STUDY OF PAPER BOARD QUALITY

 AS RELATED TO FIBER BOX PERFORMANCE
REPORT NUMBER I

Baseline Studies 1. The Evaluation of Current Kraft Liners and Corrugating Mediums*

REPORT TO

FOURDRINIER, KRAFT BOARD INSTITUTE, INC.

STUDY OF PAPER BOARD QUALITY AS RELATED TO FIBER BOX PERFORMANCE
 REPORT NUMBER I

Baseline Studies 1. The Evaluation of Current Kraft Liners and Corrugating Mediums

REPORT TO

FOURDRINIER KRAFT BOARD INSTITUTE, INC.
Appleton, Wisconsin

THE INSTITUTE OF PAPER CHEMISTRY
OCTOBER, 1945

TABLE OF CONTENTS
General Introduction. 5
Introduction to Baseline Study 5
Summary 6
Sampling and Testing Procedures
Sampling Procedure 7
Materials Sampled 8
Testing Procedures. 8
Moisture 8
Basis Weight 8
Caliper 9
Bursting Strength 9
G. E. Puncture Test 9
Tensile Strength and Stretch 9
Elmendorf Tear 9
Riehle Compression 10
Physical Characteristics of $42-\mathrm{lb}$. D.F.B.S. Fourdrinier Kraft Liner 11
Procedure 11
Comparison of Mill Averages. 12
Discussion of Individual Mill Test Results for 42-lb. D.F.B.S. Four-

- drinier Kraft Liner 28
Evaluation of the Physical Characteristics of $.009 / 26-\mathrm{lb}$. Kraft and Bogus Corrugating Mediums 43
Procedure 43
Comparison of Mill Averages. 43
Discussion of Individual Mill Test Results for :009/26-lb.Corrugating
Mediums 55
Summary 69
Appendix 71

A STUDY OF PAPERBOARD QUALITY AS RELATED TO BOX PERFORMANCE

Baseline Studies. I. The Evaluation of Current Kraft Liners and Corrugating Mediums

GENERAL INTRODUCTION

Project 1108 of The Institute of Paper Chemistry is. $a \cdot$ long range program of research and development, - which has as its objective the development of the basic information needed for improving the measurement and control of the quality of box components and box performance. It was apparent that an objective scientific approach to this problem would require the development of more adequate means of evaluating the quality of boxes and box components. In other words, it is necessary to create reliable "yardsticks" for the selection of raw materials, for the control of manufacturing and converting variables, for the facilitation of design, and for the measurement and prediction of performance.

The broad outline of procedure for the development of basic information was as follows:
I. Review of literature and previous experience
II. Review of existing test methods
III. Review of available box performance data
IV. Instrumentation or improvement of present testing methods and the development of new methods
V. Research, testing and development (including field observation of performance and analysis of field hazards) on materials and methods of fabrication related to physical properties and design of
A. Paperboard
B. Combined board
C. Boxes
VI. Interpretation and application of results

This study was undertaken in 1944 in co-operation with the Fourdrinier Kraft Board Institute, whose membership was composed of the following organizations:
The Brown Paper Mill Company, Inc.
The Chesapeake Corporation
Hummel-Ross Fibre Corporation
International Paper Company, Southern Kraft Division
National Container Corporation
St. Joe Paper Company
Union Bag \& Paper Corporation
West Virginia Pulp \& Paper Company
These mills produce a substantial percentage of the kraft liner and corrugating board made in this country.

INTRODUCTION TO BASELINE STUDY

Essential to any long-range program of this nature is the establishment of a baseline for reference throughout the course of the study. It was decided, therefore, that an index of the quality of the current production of the co-operating mills should be established as a baseline. This baseline was to be determined as accu-
rately as was feasible within the limitations imposed by existing testing techniques and by wartime operating conditions in the paperboard-industry. The baseline study was to be undertaken as early as possible. However, some of the work under Sections I, II, III, and IV outlined above was to be pursued concurrently with the baseline study. The procedure for the establishment of the baseline was divided into two phases.

The first phase of the baseline study was concerned with the problem of sampling, in a truly impartial cross-sectional manner, the current routine production of the co-operating mills and evaluating these samples as completely as possible by means of existing board testing methods. It is with this phase of the baseline study that the present report is primarily concerned.
As it would have been almost impossible to determine the quality index for each grade currently manufactured by the various mills, it was decided to base the index on $42-\mathrm{lb}$. D.F.B.S. (dry finish both sides) kraft liner and $.009 / 26-\mathrm{lb}$. corrugating medium production.

The selection of sample rolls was to be done by representatives of The Institute of Paper Chemistry from converters' warehouse stocks, rather than at the producing mills. The producing mills had no previous knowledge or control of the time or place of sampling or of the identity or quantity of their product sampled. Samples from the selected rolls were evaluated in the laboratories of The Institute of Paper Chemistry. The rolls thus sampled were set aside for subsequent use by The Institute of Paper Chemistry in the second phase of the baseline study.

Phase two of the baseline study involved (1) the selection of the most representative rolls of each mill's sampled production, and (2) the fabrication of these representative rolls into corrugated combined boards and their conversion into boxes. The corrugating operation and the conversion into boxes were to be carried out by an impartial boxmaker under carefully controlled, but normal, conditions of manufacture and according to a predetermined schedule of component combinations. Evaluation of the combined board and boxes produced was then to be carried out at The Institute of Paper Chemistry by means of conventional board and box testing methods.

The purpose of this phase of the baseline study was threefold. First, it would provide information concerning the deviation in test values which may be obtained with a given group of component parts under closely controlled conditions of corrugating and box making. Second, it would provide a further means of comparing
the quality of board from the various mills. Third, it would provide additional data required for the establishment of the current quality index-namely, data on combined board and boxes.

In order to complete the baseline study within a reasonable period of time, it was necessary to limit the variables of combination and box design. Accordingly, it was decided that the corrugated board should be "B" flute with starch adhesive and that the combined board should be converted into R.S.C. 24 No. $2 \frac{1}{2}$ can size domestic can boxes with stitched joints.

SUMMARY

This report covers the first phase of a baseline study which, in turn, is a part of a long-range investigation of paperboard and fiber-box performance.

The results of this phase of the study indicate that the average quality of the sampled $42-\mathrm{lb}$. D.F.B.S. Fourdrinier kraft liner and of $.009 / 26-\mathrm{lb}$. kraft and bogus corrugating mediums were as follows:

	Liner	Corrugating Medium
Basis weight, lb./1000 sq. ft.	42.1	26.8
Caliper, in.	0.015	0.010
Apparent density, lb./cu. ft.	33.7	32.3
Bursting strength, points	98	62
G. E. puncture, units	36	18
Moisture, $\%$	8.1	9.4
Riehle compression, lb.		
\quad In	29.0	17.6
Across	22.5	13.0

Corrugati Medium

Elmendori tear, g./sheet		
In	354	$223{ }^{\circ}$
Across	$39+$	251
Amthor tensile, lib./in.		
In	77.8	49.5
Across	37.8	24.8
Amthor stretch, \%		
In	2.1	1.9
Across	3.7	4.3

It should be remembered that these data are based on the actual rolls sampled and on conventional test methods.

- For those tests in-which-orientation of the specimen is specified, the approximate ratios observed in the in-machine direction and in the across-machine direction were as follows:

The ratio of the bursting strength to the G. E. puncture test on 42-lb. D.F.B.S. Fourdrinier kraft liner was of the order of 2.7:1.

The ratio was not computed for the $.009 / 26-\mathrm{lb}$. corrugating medium since the relatively high capacity of the G. E. puncture tester did not allow sufficient subdivision of the scale to permit distinguishing betweenthe low values obtained with any degree of accuracy.

SAMPLING PROCEDURE

The materials tested were 42-lb. D.F.B.S. (dry finish both sides) Fourdrinier kraft liners and $.009 / 26-\mathrm{lb}$. kraft and bogus Fourdrinier corrugating mediums. All the component rolls from which the samples were obtained were manufactured by member mills of the Fourdrinier Kraft Board Institute. Inasmuch as some of the members of the Fourdrinier Kraft Board Institute operate more than one mill, it was decided to establish the baseline of current production by giving equal representation to each mill, rather than to each parent company, in the cross-sectional sampling. In this way, the coverage of the field was substantially complete in respect to the quality of board produced by individual mills, as well as within a given company.

The component samples were obtained by three members of the staff of 'The Institute of Paper Chemistry from full rolls selected at random in a large number of converters' warchouses. An attempt was made to secure sample rolls produced during the first quarter of 1945. Wherever possible, the production period covered by this sampling was narrow enough to be considered current, yet broad enough to eliminate the day-to-day variation in each mill's operation.

At the beginning of this program, each Fourdrinier Kraft Board Institute member submitted a complete list of customers to The Institute of Paper Chemistry. The co-operating converters were chosen by The Institute of Paper Chemistry from these customer lists, partly on the basis of geographic location and partly by the necessity of adequately sampling grades of each mill's production.

The collection of random rolls of liner and corrugating medium proved to be a difficult and laborious task. The hand-to-mouth supply of most converters, caused by the shortage of materials, made it necessary to search more widely and more diligently than had been anticipated. The sampling program was started on March 19, 1945 and completed on May 26, 1945, during which time a total of 280 rolls had been sampled and set aside in 41 converters' warehouses.

The original program called for the sampling of five rolls, selected at random, of each grade of each mill's production in each of four converters' warehouses. The samples from each of the 20 rolls per mill per grade would give a cross-sectional view of the current production for each mill for the grades selected. As may be observed from Table I, it was necessary in some cases to modify the number of rolls sampled because of the scarcity of materials. This was especially true with respect to the corrugating mediums, as additional government restrictions regarding the use of $.009 / 26-\mathrm{lb}$. kraft corrugating medium went into effect soon after this program of sampling was initiated.

TARLE 1
NUMBER OF ROLLS SELECTED PER MILL

42-lh. D.F.B.S. Ciner		.00\% $/ 26-\mathrm{lb}$. Corrugating Medium	
Mill	Roll Samples	Mill	Roll Samples
A	28	S	10
H	21	T	10
C	- 15	- -U	21
D	21	V	13*
$1:$	11	W	1.3
F	10	X	14
C	15	Y	10
H	14	7	11
I	22		
J	21		
	178		102

Throughout the roll-sampling program, three samples were taken from each roll. These were designated by the terms right, left, and center, and corresponded to the samples taken from the two sides and center of the roll, respectively. These terms were applied to the roll in the following manner: When the observer faced the roll and the board was unwinding over the top of the roll towards the observer, the right of the roll was on the observer's right and the left on the observer's left. The side samples, rights and lefts, were taken near but always slightly removed from the edge of the roll. The complete identity of each roll was maintained throughout.

The actual sampling technique was as follows: After selecting at random a roll of the desired grade and manufacturer, the outer laps of the roll were removed to a depth of approximately one fourth of an inch until the undamaged portion of the roll was exposed. Three full laps, or their equivalent, of undamaged board were then removed the full width of the roll for test purposes. From the innermost lap selected, a strip approximately one foot long was cut the full width of the roll and three moisture samples were taken from the strip, corresponding to the right, center, and left of the roll. Each moisture sample was cut to approximately one square foot and weighed immediately to obtain the airdry weight. Each of the laps and each of the moisture samples were carefully marked with all the necessary roll identification as to the manufacturer, date manufactured, roll number, width, weight, grade, left and right side, and the name of converter in whose warehouse the rolls were sampled. The materials were carefully wrapped and shipped by Railway Express to The Institute of Paper Chemistry at Appleton, Wisconsin.
Upon their arrival at The Institute of Paper Chemistry, the laps were cut into three sample lots of at least 20 specimens each. The specimens in each sample lot were cut to approximately 1.3 by 13 inches, thoroughly shuffled, and arranged in two groups of 10 each

Dy afternate selection. Une of the groups was used for subsequent testing and the other was stored for future reference. The 10 -specimen group selected for testing was again shuffled, and arranged in two groups of five specimens cach by alternate selection. One group was used for bursting strength and G. E. puncture test and the other group was used for basis weight, caliper, tear, tensile, stretch, and Riehle compression tests.

MATERIALS SAMPLED

As previously mentioned, the materials tested consisted of three-lots of specimens taken from the outer laps of rolls sampled in a large number of converters' warehouses. The following summarizes the samples taken:

178 rolls of $42-\mathrm{Hb}$. D.F.B.S. Fourdrinier kraft liner
89 rolls of $.009 / 26-\mathrm{lb}$. Fourdrinier kraft corrugating medium
13 rolls of $.009 / 26-\mathrm{-lb}$. Fourdrinier bogus corrugating medium
The rolls listed above were obtained from 11 different mills. Some mills manufactured both liner and corrugating, whereas others made only liner or corrugating. The breakdown of the rolls as to manufacturers and the number sampled may be seen in Table I.

A list of the converters and the number of rolls sampled in each converter's warehouse is shown in Table II. It should be mentioned that, without the converter's co-operation, this study could not have been made and we wish to acknowledge their co-operation in this work.

TABLE II
LIST OF CONVERTERS

Converter \quad| Number of |
| :---: |
| Rolls Sampled |

Allcraft Corrugated Co.	Harrison, N. J.	3	3
Allied Container Corp.	Boston, Mass.	0	5
Atlantic Container Corp.	Long Island, $\mathrm{N} . \mathrm{Y}$.	4	0
Atlas Corrugated Case Co., Inc.	Brooklyn, N. Y.	6	0
Ball Brothers Co.	Muncie, Ind.	5	0
Baltimore Paper Box Co.	Baltimore, Md.	1	7
Bell Fibre Products Corp.	Marion, Ind.	6	0
Cotonial Container Corp.	Brooklyn, N. Y.	1	0
Crescent Box Corporation	Philadelphia, Pa .	5	5
Densen-Banner Co., Inc.	Ridgefield P'ark, N. J.	6	
Downing Box Co.	Milwaukee, Wis.	10	
Federal Container Co.	Philadelphia, I'a.	5	
Fort Wayne Corrugated Paper Co.	Chicago, 111.	2	
Fort Wayne Corrugated Paper Co.	Hartford City, Ind.	0	5
Gaylord Container Corp.	St. Louis, Mo.	6	
Gibraltar Corrugated Paper Co., Inc.	North Bergen, N. J.	6	
Grand-City Container Corp.	Brooklyn, N. Y.	2	2
Hankins Container Co.	Cleveland, Ohio	0	5
Hummel \& Downing Co.	Milwaukee, Wis.	0	2
Inland Container Corp.	Indianapolis, Ind.	7	0
International Paper Co. (Container Division)	Chicago, Ill.	7	
International Paper Co. (Container Division)	Whippany, N. J.	5	
Interstate Container Corp.	Glendale, N. \mathbf{Y}.	4	0
Jackson Box Co.	Cincinnati, Ohio	7	2
Keystone lox Co.	Pittsburgh, Pa .	0	5
F. J. Kress Box Co.	Pittsburgh, Pa .	10	0
Lanzit Corrugated Box Co	Chicago, III.	3	3
Liberty Corrugated Container			
Light Corp.	Prooklyn, N. Y. Philadelphia, Pa.	1 9	0

TESTING PROCEDURES

As previously mentioned, three samples of at least 20 specimens each were taken from each roll selected. The identity of these three roll samples was maintained throughout the entire testing program. The final roll values are based on the averages of the three sample lots.

Prior to testing, all of these roll samples were preconditioned for at least six hours at a relative humidity of not over 35%. After the designated preconditioning period, the samples were conditioned for at least 48 hours and tested in an atmosphere at $50 \pm 2 \%$ relative humidity and a temperature of $73 \pm 3.5^{\circ} \mathrm{F}$. The tests used in this phase of the work were those currently employed and recognized in the industry. The tests performed, together with the test procedures, were as follows.

Moisture

The airdry weight was determined by the representatives of The Institute of Paper Chemistry in the various converters' warehouses wherein the rolls were sampled. A strip approximately one foot in length, the full width of the roll, was cut from the innermost lap of those obtained from each roll sampled. This crosssectional strip was then cut into three approximately square foot specimens taken at the center and near each end of the roll. which were weighed immediately. These weighed specimens were then forwarded to The Institute of Paper Chemistry where they were dried to constant weight in an oven equipped with forced circulation and maintained at a temperature of $105 \pm 2^{\circ} \mathrm{C}$. The percentage moisture for each specimen was calculated on the ovendry basis. The final moisture value for each roll was the average of the moisture values of the three specimens taken from each roll: :

Basis Weight

The basis weight, expressed as the weight per thousand square feet, was determined by weighing five 12 by 12 -inch conditioned'specimens from each sample on a Toledo basis-weight scale.

Figure 1. Jumbo Mullen tester.

Caliper

The thickness determinations were made with a Cady micrometer on the specimens previously used for the basis weight determination. The machine direction was noted and care was taken to measure and record the average of the values determined at three different points on a line perpendicular to the machine direction across one end of the specimen sheet. Another series of three readings, taken at the opposite end of the specimen sheet, was recorded as a second average. In this manner two values (each being the average of three readings) for each of the five specimens per sample resulted in ten recorded values, the average of which was expressed as the caliper value for that particular sample.

Bursting Strength

Bursting strength tests were performed with a motor-driven "Jumbo" Mullen tester equipped with a 300 -pound gage and also with a special attachment for controlling the clamping pressure on the specimen. This tester is shown in Figure 1. Two test readings were obtained on each of five specimens per sample. On each specimen one test was obtained with the diaphragm pressure applied to the wire side and one test with the pressure applied to the felt side.

G. E. Puncture Test

The G. E. puncture tests were carried out with the new model puncture tester shown in Figure 2. TAPPI Method T $803 \mathrm{~m}-44$ was followed, using the same five specimens as were used for determination of bursting strength. Two punctures, one in each direction, were made for each specimen.

Tensile Strength and Stretch

The Amthor tensile tester was used for simultaneously indicating the tensile breaking strength and the stretch of the test specimen. This instrument, as shown in Figure 3, is of the pendulum type, having three inde-

Figure 2. General Electric puncture tester.
pendent load-indicating ranges- 0 to 15,0 to 50 , and 0 to 200 pounds. At the start of the test the distance between the edges of the jaws of the clamps was equal to 152 mm . (6.0 inches). The width of the test strip was 15 mm . (0.59 inch). Four test strips, two in each direction, were cut from each of the five specimens previously used for basis weight and caliper determinations. The tensile breaking strength per sample was reported as the average of the individual test specimen values expressed in pounds per inch width for each direction.
The stretch value per sample was reported as the average of the individual specimen readings expressed in percentage elongation to failure, based upon an initial test strip length of six inches.

