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SUMMARY

In this work we investigate the use of state-of-the-art tools for the regulation of complex,

non-linear systems to improve the methodologies currently applied to trim comprehensive

virtual prototypes of rotors and rotorcrafts.

Among the several methods that have been proposed in the literature, the auto-pilot

approach has the potential to solve trim problems efficiently even for the large and complex

vehicle models of modern comprehensive finite element-based analysis codes. In this ap-

proach, the trim condition is obtained by adjusting the controls so as to virtually “fly” the

system to the final steady (periodic) flight condition. Published proportional auto-pilots

show to work well in many practical instances. However, they cannot guarantee good per-

formance and stability in all flight conditions of interest. Limit-cycle oscillations in control

time histories are often observed in practice because of the non-linear nature of the problem

and the difficulties in enforcing the constant-in-time condition for the controls.

To address all the above areas of concern, in this research we propose a new auto-pilot,

based on non-linear model-predictive control (NMPC). The formulation uses a non-linear

reference model of the system augmented with an adaptive neural element, which identifies

and corrects the mismatch between reduced model and controlled system.

The methodology is tested on the wind-tunnel trim of a rotor multibody model and

compared to an existing implementation of a classic auto-pilot. The proposed controller

shows good performance without the need of a potentially very expensive tuning phase,

which is required in classical auto-pilots. Moreover, model-predictive control provides a

framework for guaranteeing stability of the non-linear closed-loop system, so it seems to be

a viable approach for trimming complete rotorcraft comprehensive models in free-flight.

xii



CHAPTER I

INTRODUCTION

In the aeronautical field, the word “trim” is adopted to indicate the aircraft control settings,

attitude and cargo disposition necessary to obtain a desired steady flight condition. For

a fixed wing aircraft, a steady flight condition can be easily characterized for example by

some constant values of the linear and angular velocities in a body attached frame. On the

contrary, a rotorcraft is characterized by rotating surfaces subjected to aerodynamic loads,

so it is always excited by harmonic external forces. Thus for a rotorcraft no equilibrium

conditions exist such that the rates of the aircraft states are constant. However, the controls

and the attitude can be changed to achieve a particular periodic orbit. On this orbit, the

rotorcraft is characterized by periodic solutions of all the states and loads, though the

controls are constant in time. This flight condition can be characterized in terms of the

average over a whole rotor revolution of some components of the states and loads.

In solving the trim problem we are interested in starting from these desired (average)

values and compute the constant controls and the attitude that make the rotorcraft fly in

the corresponding steady (periodic) condition. In practice, for rotary wing applications we

are interested in either trimming a rotor model constrained to the ground or a complete

aircraft model in free-flight. In the first case, the trim problem consists in finding the rotor

controls that produce desired average values of a number of components of the hub loads

equal to the number of controls. For free-flight simulation, for instance for a conventional

rotorcraft configuration with constant rotor speed, we look for the (constant) main and tail

rotor controls and two (periodic) attitude angles1 that produce desired values of the body

linear and angular rates in a body axis frame.

The solution of the trim problem is the starting point for estimating performance, ro-

tor loads and vibratory level. Moreover, the accurate determination of the vehicle trim

1generally pitch and yaw angles, while the average roll is chosen a priori.
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settings plays a crucial role in the analysis of the flight mechanics characteristics of the ve-

hicle. In fact, the dynamic and aeroelastic stability, the handling qualities and the control

system design are commonly analyzed by perturbing the system about the periodic orbit

corresponding to the trim condition. In other words, the analysis is based on a set of per-

turbation equations which strongly depend upon the steady solution that is perturbed. So,

an inaccurate trim computation potentially undermines the validity of all the approaches

which perturb the system about a steady condition. Moreover complexity and non-linearity

of comprehensive rotorcraft models make rotor loads and vibratory level analyses strongly

affected by the computed trim solution.

Trim settings can not be estimated using flight test data because of the unavoidable

mismatch between the virtual prototype and the real system. Because of modelling ap-

proximations, measured controls cannot trim a numerical model, which would simply drift

away from the desired periodic solution, or even diverge in free-flight cases. The primary

consequence is that one must compute the trim for every model used for stability, loads,

vibrations or performance analyses. Reference [20] provides an exhaustive analysis of ro-

torcraft trim and presents a complete list of relevant references on this topic.

Rotary wing vehicles are complex aeroelastic systems which are modeled with compre-

hensive finite element-based analysis tools [2, 24]. These tools provide the ability to render

with a high level of detail the various sub-systems of the vehicle, including the most com-

plex one, the rotor system. Rotorcraft codes are coupled with time-accurate aerodynamic

models, ranging from dynamic inflow [21] to free-wake models [5] all the way to computa-

tional fluid dynamics, which is based on first principles and can account for the main rotor

wake distortion, the interactions of shed vortex filaments with rotor blades, fuselage and

tail rotor, or the dynamic stall effects on the retreating blade. Hence, rotorcraft aeroelastic

analyses are typically based on complex, large, highly non-linear, multi-field models. In

this research, our main concern is the efficient trim of such models. We will discuss in

the following sections how the complexity and the non-linearity of comprehensive rotorcraft

models call for advanced trim methodologies.
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1.1 Rotorcraft Trim Formulation

1.1.1 Governing Equations

We want to represent the rotorcraft by a virtual prototype M̃. A general form of the

governing equations for this system is the following:

f̃( ˙̃x, x̃, λ̃, ũ) = 0, (1a)

c̃( ˙̃x, x̃) = 0. (1b)

The first set of equations, (1a), represents the equations of dynamic equilibrium and the

kinematic equations, and the second set, (1b), represents possible holonomic and non-

holonomic constraint conditions. The vector x̃ ∈ R
nx denotes the system states, λ̃ ∈ R

nλ are

the Lagrange multipliers associated with multibody formulations in which the constraints

(1b) are enforced, ũ ∈ R
nu are the controls, and finally f̃ : R

nx × R
nx × R

nλ × R
nu → R

nx

and c̃ : R
nx × R

nx → R
nλ .

The states x̃ can include displacements, rotations, linear and angular velocities, and

possible internal states describing engine, actuator and damper dynamics. Controls ũ may

represent actuator inputs (voltages, valve apertures, etc.), applied forces, throttle position,

and controlled joint relative displacements and rotations. If M̃ includes flexible components,

the ordinary differential-algebraic equations (1) are obtained as the result of the discretiza-

tion in the space dimension of the governing partial differential-algebraic equations. In this

case, the states x̃ include degrees of freedom associated with the nodes of the spatial grids

of the flexible components and/or modal amplitudes. For coupled problems, x̃ may also

include states modeling the interacting fields, as for example aerodynamic states, and equa-

tions (1) will include appropriate discretizations of the corresponding partial-differential

equations.

1.1.2 Trim Conditions and Constraints

As we mentioned before, one of the basic concepts of trim is that the controls must be

constant in time. The trim conditions for the controls ũ can then be written as

˙̃u = 0, ∀ t. (2)
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Let us define a set of system outputs ỹ ∈ R
ny such that

ỹ =
1

T

∫ t+T

t

g̃(x̃, ũ) dt, (3)

where T is the rotor period, and g̃ : R
nx × R

nu → R
ny . The exact physical meaning of the

outputs ỹ will depend on the specific problem under consideration. In the case of free-flight

applications, the outputs will typically represent the average of some global vehicle states

which describe its gross motion, such as position, orientation, linear and angular velocity of

a vehicle-embedded frame with respect to an inertial frame of reference. For example, for

an embedded frame associated with a flexible fuselage model, the frame will be a floating

frame of reference that describes the average fuselage rigid body states. In the simpler case

of a rotor connected to the ground, the outputs ỹ will typically be some components of the

hub loads expressed in the inertial frame.

The trimmed steady flight condition can then be defined by specifying desired values

for the outputs of the system:

ỹ = y∗, ∀ t. (4)

We will refer to this expression as the trim constraints on the outputs ỹ.

As a matter of fact, we will always be able to satisfy a number of trim constraints lower

or equal to the number of controls, so that ny ≤ nu. If ny = nu and a trim solution exists,

the trim constraints implicitly define the trim controls and attitude, and the solution is

generally unique. On the contrary, if ny < nu we can encounter a whole set of solutions,

among which we can look for the one that optimizes a specific merit function, for example

the power required in trim or the average yaw angle.

1.1.3 Periodicity Conditions

As previously mentioned, trim corresponds to a particular solution for the rotorcraft system,

characterized by the harmonic response of all its states. For simple rotor models, every

degree of freedom passes through the same state every rotor revolution, so

x̃(t + T ) = x̃(t), ∀ t. (5)
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We call these relations periodicity conditions. Reference [20] treats the problem of unknown

rotor period in detail. Here, we want to emphasize that a rotorcraft system is often trimmed

in a condition of non-zero average linear or angular velocities. Therefore, some of the states

are not strictly periodic. Consider for instance a rotorcraft trimmed to non-zero average

linear velocities expressed in an inertial frame. The corresponding position coordinates have

in this case average values growing linearly with time. So, we generalize conditions (5) in

the following way:

x̃(t + T ) = x̃(t) + z̃, ∀ t, (6)

where z̃ is a function of states and controls that renders the variation of x̃ in trim over the

rotor period T . Reference [20] indicates these as “quasi-periodicity conditions.” For the

degrees of freedom that have zero average velocity over a period, the last term vanishes, so

they simply respect the periodicity conditions (5).

1.2 Trim Solution Strategies

Some of the several methods for rotorcraft trim appeared in the specialized literature over

the last thirty years are the following:

• In the harmonic balance method, the states are described by superposition of harmon-

ics with integer multiples of the rotor frequency. For each harmonic, all the terms

with that frequency are equated, and it is possible to solve for the amplitudes of all

the harmonics for every degree of freedom in trim.

• In quasi-Newton methods, the controls are initially guessed, the system is integrated in

time until transients decay and the error on the trim constraints is checked. A Newton

method is applied to update the controls and iterate. This approach generally requires

the adoption of springs connected to the ground and is not indicated for unstable

systems.

• The periodic shooting is based on a Newton-like iterative method. The equations of

motion are integrated for a rotor period for given initial conditions and (constant)

5



controls, then the error on the trim constraints is checked and the initial conditions

and controls are updated.

• A fourth strategy is to discretize the problem in time, explicitly enforce trim and

periodicity constraints and assemble a large non-linear algebraic problem, to be solved

again in an iterative fashion. This is sometimes referred to as the finite elements in

time method2.

The last approach often found is that of auto-pilots, which is the one here considered.

In this case, we augment the system with a control law that closes the loop and steers the

system towards the desired trim condition. This control law can be, for example, a set of

dynamic equations coupled with those of the system, as in the case of the classic auto-pilots

presented in the literature so far. Differently from the previous approaches and because of

this control law, the controls have their own dynamic behavior and no explicit constraint is

enforced to have constant controls when the trim constraints are fulfilled, so limit cycles are

often observed on the controls. The presence of these limit cycles indicates that the desired

steady-state condition has not been reached. On the other hand, auto-pilots are extremely

efficient when they are applied to very large and complex systems, since they depend on the

number of controls and outputs of the system and not on the number of degrees of freedom.

1.3 Scope of the Research and Highlights of the Investi-

gated Methodology

In this research, we propose the formulation of a new auto-pilot based on non-linear model-

predictive control. This approach uses a reduced model of rotorcraft, which must be able to

adequately approximate the controlled system. Thus, an adaptive neural element is adopted

to match model and system responses.

