
INFORMED EXPLORATION ALGORITHMS FOR
ROBOT MOTION PLANNING AND LEARNING

A Dissertation
Presented to

The Academic Faculty

By

Sagar Suhas Joshi

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Institute for Robotics and

Intelligent Machines

Georgia Institute of Technology

May 2022

© Sagar Suhas Joshi 2022

INFORMED EXPLORATION ALGORITHMS FOR
ROBOT MOTION PLANNING AND LEARNING

Thesis committee:

Dr. Panagiotis Tsiotras, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Seth Hutchinson
School of Interactive Computing
Georgia Institute of Technology

Dr. Mathew Gombolay
School of Interactive Computing
Georgia Institute of Technology

Dr. Harish Ravichandar
School of Interactive Computing
Georgia Institute of Technology

Dr. Byron Boots
School of Computer Science and Engi-
neering
University of Washington

Date approved: 04/11/2022

There is only one extraordinary thing about me, my parents.

For Vidya and Suhas Joshi.

I wish that all those calamities would happen again and again so that we could see You

again and again,

for seeing You means that we will no longer see repeated births and deaths.

- Queen Kunti to Sri Krishna, Bhagavadgita

ACKNOWLEDGMENTS

I express my most sincere gratitude to my advisor Prof. Panagiotis Tsiotras for his

constant support during my doctoral program. He gave me the freedom to choose and ex-

plore my thesis topic, while encouraging me to maintain a balance between the theoretical

and the applications aspect of research. I learnt from Panos how to express my ideas with

mathematical rigor so that an expert in the field could appreciate them. At the same time

I also understood how to motivate my research so that a novice might grasp the core ideas

and get inspired.

I am deeply thankful to Prof. Seth Hutchinson for giving me an opportunity to col-

laborate with him . Seth’s expertise in the field motion planning, his critical thinking and

intuitions were invaluable to me when I was tackling some of the toughest problems in

my PhD research. I have thoroughly enjoyed Prof. Byron Boot’s robotics courses dur-

ing his tenure at Georgia Tech. His research and coursework bolstered my fundamental

knowledge of robotics. I am deeply thankful to Prof. Matthew Gombolay and Prof. Har-

ish Ravichandar for giving me insightful suggestions on my research that led to significant

improvements in my thesis. Finally, I am also grateful to my undergraduate professors

at IIT-Madras, especially my M.Tech advisor Prof. Shankar Ram C.S, for sparking and

nurturing my interest in A.I during those formative years.

They say it takes a village to raise a PhD, and it is absolutely true. This journey would

have been a lot more difficult without my friends here in Atlanta. I believe roommates

occupy a special space in any PhD student’s life. As I look back, some of the best moments

of this journey was me laughing with Mohit and Pranjal as we had those endless discus-

sions about the trials and tribulations of PhD life. I am also deeply grateful to Aprameya

and Savanthi, Shreya, Karthik, Chaitra, Eshwar, Amrithraj and Pradyumna for being my

extended family here in Atlanta and making this journey so memorable. Special thanks

to my undergrad friends Viju, Kishan and Sujata as well. A big thank you also to all my

v

DCSL lab-mates for helping me with my qualifying exam and indulging in the brainstorm-

ing sessions.

I am eternally grateful to my family back in India. Devika, Ajinkya and sweet Niharika

were a big source of joy for me during these years. Finally, no words can capture how

indebted I feel to my parents. It was my Mother’s dream to see me get educated from a

prestigious university and my Father’s unbreakable belief that no challenge was ever too

tough for me. I stand tall on the shoulders of their giant sacrifices.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

Summary . xvi

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Thesis Contributions . 4

1.3 Thesis Organization . 6

Chapter 2: Problem Definition And Literature Review 7

2.1 Motion Planning Problem . 7

2.2 Sampling-Based Motion Planning . 10

2.3 Exploration Problem . 12

2.3.1 Geometric Planning . 13

2.3.2 Kino-dynamic Planning . 15

Chapter 3: Non-Parametric Informed Exploration 17

3.1 Motivation . 17

vii

3.2 Algorithm Overview . 18

3.2.1 Kernel Selection . 19

3.2.2 Sample Generation . 21

3.3 Experiments and Discussion . 24

Chapter 4: Relevant Region Exploration . 29

4.1 Motivation . 29

4.2 Relevant Region Set . 30

4.3 Relevant Region Sampling Algorithm . 33

4.3.1 Case 1: Uniform Cost-Map . 33

4.3.2 Case 2: General Cost-Maps . 35

4.4 Experiments and Discussion . 40

Chapter 5: Locally Exploitative Relevant Region Sampling 44

5.1 Motivation . 44

5.2 Sampling As Optimization . 46

5.3 Curse Of Dimensionality For Sampling . 47

5.4 Locally Exploitative Sampling Algorithm 50

5.5 Experiments and Discussion . 52

Chapter 6: Time-Informed Exploration . 59

6.1 Motivation . 59

6.2 Time-Informed Set . 60

6.3 Time-Informed vs L2-Informed Set . 63

viii

6.4 Time-Informed Exploration Algorithm . 64

6.4.1 Ellipsoidal Approximations . 64

6.4.2 Sampling Algorithm . 66

6.4.3 Vertex Inclusion Algorithm . 67

6.5 Experiments and Discussion . 68

Chapter 7: Non-trivial Query Sampling for Learning to Plan 73

7.1 Motivation . 73

7.2 Related Work . 74

7.3 Supervised Learning for Planning . 76

7.4 Non-trivial Query Sampling . 77

7.5 Experiments and Discussion . 80

Chapter 8: RACECAR Robot Platform . 88

8.1 Platform Overview . 88

8.2 Autonomous Navigation Stack . 90

8.3 Experiments and Discussion . 93

Chapter 9: Conclusion And Future Directions 100

References . 107

Vita . 117

ix

LIST OF TABLES

3.1 Case 1:Average time/length of first solution 27

3.2 Case 2:Average time/length of first solution 27

7.1 Point robot planning . 84

7.2 Rigid body planning . 85

7.3 Rigid Body without steerTo . 86

7.4 n-link manipulator planning . 87

x

LIST OF FIGURES

1.1 The Aurora self-driving car, ©Aurora Innovation (left), Amazon Prime Air
drone package delivery system, ©Amazon Inc. (center), Path robotics au-
tonomous welding manipulator robot, ©Path Robotics (right) 2

1.2 Path planning using sampling-based algorithms. The solution path (ma-
genta) is found by incrementally growing a graph (green) in the free-space.
Uniform sampling strategy results in a rapid exploration and graph-growth
in all the areas of search-space. 3

2.1 A schematic for the geometric planning problem. 9

2.2 Uniform random sampling (Left) naively explores the entire search-space,
while the L2-Informed Sampling (Right) focuses on the ellipsoidal subset
after an initial solution is discovered. 14

3.1 Schematic of NP-Informed sampling, showing kernel vertices(black) gen-
erating new samples in the L2-informed set after an initial solution is found. 19

3.2 Single obstacle environment (Left); Multiple obstacle environment (Right).
The figure shows 500 iterations of NP-Informed sampling in both cases. . . 22

3.3 Convergence behavior and fraction of samples generated in obstructed space
for case 1 and 2 in R2, R4 and R6. Results are averaged over 100 trials and
the standard deviation is shaded . 26

3.4 Convergence for NP-Informed sampling with different weights in Equa-
tion 3.2 set after an initial solution is found 28

4.1 Planning in a multiple obstacle environment with Relevant Region sam-
pling (left) and Informed Sampling (right). Note that the Relevant Region
focuses on two pertinent homotopy classes whereas the Informed Sampling
generates uniform samples inside the ellipsoidal region. 31

xi

4.2 A schematic for Relevant Region sampling. 35

4.3 Planning for 7 DOF Panda Arm in the joint space from the start state (left)
to a given joint goal state (right). 38

4.4 Convergence plots for different sampling methods in various test environ-
ments. Solid lines indicate the average value and the standard deviation is
shaded. Error bar indicate the upper and lower quartiles. 39

4.5 Percentage of successful trials (where planner found a feasible solution)
with different sampling strategies. 40

4.6 Planning on a terrain cost-map with the proposed sampling strategy. Here,
white regions represent rough (high cost) areas and the blacks signify smooth
sections. 41

4.7 Planning on a “potential-field” like cost-map. The objective is to reach the
goal state while avoiding the two danger (white) regions. 42

5.1 Schematic motivating the proposed LES algorithm, which leverages local
information and considers an optimization problem to generate the blue
sample. In contrast to the red sample, the blue sample can initiate rewirings
and improve cost-to-come value of (green) vertices in the graph. 45

5.2 Neighborhood around a vertex v. Here, nv = 4 and d̂v,Vv = 4 + (1 + 2) = 7. 47

5.3 Schematic for the analysis in Appendix. Black and magenta circles illus-
trate the set B∥xo∥2(0) and Bϵ(xo) respectively. The intersection Bϵ(xo) ∩
B∥xo∥2(0) can be over-approximated by hyper-sphere centered at xc with
radius rc. 48

5.4 Planning with the proposed LES algorithm on a potential cost-map. The
robot incurs a higher cost if it travels in the white regions. 51

5.5 A schematic for the LES algorithm. The gradient direction (red) is calcu-
lated by considering the cost-to-come value of randomly selected children
vertices (red) and their descendants. 52

5.6 Planning in the joint space of Panda and Baxter manipulator arms. The
start and goal positions for both robots are indicated in the top and bottom
figures respectively. A video of full robot plan can be found here: https:
//youtu.be/J4B5 L2Ghrs . 54

xii

https://youtu.be/J4B5_L2Ghrs
https://youtu.be/J4B5_L2Ghrs

5.7 Planning with the proposed LES-RRT# and DRRT [24] in a world with
multiple homotopy classes. The computationally costlier DRRT (black
path) can get “stuck” in a wrong homotopy class. For the above trial run,
LES-RRT# and DRRT sampled 9414 and 573 graph vertices respectively
in 1 second of planning time. 54

5.8 Benchmarking plots for the numerical experiments. Solid lines indicate the
value averaged over 100 trials and the error bars represent standard devia-
tion. Application of the proposed LES (red, cyan, black) leads to a faster
convergence and a larger number of tree rewirings in higher dimensions.
However, it incurs a higher computational cost and hence executes a lesser
number of iterations compared to Informed (magenta) and Relevant Region
(blue) sampling. 57

6.1 Time-optimal planning for a 2D system using the SST algorithm with uni-
form exploration (left) and the proposed strategy (right). The tree vertices
generated are represented in green. Using the proposed strategy leads to a
focused search. 60

6.2 Evolution of the forward reachable set F [0, t] and the backward reachable
tube Rb[t, T] for the 2D Toy system at time t = 2, 5, 8. Note that Ω(T)
comprises of the intersections F [0, t] ∩Rb[t, T]. 61

6.3 Comparing the forward reachable set F [0, t] for the 2D system at t = 2
using the hyper-sphere and ellipsoidal approximation. 65

6.4 A schematic for the moon-lander robot (left) and quadrotor (right) simula-
tion cases with sample solution paths found by the proposed algorithm after
40 sec of planning time. 70

6.5 Convergence plots for the numerical experiments. Using the proposed TIE
leads to a faster convergence in all cases (red plot). The bottom left figure
illustrates number of candidate vertices generated using uniform and TIE
exploration method. The bottom right figure plots the fallback ratio for
different values of nS . Solid lines indicate the value averaged over 100
trials and the error bars represent the standard deviation. 71

7.1 Schematic for the proposed data generation method. Instead of trivial queries
that can be solved by a greedy connection, more non-trivial queries are
added. In addition, the data pruning procedure filters out the trivial part
(π3, xg) of the path. 74

xiii

7.2 Four different environments for the point robot planning task. Data gen-
erated using the proposed non-trivial query sampling results in following
(start, goal) distribution. Some of the length-optimal paths solved using a
classical planner are illustrated in magenta 84

7.3 Four different environments for the rigid body planning task. 85

7.4 Solving a trivial query with the four learned models without the steerTo
function. Models PNet0,PNet1,PNet2 can successfully solve the query.
However, the PNet3 model, which does not have any trivial sample in its
training dataset, is unable to solve it. 86

7.5 A schematic for n-link manipulator planning. Left figure shows the obsta-
cles and solution path in the work-space of the robot. The corresponding
obstacles and solution path in the configuration-space (middle). The (start,
goal) distribution produced by the proposed non-trivial query sampling in
the configuration-space (right). 87

8.1 RACECAR robot hardware and its relevant components. Picture credits [93] 89

8.2 Architecture of the ROS autonomous navigation stack for the RACECAR
robot. 90

8.3 Coordinate frames for the RACECAR robot. 92

8.4 Different simulation environments for the RACECAR robot in ROS Gazebo. 94

8.5 Visualizing different ROS topics in RViz. The red arrow illustrates the
robot pose obtained from the Hector-SLAM. White and black areas denote
the free and obstacle space respectively, whereas lighter black represents
inflated areas around the obstacles. The ringed-cube is the goal marker,
that can be manipulated by the user to set a goal state on the map. The path
calculated by the Relevant Region planner is given in green. Other ROS
topics, such as the feed from ZED camera can also be visualized. 95

8.6 A map of the ESM G13 room in the AE department, Georgia Tech, gener-
ated using the Hector-SLAM algorithm on the RACECAR robot. 96

8.7 Running the obstacle avoidance module on RACECAR hardware 97

8.8 Running the point-to-point navigation stack on the RACECAR hardware
(Left). Visualizing the robot’s pose, planned path, goal state and the ex-
plored map in RViz (Right). 97

xiv

8.9 Length-optimal planning with the Relevant Region planner (left). Planning
with the Relevant Region planner on the occupancy cost-map (right). In the
latter case, the planner produces a path that stays more in the explored free
space (white region), whereas the length-optimal path passes through the
unexplored grey areas which may belong to the obstacle-space. 98

9.1 Semantic octomap generated for a room using the ZED camera on the
RACECAR platform. 104

xv

SUMMARY

Sampling-based methods have emerged as a promising technique for solving robot

motion-planning problems. These algorithms avoid a priori discretization of the search-

space by generating random samples and building a graph online. While the recent ad-

vances in this area endow these randomized planners with asymptotic optimality, their slow

convergence rate still remains a challenge. One of the reasons for this poor performance

can be traced to the widely used uniform sampling strategy that naı̈vely explores the entire

search-space. Having access to an intelligent exploration strategy that can focus search,

would alleviate one of the critical bottlenecks in speeding up these algorithms. This thesis

endeavors to tackle this problem by presenting exploration algorithms that leverage differ-

ent sources of information available during planning time. First, a non-parametric sampling

technique is proposed for the basic case of geometric path-planning in uniform cost-spaces.

This method employs sparsification and utilizes heuristics and prior obstacle data to con-

duct a prioritized search. Second, the uniform cost-space assumption is relaxed and a “Rel-

evant Region” sampler is proposed for efficient exploration on general cost-maps. The pro-

posed framework reduces dependence on heuristics by utilizing the planner’s tree structure

information. Next, the Relevant Region framework is extended by proposing a locally ex-

ploitative procedure that formulates sampling as an optimization problem. This technique

generates new samples to improve the cost-to-come value of vertices in a neighborhood.

Fourth, the geometric setting is relaxed and the problem of efficient exploration for the case

of kino-dynamic motion planning is discussed. A “Time-Informed” exploration procedure

that focuses search by leveraging ideas from reachability analysis, while still maintaining

asymptotic optimality guarantees, is presented. Fifth, this thesis also explores the problem

of intelligent query sampling for data generation to improve the performance of learning-

based planners. Finally, this thesis develops a software stack for implementation of the

proposed planning algorithms on a 1/10 th scale RACECAR robot.

xvi

CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent years have seen a meteoric rise in the development and deployment of autonomous

robotic systems. It is now commonplace to see robots performing complex tasks, such as

a self-driving car navigating through a difficult traffic scenario, medical robot assisting in

a surgery, aerial drones performing package delivery and industrial and warehouse robots

operating in cluttered environments (illustration in Figure 1.1). Given the location infor-

mation and a map of the environment, these robots need an efficient algorithm to plan their

motion from point A to B. The motion planning problem is of one finding the optimal

control inputs to steer the robot from its initial state to a goal region, avoiding infeasible

regions and optimizing some notion of cost. While a core problem in robotics and arti-

ficial intelligence (AI), motion planning has also found applications in the fields of game

development, computational biology and virtual prototyping [1, 2, 3].

The motion planning problem has many variants, and is widely-studied in the literature.

A popular variant goes by the name of mover’s problem [4], or the piano mover’s problem

[5]. The objective in this problem is to find a collision-free path for the robot, which is

assumed to be a rigid body that can move freely with no kino-dynamic constraints. This

problem can be extended by modeling a robot, such as a manipulator arm, as a union of

several rigid bodies. An important abstraction used to solve such problems is the notion of

configuration-space [6]. The main advantage of this concept is that a robot with arbitrary

complex geometric shape can be represented as a point in this abstract space. The dimen-

sion of the configuration-space is the number of degrees of freedom of the robot, or the

minimum number of parameters necessary to specify its configuration. In this thesis, the

1

Figure 1.1: The Aurora self-driving car, ©Aurora Innovation (left), Amazon Prime Air
drone package delivery system, ©Amazon Inc. (center), Path robotics autonomous welding
manipulator robot, ©Path Robotics (right)

terms configuration-space and search-space are used interchangeably.

A popular technique for solving the motion planning problem is to first generate a graph

representation of the feasible configuration-space in which the robot will operate. This

graph encodes collision-free configurations or states of the robot as its vertices or nodes.

The edges represent feasible motion or transition between the corresponding vertices. Al-

gorithms such as Djikstra’s [7] can then be used to search this graph and compute the

optimal plan. However, Djikstra’s algorithm with its uniformed search strategy becomes

extremely expensive computationally as the problem size increases. In order to address

this limitation, several algorithms that use a heuristic function to guide the exploration

have been suggested. Perhaps the most celebrated of these informed search algorithms is

A* [8]. A* conducts a prioritized exploration of the graph by expanding nodes with the

lowest f value (sum of cost-to-come plus the heuristic estimate of cost-to-go). The use

of an admissible heuristic leads to a focused search, and A* expands a provably minimum

number of nodes for a given planning query. Variants of A*, such as ARA* [9] endow it

with anytime property by leveraging inadmissible and admissible heuristics. Other pop-

ular extensions such as the LPA* [10] and the D* [11] algorithm address the problem of

planning in dynamic environments.

Conventionally, the above deterministic search algorithms create a grid-based graph

representation of the search-space. However, these algorithms are impractical for solving

2

Figure 1.2: Path planning using sampling-based algorithms. The solution path (magenta)
is found by incrementally growing a graph (green) in the free-space. Uniform sampling
strategy results in a rapid exploration and graph-growth in all the areas of search-space.

problems in higher dimensions due to the computational cost associated with apriori dis-

cretization. Sampling-based motion planning (SBMP) algorithms, also called randomized

motion planning algorithms, avoid this overhead by not resorting to discretization or ex-

plicit construction of the search-space. Instead, these algorithms use a black-box collision

checking function to probe a set of random samples and local connections. These random

samples are used to incrementally build a connectivity graph. Please see Figure 1.2. Due

to their implicit representation of the search-space, scalability to higher dimensional prob-

lems and the ability to handle kino-dynamic constraints, SBMP algorithms have become

the default choice for solving many complex robotic planning tasks.

While SBMP algorithms can effectively find a feasible solution in a broad range of

problems, they may fail to return a good quality solution in many cases. One of the reasons

for this poor performance can be traced to the sampling strategy used by these planners

to build the connectivity graph. Ideally, a oracular sampling strategy would just generate

samples along the optimal path. More realistically however, the sampler needs to balance

exploration and exploitation during the planning process. This is because the planner first

3

needs to discover all the relevant areas in the space and then focus search on it to ensure

a good quality solution is returned. Conventionally, SBMP algorithms have employed a

uniform random sampling strategy. This results in a rapid, but also a naı̈ve exploration

of the entire search-space. The “exploration-bias” of uniform random strategy can have a

detrimental effect on the quality of the solution returned by the planner, especially in higher

dimensions. The objective of this thesis is to address these issues by devising a family of

intelligent exploration algorithms that leverage different sources of information available

during planning. To that end, this thesis makes the following contributions.

1.2 Thesis Contributions

• This thesis introduces a Non-parametric Informed Sampling (NP-Informed Sam-

pling) approach for SBMP, that uses collision and graph-structure information gath-

ered during planning. The method generates new samples from a set of well dispersed

“kernel vertices” located in the “Informed Set” [12]. The proposed algorithm uses

heuristics and graph state information to conduct a prioritized search. Data from the

past collision checks is leveraged to learn the location of the obstacles and to avoid

sampling in the obstacle space.

• Many of the intelligent exploration algorithms in the literature are catered towards

uniform cost-map or length-optimal cases. However, several applications require

planning algorithms to find a high quality solution with respect to a given cost func-

tion. This thesis proposes a generative “Relevant Region” sampling algorithm for

intelligent exploration on cost-maps. Relevant Region, a subset of the Informed Set,

leverages graph information to reduce dependence on heuristics and further focus

search compared to traditional approaches such as T-RRT [13].

• Conventionally, the sampling strategy used by the randomized planners is biased to-

wards exploration to acquire information about the search-space. In contrast, this

4

thesis proposes an optimization-based procedure that adds an exploitative-bias to

sampling. A locally exploitative sampling (LES) procedure, an extension of Rele-

vant Region sampling, generates new samples to improve the cost-to-come value of

vertices in a neighborhood. This results in a faster convergence to the optimal solu-

tion compared to other state-of-the-art sampling techniques for geometric planners.

• While various intelligent exploration techniques have been suggested for geometric

SBMP algorithms, devising analogous methods for their kino-dynamic counterparts

still remains an active challenge. Using ideas from reachability analysis, this the-

sis defines a “Time-Informed Set (TIS)”, that focuses the search for time-optimal

kino-dynamic planning after an initial solution is found. Such a Time-Informed Set

includes all trajectories that can potentially improve the current best solution. Hence,

exploration outside this set is redundant. Benchmarking experiments show that an

exploration strategy based on the TIS can accelerate the convergence of sampling-

based kino-dynamic motion planners.

• In a slightly tangential direction to the above four contributions, this thesis also ex-

plores the problem of intelligent query sampling in the context of learning to plan.

In the recent years, learning-based approaches have revolutionized motion planning.

The data generation process for these methods involves caching high quality paths

for different queries (start, goal pairs) in various environments. Conventionally, a

uniform random strategy is used for sampling these queries. However, this leads

to inclusion of “trivial paths” in the dataset (example, straight line paths in case of

length-optimal planning), which can be solved efficiently if the planner has access to

a steering function. This work proposes a “non-trivial” query sampling procedure to

add more complex paths in the dataset. Numerical experiments show that a higher

success rate can be attained for neural planners trained on such a non-trivial dataset.

• Finally, this thesis implements the proposed path-planning algorithms on 1/10 th

5

scale RACECAR robot. A Robotic Operating System (ROS) based software stack

has been developed and consists of a LiDAR based obstacle avoidance module and

full SLAM, planning and control-based navigation module. This stack has been

tested in simulation and on physical hardware.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 formally defines the optimal motion

planning problem and the related notations. This is followed by a discussion on sampling-

based motion planning and the state-of-the-art planners. Next, the exploration problem in

SBMP is motivated along with a review of different intelligent exploration techniques pro-

posed in the literature. Chapter 3 takes a step towards addressing some of the limitations

of the baseline Informed Sampling [12] method by introducing the NP-Informed sampling

technique. This technique efficiently utilizes graph-structure and collision information to

conduct a prioritized search. Next, ideas from Chapter 3 are leveraged in Chapter 4 to

devise a generative “Relevant Region” sampling algorithm. This sampling technique effec-

tively focuses search in uniform and general cost-map settings. Chapter 5 extends the Rel-

evant Region framework by incorporating gradient information and formulating sampling

as an optimization problem. The locally exploitative sampling (LES) algorithm proposed

in this chapter outperforms all other baseline techniques in higher dimensions. While the

previous three chapters focus on “geometric” planning, Chapter 6 tackles the challenging

problem of intelligent exploration for “kino-dynamic” planning. This chapter uses ideas

from reachability analysis to focus search while still maintaining some theoretical guar-

antees. Chapter 7 explores the problem of intelligent (query-)sampling while creating a

dataset in the context of learning to plan. Chapter 8 discusses the deployment of some of

the proposed planning algorithms on the RACECAR robot. Finally, Chapter 9 summarizes

the contributions of this thesis and lays out the scope for future work.