Elmendorf Tear

The tear values were obtained using the Elmendorf paper tester shown in Figure 4. Two test strips, one with its long axis in the machine direction and the other with its long axis perpendicular to the machine direction of the sheet, were cut from the unused portion of each of the five specimens originally used for basis weight and caliper determinations. In the text,
the term "in-machine direction" tear refers to the tear value obtained when the line of tear was parallel to the machine direction of the sheet. Similarly, the "acrossmachine direction" tear refers to the tear value obtained when the line of tear was perpendicular to the machine direction of the sheet. Only one liner test strip was torn at a time and only one tear value was recorded for each test strip. It was necessary to test four of the corrugating medium test strips simultaneously in order to obtain scale readings between 20 and 60. In this latter case five tear readings were recorded for the four-strip test specimen. The average values in both directions were reported separately.

Riehle-Compression

The compression values were obtained by the use of a Richle Bros. hydraulic compression tester as shown

Ficure 3, Amthor tensile tester.

Figure 4. Elmendorf paper tester.
in Figure 5. Two 0.5 by 2 inch strips, one in each direction, were cut from the unused portion of each of the five specimens originally used for basis weight and caliper determinations. The compression values were reported as the averages of the individual specimen readings.

Figure 5. Riehle compression tester.

PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER

PROCEDURE

The tests and procedures employed throughout this evaluation study have been described in the previous section. By virtue of the fact that samples could be obtained only from near the outermost portion of each roll, they represent the evaluation of that roll only to the extent that the sampled section was representative of the entire roll and in terms of the methods employed in this evaluation.

For the purpose of comparison of the product within a given mill and also between mills, each Fourdrinier Kraft Board Institute mill making $42-\mathrm{lb}$. D.F.B.S. Fourdrinier kraft liner has been given an arbitrarily selected code letter. This code identity has been used throughout this report. The Fourdrinier Kraft Board Institute mills producing liner have been identified in this report by the letters A to J, inclusive.

To obtain a more comprehensive and reliable insight into the variation of test values of rolls within a given mill and between mills, as well as to study the uniformity of each mill's product, it was necessary to apply statistical analysis to the test results. The application of statistical methods greatly increases the reliability of any comparison, inasmuch as a measure of the significance of the results is provided:

Statistics is that branch of mathematics which has been designed for the purpose of analyzing numerical results to determine the magnitude and the pattern of one or more of the variable characteristics of the items within the "universe" or group concerned.

The theory of statistics is based on two fundamental concepts: (1) There must exist an equality of opportunity for the chance selection of each and every possible item, and (2) nature has a precise and orderly plan for variation which is revealed whenever some variable factor is measured and the items are grouped numerically in the order of increasing magnitude. In addition, it is necessary that no secondary attributes shall influence the variable under consideration.

When all the possible items in question are subject to the influence of a large number of independent and purely random causes of variation, it is found that the values of the items tend to vary around a mean or most probable value in a given manner. If the causes of variation are truly random and truly independent, it will be found that there is a most probable or mean value which is characteristic of more items than any other given value; that small deviations from this mean value are more frequent than large deviations; and that positive deviations are as frequent as negative deviations. Such a distribution may be illustrated in an experiment in which the variation in height of a number of men is measured. If a sufficient number of men
are measured and a record is kept of the distribution of the heights (the number of men in each height class), a graph of the distribution of those heights will follow the normal distribution curve as defined by the following equation:

$$
Y=\frac{N}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{-\left(\frac{x-f}{} \frac{\sigma^{2}}{\sigma^{2}}\right.}{}}
$$

in which $Y=$ the number of items at a distance.x from the arithmetical mean or average;
$\pi=3.1416$;
$\mathrm{c}=2.7183$-the base of the Naperian logarithms;
$\sigma=$ the standard deviation of the array, a measure of variability;
$x=$ the individual observation value;
$\bar{x}=$ the arithmetic mean for all values of x i.e., the average of all individual observation values; and
$N=$ the total number of observations made.
The standard deviation is, by definition, the square root of the mean square of all the individual deviations measured from the mean of the distribution. It may be computed by the following formula:

$$
\sigma=\sqrt{\frac{\Sigma(x-\tilde{x})^{2}}{N-1}},
$$

where $\sigma=$ the standard deviation,
$\Sigma=$ the operation of summation,
$x=$ the individual observation value,
$\bar{x}=$ the mean value of the observed results, and
$N=$ the number of observations made in the group considered-i.e., the total number of x values.
This can be converted, by the application of the proper algebraic operation, to the following equation:

$$
\sigma^{2}=\frac{N \Sigma x^{2}-(\Sigma x)^{2}}{N(N-1)}
$$

This latter equation was used in the computation of the standard deviation throughout this report.
The standard deviation is most readily understood if it is thought of as a measure of the degree of dispersion or variability of the items in the universe, aggregate, or population being considered.

By integration, it is possible to determine the area under any section of the distribution curve. The area between any desired limits of x is to the total area under the distribution curve as the number of items between these same limits is to the total number of items. When the limits are established as one standard
deviation $(\pm \sigma)$, the limits include 68.3% of the total number of items. If two standard deviations ($\pm 2 \sigma$) are used, 95.5% of the items are included, and if three standard deviations ($\pm 3 \sigma$) are used, 99.7% of all the items are included.

It should be stressed that the results of the statistical evaluation of the data presented in this report are limited by the small number of rolls which were tested for each mill. It is not to be implied that an exact analysis of a mill's production, over a period of several months, can be obtained by testing only 10 to 30 rolls. However, the results illustrate the application of statistical methods, and also indicate probable trends.

If a greater number of rolls had been included for each mill; the reliability of the statistical methods would have been increased and the results would have had greater significance. As additional surveys of these mills' production are made, a comparison between studies will indicate more reliable trends and facilitate the correlation of results.

COMPARISON OF MILL AVERAGES.

The results of the various physical tests performed on the samples of $42-\mathrm{lb}$. D.F.B.S. Fourdrinier kraft liners have been compiled in Table III on the basis of mill averages. Complete details of the individual tests of the several rolls from each mill are given in Tables LXI-LXX in the Appendix.

The average results obtained for basis weight are shown graphically in Figure 6. The group average basis weight for all the mills participating was 42.1 pounds, which is, for all practical purposes, the same as the specified grade weight. The results indicate that Mills E and I had the highest average basis weight and Mill F the lowest. The average basis weight for all the other mills did not vary from the group average by more than ± 1.0 pound.

The average caliper results are plotted in Figure 7. The average caliper value obtained for the group was 0.0150 inch. A comparison of the test results indicates
that Mill H had the highestand Mill F the lowest taver erage caliper. However, all the mill averages, except that for Mill F, were within ± 0.001 inch of the group average.

The average apparent densities in pounds per cubic foot are illustrated graphically in Figure 8. The group. average apparent density was 33.7. The highest average apparent density was obtained for Mill F and the lowest for Mills G and H. The average apparent density for all the other mills did not vary from the group average by more than ± 0.5 pound.
--- From the-data presented in Figure 9 it may be observed that the average moisture content for the group was 8.1% on an ovendry basis. The highest average moisture content was obtained for Mill F and the lowest for Mill G. It is interesting to note that Mill F had the lowest average caliper and basis weight but the highest average apparent density and moisture content.

The results obtained for the bursting strength test are presented graphically in Figure 10. The average bursting strength, expressed in points per pound, was 2.33. The group average bursting strength was 98 points. Mills H and I exhibited the highest and Mill F the lowest average bursting strength value.

The averages obtained for the G. E. puncture test are shown in Figure 11. The group average was 36 units, with Mill I possessing the highest and Mill F the lowest average G. E. puncture value. It may be observed that, when the group average for bursting strength is compared with the group average for the G. E. puncture, the ratio is approximately 2.7 to 1 . It should be borne in mind, however, that these results were obtained on uncombined liner samples of Fourdrinier kraft board.
The average Riehle compression test results are plotted in Figure 12. The group average of the inmachine direction was 29.0 pounds and of the acrossmachine direction 22.5 pounds. The ratio of the across-machine direction values to the in-machine direc-

TABLE III
COMPARISON OF PHYSICAI, CHARACTERISTICS BETWEEN MILLS

Liner															
		$\begin{gathered} \text { Iasis } \\ \text { Weight, } \\ \text { lb. } \\ (12 \mathrm{x} \\ 12 / 1000) \end{gathered}$	$\begin{gathered} \text { Caliper, } \\ 0.001 \\ \text { in. } \end{gathered}$		Moisture, \%	BurstingStrength (Mullen), points	G.F. Puncture, units	$\begin{aligned} & \text { Riehle } \\ & \text { Compression, } \\ & \text { lb. } \end{aligned}$		lilmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
Mill	Tested							In	Across	In	Across	In	Across	In	Across
\wedge	28	41.1	14.8	33.2	9.1	99	35	28.5	22.1	34.3	391	78.5	36.2	2.2	3.4
${ }^{13}$	21	42.9	15.4	33.4	8.7	101	37	30.6	23.7	353	397	84.1	38.1	2.2	3.8
C	15	42.7	14.5 .	35.3	7.1	100	39	29.8	22.2	364	405	85.9	38.9	1.9	4.1
D	21	41.7	14.8	33.8	7.4	98	36	28.1	22.5	360	378	70.4	39.5	2.0	3.5
E	11	43.4	15.7	33.2	7.5	91°	35	27.5	20.6	324	365	77.1	34.3	1.8	3.6
F	10	39.7	13.4	35.6	10.0	85	33	23.3	18.7	302	343	66.7	33.0	1.9	3.1
G	15	41.9	15.6	32.2	7.0	91	38	27.4	23.7	380	405	72.3	41.8	1.7	3.6
H	14	42.6	15.9	322	8.0	108	37	30.7	24.5	386	407	75.8	42.7	2.2	4.1
I	22	43.5	15.3	34.2	8.4	109	41	30.9	21.8	408	465	85.4	36.8	2.3	4.5
J	21	41.7	14.7	34.2	7.7	93	32	30.4	23.7	301	355	74.8	35.9	2.0	3.2
Average	e 178	42.1	15.0	33.7	8.1	98	36	29.0	22.5	354	394	77.8	37.8	2.1	3.7

Figure 6. Comparison of the average basis weight of 42-lb. Fourdrinier kraft liner among mills.

Figure 7. Comparison of the average caliper of 42-1b. Fourde nier kraft liner among mills.

Figure 8. Comparison of the average apparent density of $42-\mathrm{lb}$. Fourdrinier kraft liner among mills.

Figure 9. Comparison of the average moisture content of 42 lb . Fourdrinier kraft liner among.mills.

Figure 10. Comparison of the average bursting strength of 42-lb. Fourdrinier kraft liner among mills.

Figure 11. Comparison of the average General Electric puncture test of 42-lb. Fourdrinier kraft liner among mills.

Figure 12. Comparison of the average Riehle compression test of 42 -lb. Fourdrinier kraft liner among mills.

Figure 13. Comparison of the average Elmendorf tear of $42-\mathrm{lb}$. Fourdrinier kraft liner among mills.

Figure 14. Comparison of the average of Amthor tensile strength $42-\mathrm{lb}$. Fourdrinier kraft liner among mills.

Figure 15. Comparison of the average Amthor stretch of $42-\mathrm{lb}$. Fourdrinier kraft liner among mills.
tion valucs is of the magnotude of oit. the average results obtained, in both directions, for Mill le were the lowest of all the mills participating; also, the average Riehle compression for the in-machine direction for Mill F was of approximately the same order of magnitude as the group average for the across-machine direction:

The results of the Elmendorf tear test are graphically presented in Figure 13. The group average test results were 354 and 394 grams per sheet for the inmachine and across-machine directions, respectively. The ratio of the group average of the in-machine direction to the group average of the across-machine-direction is of the order of $0.9: 1$. Mills F and J had the lowest and Mill I the highest tear values in both directions.

The results of the Amthor tensile test are shown in Figure 14. A comparison of the results indicates that the ratio of the across-machine direction values to the in-machine direction values is of the order of $1: 2$. The group averages obtained were 77.8 and 37.8 pounds per inch width for the in- and across-machine directions, respectively. The averages for Mill F were the lowest in both directions and the averages for Mill E and I were the highest in the in-machine direction; however, Mills G and H were the highest in the acrossmachine direction.

The Amthor stretch results are presented in Figure 15. The group averages obtained were 2.1 and 3.7%, respectively, for in- and across-machine directions. The ratio of the in-machine direction values to the across-machine direction values is approximately 6:10.

A comparison of the averages of all the strength test results indicates that Mills H and I were the highest and Mill F the lowest. The averages for the group would result in a theoretical liner having the following characteristics:

Basis weight, lb .Caliper, in.	42.1
	0.015
Apparent density, lb./cu. ft .	33.7
Bursting strength, points	98
	36
Moisture content, $\%$ Riehle compression, fb . 8.1	
In	29.0
Across	22.5
Elmendori tear, g./sheet	
In	354
Across	394
Amthor tensile, lb./in.	
In	77.8
Across	37.8
Amthor stretch, \%	
In	2.1
Across	3.7

A comparison of the standard deviations of the mills for each test characteristic is given in Table IV. It may be noted from the results for each test characteristic that the basis weight and caliper have the lowest percentage standard deviation and the Amthor stretch the highest. The lower the percentage standard deviation, the less is the indicated variation in that particular characteristic.

In a study of this type it is often of value to know
now wheaveragequanty or portomat compares with the average quality of the same grade of board produced by other mills. With the above thought in mind, the results tabulated in Table III were treated statistically to determine if there were any significant differences in the physical characteristics obtained for one mill as compared with the average physical characteristics for the balance of the mills participating. Whether or not significant differences exist in the same test characteristic between two different groups of data can be determined by calculating the ratio of the difference of the means of each group to the-standard error- of the difference between the . same two groups.

The standard error of the difference can be readily calculated from the standard errors of the two means ${ }^{-}$ under comparison. These standard errors, in turn, can be calculated from the standard deviations listed in Table IV. The following equations are used for these calculations:

$$
\mathrm{S}: \mathrm{E} .=\frac{\sigma}{\sqrt{N}} \quad \text { or } \quad[\mathrm{S} . \mathrm{E} .]^{2}=\frac{\sigma^{2}}{N}
$$

where S. E. = standard error,
$\sigma=$ standard deviation, and
$N=$ number of items in array.

$$
[\mathrm{S} . \mathrm{E} .]_{\alpha}{ }^{2}=\frac{[\mathrm{S} . \mathrm{E} .]_{\mathrm{A}}{ }^{2}+[\mathrm{S} . \mathrm{E} .]_{\mathrm{B}}{ }^{2}+\cdots+[\mathrm{S} . \mathrm{E} .]_{\mathrm{X}}{ }^{2}}{n^{2}}
$$

where $[\mathrm{S} . \mathrm{E} .]_{\alpha}=$ standard error of a group of similar arrays, $n=$ number of arrays being considered, and $\mathrm{A}, \mathrm{B}, \cdots, \mathrm{X}=$ respective arrays under consideration. Therefore,

$$
[\mathrm{S} . \mathrm{E} .]_{\alpha}^{2}=\frac{\frac{\sigma_{\mathrm{A}}^{2}}{N_{A}}+\frac{\sigma_{\mathrm{B}}^{2}}{N_{\mathrm{B}}}+\cdots+\frac{\sigma_{\mathrm{X}}^{2}}{N_{\mathrm{X}}}}{n^{2}}
$$

$$
\left[\text { S. E. }\left.\right|_{\text {niff. }}=\sqrt{[\text { S.E. }]_{1}^{2}+[\text { S.E. }]_{2}^{2}}\right.
$$

where $[S . E .]_{\text {Diff. }}=$ standard error of the difference, and
$[\mathrm{S} . \mathrm{E} .]_{1}$ and $[\mathrm{S} . \mathrm{E} .]_{2}=$ standard errors of the items or groups of items being considcred.
These calculations are illustrated by comparing the basis weight of Mill A with that of the other mills as a group in the following manner. First, it is necessary to determine the difference of the means-i.e., the average basis weight for Mill A minus the average basis weight for Mills B to J, inclusive. The average basis weight for Mill A was 41.1 pounds and the average for the group was 42.2 pounds. Thus, the difference of the means is -1.1 pounds, the value being negative, inasmuch as we are comparing Mill A with the group average which, in this case, is of greater magnitude.

The square of the standard error of Mill A is calculated from formula (1):

$$
\begin{equation*}
[\text { S. E. }]_{\Lambda}^{2}=\frac{\sigma_{A}^{2}}{N_{\Lambda}} \tag{1}
\end{equation*}
$$

From Table IV, σ_{A} is 1.13 and from Table III, N_{A} is 28; therefore,

$$
[\text { S. E. }]_{A}^{2}=(1.13)^{2} / 28 \text { or } 0.0456 \text {. }
$$

The squared form is used because it can be substituted directly into formula (3).
The standard error of the group composed of Mill B through Mill J, inclusive, is calculated by the use of formula (2):

$$
\begin{equation*}
[\mathrm{S} . \mathrm{E} .]_{a}^{2}=\frac{\frac{\sigma_{\mathrm{B}}^{2}}{N_{\mathrm{B}}}+\frac{\sigma_{\mathrm{C}}^{2}}{N_{\mathrm{C}}}+\cdots+\frac{\sigma_{\mathrm{J}}^{2}}{N_{\mathrm{J}}}}{n^{2}} . \tag{2}
\end{equation*}
$$

Substituting the appropriate values from Tables III and IV,
$[\text { S. E. }]_{a}^{2}=\frac{\frac{(1.31)^{2}}{21}+\frac{(0.785)^{2}}{15}+\cdots+\frac{(0.845)^{2}}{21}}{(9)^{2}}=0.0093$.
Since

$$
\begin{equation*}
[\mathrm{S} . \mathrm{E} .]_{\mathrm{Diff} .}=\sqrt{[\mathrm{S} . \mathrm{E} .]_{\mathrm{A}}^{2}+[\mathrm{S} . \mathrm{E} .]_{\alpha}^{2}}, \tag{3}
\end{equation*}
$$

therefore,

$$
[\mathrm{S} . \mathrm{E} .]_{\text {Diff. }}=\sqrt{(0.0456)^{2}+(0.0093)^{2}}=0.23 .
$$

From these values, the ratio of the difference of means to [S. E.] $]_{\text {Diff }}$ is:

$$
\text { Ratio }=\frac{\text { Difference of means }}{[\text { S. E. }]_{\text {Diff. }}}=\frac{-1.1}{0.23}=-4.8 .
$$

Throughout this study, it is considered that, if the magnitude of this ratio (i.e., difference of
means/[S. E.] $]_{\text {Diff. }}$. is less than 2, no significant difference exists. Reference to the appropriate table (normal variability) shows that a ratio of 2.0 indicates that there is a significant difference 95% of the time or that the probability that the difference happened by chance is $1: 19$. When the ratio is equal to 3.0 , the chance probability is greatly decreased (i.e., to about $1: 200$). Thus the ratio of -4.8 , obtained for the comparison of the average basis weight of Mill A with the average of the group B to J, inclusive, indicates that there is a significant difference between the average value obtained for A and the average obtained for the group B to J, inclusive. Since the ratio is negative, it is known at once that the average value obtained for Mill A is lower than the group average.

