.5.3.  WSOCxp_a, WSOCxp_n, WSOCxp_b, WSOCxrr_a, and WSOCxrr_n 

Chromatographic peaks that elute first (WSOCxp_a and WSCOxrr_a) were fit with a 

Gaussian function using data from the leading edge to slightly following the maximum 

value.  The second peak (WSOCxp_n and WSOCxrr_n) was taken as the difference in 

the ambient chromatogram and the Gaussian function.  Bases (WSOCxp_b), if they exist, 

were subtracted from the second peak by fitting with a linear baseline.  More information 

can be found in chapter 6. 

 

A.2.5.4.  WSOCxp_u and WSOCxrr_u 

3

333

3

3333

C/m g 0.23  ][WSOCxrr_u

C/m g 0.27 - C/m g 0.49 -C/m g 0.99  ][WSOCxrr_u

][WSOCxrr_n - ][WSOCxrr_a - [WSOCxrr]  ][WSOCxrr_u

C/m g 0 1.1  [WSOCxp_u]

C/m g 0.02 - C/m g 0.50 - C/m g 1.07 - C/m g 2.69  [WSOCxp_u]

[WSOCxp_b] - [WSOCxp_n] - [WSOCxp_a] - [WSOCxp]  [WSOCxp_u]

µ=

µµµ=

=

µ=

µµµµ=

=

 

 

Note, the concentrations of WSOCxp_a, WSOCxp_n, WSOCxp_b, WSOCxrr_a, and 

WSOCxrr_n used in the sample calculations are typical ambient concentrations presented 

in chapter 6. 
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A.2.6.  WIOC 

3

33

C/m g 4.78  [WIOC]

C/m g 4.26  - C/m g 9.04  [WIOC]

[WSOC] - [OC]  [WIOC]

µ=

µµ=

=
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