The new auto-pilot has the following features:

• NMPC provides a framework for guaranteeing stability of the non-linear closed-loop

system.

2We honestly consider the name finite elements in time inappropriate, since it refers to the applied

discretization in time rather than the actual adopted solution strategy.
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• The use of a non-linear reduced model for the prediction of the system response typi-

cally implies superior performance of the controller with respect to other approaches.

• The solution specifically accounts for the presence of the constant-in-time constraints

on the control actions in the prediction problem. The effect of constraints is diffi-

cult to incorporate in other control approaches, and this often results in limit-cycle

oscillations of the inputs, as previously noted.

• The fidelity of the reduced model to the plant is crucial for the performance of the

model predictive approach. As the rotorcraft is flown, the reduced model learns the

characteristics of the system through its adaptive nature. Hence, there is no need of

tuning the model to different vehicles or to different flight conditions.

• Given the powerful characteristics of neural networks for the identification of non-

linear dynamical systems [17], the controller is applicable to virtually any rotorcraft

mathematical model without modifications or the need for manual tuning, including

models with complex aerodynamic effects.

Trim target

Predicted output

Actual output

Projected controls u

d du/ t=0

Prediction horizon

Control horizon

Past Future

Constant-in-time constraint

Figure 1: The model-predictive auto-pilot.

The basic principle of the non-linear model-predictive auto-pilot is illustrated in Figure 1.

A non-linear reduced model of the vehicle is used for predicting the future behavior of the

plant, i.e. the rotorcraft model, under the action of the control inputs u. An open-loop
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optimal control problem is solved for the reduced model on a finite horizon (the prediction

window). For trim problems, the optimization cost function is defined as the square of the

violation of the trim constraints.

The optimizer accounts for possible input and output constraints that may need to

be satisfied. In particular, the control actions can vary in time only within the control

horizon, while they become constant-in-time from the end of the control horizon to the end

of the prediction horizon. Hence, the solution of the open-loop model-predictive regulation

problem yields control actions that generate predicted outputs which follow the prescribed

target in some optimal, constraint satisfying, way.

The controls computed by the optimizer are now used to steer the plant, but only on

a short time horizon (typically equal to the control horizon). In fact, due to the inevitable

mismatch between reduced model and plant, the actual outputs will drift away from the

predicted ones. Once the plant has reached the end of the steering window under the

action of the computed control inputs, the model-predictive optimization problem is solved

again, looking ahead in the future over the prediction horizon shifted forward in time. This

procedure results in a feedback, receding horizon approach.

Our formulation of the problem uses an adaptive non-linear reduced model which is

composed of two elements:

1. A simple analytic reference model of the rotor that is responsible for capturing the

gross features of the plant response, thereby easing the training of the adaptive ele-

ment. In this work, the reference model computes the rotor forces and moments by

combining actuator disk and blade element theory, considering a uniform inflow. The

rotor attitude is evaluated by means of quasi-steady flapping dynamics with a linear

aerodynamic damping correction [22].

2. A single-hidden-layer neural network, whose role is to approximate the error between

the prediction of the reference model and the actual response measured on the plant.

The neural network is trained on-line as the rotorcraft model is flown by the NMP
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controller, using an error-correction learning algorithm that adjusts the network pa-

rameters [11].

As we already mentioned, commonly used auto-pilots can be very difficult to use. In fact,

a proportional controller can work nicely for the problem for which it was tuned. However,

it must be carefully tuned to show a stable behavior on a wide range of conditions. Since no

rules generally exist to compute proper controller parameters to guarantee stability, most

of this tuning phase is based on trial and error.

Therefore, in developing the proposed methodology, attention was concentrated on con-

structing a robust tool that could be applied to the largest possible class of problems.

Moreover, this tool had to need minimal information coming from simulations of the com-

prehensive model. The following formal description of the proposed controller justifies the

superior performance and robustness it will show in Chapter 4:

• The stability requirement is addressed by the NMPC methodology. It guarantees

the convergence of the non-linear closed-loop system to the desired target under the

assumptions of an infinite prediction horizon and that the reduced model perfectly

matches the controlled system.

• Clearly, the practical implementation of the methodology implies the use of finite

prediction and control horizons. Different approaches to achieve closed-loop stability

using finite horizon lengths exist. A very common idea is the introduction of stability

constraints. For example, the system can be required to reach the target solution

in finite time (at the end of the prediction) by enforcing proper constraints, the so

called zero terminal constraints, on the outputs. Another possibility is to enforce a

terminal region constraint (the output is required to reach a ball about the solution at

the end of the prediction) and/or a terminal penalty term in the cost function, which

weights the distance of the states from the target at the end of the time window. A

different path is followed in the quasi-infinite horizon approach. In this case, by using

a locally stabilizing linear control law, it is possible to compute off-line the terminal

region and a terminal penalty matrix to be used in solving the NMPC problem. See
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Reference [12] for a list of references on this subject.

• On the other hand, a perfect match of reference model and controlled system can

not be expected in general. So, although a good reference model certainly eases

its work, the adaptive element present in the reduced model plays a central role.

For the neural structure used as adaptive element in this research, the fundamental

result of the universal approximation property (see Reference [13]) implies that the

approximation error can be made arbitrarily small by changing the number of internal

units (neurons) of the network. Therefore, given a particular structure of the network,

a set of parameters of the adaptive element exist that give the desired accuracy of the

reduced model.

• Analytically, the adaptive technique applied in this research cannot be proved to be

effective in finding this combination of network parameters and in guaranteeing the

stability of the closed-loop system. However, published theoretical results on this

topic show that proper adaptive rules can be constructed to ensure tracking stability.

For example in Reference [15], feedback control based on a neural adaptive element

is used to make robot manipulators track desired outputs. A tuning algorithm is

therein adopted to show that states, tracking error and network weights are uniformly

ultimate bounded, which implies in practice the convergence of all these quantities

to a bounded region. The effect of different adaptation algorithms on the proposed

predictive controller will be investigated in future works.

he stability requirement is addressed as we said by the NMPC methodology, which guar-

antees the convergence of the non-linear closed-loop system to the desired target under the

assumptions of an infinite prediction horizon and that the reduced model perfectly matches

the controlled system [12]. Clearly, the practical implementation of the methodology implies

the use of a finite time horizon, which is however a reasonable approximation that does not

prejudice the stability of the system in most cases. On the other hand, a perfect match

of reduced model and controlled system can not be expected in general. So, although a

good reference model certainly eases its work, the adaptive element present in the reduced
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model plays a central role. For the neural structure used for the adaptive element, the

fundamental result of the universal approximation property (presented in Reference [13])

implies that the approximation error can be made arbitrarily small by changing the number

of internal units (neurons) of the network. However, the adaptive technique applied in this

research can not be proved to be effective in finding the combination of network parameters

minimizing this error. The results obtained in practice, gathered in Chapter 4, seem in any

case to be particularly promising and motivate at the end this research effort.

1.4 Contents of the Thesis

The plan of this thesis is as follows. In Chapter 2 we formulate the model-predictive control

problem. In doing this, we assume the knowledge of a “good” reduced model. We also

discuss the discretization in time and solution of the predictive control problem. Chapter 3

is devoted to the construction of adaptive reduced models to accurately approximate the

controlled system. The numerical results and analyses of the proposed methodology are

gathered in Chapter 4, while in Chapter 5 we draw some conclusions and we discuss possible

future steps of this research effort. Details of the rotor reference model used are briefly

shown in Appendix A. Appendix B presents a classic simplified approach for rotorcraft

performance analysis that will be useful in the numerical test phase, and Appendix C gives

some highlights on the classical auto-pilot approach. We close the work extending the

proposed auto-pilot to free-flight applications in Appendix D, for future research on this

topic.
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CHAPTER II

MODEL PREDICTIVE CONTROL

Non-linear model-predictive control arose in the 1970s and grew in the 1980s as a practical

and sound methodology for the control of non-linear systems. A predictive controller pre-

dicts the future behavior of the plant using a reduced model, and finds the control actions

necessary for the regulation of the plant solving an optimal control problem. The control

strategy is applied to the system for a finite time window, then it is computed again by

solving a new optimization problem. NMPC is very general and powerful, with respect to

similar linear control strategies, since it allows to use nonlinear models of the plant and to

explicitly enforce constraints on both state and control variables. The price for these ad-

vantages is a superior complexity and a high computational cost. Indeed, one needs to solve

on-line an optimization problem at each control sampling interval to produce a prediction

of the controls necessary to minimize the objective function.

In the past years, NMPC has been widely used in the chemical process industries and in

other fields in which long time scale systems must be controlled or regulated with extreme

stability and efficiency. At the present time, the control community is gradually moving to-

wards real-time applications of the MPC by taking advantage of the available computational

power, see for instance Reference [6].

In this chapter we will recast the rotorcraft trim problem introduced in Section 1.1 as

a model-predictive regulation problem. We will focus our attention on the formulation and

solution of the predictive control problem, and leave the discussion on the reduced model

to Chapter 3.

2.1 Model Predictive Regulation

NMPC can be exploited for controlling a system in a variety of “optimal ways,” depending

on the objective function that is optimized in the process. As an example, for regulation
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problems the controlled system is steered in order to track a desired output time history

that is constant in time. So, it is quite straightforward to define the objective function as the

error between the reduced model output and the desired one. In trimming a rotorcraft model

for instance, one wants to regulate the outputs ỹ of the plant M̃, defined in equation (3),

to the desired values y∗, as expressed by the trim constraints (4).

NMPC uses a reduced model M for predicting the future behavior of the plant M̃ under

the action of the control inputs u. An open-loop optimal control problem is solved for the

reduced model on a finite horizon, the regulation window. The cost function to be mini-

mized translates the distance between the prediction of the model response and the desired

response, and can weight, in case, some form of control activity. The optimizer accounts

for possible input and output constraints that may need to be satisfied. In particular, it

allows to enforce the trim condition of constant controls, expressed in equation (2). The

solution of the open-loop model predictive regulation problem yields control actions that

generate predicted outputs which follow the prescribed reference y∗ in some optimal way

that satisfies the constraints.

The controls computed by the optimizer are used for steering the plant M̃, but only on

a short time horizon, the steering window. Indeed, due to the inevitable mismatch between

reduced model and plant, the actual outputs will drift away from the predicted ones. Once

the plant has reached the end of the steering window under the action of the computed

control inputs, the model predictive regulation problem is solved again, looking ahead in

the future over the prediction horizon shifted forward in time. This procedure results is a

feedback, receding horizon approach.

2.2 Formulation of the Model Predictive Regulation Prob-

lem

Let us assume that the reduced model M is governed by the system of ordinary differential

equations

f(ẏ, y, u, p∗) = 0, (7)
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representing a specific mathematical model based on insight on the nature of the plant, i.e.

of system (1). The functional dependence can be related to the details that one wants to

represent by means of the reduced model. We assume the parameters p∗ to be given as a

result of the adaption of the model. In Chapter 3 this topic will be investigated in detail.