Similarly, all the test results obtained for Mill A were compared with the group averages obtained for the group B to J, inclusive. These results are given in Table V. The results indicate that there was a significant difference in the values obtained except for bursting strength, Richle compression in both directions, Amthor tensile in the in-machine direction, and Elmendorf tear and Amthor stretch in the across-machine direction. Similarly, all the tests, in which a significant difference was indicated, were of a lower magnitude for Mill A than for the group averages obtained for Mills B to J, inclusive, except Amthor stretch in the inmachinc direction, which was slightly higher than the group average.
The results obtained when the averages for Mill B are compared with those of the balance of the group may be seen in Table VI. The results indicate that there was a significant difference in all the values obtained except G. E. puncture, Elmendorf tear in both directions, and Amthor tensile and stretch in the across-machine direction. Similarly, the values for those tests in which a significant difference was indicated were of greater magnitude than the averages obtained for the group.
A comparison of the average values obtained for

COMPARISON OF THE PHYSICAL. CHARACTERISTICS OF MILL A WITH THE B.MANCE OF THE"CROUP.
Liner

	Basis Weight, lb,$\begin{gathered} (12 \times 12 \\ / 1000) \end{gathered}$	Caliper, 0.001 ln .	Burst--..- ing Strength, points	GE. Puncture, units	Riehle Compression, . .. lb.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \% .		
					In	Across	ln	Across	In	Across	ln	Across	
Mean of A	41.1	14.8	99	35	28.5	22.1	343	391	78.5	36.2	2.2	3.4	
Mean of α	42.2	15.0	97	36	28.7	22.0	353	391	76.9	37.9	2.0	3.7	
Difference of means $(A-\alpha)$	-1.1	-0.18	$+1.8$	-1.72	-0.184	+0.151	-10.2	-0.3	+1.55	-1.64	$+1.627$	-0.3171	
Standard error of ${ }^{-}$ difference	0.23	0.028	1.47	$\overline{0.481}$	$\overline{0.352}$	0.248	4.83	4.40	$\because 1.13$	0.414	0.056	0.220	- -
Ratio: $(A-\alpha) / S E_{i}$,	-4.8	-6.5	$+1.2$	-3.6	-0.5	+0.6	-2.1	-0.1	+1.4	-4.0	+2.9	$+1.4$	
-Significant : +	Yes.	Yes	- No	Yes .	- No.	. No	Yes.	- No	No	Yes	Yes	No	

Note. All mean values have been reported to the same precision as the individual test values. It will be observed that some of the intermediate values in the above table have been reported to more places than the mean values. Similarly, the difference of the means will not always correspond to the difference between the reported means, because these values have been rounded off. The mean of α is the mean for the balance of the group.

TABLE VI
COMPARISON OF THE PHYSICAI, CHARACTERISTICS OF MILL B WITH THE BALANCE OF THE GROUP

	Basis Weight, lb. $(12 \times 12$ /1000)	Caliper, 0.001 in.	Bursting Strength, points	G.E. Puncture, units	Riehle Compression, lb.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
					In	Across	In	Acress	In	Across	In	Across
Mean of B	42.9	15.4	101	37	30.6	23.7	353	397	84.1	38.1	2.2	3.8
Mean of $\boldsymbol{\alpha}$	42.0	15.0	97	36	28.5	21.8	352	390	76.3	37.7	2.0	3.7
Difference of means $(B-\alpha)$	+0.9	+0.45	+3.9	+0.79	+2.09	+1.89	+1.2	$+6.9$	+7.74	+0.43	+0.23	+0.143
Standard error of difference	0.19	0.173	1.64	0.52	0.476	0.294	7.53	5.42	1.49	0.692	0.045	0.107
Ratio: $(B-\alpha) / S E_{D}$	+4.7	+2.6	$+2.4$	+1.5	+4.4	$+6.4$	$+0.2$	+1.3	$+5.2$	+0.6	+5.1	+1.3
Significant	Yes	Yes	Yes	No	Yes	- Yes	No	No	Yes	No	Yes	No

TABLE: VII
COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL C WITH THE BALANCE OF THE GROUP
IINER

	Basis Weight, lb. $(12 \times 12$ /1000)	\quadBurst- ingCaliper, Strength,0.001 in. points		G.E. Puncture, units	Riehle Compression, lb.		Elmendorf Tear, g./sheet		Amthor Tensile $\mathrm{lb} . / \mathrm{in}$.		Amthor . Stretch, \%		
				In	Across	In	Across	In	Across	In	Across		
Mean of C	42.7	14.5	100		39	29.8	22.2	364	405	85.9	38.9	1.9	4.1
Mean of α	42.1	15.1	97	36	28.6	22.4	351	390	76.1	37.6	2.0	3.6	
Difference of means $(C-\alpha)$	+0.6	-0.55	+2.9	$+3.05$	$+1.27$	$-3: 85$	$+13.1$	$+15.0$	$+9.78$	+1.29	-0.172	+0.43	
Standard error of difference	0.22	0.150	1.63	0.601	0:443	0.396	4.54	7.57	1.26	0.888	0.059	0.156	
Ratio: $(C-\alpha) / S E_{D}$	$+2.7^{\circ}$	-3.7	+1.8	$+5.1$	$+2.9$	-4.7	$+2.9$	+2.0	+7.8	$+1.5$	-2.9	$+2.8$	
Significant .	Yes	Yes	No	Yes	Y'es	Yes	Yes	Yes	Yes	No	Yes	Yes	

TXBI,E VII
$\therefore x^{\prime \prime}$:
COMHARISON OF THE PHYSICAL CHARACTERISTICS OF MILA, D WITH THE BALANCE OF THE GROUP
Liner

	BasisWeight,ib.$(12 \times 12$$(1000)$	Caliper, 0.001 in.	Bursting Strength, points	Gr.E. Punc- ture, units	Richle Compression, (b).		Elmendorf 'Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
\cdots					In	Across	\cdots In	Across	Itı	\cdots	In	Across
Mean of D	41.7	14.8	98	36	28.1	22.5	360	378	70.4	39.5	2.0	3.5
Mean of α	42.2	15.0	97	36	28.8	21.9	351	393	77.8	37.5	2.0	3.7
Difference of means $(D-\alpha)$	-0.5	-0.21	$+0.7$	-0.53	-0.73	+0.543	+8.8	-14.3	-7.41	+1.93	-0.077	-0.19
Standard'error of difference	0.36	-0.239	1.66	. 0.820.	0.457	0.296	-. 3.24	$\therefore 6.81$	1.15	0.726	0.055	$0.105-$
Ratio: $(l)-\alpha) / S E_{l}$,	-1.4	-0.9	+0.4	-0.6	-1.6	+1.8	$+2.7$	-2.1	-6.4	$+2.7$	-1.4	-1.8
Significant	No	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No

Note. See Note to Table V. ... -

TABLE IX
COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL E WITH THE BALANCE OF THE GROUP

Note. See Note to Table V.

TABLE X
COMI'ARISON OF THE IPHYSICAL CHARACTERISTICS OF MILI F WITH THE BALANCE OF THE GROUP

Comparison of time physical characteristics of mitl g with tife balance of the quoup

Note. See Note to Table V.

TABLE XII
COMPARISON OF.THE PHYSICAL CHARACTERISTICS OF MILL H WITH THE BALANCE OF THE GROUP

:	Basis Weight, , Ib. $(12 \times 12$ /1000)	Liner							Amthor Tensile, lb./in.		Amthor Stretch, \%		
		Caliper, $\begin{gathered}\text { Burst- } \\ \text { ing } \\ 0.001 \text { in. } \\ \text { pointsth }\end{gathered}$		G.E. I'uncture, units	$\begin{gathered} \text { Riehle } \\ \text { Compression, } \\ \text { lb. } \end{gathered}$		Elmendorf Tear, g./sheet						
				In	Across	In	Across	In	Across.	In	Across		
Mean of 11	42.6	15.9	108		37	30.7	245	386	407	75.8	42.7	2.2	4.1
Mean of α	42.1	14.9	96	36	28.5	21.7	389	349	77.2	37.2	2.0	3.6	
Difference of means ($H-\alpha$)	+0.5	+0.96	+11.3	+1.22	+2.17	+2.85	+17.8	+37.5	-1.40	+5.51	$+0.238$	+0.421	
Standard error of difference	0.27	0.123	1.61	0.661	0.511	0.304	6.06	10.86	1.81	1.114	0.052	0.092	
Ratio: ($I I-\alpha$)/SE ${ }_{D}$	+1.9	+7.8	+9.3	+1.8	+4.2	+9.4	+2.9	+3.5	-0.8	$+4.9$	+4.6	+4.6	
Significant -	No	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	

Note. See Note to Table V.

Table XIII
COMPARISON OF THE PHYSICAL Characteristics of mill i with the balance of the group

	Basis Weight, Ib. $(12 \times 12$ /1000)	Caliper, 0.001 in	Bursting Strength points	G.E. Puncture. units	Linfer				Amthor Tensile, lb./in.		Amthor Stretch, \%	
					Richle Compression, lb.		Elmendorf Tear, g./sheet					
					In	Across	In	Across	In	Across	In	Across
Mean of I	43.5	15.3	109	41	30.9	21.8	465	408	85.4	36.8	2.3	4.5
Mean of α	42.0	15.0	96	36	28.5	22.0	346	384	76.2	37.8	2.0	3.6
Difference of mean $(1-\alpha)$	$+1.5$	+032	$+12.7$	+5.39	$+2.39$	-0.258	+62.3	+82.3	$+9.23$	-1.02	+0.269	$+0.90$
Standard error of difference	0.21	0.085	1.36	0.413	0.493	0.291	4.22	4.84	0.97	0.358	0.042	0675
Ratio: $(I-\alpha) / S E_{L}$	$+7.1$	+3.8	$+9.3+$	+13.1	+4.8	-0.9	+14.8	$+17.0$	+9.5	-2.8	+6.4	+12.0
Significant	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes

Note. See Note to Table V.

- - -	Basis Weight, lb. $(12 \times 12$ /1000)	Bursting Caliper, Strength, 0.001 in. points		G.E. . Puncture, units	Riehle Compression, ib.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%		
				In	Across	In	Across	In	Across	In	Across		
Mean of J	41.7	14.7	93		32	30.4	23.7	301	355	74.8	35.9	2.0	3.2
Mean of α	42.2	15.1	98	37	28.5	21.8	358	395	77.4	37.9	2.0	3.7	
Difference of mean $(I-\alpha)$	-0.5	-0. 38	-5.3	-4.23	$+1.91$	+1.91	-56.7	-40.6	-2.53	-2.02	+0.029	-0.56	
Standard error of difference	0.21	0.129	2.68	0.846	0.352	0.233	8.44	9.56	2.15	0.540	0.048	0.153	
Ratio. ($/-\alpha$)/ $/ E_{f}$)	-2.4	-2.9	-2.0	-5.0	+5.4	+8.2	-6.7	-4.2	-1.2	-3.7	+0.6	-3.6	
Significant	Yes-	- Yes	${ }^{-}$Yes	Yes ${ }^{-}$	- Yes	${ }^{-}$Y'es	- Yes	- Yes	$\cdots \mathrm{No}$	Yes	$\cdots \mathrm{No}$	- Yes	

Note. See Note to Table V.

Mill C with the group average excluding C is presented in Table VII. The results indicate that there was a significant difference in all the test values except bursting strength and the Amthor tensile test in the across-machine direction. All the values in which a significant difference existed were greater than the value for the group averages with the exception of caliper, Riehle compression in the across-machine direction, and Amthor stretch in the in-machine direction.

The average test results obtained for Mill D, as compared with the average test results obtained for the remainder of the group, are given in Table VIII. The only test results which exhibited a significant difference were Elmendorf tear and Amthor tensile in both directions. This phenomenon indicates that the average quality of Mill D, as determined by these tests, was approximately the same as the average quality for the group.

A comparison of the average test values obtained for Mill E with the averages for the balance of the group may be observed in Table IX. The results indicate that a significant difference existed in all the test results except those for bursting strength, G. E. puncture, Riehle compression and Amthor tensile in the in-machine direction, and Amthor stretch in the across-machine direction. With the exception of the average caliper value, all the results wherein a significant difference existed were lower than the corresponding value for the group average.

The results of the comparison of the average test values obtained for Mill F with the averages for the balance of the group may be found in Table X. The results indicate that a significant difference existed between all the average test results obtained for Mill F and the corresponding group average. All the average test values obtained for F were lower than the corresponding group average.

The comparison of the average test values obtained for Mill G with the averages for the balance of the group is given in Table XI. It may be noted that the only test results in which a significant difference was
not indicated were in basis weight and Amthor stretch in the across-machine direction.
The average test values obtained for Mill H are compared with the average for the remainder of the group in Table XII. It. may be noted that basis weight, G. E. puncture, and Amthor tensile in the inmachine direction were the only test results in which a significant difference was not indicated. Both the basis weight and G. E. puncture, however, appear to be close to the borderline in respect to significance. All the test results for Mill H , wherein a significant difference was indicated, are of a greater magnitude than the corresponding group average value; thus, the average quality for Mill H , as determined by these tests, was higher than the group average.
The comparison of the average test values obtained for Mill I with the average for the balance of the group is presented in Table XIII. A significant difference is indicated in all test results except the Riehle compression in the across-machine direction. With the exception of the Amthor tensile in the across-machine direction, the average test results for Mill I, wherein a significant difference was indicated, were of a greater magnitude than the corresponding average test results of the group.
A comparison of the test averages for Mill J with the average test results obtained for the remainder of the group may be seen in Table XIV. A significant difference was indicated for all the average values except Amthor tensile and stretch in the machine-direction. Of those average results showing significant differences, all but the averages of the Richle compression in both directions, were of lower magnitude than the corresponding average values for the group.

DISCUSSION OF INDIVIDUAL MILL TEST RESULTS FOR 42-POUND. D.F.B.S. FOURDRINIER KRAFT LINER

Mill A
The average results of the various physical tests conducted on the samples of liner rolls made by Mill A
are shown in Table XV. Details of the maximum and minimum values for each roll tested are given in Table LXI of the Appendix. The average basis weight was slightly lower than the grade specification of 42 pounds. The average apparent density was 33.2 pounds per cubic foot. It may also be noted that the average bursting strength was 99 points and the average G. E. puncture value was 35 units. The average moisture content was 9.1% on an ovendry basis.

In a study of this type, the interest is not solely in -the-absolute value of the average test values within a given mill or among mills, but also in the variation in the individual values which make up those averages. To say that the average of a group of test observations is 100 is of little value unless the uniformity or probability of a given variation of the values which make up this average is known.

The probability of a given variation in board from a given mill may be calculated statistically if test values, based on a sufficient number of individual specimens, are available from an adequate number of rolls from that mill. For each type of test, it is first necessary to calculate the average, and then to calculate the standard deviation as a measure of the variability among the rolls. The procedure may be illustrated for basis weight of the liner samples from Mill A.

For Mill A the average basis weight was 41.1 pounds and the standard deviation was calculated to be 1.13 pounds. Accordingly, reference to the appropriate tables (Probability Integrals) shows that a range of 41.1 ± 1.1 pounds or 40.0 to 42.2 pounds may be expected to contain 68.3% of the rolls of this grade produced by Mill A. In most cases it is of more interest, however, to consider the percentage of rolls which might be expected to be contained within any prespecified test value limits. Thus, assume that it is required to find the chance that the basis weight for a roll will fall within ± 0.5 pound of the average basis weight. It is noted that 0.5 pound is a fraction $(0.5 / 1.13=0.44)$ equal to 0.44 of the standard deviation for the basis weight for Mill A. By referring to the appropriate tables, it is found that 3.4% of the rolls should fall within the selected limits. This indicates that Mill A has a uniformity, in respect to basis weight, such that 34% of the rolls made in the 42 -pound grade should be within the limits 40.6 to 41.6 pounds. Using the same line of procedure, it may be shown that a range of ± 1 pound is equal to 0.88 of the standard deviation for Mill A, and thus the probability of the basis weight being within the limits 40.1 to 42.1 pounds is 62%. (It should be noted in a precautionary way that the probability of a given test value lying within a given range is not doubled when the range is doubled.) As previously mentioned, it is fully recognized that the application of statistical methods to these data has limitations. It is included, however, to demonstrate the potentialities of its application and to predict, within limits, the variation to be expected in the physical characteristics of board made by the different mills.
Table XVI gives the standard deviations and prob-
able variations to be expected in the rolls of 42 -pound liner made by Mill A. It may be seen from these results that the chance probability or uniformity for Mill A in regard to caliper is such that the greater portion of the rolls should fall within the range of ± 0.001 inch (0.0138 to 0.0158 inch) of the average caliper. The uniformity of the bursting strength indicates that only three fourths of the rolls would be expected to fall within a range limit of ± 7.5 points (91.5 to 106.5 points). On a percentage basis, the uniformity in respect to the G. E. puncture is approximately the same as that for the bursting strength. The uniformity in respect to Riehle compression, Elmendori tear, and Amthor tensile and stretch may also be observed in Table XVI. Naturally, as the arbitrarily selected limits increase, the greater will be the percentage of rolls falling within that range. The ranges used are purely arbitrary and are not intended as an attempt to specify acceptable limits. The moisture content was not treated statistically as it was felt that the secondary effects, such as warehouse storage conditions, would possibly prevent the legitimate application of statistics to the moisture data.