6

CHAPTER 2

PROBLEM DEFINITION AND LITERATURE REVIEW

2.1 Motion Planning Problem

This section formally defines the motion planning problem and the related notations. Let

X ⊂ Rd, d ≥ 2 and U ⊂ Rm, m ≥ 1 be compact sets representing the state and admissible

control spaces respectively. Let Xobs ⊂ X denote the obstacle space and Xfree = cl(X \

Xobs) denote the free space. Here, cl(S) represents the closure of the set S ⊂ Rn. Let λ(S)

denote the Lebesgue measure of the set S ⊂ Rn. Let xs ∈ Xfree denote the initial state and

let Xg ⊂ Xfree represent the goal set. The kino-dynamic motion planning problem can be

defined as follows:

min
u

∫ T

0

L(x(t),u(t)) dt (2.1a)

subject to: ẋ(t) = f(x(t),u(t)), (2.1b)

x(0) = xs, x(T) ∈ Xg, (2.1c)

x(t) ∈ Xfree, u(t) ∈ U for all t ∈ [0, T]. (2.1d)

This problem is one of finding the optimal control u, that takes the robot from the start

state xs to the goal-region Xg (Equation 2.1c) while minimizing the cost functional (Equa-

tion 2.1a), subject to dynamics (Equation 2.1b) and state and control feasibility constraints

(Equation 2.1d).

The “geometric” version of the above problem ignores the kino-dynamic constraints

of the robot. Then, the cost of moving from a point x1 ∈ X to x2 ∈ X along a path

7

π : [0, 1]→ X , π(0) = x1, π(1) = x2 can be denoted by cπ(x1, x2)

cπ(x1, x2) =

∫ 1

0

C(π(s)) ∥dπ(s)
ds
∥2 ds. (2.2)

Here, C : X → R≥0 denotes a continuous state cost function. Note that Equation 2.2

represents the integral of state-cost (IC) metric as a measure of path quality [13]. The

path π in Equation 2.2 is assumed to be collision free. The path-cost is infinite otherwise.

The geometric, optimal path planning problem can be formally defined as the search for

minimum cost path π∗ from the set of feasible paths Π connecting the start state xs ∈ Xfree

to the goal region Xgoal ⊂ Xfree,

min
π∈Π

cπ(xs, xg),

subject to: π(0) = xs, π(1) = xg ∈ Xgoal,

π(s) ∈ Xfree, s ∈ [0, 1].

(2.3)

SBMP algorithms solve the above problem in Equation 2.3 by constructing a connectivity

graph G = (V,E) with a finite set of vertices V ⊂ Xfree and a set of edges E ⊆ V × V .

Conventionally, geometric sampling-based planners construct an edge (u, v) ∈ E using a

straight line path π(s) = u + (v− u)s, s ∈ [0, 1] connecting u and v. Using Equation 2.2,

the edge-cost can be denoted as

cℓ(u, v) = ∥u− v∥2
∫ 1

0

C(u + (v− u)s) ds. (2.4)

SBMP algorithms can perform numerical integration to calculate the edge-cost cℓ(u, v) for

any edge (u, v) ∈ E. The graph G embeds a spanning tree T = (Vt, Et) with Vt = V

and Et = {(u, v) ∈ E | v = parent(u)}. Here, parent : V → V denotes the function

mapping a vertex to its unique parent in the tree. By definition, we have parent(xs) = xs.

The cost-to-come value gT (v) for a vertex v denotes the sum of edge-costs along the path

8

Figure 2.1: A schematic for the geometric planning problem.

from v to the root xs in T . The function gT : V → R≥0 can be written recursively as

gT (v) = gT (vp) + cℓ(vp, v), (2.5)

where vp = parent(v). By definition, the recursion ends at xs with gT (xs) = 0. Let the

set of children for vertex v be denoted by Vv = {u ∈ V | v = parent(u)} and the number

of children by nv = |Vv|. Descendants of a vertex v are all the vertices u ∈ V whose path

from u to the root xs in T contains v. Let Dv denote the set of vertices that are descendants

of v and let dv = |Dv|. Then,

dv = nv +
∑
u∈Vv

du. (2.6)

Note that for a leaf vertex v ∈ V , we have nv = dv = 0.

Let h : X × X → R≥0 denote a consistent heuristic function. This function obeys the

triangle inequality and gives an under-estimate of the path-cost cπ(x1, x2) between any two

points x1, x2 ∈ X . An example of function h is the L2-norm (Euclidean distance). Let

Bϵ(xo) denote an ϵ-ball around xo ∈ X , given by Bϵ(xo) = {x ∈ X | ∥x − xo∥2 < ϵ}, for

ϵ > 0. Please see the illustration in Figure 2.1.

9

Algorithm 1: Sampling-Based Planning Flow
1 V ← {xs}; E ← ϕ; G ← (V,E);
2 for i = 1 : N do
3 xrand ← getRandomSample(X);
4 xnear ← nearestNeighbhor(xrand,G);
5 xnew ← Extend(xnear, xrand);
6 GraphProcessing(G);
7 return G

2.2 Sampling-Based Motion Planning

A defining feature of sampling-based motion planning algorithms is that they solve the mo-

tion planning problem in Equation 2.1 and Equation 2.3 by generating random samples in

X and incorporating the feasible ones in G. These algorithms can be broadly divided into

two classes, namely, Probabilistic Road Maps (PRM) [14] and Rapidly-exploring Random

Trees (RRT) [15]. PRM type of algorithms are catered towards multi-query problems and

consist of two phases: a learning phase and a query phase. In the learning phase, a prob-

abilistic roadmap is computed and stored as a graph. In the query phase, the given start

and goal point are first connected to the nearest nodes in this graph. A search algorithm is

then used to find an optimal path in the roadmap connecting the start and goal. In contrast,

single-query algorithms such as RRT do not invest computational resources in the offline

computation of a roadmap. Instead, these algorithms incrementally build a connectivity

graph online to quickly explore the search-space. However, SBMP algorithms such as RRT

and PRM come with a relaxed notion of probabilistic completeness, i.e., the probability of

finding a feasible solution, if it exists, approaches unity as the number of samples tends

to infinity [16]. Also,these algorithms have been proven to yield sub-optimal paths almost

surely [17]. In order to address this, asymptotically optimal variants of these algorithms

such as RRT*, RRG and PRM* have been proposed [17]. These algorithms converge to

the optimal solution almost-surely, as the number of samples tend to infinity.

Single-query, asymptotically optimal SBMP algorithms, such as RRT*, generally fol-

10

low the sequence of steps given in algorithm 1. These algorithms perform two fundamental

tasks, namely, graph growth and graph processing. The graph-growth module performs the

following set of steps to grow the planner graph G. First, it generates a random sample

xrand. Second, nearest-neighbor calculations are performed to get the vertex xnear ∈ V ,

which is nearest to xrand. The Extend function obtains a candidate vertex xnew by either

forward propagating the system from xnear with random control inputs or locally steering

in the direction of xrand− xnear. The motion from xnear to xnew is then collision-checked. If

found feasible, xnew along with the appropriate set of edges are included in the graph.

Given G, the graph-processing module tries to improve the cost-to-come value of the

vertices by performing operations such as edge rewiring. The graph is said to be rewired if

the parent of a vertex changes, improving its cost-to-come value. In particular, the “local

rewiring” procedure of RRT* first selects the best parent for a newly initialized vertex. It

then sees if this new vertex can be a better parent for any of the vertices in its neighbor-

hood. The RRT# [18] algorithm provides an extension to the RRT* procedure by “globally

rewiring” the graph using dynamic programming. It uses value-iteration [18] or policy-

iteration [19] to optimally connect each vertex in the graph in order to minimize their cost-

to-come values. Recently proposed methods such as BIT* [20] and FMT* [21] also use

ideas from dynamic programming and heuristics to obtain faster convergence than RRT*.

Extensions of BIT* such as ABIT* [22] uses advanced graph-search techniques to find the

first solution quickly. AIT* [23] employs a asymmetric bi-directional search to adaptively

estimate a problem specific heuristic. The DRRT algorithm [24] does the graph-processing

by performing a gradient-descent procedure and moving the graph vertices to a better lo-

cation. The RRdT* planner [25] efficiently explores the search-space using multiple local

trees.

The geometric versions of the sampling-based algorithms ignore kino-dynamic con-

straints of the robot and connect any two points in a Euclidean search space with a straight

line. However, a general kino-dynamic problem Equation 2.1 requires the solution of a

11

two-point boundary value problem (TPBVP), also called the “local steering” problem, for

optimally connecting any two states. Karaman and Frazzoli extended the RRT* algorithm

for kino-dynamic planning by incorporating such steering functions in [26]. Perez et al [27]

linearized the system dynamics and solved the infinite-horizon linear quadratic regulator

(LQR) problem to obtain a locally optimal steering procedure. The kino-dynamic RRT*

algorithm [28] penalizes the control effort and the trajectory duration while connecting any

two states. The authors of [28] solve a fixed final state, free final time, optimal control prob-

lem for linear time invariant (LTI) systems to derive a steering function. A kino-dynamic

version of FMT* is presented in [29]. Note that these algorithms rely on the availability of

a local steering module to ensure asymptotic optimality. However, developing such com-

putationally efficient TPBVP solvers may not be possible for many cases. The GR-FMT

algorithm [30] proposes a local steering method based on polynomial basis functions and

segmentation for controllable linear systems. The recently introduced Stable Sparse RRT

(SST) and SST* [31] algorithms guarantee asymptotic optimality, while having access only

to a forward propagation model of the system’s dynamics. This eliminates the need for TP-

BVP solvers. The SST procedure promotes the propagation of states with good path costs

and performs a selective pruning operation to keep the number of stored nodes small.

2.3 Exploration Problem

The sampling strategy used by a randomized planner to generate xrand (algorithm 1, line

3) plays a critical role in ensuring a fast convergence to the optimal solution. The easiest

and most popular way to generate these random samples is to uniformly sample X . This

leads to an implicit Voronoi bias in RRT-style algorithms and a rapid exploration of the

search-space. Please see Figure 2.2. However, this naive strategy suffers from the follow-

ing limitations. First, uniform sampling prioritizes acquisition of new information over the

improvement of current paths in the planner’s graph. This bias towards exploration can

have a detrimental effect on convergence, especially in higher dimensions [12], [24]. Sec-

12

ondly, this strategy does not utilize two sources of information that are available during the

planning process: the previous collision checks and the planner’s current graph structure.

The collision checks provide data regarding the location of the obstacles, while the graph

structure can provide insight about areas that are already well represented by the planner,

and areas that need to be explored further. Thirdly, after an initial solution is discovered,

the search should ideally focus on a subset of the space that can possibly further improve

the current solution. Sampling outside this subset is redundant and wastes computational

resources.

2.3.1 Geometric Planning

In order to remedy the above problems, several intelligent exploration strategies have been

suggested for geometric sampling-based planners. Akgun and Stilman [32] introduce lo-

cal biasing to sample in the vicinity of the path vertices after an initial solution is found.

Urmson and Simmons [33] aim to focus search by calculating a heuristic-based quality

measure for every vertex in the tree Diankov and Kuffner [34] propose a continuous ran-

domized version of A* in their RA* algorithm. Burns and Brock propose an information-

theoretic framework in a multi-query [35] and a single-query setting [36] to guide explo-

ration towards regions of maximum information gain. The Exploring/Exploiting tree plan-

ner of [37], modulates the variance of Gaussian distributions based on success/failure of

new samples. The RRM algorithm [38] adds edges to the current roadmap to balance ex-

ploration and refinement. Techniques such as [39], [40] use obstacle information to guide

search during planning. MARRT [41] retracts samples onto the medial axis of the free

space to obtain high clearance paths. The Expansive space trees (EST) algorithm [42] pro-

ceeds by selecting a vertex (with probability inversely proportional to number of vertices in

its neighborhood) and generates a new sample in its vicinity. Guided ESTs [43] add the A*

cost and an exploration term to the vertex weights. Persson and Sharf [44] present a formal

analysis for the generalization of the A* cost. Their SBA* algorithm, another variant of

13

Figure 2.2: Uniform random sampling (Left) naively explores the entire search-space,
while the L2-Informed Sampling (Right) focuses on the ellipsoidal subset after an initial
solution is discovered.

EST, uses graph density and constriction value to estimate the likelihood of sampling a new

and free point in the neighborhood of a vertex.

While the above exploration algorithms leverage heuristics and collision-checking in-

formation, they end up naively exploring the entire search-space. In contrast, the Informed

Sampling approach [12] avoids redundant exploration after an initial solution is discovered.

It focuses search onto a subset of the search-space, called the Informed Set, that contains

all the points that can potentially improve the current solution. Please see Figure 2.2 for a

comparison between uniform and Informed Sampling. Let ci denote the cost of the (sub-

optimal) solution discovered by the planner after i iterations. Then, the Informed Set is

defined as,

Xinf = {x ∈ X | h(xs, x) + h(x, xg) < ci}. (2.7)

Note that Xinf considers a heuristic estimate of cost-to-come h(xs, x), and a heuristic esti-

mate of cost-to-go h(x, xg) to get an under-estimate of the solution cost f̂(x) = h(xs, x) +

h(x, xg) constrained to pass through x ∈ X . The Informed Set considers all the points

for which this under-estimate is less than the current best solution cost ci. If heuristic h

is admissible, sampling in the Informed Set is a necessary (but not sufficient) condition to

14

improve the current solution. Exploration outside is set is thus redundant. For the case of

length optimal with Euclidean distance heuristic h(x1, x2) = ∥x1 − x2∥2, the Informed Set

take the following form,

Xinf = {x ∈ X | (x− xc)
TS−1(x− xc) < 1 }, (2.8)

where, S ∈ Rd×d, is a symmetric, positive-definite hyper-ellipsoid matrix and xc = xs+xg
2

is the center point. The above set in Equation 2.8, known as the L2-Informed Set, is a

prolate hyper-spheroid with focii at the start and the goal states and its transverse diameter

is equal to the current best solution cost. Uniform random samples xellipse can be generated

efficiently in the L2-Informed Set using the following equation,

xellipse = Lxball + xc. (2.9)

Here, xball represents a uniformly distributed sample in the d dimensional unit-ball B1(0)

and L ∈ Rd×d is the lower-triangular Cholesky decomposition of S, LLT = S.

Thus, direct Informed Sampling using Equation 2.9 provides a scalable way to focus

search while maintaining the asymptotic optimality guarantee. However, this approach

suffers from certain limitations, which are delineated in the subsequent chapters. This

thesis proposes and validates different frameworks to address these shortcomings.

2.3.2 Kino-dynamic Planning

Prior work on intelligent exploration described above, such as [32, 33, 12], utilized heuris-

tics to improve the performance of geometric sampling-based planners. The Informed SST

(iSST) [45] also leverages heuristics to guide search for kino-dynamic planning. DIRT [46]

uses dominance informed regions along with heuristics to balance exploration and exploita-

tion. However, iSST and DIRT may be ineffective in focusing the search for the cases where

a good heuristic function is unavailable.

15

Concepts from reachability analysis have also been used for guiding exploration in

sampling-based kino-dynamic planning. Shkolnik et al [47] used reachable sets in their

RG-RRT algorithm to shape the Voronoi bias so as to find a feasible solution quickly. A

discretized representation of the reachable space is proposed in [48] to be used for sampling

and nearest neighbor search. Chiang et al [49] trained an obstacle-aware time-to-reach

(TTR) reachability estimator network to guide the RRT search process. However, the above

techniques do not focus search on a subset of the search space based on current solution

cost, which can lead to redundant exploration.

The algorithms proposed in [50] and [51] are most relevant to this thesis, as they address

the problem of Informed Sampling for kino-dynamic motion planning. Kunz et al [50] pro-

posed a hierarchical rejection sampling (HRS) method to generate informed samples for

higher-dimensional systems. HRS essentially is a “bottom up” procedure that generates

samples along the individual dimensions and combines them. An accept/reject decision

is taken for each partial sample until a complete sample in the informed set is generated.

Yi et al [51] proposed a Hit-and-Run Markov Chain Monte-Carlo (HNR-MCMC) algo-

rithm to improve the sampling efficiency compared to HRS. Given a previous sample in the

Informed Set, the HNR-MCMC first samples a random direction and then uses rejection

sampling to find the largest step-size so that the new sample lies inside the Informed Set.

However, both HRS and HNR-MCMC assume availability of a “local steering function”,

that gives the optimal cost (or a good under-estimate) connecting any two states. For mini-

mum time problems, the above two methods can only be applied to specific systems, such

as the double integrator. In this thesis, we address this issue by using ideas from reachabil-

ity analysis to define a “Time-Informed Set”. The proposed algorithm can be applied to a

wide variety of systems.

16

CHAPTER 3

NON-PARAMETRIC INFORMED EXPLORATION

3.1 Motivation

This chapter introduces a non-parametric sampling technique that leverages collision check-

ing information and conducts a prioritized exploration of the Informed Set (Equation 2.7).

The previous chapter briefly explained the L2-Informed Sampling approach for the case of

length-optimal planning. This method focuses search by generating samples in the hyper-

ellipsoidal set, given in Equation 2.8. However, it does not leverage obstacle data from past

collision checks and has to rely on rejection sampling to ensure that the new sample lies in

Xfree. If the ratio λ(Xobs ∩ Xinf)/λ(Xinf) is high, the probability of generating samples in

the obstacle-space using Informed Sampling is also high. Secondly, it does not conduct a

prioritized search by utilizing sources of information such as the structure of graph G. In

this work, the above issues are addressed by proposing a non-parametric sampling method.

The method generates new samples from a set of “kernel vertices” located in the Informed

subset of the search space. The proposed algorithm uses heuristics and graph state infor-

mation to focus the search during the initial phase of planning. After a solution is found,

new points are sampled only in the vicinity of kernel vertices that can potentially provide

better solution. Data from the past collision checks is leveraged to learn the location of the

obstacles and to avoid sampling in the obstacle space.

Expansive search trees (EST) [42] algorithm is especially relevant to this work. The

EST algorithm picks a vertex with probability inversely proportional to the number of

vertices in the neighborhood, for generating the next sample. A common theme in EST

variants [44], [43], [52] is to include the graph density along with the A* cost to conduct a

prioritized exploration of the search space. Although similar concepts are used in this work,

17

a key difference is that the proposed algorithm generates samples only in the Informed Set

after the first connection is made. This saves the computational effort of redundant explo-

ration. Secondly, while the EST algorithm and its variants expand vertices, the proposed

algorithm generates samples in the vicinity of the set of well dispersed “kernel vertices”

inside the Informed Set. A new kernel vertex is initialized only if it lies in the Informed Set

and it is at a threshold distance away from all the existing kernel vertices. Thus, although

the number of vertices may increase indefinitely as the iterations progress, the number of

kernel vertices remain fixed after the entire informed set is explored. This greatly reduces

the computational load of otherwise storing information and processing every vertex for

expansion.

3.2 Algorithm Overview

The proposed method generates new samples in the neighborhood of a set of kernel vertices

K = {k1, k2,kn}, n ∈ Z+ (see Figure 3.1). The set of kernel vertices is a subset of graph

vertices, i.e, K ⊂ V . Thus, not all graph vertices are kernel vertices. Let the state (i.e.,

location vector) of the kernel vertex k be µk. Let dk be the number of edge connections

from kernel vertex k. This represents the “graph density” around k. Let pk be the number

of sampling attempts from k and let f̂k be the estimate of the cost path constrained to pass

through µk, i.e. f̂k = h(xs,µk) + h(µk, xg). The set of informed kernel vertices is defined

as

Kinf = {k ∈ K | f̂k < ci}. (3.1)

The outline of the proposed method is given in algorithm 6. The algorithm is initialized by

a kernel vertex at xs. A new sample xrand is generated using conventional direct Informed

Sampling with probability ϵk. This adds robustness and aids in exploration. Else, a kernel

vertex is chosen to generate a new sample xrand ∈ Xinf in its vicinity (algorithm 6, lines

9-10). The Extend procedure (algorithm 6, line 11) involves conventional rapidly exploring

18

Figure 3.1: Schematic of NP-Informed sampling, showing kernel vertices(black) generat-
ing new samples in the L2-informed set after an initial solution is found.

random graphs (RRG) modules: 1) finding the vertex nearest to xrand in graph G; 2) local

steering from the nearest vertex to initialize a new vertex with state xnew; 3) making new

edge connections by finding vertices in the neighborhood of xnew. Approximate nearest

neighbors can be found efficiently using data structures such as KD-trees. We use FLANN

[53] for nearest neighbor calculations. The Extend procedure also outputs δmin: the distance

of xnew to the closest kernel vertex. Step 3 can be used to search the neighborhood of xnew

for kernel vertices to compute δmin. If no kernel vertex is found, a separate KD-tree built

with kernel vertex states µk, ∀k ∈ K, as input is used for calculating δmin. If this distance is

greater than a threshold value η′, then a new kernel vertex is initialized at xnew (algorithm 6,

lines 12-14). Thus, a new kernel vertex is initialized only if it is η′ distance away from the

existing kernel vertices. This avoids clumping all kernels in the same region and hence aids

exploration. Though the graph vertices can be arbitrarily close, the kernel vertex inclusion

procedure leads to evenly spaced kernels representing salient regions in Xinf . Also, as the

set Xinf is bounded, there can only be a finite number of kernel vertices.

3.2.1 Kernel Selection

The procedure for kernel selection is described in algorithm 3. A value qk is calculated

for every k ∈ Kinf and the kernel with minimum q value is selected to generate the next

19

Algorithm 2: Sampling Algorithm Flow
1 V ← {vs}; E ← ϕ; G ← (V,E);
2 µk1 ← xs; pk1 ← 0; K ← {k1};
3 for i = 1 : N do
4 ci ← minv∈Vgoal

gT (v);
5 urand ∼ U [0, 1);
6 if urand < ϵk then
7 xrand ← InformedSampling()
8 else
9 ki ← chooseKernel(Kinf ,G);

10 xrand ← generateSample(ki);

11 δmin, xnew ← Extend(xrand);
12 if δmin ≥ η′ then
13 µknew ← xnew; pknew ← 0;
14 K ← K ∪ {knew};
15 Exploitation(G);
16 return G

sample. We consider the position information given by f̂k, the graph density information

given by dk, and the number of previous sampling attempts pk to calculate the value qk.

The normalizing terms (f̂max, f̂min), (pmax, pmin) and (dmax, dmin), are as defined in algo-

rithm 3, lines 2-4. The value qk is a weighted linear combination with weights λ1, λ2, λ3,

such that
∑

i λi = 1, as defined in Equation 3.2. Here, the first term containing f̂k repre-

sents the “greedy” term that penalizes selection of kernel vertices away from xs and xg and

subsequently generating samples in those regions.

qk = λ1
f̂k − f̂min

f̂max − f̂min

+ λ2
pk − pmin

pmax − pmin

+ λ3
dk − dmin

dmax − dmin

. (3.2)

The graph density (third) term promotes sampling in the regions that are relatively un-

explored. The second term adds random exploratory behavior and brings uniformity in

the selection of kernels. Different behaviors can be extracted by modulating the values

of λ1, λ2, λ3. A high value of λ1 would focus search, minimizing exploratory behavior.

Increasing λ3 biases the search outwards (towards the leaf vertices), in the regions of low

20

graph density and prioritizes exploration. A very high value of λ2 would lead to random

selection of kernel vertices. As described in the previous section, a new kernel is initialized

only if it is more than a threshold distance away from the existing kernels. Hence, the new

kernel would have low d and p values. This results in bias towards choosing new kernel

vertices and exploring new regions.