Let t = T reg
i = T steer

i be the current time, which is also the beginning of the regulation

and steering windows, while T reg
f = T reg

i +∆T reg is the end of the regulation window of size

∆T reg. Given initial conditions on the plant states x̃(T reg
i ) = x̃i, which induce the output

initial conditions ỹi = h̃(x̃)|t=T
reg
i

, the future control actions are found from the solution of

the following model-predictive regulation problem:

min
y,u

J reg, (8a)

with: J reg =

∫ T
reg
f

T
reg
i

M(y, y∗, u) dt, (8b)

s.t.: f(ẏ, y, u, p∗) = 0, (8c)

greg(y, u) ∈ [greg
min, g

reg
max], (8d)

y(T reg
i ) = ỹi. (8e)

The regulation cost, J reg, is computed as the integral over the regulation window of the

function

M(y, y∗, u) = ||y − y∗||Sreg
y

+ ||u||Sreg
u

+ ||u̇||Sreg
u̇

, (9)

where the first term accounts for the regulation error, while the second and third terms are

quadratic terms in the control actions and control rates, respectively. These quantities are

measured in the norms || • ||Sreg
y

= (•) · S
reg
y (•), || • ||Sreg

u
= (•) · S

reg
u (•) and || • ||Sreg

u̇
=

(•) · Sreg
u̇ (•) respectively, based on the scaling matrices S

reg
y , S

reg
u and S

reg
u̇ . The last two

terms are typically used for ensuring smooth control policies, through appropriate choices of

the weighting matrices. The solution of the optimization problem satisfies the reduced model

governing equations (7), together with additional possible input and output constraints.

Since we are interested in enforcing the trim conditions expressed by equation (2), we

enforce zero control velocities on the time interval (T reg
c , T reg

f ) by means of the constraint

u̇(t) = 0, T reg
i < T reg

c ≤ t ≤ T reg
f , (10)
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which can be easily appended to the set of constraints (8d). T reg
c represents the end of the

control horizon, over which the controls u are free to change.

If the constant-in-time condition for the controls is enforced over a time interval larger

than one rotor period, i.e. T reg
f −T reg

c > T , we are exactly asking that the model be trimmed

at the end of the regulation window. The use of an adaptive element in the model allows the

convergence of the behavior of the model to that of the system, as we will see in Chapter 3,

and the enforcement of the trim condition not only for the former but also for the latter.

The prediction phase is followed by the plant steering phase. Consider the known

controls u∗(t) as obtained from the solution of problem (8) above, with t ∈ Ωsteer =

(T steer
i , T steer

f ), where T steer
f = T steer

i + ∆T steer is the end of the steering window of size

∆T steer. Under the action of the controls u∗, the plant M̃ is advanced forward in time

starting from the current state x̃i. This steering phase amounts to the solution of the

following initial value problem:

f̃( ˙̃x, x̃, λ̃, u∗) = 0, (11a)

c̃( ˙̃x, x̃) = 0, (11b)

x̃(T steer
i ) = x̃i, (11c)

which yields a solution in terms of x̃(t) and λ̃(t) for t ∈ Ωsteer. The solution at the

end of the steering window, x̃(T steer
f ), provides the initial condition for the next regulation

problem, and consequently for the next steering problem.

2.3 Numerical Solution of the Model Predictive Regulation

Problem

The numerical solution of the model predictive regulation problem (8) can be obtained

very efficiently by the direct transcription method [4]. The governing equations of the

reduced model are discretized on a computational grid of the regulation window using an

appropriate numerical method. This defines a set of discrete unknown state and control

parameters on the computational grid. Next, the constraint conditions and the problem

cost function are expressed in terms of the discrete parameters. This in turn defines a non-

linear discrete parameter optimization problem, i.e. a non-linear programming problem
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(NLP). The numerical solution of this discrete problem approximates the solution of its

infinite-dimensional counterpart, problem (8).

To describe the numerical solution of the model predictive problem in more precise

terms, let us consider the following partition of the temporal domain Ωreg = (T reg
i , T reg)

T reg
i ≡ t0 < t1 < . . . < tn−1 < tn ≡ T reg

f , (12)

where n ≥ 1, and ti = ti−1 + hi, i = 1, . . . , n. A grid T reg
h is associated with this partition.

T reg
h is made of n elements, the generic element being labelled K. Each element spans a

time interval T i = [ti, ti+1], and has a left vertex ∂KL associated with time ti and a right

vertex ∂KR associated with time ti+1. Typically, the size of each element in the model

predictive regulation problem is held constant throughout the grid, and hence we simply

have hi = h = (T reg
f − T reg

i )/n.

Given a numerical integration scheme, we indicate with the symbols yh, uh the finite

dimensional approximations that the numerical scheme makes of the infinite dimensional

unknown fields y(t), u(t). The restriction of these approximations to the generic grid

element K is written yh|K and uh|K . The state approximations evaluated on the right

vertex of an element Ki are equal to the state approximations evaluated on the left vertex

of the neighboring element Ki+1, i.e.

yh|∂KR
i

= yh|∂KL
i+1

. (13)

This condition expresses the continuity of the states at the element interfaces, in the sense

that it provides the initial conditions on each element as the value of the final states on

the preceding element. In general, there is not a similar condition on the controls, since

there are no initial conditions on this field, so that the control approximations uh should

be discontinuous across element interfaces.

On the computational grid T reg
h , yh and uh can be regarded as functions of some discrete

parameters yd, ud, i.e. yh = yh(yd) and uh = uh(ud) on T reg
h . These discrete parameters

depend on the specific numerical integration scheme. In general, the vector of discrete state

parameters yd will contain the state unknowns at the grid nodes, y1, y2, . . . ,yn. Further-

more, some schemes, as for example the Runge-Kutta and finite element methods, will also
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have an additional ns internal unknowns (stages) per time step y1
i , y

2
i , . . . ,y

ns

i . Therefore,

the vector of discrete state parameters can in general be written as

yd = (. . . ,yi, y
1
i , y

2
i , . . . ,y

ns

i , yi+1, . . .)
T . (14)

Similarly for the vector of discrete control parameters ud, according to the numerical

method.

The discretized version of the model predictive regulation problem can be written as

min
yd,ud

J reg
h , (15a)

with: J reg
h =

∫ T reg

T
reg
0

M(yh, y∗

h, uh) dt, (15b)

s.t.: fh(yh|K , uh|K , p∗) = 0 ∀K ∈ T reg
h , (15c)

g
reg
h (yh|K , uh|K) ∈ [greg

min,K , greg
max,K ] ∀K ∈ T reg

h , (15d)

yh(T reg
i ) = ỹi. (15e)

In problem (15), the first set of constraint conditions (15c) represents a discretized version

of the reduced model governing equations (7) on each element K of the computational

grid. These equations are coupled together through the gluing conditions (13) that induce

a banded sparsity pattern to the problem. The second set of constraints (15d) represents

a discretized version of the input and output constraints of problem (8), again expressed

on each grid element K. Finally, the cost Jh in (15b) represents a discretized version of J

as given in (8b), the integral being evaluated through some appropriate quadrature rule.

Discrete cost and constraints are all functions of the vectors of discrete state and control

parameters yd, ud, which represent the unknowns of the optimization problem.

In this work, the transcription process is based on the finite element in time formulation

of References [7, 9].

The plant steering phase amounts to the solution of the initial value problem (11)

with known control actions. T̃ steer
h is the grid used for advancing forward in time the

comprehensive model in Ωsteer. Note that the typical time step size in T̃ steer
h is in general

smaller than the typical time step size in T reg
h , since much finer solution scales need to
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be resolved in this case. Furthermore, in some applications it can be useful to adapt the

time step size to the local characteristics of the solution using some error control method.

It is also clear that the numerical method used for integrating the comprehensive model

equations can in general differ from the numerical method used for the discretization of the

optimal control problem. Therefore, there is a need to map the controls u∗

h obtained on

T reg
h from the solution of problem (15) onto the steering grid T steer

h . This mapping depends

on the grids and on the numerical methods used in the prediction and steering phases, and

will be simply indicated here with the notation

u∗

h|T̃ steer
h

= P(u∗

h|T reg
h

), (16)

where P(•) is an appropriate projection operator.

The discretized version of the steering problem (11) can be written as

f̃h(x̃h|K , λ̃h|K , u∗

h|K) = 0 ∀K ∈ T̃ steer
h , (17a)

c̃h(x̃h|K) = 0 ∀K ∈ T̃ steer
h , (17b)

x̃h(T steer
i ) = x̃i. (17c)

The discrete equations (17a,17b) are solved on each element sequentially. For the first

element, the initial conditions are provided as (17c), while for all subsequent elements they

are given by the gluing conditions (13). Finally, the outputs are obtained as

ỹh|K = h̃(x̃h)|K , ∀K ∈ T̃ steer
h . (18)

As part of the tasks of this research, we will use a multibody rotor prototype as compre-

hensive model. The numerical integration of the multibody dynamics equations is based on

the non-linearly unconditionally stable energy decaying scheme described in Reference [3]

and references therein.

The formulated model predictive control approach imply the following approximations:

1. The predicted and actual outputs will differ because of modeling errors, since the

reduced model will in general be able to only approximate, but not render exactly,

the dynamics of the plant outputs. This error can be controlled by a judicious choice
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of the reduced model and by adapting the model parameters, as described in the

following chapter.

2. The prediction of the future behavior of the system is carried out on a finite horizon,

rather than up to T∞. Shorter horizons imply smaller computational costs in the so-

lution of the model predictive regulation problem. On the other hand, longer horizons

imply improved stability of the controller and better regulation performance. Hence,

there is a trade-off among these conflicting requirements.

3. The control actions are recomputed by the optimizer only after a finite time interval

∆T steer. Since predicted and plant models differ because of point (1) above, the

outputs of system M̃ will drift away from the predicted ones under the action of

the controls. Clearly, the greater the steering window, the greater the effect of this

drift will be. On the other hand, longer steering windows imply a smaller number of

solutions of the model predictive regulation problem for a given maneuver duration,

and hence a reduced computational cost. Hence, here again there is a trade-off between

these contrasting requirements.
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CHAPTER III

ADAPTIVE REDUCED MODEL

For the solution of the NMPC problem (8) we assumed the knowledge of a reduced model

that is a good approximation of the controlled system. One could think to simply formulate

the regulation problem (8) using M = M̃. However, the direct solution of the resulting

optimal control problem is not numerically attractive and acceptable in practice, because of

the large number of states characterizing a comprehensive model. A practical and feasible

approach is the adoption of a reduced model M based on classic and compact blade element

models, see Reference [22]. This idea has been recently applied with satisfactory results to

the steering of rotorcraft models in free-flight [8].

Nevertheless, in order to properly trim a rotorcraft prototype by a predictive controller,

we need a reduced model able to adequately represent the system behavior at least locally,

i.e. about the trimmed solution, in terms of flexibility, unsteady aerodynamic effects and

inflow dynamics. Since no model exists that satisfies these constraints at a reasonable

computational cost, one is induced to look in the direction of the identification of the

behavior of the complete comprehensive model.

System identification is concerned with the mathematical characterization of a system.

Let us think of the system M̃ as an operator, belonging to a class M̃, that maps the space

of the possible input signals into the space of the output signals. These signals are typically

vectors of functions of time of suitable regularity. The target of the identification problem

is to find an operator M, belonging to a class M ⊂ M̃, which approximates M̃ in a desired

sense. So, if ũ and ỹ are respectively the input and output signals of M̃, we look for M ∈ M

such that its outputs y respect

∥∥ỹ − y
∥∥ =

∥∥M̃(ũ) −M(ũ)
∥∥ ≤ ε, (19)

where ε is the maximum acceptable approximation error. In our case, we are interested in
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finding a model M such that it shares with the actual rotorcraft system M̃ those dynamic

characteristics that are relevant for trim.