Mill B

The average test results obtained on samples of liner made by Mill B are shown in Table XVII (see also Table LXII of the Appendix). The average basis weight was slightly in excess of the specified grade weight. The average caliper was 0.0154 inch and the average apparent density was 33.4 pounds per cubic foot. The average bursting strength and G. E. puncture were 101 points and 37 units, respectively. The average moisture content was 8.7% on an ovendry basis.

The statistical evaluation of these test results may be found in Table XVIII. The standard deviation for the basis weight was 1.31. The results indicate that the uniformity of basis weight for Mill B is such that only 30.0% of the rolls should be expected to fall within the range limit of ± 0.5 pound (42.4 to 43.4 pounds), ap)proximately 55% within the range limit ± 1.0 pound (41.9 to 43.9 pounds), and approximately 87% within the range limit of ± 2.0 pounds (40.9 to 44.9 pounds). The standard deviation for the caliper is 0.75 and thus approximately 82% of the rolls should fall within the caliper range limit of ± 0.001 inch (0.0144 to 0.0164 inch). The uniformity of the bursting strength as judged by the standard deviation indicates that approximately 30% of the rolls should fall within the bursting strength range limit of ± 2.5 points (98.5 to 103.5 points), approximately 56% within the range limit of ± 5.0 points (96 to 106 points), and approximately 76% within the range limit of ± 7.5 points (93.5 to 108.5 points). In terms of percentage, the uniformity of the G. E. puncture is of approximately the same order of magnitude as the bursting strength. The Riehle compression, Elmendorf tear, and Amthor tensile and stretch tests showed rather large standard deviations.

TABLE XV
PHY'SICAL. CHARACTERISTICS OF 42-L.B. D.F.B.S. FOURDRINIER KRAFT LINER
Mitl A
Roll Averages

		_ Basis Weight, lb. (12×12 /1000)	$\begin{aligned} & \text { Caliper, } \\ & 0.001 \\ & \text { in. } \end{aligned}$	Apparent Density, lb./cu.ft.	Moisture, $\%$	Bursting Strength, points	G.E. Puncture, units	Richle Compression, lb.		Elmendorf. 'Tear, g./sheet		Amthor Tensile, $\mathrm{lb} . / \mathrm{in}$.		Amthor Stretch, \%	
Roll	Date Manuf.							In	Across	In	Across	In	Across	In	Across
1	12-30-44	42.1	14.9	33.8	8.3	94	39	25.7	20.2	378	401	81.6	38.1	2.0	3.5
2	12-30-4.4	42.8	14.8	34.7	7.6	(9)	38	27.0	20.0	366	414	83.7	38.8	2.2	3.3
3	1-20-45	40.9	14.2	34.6	9.7	109	3.4	29.0 .	21.0	341	406	84.6	35.9	2.7	3.7
4	1-20.45	41.0	14.1	34.8	9.2	110	-35	28.5	$21: 6$	336	$412{ }^{-}$	-85.3.	37.4	$2.9-$	3.6
5	11-15-44	421	14.3	35.3	13.2	107	36	25.8	22.7	387	415	76.8	39.8	2.8	3.5
6	1-26-45	42.1	15.1	33.4	10.7	111	37	29.2	23.4	36.3	417	85.9	38.3	2.4	3.7
7	11-15-4.4	40.1 .	14.5	33.2	-11.7	$103-$	-34	29.0	22.1 -	351	396	78.1	37.6	2.5	3.4
8	1.16-45	39.2	14.6	32.2	8.4	99	33	25.9	20.2	310	370	73.8	36.1	1.7	2.6
9	1-16-45	38.5	14.5	31.8	7.9	90	31	27.5	21.2	334	366	72.8	35.7	2.0	2.8
10	1-15-45	41.4	14.8	33.5	7.8	95	36	27.5	21.5	350	398	81.0	36.0	2.0	2.9
11	1-15-45	41.4	15.5	32.0	7.2	92	35	28.8	22.3	384	407	82.5	35.2	2.0	3.7
12	1-15-45	41.1	15.3	32.2	6.3	88	35	28.1	21.5	349	398	81.7	34.6	2.0	3.5
13	1-15-45	41.2	15.3	32.3	7.0	93	37	27.6	22.0	377	418	82.2	36.0	1.9	29
14	7-1-44	40.7	15.1	32.3	11.3	98	35	31.6	22.9	355	382	70.7	35.4	1.9	3.7
15	7-1-44	41.3	15.2	32.6	12.0	104	37	31.6	22.3	357	394	74.0	33.5	2.3	3.7
16	7-1-14	40.0	14.6	32.8	11.8	96	33	31.5	21.8	350	380	69.4	35.1	2.2	4.2
17	7-1-14	39.1	14.4	32.5	10.6	88	32	30.0	22.0	333	371	69.4	33.9	2.1	3.8
18	2-8-45	41.9	15.3	32.8	9.1	104	34	29.8	24.4	339	404	80.5	36.9	2.0	3.7
19	2-8-45	41.2	15.0	32.9	8.8	10.4	32	28.4	24.7	336	382	86.0	36.2	2.2	3.6
20	3-12-45	$+1.6$	14.9	33.5	9.6	99	32	31.2	21.3	319	373	84.3	35.0	2.2	3.5
21	3-11-45	41.2	14.8	33.4	8.1	101	32	29.2	22.7	313	375	81.2	35.7	2.0	3.2
22	3-14-45	42.7	14.9	34.3	9.9	100	36	27.6	22.3	321	370	77.1	35.2	2.1	3.3
23	3-15-45	40.4	14.8	32.7	7.9	95	33	29.4	22.8	316	370	80.7	33.1	$2.0 \cdot$	3.5
24	3-15-45	43.3	15.1	34.4	10.1	98	37	27.7	226	331	404	74.7	36.1	2.2	3.4
25	3-14-45	40.6	15.0	32.4	8.7	94	34	27.1	23.4	339	357	70.6	37.1	2.1	2.8
26	3-14-45	42.0	15.3	329	8.4	103	37	28.8	23.5	326	404	76.9	37.0	2.3	3.0
27	11-15-44	40.5	14.8	32.8	7.6	95	33	28.2	21.4	325	373	74.9	37.4	2.1	3.3
28	11-15-44	40.0	14.6	32.8	6.0	99	33	27.5	21.5	320	385	77.3	37.5	2.0	3.4
	Average	41.1	14.8	33.2	9.1	99	35	28.5	22.1	343	391	78.5	36.2	2.2	3.4

TABLE XVI
STATISTICAL EVALUATION OF PILYSICAL TESTS ON 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER

Test values	Basis Weight, lb. $(12 \times 12$ /1000)	Caliper, 0.001 in.	Bursting Strength, points	G.E. P'uncture, units	Riehle Compression, lb.		Elmendorf Tear, g./sheet		Amthor Tensile, lb ./in.		Amthor Stretch, \%	
					In	Across	In	Across	In	Across	Jn	Across
Maximum	43.3	15.5	111	39	31.6	24.7	387	418	86.0	39.8	2.9	4.2
Minimum	38.5	14.1	88	31	25.7	20.0	310	357	69.4	33.1	1.7	2.
Average	41.1	14.8	99	35	28.5	22.1	343	391	78.5	36.2	2.2	34
Standard deviation	1.13	0.362	6.26	2.11	1.65	1.15	21.8	18.2	5.19	1.57	0.279	0.363
Range limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	34	99	31	36	46	62	27	32	23	48	28	42
Range limit (\pm) ${ }^{*}$	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Approximate prohability. \%	62	100	58	52	64	81	51	59	44	80	53.	73
Range limit (\pm)*	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	92	-	77	84	93	99	83	90	66	94	72	90

TABLIE XVII
IMISICAL CH.ARACTIERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER
Mille 13
Roll Averages

TABLE XVIII
STATISTICAL. EVALUATION OF PHYSICAL TESTS ON 42-LB. D.F.B.S. FOURDRINIER KRAF'I LINER

IHYSICAI. CHARACTERISTICS.OF 42-1B D.F.B.S. FOURDRINIER KRAFI LINER

Mille C
Roll Averages

	-	Basis Weight, 16.	Caliper, 0.001	Apparent	Mois-	Bursting	G. Fi. Punc-	$\begin{array}{r} \mathrm{Ri} \\ \text { Comp } \end{array}$	hle ession,		dorf ar, heet		hor sile, in.		hor h, \%
Roll	Manuf.	/1000)	in.	lb./cu.ft.	\%	points	units	In	Across	In	Across	In	Across	In	Across
1	1-29-45	43.7	13.7	38.2	7.7	98	37	28.0	23.1	385	393	81.6	43.0	2.2	5.0
2	1-29-45	42.8	13.4	38.3	7.8	98	35	29.4	23.3	356	371	82.7	43.0	2.1	4.8
3	1-29-45	44.0	14.0	37.7	7.7.	109	38	31.2	24.5	389	389	86.4	45.0	2.2	4.7
4	-	41.7	14.2	35.2 -	8.2	88	36	31.2	$22.8{ }^{\text {+ }}$	351	380	76.6	38.8	1.5	4.3
5	- 3-8-45	42:6	14.8	34.5	-7.4	104	41°	31.6	-23.5	377	442	87.2	36.2	1.7	3.8
6	8-9-44	42.2	15.0	33.8	8.3	09	42	31.0	21.4	361	392	82.4	36.9	1.7	3.3
7	3-9-45	42.1	14.6	34.6	7.6	101	41	29.7	21.3	349	440	87.6	36.0	1.8	3.3
. 8	- 3-9.45	42.5	14.9	34.2	-8.2	99	41	32.8	22.8	371	433	89.8	37.0	1.8	3.9
9	4- 4-45	42.1	15.0	33.7	5.5	99	40	29.9	21.1	376	411	92.0	35.7	1.9	4.2
10.	- 4-4-45	42.3	14.7	34.5	5.8	103	40	28.9	22.0	366	401	85.2	36.7	1.8	4.4
11	1-29-45	43.8	13.9	37.8	5.6	102	38	30.3	24.6	366	368	84.7	44.3	1.9	4.5
12	1-4-45	41.8	15.0	33.4	6.6	99	38	28.3	20.6	342	407	86.6	37.9	1.6	3.6
13	1-4-45	42.7	14.9	34.4	6.1	93	38	27.3	20.4	357	381	84.8	36.5	1.8	3.3
14	1-4-45	42.5	15.0	34.0	6.3	97	38	27.6	19.7	342	403	86.1	36.8	1.8	3.5
15	2-8.45	44.0	14.7	35.9	7.1	109	41	30.5	22.3	373	458	94.8	39.4	2.2	4.5
Average		42.7	14.5	35.3	7.1	100	39	29.8	22.2	364	405	85.9	38.9	1.9	4.1
		4													

TABLE XX
STATISTICAL EVALUATION OF PHYSICAL, TESTS ON 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER

T:ABLE XXI
PHYSICAL CHARACTERISTICS OF 42-LB. DIF.B.S. FOURDRINIER.KR.IFY LINER
Mill D
Roll Averages

	T-	Basis Weight, Ib. $(12 \times 12$	Caliper, 0.001 in.	Apparent Density, lb./cu.ft.	Moisture, $\%$	Bursting Strength, points	GE. Puncture, units	Riehle Compression, lh		Elmendori 'Теar, \%. /sheet		Amthor 'Tensile, lb./in.		Amthor Stretch, \%	
Roll	Manuf.	/1000)						In	Across	In	Across	In	Across	In	Across
1	2-7-45	40.8	14.7	33.3	8.6	94	38	28.3	23.3	355	- 374	65.3	419	1.8	3.1
2	2. 7.45	40.9	14.7	33.4	7.9	102	37	28.6	21.4	3.36	392	74.9	360	1.8	3.0
3	2-7-45	41.0	14.8	33.2	7.9	93	37.	25.8	-22.9	38.3	349	65.0	42.0	1.8	3.1
4	2-7-45	40.3	14.9	32.4	7.1	84	36	24.4	-21.1	375	347	59.3	41.3	1.6	2.8
5	12-30-44	43.9	16.7	31.5	7.7	100	44	27.4	21.6	391	415	69.7	39.8	1.9	3.2
6	12-30-44	45.4	16.6	32.8	7.4	100	44	28.8	22.2	407	442	72.7	38.7	2.0	3.6
7.	--	42.4	-153	33.2-	9.4	-97	. 36	29.9	23.8	. 384	366	-68.5	-42.1	1.8	3.6
8	8-26-44.	40.4	14.4	33.6	12.4	102	34	29.4	23.4	34.4	373	71.5	40.0	1.5	3.8
9	1-23-45*	42.3	16.0	31.7	11.7	101 *	37°.	30.1	24.7	369	406	70.9	40.3	$1: 7$	3.3
10	3-5-45	38.8	13.3	349	4.2	91	30	31.4	23.8	320	348	74.0	37.5	1.9	4.0
11	3-5-45	39.6	13.0	36.5	4.3	95	30	31.3	22.7	334	341	76.2	38.5	1.9	4.3
12	3-12-45	41.6	14.3	34.8	7.0	94	33.	27.0	24.7	378	345	61.5	46.6	2.0	3.3
13	3-12-45	39.7	12.8	37.2	7.4	104	32	27.0	21.8	332	335	70.4	43.7	2.0	3.5
14	2-12-45	40.8	14.3	34.2	8.0	95	33	26.1	20.4	310	361	70.8	33.0	1.9	3.1
15	2-25-45	42.5	14.7	34.7	6.0	102	35	27.8	21.4	366	399	75.5	38.5	2.1	3.1
16	9-26-44	43.4	14.9	34.9	6.3	105	35	31.1	23.3	374	409	72.3	41.2	2.2	4.3
17	2-25-45	41.9	14.5	34.6	6.6	105	34	26.9	22.5	357	382	74.0	37.5	2.3	3.2
18	10-11-44	41.9	16.8	29.9	8.0	86	35	25.9	20.4	370	387	67.6	34.6	2.0	3.8
19	2-9-45	43.3	14.6	35.6	6.7	110	36	28.2	21.4	360	402	74.3	38.7	2.2	3.7
20	11-3-44	41.0	15.1	32.6	5.5	93	36	27.8	22.4	358	372	70.4	39.3	2.3	4.1
21	2-.9-45	42.8	14.8	34.7	6.2	102	38	25.9	22.7	362	398	74.3	37.3	2.3	3.8
	verage	41.7	14.8	33.8	$7.4{ }^{\circ}$	98	36	28.1	22.5	360	378	70.4	39.5	2.0	3.5

TABLE NXII
STATISTICAL EVALUATION OF PHYSICAL TESTS ON 42-Lb. D.F.b.S. FOURDRINIER KRAFT LINER
Mill D

	Basis Weight, lb. $(12 \times 12$ /1000)	Caliper, 0.001 in .	Bursting Strength, points	G.E. Puncture, units	Richle Compression, Ib.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
					In	Across	In	Across	In	Across	In	Across
Test values												
Maximum	45.4	16.8	110	44	31.4	24.7	407	442	76.2	46.6	2.3	4.3
Minimum	38.8	12.8	84	30	24.4	20.4	310	335	59.3	33.0	1.5	2.8
Average	41.7	14.8	98	36	28.1	22.5	360	378	70.4	39.5	2.0	3.5
Slandard deviation	1.59	1.07	$6.51{ }^{\circ}$	3.57	1.96	1.25	24.2	28.7	4.56	3.07	0.237	0.441
Kange limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	24	65	30	22	39	58	24	21	26	26	33	35
$\text { Range limit }(\pm)^{*}$	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Approximate probability, \%	47	94	56	33.	56	77	46	40	49	48	60	64
Range limit (土)*	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	79	-	75	60°	87	98	79	71	73	67	80	83

Mile C
The average test results obtained for the liner made by Mill C are given in Table XIX (see also Table LXIII of the Appendix) and the statistical evaluation of these results in Table XX. The results indicate that the average basis weight for Mill C was slightly in excess of the specified weight for this grade. The average caliper was 0.0145 inch and the average apparent density was 35.3 pounds per cubic foot. The average bursting strength and G. E. puncture values were 100 points and 39 . units, respectively.. The average mois= ture content was 7.1% on the ovendry basis.

The standard deviation for basis weight for Mill C is 0.785 . This rather low standard deviation suggests that approximately 48% of the rolls should fall within a range limit of ± 0.5 pound (42.2 to 43.2 pounds), 80% within a range limit of ± 1.0 pound (41.7 to 43.7 pounds), and practically all the rolls within a range limit of ± 2.0 pounds (40.7 to 44.7 pounds). The standard deviation for the caliper is 0.537 , and thus approximately 68% of the rolls should fall within a caliper range limit of ± 0.0005 inch (0.0140 to 0.0150 inch) and approximately 94% within the range limit of ± 0.001 inch (0.0135 to 0.0155 inch). The uniformity of the bursting strength indicates that approximately 35% of the rolls should fall within a range limit of 2.5 points (97.5 to 102.5 points), 65% within the range limit of ± 5.0 points (95 to 105 points), and approximately 84% within a range limit of ± 7.5 points (92.5 to 107.5 points). Percentagewise, the G. E. puncture is of approximately the same order of uniformity. In gencral, the standard deviations for the Riehle compression, Elmendorf tear, and Amthor tensile and stretch are of such magnitude as to indicate considerable lack of uniformity within the low arbitrary ranges but rather good agreement within the wider arbitrarily selected ranges.

Mile D

The average test results obtained for the liner manufactured by Mill D are shown in Table XXI (see also Table LXIV of the Appendix). The statistical evaluation of these results is given in Table XXII. The average basis weight for Mill D was, for all practical purposes, of the same order of magnitude as the specified grade weight of 42 pounds. This weight and the average caliper of 0.0148 inch resulted in an average apparent density of 33.8 pounds per cubic foot. The average bursting strength and G. E. puncture were 98 points and 36 units, respectively. The average moisture content was 7.4% on an ovendry basis.