Algorithm 3: Kernel Selection Algorithm
1 chooseKernel (Kinf ,G):
2 f̂max ← maxk∈Kinf

f̂k, f̂min ← mink∈Kinf
f̂k;

3 pmax ← maxk∈Kinf
pk, pmin ← mink∈Kinf

pk;
4 dmax ← maxk∈Kinf

dk, dmin ← mink∈Kinf
dk;

5 q∗ ←∞;
6 foreach k ∈ Kinf do
7 qk = λ1

f̂k−f̂min

f̂max−f̂min
+ λ2

pk−pmin

pmax−pmin
+ λ3

dk−dmin

dmax−dmin
;

8 if qk < q∗ then
9 q∗ ← qk; k∗ ← k;

10 pk∗ ← pk∗ + 1;
11 return k∗;

Algorithm 4: Step Limit for informed Sampling
1 InformedStepLimit (p, ê,S):
2 p′ ← p− xcentre;

3 γinf ←
−(êTS−1p′)+

√
(êTS−1p′)2+(1−p′TS−1p′)(êTS−1ê)

(êTS−1ê)
;

4 return γinf ;

3.2.2 Sample Generation

After a kernel k is chosen, a new sample is generated by deciding the direction and mag-

nitude of travel from µk. The magnitude of the travel in a given direction needs to be

restricted so as to confine the samples to Xinf . Consider a point p ∈ Xinf and a direction

vector ê. Let the maximum distance that can be travelled from point p in the direction ê

21

Figure 3.2: Single obstacle environment (Left); Multiple obstacle environment (Right).
The figure shows 500 iterations of NP-Informed sampling in both cases.

until the surface of hyper-ellipsoid (defined in Equation 2.8) is reached be γinf . Thus,

(p + γinf ê− xc)
TS−1(p + γinf ê− xc) = 1, (3.3)

Let, p′ = p− xc. Then, simplifying the above equation, we get

γ2inf(ê
TS−1ê) + γinf(2êTS−1p′) + (p′TS−1p′ − 1) = 0. (3.4)

Solving this quadratic equation, we obtain two solutions. Only the positive solution is

considered, as we wish to move in the direction given by ê. Thus,

γinf =
−(êTS−1p′) +

√
(êTS−1p′)2 + (1− p′TS−1p′)(êTS−1ê)

(êTS−1ê)
. (3.5)

In the proposed algorithm, we consider the point p to be the kernel vertex state µk for

k ∈ Kinf . Hence, from equations Equation 2.8, Equation 3.1 we have p′TS−1p′ < 1 in

Equation 3.5. Thus, γinf will always have a real, positive value.

The sample generation procedure is outlined in algorithm 10. A random exploration

direction is generated with probability ϵs. Otherwise, the set of past directions Ok that

resulted in collision for kernel k are considered. Before an initial solution is found, the

22

Algorithm 5: Sample Generation Algorithm
1 generateSample (k):
2 while true do
3 urand ∼ U [0, 1);
4 if urand < ϵs then
5 e∗ ← generateDirection()
6 else
7 for i = 1 : T do
8 ei ← generateDirection();
9 foreach eobs ∈ Ok do

10 if (eTi eobs) > uobs then
11 uobs ← (eTi eobs);

12 if uobs < u∗ then
13 u∗ ← uobs; e∗ ← ei;

14 γinf ← InformedStepLimit(µk, e∗,S);
15 urand ∼ U [0, 1);
16 γ ← (urand)

1
d min(γk, γinf);

17 xrand ← µk + γ e∗;
18 if IsFree(xrand) then
19 return xrand;
20 else
21 Ok ← Ok ∪ {e∗};
22 k ← random(Kinf); pk ← pk + 1;

23

non-greedy direction (µk − xgoal)/∥µk − xgoal∥2 for kernel k, is also considered as an

obstacle direction in order to bias the exploration efforts to reach Xgoal. A number of

candidate directions T are produced and the dot product is calculated with each direction

vector in Ok. The cost associated with a candidate direction ei is the maximum of these

dot product values (algorithm 10, lines 9-11). The candidate direction with the least cost is

then chosen for exploration (algorithm 10, lines 12-13). This direction is used to calculate

γinf , the maximum step-size, that will ensure that samples remain in Xinf . The minimum

of γinf and γk is considered to calculate the travel magnitude (algorithm 10, line 16). Here,

γk represents the radius of the ball around µk in which new samples would be generated if

γk < γinf . The sample generation algorithm terminates if the new sample xrand ∈ Xfree, else

this direction of travel is stored in Ok and a new kernel vertex in Kinf is chosen randomly

to generate a new sample (algorithm 10, line 22).

3.3 Experiments and Discussion

The performance of the NP-Informed sampling was benchmarked against conventional In-

formed Sampling and Uniform rejection sampling. The above exploration strategies were

paired with local rewiring for exploitation. A C++ implementation of the above samplers

was used (Informed sampling implementation based on the open-source OMPL version

[54]). All experiments were run on a 64-bit PC with 64 GB RAM and Intel Xeon(R) Pro-

cessor. The operating system used was Ubuntu 16.04. Data was recorded over 100 trials

for all the cases. The algorithms were tested in a single obstacle and a multiple obstacle

setting in R2,R3,R4 and R6 (Figure 3.2). A (hyper)cube problem environment X of width

10 units was considered in both cases. In the first case, a single (hyper)cube obstacle with

width of 2 units was placed with its center at the origin. The obstacle lies between the start

and the goal point, xinit = [1.5, 0, ..., 0]T, xgoal = [−1.5, 0, ..., 0]T. The second case consists

of multiple obstacles with xinit = [0, 4, ..., 0]T, xgoal = [0, 0, ..., 0]T.

The 2D environment in case 2 was extended to higher dimensions by imparting a length

24

of 2 units (symmetrically) to each obstacle in dimensions d ≥ 3. A goal bias of 10%

was used in Informed and Uniform rejection sampling. Experiments were performed with

following the step-sizes (maximum edge length) η: 0.3, 0.6, 1., 2. for R2, R3, R4, R6 re-

spectively. Simulations were run for 2, 3, 4, 8 seconds in R2, R3, R4, R6 respectively. The

parameters of the proposed algorithm were set as follows. All simulations were performed

with ϵk = 0.5, i.e., 50 % split between conventional Informed sampling and NP-Informed

sampling. Weighting constants (λ1, λ2, λ3) in Equation 3.2 were set to (3/9, 2/9, 4/9) be-

fore an initial solution is found and then changed to (0, 1/2, 1/2). This causes the sampler

to first focus on finding a good initial solution and then prioritize exploring the informed

set. The probability of generating a random direction ϵs (Alg. algorithm 10, line 4) was

initialized to 0 and changed to 0.5 after an initial solution was found. The maximum mag-

nitude of travel for generating a random sample γk was initialized to 1.5η for every kernel

and then decreased by a small quantity (∆γ = 0.01) every time a sampling attempt was

made from that kernel. The threshold distance for initializing a new kernel vertex: (η′) was

set to η. The number of candidate directions generated T , were 5 in R2, R3 and 10 in R4,

R6.

The simulation results are summarized in Table 3.1, Table 3.2 and Figure 3.3. Table 3.1

and Table 3.2 document the average time (in milliseconds) until the first solution was found

and its corresponding length, while the numbers in the brackets signify the standard devi-

ation. It can be seen that the NP-Informed sampling consistently finds a first solution of

better quality (lesser length) and with smaller standard deviation than either Informed sam-

pling or Uniform rejection sampling. This can be attributed to the use of heuristics during

the kernel vertex selection, which focuses and prioritizes the search.

The convergence behavior of all three algorithms is illustrated in Figure 3.3. The plots

show that NP-Informed sampling gets a “head start” over the other two samplers, as it finds

first solution of better quality. The figure also shows the plot of collision fraction versus

25

Figure 3.3: Convergence behavior and fraction of samples generated in obstructed space
for case 1 and 2 in R2, R4 and R6. Results are averaged over 100 trials and the standard
deviation is shaded

26

Table 3.1: Case 1:Average time/length of first solution

Dimension 2D 3D 4D 6D
Step Size 0.3 0.6 1.0 2.0

Time
(ms)

Inf 7.7(4.8) 10.4(6.1) 11.5(17.5) 50.1(94.2)
NP-Inf 4.3(1.7) 3.2(1.6) 2.6(1.5) 37.9(43.9)

Length Inf 6.5(1.6) 8.0(1.6) 9.3(2.8) 10.4(3.4)
NP-Inf 5.8(0.8) 7.0(1.0) 7.7(1.3) 8.5(1.6)

Table 3.2: Case 2:Average time/length of first solution

Dimension 2D 3D 4D 6D
Step Size 0.3 0.6 1.0 2.0

Time
(ms)

Inf 17.2(6.6) 13.6(10.8) 9.2(11.2) 51.4(142.6)
NP-Inf 16.7(6.4) 4.9(2.8) 3.3(2.5) 30.2(33.3)

Length Inf 10.3(1.5) 8.6(2.1) 8.8(2.5) 9.6(2.9)
NP-Inf 9.0(0.8) 7.6(1.2) 8.0(1.3) 8.2(1.6)

time, where

Collision Fraction =
#Positive collisions

#Calls to collision checker
. (3.6)

Thus, the collision fraction represents the fraction of samples generated in Xobs out of

all the samples generated. Theoretically, the probability of generating a sample in Xobs

would be λ(Xobs)/λ(X) for uniform rejection sampling and λ(Xobs ∩ Xinf)/λ(Xinf) for

Informed Sampling. Here, Xinf represents the set of points contained inside the hyper-

ellipsoid defined in Equation 2.8 and λ(S) denotes the Lebesgue measure of the set S ⊂

Rn. However, the proposed method generates new samples in the vicinity of kernel vertices

that are initialized in Xfree. Moreover, past collision data is used to avoid sampling in the

obstacle space. This results in the reduction of the collision fraction for NP-Informed

sampling. After the NP-Informed sampling and the Informed Sampling converge to similar

path lengths (which means that λ(Xinf) is comparable for both), the NP-Informed sampling

shows lesser collision fraction than Informed Sampling. This can be seen in Figure 3.3,

especially Case2: R2, where λ(Xobs)/λ(X) is highest. Rejection sampling shows lowest

collision fraction in higher dimensions as the ratio λ(Xobs)/λ(X) diminishes rapidly.

The ideas proposed in this chapter are extended in the next to efficiently sample the

“Relevant Region set” defined in [55]. The relevant region set considers the estimate of

27

Figure 3.4: Convergence for NP-Informed sampling with different weights in Equation 3.2
set after an initial solution is found

g value (sum of edge-costs from start state) for cost-to-come instead of the heuristic ap-

proximation used in Informed Set (Equation 2.7). Relevant region does not have a 100%

recall like the Informed set. However, it can possibly have a higher precision (probability

of sampling a point in the set that improves the current solution) as the iterations progress.

It also reduces the dependence on heuristics, which can be misleading in many cases.

28

CHAPTER 4

RELEVANT REGION EXPLORATION

4.1 Motivation

The SBMP algorithms and the exploration strategies mentioned previously are traditionally

geared towards finding the (length) optimal path in uniform cost spaces. This includes the

NP-Informed Sampling approach proposed in the previous chapter. However, many appli-

cations require planning algorithms to find the optimal path with respect to a provided cost

function. These include the problem of navigation on a rough terrain for a mobile robot

(see Figure 4.6), safety critical path planning with clearance cost-map (example in Fig-

ure 4.7), human aware motion planning [56], and planning on energy landscapes [57]. The

Transition-based RRT (T-RRT) algorithm [13] takes a user-defined cost function as an ad-

ditional input and adds a transition test based on the Metropolis criterion to accept or reject

potential new states. The transition test favors exploration of low-cost regions of space and

leads to better quality paths. An enhanced, bi-directional version of T-RRT is presented

in [58]. Berenson et al [59] combine gradient information within the T-RRT framework

to address the issue of navigating cost-space chasms. Finally, Devaurs et al [60] combine

the filtering properties of the transition test with the local rewiring procedure of RRT* to

obtain the asymptotically optimal T-RRT* algorithm. While the transition test promotes

exploration of low-cost regions, unlike the Informed set, it does not focus exploration on

to a subset of the search-space based on the current solution. Secondly, the probabilistic

rejection strategy of the transition test might not scale well to higher dimensional spaces, as

the probability of generating a “good” sample that can pass the transition test may decrease

rapidly. The “Relevant Region” sampler proposed in this chapter addresses these issues

by employing a generative sampling approach. It utilizes heuristics, the current solution

29

cost and the cost function information to effectively focus the search in general cost-space

settings.

The L2-Informed Set includes all points that can potentially improve the current so-

lution. Exploration outside this set is thus redundant. The Lebesgue measure of the L2-

Informed set decreases as the solution improves, leading to a focused search. However,

Informed Sampling effectively resorts to uniform random sampling if the Lebesgue mea-

sure of the Informed Set is comparable to that of the entire search space. This can happen

if the heuristic estimate of the solution cost fails to provide a good enough approxima-

tion of the true solution cost. This work addresses these issues by utilizing cost-to-come

information from the planner’s tree structure and reducing dependence on heuristics.

The Relevant Region, introduced in [55], leverages the current solution cost and the

planner’s tree structure information to focus search. A selective vertex inclusion procedure

[55] and a machine learning approach [61] has been proposed to generate new samples in

the Relevant Region. However, these approaches fall into the category of rejection sam-

pling methods, which do not scale well for high dimensional problems. The current work

rigorously defines the Relevant Region set, analyzes its theoretical properties and presents

a generative method to sample it. This work also extends the Relevant Region framework

for planning on general cost-maps.

4.2 Relevant Region Set

Consider the set of relevant vertices defined as

Vrel = {v ∈ V | gT (v) + h(v, xg) < ci}. (4.1)

Let ϵ > 0 ball around a relevant vertex v ∈ Vrel be defined as

Bϵ(v) = {x ∈ X | ∥x− v∥2 < ϵ, v ∈ Vrel}. (4.2)

30

Figure 4.1: Planning in a multiple obstacle environment with Relevant Region sampling
(left) and Informed Sampling (right). Note that the Relevant Region focuses on two perti-
nent homotopy classes whereas the Informed Sampling generates uniform samples inside
the ellipsoidal region.

Consider the estimate of the solution cost constrained to pass through x ∈ Bϵ(v)

f̂v(x) = cℓ(v,x) + gT (v) + h(x, xg). (4.3)

The Relevant Set around v ∈ Vrel is defined as

Bϵ
rel(v) = {x ∈ Bϵ(v) | f̂v(x) < ci}. (4.4)

Using Equation 4.1, Equation 4.4, the Relevant Region is defined as the union of the rele-

vant sets around all relevant vertices

X ϵ
rel =

⋃
v∈Vrel

Bϵ
rel(v). (4.5)

Note that, in contrast to Xinf which uses the heuristic estimate h(xs, x) of the cost-to-come,

X ϵ
rel uses cℓ(v,x)+gT (v) from Equation 4.3. This approximation considers the cost-function

information see Equation 2.4, the structure of T , and hence the topology of Xfree. While

the L2-norm is still a consistent heuristic for cost-maps with C(x) ≥ 1 for all x ∈ X ,

31

it does not take into account C or Xobs. It may provide a poor estimate of the solution

cost, leading to λ(Xinf) ≈ λ(X). Informed Sampling effectively resorts to uniform random

sampling in this case. The set X ϵ
rel alleviates this dependence on a heuristic. The value

of ϵ, which controls the size of the Relevant Set, is taken to be slightly greater than the

step-size parameter η (in our benchmarking simulations, we used ϵ = 1.5η). The step-size

parameter η in SBMP controls the maximum edge length in G [12]. Note that a very small

value of ϵ would hinder exploration, while a large value of ϵ may provide a poor estimate

of the cost-to-come in Equation 4.3, as the edge (x, v) may not be feasible. The following

theorem proves that for any ϵ > 0, Bϵ
rel(v) is not a singleton.

Theorem 1. For every v ∈ Vrel, there exists δ > 0, such that, for all x ∈ Bδ(v), it follows

that f̂v(x) < ci.

Proof. Note from Equation 4.3 that for each given v ∈ Vrel the function f̂v is continuous

in x since both cℓ(·, v), h(·, xg) are continuous. Also, f̂v(v) = gT (v) + h(v, xg) < ci since

v ∈ Vrel. Since f̂v is continuous at v, it follows that for any ζ > 0 there exists δ > 0

such that x ∈ Bδ(v) implies that |f̂v(x) − f̂v(v)| < ζ . Choosing ζ = ci − f̂v(v) > 0 one

then obtains that for all x ∈ Bδ(v) we have that |f̂v(x) − f̂v(v)| < ci − f̂v(v) and hence

f̂v(x) < ci.

Corollary 2. Let v ∈ Vrel. For every ϵ > 0 there exists δ > 0 such Bδ(v) ⊂ Bϵ
rel(v) .

Theorem 3. For any ϵ > 0, the Relevant Region X ϵ
rel is a subset of the Informed Set Xinf .

Proof. Let x ∈ X ϵ
rel. Then there exists v ∈ Vrel, so that x ∈ Bϵ

rel(v), and hence cℓ(x,v) +

gT (v) + h(x, xg) < ci. Since the heuristic function is consistent, h(x,v) < cℓ(x,v) and

h(v, xs) < gT (v). Using the triangle inequality, it follows that, h(xs, x) < h(x,v)+h(v, xs).

Combining the above inequalities yields h(xs, x)+h(x, xg) < cℓ(x,v)+gT (v)+h(x, xg) <

ci. Hence, x ∈ Xinf . It follows that X ϵ
rel ⊂ Xinf .

Theorem 3 implies that generating samples in X ϵ
rel does not lead to redundant explo-

ration outside Xinf . However, note that sampling in X ϵ
rel is not a necessary condition for

32

improving the current solution, i.e., there may be points x ∈ Xinf such that x /∈ X ϵ
rel which

may improve the current solution. Relevant Region sampling is thus utilized in conjunction

with Informed/Uniform Sampling. As shown in the numerical examples later on, this inter-

play of exploration by Informed Sampling, combined with focusing properties of Relevant

Region, leads to accelerated convergence.

4.3 Relevant Region Sampling Algorithm

Since X ϵ
rel depends on T , a direct sampling strategy is not possible. Hence, the proposed

sampling strategy proceeds by first selecting a relevant vertex vp ∈ Vrel, sampling a random

direction ê, ∥ê∥2 = 1 and finding the maximum magnitude of travel γrel > 0 along ê, so that

for all γ ∈ (0, γrel) the new sample x = vp + γê ∈ Bϵ
rel(vp). Please see Figure 4.2. Note

that Theorem 1 guarantees the existence of γrel. Concretely, the following optimization

problem needs to be solved:

sup
γ∈(0,ϵ)

γ,

subject to: f̂vp(vp + γê) < ci.

(4.6)

4.3.1 Case 1: Uniform Cost-Map

Consider the problem Equation 4.6 with C(x) = 1 for all x ∈ X . Using the L2-norm

heuristic in Equation 4.3, the inequality in Equation 4.6 yields,

f̂vp(vp + γê) = γ + gT (vp) + ∥vp + γê− xg∥2 < ci. (4.7)

Rearrange the terms in Equation 4.7 to obtain

∥vp + γê− xg∥2 < ci − gT (vp)− γ. (4.8)

33

To ensure that the RHS in Equation 4.8 is positive, choose

γ < ci − gT (vp). (4.9)

Let xpg = vp − xg and ggp = ci − gT (vp). Also note that xT
pgxpg = h2(vp, xg) and xT

pgê =

h(vp, xg) cos θ, where θ is the angle between the vectors xpg and ê. Squaring both sides in

Equation 4.8 yields,

h2(vp, xg) + 2γxT
pgê + γ2 < g2gp − 2γggp + γ2

and hence γ <
g2gp − h2(vp, xg)

2(xT
pgê + ggp)

.

Define the RHS in the above inequality as

γuni =
(ci − gT (vp))

2 − h2(vp, xg)

2
[
h(vp, xg) cos θ + (ci − gT (vp))

] . (4.10)

Note that γuni > 0 for vp ∈ Vrel, and attains its maximum value γuni at θ = π, in which

case,

γuni =
(
ci − gT (vp) + h(vp, xg)

)
/2,

and also, γuni < ci − gT (vp) for vp ∈ Vrel, satisfying Equation 4.9. Thus, the solution to

problem Equation 4.6 for uniform cost-map is

γrel = min(γuni, ϵ). (4.11)

34

Figure 4.2: A schematic for Relevant Region sampling.

4.3.2 Case 2: General Cost-Maps

Now consider the problem Equation 4.6 with C(x) > 1 for all x ∈ X . The following

inequality needs to be solved for γ,

γ

∫ 1

0

C(vp + γês)ds + gT (vp) + h(vp + γê, xg) < ci. (4.12)

Often, C may not have a tractable closed-form expression and hence the planner has access

only to the value of C at any point in the search space. In order to avoid a computationally

expensive procedure to solve Equation 4.12, we let

cℓ(vp, vp + γê) = γ

∫ 1

0

C(vp + γês)ds ≈ γC(vp) (4.13)

Note that Equation 4.13 uses a zeroth-order approximation of the integrand to estimate

the integral. Higher order approximations are possible, but these will result in a computa-

tionally more involved process to find γ (see below). It follows from Equation 4.13 that

γC(vp) + gT (vp) + ∥vp + γê− xg∥2 < ci, (4.14)

or, ∥vp + γê− xg∥2 < ci − gT (vp)− γC(vp). (4.15)

35

To ensure that the RHS of Equation 4.15 is positive, choose

γ <
(
ci − gT (vp)

)
/C(vp). (4.16)

Let again xpg = vp−xg, ggp = ci−gT (vp), xT
pgxpg = h2(vp, xg) and xT

pgê = h(vp, xg) cos θ,

where θ is the angle between the vectors xpg and ê. Squaring both sides in Equation 4.15

and simplifying yields,

γ2(C2(vp)− 1)− 2γ(ggpC(vp) + xT
pgê) + g2gp − h2(vp, xg) > 0. (4.17)

Let γ1, γ2 be the roots of the quadratic equation corresponding to inequality Equation 4.17,

and assume γ2 > γ1.

γ2 =
ggpC(vp) + h(vp, xg) cos θ +

√
∆

(C2(vp)− 1)

γ1 =
ggpC(vp) + h(vp, xg) cos θ −

√
∆

(C2(vp)− 1)

∆ = (ggpC(vp) + h(vp, xg) cos θ)
2 − (C2(vp)− 1)(g2gp − h2(vp, xg)).

(4.18)

The maximum and minimum values of the radicand ∆ are obtained at θ = 0 and θ = π,

respectively, where

(ggp − h(vp, xg)C(vp))
2 ≤ ∆ ≤ (ggp + h(vp, xg)C(vp))

2. (4.19)

Hence, γ1, γ2 ∈ R≥0 for vp ∈ Vrel. Then Equation 4.17 yields,

(γ − γ1)(γ − γ2) > 0. equivalently, γ > γ2 or γ < γ1. (4.20)

36

Algorithm 6: Sampling Algorithm
1 V ← {xs}; E ← ϕ; G ← (V,E);
2 for i = 1 : N do
3 ci ← minv∈Vgoal

gT (v);
4 urand ∼ U(0, 1);
5 if urand < prel and ci <∞ then
6 vp ← chooseVertex(Vrel);
7 ê← generateDirection();
8 γrel ← RelevantStepLimit(vp, ê);
9 urand ∼ U(0, 1);

10 xrand ← vp + (urand)
1
dγrelê;

11 else
12 xrand ← InformedSampling()

13 xnew ← Extend(xrand);
14 Exploitation(G);
15 return G

Consider the larger root γ2 from Equation 4.18. The minimum value of γ2 is attained when

θ = π, so that

γ2 ≥
ggpC(vp)− h(vp, xg) + |ggp − h(vp, xg)C(vp)|

(C2(vp)− 1)
. (4.21)

Define the RHS in Equation 4.21 as γ2. Simplifying yields,

γ2 =

{
ggp+h(vp,xg)

C(vp)+1
, ggp < h(vp, xg)C(vp),

ggp−h(vp,xg)
C(vp)−1

, ggp > h(vp, xg)C(vp).
(4.22)

Note that γ2 > ggp/C(vp). This implies γ2 > ggp/C(vp), violating Equation 4.16. Thus,

γ > γ2 is an infeasible solution of Equation 4.14. Next, consider γ1. Differentiating with

respect to θ, the extrema are obtained at θ = 0, π. Calculating the second derivative yields,

γ′′1 (θ = 0) > 0 and γ′′1 (θ = π) < 0. The maximum value of γ1 obtained at θ = π is given

37

Figure 4.3: Planning for 7 DOF Panda Arm in the joint space from the start state (left) to a
given joint goal state (right).

by

γ1 =

{
ggp+h(vp,xg)

C(vp)+1
, ggp > h(vp, xg)C(vp),

ggp−h(vp,xg)
C(vp)−1

, ggp < h(vp, xg)C(vp).
(4.23)

Now, γ1 < ggp/C(vp). This implies γ1 < ggp/C(vp). It follows that γ < γ1 satis-

fies Equation 4.16. Thus, the solution to problem Equation 4.6 with the approximation in

Equation 4.14 is

γrel = min(γ1, ϵ). (4.24)

For the special case when ∆ = 0 and γ1 = γ2 = γc, inequality Equation 4.17 simplifies

to (γ − γc)2 > 0. Considering Equation 4.16 yields γrel = min(ggp/C(vp), ϵ). Note that

if C(vp) = 1, then inequality Equation 4.12 reduces to Equation 4.7 and the analysis for

uniform cost-maps is applicable.