An identification methodology is characterized by the class of identification models M

and the method to determine M. Desired accuracy, analytical tractability, computational

efficiency and simplicity in finding M are the aspects that concur in the choice of the

methodology for each application.

In the following sections, we briefly introduce the reference model adopted for this

research. Then, we discuss its augmentation in order to get the reduced model described

by equation (7), that here we repeat

f(ẏ, y, u, p∗) = 0,

described in terms of a set of states y, controls u and parameters p. Indeed, the dependence

on the vector of parameters p is introduced to perform the identification. A particular

combination p∗ fully characterizes the reduced model M among the models M(p) that

form the class M of operators. These parameters are optimized to ensure proper matching

between reduced and full outputs, when the reduced and full systems are subjected to the

same inputs. Analytically, the reduced model is determined in order to obtain

y ≈ ỹ for u = ũ. (20)

3.1 Reference Model

The reduced model is obtained as a reference model augmented by an element catching the

deficiencies between the reference and the full plant. By reference model we want here to

indicate a specific mathematical model based on insight on the nature of the system (1).

This model can be expressed in the form

fref( ˙̂y, ŷ, u) = 0, (21)

where ŷ are the outputs of the reference model subjected to the control time history u.

The level of detail of the reference model is clearly a crucial aspect. On one side, the

solution of the optimal control problem (8) implies that the whole reduced model must be
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computationally very efficient, so the reference model cannot be complex. On the other

hand, a more refined reference model clearly eases the identification process since it is

typically “closer” to the rotorcraft system, in the sense previously discussed. Appendix A

summarizes the reference model adopted for this research, which is based on blade element

theory, with uniform inflow computed by means of momentum theory [10].

We can notice that the controls of the plant, ũ, might have physical meanings that differ

from those of the reduced model controls u, since the two models describe the system at two

different levels of detail. For example, the controls ũ might include the valve apertures of

three hydraulic actuators connected to the swash-plate of a detailed multibody model of the

rotor system, while the reduced model controls will include the rotor collective, longitudinal

and lateral cyclic angles. These two sets of controls, although clearly different, eventually

determine the pitch setting of each rotor blade at any given instant of time, which in turn

determines the forces and moments generated by the rotor. Irrespectively of the details and

of the problem considered, it is reasonable to assume that it will be always possible to map

one set of controls into the other, ũ = m(u) and viceversa, u = m−1(ũ). We will just

consider ũ = u in the following.

3.2 Reference Model Augmentation and Error Identifica-

tion

We will show now two possible approaches for the augmentation of the reference model and

the construction of the reduced model to be used in the model-predictive auto-pilot.

3.2.1 Output Error Identification

A first possibility is to identify the error between the system and the reference model

outputs when they are subjected to the same input. Let us define the reference model as

in equation (21), where ŷ is the vector of outputs of the reference model subjected to the

same controls as the system, i.e. u = ũ. We can now write

y = ŷ + e, (22)
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where the output error e is a function of time. If we enforce equation (20) and substitute

y = ỹ, the vector e becomes the measure of the mismatch we want to identify.

Under proper assumptions on its regularity, the dynamics of e can be described by a

(unknown) system of differential equations

h(e(n), . . . ,e, u) = 0, (23)

where we used the notation e(n) to indicate the derivative of order n of the output error

with respect to time, and e(n), . . . ,e to indicate the sequence of the derivatives of order

decreasing form n to zero. This system is completed by proper initial conditions for the

error and its derivatives, e(k)(Ti) = e
(k)
0 , k = 0, . . . , n − 1. By construction, the operator

h is able to generate values of e such that y = ŷ + e = ỹ.

The operator h can be characterized as belonging to an infinite-dimensional class of

operators H. We approximate this operator by choosing a finite-dimensional class, subset

of H, parameterized in p, so that

hp ∈ Hp(p) ⊂ H, (24)

where hp approximates h as desired, namely

h = hp + ε, (25)

ε indicating the approximation error. As a result, we have the following reduced model:

fref( ˙̂y, ŷ, u) = 0, (26a)

hp(e
(n)
p , . . . ,ep, u, p∗) = 0, (26b)

yp = ŷ + ep, (26c)

where yp approximates ỹ as desired.

3.2.2 Equation Defect Identification

A more appealing formulation is obtained by writing the reduced model governing equa-

tions (7) as follows:

fref(ẏ, y, u) − d(y(n), . . . ,y, u) = 0, (27)
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where again we used y(n) to indicate the derivative of order n of the outputs with respect

to time. We define the (unknown) operator d as the defect of equations (21) when the

condition (20) is enforced, i.e. u = ũ and y = ỹ. Thus, the operator respects

d(ỹ(n), . . . , ỹ, ũ) = fref( ˙̃y, ỹ, ũ). (28)

This form of the reduced model ensures the matching of reduced and full states when it

is subjected to the same inputs as the plant. The functional dependence of the defect is

related to the dynamic characteristics of the system governed by equations (1).

The operator d belongs to an infinite-dimensional class of non-linear functions mapping

the derivatives of the states y and the controls u into a vector of defects, formally

d ∈ D. (29)

Since this operator is unknown, we want to identify it by choosing an approximating oper-

ator dp belonging to a finite-dimensional class Dp parameterized in p, so that

dp ∈ Dp(p) ⊂ D. (30)

and

d = dp + ε. (31)

Here again ε represents the approximation error.

The resulting reduced model is in this case

fref(ẏp, yp, u) − dp(y
(n)
p , . . . ,yp, u, p∗) = 0, (32)

with yp being the desired approximation of ỹ.

3.3 Approximation by Neural Networks and Discretization

In the last five decades artificial neural networks, or simply neural networks (NNs), have

changed from promising model of parallel processing inspired by biological systems to a

widely used technique for the approximation of non-linear maps. Here, we do not want

to emphasize the biological implications of neural networks. On the contrary, we simply
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recognize the valuable theoretical and practical results allowed by NNs in the fields of system

identification and control. Indeed, neural models are powerful tools for the approximation

of non-linear dynamical systems since they allow a constructive decomposition of a non-

linear map in a finite-dimensional space of non-linear functions. Because of this feature, a

neural element is chosen to approximate the mismatch between reference model and plant

and to perform the identification.

Let us summarize the reduced models obtained in the previous sections, taking n = 1

for simplicity: for the output error identification case

f(ẏ, y, u, p∗) =





fref( ˙̂y, ŷ, u) = 0,

hp(ė, e, u, p∗) = 0,

e − (y − ŷ) = 0,

and for the defect identification case

f(ẏ, y, u, p∗) = fref(ẏ, y, u) − dp(ẏ, y, u, p∗) = 0,

where we dropped the subscripts from the variables for uniformity with equation (7). NNs

are parametric non-linear maps that can be used to render the approximating operator

present in each of the two approaches [17].

3.3.1 Recurrent Neural Network Approximating the Output Error

For the output error, we can use a recurrent network to render the system of differential

equations hp(ė, e, u, p∗) = 0. Recurrent networks have a peculiar feedback form, corre-

sponding to a time-varying map, such that the outputs of the network at each instant in

time have an influence on the values at the following instants. Thus, even subjected to

constant controls (u, in this case) the network generates time-varying output signals (here

e). Recurrent NNs are typically expressed in explicit and discretized form [18] as

ei+1 = W T σ(V T
e e

φ
i+1 + V T

u u
φ
i+1 + bV ) + bW , (33)

where W , Ve and Vu are matrices of synaptic weights, bV and bW are vectors of biases,

and

σ(φ) = (σ(φ1), . . . , σ(φNh
))T
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is the vector-valued function of activation functions σ(•), typically chosen as the sigmoid

function, for the Nh processing elements (neurons). We used e
φ
i+1 and u

φ
i+1 to indicate the

arrays

e
φ
i+1 =




ei

ei−1


 , u

φ
i+1 =




ui

ui−1


 .

In the present case, the considered structure is the NNARX, which is often applied to iden-

tify dynamical systems with negligible noise [18]. In practice, this implies the dependence

of the values at each time only upon the network inputs and outputs at previous time in-

stants. Moreover, we choose a structure for the approximation space including two previous

values. Clearly, the resulting approximation error depends upon the order of the system

of differential equations (23), which we do not know a priori. Typically, the ability of this

structure to render the dynamical system under study is checked a posteriori, and in case

it is augmented with other values back in time.

3.3.2 Static Neural Network Approximating the Equation Defect

In the equation defect identification, the operator dp is a static map between its inputs and

outputs. Thus, we can use a static network to render the approximation space, as follows:

dp(ẏ, y, u, p) = W T σ(V T
ẏ ẏ + V T

y y + V T
u u + bV ) + bW . (34)

As mentioned before, the network inputs must include as many derivatives of y as it is

necessary to guarantee a sufficiently small approximation error. The reduced model with

defect identification in the form (34) can be easily discretized as in equation (15c), in explicit

or implicit form depending on the numerical scheme. This aspect implies a more flexible

formulation with respect to the output error identification. Moreover, the characterization

of a simple static map instead of a dynamic one makes this second approach potentially

more efficient and the identification task easier.

3.3.3 Properties of the Neural Representation

In both cases, we adopt a single-hidden-layer feedforward network structure. This is made

evident by the presence of one layer of Nh neurons connected to the network inputs and
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outputs by the interconnection weights V and W , respectively. Indeed for this particular

structure, the universal approximation property of neural networks [13] ensures that the

approximation error can be made arbitrarily small, i.e. it can be bounded as ||ε||2 ≤ Cε

for any Cε > 0, for some appropriately large number of hidden neurons Nh. This feature

makes single-hidden-layer feedforward networks widely accepted tools for identification of

dynamical systems.

Finally, the reduced model parameters p are defined as the synaptic weights and biases

of the network, for example

p = (. . . , Wij , . . . , Vij , . . . , bV,i, . . . , bW,i, . . .)
T . (35)

3.4 Model Adaptation

As we mentioned at the beginning of this chapter, the reduced model parameters are opti-

mized in order to minimize the distance between M and M̃ in some norm. Proper matching

between predicted and actual outputs can be obtained by subjecting reduced model and

plant to the same control actions, and by tuning the reduced model parameters so that

some measure of mismatch between the two is minimized. The neural network is trained

with an error-correction learning algorithm, where the network parameters are adjusted to

minimize some error E between the network outputs and the desired outputs. For the two

cases previously discussed, if ỹ∗ are the plant outputs obtained for given control inputs u∗,

the error can be defined as a function of the parameters p at each time instant as follows:

• for the output error identification

E(t) =
∥∥e∗ − e∗

p

∥∥
2

=
∥∥(ỹ∗ − ŷ∗) − e∗

p

∥∥
2
, (36)

where ŷ∗ and e∗
p are obtained using the reference model (21) and the neural approxi-

mation (33), respectively, with given controls u∗.