Inasmuch as the standard deviation of the basis weight was 1.59 , it is to be expected that only 24% of the rolls would fall within a basis weight range limit of ± 0.5 pound (41.2 to 42.2 pounds), 47% within a range limit of ± 1.0 pound (40.7 to 42.7 pounds), and 79% within a range limit of ± 2.0 pounds (39.7 to 43.7 pounds). On the basis of a standard deviation of
1.07 for caliper, 65% of the rolls should fall within a caliper range limit of ± 0.001 inch (0.0138 to 0.0158 inch) and only 94% within the range limit of ± 0.002 inch (0.0128 to 0.0168 inch). The uniformity of the bursting strength, as shown by the standard deviation of $6: 51$, indicates that only 30% - of the rolls should be expected to fall within a bursting strength range limit of ± 2.5 points (95.5 to 100.5 points), 56% within a range limit of ± 5.0 points (93 to 103 points), and 75% within a range limit of ± 7.5 points (90.5 to 105.5 points). The G. E. puncture test results, with an average value of 36° and a standärd deviätion of 3.57 , indicate a slightly greater probable variation than the bursting strength. The standard deviations for the Richle compression, Elmendorítar, and Amthor tensile and stretch indicate considerable nonuniformity in the narrower range limits selected.

Mill E

The average test results obtained for the liner produced by Mill ${ }^{-}$E are given in Table XXIII (see also Table LXV of the Appendix) and the statistical evaluation of these results in Table XXIV. The average basis weight was in excess of the specified grade weight of 42 pounds. The average caliper was 0.0157 inch which results in an apparent density of 33.2 pounds per cubic foot. The average bursting strength and G. E. puncture were 91 points and 35 units, respectively. The average moisture content was 7.5%; however, as may be noted in Table XXIII, the average moisture content is based on the results obtained for only eight rolls.
The standard deviation of 0.981 for basis weight indicates that the basis weight of 39% of the rolls produced should fall within the range limit of ± 0.5 pound (42.9 to 43.9 pounds), 69% within the range limit of ± 1.0 pound (42.4 to 44.4 pounds), and 96% within the range limit of ± 2.0 pounds (41.4 to 45.4 pounds). Mill E has a uniformity with respect to caliper such that 63% of the rolls should fall within the range limit ± 0.001 inch (0.0147 to 0.0167 inch) and 93% within the range limit ± 0.002 inch (0.0137 to 0.0177 inch). The standard deviation of 18.6 for the bursting strength indicates extreme nonuniformity with the probable chance variation that only 31% should fall within the range limit of ± 7.5 points (83.5 to 98.5 points). It may be observed, however, that Rolls 1 and 2 were extremely low in all test results and, since there were only 11 rolls sampled of this mill's product, the effect of these rolls is considerable. In all probability, the presence of these two rolls has distorted the uniformity far more than practical consideration would permit. If the standard deviation for bursting strength were calculated after excluding Rolls 1 and 2 , it would be 5.45 as compared with 18.6 when these two rolls are included. On the basis of statistics, however, it is not permissible to exclude these roll values.

TABLEE XXIII
PHYSICAL CHARACTERISTICS OF 42-L.B. D.F.B.S. FOURDRINIER KRAFT I, NER
Mill E:
Roll Averages

- -	-	Hasis Weight lb. (12×12 /1000)	Caliper, 0.001 in.	\therefore Apparent Density, $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Mois- ture, \%	Bursting Strength, points	G.E. Punc- ture, units	Richle Compression, lb .		Aimendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
Roll	Date Manuf.							In	Across	In	Across	In	Across	In	Across
1	2-13-45	44.9	17.3	31.1	9.0	52	. 28	22.0	17.5	274	278	54.0	29.9	1.2	2.7
2	2-13-45	44.6	17.8	30.1	5.2	58	28	24.3	18.6	271	282	60.5	29.6	1.3	2.9
3		42.5	14.0	36.4	8.5	92	31	250	18.7	314	349	75.7	34.5	1.6	3.7
4	3-20-45	43.8	-16.1	32.6	9.0	97.	36	29.7	21.2	313	- 375	84.9	32.9	-1.9 .	3.7
5	3-21-45	43.0	16.0	32.2	6.9	92	35	30.4	20.9	303	362	82.3	33.3	1.7	3.6
6	3-21-45	43.3	15.9	32.7	7.5	98	34	28.7	21.7	317	380	88.0	33.2	1.9	3.8
7	3-20-45	44.2	15.5	34.2	6.8	105	38	30.9	22.4	331	385	84.3	33.8	2.0	3.8
8	3-21-45	41.7	15.4	-32.5	7.3	104^{-}	36	28.8	20.3	317 ${ }^{-}$	369	89.9	32.6	2.1	4.0
9	4-645.	42.9	14.3	36.0	,	106	39	28.5	22.7	\$62	404	78.9	38.4	2.0	4.0
10	4. 6-45*	43.6	15.2	34.4	*	103	39	26.4	21.8	400	427	76.7	40.8	2.0	4.0
11	4. 6.45	42.4	15.3	33.3	*	96	37	27.5	21.2	361	403 '	72.7	38.5	1.9	3.8
	rage	43.4	15.7	33.2	7.5	91	35	27.5	20.6	324	365	77.1	34.3	1.8	3.6

* No moisture samples obtained.

TABLE XXIV
STATISTICAL EVALUÁTION OF PHYSICAL TESTS ON 42-LB. D.F.B.S. FOURDRINIER KRAIT LINER

	Basis Weight, lb. (12×12 /1000)	Caliper, 0.001 in.	Bursting Strength, points	G.E. Puncture, units	MıLL E		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, $\%$	
					Riehle Compression, lb.							
					In	Across	In	Across	In	Across	In	Across
Test values												
Maximum	44.9	17.8	106	39	30.9	22.7	400	427	89.9	40.8	2.1	4.0
Minimum	41.7	14.0	52	28	22.0	17.5	271	278	54.0	29.6	1.2	2.7
Average	43.4	15.7	91	35	27.5	20.6	324	365	77.1	34.3	1.8	3.6
Standard deviation	0.981	1.12	18.6	4.01	2.77	1.68	38.4	47.2	11.2	3.54	0.299	0.437
Range limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	$7.5 *$	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	39	63	10	20	28	45	16	13	10	22	26	35
Range limit (\pm)*	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Approximate probability, \%	69	93	21	29	41	63	30	25	21	42	50	64
Range limit ($\pm)^{*}$	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	96	-	31	55	72	93	56	48	35	60	68	83
* Range limits we	re arbitra	ily selecte										

TABLE XXV
I'HYSICAI, CHARACTERISTICS OF 42-LR. D.F.B.S. FOURDRINIER KRAFT A.INER
Mill F
Roll Averages

	\cdots	Basis Weight, lb.	Caliper, ent Mois- Bursting l'unc-0.001 Density, ture Strength ture,							Elmendorf Tear. $\mathrm{g} /$ /sheet		Amthor Tensile, lb./in.		$\begin{aligned} & \text { Amthor } \\ & \text { Stretch, \% } \end{aligned}$	
Kıll	Manuf.	$\begin{array}{r} 12 \times 12 \\ / 1000) \end{array}$	in.	Density,	ture, \%	Strength, points	ture,	In	Across	In	Across	In	Across	In	Across
1	5-4-45	41.1	13.5	36.5	10:7	98	39	24.3	18.4	338	404	712	38.7	20	3.1
2	4-15-45	42.4	13.9	36.6	11.4	96	37	21.5	18.9	335	370	71.4	35.9	2.0.	2.9
3	5- 5-45	37.5	13.1	34.3 .	8.7	76	28	22.3	16.5	270	310	63.9	27.5	1.7	3.4
-4	5- 5-45	-41.6	13.5	\$7.0	-11.1.	75	32	- 21.6 -	18.0	$283-$	-334--	67.0	29.5	1:8.	-3.1-
5	5- 5-45	39.3	13.0	36.3	10.3	83	29	23.7	19.8	279	325	63.6	32.8	2.0	3.0
6	5- 5-45	39.4	13.4	35.3	7.8	78	31	23.2	19.7	292	320	61.1	33.8	20	3.1
7	5- 5-45.	36.9 -	12.6.	35.1 .	9.5	76	+28	23.3	19.9	262	285	60.3	33.3	1.9	3.0
8	5- 4-45	40.0	13.7	35.0	10.5	97	37	23.4	19.9	338	379	72.0	.35.2	2.0	3.0
9	5- 4-45	- 40.5	13.5	36.0	10.6	95	37	26.9	19.8	348	369	74.0 .	36.0	2.0	3.1
10	5- 5-45	- 38.4	13.5	34.1	9.5	74	29	22.6	16.0	276	333	62.3	26.9	1.9	3.0
	erage	39.7	13.4	35.6	10:0	85	33	23.3	18.7	302	343	66.7	33.0	1.9	31

TABLE XXVI
STATISTICAL EVALUATION OF PHYSICAL TESTS ON 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER

* Range limits were arbitrarily selected.

TABLE XXVII
PHISICAL CHARACTERISTICS OF 42-LB. D.F.B S. FOURDRINIER KR.IF゙T I,INER
Mill G
Roll Averages

		Basis Weight, (1).	$\begin{aligned} & \text { Caliper, } \\ & 0.001 \end{aligned}$	Apparent	Mois-	Bursting	G.E. Punc-		hle ression, b.		endorf - ear, sheet		thior asile, in.		thor ch, \%
Roll	Manuf.	$\begin{gathered} (12 \times 12 \\ 1000 \end{gathered}$		lb./cu.ft.	\%	points	unit	In	Across	In	Across	In ${ }^{\text {' }}$	Across	In	Across
1	4. 2-45	42.6	15.5	33.0	7.3	93	37	27.4	23.6	373	429	76.0	41.4	1.7	3.1
2	4. 2-45	42.5	15.9	32.1	4.9	87	38	26.7	23.2	382	413	73.5	40.8	1.4	2.9
3	4-2-45	42.0 --	15.8	31.9	7.4	88	37	25.7	22.3	382	426	73.0	41.7	1.6	3.1
4	4-2-45	41.7	15.7	31.9	6.8	85	37	26.1	22.0	-392	420^{-}	73.5	41.9^{-}	1.5	2.8
5	4-2-45	42.2	15.9	31.8	8.1	92	38	25.5	22.0	390	423	74.7	40.7	1.5	2.8
6	1-22-45	41.2	16.1	30.7	5.8	89	36	28.8	21.8	377	399	71.5	37.1	2.0	4.0
7.	1-22-45	$41: 7$	16.2	30.9	7:0	92-	38	28.1	23.8	394	436	72.3	40.8 .	2.0	3.8
8	12-12-44	42.0	15.0	33.6	10.5	106	38	28.8	25.3	377	405	70.7	50.6	2.0	37
9	2-19-45	41.5	15.5	32.1	8.2	97	36	28.9	25.7	- 383	375	71.6	44.7	2.0	4.3
10	2-19-45	41.7	15.2	32.9	6.3	95	35	27.9	26.2	381	382	70.0	44.4	2.0	4.2
11	4-2-45	43.3	15.3	34.0	6.9	88	44	27.4	23.1	394	424	73.9	37.9	1.8	4.0
12	4-2-45	40.2	15.3	31.5	5.8	91	39	28.1	23.7	364	407	70.8	38.6	1.6	3.6
13	4-2-45	41.6	15.3	32.6	5.5	79	39	25.6	22.1	383	410	69.7	35.7	1.4	3.3
14	11-13-44	42.6	16.0	31.9	7.3	88	36	28.8	26.8	382	358	70.3	48.4	1.8	4.1
15	3-13-45	41.0	15.0	32.8	7.9	94	37	26.6	24.1	353	371	72.5	42.8	1.8	4.3
Average		41.9	15.6	32.2	7.0	91	38	$27.4 \quad 23.7$		380	405	$72.3 \quad 41.8$		1.73 .6	

TABLE XXVIII
STATISTICAL EVALUATION OF PHYSICAL TESTS ON 42-LB. D.F.b.S. FOURDRINIER KRAFT LINER

Mill F
The average test results obtained on the liner made by Mill F are reported in Table XXV (see also Table LXVI of the Appendix). The results indicate that the average basis weight is considerably lower than the specified weight for this grade. The average caliper was 0.0134 inch, which resulted in an average apparent density of 35.6 pounds per cubic foot. The average bursting strength and G. E. puncture values were 85 points and 33 units, respectively. The average moisture content was. 10.0% on an ovendry basis:

The statistical evaluation of these test results is given in Table XXVI. On the basis of a standard deviation of 1.77 for basis weight, it should be expected that only 22% of the rolls will fall within a basis.weight range limit of ± 0.5 pound (39.2 to 40.2 pounds), 42% of the rolls within a range limit of ± 1.0 pound (38.7 to 40.7 pounds), and 74% of the rolls within a range limit of ± 2.0 pounds (37.7 to 41.7 pounds). The chance variation or uniformity of the caliper as determined by standard deviation indicates an expectancy of approximately all of the rolls falling within the range limit of ± 0.001 inch (0.0124 to 0.0144 inch). The standard deviation for the bursting strength indicates that the uniformity is such that only 19% of all rolls should fall within the range limit of ± 2.5 points (82.5 to 87.5 points) of the average obtained, 38% of the rolls within the range limit of ± 5.0 points (80.0 to 90.0 points) and 53% within the range limit of ± 7.5 points (77.5 to 92.5 points).. The probable variation for the G. E. puncture test appears to follow approximately the same trend as the bursting strength variation. The probable variation for Riehle compression and Amthor stretch appears to be slightly less than the variation to be expected for Elmendorf tear and Amthor tensile.

Mill G

The average test results obtained on samples of liner made by Mill G are given in Table XXVII (see also Table LXVII of the Appendix). The average basis weight was, for all practical purposes, the same as the specified grade weight. The average caliper was 0.0156 inch and the average apparent density was 32.2 pounds per cubic foot. The average bursting strength and G.E. puncture values were 91 points and 38 units, respectively. The average moisture content was 7.0% on an ovendry basis.

The statistical evaluation of these results is given in Table XXVIII. The standard deviation for basis weight indicates that approximately 49% of the rolls should fall within a basis weight range limit of ± 0.5 pound (41.4 to 42.4 pounds), 82% within a range limit of ± 1.0 pound (40.9 to 42.9 pounds) and practically all the rolls produced of this grade should fall within a range limit of ± 2.0 pounds (39.9 to 43.9 pounds). On the basis of the results obtained for caliper, it should be expected that practically all the rolls would fall within a caliper range limit of ± 0.001 inch (0.0146 to 0.0166 inch). The standard deviation of the bursting
strength was of such magnitude that it should be expected that only 32% of the rolls should fall within a range limit of ± 2.5 points (88.5 to 93.5 points), 59% within the range limits of ± 5.0 points (86.0 to 96.0 points), and approximately 78% within the range limit of $- \pm 7.5$ points (83.5 to 98.5 points). The magnitude of the standard deviation for the G. E. puncture test indicates approximately the same probable variation as for the bursting strength. The standard deviations for the Riehle compression, Elmendorf tear, Amthor tensile and stretch indicate that the probable variation to ${ }^{-b}$ expected is quite large.--

Mill H

The average test results obtained on the samples of . liner manufactured by Mill H are tabulated in Table XXIX (see also Table LXVIII of the Appendix). The average basis weight obtained for Mill H was slightly in excess of the specified grade weight. The average caliper was 0.0159 inch and the average apparent density was 32.2 pounds per cubic foot. The average bursting strength and G. E. puncture were 108 points and 37 units, respectively. The average moisture content was 8.0% on an ovendry basis.

The statistical evaluation of these test results is. shown in Table XXX. The standard deviation for basis weight is of the magnitude that 40% of the rolls manufactured by Mill H in this grade should fall within a basis weight range limit of ± 0.5 pound (42.1 to 43.1 pounds), 72% within the range limit of ± 1.0 pound (41.6. to 43.6 pounds), and practically 97% within the range limit of ± 2.0 pounds (40.6 to 44.6 pounds). On the basis of the results obtained for caliper, it should be expected that practically all the rolls should fall within ± 0.001 inch (0.0149 to 0.0169 inch $)$ of the average caliper. The statistical evaluation of the bursting strength indicates that approximately 38% of the rolls should fall within a bursting strength range limit of ± 2.5 points (105.5 to 110.5 points), approximately 67% within the range limit of ± 5.0 points (103 to 113 points), and approximately 86% within the range limit of ± 7.5 points (100.5 to 115.5 points). The variation for the G. E. puncture test exhibits relatively the same trend as the bursting strength. The standard deviations for the Riehle compression, Elmendorf tear, and Amthor tensile and stretch indicate considerable lack of uniformity in the tests.

Mill I

The average test results obtained for the liner made by Mill I are shown in Table XXXI (see also Table LXIX of the Appendix). The average basis weight was in excess of the specified weight for this grade. The average caliper was 0.0153 . inch and the average apparent density was 34.2 pounds per cubic foot. The average bursting strength and G. E. puncture were 109 points and 41 units, respectively. The average moisture content was 8.4% on an ovendry basis.