The outline of the proposed algorithm in given in algorithm 6. The procedure initializes

a vertex at the start state xs. At every iteration, the current best solution cost ci is updated

(line 3). If a sub-optimal solution exists (ci is finite), with probability prel (line 5), Relevant

Region sampling is employed to generate a new random sample xrand. Otherwise, conven-

tional Informed Sampling is used. Relevant Region sampling consists of first choosing a

relevant vertex vp, generating a random direction ê and calculating the maximum magni-

38

Figure 4.4: Convergence plots for different sampling methods in various test environments.
Solid lines indicate the average value and the standard deviation is shaded. Error bar indi-
cate the upper and lower quartiles.

tude of travel along ê (line 6-8). If C(vp) = 1, then Equation 4.11 is used for obtaining γrel

along ê, else Equation 4.24 is used. The exponent 1/d (line 10) biases the travel magni-

tude towards γrel and promotes exploration. After xrand is generated, conventional SBMP

modules incorporate a new vertex xnew in G (line 13). These include: a) finding the nearest

neighbor xnearest to xrand in G; b) local steering from xnearest in the direction of xrand to

obtain xnew; c) ensuring feasibility of edge-connections in the neighborhood of xnew. This

is followed by the exploitation module (local/global rewiring, etc).

The chooseVertex module selects a relevant vertex to be expanded from the set Vrel.

39

Figure 4.5: Percentage of successful trials (where planner found a feasible solution) with
different sampling strategies.

Similar to the procedure in Guided-ESTs [43] a weight qv is allocated for each v ∈ Vrel.

qv = λ1pv + λ2dv + λ3
(
gT (v) + h(v, xg)

)
/ci. (4.25)

Here, pv represents the number of times v has been selected in the past. This penalizes

multiple selections and the exploration of the region around a particular vertex. The second

term, dv is the number of edges connected to v. It promotes sampling in relatively unex-

plored regions. The last term 0 <
(
gT (v) + h(v, xg)

)
/ci < 1 is the estimate of the solution

cost through v, normalized by the current best cost. This prioritizes exploration of regions

with low solution cost estimates. The parameters (λ1, λ2, λ3) > 0 modulate the behavior

of the selection algorithm. A large value of λ3 leads to a greedy focus on low solution cost

areas, whereas increasing λ1, λ2 promotes exploration. A binary heap is used to update

and sort Vrel according to the weight in Equation 4.25. A relevant vertex vp is selected by

choosing randomly from the top nq elements in the sorted list. This injects randomness in

the selection process and promotes desirable exploration.

4.4 Experiments and Discussion

The performance of the proposed sampling method was benchmarked against direct In-

formed Sampling [12] and the third variant of adaptive rejection sampling (described in [55])

in uniform cost-space environments (length-optimal planning). For all experiments, the ex-

ploration strategies were paired with RRT#’s dynamic programming based global rewiring

40

Figure 4.6: Planning on a terrain cost-map with the proposed sampling strategy. Here,
white regions represent rough (high cost) areas and the blacks signify smooth sections.

for exploitation. In general cost-map environments, benchmarking was done against In-

formed Sampling and T-RRT# (combining conventional RRT# with the transition-test

described in [13]) with different initial temperatures Tinit. All the algorithms were im-

plemented in C++ using the popular OMPL framework [54], and the tests were run using

OMPL’s standardized benchmarking tools [62]. A 64-bit desktop PC with 64 GB RAM and

an Intel Xeon(R) Processor running Ubuntu 16.04 OS was used. The data was recorded

over 100 trials for all the cases. The proposed algorithm used the following parameter

values:ϵ = 1.5η, (λ1, λ2, λ3) = (10, 5, 100), nq = 10. A goal bias of 5% was used in all

sampling methods. A description of the different environments is provided below.

Uniform Cost-Map Cases:

Multiple Obstacle World: This environment is illustrated in Figure 4.1. The 2D environ-

ment was extended to R4 and R6 by imparting a length of 2 units symmetrically to all of

the obstacles. A step-size of η = 0.6 and η = 1.2 was used in R4 and R6 respectively.

Panda Arm: A planning problem for Panda Arm (by Franka Enmika) is illustrated in

Figure 4.3. The objective was to find a minimum length path in a 7-dimensional configura-

tion (joint) space with joint limits (R7). These limits and collision checking module were

41

Figure 4.7: Planning on a “potential-field” like cost-map. The objective is to reach the goal
state while avoiding the two danger (white) regions.

implemented using MoveIt! [63]. The step-size was set to η = 0.7 for this example.

General Cost-Map Cases:

Terrain Map: A 2D terrain map shown in Figure 4.6 consists of rough, high-cost white

areas and the easily navigable black regions. The step-size was set to η = 0.3 for this

example.

Potential Cost-Map: The environment in Figure 4.7 emulates the problem of finding the

shortest path while staying away from danger areas (white regions). The cost function is

defined as

C(x) = 1 + 9
(
e−

∥xd1−x∥22
5 + e−

∥xd2−x∥22
5

)
. (4.26)

Here, xd
1, xd

2 are the center points of the danger regions. A step-size of η = 0.6 and η = 1.5

was used in R4 and R6 version of the environment respectively.

Numerical experiments validate the utility of Relevant Region sampling in conjunction

with Informed/Uniform Sampling. The proposed method leads to faster convergence in

all cases (see Figure 4.4). This is observed especially in higher dimensional problem in-

stances. Transition-test based exploration is more effective than purely Uniform/Informed

Sampling for planning on general cost-maps. However, the tendency to (probabilistically)

42

reject samples may hinder exploration in some cases. This can be seen in the terrain cost-

map (Figure 4.6) which is similar to the cost-space chasms scenario described in [59]. As

conveyed in Figure 4.5, the transition-test based exploration fails to find a feasible solution

in roughly 40% of total trials, whereas the proposed method finds a solution in all trials and

also accelerates the convergence.

This chapter rigorously defines, analyzes properties of, and presents a generative tech-

nique to sample the Relevant Region set. Note that, while sampling the Informed Set is a

necessary condition to improve the current solution, it is not sufficient. Concretely, an “In-

formed Sample” is not guaranteed to improve the current solution or the cost-to-come value

of the vertices In the next chapter, the Relevant Region framework is extended to address

this limitation by incorporating gradient information from the planner’s tree structure.

43

CHAPTER 5

LOCALLY EXPLOITATIVE RELEVANT REGION SAMPLING

5.1 Motivation

As discussed in the introductory chapters, uniform random sampling biases the graph

growth towards vertices with larger Voronoi regions in RRT-style methods [15]. This re-

sults in a rapid exploration of the search-space and is effective for finding an initial solution

in single-query scenarios. However, this strategy, like many others in the literature (e.g.,

[64], [39], [40]), prioritizes acquisition of new information over the improvement of current

paths in the planner’s graph. This bias towards exploration can have a detrimental effect on

convergence, especially in higher dimensions [12]. In contrast to such exploration-biased

techniques, the algorithm proposed in this chapter aims to generate new samples that can

improve the cost-to-come value of vertices and initiate rewirings. The proposed algorithm

first selects a vertex and then generates a new sample in its vicinity. This sample is gener-

ated by considering an optimization problem, wherein the objective is to minimize the sum

of cost-to-come value of a chosen vertex and its randomly selected descendants. The pro-

posed sampling algorithm thus leverages local information to provide an exploitative bias.

This combination of global exploratory and locally exploitative sampling results in faster

convergence for SBMP algorithms, as demonstrated by several benchmarking experiments

in this chapter.

As seen in the previous chapter, the combination of Relevant Region and Informed

Sampling results in accelerated convergence in uniform and general cost-space environ-

ments. However, these techniques do not generate samples to directly improve the cost-to-

come value of vertices. Hence, some of the samples may fail to trigger any improvement

in the planner’s graph. The sampling algorithm proposed in this chapter also generates

44

Figure 5.1: Schematic motivating the proposed LES algorithm, which leverages local in-
formation and considers an optimization problem to generate the blue sample. In contrast
to the red sample, the blue sample can initiate rewirings and improve cost-to-come value
of (green) vertices in the graph.

new samples in the Relevant Region to avoid redundant exploration. However, it does so

by considering an optimization problem aimed towards improving the cost-to-come value

of vertices in the graph. Application of the proposed sampling algorithm thus initiates a

higher number of rewirings and results in a faster convergence. Please see Figure 5.1 for

an illustration of this.

Approaches combining sampling-based planning and local optimizers have also been

explored. RABIT* [65] uses CHOMP [66] to get feasible, high quality edges connecting

any two vertices during a global search performed by BIT*. However, RABIT* requires

pre-computed domain information, such as an obstacle potential function, which may not

be available in many practical problems. Volumetric Tree* [67] addresses this limita-

tion by constructing an approximation of the obstacle-free configuration space on-the-fly.

However, it relies on uniform random sampling for graph construction, which may lead

to redundant exploration. DRRT [24] employs a gradient-descent based procedure in the

graph-processing module. However, this “vertex movement” procedure incurs a very high

computational cost due to the extra calls to the nearest-neighbor and collision-checking

function to ensure feasibility. The sampler proposed in this chapter does not require extra

collision-checking/nearest-neighbor calculations and can be used in conjunction with any

graph-processing module.

45

5.2 Sampling As Optimization

Given G, the objective of the graph-processing module is to minimize the cost-to-come

value of all vertices. This objective can be written as

JT =
∑
u∈V

gT (u). (5.1)

Let JT (v) denote the terms of JT that are dependent only on a particular vertex v ∈ V . The

position of vertex v impacts the cost-to-come value of itself and its descendants. Then,

JT (v) = gT (v) +
∑

w∈Dv

gT (w). (5.2)

Using Equation 2.5, the above equation for JT (v) can be written in terms of the edge-

costs cℓ(vp, v) and cℓ(v,u). Here, vp = parent(v) and u is any child of v. The edge-cost

cℓ(vp, v) will appear 1 + dv times in total, to calculate the cost-to-come value of v and its

descendants. Similarly, the edge-cost cℓ(v,u) will appear 1 + du times in total, to calculate

the cost-to-come value of u and its descendants. Then,

JT (v) = k1 + (1 + dv)cℓ(vp, v) +
∑
u∈Vv

(1 + du)cℓ(v,u). (5.3)

Note that Equation 5.3 for JT (v) only contains terms dependent on v. Other terms are

incorporated in the constant k1. Also, dv and du in Equation 5.3 are linked by Equation 2.6.

A new sample can be generated by first selecting a vertex v and then finding a “better”

position for it by optimizing JT with respect to v. Note that argminv JT = argminv JT (v).

However, calculating the values of the coefficients dv, du in Equation 5.3 requires a

depth-first search with time complexity of O(|Vt|). This may get computationally cumber-

some, especially as the planner tree grows larger with the number of iterations. Hence, the

46

Figure 5.2: Neighborhood around a vertex v. Here, nv = 4 and d̂v,Vv = 4 + (1 + 2) = 7.

following objective function is considered instead.

ĴT ,Vv(v) = k2 + (1 + d̂v,Vv)cℓ(vp, v) +
∑
u∈Vv

(1 + nu)cℓ(v,u),

d̂v,Vv = nv +
∑
u∈Vv

nu.

(5.4)

Please see Figure 5.2.

Note that minimizing ĴT ,Vv(v) in Equation 5.4 with respect to v is equivalent to mini-

mizing the cost-to-come values of v, the set of children Vv and their children. The objective

ĴT ,Vv(v) can be calculated efficiently with the information contained in the data structure

of vertex v, without recursing deeper down the tree. Effectively, ĴT ,Vv(v) considers descen-

dants of v up to a depth of 2, whereas JT (v) considers full depth. This can be generalized

to depth-k descendants. Finally, a random subset of the children, denoted by V̂v ⊆ Vv, can

be selected and a new sample generated by minimizing ĴT ,V̂v
(v). This serves two purposes.

First, it promotes a desirable randomness in the sampling process. Second, focusing on the

subset V̂v effectively assigns a weight of zero for the terms corresponding to the vertices

Vv \ V̂v in the objective Equation 5.3, Equation 5.4. This can lead to a better improvement

in the cost-to-come value of vertices corresponding to V̂v.

5.3 Curse Of Dimensionality For Sampling

The proposed “Locally Exploitative Sampling (LES)” procedure, described in the next sec-

tion, first selects a vertex v and then generates a new sample considering ĴT ,V̂v
(v). Expan-

47

Figure 5.3: Schematic for the analysis in Appendix. Black and magenta circles illustrate
the set B∥xo∥2(0) and Bϵ(xo) respectively. The intersection Bϵ(xo) ∩ B∥xo∥2(0) can be over-
approximated by hyper-sphere centered at xc with radius rc.

sive Space Trees (EST) [42] and its variants, such as [43], [44], also proceed by selecting

a vertex and generating a random sample in its vicinity. However, the probability of gen-

erating a “good” sample (that can improve ĴT ,V̂v
(v)) with such random search decreases

rapidly in higher dimensions. This is illustrated in the analysis below by considering the

problem of minimizing a quadratic function Jq(x) = xTx with random local search. The

probability of generating a sample that can improve Jq diminishes exponentially with the

dimension d.

Consider the problem of minimizing a quadratic objective function Jq(x) = xTx with

random local search. This analysis is similar to the one provided in [68]. Let the starting

state be xo ∈ Rd with the corresponding objective cost Jq(xo). Random search generates

samples in the set Bϵ(xo) to find a new state with cost less than Jq(xo). Assume ϵ < ∥xo∥2.

The set of states that provide an improvement over Jq(xo) satisfy xTx < xT
o xo. This set can

be denoted as B∥xo∥2(0), where 0 is the origin. The set of good samples thus lie in the set

Bϵ(xo)∩B∥xo∥2(0). Please see Figure 5.3. This intersection between two hyper-spheres can

be over-approximated by Brc(xc), where

rc = ϵ

√
1− ϵ2

4∥xo∥22
. (5.5)

48

Algorithm 7: LES Algorithm Flow
1 V ← {xs}; E ← ϕ; G ← (V,E);
2 for i = 1 : N do
3 ci ← getBestSolutionCost();
4 urand ∼ U(0, 1);
5 if urand < pLES and ci <∞ then
6 v← chooseVertex(Vrel);
7 ê← getGradientDirection(v);
8 γ ← getStepSize(v, ê);
9 xrand ← v− γê;

10 else
11 xrand ← InformedSampling(ci)

12 Extend(xrand);
13 GraphProcessing(G);
14 return G

Algorithm 8: Calculate Gradient Direction
1 getGradientDirection (v):
2 V̂v ← getRandomSubset(Vv);
3 e← (1 + d̂v,V̂v

) ∂
∂vcℓ(vp, v) +

∑
u∈V̂v

(1 + nu)
∂
∂vcℓ(v,u);

4 ê← e/∥e∥2
5 return ê

The probability of generating a good sample using random search is given by

P(x ∈ Bϵ(xo) ∩ B∥xo∥2(0)) =
λ
(
Bϵ(xo) ∩ B∥xo∥2(0)

)
λ(Bϵ(xo))

<
λ(Brc(xc))

λ(Bϵ(xo))
=

(
1− ϵ2

4∥xo∥22

) d
2 .

(5.6)

Note that, if ψ = 1 − ϵ2

4∥xo∥22
, then 0 < ψ < 1, as ϵ < ∥xo∥2. Hence, ψd goes to 0

exponentially as d increases. Thus, the probability of generating a good sample decreases

exponentially with the dimension d.

49

Algorithm 9: Calculate Step-size
1 getStepSize (v, ê):
2 γrel ← getMaxStepSize(v, ê);
3 γmax ← γrel;
4 while γmax > δ do
5 urand ∼ U(0, 1); γ ← (urand)

1/dγmax;
6 xrand ← v− γê;
7 if ĴT ,V̂v

(xrand) < ĴT ,V̂v
(v) then

8 break;
9 else

10 γmax ← γ;

11 if γmax < δ then
12 urand ∼ U(0, 1); γ ← (urand)

1/dγrel;

13 return γ

5.4 Locally Exploitative Sampling Algorithm

This motivates the LES procedure, given in algorithm 7. With probability pLES, LES is used

to generate a new sample xrand (algorithm 7, line 6-8). Otherwise, a new sample is gener-

ated using the conventional Informed Sampling technique given in [12] (algorithm 7, line

11). This ensures a balance between exploration-exploitation (controlled by the parameter

pLES) and graph growth in all the relevant homotopy classes. The Extend function takes

this random sample and performs relevant procedures (nearest-neighbor, local steering and

collision checking) to incorporate a new vertex in the graph (algorithm 7, line 12). Fi-

nally, the graph-processing module operates on G considering the addition of a new vertex

(algorithm 7, line 13).

If the best available solution cost ci after i iterations is finite (indicating that a sub-

optimal solution has been discovered), redundant exploration can be avoided by focusing

the search on the Informed or Relevant Region set. As the Informed Set may be ineffective

in focusing the search for general cost-space problems, LES generates new samples in the

Relevant Region X ϵ
rel [69], defined in Equation 4.5. The value of ϵ in Equation 4.5 is set

50

Figure 5.4: Planning with the proposed LES algorithm on a potential cost-map. The robot
incurs a higher cost if it travels in the white regions.

to ϵ = 1.5η, where η is the range parameter in SBMP algorithms [54], which controls

the maximum edge-length in G. The procedure for selecting a vertex (chooseVertex), is

same as the implementation in chapter 2 [69]. It assigns a weight qv for each v ∈ Vrel and

uses a binary heap data-structure for sorting. Start, goal and leaf vertices (vertices with no

children) are ignored by the chooseVertex function.

Note that, a closed-form solution to the optimization objective ĴT ,V̂v
(v) cannot be ob-

tained in general. Hence, LES proceeds by numerically calculating the gradient of ĴT ,V̂v
(v)

and moving an appropriate step-size in the direction of the gradient. The procedure to cal-

culate the gradient direction ê is given in algorithm 8. First, a random subset of children

V̂v is obtained. This is done by randomly sampling a start integer sind ∼ U
[
0, |Vv| − 1

]
and an end integer eind ∼ U

[
sind, |Vv|

]
Then, all children vertices with indices sind to eind

and their descendants upto a certain depth are considered for constructing ĴT ,V̂v
(v). The

gradient of ĴT ,V̂v
(v) with respect to v is calculated numerically using the symmetric differ-

ence formula (algorithm 8, line 3). Having obtained the gradient direction ê, the algorithm

to calculate the step-size is given in algorithm 9. As finding the optimal step-size γ∗ by

solving argminγ ĴT ,V̂v
(v− γê) is intractable, approaches such as backtracking line search

[70] have been suggested. However, executing backtracking line search is computationally

not viable for the current application, as it requires a higher number of expensive calls to

51

Figure 5.5: A schematic for the LES algorithm. The gradient direction (red) is calculated
by considering the cost-to-come value of randomly selected children vertices (red) and their
descendants.

calculate ĴT ,V̂v
. Instead, LES uses a procedure given in algorithm 9, which is similar to the

Hit-and-Run Sampler implemented in [51]. First, given a vertex v and the travel direction

−ê, the procedure in [69] is used to calculate the maximum step-size γrel. This ensures

that a candidate v − γê ∈ X ϵ
rel for any γ ∈ (0, γrel). Variable γmax is set to γrel. Next,

a random step-size γ is sampled from the interval (0, γmax). Please see Figure 5.5. The

exponent of 1/d in algorithm 9, line 5 biases γ towards γmax. If the candidate v−γê results

in an improvement for ĴT ,V̂v
, step-size γ is returned. Else, γmax is updated to γ. Thus, the

search interval is sequentially reduced until a suitable step-size is discovered. Theoreti-

cally, a travel of infinitesimal magnitude in the direction of the gradient always results in

an improvement. However, if γmax is less than a small quantity δ ≪ η, then a random γ in

the interval (0, γrel) is returned (Algorithm. algorithm 9, line 11-12) to avoid clumping of

new vertices around v.

5.5 Experiments and Discussion

Numerical experiments consider three variations of the proposed LES algorithm, namely

LES-2, LES-8 and LES-∞. LES-2 and LES-8 consider descendants up to a maximum

depth of 2 and 8 respectively, whereas LES-∞ considers full depth up to the leaf nodes.

52

Benchmarking was performed against Informed sampler and Relevant Region sampler de-

scribed in [12] and [69] respectively. Note that LES and Relevant Region sampler share

a similar chooseVertex procedure. However, the Relevant Region sampler only generates

random samples in X ϵ
rel and does not consider the optimization problem corresponding to

Equation 5.3 or Equation 5.4. All the algorithms were implemented using C++/OMPL [54].

Data was gathered over 100 trials for each experiment using the standardized OMPL bench-

marking tools [62]. All experiments were performed on a 64 bit laptop running Ubuntu

16.04 OS, with 16 GB RAM and an Intel i7 processor. The parameter pLES and an anal-

ogous parameter prel for Relevant Region sampler were both set to 0.5. The parameter

δ was set to 10−4. All sampling strategies used a goal bias of 5% and were paired with

RRT#’s global rewiring for graph-processing. A description of the different benchmarking

environments is given below.

Potential Cost-map: This environment, illustrated in Figure 5.4, has the state-cost function

C(x) = 1 + 9
∑
i

exp
(
− ∥xc

i − x∥22
)
. (5.7)

Here, xc
i represent the center points of the high cost white regions. The objective for the

robot is to plan a path to the goal while avoiding these soft obstacles. The range parameter

η was set to 0.4, 0.6 and 1.5 for the 2D, 4D and 6D versions of environment respectively.

Robot Manipulator: A planning problem for a 7 DOF Panda and a 14 DOF Baxter arm is

illustrated in Figure 5.6. The objective was to find the minimum length path (C(x) = 1 for

all x ∈ X) in the configuration-space with strict joint limits (X ⊂ R7 for Panda, X ⊂ R14

for Baxter). These joint limits and collision checking calculations were implemented with

the help of MoveIt! [63]. The range parameter η was set to 1.2 and 2 for the Panda and

Baxter experiments respectively.

Many Homotopy Classes World: This case, similar to one studied in [12], is illustrated in

Figure 5.7. The objective is to find a length-optimal path in this cluttered environment. This

world has multiple non-optimal homotopy classes, but only two optimal ones. Experiments

53

Figure 5.6: Planning in the joint space of Panda and Baxter manipulator arms. The start
and goal positions for both robots are indicated in the top and bottom figures respectively.
A video of full robot plan can be found here: https://youtu.be/J4B5 L2Ghrs

Figure 5.7: Planning with the proposed LES-RRT# and DRRT [24] in a world with multiple
homotopy classes. The computationally costlier DRRT (black path) can get “stuck” in a
wrong homotopy class. For the above trial run, LES-RRT# and DRRT sampled 9414 and
573 graph vertices respectively in 1 second of planning time.

54

https://youtu.be/J4B5_L2Ghrs

were performed for a 4D and 6D version of this environment with the range parameter η

set to 1.5 and 2.5 respectively. Benchmarking for this case also considered two variants

of the DRRT planner, namely DRRTd and DRRT0.3 [24]. The DRRTd algorithm delays

the computationally expensive, vertex optimization procedure until an initial solution is

discovered, whereas DRRT0.3 calls that procedure only with a probability of 0.3.