• for the equation defect identification

E(t) =
∥∥∥d( ˙̃y∗, ỹ∗, u∗) − dp( ˙̃y∗, ỹ∗, u∗, p)

∥∥∥
2
. (37)
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Several methods are available for solving this optimization problem [11]. Let us indicate

with u∗

h some given control inputs, and with ỹ∗

h the resulting outputs of the comprehensive

model obtained by solving numerically equations (17) and (18). The model adaptation

problem can be formulated as the following optimization problem

min
yd,p

Jadapt
h , (38a)

with: Jadapt
h =

∫ T
adapt
f

T
adapt
i

E(yh, ỹ∗

h, u∗

h) dt, (38b)

s.t.: fh(yh|K , u∗

h|K , p, T ) = 0 ∀K ∈ T adapt
h . (38c)

The problem is defined over a time interval starting at T adapt
i and ending at T adapt

f , and

solved numerically through transcription on a grid T adapt
h . The discretized reduced model

equations (38c) on each grid element provide a set of constraints for the optimization. The

cost function (38b) is an integral measure of the overall mismatch error.

In this research, we choose the initial and final times to be T adapt
i = T steer

i and T adapt
f =

T steer
f , i.e. they coincide with the initial and final time, respectively, of the current steering

problem. The idea is to use the local information provided by the last steering of the

plant to correct the current estimate pcurr of the parameters. An updated value of the

parameters pnew can be obtained with the back-propagation algorithm [23], i.e. using the

steepest-descent search direction

pnew = pcurr − η
∂Jadapt

h

∂p

∣∣∣∣∣
pcurr

, (39)

where η is the so called “learning rate,” which represents a tunable parameter to control

the network adaption speed.
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CHAPTER IV

NUMERICAL RESULTS

In this chapter we discuss the numerical investigations conducted using the proposed auto-

pilot.

In doing this, we will respect the conceptual order we followed in testing the procedure.

• First, in Section 4.1 we check the ability of the auto-pilot to practically achieve a

desired trimmed condition. For this preliminary test we use a simplified rigid rotor

model.

• Then, in Section 4.2, we apply the procedure to a rotor multibody model:

– As a first step (Subsection 4.2.2), we present a comparison of the proposed output

error identification and equation defect identification approach, introduced in

Chapter 3, for different operative conditions.

– Finally (Subsection 4.2.3), we compare the predictive auto-pilot and an available

implementation of the classic auto-pilot algorithm. The latter is optimized for

different conditions, and several measures are introduced to show the superior

performance of the designed NMP auto-pilot.

4.1 Preliminary Tests

This section is devoted to the introduction of the wind-tunnel rotor trim problem and the

discussion of some preliminary tests we made to explore the potentiality of the NMP auto-

pilot. The chosen approach will be the one of the output error identification introduced in

Chapter 3.

The problem considers the wind-tunnel trim for three desired values of the rotor force

components in the fixed frame. The plant is a rigid four-bladed rotor attached to the

ground. Only flap and pitch hinges, with an offset from the rotor rotation axis, are present
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and the blades have uniform inertial and aerodynamic characteristics, with no built-in twist.

The pitch of each blade as a function of time can be easily expressed in terms of the rotor

controls, which are the collective, and longitudinal and lateral cyclic. For simplicity, we

used strip theory to describe the aerodynamics of the system.

4.1.1 Implementation Aspects

In the proposed algorithm, the prediction phase consists in solving the regulation prob-

lem (8), which is tackled by means of the direct transcription and translated in problem (15).

In practice, this problem can be viewed as an optimization problem with generic nonlinear

cost and constraints. This kind of problems, generally called nonlinear programming (NLP)

problems, are potentially large, but they can be efficiently solved in different ways. In our

case, the solution is performed using a sequential quadratic programming (SQP), Newton-

like method (see Reference [1]). Since the numerical solution of optimization problems can

be highly sensitive to badly scaled unknowns and constraints, in practice we generally look

for a solution in terms of scaled variables. In the present case we can define the scaled states

ys and scaled controls us as follows:

ys = Y −1
v (y − ya) , us = U−1

v (u − ua) , (40)

with

Yv = diag(yv), Uv = diag(uv), (41)

ya, ua, yv and uv being vectors of scaling values which produce scaled vectors ys and us

of order O(1). The choice of these scaling vectors is generally guided by the following

considerations: taking for example the state i, if yai
is chosen as the state time average and

yvi
as the maximum deviation of the state from the average, then the absolute value of ysi

is always less than or equal to 1.

In the following, the chosen rotor reference model is a simple analytical representation

based on blade element theory, which we report in Appendix A. This reference model can

be formally written as

fref( ˙̂y, ŷ, u) = fref(ŷ, u) = ŷ −
1

T

∫ t

t−T

g(u) dt = 0,
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since no internal states are present and the forces produced by the rotor are considered

functions only of the controls u.

4.1.2 Formulation of the Output Error Identification

As reference model, we use a simple analytical representation based on the blade element

theory, which we report in Appendix A. This model can be formally written as

fref( ˙̂y, ŷ, u) = fref(ŷ, u) = ŷ −
1

T

∫ t

t−T

g(u) dt = 0,

since the reference model does not have internal states and the forces produced by the rotor

are considered functions only of the controls u. The reduced model reads in this case

f(ẏ, y, u, p∗) =





ŷ − 1
T

∫ t

t−T
g(u) dt = 0,

hp(ė, e, u, p∗) = 0,

e − (y − ŷ) = 0,

For the neural network training, we can compute the output error between system and

model as

e = ỹ∗ − ŷ = ỹ∗ −
1

T

∫ t

t−T

g(u∗) dt = fref(ỹ
∗, u∗). (42)

4.1.3 Test 1: Hover

At first, we tested the algorithm with zero far field velocity. We arbitrarily set the collective,

and longitudinal and lateral cyclic to 4.5, -1.5 and 0.5 deg, respectively, and we simulated

forward in time the system response throughout the ensuing transient until a periodic

solution was reached. The time average over the rotor period of the force components

was then measured; this provided the target desired values for the trim problem. In fact,

since at this point one knows that certain assigned controls produce known values of the

force components, one can validate the controller by checking whether it is able to find the

solution starting from some different initial setting of the controls.

Next, we set the three controls to zero and we let the auto-pilot steer the rotor model.

During flight to the trim set, we limited the maximum control rates to 10 deg/sec. The

ability offered by the predictive control approach to constrain the control signal as desired
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has the potential to avoid undesired aerodynamic effects when dealing with complex aero-

dynamic models. The controller was activated with a frequency of 4/rev and a prediction

horizon of 5 rotor revolutions. The recurrent neural network used 20 neurons in the internal

layer, it was initialized with small random values, and was trained adaptively throughout

the maneuver.

Higher activation frequencies and longer prediction windows would be preferable to en-

sure greater controller stability, however the chosen combination allowed a less burdensome

computation in developing and testing the methodology.

The resulting time histories of rotor control inputs are given in Figure 2. It can be

observed that the auto-pilot quickly steers the system back to the desired control values,

indicated in the figure with dashed lines. No limit-cycles are observed in the solution. At the

beginning, the controller operates at the maximum allowed control rate, then the adaptive

element of the reduced model allows the controller to exactly catch the correct values of

the controls and the target outputs (Figure 3), which are approximately obtained at the

tenth revolution. In Figure 4 and 5 we show the time histories of the objective function J reg

of the regulation problem (8), which represents the prediction of the violation of the trim

constraints (4), and the actual constraint violation, respectively. After a quick transient,

both quantities converge to a small value, which is the residual error due to numerical

discretization and to the discrete action of the regulator. This residual error seems to be

compatible with the required accuracy of the considered problems. Finally, Figure 6 shows

the actual reaction forces, which are averaged on a rotor revolution to obtain the outputs.
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Figure 2: Preliminary tests: NMP auto-pilot control time histories for zero far field velocity
(solid lines: target values).
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Figure 3: Preliminary tests: NMP auto-pilot average force time histories for zero far field
velocity (solid lines: target values).
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Figure 4: Preliminary tests: time history of the (scaled) cost function J reg for zero far
field velocity.
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Figure 5: Preliminary tests: time history of the (scaled) violation of the trim constraints
for zero far field velocity.
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Figure 6: Preliminary tests: NMP auto-pilot force time histories for zero far field velocity
(solid lines: target values).

4.1.4 Test 2: Forward Flight

The algorithm has also been tested with a far field velocity of 50 m/sec directed perpendic-

ularly to the rotor axis of rotation. We proceeded as in the previous example: we set the

three controls to 8.0, -6.0 and 2.0 deg, respectively, we simulated forward in time, measuring

the average of the force components over the rotor period, and finally we set the three con-

trols to zero and we activated the auto-pilot. Control rates were limited to 10 deg/sec, the

controller activation frequency was 4/rev and a prediction horizon of 5 rotor revolutions was

used. The recurrent neural network is similar to that of the previous case and is adaptively

trained during the whole control phase.

The results for this second example are given in Figures 7-11. The observed trends are

similar to those of the previous trim, with convergence to the solution obtained at about

the fourteenth revolution.

35



0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

10

Rotor Revolutions

C
o

n
tr

o
ls

 [
d

eg
]

θ
0

θ
1s

θ
1c

Figure 7: Preliminary tests: NMP auto-pilot control time histories for a far field velocity
of 50 m/sec (solid lines: target values).

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12
x 10

4

Rotor Revolutions

A
ve

ra
g

e 
F

o
rc

es
 [

N
]

F
X

F
Y

F
Z

Figure 8: Preliminary tests: NMP auto-pilot average force time histories for a far field
velocity of 50 m/sec (solid lines: target values).
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Figure 9: Preliminary tests: time history of the (scaled) cost function J reg for a far field
velocity of 50 m/sec.
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Figure 10: Preliminary tests: time history of the (scaled) violation of the trim constraints
for a far field velocity of 50 m/sec.
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Figure 11: Preliminary tests: NMP auto-pilot force time histories for a far field velocity
of 50 m/sec (solid lines: target values).

4.2 Wind-Tunnel Trim of a Rotor Multibody Model

In this Section, a multibody model of the rotor of the UH-60 utility helicopter, based on

the finite element multibody approach described in References [2, 3], is used to perform

two different tasks: at first, to study the formulations with output error identification and

equation defect identification introduced in Chapter 3; then, to compare the behavior of

the proposed NMP auto-pilot and an available implementation of the classic auto-pilot

described in Reference [19]. The four-bladed articulated rotor model is characterized by

the typical flap-lag-pitch configuration (from the hub to the blade), with three coincident

hinges offset from the rotor shaft axis. The aerodynamic and structural properties of the

blades are provided by means of look-up tables. The rotor controls are in this case the

rotation of the pitch hinge of each blade, which can be related to the rotor collective θ0,

the longitudinal cyclic θ1s and the later cyclic θ1c as follows:

θi(ψ) = θ0 + θ1s sin
(
ψ −

π

2
i
)

+ θ1c cos
(
ψ −

π

2
i
)

, i = 1, 2, 3, 4,
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where ψ is the azimuthal angle of the rotor and each value of i indicates one particular

blade. At the beginning of each test, the collective, longitudinal and lateral cyclic are set

to 4.01 deg (0.07 rad), 0.0 and 0.0 deg, respectively, and the rotor response follows the

periodic orbit related to this constant controls. This condition is obtained by simulating

the system forward in time with constant controls until all the transients decay. Then, the

chosen controller is activated.

Higher accuracy of the model could be achieved by using proper aerodynamic modules

to render the rotor wake effect. However, we will simply use strip theory to represent the

rotor aerodynamics. Despite this lack of accuracy, we can consider this multibody model a

good test-bed for the proposed auto-pilot, because of the presence of flexible elements with

complex geometric, inertial and aerodynamic properties.