The statistical evaluation of these test results may

TABLE XXIX
PIISICAL CHARACTERISTICS OF 42-Lb. D.F.b.S. FOURDRINIER KRAFT LINER
Mile H
Roll Averages

\checkmark		Basis Weight, lb.	Caliper,	Apparent	Mois-	Bursting	G.E. Punc-	$\begin{array}{r} \mathrm{R} \\ \mathrm{Com} \end{array}$	ehle ression, b.		ndorf ear, sheet		hor sile, /in.	$\stackrel{A n}{\text { Stre }}$	thor tch, \%
	Date Manuf.	$\begin{aligned} & (12 \times 12 \\ & / 1000) \end{aligned}$	$\begin{aligned} & .001 \\ & \text { in. } \end{aligned}$	Density, lb./cu.ft.	$\begin{aligned} & \text { ture, } \\ & \% \end{aligned}$	Strength, points	ture, units	In	Across	In	Across	In	Across	In	Across
1	12-31-44	44.5	15.7	34.0	8.8	112	42	29.7	25.4	449	452	73.5	47.8	2.5	3.8
2	12-31-44	446	16.5	32.4	9.4	96	42	27.0	24.5	481	427	62.7	50.3	2.3	4.4
3	3-19-45	42.1	15.2	33.2	8.1	107	37	32.4	25.7	390	400	69.2	45.7	2.0	4.4
4	3-20-45	41.5-	15.2	- 32:8-	9.0	--103	35.	-29.7	25.4-	- 397	371	63.9	49.7.-	2.0	4.5
5	3-20-45	42.2	16.4	30.9	7.1	108	35	34.8	26.1	340	405	80.0	42.5	2.1	3.7
6	3-20.45	41.6	$15.9{ }^{\circ}$	31.4	7.7	105	36	31.3	22.8	339	391	79.5	39.1	2.1	4.0
7	3-20.45	42.4	16.4	31.0	6.7	- 101	- 37.	32.1	22.7	346	405.	. 75.9	37.7	1.9	3.6
8	4-13-45	42.0	16.1	31.3	6.3	110	36	28.6	2.3 .9	37.3	389	80.5	40.9	2.3	3.9
9	4-13-45	42.3	15.6	32.5	8.9	115	35	30.9	24.4	360	393	80.9	41.7	2.4	4.3
10	4-13-45	42.7	15.8	32.4	8.8	111	38	30.2	23.8	378	400	80.8	39.2	2.4	3.8
11	4-13-45	42.9	15.9	32.4	8.5	108	38	30.5	23.7	391	409	80.0	41.0	2.3	4.1
12	4-13-45	42.8	16.1	31.9	7.8	107	38	30.8	24.8	375	406	82.1	40.2	2.4	3.8
13	4-13.45	41.9	15.9	31.6	8.1	108	37	30.1	25.0	380	431	79.1	41.3	2.3	4.4
14	4-13-45	42.3	15.6	32.5	7.4	114	36	31.1	25.4	406	420	73.7	40.3	2.3	4.2
Average		42.6	15.9	- 32.2	8.0	108	37	30.7	24.5	386	407	75.8	42.7	2.2	4.1

TABLE XXX
STATISTICAL EVALUATION OF PHYSICAL TESTS ON 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER

	Basis Weight, lb. (12×12 /1000)	Caliper, 0.001 in.	Bursting Strength, points	G.E. Puncture, units	Mill H				Amthor Tensile, lb./in.		Amthor Stretch, \%	
					Riehle Compression, lb .		Elmendorf Tear, g./sheet					
					In	Across	In	Across	In	Across	In	Across
Test values												
Maximum	44.6	16.5	115	42	34.8	26.1	481	452	82.1	. 50.3	2.5	4.5
Minimum	41.5	15.2	96	35	27.0	22.7	339	371	62.7	37.7	1.9	3.6
Average	42.6	15.9	108	37	30.7	24.5	386	407	75.8	42.7	2.2	4.1
Standard deviation	0.937	0.405	5.11	2.27	1.82	105	39.7	20.3	6.44	4.05	0.183	0.303
Range limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	40	99	38	34	42	66	15	29	18	20	42	49
Range limit (土)*	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Approximate probability, \%	72	100	67	49	59	85	30	54	36	38	72	81
Kange limit (\pm)*	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	97	-	86	81	90	99	55	86	56	54	90	95

Man. I
Roll Averages

	- Date	Basis Weight, 1 b . $(12 \times 12$	$\begin{aligned} & \text { Caliper, } \\ & 0.00 \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { Appar- } \\ & \text { ent } \\ & \text { Density, } \end{aligned}$	Moisture,	Bursting Strength,	G.E. Punc-		hle ession, b.		ndorf ar, heet		thor sile, in.		thor ch, \%
Roll	Manuf.	/1000)	in.	lb./cu.ft.	\%	points	units	In	Across	In	Across	In	Across	In	Across
1	1-20-45	42.5	15.3	33.3	8.7	111	40	30.5							
2	1-20-45	42.7	15.1	339	8.9	107	42	38.5	22.4	418	468	90.9	36.6	2.0	4.2
3	1-20-45	42.5	15.3	33.3	8.5	109	42	28.7	21.2	428	473	88.2	37.9	2.0	4.3
4	1-31-45	43.9	15.1	34.9	7.0	106	40	28.7 29.0	20.6	422 434	506 470	88.4	37.7	2.1	4.6
5	1-31-45	43.5	15.2	34.3	7.1	105	41	29.0 26.7	20.3	434	470	88.5	37.1	2.3	4.2
-6	-1-31-45	43.1	15.5	- 33.4	6.9	108	41					86.3	35.8	2.2	4.1
7	1-31-45	43.5	15.5	33.7	7.0	104	41	29.5 30.0	22.5	401	462	85.3	38.0	2.2	4.3
8	1-31-45	42.1	152	33.2	6.5	102	31	39.0 29.2	20.4	408	487	87.5	35.3	2.2	4.3
9	1-30-45	43.4	15.5	33.6	10.0	106	40	29.2	21.5	407	443	78.6	36.6	2.0	4.5
10	--1-31-45	43.2	15.5	$33.4{ }^{-}$	-8.9	109	40	29.9 29.8	21.9.	411	442	81.9	37.1 -	2.2	4.3
11	1-31.45	43.6	15.3	34.2	8.8	114	41						36.	2.2	4.5
12	1-30-45	43.8	15.7	33.5	9.6	109	40	31.0 300	23.7	390	466	85.5	37.2	2.3	4.7
13	1-30-45	43.3	15.9	32.7	9.4	100	41	30.0 29.7	22.3	422	470	80.5	37.0	2.3	4.4
14	3-2-45	42.8	14.7	34.9	9.7	119	31	29.7 31.2	23.6	390	458	78.4	35.3	2.2	4.3
15	3-2-45	45.4	15.1	36.1	10.8	121	42	32.3	22.1	394	474	83.5	36.3	2.6	5.3
16	3-2-45	45.0	15.3	35.3	11.4	112				,		84.2	37.8	2.6	5.1
17	1-11-45	42.6:	15.0	$34.1{ }^{-}$	8.2	104	38	32.1	21.9	416	491	85.6	38.3	2.6	4.8
18	3-10-45	44.5	14.9	35.8	8.3	104 110	48	32.1	18.6 21.9	366	430	82.5	35.1	2.3	4.4
19	3-10-45	43.3	14.9	34.9	6.6	107	42	35.5 34.5	21.9 22.1	391 416	453	89.6	36.5	2.5	4.6
20	1-18-45	43.9	15.3	34.4	8.1	110	43	34.5 33.6	22.0	416 412	451	86.9	36.3	2.2	4.5
21	-10-24-44	45.0	15.6	34.6	7.6						4	87.0	38.0	2.3	4.5
22	-2-3-45	44.1	15.6	33.9	8.4	110	4	34.5	22.0	411	443 -	92.2	35.4	2.3	4.4
						110	44	30.3	24.1	401	469	83.4	37.9	2.2	4.6
Average		43.5	15.3	34.2	8.4	109	41	30.9	21.8	408	465	85.4	36.8	2.3	4.5

TABLE XXXII
Statisitical evaluation of physical tests on 42-Lb. D.f.b.S. Fourdrinier kraft liner

	Basis lb . $(12 \times 12$	Caliper,	Bursting Strength,	G.E. Puncture,	$\begin{gathered} \mathrm{R} \\ \text { Com! } \end{gathered}$	ehle ression, b.		ndorf ear, heet	Amth	Tensile, /in.	Amtho	Stretch, \%
	/1000)	0.001 in .	points	units	In	Across	In	Across	In	Across	In	Across
Test values												
Maximum	45.4	15.9	121	44	35.5	24.1						
Minimum	42.1	14.7	100	38	26.7	18.6	436	506 430	92.2 78.4	383	2.6	5.3
Average	43.5	15.3	109	41	30.9	21.8	408	430	78.4 85.4	35.1	2.0	4.1
Standard deviation	0.874	0.290	4.91	1.46	2.19	1.8 1.25	408	465 18.7	85.4 3.66	36.8 0.996	23 0.179	4.5
Range limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	15.8 7.5	18.7	3.66 1.5	0.996	0.179	0.287
Approximate probability, \%	43	99	39	50	${ }^{1.0}$	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Range limit (t)*	1.0	2.0	${ }^{39} 5$	${ }^{50}$		58	36	31	32	68	42	52
Approximate probability, \%	75	100	69	1.5	1.5 50	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Range limit (\pm)*	2.0		6				66	58	59	95	74	8.4
Approximate				3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
probability, \%	98	-	87	96	83	98	94	89	83	99	91	96

TABLE XXXIII
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER ḰRAFT LINER
Mile J
Roll Averages

		Date	Basis Weight lb. $(12 \times 12$	Caliper, 0.001	$\begin{aligned} & \text { Appar- } \\ & \text { ent } \end{aligned}$	Mois-	Bursting Strength,	G.E. Punc	$\begin{array}{r} \mathrm{Ri} \\ \mathrm{Comp} \end{array}$	ression, lb.		endorf ${ }^{--}$ car, sheet	A Ten lb.	thor ${ }^{*}$ sile, /in.		mthor etch, \%
	Roll	Manuf.	/1000)	in.	$\mathrm{lb} / \mathrm{cu} . \mathrm{ft}$.	$\%$	points	units	In	Across -	In	Across	In	Across	In	Across
	1	3-17-45	39.7	14.9	320	8.7	77	31	28.2				In	Across		Across
	2	8-28-44	43.4	13.3	39.2	8.6	88	31	27.2	24.9	320	339	591	383	1.9	31
	3	3-15-45	41.9	15.4	32.6	7.6	97	. 34	28.9	21.6 23.8	288 319	344	70.6	34.3	17	2.8
-	4	3-15-45	41.5	15.3	32-5	8:4	99	-34	28.9 29.5	23.8 24.1	319 324	378	-76.5	.38.2.	-2	- 2.8 -
				14.6	$33.8{ }^{\prime}$	8.1	82	29	30.2	22.4	277	334	75.5	38.2	2.0	27
	6	2-2-45	41.4	15.2	32.7	8.4		28					68.8	34.4	1.6	2.4
	7	2-20-45	41.2	146	33.9	8.0	8.3	31	30.0	24.1	2.47	294	64.2	33.5	2.	24
	8	2-20-45	40^{-5}	- 14.0	347		82		32.9 30.4	-22.6	288	324 -	69.2	32.0	20	- $3.0{ }^{-}$
	9	2-9-45	41.7	14.5	34.5	..5.7 ${ }^{\prime}$	+ 79	29	-30.4	23.4	274	313.	68.5	33.1	2.1	3.3
	10	2-9-45	405	14.7	33.1	4.6	+ 78	28	32.2 29.0	22.7 24.3	236	$291^{*}{ }^{-}$	68.2	33.6	1.9	31
	11	2-25-45	41.9.	15.2	33:1	7.7					214	276	66.8	34.1	2.0	25
	12	4-1-45	42.1	152	33.2	6.0		34	30.6	22.7	290	370	75.7	34.3	2.0	3.0
	13	4-1-45	41.9	15.1	33.3	6.0 7.5	83 92	30 30	29.9 31.7	248	301	352	68.6	34.7	20	2.3
	14	4-1-45	41.5	14.9	33.4	6.2	87	30	31.7 29.4	24.9 24.2	298	331	67.5	38.6	2.0	3.0
	15	2-23-45	41.7	14.9	33.6	8.2	100	30	29.4	24.2	302	339	69.2	36.6	18	2.9
	16	2-25-45	41.2	14.9	33.2	7.4						38	77.8	36.9	2.3	3.2
	17	3-3-45	42.7	14.6	35.1	8.4	103	30	31.7	24.3	318	361	80.0	36.2	2.2	3.1
	18	3- 3-45	42.8	14.5	35.4	8.4 6.5	111	39 38	31.2	23.7	362 338	423	92.2	37.2	2.4	4.3
	19	3. 3-45	42.2	. 14.1	35.9.	.9.4.	-109	.38	31.1 30.5	23.3	338	403.	92.0	37.8	2.3	4.4
	20	3-3-45	42.4	14.0	36.3	7.2	105	38	30.5	24.2	331	$40)^{*}$	84.3	36.4	2.2	4.2
	21	3-3-45	42.2	14.1	35.9						344	2	85.8	36.1	2.3	4.3
						10	108	38	30.3	23.5	338	412	90.8	39.3	2.2	4.1
.	Average		41.7	14.7	34.2	7.7	93	32	30.4	23.7	301	355	74.8	35.9	2.0	$3.2{ }^{1}$

TABLE XXXIV
S'́atistical evaluation of physical tests on 42-Lb. D.f.b.S. FOURDRINIER Kraft liner

	Basis Weight, lb $(12 \times 12$	Caliper,	Bursting Strength,	G F. I'uncture,	$\underset{\operatorname{ComI}}{\mathrm{R}}$	$\begin{aligned} & \text { eble } \\ & \text { ression, } \end{aligned}$		ndorf ar, heet	Amtho	Tensile, in.	Amtho	Stretch, \%
Test values	/1000)		points	units	In	Across	- In	Across	In. \cdot	Across	In	Across
Maximum	43.4	15.4										
Minimum	39.7	13.3	177	39	33.4	24.9	362	423	92.2	39.3	2.4	
Average	41.7	14.7	93	28	27.9	21.6	214	276	59.1	32.0	1.6	2.4
Standard deviation	0.845.	0.532	11.7	3.69	30.4	23.7	301	355	74.8	35.9	2.0	3.2
Range limit (\pm)*	0.5	. 0	2.5	1.6	1.43	. 92	37.1	42.1	9.54	2.11	0.204	0.673
Approximate		1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
probability, \%	44	94	17	21								
Range limit (\pm)*	1.0	2.0	5.0		52	72	16	14	13	36	38	24
Approximate			5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
probability, \%	76	99	33									
Range limit (\pm)*	2.0		7.5		3.0				24	66	67	44
Approximate		-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
probability, \%	98	-	48	58.	96	99	58	52	40	84	86	63
* Range limits were arbitrarily selected.												

be seen in Table XXXII. The standard deviation for the basis weight is of such magnitude that it should be expected that approximately 43% of all the rolls manufactured by Mill I should fall within a basis weight range limit of ± 0.5 pound (43.0 to 44.0 pounds), 75% within the range limit of ± 1.0 pound $\left(42.5^{\prime}\right.$ to 44.5 pounds), and approximately 98% within the range limit of ± 2.0 pounds (41.5 to 45.5 pounds). On the basis of the results obtained for caliper, it should be expected that approximately all the rolls should fall within a caliper range limit of ± 0.001 inch (0.0143 to 0.0163 inch). The statistical evaluation of the results obtained for the bursting strength indicate that approximately 39% of the rolls should fall within a range limit of. ± 2.5 points (106.5 to 111.5 points), approximately 69% within the range limit of ± 5.0 points (104 to 114 points), and approximately 87% within the range limit of ± 7.5 points (101.5 to 116.5 points). The results obtained indicate that, in terms of percentage, the rolls made by this mill should be slightly more uniform in respect to G. E. puncture than to bursting strength. The results of the Riehle compression, El-mendorf tear, and Amthor tensile and stretch indicate standard deviations of considerable magnitude.

Mile J

The average test results obtained for the rolls of liner made by Mill J are given in Table XXXIII (see also Table LXX of the Appendix). The average basis weight obtained is practically the same as the specified
grade weight. The average caliper was 0.0147 inch and the average apparent density was 34.2 pounds per cubic foot. The average bursting strength and G. E. puncture values were 93 points and 32 units, respectively. The average moisture content was 7.7% on an ovendry básis.

The statistical evaluation of these results are reported in Table XXXIV. The magnitude of the standard deviation for basis weight indicates that approx:mately 44% of the rolls manufactured by Mill J should fall within_a_basis. weight range_limit of ± 0.5 pound (41.2 to 42.2 pounds), approximately 76% within the range limit of ± 1.0 pound (40.7 to 42.7 pounds) and approximately- 98% within - the - range limit of $- \pm 2.0$ pounds. (39.7 to 43.7 pounds). The results obtained for caliper indicate that approximately 94% of the rolls should fall within a caliper range limit of ± 0.001 inch (0.0137 to 0.0157 inch). The standard deviation for the bursting strength is of such magnitude that it should be expected that approximately 17% of the rolls manufactured by Mill J should fall within a range limit of ± 2.5 points (90.5 to 95.5 points), approximately 33% should fall within the range limit of ± 5.0 points (88.0 to 98.0 points), and approximately 48% within the range limit of ± 7.5 points (85.5 to 100.5 points). The statistical evaluation of the Riehle compression values indicates a rather low probable variation, whereas the results obtained for G. E: puncture, Elmendorf tear, Amthor tensile and stretch indicate considerable probable variation.

EVALUATION OF THE PHYSICAL CHARACTERISTICS OF .009/26-LB. KRAFT AND BOGUS CORRUGATING MEDIUMS

PROCEDURE

The tests and procedures employed throughout this evaluation study have been described on pages 8 to 10.

For the purpose of comparison of the characteristics of the product within a given mill and also between mills, each Fourdrinier Kraft Board Institute mill which makes $.009 / 2 \overline{6}-\mathrm{lb}$. corrugating medium has been given an arbitrarily selected code letter; they have been identified in this report by the letters S to Z, inclusive. The corrugating medium manufactured by Mill V was a bogus medium. Consequently, the group averages have been calculated in two ways: (1) including the bogus medium and (2) excluding the bogus medium.

The test results have been given the same statistical treatment as was employed in the treatment of the 42-lb. liner.

COMPARISON OF MILL AVERAGES

The results of the various physical tests performed on samples of $.009 / 26-\mathrm{lb}$. corrugating medium have been compiled in Table XXXV on the basis of mill averages. Complete details of the individual tests are given in Tables LXXI-LXXVIII of the Appendix.

The average results obtained for basis weight are shown graphically in Figure 16. The average basis weight for the group participating was 26.8 pounds including and 26.9 pounds excluding the bogus medium. Both of these group averages are in excess of the grade weight specified. Mill X had the highest average basis weight and Mill V the lowest. The basis weight averages for all the mills were within ± 1 pound of the group average.

The average caliper results are plotted in Figure 17. The average caliper value for the group was 0.010 inch, regardless of whether or not the bogus medium was included. Mill U had the highest average caliper and Mills Y and Z the-lowest. All- the individual mill averages for caliper were within ± 0.0007 inch of the group average caliper.