Results from the numerical experiments are illustrated in Figure 6.5. The proposed

LES variations outperform Informed and Relevant Region samplers in higher dimensional

settings (Potential 6D, Panda, Baxter) in terms of cost convergence. While the performance

of all three LES variants is similar, LES-∞ and LES-8 perform slightly better than LES-2

in case of Potential 6D and Panda. LES also initiates a larger number of rewirings in T .

However, similar performance gains are not seen in the lower dimensional environments

(Potential 2D, 4D). The Relevant Region sampler, with its focusing properties, performs

better than Informed sampling. LES incurs a higher computational cost due to the nu-

merical gradient calculations in algorithm 8 and expensive function evaluations of ĴT ,V̂v
in

algorithm 9. Thus, the application of LES leads to a lesser number of iterations executed in

a given time period compared to the other two methods. This might slow down convergence

in lower dimensions. However, random search techniques are affected by the “curse of di-

mensionality” as illustrated in the analysis above. This justifies the computationally more

costly procedures of LES which lead to an accelerated convergence in higher dimensions.

The DRRT planner can show tremendous performance gains, in terms of cost conver-

gence, for higher dimensional, relatively less cluttered environments. However, for cases

such as Figure 5.7, the DRRT planner can find an initial solution in a non-optimal ho-

motopy class. Its computationally expensive, vertex movement procedure requires ad-

ditional collision-checking and nearest-neighbor calculations to maintain feasibility and

graph neighborhoods. As a consequence, it generates significantly lesser number of ver-

tices compared to the other methods (see Figure 6.5). Hence, optimizing the graph comes

at a steep cost of reduced exploration and finding solution paths in other homotopy classes

55

1 2 3 4 5 6 7

4

6

8

10

12

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

1.2

1.4

10
4

0.5 1 1.5

15

20

25

1 2 3 4 5

15

20

25

1 2 3 4 5

2

4

6

8

10

12

14

10
4

1 2 3 4 5

2

4

6

8

10
4

1 2 3 4 5 6 7

15

20

25

1 2 3 4 5 6 7
0

2

4

10
4

1 2 3 4 5 6 7

1

2

3

4

5

10
4

2 4 6 8

6

8

10

56

2 4 6 8

0

2

4
10

3

2 4 6 8

2

4

6

8

10
3

0.5 1 1.5 2 2.5 3 3.5

10

15

20

1 2 3 4 5

15

20

25

30

35

0.5 1 1.5 2 2.5 3 3.5
0

2

4

10
4

1 2 3 4 5

0

2

4

10
4

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

10
4

1 2 3 4 5

0.5

1

1.5

2

2.5

10
4

Figure 5.8: Benchmarking plots for the numerical experiments. Solid lines indicate the
value averaged over 100 trials and the error bars represent standard deviation. Application
of the proposed LES (red, cyan, black) leads to a faster convergence and a larger number
of tree rewirings in higher dimensions. However, it incurs a higher computational cost and
hence executes a lesser number of iterations compared to Informed (magenta) and Relevant
Region (blue) sampling.

57

for DRRT. It can thus get “stuck” in the wrong homotopy class. While LES also leverages

the gradient information, it is much more computationally tractable than DRRT. It gener-

ates enough vertices to explore all relevant homotopy classes while also initiating higher

number of rewirings to improve the cost-to-come values. Thus, LES strikes the right bal-

ance between exploration and exploitation and outperforms all other methods in a higher

dimensional case such as 6D in Figure 6.5.

The previous three chapters explore a family of intelligent exploration algorithms that

focus search for geometric planners. These planners ignore the kino-dynamic constraints

of the robot and connect any two points in the search-space using a straight line. The next

chapter tackles a challenging problem of informed exploration for kino-dynamic planning.

58

CHAPTER 6

TIME-INFORMED EXPLORATION

6.1 Motivation

While the previous chapters discussed the problem of intelligent exploration for geometric

sampling-based planners, this chapter looks into the kino-dynamic case. As delineated in

the Chapter 2, a significant progress has been made in the area of sampling-based kino-

dynamic planners, with efficient methods such as SST [31]. However, developing in-

telligent exploration strategies to complement these kino-dynamic planners still remains

a challenging problem. Uniform random sampling results in a rapid exploration of the

search-space and is effective for finding a first solution. However, after an initial solution

is found, exploration can be focused on a subset of the search-space that can potentially

further improve the current solution. For the case of geometric, length-optimal planning,

Gammell et al [12] introduced the “L2-Informed Set” that contains all the points that can

potentially improve the current solution. This set is a prolate hyper-spheroid with focii at

the start and the goal states and its transverse diameter is equal to the current best solution

cost. The direct Informed Sampling (IS) technique proposed in [12] provides a scalable

approach to focus search, and shows dramatic convergence improvements in higher dimen-

sions compared to the other state-of-the-art heuristic methods.

However, as discussed in [50], [51] deriving a parameterized representation or direct

sampling of such Informed Sets for systems with differential constraints is a challenging

problem. In this work, we propose an analogue to the Informed Set for the case of time-

optimal kino-dynamic planning using ideas from reachability analysis [71, 72]. Given a

feasible (but perhaps sub-optimal) solution trajectory with time cost T > 0, we define a

Time-Informed Set (TIS) as the set that contains all the trajectories with time cost less

59

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

ẋ

start

goal

Obstacle

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

ẋ

start

goal

Obstacle

Figure 6.1: Time-optimal planning for a 2D system using the SST algorithm with uniform
exploration (left) and the proposed strategy (right). The tree vertices generated are repre-
sented in green. Using the proposed strategy leads to a focused search.

than or equal to T . The planner can thus avoid redundant exploration outside the TIS. The

proposed exploration algorithm can be applied to a variety of systems, even if a tractable

TPBVP solver may not be available.

6.2 Time-Informed Set

This section defines a “Time-Informed Set” to focus search in the case of time-optimal

kino-dynamic planning. This problem is defined below.

T ∗ =min
u

T (6.1a)

subject to: ẋ(t) = f(x(t),u(t)), (6.1b)

x(0) = xs, x(T) ∈ Xg, (6.1c)

x(t) ∈ Xfree, u(t) ∈ U for all t ∈ [0, T]. (6.1d)

Now, consider the set of points that can be reached at time t, starting from xs at time

t0 < t, using admissible controls,

Xf [t0, t] = {z ∈ X | ∃ u : [t0, t]→ U , x : [t0, t]→ X ,

s.t x(t0) = xs, x(t) = z, ẋ(t) = f(x(t),u(t))}.
(6.2)

60

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

ẋ

t : 2,T : 10

F [0, t]
Rb[t, T]
start
goal
Obstacle

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

ẋ

t : 5,T : 10

F [0, t]
Rb[t, T]
start
goal
Obstacle

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

ẋ

t : 8,T : 10

F [0, t]
Rb[t, T]
start
goal
Obstacle

Figure 6.2: Evolution of the forward reachable set F [0, t] and the backward reachable
tube Rb[t, T] for the 2D Toy system at time t = 2, 5, 8. Note that Ω(T) comprises of the
intersections F [0, t] ∩Rb[t, T].

Let F [t0, t] be an over-approximation of Xf [t0, t], i.e., Xf [t0, t] ⊆ F [t0, t]. Similarly, the

set of points starting at time t that can reach Xg at time tf > t using admissible controls

can be defined as,

Xb[t, tf] = {z ∈ X | ∃ u : [t, tf]→ U , x : [t, tf]→ X ,

s.t x(t) = z, x(tf) ∈ Xg, ẋ(t) = f(x(t),u(t))}.
(6.3)

Let B[t, tf] be an over-approximation of Xb[t, tf], i.e., Xb[t, tf] ⊆ B[t, tf]. Note that state

constraints ensuring collision-free trajectories are not imposed while defining the above

sets. The (over-approximated) backward reachability tube over the interval [t, tf] includes

the set of all points starting at time t, that can reach Xg at any time τ ∈ [t, tf]

Rb[t, tf] =
⋃

t≤τ≤tf

B[t, τ]. (6.4)

Assume that a feasible (perhaps sub-optimal) solution to problem Equation 6.1 with time

cost T > 0 is available. Consider the following definition of the Time-Informed Set (TIS)

Ω(T) =
⋃

0≤t≤T

F [0, t] ∩Rb[t, T]. (6.5)

Intuitively, Ω(T) contains all the points x ∈ X that can be reached from xs at a time t,

where 0 ≤ t ≤ T , i.e., x ∈ F [0, t] and then can reach the goal at time τ , t ≤ τ ≤ T , i.e.,

61

x ∈ Rb[t, T]. Please see Figure 6.2 and the attached video1 for a visualization of Ω(T).

The following theoretical arguments formally prove that given a sub-optimal solution

with time cost T , the set Ω(T) contains all the trajectories with time cost T or less.

Lemma 4. Given a feasible solution with cost T > 0, F [0, t] ∩ B[t, T] ̸= ∅ for all t ∈

[0, T].

Proof. Consider the solution trajectory with time cost T , ζ : [0, T]→ X , where ζ(0) = xs

and ζ(T) = xg. For any point x on this trajectory, there exists t ∈ [0, T] such that x = ζ(t).

Thus, x ∈ F [0, t] and x ∈ B[t, T]. It follows that, x ∈ F [0, t] ∩ B[t, T]. Therefore,

F [0, t] ∩ B[t, T] ̸= ∅.

Lemma 5. Rb[t, T1] ⊂ Rb[t, T2] for any T2 > T1 > t > 0.

Proof. Note from the definition Equation 6.4,

Rb[t, T2] =
⋃

t≤τ≤T2

B[t, τ] =
(⋃

t≤τ≤T1

B[t, τ]
)⋃(⋃

T1≤τ≤T2

B[t, τ]
)
.

SinceRb[t, T1] =
⋃

t≤τ≤T1
B[t, τ] it follows thatRb[t, T1] ⊂ Rb[t, T2].

Theorem 6. The set Ω(T) contains all trajectories with time cost exactly T .

Proof. Consider any solution trajectory ζ : [0, T] → X with time cost T > 0, where

ζ(0) = xs, ζ(T) = xg. For any point x on this trajectory, there exists t ∈ [0, T] such that

x = ζ(t). Then, x ∈ F [0, t] and x ∈ B[t, T]. This implies that x ∈ F [0, t] ∩ B[t, T]

and hence x ∈ F [0, t] ∩ Rb[t, T]. Thus, x ∈ Ω(T). Since t is arbitrary, if follows that

ζ(t) ∈ Ω(T) for all t ∈ [0, T].

Theorem 7. Ω(T1) ⊂ Ω(T2) for any T2 > T1 > 0.

Proof. Recall that the set Ω(T2) is defined by

Ω(T2) =
⋃

0≤t≤T2

F [0, t] ∩Rb[t, T2], (6.6)

1https://www.youtube.com/watch?v=dnMHb7uFEGw

62

https://www.youtube.com/watch?v=dnMHb7uFEGw

which can be re-written as

Ω(T2) =

(⋃
0≤t≤T1

F [0, t] ∩Rb[t, T2]

)⋃ (⋃
T1≤t≤T2

F [0, t] ∩Rb[t, T2]

)
.

From Lemma Theorem 5, it follows thatRb[t, T1] ⊂ Rb[t, T2].

Hence, Ω(T1) =
⋃

0≤t≤T1
F [0, t] ∩ Rb[t, T1] ⊂

⋃
0≤t≤T1

F [0, t] ∩ Rb[t, T2]. Thus,

Ω(T1) ⊂ Ω(T2).

Corollary 8. Given a solution to Equation 6.1 with time cost T , the set Ω(T) defined in

Equation 6.5 contains all the trajectories with cost less than or equal to T . Conversely, any

trajectory that is not contained inside Ω(T) has time cost T
′
> T

Proof. From Theorem Theorem 6, it follows that Ω(T) contains all trajectories with time

cost exactly T . Theorem Theorem 7 implies that Ω(T) is a superset of all the sets containing

trajectories with time cost less than T . Thus, Ω(T) also contains all the trajectories with

cost less than or equal to T .

After a, perhaps sub-optimal, solution with cost T is found, any state that lies on an

improved solution path necessarily lies inside the TIS. The search can thus be focused onto

the TIS. This can avoid redundant computations and accelerate convergence, especially for

higher dimensional problems.

6.3 Time-Informed vs L2-Informed Set

This section examines the relationship between the TIS defined in Equation 6.5 and the

L2-Informed Set from [12] for a special case of a linear single integrator system. The

purpose of this investigation is to show that the TIS is a generalization of the L2-Informed

Set approach in [12]. Consider the case of single-integrator dynamics ẋ(t) = u(t), for

which
F [t0, t] = {x ∈ X |∥x− xs∥2 ≤ umax(t− t0)}

B[t, tf] = {x ∈ X |∥x− xg∥2 ≤ umax(tf − t)}.
(6.7)

63

Here, ∥.∥2 represents the L2-norm. As the set U is compact, there exists a umax > 0, so

that ∥u(t)∥2 ≤ umax for all t. Note that, for this special case, the forward and backward

reachable sets defined in Equation 6.7 are concentric circles. Then, for a given t < tf ,

we have B[t, tf] = Rb[t, tf] and hence Ω(T) =
⋃

0≤t≤T F [0, t] ∩ B[t, T]. Thus, for any

x ∈ Ω(T), we have ∥x − xs∥2 ≤ umaxt and ∥x − xg∥2 ≤ umax(T − t). Adding the two

inequalities we get,

Ω(T) = {x ∈ X | ∥x− xs∥2 + ∥x− xg∥2 ≤ umaxT} (6.8)

The TIS in Equation 6.8 in this case has the same prolate hyper-spheroid form as the L2-

Informed Set [12]. Thus, the TIS can be seen as a generalization of the L2-Informed Set.

6.4 Time-Informed Exploration Algorithm

6.4.1 Ellipsoidal Approximations

Although obtaining the exact reachable sets defined in Equation 6.2, Equation 6.3 may not

be computationally tractable, various techniques have been proposed to obtain tight over-

approximations of these sets. These include application of polytopes and zonotopes [73],

ellipsoidal calculus [72] and formulating reachability problem as a Hamilton-Jacobi-Bellman

(HJB) PDE [71]. In this work, we use the ellipsoidal technique which provides a scalable

framework for reachability analysis of robots with linear-affine dynamics. However, as

discussed later on, the HJB reachability formulation can be used to extend the algorithms

proposed in this work for general cost-functions and non-linear systems.

Consider the special case of linear kino-dynamic systems. Concretely, the constraint

Equation 6.1b is ẋ(t) = Ax(t) + Bu(t), with A ∈ Rn×n, B ∈ Rn×m. Then, Xf [t0, t] and

64

-5 -4 -3 -2 -1 0

x

-2

-1

0

1

2

3

ẋ

Forward Reachable Set: F [0, 2]

Ellipsoid
Sphere

Figure 6.3: Comparing the forward reachable set F [0, t] for the 2D system at t = 2 using
the hyper-sphere and ellipsoidal approximation.

Xb[t, tf] can be defined as

Xf [t0, t] = {x ∈ X | ∃ u : [t0, t]→ U , s.t x = eA(t−t0)xs +

∫ t

t0

eA(t−τ)Bu(τ) dτ},

Xb[t, tf] = {x ∈ X | ∃ u : [t, tf]→ U , s.t x = e−A(tf−t)xg −
∫ tf

t

e−A(τ−t)Bu(τ) dτ}.
(6.9)

Here, xg ∈ Xgoal. A hyper-sphere over-approximation to the above sets can be constructed

as follows [73],

F [t0, t] = {x ∈ X |∥x− eA(t−t0)xs∥2 ≤ r(t0, t, umax)},

B[t, tf] = {x ∈ X |∥x− e−A(tf−t)xg∥2 ≤ r(t, tf , umax)},

r(t1, t2,umax) = (e∥A∥2(t2−t1) − 1)∥B∥umax/∥A∥2.

(6.10)

Here, ∥M∥2 represents the induced two norm (maximum singular value) for a matrix M .

However, the above over-approximation might be too conservative for the current applica-

tion. See Figure 6.3. If the reachable sets are overtly conservative and λ(Ω(T)) ≈ λ(X),

then TIE may result in little or no focus of the search.

In contrast, the ellipsoidal technique [72] approximates the reachable sets as ellipsoids,

E(xc, Q) = {x ∈ Rn|⟨x− xc, Q
−1(x− xc)⟩ ≤ 1}. (6.11)

Here, xc is the center and Q is the positive definite shape matrix of the ellipsoid. Forward

65

and backward reachable sets, F [0, t],B[t, T] can be obtained by solving an ordinary differ-

ential equation (ODE) for the center and shape matrix. Please see the Ellipsoidal Toolbox2

documentation for a brief overview. Note that the boundary conditions for the forward and

backward reachable set ODE are the start and goal ellipsoids respectively. From the prob-

lem definition in Equation 6.1, the start ellipsoid is encoded as a hyper-sphere with negligi-

ble radius around the center xs. The goal set Xg is represented also as a hyper-sphere with a

set radius around a center xg ∈ Xg. The ODE for the shape matrix can be solved and stored

off-line. An analytical solution for the ODE describing the center’s trajectory can also be

constructed. Thus, a “library” of reachable sets F [0, t],B[t, T] can be created off-line to be

used in the sampling and vertex inclusion algorithm described below. This library stores

the value of center vector xc and matrices Q, L of the forward and backward reachable

sets. Here L is obtained using the Cholesky decomposition of Q, Q = LLT and is used for

generating samples inside E(xc, Q) [12]. Please see Figure 6.2 for a visualization of F [0, t]

and B[t, T] constructed using the ellipsoid technique.

6.4.2 Sampling Algorithm

The algorithm 10 describes a procedure to generate a new sample xrand in Ω(T). Notice

from Equation 6.5 that Ω(T) consists of a union over the intersections of sets. Devising a

direct sampling technique to generate uniform random samples in Ω(T) (as done for the

L2 Informed Set in [12]) is hence a challenging task. The proposed algorithm proceeds by

first sampling a time t in the interval (0, T) according to a probability distribution p[0,T](t)

(line 2). Ideally, to generate uniform random samples in Ω(T) with respect to the Lebesgue

measure, this distribution needs to be p[0,T](t) = λ(F [0, t]∩Rb[t, T])/λ(Ω(T)). However,

calculating and sampling from this distribution may not be tractable for general higher

dimensional systems. Hence, for the sake of simplicity, we choose p[0,T](t) to be uniform

over the interval [0, T]. Given t, the sets F [0, t],B[t, T] can then be obtained from the

2http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/doc/main manual.html

66

http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/doc/main_manual.html

Algorithm 10: Sampling Algorithm
1 generateSample (T):
2 t ∼ p[0,T](t);
3 for i = 1 : ns do
4 if λ(F [0, t]) < λ(B[t, T]) then
5 xcand ← sampleUniform(F [0, t]);
6 if xcand ∈ B[t, T] then
7 xrand ← xcand;
8 return xrand;

9 else
10 xcand ← sampleUniform(B[t, T]);
11 if xcand ∈ F [0, t] then
12 xrand ← xcand;
13 return xrand;

14 xrand ← sampleUniform(X);
15 return xrand;

library of stored reachable sets as discussed in the previous section. We leverage the fact

that F [0, t] ∩ B[t, T] ̸= ∅ from Lemma Theorem 4 to generate a xrand ∈ F [0, t] ∩ B[t, T].

If the Lebesgue measure of F [0, t] is less than B[t, T], a uniform sample is generated in

F [0, t] and checked if it belongs to B[t, T], otherwise, B[t, T] is sampled and checked if

it belongs to F [0, t] (lines 4-13). Notice from Figure 6.2 that λ(F [0, t]) increases and

λ(B[t, T]) decreases as t varies from 0 to T . An efficient algorithm for generating uniform

samples inside a hyper-ellipsoid is discussed in [12]. If no xrand ∈ F [0, t] ∩ B[t, T] can be

generated in ns attempts, the algorithm returns a uniform random sample from the search-

space X (line 14-15).

6.4.3 Vertex Inclusion Algorithm

The vertex inclusion procedure, described in algorithm 11, accepts a candidate vertex if it

lies in Ω(T). Consider a candidate vertex v with cost-to-come t, i.e., the cost of trajectory

from xs to v is t. Since the cost-to-come is t, we have v ∈ F [0, t]. Thus, if v ∈ Rb[t, T],

then v ∈ Ω(T). The proposed algorithm discretizes the interval [t, T] with a step-size δ. A

67

Algorithm 11: Vertex Inclusion Algorithm
1 includeVertex (v, t, T):
2 if t > T then
3 return false ;

4 foreach τ ∈ {t+ δ, t+ 2δ, . . . T} do
5 if v ∈ B[t, τ] then
6 return true ;

7 return false;

vertex is accepted if it lies in any B[t, τ], for τ ∈ {t + δ, t + 2δ, . . . T} (line 4-6). The sets

B[t, τ] are again obtained from the stored library of reachable sets.

In order to maintain the theoretical guarantees of TIE, an over-estimate of the solution

cost T is required. This over-estimate can be obtained (and updated) after the planner dis-

covers (and then improves) an initial, sub-optimal solution. Also, learning-based methods

similar to [49] can be used to obtain an estimate of the solution cost given a planning en-

vironment. In this work, the above algorithms are called only after an initial solution is

discovered.

6.5 Experiments and Discussion

Benchmarking experiments were performed by pairing different exploration strategies with

the SST planner [31]. All algorithms were implemented in C++ using the OMPL frame-

work [54], and the tests were run using OMPL’s standardized benchmarking tools [62]. The

data was recorded over 100 trials for all the cases on a 64-bit laptop PC with 16 GB RAM

and an Intel i7 Processor, running Ubuntu 16.04 OS. The performance of the proposed ex-

ploration strategy was benchmarked against uniform sampling (Uni) and uniform sampling

combined with Informed propagation (IP). Informed propagation essentially rejects expan-

sion vertices with cost-to-come t > T , if there exists a sub-optimal solution with cost T .

If t < T , then forward propagation from the vertex is done for at most T − t duration.

Thus, Informed Propagation (IP) prohibits exploration outside the set
⋃

0≤τ≤T F [0, τ]. The

68

proposed Time-Informed exploration (TIE) algorithm uses the sampling and vertex inclu-

sion procedures described in Algorithms algorithm 10 and algorithm 11 with ns = 10 and

δ = 0.1. The SST planner parameters, namely, the selection and pruning radius were set to

standard OMPL values of 0.2 and 0.1 respectively. The L2-norm was used as the distance

function. A description of different case-studies is given below.

2D System: Consider a 2D kino-dynamic system ẋ = A2×2x + B2×1u with, x = [x, ẋ]T

and

A2×2 =

 0.0 0.5

−0.1 0.2

 , B2×1 =

0
1

 . (6.12)

The set-up of the planning problem is illustrated in Figure 6.1, with xs = [−3 0]T, xg =

[3 0]T,Xg = E(xg, 0.25 I2), u ∈ [−0.5 0.5]. Here, I2 represents the 2× 2 identity matrix.

8D System: The 2D system described above is extended to a 8D system ẋ = A8×8x +

B8×4u, with x = [x1 ẋ1 x2 ẋ2 x3 ẋ3 x4 ẋ4]
T,u = [u1 u2 u3 u4]

T and

A8×8 = blkdiag[A2×2, A2×2, A2×2, A2×2],

B8×4 = blkdiag[B2×1, B2×1, B2×1, B2×1].

(6.13)

The single obstacle in 2D case was extended to 8D by adding a length of 2 units symmetri-

cally in the extra dimensions. Also, xs = [−2 0 0 0 0 0 0 0]T, xg = [2 0 0 0 0 0 0 0]T,Xg =

E(xg, I8), ui ∈ [−1 1], i ∈ {1, 2, 3, 4}.

Moon-lander Robot: A simplified version of a planar “moon-lander robot” is illustrated

in Figure 6.4. The robot has three thrusters Fl, Fr and Ft acting in the left, right and up

direction respectively. In the absence of upwards thrust, the robot falls under gravity. The

69

Figure 6.4: A schematic for the moon-lander robot (left) and quadrotor (right) simulation
cases with sample solution paths found by the proposed algorithm after 40 sec of planning
time.

dynamics of the robot is assumed to be as follows.

d

dt



x

z

ẋ

ż


=



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





x

z

ẋ

ż


+



0 0 0

0 0 0

−2 1 0

0 0 1




Fl

Fr

Ft

 . (6.14)

The start, goal and admissible control space were set as follows: xs = [0 1 0 − 2]T, xg =

[0 − 4 0 0]T,Xg = E(xg, 0.25 I), Fl ∈ [0 1], Fr ∈ [0 1], Ft ∈ [−2 2]. The objective is to

land the robot in time-optimal fashion.