4.2.1 Formulation of the Equation Defect Identification

Here again we use the analytical reference model of Appendix A. We recall that this model

can be formally expressed in the following way:

fref(ŷ, u) = ŷ −
1

T

∫ t

t−T

g(u) dt = 0,

where the outputs ŷ are the rotor force components averaged on a revolution. Using the

equation defect identification, the reduced model reads

f(ẏ, y, u, p∗) = y −
1

T

∫ t

t−T

g(u) dt − dp(ẏ, y, u, p∗) = 0.

In order to train the neural network, we have to measure the model equation defect, as

follows

dp( ˙̃y∗, ỹ∗, u∗, p∗) = fref(ỹ
∗, u∗) = ỹ∗ −

1

T

∫ t

t−T

g(u∗) dt. (43)

4.2.2 Comparison of Output Error and Equation Defect Identification

We are ready to investigate possible differences between the output error identification

strategy, which exploits a recurrent neural network to perform the task, and the equation

defect identification strategy, which is associated to a static neural network trained to catch

the measured defect. Here again the controller activation frequency is equal to 4/rev, and
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the control rates are limited to 10 deg/sec. The prediction horizon is equal in this case to

3 rotor revolutions.

Both networks are characterized by 20 neurons in the internal layer, and they are ini-

tialized with small random values and trained adaptively throughout the maneuver. In

particular, the neural networks are modified right after the plant steering phase and before

a new control activation, using the last available datum obtained integrating the multibody

model. At each update, we use an adaptive approach for the learning rate η. Starting from

an initial value η = 0.3, we update the network weights as described in Section 3.4, then

we check the error e∗ − e∗
p, for the output error case, or d − dp, for the equation defect

case, of the updated network on the last datum. If an increment in one of the components

of this error is registered with respect to the error of the old network weights on the same

data, the update is rejected, the learning rate is decreased and the process is repeated. In

general, this procedure was rarely necessary.

To test the algorithm on a realistic practical problem, we compute the three approximate

rotor force components required to trim the UH-60 as a function of the flight speed, following

the relations summarized in Appendix B. We now show some results for values of the

advance ratio µ equal to 0 and 0.35.

• µ = 0. At first, we can appreciate the similarity between Figure 12 and 13 and the

results of Figure 2. The performance of the MPC auto-pilot applied to the multibody

model is almost the same as the one registered with the simplified rigid rotor model.

Comparing now the output error and equation defect identification, the time histories

of all the quantities are analogous (see Figures 12-13, 14-15 and 16-17), though the

latter seems to perform slightly better.

• µ = 0.35. Also in this case the two different implementations of the predictive auto-

pilot seem to behave in a similar manner. The controller seems to behave in a very

stable and efficient way, achieving the trim condition in about 15 revolutions. The

controls of the equation defect identification implementation appear a bit more smooth

(Figures 18-19), producing a slightly better trend of the outputs. Figures 20-21 and

40



22-23 show the time histories for the outputs and the actual forces, respectively.
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Figure 12: Control time history for the NMP auto-pilot with output error identification,
µ = 0.

These numerical experiments elucidate that the two proposed approaches do not rad-

ically differ one from one another when dealing with the considered problem. If we re-

call equation (42) and (43), it is clear that we are identifying the same signal, ỹ∗ −

1
T

∫ t

t−T
g(u∗) dt, using two different approaches. Moreover, since the desired trim condition

corresponds to certain constant values of the controlled system outputs, the identification

process consists mainly in finding the constant shift of the reference model outputs such

that, subjected to the trim controls, it produces the same outputs as the plant. Thus,

because of the structure of the adaptive elements, given in equations (33) and (34), the

principal task of the neural networks is to identify the proper vector of biases bW , in order

to obtain this correspondence. This discussion justifies the fact that for the present example

the two adaptive elements work and behave in a very similar manner.
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Figure 13: Control time history for the NMP auto-pilot with equation defect identification,
µ = 0.
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Figure 14: Output time history for the NMP auto-pilot with output error identification,
µ = 0 (solid lines: target values).
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Figure 15: Output time history for the NMP auto-pilot with equation defect identification,
µ = 0 (solid lines: target values).
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Figure 16: Force component time history for the NMP auto-pilot with output error iden-
tification, µ = 0 (solid lines: target values).
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Figure 17: Force component time history for the NMP auto-pilot with equation defect
identification, µ = 0 (solid lines: target values).
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Figure 18: Control time history for the NMP auto-pilot with output error identification,
µ = 0.35.
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Figure 19: Control time history for the NMP auto-pilot with equation defect identification,
µ = 0.35.
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Figure 20: Output time history for the NMP auto-pilot with output error identification,
µ = 0.35 (solid lines: target values).
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Figure 21: Output time history for the NMP auto-pilot with equation defect identification,
µ = 0.35 (solid lines: target values).
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Figure 22: Force component time history for the NMP auto-pilot with output error iden-
tification, µ = 0.35 (solid lines: target values).
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Figure 23: Force component time history for the NMP auto-pilot with equation defect
identification, µ = 0.35 (solid lines: target values).

4.2.3 Complete Trim Analysis and Comparison with Classic Auto-pilot

We are now ready to extensively study the behavior of the proposed auto-pilot comparing

its performance with that of a more traditional auto-pilot, whose formulation is reported

in Appendix C. The multibody model previously described is steered to an estimated trim

condition, computed according to Appendix B, for different values of the far field velocity.

In each simulation, a fixed value of advance ratio, µ, is chosen starting from 0 for the first

simulation and increasing it of 0.05 each time, up to a maximum of 0.35. At the beginning

of each test, the rotor collective, longitudinal and lateral cyclic are set to 4.01 deg (0.07

rad), 0.0 and 0.0 deg, respectively.

Several preliminary tests where performed to tune the classic auto-pilot gain matrix G

for this particular problem. In the following, we will refer to two different situations:

• classic auto-pilot A, tuned for trimming the rotor with maximum performance (short-

est time) at µ ≈ 0.2, with g0 = (0.6, 0.6, 2.0)T ;
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• classic auto-pilot B, optimized for µ ≈ 0.25 and corresponding in our tests to g0 =

(0.2, 0.2, 2.0)T .

In both cases, the matrix J is initially computed by perturbing the system about the

initial condition, according to equation (50). In particular, we perturbed one control at

time of a small quantity ∆ for 4 revolutions, measuring the changes in the outputs and

extracting one column of the matrix at time.

To let all the transients decay, we simulated a number of rotor revolutions equal to 25

for the NMP auto-pilot, 30 for the auto-pilot A and 102 for the auto-pilot B. The NMP

auto-pilot used for these tests is the one with equation defect identification, with controller

activation frequency equal to 4/rev, prediction horizon of 3 revolutions and control rates

limited to 10 deg/sec. Also in this case the neural network has 20 neurons in its hidden

layer and a starting learning rate set to 0.3.

4.2.3.1 Trim Time

In order to measure the ability of the proposed auto-pilot to accurately and quickly trim

the system, a criterion is required to indicate when the trim solution is achieved, within a

desired tolerance. Let us define

εcon(t) = ‖ỹs(t) − y∗
s‖2 ,

which is a possible measure of the error committed on the trim constraints (4) as a function

of time. The outputs are here scaled according to Subsection 4.1.1, using the scaling factors

given in Table 1 and 2.

Table 1: Input scaling factors.

ua[deg] uv[deg]

θ0 20 20
θ1s 0 10
θ1c 0 10

In this test, we conventionally define the trim time as

Ttrim : εcon(t) ≤ εmax
con ,∀t ≥ Ttrim.
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Table 2: Output scaling factors.

ya[lb] yv[lb]

FX 0 2000
FY 0 2000
FZ -22000 22000

The quantity εmax
con is the maximum allowed error on the trim constraints, which strongly

affects the value of the trim time for a given system output time history.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

Advance ratio (µ)

T
ri

m
 t

im
e 

[r
ev

]

Figure 24: Trim time for εmax
con = 0.05. Solid line: NMP auto-pilot; dash-dotted line:

classic auto-pilot A; dashed line: classic auto-pilot B.

In Figure 24, 25 and 26 we summarize the resulting trim time for εmax
con = 0.05, εmax

con =

0.02 and εmax
con = 0.01, respectively. The dash-dotted and dashed lines represent the classic

auto-pilot A and B, respectively, and the solid line indicates the proposed predictive auto-

pilot. Clearly, the request of a lower error εmax
con increases the trim time for all the controllers,

such that

Ttrim|εmax
con =0.05 < Ttrim|εmax

con =0.02 < Ttrim|εmax
con =0.01. (44)

In each figure, close to the values of µ for which they have been calibrated, the classic
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Figure 25: Trim time for εmax
con = 0.02. Solid line: NMP auto-pilot; dash-dotted line:

classic auto-pilot A; dashed line: classic auto-pilot B.

auto-pilots perform nicely and their trim time is definitely similar to the one of the NMP

auto-pilot. However, their overall behavior is poor, with almost unacceptable trim times

for low advance ratios. Moreover, for µ > 0.25 it was not possible to trim the rotor, so

the square symbols in the figures indicate the classic auto-pilot stability limit found for this

problem. Both this aspects are related to the trade-off existing between performance and

stability: higher gains give a better behavior for small values of µ but they can make the

auto-pilot unstable at higher ratios. Therefore, different tests have been made decreasing the

gains to find a combination able to stabilize the controller beyond µ = 0.25. Unfortunately,

no solution to this problem was found.
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Figure 26: Trim time for εmax
con = 0.01. Solid line: NMP auto-pilot; dash-dotted line:

classic auto-pilot A; dashed line: classic auto-pilot B.
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Figure 27: Time history of the (scaled) defect ‖d‖ for different values of the advance ratio
µ (from 0 to 0.35 with steps of 0.05, from bottom to top).
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Finally, Figure 27 shows the time histories of the actual equation defect d as measured

during the tests with the NMP auto-pilot, for different values of µ (from 0 to 0.35 from

bottom to top). After a transient, the defect to be identified converges to a constant vector,

which however increases in norm with µ. Thus, for high advance ratios, a longer time is

required to identify d and higher trim times must be expected for the proposed controller,

as pointed out by Figures 24-26.

4.2.3.2 Accuracy of the Computed Trim Controls

For the considered problem, solutions of the trim problem in terms of the controls are

not available. However, they can be estimated by considering the values reached by the

auto-pilots at the end of the different simulations. Table 3 summarizes the results for

the predictive and the two classic auto-pilots, respectively. As already mentioned, the

NMP controller is the only one stable up to µ = 0.35, so we take it as reference. Let us

now measure the error of the classic auto-pilot solutions at the end of the simulations with

respect to the final solution of the predictive auto-pilot. The Table shows that the maximum

of the absolute value of this error is always less than 0.0037 deg, so we can consider the

reference solution of the predictive controller pretty accurate.

Table 3: Trim solution (in degrees) at the end of the simulations: NMP auto-pilot (top),
classic auto-pilot A (center) and classic auto-pilot B (bottom).