The average apparent densities, in pounds per cubic foot, are pictured graphically in Figure 18. The group average apparent density when the bogus medium was included was 32.3 pounds per cubic foot and 32.5 pounds per cubic foot when it was not included. The highest average apparent density was obtained for Mill Z and the lowest for Mill U. It is interesting to note that the mill averages for apparent density varied over a considerable range.

From the data graphically presented in Figure 19, it may be observed that the average moisture content for the group was 9.4% including the bogus medium and 9.5% when the bogus medium was not included. Mill T had the highest average moisture content and Mill U the lowest. Two of the mills (T and W) had average moisture values in excess of 11%.
From the data presented in Figure 20, it is seen that the a verage bursting strength for the group, including the bogus medium, was 62 points; it was 66 points when the bogus was not included. The bursting strength, expressed in points per pound basis weight, was 2.31 when the bogus was included and 2.45 when the bogus was not included. The highest mill average bursting strength was obtained for Mill Z and the lowest for Mill V (the bogus medium). The average bursting strength for the bogus medium was approximately 50% of the average bursting strength obtained for the other mills.

TABLE XXXV
COMPARISON OF PIIYSICAL CHARACTERISTICS BETWEEN MILLS

							orruga	ng Me	num						
		Basis Weight lb.	Caliper,	Apparent	Mois-	$\begin{aligned} & \text { Burst- } \\ & \text { ing } \end{aligned}$	$\begin{aligned} & \text { G.E. } \\ & \text { Punc- } \end{aligned}$	$\begin{array}{r} \mathrm{Ri} \\ \text { Comp } \end{array}$	chle ression, b.		ndorf ar, heet		nthor nsile, ./in.		thor ch, \%
Mill	Tested	/1000)		lb./cu.ft.	\%	points	units	In	Across	In	Across	In	Across	In	Across
S	10	27.3	10.1	32.4	8.5	68	20	19.5	15.5	268	276	52.3	30.4	1.6	4.7
T	10	27.0	10.0	32.5	11.8	57	20	15.9	12.8	237	261	45.1	24.2	1.8	3.7
U	21	26.9	10.7	30.2	8.4	65	20	19.7	13.5	238	266	53.0	25.7	2.0	4.8
V	13	25.8	10.1	30.7	9.2	32	11	12.9	10.3	121	134	31.0	17.2	1.4	2.4
w	13	26.8	10.1	31.8	11.1	69	19	17.7	11.5	228	300	56.6	21.8	2.1	3.8
x	14	27.4	9.8	33.7	8.7	68	21	17.1	13.1	250	281	52.1	25.3	2.1	4.3
Y	10	26.0	9.3	33.9	9.7	58.	15	17.3	12.3	189	219	50.7	22.1	2.0	3.6
Z	11	26.8	9.3	34.7	9.1	75	20	19.9	15.8	251	262	53.8	33.0	2.0	4.7
Group Average* 26.8			10.0	32:3	9.4	62	18	17.6	13.0	223	251	49.5	24.8	1.9	4.0
Group Average $\dagger 26.9$			10.0	32.5	9.5	66	19	18.3	13.4	238	268	52.2	25.9	2.0	4.3
* Including bogus from Mill V. \dagger Excluding bogus.															

Figure 16. Comparison of the average basis weight of $.009 / 26-\mathrm{lb}$. corrugating medium among mills.

Figure 17. Comparison of the average caliper of $.009 / 26-\mathrm{fb}$. corrugating medium among mills.
(Because the averages were calculated to the nearest tenth only, the average value of the caliper was the same when the bogus samples were excluded as when they were included.)

* INCLUDING BOGUS
**EXCLUDING BOGUS
Figure 18. Comparison of the average apparent density of $.009 / 26 \cdot \mathrm{lb}$. corrugating medium among mills.

Figure 19. Comparison of the average moisture content of $.009 / 26-\mathrm{lb}$. corrugating medium among mills.

Figure 20. Comparison of the average bursting strength of $.009 / 26-\mathrm{lb}$. corrugating medium among mills.

Figurf. 21. Comparison of the average General Electric puncture test of $.009 / 26-\mathrm{lb}$. corrugating medium among mills.

Figure 22. Comparison of the average Riehle compression test of $.009 / 26-1 \mathrm{~b}$. corrugating medium among mills.

Figure 23. Comparison of the average Elmendorf tear of $.009 / 26-\mathrm{lb}$. corrugating medium among mills.

Figure 24. Comparison of the average Amthor tensile strength of $.009 / 26-\mathrm{lb}$. corrugating medium among mills.

Figure 25. Comparison of the average Amthor stretch of . 009/26-1b. corrugating medium among mills.

The mill averages obtained for the C . E. puncture test are graphed in Figure 21. Because the magnitude of these results was so low that all the values fell on the extreme lower range of the indicating scale for the tester, it is doubtful if much significance can be attached to them at this time.

The average Richle compression test results are shown graphically in Figure 22. The group average was 17.6 pounds in the in-machine direction and 13.0 pounds for the across-machine direction when the bogus was-included but were 18.3 and 13.4 pounds, respectively, when the bogus medium was not included. The highest mill average was obtained for Mill $\%$ and the lowest for Mill V (the bogus medium). The across-machine direction group average, excluding the bogus medium, was approximately 3.7% greater than the in-machine direction average for the bogus medium. The ratio of the across-machine direction valucs to the in-machine direction values was, on the average, of the order of $3: 4$.

The results of the Elmendorf tear test are graphically presented in Figure 23. The group averages for each direction were 223 and 251 grams per sheet, respectively, when the bogus medium was included, and 238 and 268 grams per sheet, respectively, when the bogus medium was excluded. The highest average tear value in the in-machine direction was obtained for Mill S but Mill W had the highest average tear in the acrossmachine direction. Mill V had the lowest mill average tear values in both directions. The ratio of the in-machine direction values to the across-machine direction values was, in general, of the 'order of 0.9:1.

The results of the Amthor tensile test are shown graphically in Figure 24. The group averages obtained (including the bogus medium) were 49.5 and 24.8 pounds per inch width for the in-machine direction and the across-machine direction, respectively, and 52.2 and 25.9 pounds per inch width, respectively, when the bogus medium was excluded. The results indicate that Mill W had the highest average tensile value in the in-machine direction and Mill Z the highest across-
machine tensile average, whereas Mill V had the lowest average tensile strength for both directions. The average ratio of across-machine direction to in-machine direction was of the order of $1: 2$.

The Amthor stretch results are presented graphically in Figure 25. The group averages for the in-machine and across-machine direction stretch were 1.9 and 4.0%, respectively, when the bogus medium was included, and 2.0 and 4.3%, respectively, when the bogus medium was excluded. Mill V had the lowest average stretch in both directions tested. The average ratio of the in-machine direction stretch to the across-machine direction was of the order of $1: 2$.

A comparison of all the strength test results indicates that the averages for Mill Z were the highest and those for Mill V the lowest of the group.

The standard deviations of the physical characteristics of the corrugating medium made by each mill may be seen in Table XXXVI. The results indicate that the corrugating medium of Mill S had a lower composite average standard deviation for all the tests performed than those of the other mills. It would appear, therefore, that the corrugating medium of Mill S was more uniform than the products of the other mills on the basis of this evaluation. A comparison of the group average percentage standard deviations for the various test characteristics indicates that basis weight and caliper were the least variant and Amthor stretch the most variant of all the test characteristics studied.

The average test results tabulated in Table XXXV were treated statistically to determine if there was any significant difference between the average physical characteristics obtained for a given mill and the group average physical characteristics obtained for the balance of the mills participating. Whether or not a significant difference exists in a given test characteristic between two mills or groups of mills is denoted by the magnitude (see page 24) of the ratio of the difference of the means of each mill or group to the standard error of the difference between the same two mills or groups. In this work it has been assumed that all ratios of 2 or more indicated significant differences.

TABLE XXXVI
COMPARISON OF STANDARD DEVLATIONS BETWEEN MILLS

Corrugatina Medium												
der	Basis		Bursting	G.E.	Richle Compression, lb.		Elmendorf Tear, g. /sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
Mill	Weight, lb.	Caliper, 0.001 in .	Strength, points	Puncture, units	In	Across	In	Across	In	Across	In	Across
S	0.328	0.301	291	0.843	0.783	0.810	14.8	119	2.92	1.70	0.103	0276
- T	1.350	0.827	6.89	1.62	1.34	0.932	28.6	30.7	4.21	2.23	0.155	0536
U	0.903	0.645	5.18	1.46	1.76	0.974	18.6	17.5	4.34	3.57	0.281	0.447
V	0.889	0.341	3.64	1.45	1.17	1.01	18.7	18.7	3.70	2.72	0.224	0.249
W	0.910	0.692	4.54	1.17	1.62	0.740	15.2	17.7	3.69	0.872	0.350	0.440
X	0.881	0.507	3.14	1.78	1.25	0.941	22.9	24.8	4.88	2.61	0.133	0.851
Y	0.746	0.47 .4	11.0	2.10	2.80	1.61	20.8	25.9	4.90	2.83	0.157	0.488
\%	0.522	0.366	5.21	1.03	1.59	1.22	17.1	24.6	3.86	2.65	0.155	0.659
Averatge	0.816	0.519	5.31	1.43	1.54	1.03	19.6	21.5	4.06	2.40	0.195	$0.493{ }^{\circ}$
Average standard deviation, \%	3.0	5.2	8.6	7.9	88	7.9	8.8	8.6	8.2	9.7	10.3	12.3
						54						

The application of this treatment to a comparison of the average results obtained for Mill S with the averages obtained for the group ' T to $\%$, inclusive, may be seen in Table XXXVII. The results obtained indicate that, when the average test values of Mill S are compared with the group average of Mills $\dot{\Gamma}$ to Z, there is a significant difference in all the test values obtained, except for the Amthor tensile in the across-machine direction. With the exception of Amthor stretch in the in-machine direction, all the average test values exhibiting significant differences were of a greater magnitude than the corresponding group values. Thus, the quality for Mill S , as determined by these tests, was significantly greater than the average quality for the group.

The results obtained when the averages for Mill 'T are compared with the average of the balance of the group may be seen in Table XXXVIII. The results indicate that there was a significant difference in all the test values except basis weight, caliper, Elmendorf tear, Amthor tensile in the across-machine direction, and Richle compression in the across-machine direction. With the exception of the average G. F. puncture value, all the test values having significant differences for Mill T were of a lower magnitude than the corresponding values for the balance of the group.

A comparison of the average values obtained for Mill U with the group average excluding U is presented in Table XXXIX. The results indicate that there was a significant difference in all the test values except those for basis weight and Richle compression and Amthor tensile tests in the across-machine direction. All the test values in which a significant difference existed were of a greater magnitude than the corresponding group average values.

The results of the comparison of the average test results obtained for Mill V with the average test results obtained for the remainder of the group participating are given in Table XL. It may be observed that the caliper value was the only test characteristic for which a significant difference was not indicated between it and the corresponding group characteristic. All the test values for Mill V in which a significant difference was indicated were of a lower magnitude than the corresponding test values for the group.

The results of the comparison of the average test results obtained for Mill W with the average test results obtained for the balance of the group are shown in Table XLI. Significant differences existed in all the test results except basis weight, caliper, Riehle compression and Elmendorf tear in the in-machine direction, and Amthor stretch in the across-machine direction.

The results obtained when the average test values for Mill X were compared with the average values of the balance of the group are presented in Table XLII. The only test values in which a significant difference did not exist were caliper, Amthor tensile and stretch in the across-machine direction, and Richle compression. Similarly, all the significant values for Mill X
were greater than the average values obtained for the group.

The average test values obtained for Mill Y, and the average test results obtained for the balance of the group are given in Table XLIII. The test values in which no significant difference was indicated are bursting strength, Richle compression in both directions, and Amthor tensile in the in-machine direction. With the exception of Amthor stretch in the inmachine direction all the significant test values obtained for Mill Y were of a lower magnitude than the corresponding test values for the group.

The average test values for Mill Z and the average values for the balance of the group are given in Table XLIV. The results indicate that a significant difference exists for all the test values except for basis weight and for Elmendorf tear in the across-machine direction. With the exception of caliper, all the test values for Mill \% in which a significant difference exists were of a greater magnitude than the corresponding group values.

DISCUSSION OF INDIVIDUAL MILL TEST RESULTS FOR .009/26-LB. CORRUGATING MEDIUMS

Mile S

The average results of the various physical tests conducted on samples of $.009 / 26-\mathrm{lb}$. kraft corrugating medium made by Mill S are shown in Table XLV (see also Table LXXI of the Appendix). It may be observed that the average basis weight was higher than the specified grade weight. The average caliper was 0.0101 in ch and the average apparent density was 32.4 pounds per cubic foot. The average bursting strength was 68 points. The average Riehle compression was 19.5 and 15.5 for the in- and across-machine directions, respectively. The average moisture content was 8.5% on an ovendry basis.

Table XLVI gives the standard deviations and the probable variation to be expected in the rolls of .009/26-lb. corrugating medium made by Mill S. These results show that the chance probability or uniformity for Mill S as regards basis weight is such that approximately 87% of the corrugating rolls 'should fall within a range limit of ± 0.5 pound (26.8 to 27.8 pounds) and practically all the rolls should fall within a range limit of ± 1.0 pound (26.3 to 28.3 pounds). The standard deviation of the caliper results indicates that the greater portion of the rolls should fall within a range limit of ± 0.001 inch (0.0091 to 0.0111 inch). The uniformity of the bursting strength indicates that 61% of the rolls should fall within a range limit of ± 2.5 points (65.5 to 70.5 points), 91% within the range limit of ± 5.0 points (63 to 7.3 points), and practically all the rolls within the range limit of ± 7.5 points (60.5 to 75.5 points). The standard deviation for the Richle compression is such that it should be expected that approximately 80% of the rolls should fall within a

COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL S WITH THE BALANCE OF THE GROUP
... Corrugating Medium

Mean of S. Mean of $\alpha^{\prime \prime}$. Difference of mean $(S-\alpha)$	Basis Weight,$\frac{-1 \mathrm{~b} \ldots}{(12 \times 12}$		Bursting Strength, points	G.E. Punc-ture, units	Riehle Compression,lb... .		Elmendorf Tear, g./sheet		Amthor Tensile, . - lb./in..		Amthor Stretch, \%		- \quad.	
		0.001 in .			In	Across	In	Across	In	Across	In	Across		
	27.3	10.1	68	20	19.5	15.5	268	276	. 523	30.4	1.6	4.7		
	26.7	9.9	61	18	17.2	12.7	216	246	48.9	24.2	1.9	3.9		
	+0.63	+0.24.	$+7.8$	+2.5	+2.25	+2.74	$+51.9$	$+30.0$	$+3.40$	+6.17	-0.29	$+0.86$		
Standard error of difference	0.143	0.114	1.15	0.315	0.312	0.283	5.19	4.55	1.03	0.604	0.0398	0.105		
Ratio: $(S-\alpha) / S E_{D}$	+4.4	+2.1	$+6.8$	$+7.9{ }^{\prime}$	+7.2	+9.7	$+10.0$	+6.6	$+3.3$	+1.0	-7.3	$+8.2$		
\therefore Significant .	' 'es.	YYes..	Yes	_res	Yes .		Yes	Yes	Yes	No	Yes.	Y'es		

Note, All mean values have been reported to the same precision as individual test values. It will be observed that some of the intermediate values in the above table have been reported to more places than the mean values. Similarly the difference of the means will not always correspond to the difference between reported means, because these values have been rounded off. The mean of α is the mean for the balance of the group.

TABLE XXXVIII COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL T WITH THE bALANCE OF THE GROUP

	$\begin{aligned} & \text { Basis } \\ & \text { Weight, } \\ & \text { lb. } \\ & (12 \times 12 \\ & / 1000) \end{aligned}$	Bursting Caliper, Strength, 0.001 in . points		Corrugating Medium					Amthor Tensile, 1b./in.		'Amthor Stretch, \%	
				G.E. Punc-	$\begin{aligned} & \text { Riehle } \\ & \text { Compression, } \\ & \text { lb. } \end{aligned}$		Elmendorf Tear, g./sheet					
				units	In	Across	In	Across	In	Across	In	Across
Mean of $T^{\text {* }}$	27.0	10.0	57	20	15.9	$12: 8$	237	261	45.1	24.2	1.8	3.7
Mean of α	26.7	9.9	62	18	17.7	13.1	221	248	49.9	25.1	1.9	4.0
Difference of mean ($T-\alpha$)	+0.31	${ }^{+}+0.09$	-5.0	+1.8	-1.81	-0.33	+16.1	+12.6	-4.79	-0.84	-0.11	-0.38
Standard error of difference	0.433	0.266	2.27	0535	0.462	0.318	9.26	. 9.96	- 1.40	0.753	0.0538	0.178
Ratio: $(T-\alpha) / S E_{D}$	+0.7	+0.3	-2.2	+3.4	-3.9	-1.0	+1.7	+1.3	-3.4	-1.1	-2.0	-2.1:
Significant	No.	No	Yes	Yes	Yes	No	No	No	Yes	No	Yes	Yes

TABLE XXXIX
COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL U WITH THE BALANCE OF THE GROUP

Corrugating Medium												
	Basis Weight, lb . $(12 \times 12$ /1000)	Caliper, 0.001 in .	Bursting Strength, points	G.E. Puncture, units	Riehle Compression, lb.		Elmendorf Tear, g./sheet		Amthor Tensile, $\mathrm{lb} . / \mathrm{in}$.		Amthor Stretch, \%	
					In	Across	In	Across	In	Across	In	Across
Mean of U	26.9	10.7	65	20	19.7	13.5	238	266	53.0	25.7	2.0	4.8
Mean of α	26.7	9.8	61	18	17.2	13.0	221	247	48.8	24.8 .	1.9	3.9
Difference of mean $(U-\alpha)$	$+0: 16$	+0.91	$+4.0$	$+1.9$	+2.47	$+0.47$	+17.5	+18.6	+4.16	+0.87	$+0.13$	+0.92
Standard error of difference	0:219	0.153	1.33	0.359	0.426	0.245	4.66	4.61	1.05	0821	0.0650	0.114
Ratio: $(U-\alpha) / S E_{I}$,	+0.7	+5.9	+3.0	$+5.3$	+5.8	+1.9	+3.8	$+4.0$	$+4.0$	+1.1	$+2.0$	+8.1
Significant	No	Yes	Yes	Yes	Yes	No	Yes	- Yes.	Yes	No	Yes	Yes

Note: See Note to Table XXXVII.