Planar Quadrotor model: A linearized quadrotor model for longitudinal flight based on

[74] can be written as ẋ = A6×6x +B6×2u, with x = [x z u w q θ]T,u = [ft τy]
T and

A6×6 =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 −g

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0


B6×2 =



0 0

0 0

0 0

1/m 0

0 1/Iy

0 0


(6.15)

70

5 10 15 20

11

11.5

12

12.5

5 10 15 20 25

12

14

16

18

20

22

10 20 30 40 50

10

15

20

10 20 30 40

6

8

10

12

10 20 30 40

2

4

6

10
4

10 20 30 40

0.1

0.2

0.3

0.4

0.5

Uni IP TIE

Figure 6.5: Convergence plots for the numerical experiments. Using the proposed TIE
leads to a faster convergence in all cases (red plot). The bottom left figure illustrates number
of candidate vertices generated using uniform and TIE exploration method. The bottom
right figure plots the fallback ratio for different values of nS . Solid lines indicate the value
averaged over 100 trials and the error bars represent the standard deviation.

The start, goal and admissible control space were set as follows: xs = [−2.5 0 0 0 0 0]T, xg =

[2.5 0 0 0 0 0]T,Xg = E(xg, I), ft ∈ [−1 1], τy ∈ [−1 1]. The set-up for time-optimal plan-

ning problem is shown in Figure 6.4.

The results of the numerical simulations are illustrated in Figure 6.5. It can be seen

that Informed Propagation (blue) performs better than the naı̈ve uniform exploration (ma-

genta). However, using the proposed TIE strategy, a combination of algorithm 10 and

algorithm 11, outperforms the other methods in all cases. Note that for a planner such as

SST, the sampling procedure influences the vertex to be selected for forward propagation.

Generating random samples xcand ∈ Ω(T) biases the selection of vertices in the TIS for

expansion. After a vertex is selected, expansion is performed by forward propagating the

71

system dynamics to generate a new candidate vertex v. The vertex inclusion algorithm

then ensures that the candidate vertex v ∈ Ω(T). Thus, the combination of the proposed

sampling and inclusion algorithm avoids redundant exploration focuses search, and leads

to a faster convergence in all cases. In order to study the computational cost incurred by

the TIE procedure, the quadrotor simulation was run without obstacles. Compared to uni-

form sampling, TIE generates a lower number of feasible, candidate vertices for inclusion

in the planner tree, as illustrated in Figure 6.5. Future work will explore leveraging GPUs

and operating on batch of samples and reachable sets in parallel. Parameter ns controls

the maximum number of attempts made to generate a new sample xcand ∈ Ω(T) before a

uniform random sample is returned. In order to analyze the effect of ns, the “fallback ratio”

is defined as,

Fallback Ratio =
Number of Fallbacks to Uniform Sampling

Number of Calls to the TIE Sampler

The fallback ratio was found to be negligible for the lower dimensional 2D system. It is

relatively higher for the 6D quadrotor simulation run in a no-obstacle environment (see

Figure 6.5). This ratio can be decreased by increasing ns. However, a large value of

ns corresponds to a larger amount of computations invested in the sampling procedure,

which can adversely impact the convergence of solution cost. Note that while the sampling

algorithm may return xcand outside the TIS if ns attempts are exhausted, the vertex inclusion

procedure ensures that a candidate vertex v is incorporated in the planner tree only if it lies

in the TIS.

72

CHAPTER 7

NON-TRIVIAL QUERY SAMPLING FOR LEARNING TO PLAN

7.1 Motivation

The previous chapters explored various “heuristic” based techniques for SBMP algorithms.

These methods leverage various sources of information available, such as heuristic func-

tions, graph state and collision checking information to improve the performance of plan-

ners. Techniques such as Informed Sampling, Relevant Region and LES accelerate the

convergence of planners while still maintaining some theoretical guarantees. Although

such methods can improve the performance of motion planning algorithms, many require

handcrafted heuristics for efficacy. Also, these methods do not leverage prior experience

or the data gathered from expert demonstrations offline. Deep learning based approaches

for motion planning address these two limitations by generating a dataset of high quality

paths in various environments. In the offline phase, this dataset is used to train a deep

neural network (DNN) model to predict quantities of interest, such as cost-to-go [75], next

point along the optimal path [76] or a sampling distribution [77]. The DNN model can then

be used online to focus search and dramatically increase the efficiency of planning algo-

rithms. However, note that these learning-based methods may not offer similar theoretical

guarantees as the heuristic-based methods.

The data generation process for learning-based methods involves sampling and solv-

ing a set of queries (start, goal pairs) in a given environment. For many applications,

the map/environment in which the robot needs to operate may be fixed or given apriori.

However, the query sampling distribution can be modified in order to extract more infor-

mative paths beneficial to the learning process. Conventionally, uniform random sampling

is used to generate the start and goal states. Many queries in this uniformly sampled dataset

73

Figure 7.1: Schematic for the proposed data generation method. Instead of trivial queries
that can be solved by a greedy connection, more non-trivial queries are added. In addition,
the data pruning procedure filters out the trivial part (π3, xg) of the path.

can be solved by greedily connecting the start and goal state using a steering function (if

available). Such a steering function gives the optimal path between any two states after

relaxing the collision constraint. This work proposes adding more “non-trivial” queries

to the dataset, which cannot be solved by a simple greedy connection. The efficiency of

the neural planners can be boosted by training deep models on this dataset comprising of

relatively more complex paths. This is demonstrated by creating datasets with different de-

grees of non-triviality and benchmarking the performance of the neural planner on various

robotic planning tasks.

7.2 Related Work

Exciting progress has been made at the intersection of learning and motion planning in re-

cent years. To improve the performance of discrete space planners, methods that leverage

reinforcement learning [78] and imitation learning [79], [80] have been proposed. Neural

A* [81] presents a data-driven approach that reformulates conventional A* as a differen-

tiable module. Huh et al present a higher-order function network in [82] that can predict

cost-to-go values to guide the A* search. For sampling-based planning, techniques such

as [83] and [39] learn a local sampling strategy for global planning. Zhang et al present

a deep learning based rejection sampling scheme for SBMP in [84]. Ichter et al [77] train

74

a conditional variational autoencoder (CVAE) model to learn sampling distributions and

generate samples along the solution paths. NEXT [75] learns a local sampling policy and

cost-to-go function using “meta self-improving learning”. Kuo et al [85] input the planner

state and local environment information into a deep sequential model to guide search during

planning. Approaches such as [86], [87] focus on identifying critical or bottleneck states

in an environment to generate a sparse graph while planning. While the above techniques

may differ in terms of their model architectures or outputs, they do not tackle the problem

of improving the data-generation process via query sampling for increasing the efficacy of

neural planners.

In [88], Huh et al extend their previous work to present a query sampling technique for

non-holonomic robots. However, this technique is purely based on dyamics of the robot,

does not utilize obstacle information and is only applicable for car-like robots. Recently

proposed OracleNet [89] and Motion Planning Networks (MPNet) algorithm [76] learn a

deep model to recursively predict the next state along the solution path, given a query. Au-

thors in [76] use “Active Continual Learning (ACL)” to improve the data-efficiency of the

training process. Similar to the DAGGER algorithm [90] the ACL process involves training

a MPNet deep model on a set of expert demonstrations for a Nc > 0 number of initial iter-

ations. The ACL algorithm then finds the cases where the MPNet planner fails and invokes

the expert planner only to solve them. The solutions generated by the expert planner are

stored in a replay buffer to be used in training. ACL also leverages the “Gradient Episodic

Memory (GEM)” technique [91] to alleviate the problem of catastrophic forgetting during

the learning process. While more data-efficient, the ACL process can be tricky to imple-

ment and computationally more expensive, as it involves interleaving the training process

with running the neural planner multiple times. The performance of ACL models can also

be worse than that of batch-offline models in many cases [76]. In contrast, this work pro-

poses a modified query sampling procedure for data-generation and trains all models in a

batch-offline manner.

75

Algorithm 12: Neural Planner
1 NeuralPlanner (xs, xg,Xobs):
2 π ← {xs};
3 for i = 1 : Nplan do
4 if steerTo(πend, xg,Xobs) then
5 π ← π ∪ {xg};
6 break;
7 else
8 xnew ← PNet(πend, xg);
9 π ← π ∪ {xnew};

10 if xg /∈ π then
11 return ∅ ;

12 if Feasible(π) then
13 return π;
14 else
15 return Replan(π);

7.3 Supervised Learning for Planning

Learning based methods use the data gathered from successful plans to train models in the

offline phase. In the online phase, this learned model can be used to solve (Equation 2.3) or

assist the classical planners. The data generation process involves creating an environment

and sampling a set of Ktrain > 0 queries or (start, goal) pairs in Xfree. LetQ = Xfree×Xfree

denote the “query-space”, where × represents the Cartesian product between two sets. A

classical planner is then used to solve the path planning problem (Equation 2.3) for each of

the Ktrain queries and obtain a good quality solution. A quantity of interest to be learned

as output (such as cost-to-go, next state on the optimal path etc) is extracted from these

solution paths. The objective of the training process is to learn a function fθ (usually a

deep neural network), on the dataset D by minimizing an empirical loss with respect to

weight parameters θ

The MPNet procedure involves learning a planning network PNet, that predicts the next

state on the optimal path, given a current state, a goal state and environment information as

76

the input. A neural planning algorithm, in line with the one described in [76], is illustrated

in Algorithm algorithm 12. Given a query xs, xg, the path π to be returned is initialized

with the start-state. This path π can be represented as an ordered list of length L ≥ 2,

π = {π1, π2 . . . πL}. Let πend denote the last point on the path π. At each iteration, the

neural planner attempts a greedy connection to the goal using the steerTo function. For

length-optimal or geometric planning case, the steerTo connects any two points using a

straight line. For car-like robots, this steering function can use the Dubins curves for dy-

namically feasible connections [92]. To probe the feasibility of this greedy connection, the

steerTo procedure discretizes the path and collision-checks the points on it. If the greedy

connection πend to xg is valid, the goal-state is appended to the path and the planning loop

terminates. Else, the learned planning network PNet, is used to predict the next state on

the optimal path. If the path π is infeasible, a neural replanning procedure is performed

on this coarse path in an attempt to repair it. Please see [76] for more details about these

procedures.

Planning with the MPNet neural planner, given in algorithm 12, involves forward passes

through a neural network. This computational operation is known to have a constant time

complexity since it is a matrix multiplication of a fixed size input vector with network

weights to generate a fixed size output vector. In contrast, many SBMP algorithms such as

RRT* are known to have O(n log n) complexity [17], where n is the number of samples.

Thus, a well trained MPNet planner can outperform state-of-the-art SBMP methods such

as BIT*, especially in higher dimensions, as shown in [76].

7.4 Non-trivial Query Sampling

Conventionally, uniform random sampling is used in the data generation process to obtain

a query xs, xg ∈ Q. However, this may result in the inclusion of “trivial” queries in the

dataset, for which steerTo(xs, xg) = True. In case of such trivial queries, the neural plan-

ning algorithm 12 terminates in the first iteration after processing lines 4-6. Thus, a key

77

Algorithm 13: Data Generation Algorithm
1 D ← ∅;
2 X ,Xobs ← createEnvironment();
3 for j = 1 : Ktrain do
4 urand ∼ U [0, 1];
5 if urand < pnt then
6 xs, xg ← nonTrivialQuerySampling(Xfree);
7 else
8 xs, xg ← uniformSampling(Xfree);

9 π ← solveQuery(xs, xg,Xobs);
10 D ← includeData(D, π);
11 return D

observation is that steerTo procedure in algorithm 12, line 4 performs an implicit classifica-

tion of queries, so that only “non-trivial” queries are passed over to the PNet. Concretely,

the set of non-trivial queries can be defined as

Qnt = {xs, xg ∈ Q | steerTo(xs, xg) = False}. (7.1)

This motivates the proposed data generation algorithm 13, which aims to increase the num-

ber of non-trivial data samples in D. After an environment X ,Xobs is created, data is

generated by solving a total of Ktrain queries. With probability pnt,

the proposed nonTrivialQuerySampling procedure is used to obtain xs, xg ∈ Qnt. Else, con-

ventional uniformSampling returns a query in Q. A classical planner such as A* or BIT*

then solves this query and outputs a good quality solution path π. Samples from this path

π are appended to the dataset D with the proposed data inclusion procedure includeData.

A rejection sampling algorithm to generate new queries inQnt is given in algorithm 14.

For Nnt number of attempts, uniform sampling is used to first generate a valid query

xs, xg ∈ Q. The steerTo module then validates the connection between start and goal

state. If found invalid, the corresponding non-trivial query is returned. Thus, this proce-

dure intends to filter out trivial paths while maintaining the exploratory/coverage property

78

Algorithm 14: Non-trivial Query Sampling
1 nonTrivialQuerySampling (Xobs):
2 for i = 1 : Nmax do
3 (xs, xg)← uniformSampling(Xfree);
4 valid← steerTo(xs, xg);
5 if not valid then
6 return (xs, xg);

7 return (xs, xg);

of uniform sampling. Please see Figure 7.2 and Figure 7.5 for a visualization of queries

generated using the proposed non-trivial sampling procedure.

The data inclusion algorithm 15 iterates over the segments of path π and logs the cur-

rent state, goal state (πi, πend) as the input and the next state (πi+1) as the output/label.

However, if the flag pruneData = True, the algorithm skips including the data-sample

{(πi, πend), πi+1} if πi, πend ̸∈ Qnt. Thus, pruneData = True ensures that only the non-

trival segments of π are incorporated in D. Please see Figure 7.1 for an illustration of

this.

Depending on the topology of Xobs, the neural planner may find it relatively harder

to predict feasible paths in certain environments. The notion of non-trivial queries can be

used to define a metric that captures this level of difficulty. Consider a “non-triviality ratio”,

which can be defined as,

γnt =
Non-trivial queries

Uniformly sampled queries
. (7.2)

Thus, γnt is the ratio of number of non-trivial queries found in a (large enough) set of uni-

formly sampled queries. This ratio will be high for complex, cluttered and narrow-passage

type environments and low for relatively simpler, single-obstacle type environments.

79

Algorithm 15: Data Inclusion Procedure
1 includeData (D, π):
2 for i = 1 : L− 1 do
3 if pruneData then
4 valid← steerTo(πi, πend);
5 if valid then
6 continue;

7 D ← D ∪ {(πi, πend), πi+1}

8 return D;

7.5 Experiments and Discussion

In order to benchmark the proposed data generation algorithm, the following procedure

was implemented for each planning environment. First, four datasets with different pa-

rameter settings were created. These were as follows: D0 (pnt = 0, pruneData = False),

D1 (pnt = 0.5, pruneData = False), D2 (pnt = 1.0, pruneData = False), D3 (pnt =

1.0, pruneData = True). Thus, D0 represents the dataset generated using the conventional

uniform query sampling, whereas D3 is created using the proposed non-trivial query sam-

pling and data pruning procedure. Four deep models, PNet0,PNet1,PNet2,PNet3 were

then trained on their respective datasets. The neural network shape, size and the training

parameters were held constant while learning all four models. Performance of the neu-

ral planner algorithm 12 using these four models was evaluated on 1) Ktest number of

new uniform queries and 2) Ktest number of new non-trivial queries. Two performance

metrics, namely, success ratio and cost ratio were considered. Success ratio gives the num-

ber of times (out of Ktest in total) the neural planner was successful in finding a feasible

(collision-free) solution. Cost ratio denotes the ratio of neural planner’s solution cost to

that of classical planner, averaged over Ktest trials. Model training and evaluation process

was performed using the Python PyTorch API on a 64 bit, 16 GB RAM laptop with Intel i7

processor and a NVIDIA GeForce RTX 2060 GPU. A description of robotic planning tasks

along with a discussion of results is given below.

80

Point Robot: Four different 20 × 20 environments, illustrated in Fig. Figure 7.2, were

considered for the case of point robot planning. Four datasets {Di}3i=0, as described above,

were generated for each environment. A total of Ktrain = 3000 number of queries were

sampled for each dataset. An A* planner, followed by post-processing/smoothening, was

used to solve these queries and obtain length-optimal paths. A small padding of 0.8 units

around the obstacles was propagated during the data generation step, and was relaxed dur-

ing the final performance evaluation step. This was found to greatly boost the success

ratio of the neural planner, while making slight compromise in the cost ratio metric. The

performance metrics were logged by solving Ktest = 500 number of unseen uniform and

non-trivial queries with the four learned PNet models.

Rigid Body Planning: Figure 7.3 shows the instance of planning for a rigid robot in four

10× 10 environments. A total of Ktrain = 5000 queries were considered to create each of

the four datasets {Di}3i=0. All the queries were solved in the SE(2) space using OMPL’s

[54] implementation of the BIT* planner. An obstacle-padding of 0.4 units was propagated

during the data-generation phase. The learned PNet models predicted a three dimensional

[x, y, θ] vector representing the robot’s pose. These models were evaluated on Ktest = 500

unseen uniform and non-trivial queries. The BIT* planner was allowed a run-time of 3

seconds during the data-generation phase and 2 seconds during the evaluation phase.

n-link Manipulator Planning: To observe performance of the neural planner in higher

dimensions, a planning problem for 2, 4 and 6-link manipulator robot was considered.

Please see Figure 7.5. The joint angles were constrained to lie between −π and π. Four

datasets {Di}3i=0 were created for each of the 2, 4 and 6-link case by considering a total of

3000, 4000 and 5000 queries respectively. These queries were solved using OMPL’s BIT*

planner with an padding of 0.8 units around the workspace obstacles. The final perfor-

mance evaluation was done by solving Ktest = 500 new queries with the neural planner.

The BIT* planner was run for 2, 4, 6 seconds during the data-generation stage and 1, 2, 4

seconds during the evaluation stage for the 2, 4 and 6-link planning respectively.

81

General trends seen from the results in Table 7.1, Table 7.2, Table 7.4 are as follows.

In most cases, PNet2 and PNet3 outperform PNet0 in terms of success ratio, where as the

performance of PNet1 is more sporadic. The cost ratio is relatively lower for the rigid

body and 6-link case compared to others, as the BIT* planner may not find a good qual-

ity solution in the given planning time for these challenging cases. The success ratio for

all PNet models is naturally higher over uniform test queries rather than non-trivial test

queries. The success ratio also generally has an inverse relation with γnt, as seen strongly

in the case of rigid body and n-link manipulator planning. For the case of point robot plan-

ning, all models perform well with a success rate of over 90% (see Table 7.1). However,

slight performance gains due to the proposed method can be seen for Environments 0, 2, 3.

These gains are much more noticeable for the rigid body planning case (see Table 7.2).

The PNet3 model has the highest success ratio in all cases except one (Environment 3,

Non-trivial Query), where its performance is comparable to PNet1. The gradation in per-

formance due to dimensionality and γnt can be seen clearly in the n-link planning case (see

Table 7.4). The success ratio over uniform queries is in the range of 0.9, 0.8 and 0.7 for the

case of 2, 4 and 6-link planning case respectively. For the relatively simpler 2-link planning

case with γnt = 0.225, only small gains in the success ratio over non-trivial queries can be

seen. However, the improvement in performance is much more evident for the higher di-

mensional 4 and 6-link cases. The PNet3 model shows about a 25% increase in the success

ratio over PNet0 for the 6-link (non-trivial queries) case.

The neural planning algorithm 12 and the corresponding results discussed above as-

sume the availability of a steering function. While this is readily available for cases such

as geometric or non-holonomic (car-like) planning [92], it may not be computationally

tractable others. To analyze the performance of PNet models without the steerTo func-

tion, simulations were performed by only executing the lines 8 and 9 of the neural planner

algorithm 12 for maximum Nplan iterations. Instead of lines 4-6 in algorithm 12, the fol-

lowing termination condition was implemented, ∥πend − xg∥2 ≤ δ, with a small δ > 0.

82

As illustrated in Figure 7.4, the PNet3 model, which has no trivial sample in its training

dataset, naturally cannot solve a trivial query. Numerical results for the rigid body planning

without the steerTo function and δ = 1.0 are tabulated in Table 7.3. The success ratio of

all PNet models is adversely affected in this case. The PNet0 model performs the best

on uniform queries in all environments, whereas the performance of PNet3 is the worst.

However, PNet1 or PNet2 show better performance over non-trivial queries in some cases.

Thus, without a steering function, a uniformly sampled training dataset might best choice if

the test queries are uniformly distributed too. However, a model trained over a dataset with

an appropriate value of pnt may perform better over non-trivial test queries. This makes a

case for an ensemble model, as elaborated in the conclusions chapter.

83

Table 7.1: Point robot planning

Environment 0, γnt = 0.311

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.970 1.004 0.894 1.006
PNet1 0.980 1.002 0.954 1.007
PNet2 0.974 1.003 0.918 1.010
PNet3 0.980 1.002 0.930 1.007

Environment 1, γnt = 0.402

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.992 1.031 0.986 1.075
PNet1 0.976 1.029 0.940 1.064
PNet2 0.986 1.027 0.966 1.063
PNet3 0.992 1.029 0.988 1.067

Environment 2, γnt = 0.414

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.966 1.051 0.880 1.117
PNet1 0.960 1.051 0.906 1.125
PNet2 0.950 1.044 0.916 1.120
PNet3 0.962 1.056 0.900 1.113

Environment 3, γnt = 0.628

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.944 1.056 0.864 1.156
PNet1 0.958 1.069 0.896 1.167
PNet2 0.956 1.063 0.898 1.163
PNet3 0.974 1.095 0.912 1.191

Figure 7.2: Four different environments for the point robot planning task. Data generated
using the proposed non-trivial query sampling results in following (start, goal) distribution.
Some of the length-optimal paths solved using a classical planner are illustrated in magenta

84

Table 7.2: Rigid body planning

Environment 0, γnt = 0.503

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.828 0.985 0.656 0.972
PNet1 0.842 0.985 0.622 0.972
PNet2 0.834 0.979 0.698 0.960
PNet3 0.856 0.978 0.784 0.958

Environment 1, γnt = 0.659

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.788 0.948 0.714 0.874
PNet1 0.784 0.948 0.686 0.878
PNet2 0.792 0.971 0.638 0.889
PNet3 0.856 0.950 0.776 0.865

Environment 2, γnt = 0.556

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.862 0.965 0.770 0.900
PNet1 0.898 0.963 0.776 0.907
PNet2 0.902 0.963 0.806 0.908
PNet3 0.922 0.970 0.876 0.912

Environment 3, γnt = 0.690

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.722 0.985 0.606 1.000
PNet1 0.714 0.991 0.660 1.042
PNet2 0.756 0.994 0.650 0.996
PNet3 0.772 0.981 0.652 1.006

Figure 7.3: Four different environments for the rigid body planning task.

85

Table 7.3: Rigid Body without steerTo

Environment 0, γnt = 0.503

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.624 0.982 0.414 0.957
PNet1 0.592 0.983 0.372 0.979
PNet2 0.564 0.977 0.392 0.960
PNet3 0.228 0.985 0.212 0.978

Environment 1, γnt = 0.659

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.498 0.971 0.380 0.936
PNet1 0.476 0.965 0.430 0.923
PNet2 0.456 0.974 0.372 0.946
PNet3 0.266 0.970 0.208 0.968

Environment 2, γnt = 0.556

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.684 0.943 0.514 0.872
PNet1 0.684 0.944 0.506 0.889
PNet2 0.630 0.929 0.550 0.890
PNet3 0.284 0.937 0.270 0.931

Environment 3, γnt = 0.690

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.514 0.986 0.374 0.990
PNet1 0.504 0.996 0.426 1.005
PNet2 0.502 1.004 0.396 1.004
PNet3 0.302 1.001 0.196 0.979

Figure 7.4: Solving a trivial query with the four learned models without the steerTo func-
tion. Models PNet0,PNet1,PNet2 can successfully solve the query. However, the PNet3
model, which does not have any trivial sample in its training dataset, is unable to solve it.