µ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

θ0 8.897 8.931 9.100 9.454 10.031 10.887 12.083 13.748

θ1s 0.210 -0.364 -1.126 -2.076 -3.314 -4.949 -7.146 -10.096

θ1c 3.487 3.181 2.559 2.300 2.394 2.785 3.504 4.620

θ0 8.898 8.931 9.100 9.454 10.030 10.887 - -

θ1s 0.209 -0.365 -1.126 -2.075 -3.313 -4.947 - -

θ1c 3.484 3.181 2.559 2.300 2.395 2.787 - -

θ0 8.898 8.931 9.100 9.454 10.030 10.885 - -

θ1s 0.208 -0.365 -1.126 -2.075 -3.313 -4.943 - -

θ1c 3.484 3.181 2.559 2.300 2.395 2.789 - -

Let’s now consider the difference between the controls at t = Ttrim for different maximum
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allowed error on the trim constraints:

• Setting εmax
con = 0.05, the solution in terms of controls is pretty inaccurate for all

the auto-pilots (see Table 4). The error with respect to the reference solution is

of magnitude up to 0.6 deg, which can not be considered acceptable, for all the

controllers.

• For εmax
con = 0.02, the quality of the solution is superior, however the error reaches

sometimes 0.1 deg (see Table 5). The two classic auto-pilots, especially auto-pilot B,

seem to behave slightly better, though the accuracy of the controllers is practically

the same.

• In the case εmax
con = 0.01, the solution has always an error quite lower than 0.1 deg (see

Table 6). No substantial difference exists in the accuracy of the controllers.

4.2.3.3 Analysis of the Results

Figures 24-26 underline pros and cons of the use of a classic auto-pilot: if correctly tuned,

it can be very efficient, however this tuning process can require a few simulations and is

hardly automatable. On the other hand, a model predictive control strategy can incorporate

initial information about the system, while guaranteeing stability and performance. This

also means that the initial evaluation of the sensitivity matrix J , needed in the classic

auto-pilot just to extract a linear approximation of the behavior of the system, is avoided,

saving further computational time.

The improvement in terms of trim time obtained by using the proposed auto-pilot seems

not to influence the quality of the solution in terms of controls. For the problem analyzed

here, a tolerance on the trim constraints εmax
con < 0.02 seems to be necessary to get a solution

with accuracy greater than 0.1 deg on the rotor controls.
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Table 4: Control error (in degrees) at trim time for εmax
con = 0.05: NMP auto-pilot (top),

classic auto-pilot A (center) and classic auto-pilot B (bottom).

µ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

θ0 6.71e-1 2.26e-2 3.75e-2 2.99e-2 3.04e-2 3.70e-2 5.73e-2 4.03e-2
θ1s 1.74e-1 1.62e-1 1.38e-1 1.19e-1 1.20e-1 1.27e-1 3.48e-2 3.48e-2
θ1c 3.02e-2 1.87e-1 3.03e-1 2.69e-1 2.84e-1 3.14e-1 2.07e-1 1.13e-1

θ0 1.04e-2 4.07e-2 2.14e-1 3.65e-1 3.77e-1 1.22e-2 - -
θ1s 8.07e-2 7.52e-2 8.09e-2 1.40e-1 2.12e-1 2.20e-2 - -
θ1c 1.83e-1 2.03e-1 2.00e-1 1.07e-1 1.02e-1 1.11e-2 - -

θ0 1.13e-4 5.71e-3 1.01e-2 5.84e-3 8.81e-2 3.32e-2 - -
θ1s 9.96e-2 8.82e-2 6.96e-2 1.32e-2 2.36e-1 9.54e-2 - -
θ1c 2.32e-1 2.31e-1 2.34e-1 2.49e-1 2.48e-1 4.45e-2 - -

Table 5: Control error (in degrees) at trim time for εmax
con = 0.02: NMP auto-pilot (top),

classic auto-pilot A (center) and classic auto-pilot B (bottom).

µ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

θ0 1.62e-2 1.91e-2 1.64e-3 1.09e-3 2.72e-2 2.57e-2 2.31e-2 1.10e-2
θ1s 1.13e-3 4.33e-2 3.54e-2 2.34e-2 1.98e-2 1.07e-2 1.34e-2 7.21e-3
θ1c 8.65e-2 9.23e-2 1.15e-1 1.02e-1 1.15e-1 8.41e-2 8.13e-2 2.50e-2

θ0 4.63e-4 4.86e-3 4.65e-2 1.40e-1 1.43e-1 2.52e-3 - -
θ1s 2.87e-2 1.87e-2 3.60e-3 5.05e-2 6.76e-2 6.49e-3 - -
θ1c 7.03e-2 6.73e-2 5.64e-2 2.87e-2 3.47e-2 1.30e-2 - -

θ0 8.43e-4 2.35e-3 4.10e-3 1.97e-3 1.64e-2 4.85e-3 - -
θ1s 4.02e-2 3.54e-2 2.69e-2 6.59e-3 5.51e-2 1.85e-2 - -
θ1c 9.35e-2 9.17e-2 9.37e-2 9.74e-2 9.43e-2 2.36e-5 - -
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Table 6: Control error (in degrees) at trim time for εmax
con = 0.01: NMP auto-pilot (top),

classic auto-pilot A (center) and classic auto-pilot B (bottom).

µ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

θ0 3.17e-3 8.57e-3 4.69e-3 1.62e-2 2.07e-2 1.83e-2 1.33e-2 3.37e-3
θ1s 1.35e-2 4.49e-3 5.12e-3 7.24e-4 6.72e-3 7.12e-3 5.83e-3 3.88e-3
θ1c 3.84e-2 1.39e-2 4.92e-2 4.34e-2 5.67e-2 6.82e-2 2.39e-2 5.30e-3

θ0 2.11e-4 2.38e-4 1.08e-2 8.10e-2 8.53e-2 6.97e-3 - -
θ1s 1.78e-2 1.19e-2 5.17e-3 4.36e-2 5.96e-2 1.80e-2 - -
θ1c 3.90e-2 3.23e-2 1.80e-2 1.67e-2 2.80e-2 5.88e-3 - -

θ0 1.10e-3 1.25e-3 2.07e-3 9.55e-4 5.60e-3 1.06e-3 - -
θ1s 2.03e-2 1.78e-2 1.33e-2 4.65e-3 2.07e-2 2.19e-3 - -
θ1c 4.73e-2 4.53e-2 4.71e-2 4.74e-2 5.05e-2 3.50e-3 - -

4.2.4 Convergence Analysis for Classic and Proposed Auto-pilots

As a final test, we conceptually repeated the procedure followed in Section 4.1, investigating

this time the behavior of both the proposed formulations and the classic auto-pilot A. We

chose the control values 10.0, -6.0 and 5.0 deg for the collective, longitudinal and lateral

cyclic pitch angles, respectively. Then, we simulated forward in time the multibody model,

we left all the transients decay and we eventually measured the trim outputs y∗.

For each of the considered auto-pilots, we started again the simulation setting θ0, θ1s

and θ1c to 0.07, 0.0 and 0.0 rad, with the rotor following the corresponding trimmed orbit,

and we activated the controller. Here again, the different quantities are scaled using the

values of Tables 1 and 2.

Since the exact vector of trim control values, indicated with u∗, is known in this case,

it is possible to measure the error

εctr(t) = ‖u(t) − u∗‖2 .

In Figures 28-30 all the three auto-pilots exhibit a similar trend, giving an error less than

6.0e-3 deg after 20 revolutions. In Figures 31-33 slightly better results for the proposed

auto-pilots, in terms of convergence of the constraint violation, can be observed. The

corresponding time histories for the objective function J reg of the predictive regulation
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problem (8) are finally shown in Figures 34 and 35. Control and output time histories

respect the general behavior of Figures 12-17, therefore they are omitted.
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Figure 28: Time history of the control error εctr for the classic auto-pilot A, µ = 0.2.
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Figure 29: Time history of the control error εctr for the proposed auto-pilot with output
error identification, µ = 0.2.
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Figure 30: Time history of the control error εctr for the proposed auto-pilot with equation
defect identification, µ = 0.2.
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Figure 31: Time history of the (scaled) violation of the trim constraints for the classic
auto-pilot A, µ = 0.2.
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Figure 32: Time history of the (scaled) violation of the trim constraints for the proposed
auto-pilot with output error identification, µ = 0.2.
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Figure 33: Time history of the (scaled) violation of the trim constraints for the proposed
auto-pilot with equation defect identification, µ = 0.2.
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Figure 34: Time history of the (scaled) cost function J reg for the proposed auto-pilot with
output error identification, µ = 0.2.
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Figure 35: Time history of the (scaled) cost function J reg for the proposed auto-pilot with
equation defect identification, µ = 0.2.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Increasingly advanced tools are available for the modeling and simulation of complex dy-

namical systems. Fixed and rotary wing aircrafts can be represented by means of flexible,

non-linear virtual models subjected to airloads coming from the coupling with advanced

aerodynamic codes. The evaluation of the equilibria of these systems is still the cornerstone

for performance and stability analysis. Unfortunately, although model trim could appear a

conceptually simple problem, the modelling generality of modern codes is making it more

and more burdensome.

In particular, rotorcraft models are typically unstable and characterized by harmonic

forcing loads. Therefore, the trim problem translates in finding some particular constant

controls so that the system response follows a desired periodic orbit. Several numerical

methods have been proposed to enforce the compatibility of the solution with the system

dynamics, the constraint of constant controls and the periodicity. However, the efficiency

of most of these methodology degrades with the complexity of the system since the trim

problem dimension is function of the total number of degrees of freedom.

The auto-pilot approach follows a different path: a control strategy is designed to pro-

duce control signals to virtually “fly” the system to the trim solution. In its classic formu-

lation, however, no constant-in-time condition for the controls is considered. Moreover in

practice the classic auto-pilot must be carefully tuned to guarantee stability and a reason-

able efficiency.

In this work, we proposed a new auto-pilot based on the non-linear model-predictive

control technique. NMPC framework allows to design control strategies which can guarantee

stability, and the computed solution is typically very efficient since it is based on the solution

of an optimal control problem (prediction) for a reduced model. Stability and efficiency are

strictly related to this model. Proper reference models are easily available today and they
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can be augmented by means of adaptive elements to increase their accuracy. Here, the

chosen reference model has been based on analytical relations derived from blade element

theory, and the identification task has been pursued by means of neural networks.

The obtained controller was able to preliminarily trim a simplified, rigid four-bladed

rotor. Then, it was applied to a multibody finite element model of the UH-60 rotor, using

and comparing two different formulations for the identification.

Finally, the trim of the same multibody model for a wide range of far field velocity

conditions has been obtained using the proposed and a classic auto-pilot. This final test

showed that, if well tuned, the classic auto-pilot performs almost as well as the more refined

NMP one. On the other hand, even the use of a pretty simple reference model gives the

predictive control superior stability properties, while the adaptive element allows conver-

gence. Even more important, the information incorporated in the reduced model allows one

to circumvent the necessity of tuning the controller, which is sometimes a very hard and

time demanding task with classic auto-pilots. The main cost of the proposed methodology

is a higher computational effort, which is acceptable also because, for very complex systems,

it represents a little percentage of the cost of the overall simulation.

The results gathered in this thesis show that model-predictive control is a promising

approach for trimming complex models of rotors, and possibly rotorcrafts. Future efforts

should be in the direction of extending these results to more complex and demanding sys-

tems, like multibody models coupled with refined free wake or CFD procedures, or free

flying complete rotorcrafts. In particular, the impact of the mismatch between reference

model and controlled system on the auto-pilot stability and the trim solution accuracy must

be carefully investigated. In this sense, different methodologies and formulations for the

identification process could be analyzed, trying to extract as much synthetic information as

possible from the data available from the controlled system.
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APPENDIX A

ROTOR BLADE ELEMENT MODEL

In this appendix we give a brief overview of the analytic blade element rotor model [10, 14,

22] we adopt as reference model for this research.