86

Table 7.4: n-link manipulator planning

2-link planning, γnt = 0.225

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.984 1.002 0.924 1.061
PNet1 0.990 1.004 0.956 1.060
PNet2 0.984 1.003 0.962 1.062
PNet3 0.988 1.004 0.972 1.068

4-link planning, γnt = 0.366

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.862 1.005 0.722 1.003
PNet1 0.876 0.997 0.718 0.991
PNet2 0.890 0.994 0.772 1.003
PNet3 0.928 0.860 0.82 0.992

6-link planning, γnt = 0.608

Model Uniform Query Non-trivial Query
success ratio cost ratio success ratio cost ratio

PNet0 0.716 0.982 0.512 0.972
PNet1 0.650 0.980 0.454 0.966
PNet2 0.712 0.984 0.528 0.971
PNet3 0.776 0.975 0.644 0.958

Figure 7.5: A schematic for n-link manipulator planning. Left figure shows the obstacles
and solution path in the work-space of the robot. The corresponding obstacles and solution
path in the configuration-space (middle). The (start, goal) distribution produced by the
proposed non-trivial query sampling in the configuration-space (right).

87

CHAPTER 8

RACECAR ROBOT PLATFORM

The RACECAR robot (see Figure 8.1) is a powerful platform for robotics research and

education. Initially developed by MIT [93], it is based on the 1/10 th scale Traxxas RC

Rally Car. The objective of this work is to develop the hardware and software capabilities

of the RACECAR robot in order to implement and test the planning algorithms proposed

in this thesis. Concretely, this thesis provides a guide for assembling this platform, noting

down parts that of the build that are unique to Georgia Tech/DCSL lab. Secondly, this

thesis develops a Robotic Operating System (ROS) 1 based software stack for autonomous

navigation. The software stack consists of a LiDAR based obstacle avoidance system for

map exploration and a full SLAM, planning and control module for point to point naviga-

tion. Lastly, this thesis tests the software stack in ROS simulation and also on the physical

hardware.

8.1 Platform Overview

An illustration of the RACECAR robot, along with its sensors and processing unit is given

in Figure 8.1. A brief description of these relevant hardware components is given below.

• Motors and Speed Controllers: The robot has one electric motor to drive the back

wheels and one servo motor to steer the front wheels. An open-source Electronic

Speed Controller (ESC), called the VESC is used to program the firmware of the

motor drivers. A measurement of the vehicle speed is extracted from the VESC

module.

• NVIDIA Jetson TX2: The main processing unit of the RACECAR is the NVIDIA

1https://www.ros.org/

88

https://www.ros.org/

Figure 8.1: RACECAR robot hardware and its relevant components. Picture credits [93]

Jetson Tegra X2 (Jetson TX2). It has a 256-core GPU and a 8 GB of memory. It runs

on a electrical power of mere 7.5 Watts. This makes it ideal for high compute robotic

applications.

• Hokuyo UST10-LX Laser Range Finder: The Hokuyo LiDAR rotates at a 40 Hz

speed, providing 270-degree field of view at 1/4 degree resolution.

• The Stereo Camera: Stereolab’s ZED Camera provides a synchronized video feed

from two cameras. These two images can be used to reconstruct depth information

using the stereo matching techniques.

• IMU: RACECAR comes equipped with a Sparkfun Razor 9-DOF Interial Measure-

ment Unit (IMU).

• Structure Sensor: The Structure.io sensor provides RGB-D data using the strucutre

light method, which is similar to the Microsoft Kinect. This consists of a 640× 480

pixel image, delivered at a rate of 40 frames per second. It also perceives depth in

the range of 0.4 to 3.5 meters.

A step-by-step guide for the assembly of this platform is given in the docs folder of the

racecar github repo 2

2https://github.gatech.edu/DCSL/racecar control/blob/master/docs/RACECARJ Manual.docx

89

https://github.gatech.edu/DCSL/racecar_control/blob/master/docs/RACECARJ_Manual.docx

Figure 8.2: Architecture of the ROS autonomous navigation stack for the RACECAR robot.

8.2 Autonomous Navigation Stack

The Jetson computer runs an Ubuntu Linux operating system, on which ROS can be in-

stalled. Using ROS, each software component can be separated into modules called “nodes”.

Each sensor, actuator, mapping, localization, planning and control module has an associ-

ated ROS node. These nodes use “ROS messages” to exchange information with each

other. Additionally, ROS provides tools to visualize data and simulation environments to

rapidly test the algorithms. A ROS based autonomous navigation stack was developed for

the RACECAR robot. The instructions to set-up and compile this package are given here3.

A brief description of different modules in this stack is given below.

Obstacle Avoidance: This module can be used by the RACECAR robot to autonomously

explore an environment while avoiding collisions. This light-weight script is also an effi-

cient way to verify the status of robot’s LiDAR sensor, motor actuators and corresponding

ROS nodes. This module takes as an input, the distance to obstacle readings from Li-

DAR for every angle [−135◦, 135◦], and outputs a steering angle and speed command for

a collision free navigation. The LiDAR data processing component of this module filters

out noisy readings and calculates the direction and distance to the nearest obstacle for the

robot. Based on this angle and distance, the robot either 1) goes forward with no steering

input 2) goes forward with a steering input to avoid obstacles 3) stops, then reverses if its

too close to an obstacle.

Point-to-point navigation: Unlike the obstacle avoidance algorithm described above, this

3https://github.gatech.edu/DCSL/racecar control/blob/master/README.md

90

https://github.gatech.edu/DCSL/racecar_control/blob/master/README.md

module executes full SLAM + planning + control to drive the robot from its current state

to a user defined goal state on the map (see Figure 8.2).

• SLAM: The RACECAR robot executes simultaneous localization and mapping (SLAM)

using the LiDAR data. This thesis uses the Hector-SLAM algorithm [94], which is

available as an open-source ROS package. This generates a map and pose for the

robot with their respective ROS topics. Hector-SLAM uses a robust scan matching

method for mapping, which is the process of aligning laser scans with each other or

with an existing map. An Extended Kalman Filter (EKF) algorithm is used for lo-

calization. The map is encoded as a 2D occupancy grid. Through this data-structure,

the probability information of a grid cell being in the obstacle space can be queried.

• Planning: Given a map the pose information from the SLAM module, the planning

block takes in a user specified goal point and outputs a collision free path from the

start state of the robot. An interactive marker, created by a ROS server, can be ma-

nipulated by the user to input a goal state on the map. The path planning problem is

then solved using discrete-space algorithms such as A*, or any OMPL based plan-

ners. The solution path is outputted as a series of way-points. A path smoothing

algorithm based on “short-cutting” [54] is can be employed as post-processing. This

iterative algorithms tries to shorten the length of the path while maintaining its fea-

sibility. Finally, the first way-point to track along the computed path is sent to the

control/path-tracking module. As the robot moves through the world and gathers

more information, the map data might change. A ROS callback function updates the

occupancy grid data-structure, following which a collision check is initiated for the

current planned path. If found infeasible, the planning algorithm is called again and

a new path is calculated.

• Way-point tracker: The tracking algorithm flow is described in algorithm 16. Given a

user defined goal state xg, it is transformed to the base link frame, giving xgo. Please

91

Figure 8.3: Coordinate frames for the RACECAR robot.

see Figure 8.3 and here4 for further information. The distance to the goal and angle is

then calculated and a proportional controller is used to reach is goal (essentially make

the distance to goal d = 0). If the angle to the goal is less than a set critical angle, the

mode is operation is termed as “normal” and the car proceeds in forward direction.

Else, the car goes into a “uturn” mode described in the following section. Note that

the uturn mode is essential due to the non-holonomic nature of the car. For the normal

mode of the operation, the desired speed is set proportional to the distance d to the

goal. Similarly, the desired steering angle δ is set proportional to the angle to the goal

θ. A set of “filtering coefficients” αv, αδ etc are used to avoid abrupt fluctuations in

the key quantities. The throttle input u is set proportional to the difference between

desired and the filtered speed. If the magnitude of angle to the goal is greater than the

critical θc, the car goes into the uturn mode. If this change is made from the normal

mode, the distance to the closest obstacle and the current position is recorded. The

uturn mode ensures that the car stays within a circle of radius ro with center at xc.

The direction of the steering wheel and throttle is initialized as in line 20. if the car

starts to escape this ball of radius ro, the direction of steering and throttle are flipped.

The radius ro is proportional to the distance to the closest obstacle. This prevents the

4http://wiki.ros.org/hector slam/Tutorials/SettingUpForYourRobot

92

http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot

car from colliding with obstacles while in the uturn mode.

Algorithm 16: Waypoint Tracker Algorithm Flow
1 Input: Goal xg ;
2 while True do
3 xgo ← GetGoalInBaseFrame(xg);
4 d← ∥xgo∥, θ ← arctan(xgo) ;
5 df ← (αd)d+ (1− αd)df ;
6 v ← (df − dp)/∆T ;
7 vf ← (αv)v + (1− αv)vf ;
8 dp ← df ;
9 if |θ| < θc then

10 MODE← NORMAL;
11 vd ← kdd ;
12 u← ks(vd − vf);
13 uf ← (αu)u+ (1− αu)uf ;
14 δ ← kδθ;
15 δf ← (αδ)δ + (1− αδ)δf
16 else
17 if MODE=NORMAL then
18 do ← DistToClosestObstacle();
19 ro ← kodo;
20 eδ ← θ/|θ|, eu ← 1;
21 xc ← GetCurrentPosition();

22 MODE← UTURN;
23 u← kueu;
24 uf ← (αu)u+ (1− αu)uf ;
25 δ ← kδeδ;
26 δf ← (αδ)δ + (1− αδ)δf ;
27 x← GetCurrentPosition() ;
28 if ∥x− xc∥ ≥ ro then
29 eδ ← (−1)eδ, eu ← (−1)eu;

8.3 Experiments and Discussion

The autonomous navigation stack described above was tested in ROS simulation as well as

on the real hardware. The ROS Gazebo5 simulator provides a detailed physics-engine and

5http://gazebosim.org/

93

http://gazebosim.org/

Figure 8.4: Different simulation environments for the RACECAR robot in ROS Gazebo.

good quality graphics. Different environments can be created in Gazebo for simulating the

navigation software stack. Please see Figure 8.4 for an illustration. The RACECAR robot

can be spawned in Gazebo using the following commands.

r o s c o r e

r o s l a u n c h r a c e a r g a z e b o some world name . l a u n c h

The obstacle avoidance module can then be launched with,

r o s r u n r a c e c a r c o n t r o l l a s e r n a v i g a t e . py

A short video of the robot using the obstacle avoidance module can be found here6.

The ROS RViz GUI can be used to visualize data from different sensors, display robot’s

pose and planned path, monitor the explored parts of map and send goal commands to

the robot. Please see Figure 8.5. The point-to-point navigation stack can be launched in

simulation and visualized in RViz with the following commands

r o s c o r e

r o s l a u n c h r a c e a r c o n t r o l p l a n n e r s i m u . l a u n c h

Different parameters, such as the Gazebo world name, constants used by the SLAM, plan-

ning and path-tracking nodes, can be altered in the ROS launch file. A short video of the

autonomous stack in action using the Relevant Region planner, proposed in Chapter 4, can

be found here7.
6https://www.youtube.com/watch?v=cD3Ww1h0AkE
7https://www.youtube.com/watch?v=u5Zc4rvt2UE

94

https://www.youtube.com/watch?v=cD3Ww1h0AkE
https://www.youtube.com/watch?v=u5Zc4rvt2UE

Figure 8.5: Visualizing different ROS topics in RViz. The red arrow illustrates the robot
pose obtained from the Hector-SLAM. White and black areas denote the free and obstacle
space respectively, whereas lighter black represents inflated areas around the obstacles. The
ringed-cube is the goal marker, that can be manipulated by the user to set a goal state on
the map. The path calculated by the Relevant Region planner is given in green. Other ROS
topics, such as the feed from ZED camera can also be visualized.

To launch the autonomous stack on actual RACECAR hardware, communication first

needs to be established between the robot and a remote laptop. The procedure for this is

given here8. After a connection is established, SSH can be used to run commands on the

robot hardware via a remote laptop. In simulation only mode, the RACECAR package

launches “fake” motor-controller and sensor ROS nodes. To start the VESC and sensors on

the actual RACECAR hardware, following commands can be executed.

r o s c o r e

r o s l a u n c h r a c e a r b r i n g u p t e l e o p . l a u n c h

This launches the VESC and sensors, starts Hector-SLAM and puts the robot in a “teleop”

mode. The RACECAR can now be moved around using a gaming controller. This teleop

mode can be used to generate a map of the room and save it. The map can then be loaded at

8https://github.gatech.edu/DCSL/racecar control/blob/master/docs/RACECAR Launch Instructions.pdf

95

https://github.gatech.edu/DCSL/racecar_control/blob/master/docs/RACECAR_Launch_Instructions.pdf

Figure 8.6: A map of the ESM G13 room in the AE department, Georgia Tech, generated
using the Hector-SLAM algorithm on the RACECAR robot.

a later stage if needed and used in the planning stage. Please find a map of a AE department

room generated by the robot’s SLAM module in Figure 8.6.

The obstacle avoidance module can be initiated on the hardware with,

r o s r u n r a c e c a r c o n t r o l l a s e r n a v i g a t e r a c e c a r . py

Please see Figure 8.7 and a short video here9. As seen in this experiment, the robot tries

to avoid the wall and boxes using the LiDAR data. However, in some cases, the Jetson

computer may not process the information fast enough, resulting in the RACEAR robot

getting too close to an obstacle. This problem can be alleviated if the speed of the robot is

low and exacerbated if it is high. In the case where the robot comes too close to an obstacle,

it backs up until it is a threshold distance away before starting the forward motion again.

If the user instead wants to launch the point-to-point navigation stack, it can be done

with

r o s l a u n c h r a c e a r c o n t r o l p l a n n e r r a c e c a r . l a u n c h

This starts the SLAM, planning and path-tracking nodes. RViz can be used to send goal

commands to the robot and monitor the explored map. Please see Figure 8.8 and a short

video here10.
9https://www.youtube.com/watch?v=bnLuKOhOU I

10https://www.youtube.com/watch?v=BO5B2XXrntc

96

https://www.youtube.com/watch?v=bnLuKOhOU_I
https://www.youtube.com/watch?v=BO5B2XXrntc

Figure 8.7: Running the obstacle avoidance module on RACECAR hardware

Figure 8.8: Running the point-to-point navigation stack on the RACECAR hardware (Left).
Visualizing the robot’s pose, planned path, goal state and the explored map in RViz (Right).

97

Figure 8.9: Length-optimal planning with the Relevant Region planner (left). Planning
with the Relevant Region planner on the occupancy cost-map (right). In the latter case, the
planner produces a path that stays more in the explored free space (white region), whereas
the length-optimal path passes through the unexplored grey areas which may belong to the
obstacle-space.

As seen in this experiment video, the robot plans paths to a series of goals and tracks

them. As the robot moves through the world, the SLAM module updates the map. These

map updates are sent to the planner module to verify the feasibility of the solution paths.

Minor ROS communication errors or goal infeasibility can lead to the robot getting “stuck”

at times. This can be solved in real time by just re-initializing the goal command. Similar to

the obstacle avoidance controller case described above, increasing speed of the RACECAR

can result in a computation lag and some overshoots in the robot motion. A major process-

ing bottleneck for this navigation stack is the storage and update of the SLAM map. One

possible solution to address this bottleneck is to lower the map resolution. This can free

up more computational resources for the planning and control modules. The RACECAR

robot can potentially be run at higher speeds then. However, lowering the map resolution

too much can result in a coarse map and poor planning, especially in cluttered environ-

ments.

The Relevant Region algorithm proposed in this thesis can be used in conjunction with

RACECAR’s occupancy cost-map for “cautious” navigation. The SLAM module gives a

probability of occupancy value for each cell in the grid, which can be used to define a cost-

map. Unexplored cells with unknown occupancy are given a value of 0.5, whereas cells

in the obstacle and free space are given values of 1.0 and 0.0 respectively. The Relevant

98

Region planner can take this information to plan paths that try to stay in the explored part

of the free-space. Planning paths with such a cost-map can help the robot avoid collisions

due to surprise obstacles that may spring up during map update. Please see Figure 8.9 for

an illustration of this case. Please find a full video of the length optimal planning here11

and the cost-map based planning here12

11https://www.youtube.com/watch?v=YO2Duj2cCaE
12https://www.youtube.com/watch?v=ULqDrw3hyKs

99

https://www.youtube.com/watch?v=YO2Duj2cCaE
https://www.youtube.com/watch?v=ULqDrw3hyKs

CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

Randomized algorithms have become a prime choice for solving complex, higher dimen-

sional robot motion planning problems due to their scalability and ease in handling the

constraints. The sampling strategy used by these planners plays a critical role in dictating

their performance. An oracular sampling strategy will generate points along the optimal

path for a given query, leading to immediate convergence. However, realistically, sampling

strategies need to balance two fundamental behaviors, namely, exploration and exploita-

tion. This is because the planner needs to search the space to find the optimal homotopy

class (explore) and then focus on it to improve the quality of the solution returned (ex-

ploit). The basic uniform random sampling can be classified as a pure exploration strategy.

The implicit Voronoi bias its creates is essential for the fast exploration and to find an

initial solution quickly. However, naively searching the entire space can adversely affect

the quality of solution returned by the planner, as the sampling strategy invests very less

computational effort on exploitation. This thesis endeavors to addresses the exploration-

exploitation problem by proposing a family of strategies that leverage different sources of

information available during planning time. These include the heuristics, collision data,

planner’s tree structure information, gradient information and robot dynamics. While the

proposed techniques address many limitations of the state-of-the-art algorithms in the lit-

erature, a brief discussion on the scope for future work and some concluding remarks are

given below.

Informed Sampling provides a scalable approach to focus search for the case of length-

optimal planning, by direct sampling the interior of a prolate hyperspheroid (the L2 In-

formed Set). However, it has to rely on uniform rejection sampling until an initial solution

is found. Also, Informed Sampling can generate a large fraction of samples in the obstacle

100

space if the ratio λ(Xobs ∩ Xinf)/λ(Xinf) is high. These issues are addressed in this thesis

by proposing a non-parametric Informed Sampling (NP-Informed Sampling) technique. It

leverages heuristics and planner collision checking data to prioritize search and avoid gen-

erating samples in the obstacle space. One of the drawbacks of the NP-Informed sampling

is the computational complexity associated with choosing and generating samples from a

kernel vertex. This results in a lesser number of vertices produced compared to Informed

Sampling. However, NP-Informed sampling can compensate by finding first a solution of

better quality to attain a better convergence profile. The proposed approach presents many

promising directions for future research. An efficient balance between exploration using

Informed Sampling and exploitation using NP-Informed sampling can be attained. An ex-

ample of this is illustrated in Figure 3.4, which shows NP-Informed sampling with two dif-

ferent sets of weights, signifying different behavior after an initial solution is found. The

black plot with bias for exploitation shows better convergence than the pure exploratory

NP-Informed sampling. This can be extended to have a reward system for kernel vertices

that produce “good” samples. A recent work by Mandalika et al [95] implements ideas

along these lines

This thesis proposes a novel algorithm to sample the Relevant Region, a subset of the

Informed Set, for SBMP. While the Informed Set has a 100% recall (it includes all the

points that can improve the current solution), the Relevant Region can have a higher pre-

cision. Using a combination of Informed and Relevant Region sampling thus leads to a

exploration-exploitation balance. Note that Informed Sampling uses a purely heuristic es-

timate of the solution cost, which may not be effective in general cost-space environments.

The Relevant Region set on the other hand, considers the topology of Xfree, reduces the

dependence on heuristics, and effectively focuses the search to accelerate convergence.

The Relevant Region framework presents many avenues for future work. A simulated

annealing-like procedure can be implemented to balance Relevant Region and Informed

Sampling to eventually focus the search to the Relevant Region. Data from past iterations

101

can also be used to infer the nature of cost-map for intelligent exploration.

Extending the Relevant Region framework, this thesis proposes a “Locally Exploita-

tive Sampling” algorithm, that generates new samples to improve the cost-to-come value

of vertices in a neighborhood. LES numerically calculates the gradient of an objective

function and decides an appropriate step-size to obtain a new sample. Although compu-

tationally costlier than other methods, LES adds an “exploitative-bias” that can accelerate

convergence of SBMP algorithms, especially in higher dimensions. LES generates new

samples in the Relevant Region to avoid redundant exploration after an initial solution is

discovered. As discussed earlier, Informed Sampling is a necessary condition to improve

the current solution. However, it is not sufficient, as an “Informed sample” is not guar-

anteed to bring about improvements in the current solution or the cost-to-come value of

vertices. LES can be seen as a way to address this limitation of Informed Sampling. For

future work, LES can be extended to kino-dynamic settings and be used with planners such

SST [31]. Ideas from [39] can also be used to have an “obstacle-aware” version of LES.

This thesis uses ideas from reachability analysis to define a “Time-Informed Set” (TIS),

to focus exploration for time-optimal kino-dynamic planning after an initial solution is

found. We prove that exploring the TIS is a necessary condition to improve the current

solution. The proposed method can be applied to a variety of systems for which an efficient

local steering module may not be available, but (over-)approximations of the reachable sets

can be constructed. It should be noted that the L2-Informed set is sharp [12], i.e., it uses

a heuristic estimate which gives the exact cost-to-come and cost-to-go for any point in the

absence of obstacles. The TIS is not so, as it is constructed using over-approximations of

the reachable sets. Hence, finding tight approximations of the reachable sets is critical for

the efficacy of the proposed approach. In order to apply TIE for sampling-based planning,

the reachability library needs to constructed offline. Creating, storing and accessing this

library should be computationally efficient for higher dimensional systems to be of use

in practice. The ellipsoidal reachable sets used in this work satisfy these criteria. The

102

HJB reachability toolboxes [71] can be potentially used to create this library for a general

non-linear systems. These frameworks solve the value function PDE by discretizing the

state space. However, the computational cost of these methods scale exponentially with the

dimension. In order to address this curse of dimensionality, application of deep-learning

frameworks for reachability, such as [96], [97], can be explored. Recent works such as

DeepReach [97] avoid gridding the state space and use deep neural networks (DNN) to

learn a parameterized approximation of the value function. These DNNs can be stored and

used to classify or generate new samples in the TIS.

The prospect of leveraging ideas from deep learning for motion planning is promising.

Many of the previous techniques in the literature have focused on exploring different deep

architectures for planning, while using a uniformly sampled dataset for training. This thesis

on the other hand, investigates the problem of improving the data-generation process while

holding the model architecture and planning algorithm constant. The proposed query sam-

pling and data pruning procedure adds more complicated paths in the dataset. Numerical

experiments show that the success rate of the neural planner can be boosted using the deep

models trained on such non-trivial datasets. This work presents many openings for future

research. An ensemble model can be constructed by combining predictions from differ-

ent models trained on datasets with varying degrees of non-triviality. This can potentially

further increase the success rate of neural planner. Instead of a Boolean pruneData flag,

calling the pruning procedure with a probability of γnt can be explored. This can prevent

excessive pruning and drastic reduction in the size of the dataset for relatively less cluttered

environments.

Finally, this thesis developed a autonomous navigation software framework to deploy

some of the proposed planning algorithms on the RACECAR robot. The software stack

consists of a LiDAR based SLAM module that outputs a map and robot pose, a planning

module that generates feasible paths given a user defined goal, and a path tracking con-

troller that outputs a steering and velocity command to be sent to the robot’s motors. This

103

Figure 9.1: Semantic octomap generated for a room using the ZED camera on the RACE-
CAR platform.

thesis tested the developed framework in different ROS based simulation environments and

also on the actual hardware. The capabilities of this platform can be extended in several

ways. Currently, the software stack only uses the LiDAR to perceive the environment.

However, the ZED cameras can also be used to run the ORB-SLAM algorithm [98]. Off

the shelf deep learning packages can be utilized to create a semantic octomap of the en-

vironment [99]. Please see Figure 9.1. Information extracted from this octomap can then

be used for contextual planning. While the current planning library includes the standard

OMPL-based randomized planners and A*, this collection can be expanded to incorporate

several niche planners such as COA* [100] and L-GLS [101]. Lastly, the current software

stack performs a point-to-point tracking with a simple, proportional controller. More so-

phisticated techniques such as differential dynamic programming or MPPI [102] can be

implemented to devise a better controller module.

The algorithms proposed in thesis are most suited for solving robotic planning prob-

lems in higher dimensional spaces with a good amount of clutter. As shown in Chapter 5,

the computational cost of the proposed methods such as LES is only justified in higher

dimensions. For 2D environments, discrete-space planners such as A* may outperform

sampling-based methods, even after incorporating the intelligent exploration techniques

104

proposed in this thesis. For relatively less cluttered environments, optimization based “lo-

cal” methods such as CHOMP [66] and TrajOpt [103] and sampling-based methods such

as DRRT can be very effective. This is because, if a candidate solution path is initialized

in the right homotopy class, these methods can rapidly improve on it using the gradient

updates. For many single-obstacle environments, DRRT was found to outperform many

existing sampling-based planners. However, the performance of these methods can dete-

riorate in many-obstacle or cluttered environments, where a good degree of exploration is

required to find the globally optimal solution. In such cases, the cost function may have

local minima that can cause the optimization-based methods to get “stuck”. While LES

presents a good balance between pure exploration and local optimizer type methods, future

research can further investigate a framework to modulate and balance these behaviors. As

an example, a simulated annealing type of approach can be used to start planning with pure

exploration and then incrementally increase the local-optimizer type behavior.

Dynamic environments with moving obstacles can add an additional layer of complex-

ity while planning. RRTx [104], a sampling-based planner, performs graph repairing oper-

ation through rewiring to account for moving and unpredictable environments. A potential

direction of future work can be to investigate the integration of the proposed exploration

techniques into the planners such as RRTx, for efficient planning in dynamic settings.

The primary focus of this thesis was on developing intelligent exploration algorithms to

speed up sampling-based planners in deterministic settings. However, considering different

sources of uncertainties while planning might be necessary for a safe and reliable operation

of the robots during run time. Various sources of uncertainty include inaccuracies in the

motion model, actuation or sensor noise, uncertain or dynamic obstacles etc. In order to ad-

dress this “belief-space planning” problem, several techniques such as [105], [106], [107],

[108], [109] have been proposed. While these techniques represent significant advances

in this area, ideas from this thesis can be utilized to further improve their performance

through intelligent exploration. One approach to achieve this might be to incorporate an

105

additional “uncertainty-cost” (as done in [105]) into the original path or edge-cost. Then,

an analogue of Relevant Region or LES can be proposed to focus search. The ellipsoidal

toolbox also allows construction of reachable sets in presence of ellipsoidal disturbances.

This functionality can be used to extend the TIE framework for planning in presence of

disturbances.

106

REFERENCES

[1] S. Thomas, G. Song, and N. M. Amato, “Protein folding by motion planning”,
Physical Biology, vol. 2, no. 4, S148, 2005.

[2] Y. Liu and N. I. Badler, “Real-time reach planning for animated characters using
hardware acceleration”, in Proceedings 11th IEEE international workshop on pro-
gram comprehension, IEEE, 2003, pp. 86–93.

[3] P. W. Finn and L. E. Kavraki, “Computational approaches to drug design”, Algo-
rithmica, vol. 25, no. 2, pp. 347–371, 1999.

[4] J. H. Reif, “Complexity of the mover’s problem and generalizations”, in 20th An-
nual Symposium on Foundations of Computer Science (SFCS), IEEE Computer
Society, 1979, pp. 421–427.

[5] J. T. Schwartz and M. Sharir, “On the “piano movers’” problem i. the case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers”, Com-
munications on pure and applied mathematics, vol. 36, no. 3, pp. 345–398, 1983.

[6] T. Lozano-Perez, “Spatial planning: A configuration space approach”, in Autonomous
robot vehicles, Springer, 1990, pp. 259–271.

[7] E. W. Dijkstra et al., “A note on two problems in connexion with graphs”, Nu-
merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths”, IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, Jul. 1968.

[9] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with provable
bounds on sub-optimality”, Advances in neural information processing systems,
vol. 16, pp. 767–774, 2003.

[10] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*”, Artificial Intelli-
gence, vol. 155, no. 1-2, pp. 93–146, 2004.

[11] A. Stentz, “Optimal and efficient path planning for partially known environments”,
in Intelligent unmanned ground vehicles, Springer, 1997, pp. 203–220.

[12] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling for asymp-
totically optimal path planning”, IEEE Transactions on Robotics, vol. 34, no. 4,
pp. 966–984, Aug. 2018.

107

[13] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-
space costmaps”, IEEE Transactions on Robotics, vol. 26, no. 4, pp. 635–646, Aug.
2010.

[14] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces”, Transactions on Robotics
and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[15] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning”, The In-
ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[16] J. Barraquand, L. Kavraki, J.-C. Latombe, R. Motwani, T.-Y. Li, and P. Ragha-
van, “A random sampling scheme for path planning”, The International Journal of
Robotics Research, vol. 16, no. 6, pp. 759–774, 1997.

[17] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning”, The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[18] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algorithms
for optimal motion planning”, in IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, May 2013, pp. 2421–2428.

[19] ——, “Incremental sampling-based motion planners using policy iteration meth-
ods”, in IEEE 55th Conference on Decision and Control, Las Vegas, NV, Dec.
2016, pp. 5004–5009.

[20] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs”, in IEEE International Conference on Robotics and Au-
tomation, Seattle, WA, May 2015, pp. 3067–3074.

[21] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimen-
sions”, The International Journal of Robotics Research, vol. 34, no. 7, pp. 883–
921, May 2015.

[22] M. P. Strub and J. D. Gammell, “Advanced BIT*(ABIT*): Sampling-based plan-
ning with advanced graph-search techniques”, in International Conference on Robotics
and Automation (ICRA), IEEE, Paris, France, 2020, pp. 130–136.

[23] ——, “Adaptively informed trees (AIT*): Fast asymptotically optimal path plan-
ning through adaptive heuristics”, in International Conference on Robotics and
Automation (ICRA), IEEE, Paris, France, 2020, pp. 3191–3198.

108

[24] F. Hauer and P. Tsiotras, “Deformable rapidly-exploring random trees.”, in Robotics:
Science and Systems, Cambridge, MA, Jul. 2017.

[25] T. Lai, F. Ramos, and G. Francis, “Balancing global exploration and local-connectivity
exploitation with rapidly-exploring random disjointed-trees”, in International Con-
ference on Robotics and Automation (ICRA), IEEE, Montreal, Canada, 2019, pp. 5537–
5543.

[26] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using incre-
mental sampling-based methods”, in 49th IEEE Conference on Decision and Con-
trol, Atlanta, GA, Dec. 2010, pp. 7681–7687.

[27] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “LQR-RRT*:
Optimal sampling-based motion planning with automatically derived extension heuris-
tics”, in IEEE International Conference on Robotics and Automation, Saint Paul,
MN, 2012, pp. 2537–2542.

[28] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically optimal
motion planning for robots with linear dynamics”, in IEEE International Confer-
ence on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 5054–5061.

[29] E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion plan-
ning under differential constraints: The drift case with linear affine dynamics”,
in IEEE Conference on Decision and Control (CDC), Osaka, Japan, Dec. 2015,
pp. 2574–2581.

[30] J. hwan Jeon, S. Karaman, and E. Frazzoli, “Optimal sampling-based feedback mo-
tion trees among obstacles for controllable linear systems with linear constraints”,
in IEEE International Conference on Robotics and Automation, Seattle, Washing-
ton, May 2015, pp. 4195–4201.

[31] Y. Li, Z. Littlefield, and K. E. Bekris, “Sparse methods for efficient asymptoti-
cally optimal kinodynamic planning”, in Algorithmic Foundations of Robotics XI,
Springer, 2015, pp. 263–282.

[32] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion planning in
high dimensions”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Francisco, CA, Sep. 2011, pp. 2640–2645.

[33] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT growth”,
in IEEE/RSJ International Conference on Intelligent Robots and Systems., vol. 2,
Las Vegas, NV, Oct. 2003, pp. 1178–1183.

109

[34] R. Diankov and J. Kuffner, “Randomized statistical path planning”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Diego, CA, Oct.
2007, pp. 1–6.

[35] B. Burns and O. Brock, “Toward optimal configuration space sampling”, in Robotics:
Science and Systems, Cambridge, MA, Jun. 2005, pp. 105–112.

[36] ——, “Single-query entropy-guided path planning”, in IEEE International Confer-
ence on Robotics and Automation, Barcelona, Spain, Apr. 2005, pp. 2124–2129.

[37] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and exploitation in
motion planning”, in IEEE International Conference on Robotics and Automation,
Pasadena, CA, May 2008, pp. 2812–2817.

[38] R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring roadmaps: Weigh-
ing exploration vs. refinement in optimal motion planning”, in IEEE International
Conference on Robotics and Automation, Shanghai, China, 2011, pp. 3706–3712.

[39] T. Lai, P. Morere, F. Ramos, and G. Francis, “Bayesian local sampling-based plan-
ning”, IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1954–1961, 2020.

[40] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based rapidly-
exploring random tree”, in IEEE International Conference on Robotics and Au-
tomation, Orlando, FL, May 2006, pp. 895–900.

[41] J. Denny, E. Greco, S. Thomas, and N. M. Amato, “MARRT: Medial axis biased
rapidly-exploring random trees”, in IEEE International Conference on Robotics
and Automation, Hong Kong, China, Jun. 2014, pp. 90–97.

[42] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration
spaces”, in IEEE International Conference on Robotics and Automation, vol. 3,
Albuquerque, NM, Apr. 1997, pp. 2719–2726.

[43] J. M. Phillips, N. Bedrossian, and L. E. Kavraki, “Guided expansive spaces trees:
A search strategy for motion-and cost-constrained state spaces”, in IEEE Inter-
national Conference on Robotics and Automation, New Orleans, LA, Apr. 2004,
pp. 3968–3973.

[44] S. M. Persson and I. Sharf, “Sampling-based A* algorithm for robot path-planning”,
The International Journal of Robotics Research, vol. 33, no. 13, pp. 1683–1708,
Oct. 2014.

[45] Z. Littlefield and K. E. Bekris, “Informed asymptotically near-optimal planning
for field robots with dynamics”, in Field and Service Robotics, Springer, 2018,
pp. 449–463.

110

[46] ——, “Efficient and asymptotically optimal kinodynamic motion planning via dominance-
informed regions”, in IEEE International Conference on Intelligent Robots and
Systems, Madrid, Spain, Oct. 2018, pp. 1–9.

[47] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling for plan-
ning under differential constraints”, in IEEE International Conference on Robotics
and Automation, Kobe, Japan, May 2009, pp. 2859–2865.

[48] S. D. Pendleton et al., “Numerical approach to reachability-guided sampling-based
motion planning under differential constraints”, IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1232–1239, Jul. 2017.

[49] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “RL-RRT: Kinody-
namic motion planning via learning reachability estimators from rl policies”, IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 4298–4305, 2019.

[50] T. Kunz, A. Thomaz, and H. Christensen, “Hierarchical rejection sampling for in-
formed kinodynamic planning in high-dimensional spaces”, in IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 2016,
pp. 89–96.

[51] D. Yi, R. Thakker, C. Gulino, O. Salzman, and S. Srinivasa, “Generalizing in-
formed sampling for asymptotically-optimal sampling-based kinodynamic plan-
ning via Markov Chain Monte Carlo”, in IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, Australia, May 2018, pp. 7063–7070.

[52] B. Burns and O. Brock, “Single-query motion planning with utility-guided random
trees”, in IEEE International Conference on Robotics and Automation, Rome, Italy,
Apr. 2007, pp. 3307–3312.

[53] M. Muja and D. G. Lowe, “FLANN, fast library for approximate nearest neigh-
bors”, in International Conference on Computer Vision Theory and Applications,
vol. 3, Lisbon, Portugal, Feb. 2009.

[54] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library”, IEEE
Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, Dec. 2012.

[55] O. Arslan and P. Tsiotras, “Dynamic programming guided exploration for sampling-
based motion planning algorithms”, in IEEE International Conference on Robotics
and Automation, Seattle, WA, May 2015, pp. 4819–4826.

[56] J. Mainprice, E. A. Sisbot, L. Jaillet, J. Cortés, R. Alami, and T. Siméon, “Planning
human-aware motions using a sampling-based costmap planner”, in IEEE Inter-
national Conference on Robotics and Automation, Shanghai, China, May 2011,
pp. 5012–5017.

111

[57] L. Jaillet, F. J. Corcho, J.-J. Pérez, and J. Cortés, “Randomized tree construction
algorithm to explore energy landscapes”, Journal of Computational Chemistry,
vol. 32, no. 16, pp. 3464–3474, 2011.

[58] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based RRT to deal
with complex cost spaces”, in IEEE International Conference on Robotics and Au-
tomation, Karlsrühe, Germany, May 2013, pp. 4120–4125.

[59] D. Berenson, T. Siméon, and S. S. Srinivasa, “Addressing cost-space chasms in
manipulation planning”, in IEEE International Conference on Robotics and Au-
tomation, Shanghai, China, May 2011, pp. 4561–4568.

[60] D. Devaurs, T. Siméon, and J. Cortés, “Optimal path planning in complex cost
spaces with sampling-based algorithms”, IEEE Transactions on Automation Sci-
ence and Engineering, vol. 13, no. 2, pp. 415–424, 2015.

[61] O. Arslan and P. Tsiotras, “Machine learning guided exploration for sampling-
based motion planning algorithms”, in IEEE/RSJ International Conference on In-
telligent Robots and Systems, Hamburg, Germany, Sep. 2015, pp. 2646–2652.

[62] M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion planning algo-
rithms: An extensible infrastructure for analysis and visualization”, IEEE Robotics
& Automation Magazine, vol. 22, no. 3, pp. 96–102, 2015.

[63] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ROS topics]”, IEEE Robotics & Au-
tomation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[64] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-
query path planning”, in IEEE International Conference on Robotics and Automa-
tion., vol. 2, San Franciso, CA, Apr. 2000, pp. 995–1001.

[65] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and S. Scherer, “Re-
gionally accelerated batch informed trees (rabit*): A framework to integrate local
information into optimal path planning”, in International Conference on Robotics
and Automation (ICRA), IEEE, 2016, pp. 4207–4214.

[66] M. Zucker et al., “CHOMP: Covariant Hamiltonian optimization for motion plan-
ning”, The International Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–
1193, 2013.

[67] D. Kim, M. Kang, and S.-E. Yoon, “Volumetric tree*: Adaptive sparse graph for
effective exploration of homotopy classes”, in International Conference on Intelli-
gent Robots and Systems (IROS), IEEE/RSJ, 2019, pp. 1496–1503.

112

[68] J. Watt, R. Borhani, and A. K. Katsaggelos, Machine Learning Refined: Founda-
tions, Algorithms, and Applications, 1st. USA: Cambridge University Press, 2016,
ISBN: 1107123526.

[69] S. S. Joshi and P. Tsiotras, “Relevant region exploration on general cost-maps
for sampling-based motion planning”, in International Conference on Intelligent
Robots and Systems (IROS), IEEE/RSJ, Las Vegas, NV, Oct. 2020.

[70] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[71] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi reachability: A
brief overview and recent advances”, in IEEE 56th Annual Conference on Decision
and Control (CDC), Brisbane, Australia, Dec. 2017, pp. 2242–2253.

[72] A. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis”, in
International Workshop on Hybrid Systems: Computation and Control, Springer,
2000, pp. 202–214.

[73] A. Girard, C. Le Guernic, and O. Maler, “Efficient computation of reachable sets
of linear time-invariant systems with inputs”, in International Workshop on Hybrid
Systems: Computation and Control, Springer, 2006, pp. 257–271.

[74] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro-
UAV testbed”, IEEE Robotics & Automation Magazine, vol. 17, no. 3, pp. 56–65,
2010.

[75] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning to plan in high
dimensions via neural exploration-exploitation trees”, in International Conference
on Learning Representations, 2020.

[76] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning networks:
Bridging the gap between learning-based and classical motion planners”, IEEE
Transactions on Robotics, vol. 37, no. 1, pp. 48–66, 2020.

[77] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for robot
motion planning”, in IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, May 2018, pp. 7087–7094.

[78] M. Zucker, J. Kuffner, and A. J. Bagnell, “Adaptive workspace biasing for sampling-
based planners”, in IEEE International Conference on Robotics and Automation,
Pasadena, CA, May 2008, pp. 3757–3762.

[79] M. Bhardwaj, S. Choudhury, and S. Scherer, “Learning heuristic search via imita-
tion”, in Conference on Robot Learning, PMLR, 2017, pp. 271–280.

113

[80] S. Choudhury et al., “Data-driven planning via imitation learning”, The Interna-
tional Journal of Robotics Research, vol. 37, no. 13-14, pp. 1632–1672, 2018.

[81] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki, “Path plan-
ning using neural a* search”, in International Conference on Machine Learning,
PMLR, 2021, pp. 12 029–12 039.

[82] J. Huh, G. Xing, Z. Wang, V. Isler, and D. D. Lee, “Learning to generate cost-to-go
functions for efficient motion planning”, arXiv preprint arXiv:2010.14597, 2020.

[83] C. Chamzas, A. Shrivastava, and L. E. Kavraki, “Using local experiences for global
motion planning”, in International Conference on Robotics and Automation (ICRA),
IEEE, 2019, pp. 8606–8612.

[84] C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling distributions for
motion planning”, in International Conference on Intelligent Robots and Systems
(IROS), IEEE/RSJ, 2018, pp. 3654–3661.

[85] Y.-L. Kuo, A. Barbu, and B. Katz, “Deep sequential models for sampling-based
planning”, in International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2018, pp. 6490–6497.

[86] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned critical probabilis-
tic roadmaps for robotic motion planning”, in IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 9535–9541.

[87] R. Kumar, A. Mandalika, S. Choudhury, and S. Srinivasa, “Lego: Leveraging ex-
perience in roadmap generation for sampling-based planning”, International Con-
ference on Intelligent Robots and Systems (IROS), pp. 1488–1495, 2019.

[88] J. Huh, D. D. Lee, and V. Isler, “Learning continuous cost-to-go functions for non-
holonomic systems”, arXiv preprint arXiv:2103.11168, 2021.

[89] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning: Fixed time,
near-optimal path generation via oracle imitation”, in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2019, pp. 3965–3972.

[90] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and struc-
tured prediction to no-regret online learning”, in Proceedings of the fourteenth in-
ternational conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, 2011, pp. 627–635.

[91] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning”,
in Advances in Neural Information Processing Systems, 2017, pp. 6467–6476.

114

[92] J. J. Johnson, L. Li, F. Liu, A. H. Qureshi, and M. C. Yip, “Dynamically constrained
motion planning networks for non-holonomic robots”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 6937–6943.

[93] S. Karaman et al., “Project-based, collaborative, algorithmic robotics for high school
students: Programming self-driving race cars at mit”, in 2017 IEEE Integrated
STEM Education Conference (ISEC), 2017, pp. 195–203.

[94] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable
SLAM system with full 3d motion estimation”, in Proc. IEEE International Sym-
posium on Safety, Security and Rescue Robotics (SSRR), IEEE, Nov. 2011.

[95] A. Mandalika, R. Scalise, B. Hou, S. Choudhury, and S. S. Srinivasa, “Guided
incremental local densification for accelerated sampling-based motion planning”,
arXiv preprint arXiv:2104.05037, 2021.

[96] R. E. Allen, A. A. Clark, J. A. Starek, and M. Pavone, “A machine learning ap-
proach for real-time reachability analysis”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Chicago, IL, Sep. 2014, pp. 2202–2208.

[97] S. Bansal and C. Tomlin, “DeepReach: A Deep Learning Approach to High-Dimensional
Reachability”, arXiv e-prints: 2011.02082, Nov. 2020. arXiv: 2011.02082 [cs.RO].

[98] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A versatile and
accurate monocular slam system”, IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1147–1163, 2015.

[99] A. Asgharivaskasi and N. Atanasov, “Active bayesian multi-class mapping from
range and semantic segmentation observations”, in International Conference on
Robotics and Automation (ICRA), IEEE, Xian, China, 2021, pp. 1–7.

[100] J. Lim and P. Tsiotras, “A generalized a* algorithm for finding globally optimal
paths in weighted colored graphs”, in International Conference on Robotics and
Automation (ICRA), IEEE, Xian, China, 2021, pp. 7503–7509.

[101] J. Lim, S. Srinivasa, and P. Tsiotras, “Lazy lifelong planning for efficient replanning
in graphs with expensive edge evaluation”, arXiv preprint arXiv:2105.12076, 2021.

[102] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control”, in International Conference
on Robotics and Automation (ICRA), IEEE, Stockholm, Sweden, 2016, pp. 1433–
1440.

115

https://arxiv.org/abs/2011.02082

[103] J. Schulman et al., “Motion planning with sequential convex optimization and con-
vex collision checking”, The International Journal of Robotics Research, vol. 33,
no. 9, pp. 1251–1270, 2014.

[104] M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query sampling-
based motion planning with quick replanning”, The International Journal of Robotics
Research, vol. 35, no. 7, pp. 797–822, 2016.

[105] B. Luders, M. Kothari, and J. How, “Chance constrained rrt for probabilistic ro-
bustness to environmental uncertainty”, in AIAA guidance, navigation, and control
conference, 2010, p. 8160.

[106] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm: Sampling-
based feedback motion-planning under motion uncertainty and imperfect measure-
ments”, The International Journal of Robotics Research, vol. 33, no. 2, pp. 268–
304, 2014.

[107] C. K. Verginis, D. V. Dimarogonas, and L. E. Kavraki, “Sampling-based motion
planning for uncertain high-dimensional systems via adaptive control”, in Inter-
national Workshop on the Algorithmic Foundations of Robotics, Springer, 2020,
pp. 159–175.

[108] D. Zheng, J. Ridderhof, P. Tsiotras, and A.-a. Agha-mohammadi, “Belief space
planning: A covariance steering approach”, arXiv preprint arXiv:2105.11092, 2021.

[109] D. Zheng and P. Tsiotras, “Batch belief trees for motion planning under uncer-
tainty”, arXiv preprint arXiv:2110.00173, 2021.

116

VITA

Sagar Suhas Joshi was born in the Pune, India. In 2017, he earned a bachelors degree

in Engineering Design from the Indian Institute of Technology(IIT)-Madras, with a top

rank in his batch. During his time at IIT-Madras, he worked on autonomous planning and

control of unmanned ground vehicles. Sagar is currently a PhD candidate in robotics at the

Institute for Robotics and Intelligent Machines (IRIM), Georgia Tech, USA. His research

focuses on intelligent exploration for sampling-based motion planning algorithms. This

area is at the exciting intersection of topics such as artificial intelligence, machine learning

and optimal control. During his PhD, Sagar also did an internship at Aurora Innovation,

Pittsburgh, where he worked on planner strategy ranking and scoring for safe autonomous

driving.

117

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Motivation
	Thesis Contributions
	Thesis Organization

	2 | Problem Definition And Literature Review
	Motion Planning Problem
	Sampling-Based Motion Planning
	Exploration Problem

	3 | Non-Parametric Informed Exploration
	Motivation
	Algorithm Overview
	Experiments and Discussion

	4 | Relevant Region Exploration
	Motivation
	Relevant Region Set
	Relevant Region Sampling Algorithm
	Experiments and Discussion

	5 | Locally Exploitative Relevant Region Sampling
	Motivation
	Sampling As Optimization
	Curse Of Dimensionality For Sampling
	Locally Exploitative Sampling Algorithm
	Experiments and Discussion

	6 | Time-Informed Exploration
	Motivation
	Time-Informed Set
	Time-Informed vs L2-Informed Set
	Time-Informed Exploration Algorithm
	Experiments and Discussion

	7 | Non-trivial Query Sampling for Learning to Plan
	Motivation
	Related Work
	Supervised Learning for Planning
	Non-trivial Query Sampling
	Experiments and Discussion

	8 | RACECAR Robot Platform
	Platform Overview
	Autonomous Navigation Stack
	Experiments and Discussion

	9 | Conclusion And Future Directions
	References
	Vita