Assuming that the shaft is aligned with the gravity acceleration and the Z axis of an

inertial frame, the rotor force components can be expressed in this frame as

FX = −T sin a1s − H cos a1s,

FY = −T sin b1s,

FZ = −T cos a1s + H sin a1s,

where T and H are rotor thrust and H-force, the lateral flapping angle with respect to

the shaft is noted b1s and the longitudinal flapping angle a1s, which corresponds to the

tip-path-plane angle of attack αtpp in the present case.

The rotor thrust coefficient ct and H-force coefficient ch can be related to the piloting

controls. To this end, the blade pitch, neglecting the effects of higher harmonics, can be

written as

θ = θ0 + θ1s sinψ + θ1c cos ψ.

The rotor advance and inflow ratios can be written in the tip-path-plane reference as

µtpp =
V cos αtpp

ωR
, λtpp =

V sinαtpp

ωR
−

u

ωR
,

and transformed to the no-feathering reference through the relations

µnf = µtpp cos a1 nf + λtpp sin a1 nf , λnf = −µtpp sin a1 nf + λtpp cos a1 nf ,

u being the uniform induced velocity, V the wind speed, ω and R rotor rotational speed

and radius, while a1 nf , b1 nf are the longitudinal and lateral, respectively, flapping angles

with respect to the no-feathering plane, which are related to the same quantities measured
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in the shaft reference as

a1s = a1 nf + θ1s, b1s = b1 nf − θ1c.

The H-force coefficient in the same plane can at this point be expressed as

chnf

σ
=

cd µnf

4
+

clα

2

(
1

3
a1 nf θ0 +

3

4
λnfa1nf −

1

2
µnf θ0 λnf +

1

4
µnf a2

1 nf

)
.

Similarly, the thrust coefficient is

ctnf

σ
=

clα

4

[(
2

3
+ µ2

nf

)
θ0 + λnf

]
.

In the previous relations, the blade airfoil lift curve slope is noted clα , while σ is the

rotor solidity and cd the rotor blade section drag coefficient. The force coefficients can be

transformed to the tip-path-plane reference as

cttpp = ctnf
cos a1 nf + chnf

sin a1 nf ,

chtpp
= −ctnf

sin a1 nf − chnf
cos a1 nf .

Finally, using momentum theory the induced velocity u is expressed implicitly in the fol-

lowing way:

cttpp =
2 u

ωR

√
µ2

tpp + λ2
tpp.

Neglecting higher harmonics, the blade flapping angle is

β(ψ) = a0 − a1s cos ψ − b1s sinψ,

where ψ is the azimuthal position of the blade. Imposing the equilibrium of the blade

around the flap hinge gives the coning angle, namely

a0 =
2 ρcR2

mb

ct

σ
−

3 g

ω2R

1

2 + eβ

,

where c and mb are respectively the blade chord and mass, ρ the air density, g the accel-

eration of gravity and eβ the flap hinge offset. The steady-state solution for blade flap-

ping [10, 14] gives

a1 nf =
µnf

1 − µ2
nf/2

(
8

3
θ0 + 2λnf

)
+

8

γ

ε

1 − µ2
nf/2

b1 nf ,

b1 nf =
4/3µnf a0

1 + µ2
nf/2

−
8

γ

ε

1 + µ2
nf/2

a1 nf ,
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where

ε = xCGbl

mbeβR2

Jβ

,

and

γ =
ρclαcR4

Jβ

is the Lock number. The non-dimensional position of the blade center of gravity is noted

xCGbl
, and Jβ is the flapping moment of inertia of the blade.
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APPENDIX B

ROTORCRAFT APPROXIMATE PERFORMANCE

Following the indications of [16], we can estimate the average forces required to trim a UH-

60 as a function of the flight speed, in order to produce values ỹ, functions of the advance

ratio, to which the rotor of Chapter 4 can be trimmed.

For simplicity, let’s define

cw =
W

ρ A (ΩR)2
,

where W is an estimate of the helicopter weight, ρ the air density, A the reference area (area

of the rotor disk), Ω the rotor rotational speed and R the rotor radius. From the momentum

theory applied to the rotor disk, we can obtain the thrust coefficient and assume it be equal

to cw:

ct = −2 λi

√
µ2 + λ2 = cw,

where µ is the advance ratio, λ the inflow ratio and λi = u
ΩR

the induced inflow. In this

way, we can easily estimate the required thrust for trim,

T = ρ A (Ω R)2 ct,

and the related inflow velocity u.

In first approximation, the required power for trim can be evaluated from

cp =
K c2

w

2
√

µ2 + λ2
+

σ cd0

8

(
1 + kB µ2

)
+

f

A
µ3,

cp being the power coefficient, K a power correction factor generally chosen equal to 1.15,

cd0
the rotor sectional drag coefficient, kB the so called Bennet correction factor [14, p.

184], f the fuselage equivalent flat plate area, considered equal to 22 ft2 (see for instance

Reference [25]). We are now ready to calculate the require power,

P = ρ A (Ω R)3 cp,
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and derive the rotor required torque as follows

Q =
P

Ω
.

By this set of relations, we can estimate the average of the three force components

required to trim the helicopter:

FX = 1
2 ρ (Ω R)2 f, (45)

FY = Q/xTR, (46)

FZ = −W. (47)
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APPENDIX C

CLASSIC AUTO-PILOT

In the auto-pilot approach, a feedback control is designed to steer the system. In this

method, the controls are characterized by a dynamic behavior, obtained by measuring the

error on the trim constraints (4) and consequently changing the system inputs. For the

classic auto-pilot in particular, properly tuned gain factors allow this error to decrease and

the system outputs to converge to the trimmed solution. The discrete dynamic equations

for the controls can be written as follows:

ũf = ũi + ∆t J−1G (y∗ − ỹ) , (48)

where i and f stand for initial and final, respectively, and y∗ − ỹ is the error on the trim

constraints. The matrix G = diag(g0) represents the gain factors, which are carefully tuned

in order to obtain a stable solution with the desired performance.

Finally, J indicates the sensitivity matrix of the outputs with respect to the inputs,

namely

J =
∂ỹ

∂u
. (49)

In practice, this matrix is evaluated by perturbation, for example about the reference output

value ỹ:

J =

[
y1 − ỹ

∆1
,
y2 − ỹ

∆2
, . . . ,

ynu − ỹ

∆nu

]
, (50)

where the values ỹi are obtained by perturbing one input at time by a quantity ∆ni
.

This aspect is quite critical since proper values for the perturbation factors ∆ni
must be

chosen. Moreover, this perturbations on the controls must be applied one at time, letting the

transients decay and measuring the perturbed outputs. This strategy is clearly unfeasible

when dealing with unstable systems.
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APPENDIX D

EXTENSION OF THE PROPOSED AUTO-PILOT TO

FREE-FLYING ROTORCRAFT TRIM

D.1 Formulation for Free-flying Rotorcraft Model

The aeroelastic model of an entire rotorcraft can be formalized by means of equation (1),

here recalled:

f̃( ˙̃x, x̃, λ̃, ũ) = 0,

c̃( ˙̃x, x̃) = 0.

As already pointed out in Section 1.1, free-flight trim deals with the average gross motion

of the vehicle, representing its flight mechanics response. A possible approach is to consider

as flight mechanics states of the rotorcraft the position, orientation, and linear and angular

rates of a frame attached to the fuselage, with respect to an inertial frame. In this case, the

outputs can be defined as

ỹ =
1

T

∫ t

t−T

g̃(x̃, ũ) dt,

g̃(x̃, ũ) =
(
Ũ , Ṽ , W̃ , P̃ , Q̃, R̃, k̃

)T

,

where Ũ , Ṽ , W̃ and P̃ , Q̃, R̃ are the linear and angular velocity components of the body-

attached frame expressed in the inertial reference. The function k̃ = k̃(x̃) is arbitrarily

specified to close the trim problem, since the unknown of the problems, in the case of a

conventional helicopter, are the average attitude angles and the trim controls

u = (δc, δe, δa, δp)
T , (51)

δc, δe, δa and δp being the generic pilot collective, longitudinal, lateral and pedal controls.

For example, if we desire to trim to straight level flight with zero average roll angle and
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flight speed Ū , we can define k̃(t) = Φ̃(t) and specify ỹ = y∗ = (Ū , 0, 0, 0, 0, 0, 0)T as trim

constraints.

As reference model, it is possible to use a rigid body model of the rotorcraft with main

and tail rotors described by means of the blade element theory with uniform inflow, see for

example Reference [8]. In this case, the reference model reads

ẋ − ϕref(x, u) = 0, (52a)

y −
1

T

∫ t+T

t

g(x, u) dt = 0. (52b)

with

g(x, u) = (U, V, W, P, Q, R, k)T ,

where k(t) is the counterpart of k̃(t) for the reference model. In this case, internal states

for the reference model, indicated as x, are present. The whole system of equations can be

summarized as

fref(y, ẋ, x, u) = 0,

which mimics equation (21).

A possible identification strategy to augment this reference model is to correct the

outputs as follows:

y −
1

T

∫ t

t−T

g(x, u) dt − dp(y
(n), . . . ,y, u, p∗) = 0, (53)

where as in Section 3.2 the approximating operator dp is parameterized in p.

D.2 Formulation for Rotorcraft Model Constrained on the

Longitudinal Plane

In some cases, it can be interesting to study the behavior of a rotorcraft performing ma-

neuvers only in a longitudinal plane. Here, we use the term longitudinal to identify, chosen

a vector perpendicular to the direction of the gravity acceleration, a plane orthogonal to

this vector. In practice, we are considering a system like the one shown in Figure 36. A

planar joint located at the helicopter center of mass prevents translations perpendicular to
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Figure 36: Schematic representation of the rotorcraft multibody model used in Refer-
ence [8].

the longitudinal plane, and the only rotational degree of freedom left to the (rigid) fuselage

is the pitch attitude with respect to the inertial reference frame.

In this case the trim problem can be recast as follows. The controls are still those of

equation 51. Moreover, the pitch attitude is free, so it is possible to choose

g̃(x̃, ũ) =
(
Ũ , W̃ , Q̃, F̃Y , M̃Z

)T

,

where F̃Y and M̃Z indicate this time the reaction force and moment components of the

planar constraint of the multibody model, expressed in the inertial frame X, Y, Z. A quasi-

trim constraint can be obtained by specifying y∗4 = 0 and y∗5 = 0. In fact, a free-flying

trimmed rotorcraft “pretending” to remain in the longitudinal plane will show periodic

displacements and rotations out of it. However, using the proposed formulation, the model

of Figure 36 will fly in a condition very close to free-fly trim.

Also in this case, the reference model must follow the structure of the multibody model.
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Using a rigid body, blade element model as the one of system (52), we will have

ẋ − ϕref(x, u) = 0,

y − 1
T

∫ t+T

t
g(x, u) dt = 0,

where the states x describe the model degrees of freedom in the longitudinal plane, and

g(x, u) = (U, W, Q, FY , MZ)T .

Here again the formulation given by equation (53) can be applied to identify the mismatch

between reference and multibody model.
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