TABLE XL
COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILIV WTTH THE BALANCE OF THE GROUL
Corrugating Medium

	Basis Weight, lb.		Bursting	G.E. I'unc-	$\underset{\substack{\text { Ric } \\ \text { Compr }}}{\text { R }}$	ehle ression, b. -		endorf ear, sheet	Amthor Tensile, lb./in.		Amthor Stretch, \%	
	/1000)	0.001 in	points	units	In	Across	In	Across	In	Across	In	Across
Mean of V	25.8	10.1	32	11	12.9	10.3	121	134	31.0	17.2	1.4	2.4
Mean of α	26.9	9.9	66	19	18.2	13.5	237	266	51.9	26.1	1.9	4.2
Difference of mean . $(V-\alpha)$	-1.11	+0.20	--33.4	-7.8	-5.20	-3.21	-116.6	-132.3	-20.92	-8.90	-0.52	-1.84
Standard error of Difference	0.264	$\bigcirc .11 \overline{3}$	$1.23{ }^{-}$	0.433	0.373	0.305	5.65	5.78	1.12	. 0.799	-0.0658	0.091
Ratio: ($V-\alpha$)/ $/ S E_{D}$	-4.2	+1.8	-27.2	-18.0	-13.9	-10.5	-20.6	-22.9	-18.7	-11.1	-7.9	-2.0
Significant	Yes	No	Y'es	Yes	Yes	Yes	Yes	Yes	Yes	Yes.	..Yes	- Yes

TABLE XLI
COMPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL W WITH THE BALANCE OF THE GROUP

	Basis Weight, lb. (12×12 /1000)	Corrugating Medium										
		Caliper, 0.001 in	Bursting Strength, points	G.E. Puncture, units	Riehle Compression, lb.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
					In	Across	In	Across	In	Across	In	Across
Mean of W^{\prime}	26.8	10.1	69	19	17.7	11.5	228	300	56.6	21.8	2.1	3.8
Mean of α	26.7	9.9	61	18	17.5	13.3	222	243	48.3	25.4	1.8	4.0
Difference of mean $(W-\alpha)$	+0.08	+0.17	+8.0	+1.1	+0.17	-1.79	+5.7	+57.3	+8.31	-3.57	+0.25	-0.24
Standard error of difference	0.269	0.200	1.43	0.364	0.484	0.239	4.79	5.52	1.12	0.371	0.0988	0.135
Ratio: ($W-\alpha$) $/ S E_{D}$	+0.3	+0.8	+5.6	+3.0	$+0.4$	-7.5	+1.2	$+10.4$	+7.4	-9.6	$+2.5$	-1.8
Signiticance	No	No	Yes	Yes	No	Yes	No	. Yes	Yes	Yes	Yes	No

Note. See Note to Table XXXVII.

TABLE XLII
COMIPARISON OF THE PHYSICAL CHARACTERISTICS OF MILL X WITH THE BALANCE OF THE GROUP
Corrugating Medium

	Basis Weight, lb. $(12 \times 12$ /1000)	Caliper, 0.001 in .	Bursting Strength, points	G. B. Puncture, units	Riehle Compression, lb.		Elmendorf 'Tear, g./shect		Amthor Tensile, lb./in.		Amthor Stretch, \%	
					In	Across	In	Across	In	Across	In	Across
Mean of X	27.4	9.8	68	21	17.1	. 13.1	250	281	52.1	25.3	2.1	4.3
Mean of α	26.7	9.9	61	18	17.6	13.1	219	245	48.9	24.9	1.9	4.0
Difterence of mean $(X-\alpha)$	+0.74	-0.13	+7.2	$+2.7$	-0.41	$+0.02$	+31.2	+35.6	$+3.19$	+0.36	+0.22	+0.31
Standard error of difference	0.254	0.148	1.09	0.502	0.383	0.279	6.50	7.07	1.37	0.746	0.0421	0.233
Ratio: $(X-\alpha) /$ SFib	$+2.9$	-0.9	+6.6	+5.4	-1.1	+0.1	+4.8	+5.0	+2.3	+0.5	$+5.2$	$+1.3$
Significant	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	No	les	No

Nute. See Note to Table XXXVII.

TABLE XLIII

COMPARLSON OF THE IHYSICAL CHARACTERISTICS OF MLLL Y WITH THE BALANCE OF THE GROUP

TABLE XLIV
COMPARISON OF THE PISYICAL, CHARACTERISTICS OF MILL, Z WITH THE BALANCE OF THE GROUP

					Corrug	ating Mf						
	Basis Weight, lb.		Bursting	G.E. Punc-		hle ession,	Elme $\begin{gathered} \mathrm{Te} \\ \mathrm{~g} . / \mathrm{s} \end{gathered}$	endorf car, sheet	Amtho	Tensile, /in.	Anit Stretch	thor h, \%
	/1000)	0.001 in .	points	units	In	Across	In	Across	In	Across	In	Across
Mean of Z	26.8	93.	. 75	20	19.9	15.8	251	$262 *$	53.8	33.0	2.0	4.7
Mean of α	26.8	100	60°	- 18	17.2	12.7	219	248	48.7	23.8	-1.9	3.9
Difference of mean $(Z-\alpha)$	-0.03.	-0.73	+15.7	+1.6	$+2.79$	+3.05	+32.7	+13.5	+5.11	+9.18	+0.14:	+0.81
Standard error of difference	0.185	0¢126	1.71	0.352	0.512	0.386	5.61	7.80	1.25	0.841	0.0517	0.206
Ratio: $(Z-\alpha) / S E_{D}$	-0.0	-5.8	+9.2	$+4.5$	+5.4	$+7.9$	$+5.8$	+1.7	+4.1	$+10.9$	+2.7	+3:9
Significance	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes

Note. See Note to Table XXXVII.
range limit, in both directions, of ± 1.0 pound and approximately 94% within a range limit of ± 1.5 pounds. The uniformity with respect to G. E. puncture, Elmendorf tear, Amthor tensile and stretch may alsobe seen in Table XLVI. Naturally, as the arbitrarily selected limits increase, the greater is the portion of rolls falling within that range. The ranges used are purely arbitrary and are not intended as an attempt to specify acceptable limits of uniformity. The moisture content was not treated statistically because it was felt that secondary effects, such as warehouse storage conditions, might cause too great an effect to permit the legitimate application of statistics.

Mile T

The average test results obtained for the kraft corrugating medium made by Mill T are shown in Table XLVII (sec also Table LXXII of the Appendix). The average basis weight obtained was 1 pound higher than
the specified weight. The average caliper was 0.010 inch and the average apparent density was 32.5 pounds per cubic foot. The average bursting strength value was 57 points. The average Richle compression values were 15.9 and 12.8 pounds for the in- and acrossmachine directions, respectively. The average moisture content was 11.8% on an ovendry basis.

The statistical evaluation of these test results may be seen in Table XLVIII. For basis weight, the standard deviation was 1.35 , indicating that 29% of the rolls made by Mill T should fall within a range limit of ± 0.5 pound (26.5 to 27.5 pounds), 54% within a range limit of ± 1.0 pound (26.0 to 27.0 pounds), and approximately 86% within a range limit of ± 2.0 pounds (25.0 to 29.0 pounds). The standard deviation for caliper was 0.827 ; thus, approximately 77% of the rolls of corrugating medium made by Mill T might be expected to fall within a range limit of ± 0.001 inch (0.009 to 0.011 inch) and approximately 98% within a

TABLE XIV
PHYSICAL CIEARACTIERISJICS OF .009/26-LR. FOURDRINIER KRAF゙T CORRUGATING MEDIUM
Mill S
Roll Averages

-		Basis Weight, lb.	Caliper,	Apparent	Mois-	Bursting	G.E: Punc-	R Comp	hle ression, b.		ndorf ar, heet	Am Ten lb.	thor sile, in.	$\underset{\text { Stret }}{\text { Am }}$	thor ch, \%
Roll	Date Manuf.	$(12 \times 12$	in.	Density, $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	$\%$	points	ture,	In	Across	In	Across	In	Across	In	Across
1	2-7-45	27.5	9.6	34.4	3.4	72	21	19.5	148	250	268	56.8	27.9	1.7	4.6
2	2-7-45	27.8	9.9	33.7	6.2	66	20	21.2	15.6	253	270	57.2	289	1.8	5.1
3	2-7-45	27.6	9.7	34.1	6.4	64	20	19.7	14.3	250	269	539	28.5	1.7	5.1
4	2-6-45	27.,	. 10.5	31.0.	11.5	71	21.	19.7	-. 14.4	281	- 260 .	..49.7-+	30.1-	1.6	4.8
5	2-6-45	27.3	10.3	31.8	9.6	(6)	21	19.8	15.2	288	282	50.0	29.5	1.5	4.6
6	2-6-45	27.1	10.1	32.2	9.8	71	21	18.5	15.9	265	286	51.6	30.7	16	4.8
7	2-6-45	27.0	10.3	31.5	12.3	64	21	19.0	15.6	279	300	49.6	31.6	1.6	4.8
8	2-6-45-	27.2^{-}	- 10.4	-31.4	11.9	70	19^{-}	19.4	$16.0{ }^{\circ}$	287	285	49.2	31.0	-1.5	4.9
9	8-9-44	27.7	10.3	32.3	4.9	69	21	19.4	16.7	265	269	52.2	33.4	1.5	4.2
10	8-9-44	26.8	10.1	31.8	8.5	67	19	18.4	16.4	263	261	52.8	$31.9{ }^{-}$	1.7	4.5
Average		27.3	10.1	32.4	8.5	68	- 20	19.5	15.5	268	276	52.3	30.4	1.6	4.7

TABLE XLVI
STATISTICAL EVALUATION OF PHYSICAL TESTS ON .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM

	Mill S								Amthor Tensile, lb./in.		Amthor Stretch, $\%$	
	Basis Weight, lb.		Bursting	G.E. Puncture, units	Riehle Compression, lb.		EImendorf Tear, g./sheet					
	$/ 1000)$	$\begin{aligned} & \text { Calper, } \\ & 0.001 \text { in. } \end{aligned}$	points		In	Across	In	Across	In	Across	In	Across
'Test values												
Maximum	27.8	105	72	21	21.2	16.7	288	300	572	33.4	1.8	5.1
Minimum	26.8	9.6	64	19	18.4	14.3	250	261	49.2	28.5	1.5	4.2
Average	27.3	10.1	68	20	19.4	15.5	268	276	52.3	30.4	1.6	4.7
Standard deviation	0.328	0.301	2.91	$0.84,3$	0.783	0.810	14.8	11.9	2.92	170	0.103	0.275
Range limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	87	90	61	77	80	78	$3)$	48	39	44	67	53
Kange limit (土)*	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	30	2.0	0.2	0.4
Approximate probability, \%	99	100)	91	93	94	94	69	79	70	76	95	85
Kange limit (\pm) ${ }^{*}$	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	100	-	99	99	99	99	96	99	91	92	100	97

Mile 'T
Roll Averages

'TABLE XLVIII
STA'TISTICAL EVAIUATION OF PHYSICAL TESTS ON .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM

TABLE XLIN .
PHYSICAL CHARACTERISTICS OF 00リ/26-L.B. FOURDRINIER KRAFT CORRUGATING MEDIGM
Millu U
Koll Averages

TABLE L
STATISTICAL EVALUATION OF PHYSICAL TESTS ON .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mill U

	$\begin{gathered} \text { Basis } \\ \text { Weight, } \\ 1 \mathrm{~b} . \\ (12 \times 12 \\ / 1000) \end{gathered}$	Caliper, 0.001 in .	Bursting Strength, points	G.E. Puncture, units	RiehleCompression, lb.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
					In	Across	In	Across	In	Across	In	Across
Test values , . Across												
Maximum	28.5	11.6	74	22	23.4	15.0						
Minimum	25.0	9.4	54	17	16.4	11.8	276	295	59.4	35.7	2.5	5.8
Average	26.9	10.7	65	20	19.7	13.5	238	206	44.2 53.0	20.7	1.5	4.0 4.8
Standard deviation	0.903	0.645	5.18	1.46	1.76	0.974	18.6	206	53.0 4.34		2.0 0	4.8
Range limit (\pm)* Approximate probability, \%	0.5	1.0	2.5	1.0	1.0	1.0	18.6 7	17.5	4.34	3.57	0.281	0.447
					1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Range limit (\pm)* Approximate probability, \%	1.0	88	37	50	43	70	31	33	27	22	28	35
	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
	73	99	66.	70	60	88	58	61				
$\begin{gathered} \text { Range limit }(\pm)^{*} \\ \text { Approximate } \\ \text { probability, } \% \end{gathered}$	2.0	-	7.5	3.0	30							63
	97.	-	83	3.0 96	30 91	$\begin{array}{r}3.0 \\ \hline 99\end{array}$	30.0	300	5.0	3.0	0.3	0.6
							89	91	75	60	72	82

- range limit of ± 0.002 inch (0.008 to 0.012 inch). The uniformity of the bursting strength, as denoted by the standard deviation, indicates that only 28% of the rolls should fall within a range limit of ± 2.5 points (54.5 to 59.5 points), 53% within a range limit of .$- \pm 5.0$ points (52.0 to 62.0 - points), and 72% within a range limit of ± 7.5 points (49.5 to 64.5 points). The standard deviations for the Riehle compression test indicate that 55%. of the rolls should fall within a range limit of ± 1.0 pound in the in-machine direction, and 72% in the corresponding range limit for the -across-machine direction--Practically-all of-the- rolls should fall within a range limit of ± 3.0 pounds for both directions. In general, the standard deviation for G. E. puncture, Elmendorf tear, and Amthor tensile and "stretch are of such magnitude as to indicate considerable nonuniformity.

Mill U

The average test results obtained for kraft corrugating medium manufactured by Mill U are presented in Table XLIX (see also Table LXXIII of the Appendix). The statistical evaluation of these results is given in Table L. The average basis weight for Mill U was 26.9 pounds, the average caliper was 0.0107 inch, and the average apparent density was 30.2 pounds per cubic foot. The average bursting strength and G. E. puncture were 65 points and 20 units, respectively. The average Riehle compression values for the in- and across-machine directions were 19.7 and 13.5 pounds, respectively. The average moisture content was 8.4% on an ovendry basis.

Inasmuch as the standard deviation for basis weight was 0.903 , it is to be expected that only 42% of the rolls would fall within a range limit of ± 0.5 pound (26.t to 27.4 pounds), 73% within a range limit of ± 1.0 pound (25.9 to 27.9 pounds), and approximately 97% within a range limit of ± 2.0 pounds (24.9 to 28.9 pounds). The standard deviation for caliper indicates that nearly 90% of the rolls should fall within a range limit of ± 0.001 inch (0.0097 to 0.0117 inch). The uniformity of the bursting strength, as shown by the standard deviation of 5.18 , indicates that only 37% of the rolls would be expected to fall within a range limit of ± 2.5 points (62.5 to 67.5 points), 66% within a range limit of ± 5.0 points (60.0 to 70.0 points), and 83% within a range limit of ± 7.5 points (57.5 to 72.5 points). For the in- and across-machine direction Riehle compression, 43 and 70% of the rolls, respectively, should fall within a range limit of ± 1.0 pound, 60 and 88% within a range limit of ± 1.5 pounds, and 91 and 99% within a range limit of ± 3.0 pounds. The Elmendorf tear and Amthor tensile and stretch exhibit considerable variation or lack of uniformity.

Mile V

The average test results obtained for $.009 / 26-\mathrm{lb}$. bogus corrugating medium made by Mill V are given in Table LI (see alsó Table LXXIV of the Appendix) and the statistical evaluation of these results in Table
Hitw
LII. For all practical purposes, the basis weight is the. same as the grade weight specified. The standard deviation for basis weight indicates that 42% of the rolls should fall within a range limit of ± 0.5 pound (25.3 to 26.3 pounds), 74%, within a range limit of ± 1.0 pound (24.8-to $26: 8$ pounds), and 98% within a-range limit of ± 2.0 pounds (23.8 to 27.8 pounds). The average caliper was 0.0101 inch with a standard deviation of 0.341 , indicating that approximately 99% of the rolls should fall within a range limit of ± 0.001 inch (0.0091 to 0.0111 inch). The average apparent density was 30.7 pounds per cubic foot and the average moisture content was 9.2% on an ovendry basis. The average bursting strength was 32 points and the indicated uniformity was such that 51% of the rolls should fall within a range limit of ± 2.5 points (29.5 to 34.5 points), 83% within a range limit of ± 5.0 points (27.0 to 37.0 points), and approximately 96% within a range limit of 7.5 points (24.5 to 39.5 points). The average Riehle compression values in the in- and across-machine-directions were 12.9 and 10.3 , respectively, with standard deviations indicating a probability that 80 and 86% of all the rolls would fall within a range limit of ± 1.5 pounds. Approximately all the rolls should fall within'a Riehle compression range limit of ± 3.0 pounds. The standard deviations for Elmendorf tear and Amthor tensile and stretch indicate that considerable variation should be expected.

Mill W

The average test results obtained for the kraft corrugating medium made by Mill W are seen in Table LIII (see also Table LXXV of the Appendix). The statistical evaluation of these results are given in Table LIV. The average basis weight was slightly above the grade weight and the standard deviation of 0.910 indicates an expectancy that 42% of the rolls should fall within the range limit of ± 0.5 pound (26.3 to 27.3 pounds), 73% within a range limit of ± 1.0 pound (25.8 to 27.8 pounds), and 97% within a range limit of ± 2.0 pounds (24.8 to 28.8 pounds). The average caliper was 0.0101 inch and, according to the magnitude of the standard deviation, 85% of the rolls should fall within a range limit of ± 0.001 inch $(0.0091$ to 0.0111 inch) and 99% within a range limit of ± 0.002 inch (0.0081 to 0.0121 inch). The average apparent density was 31.8 pounds per cubic foot and the average moisture content was 11.1% on an ovendry basis.

The average bursting strength was 69 points. It should be expected that 42% of the rolls should fall within a bursting strength range limit of ± 2.5 points (66.5 to 71.5 points), 73% within a range limit of ± 5.0 points (64.0 to 74.0 points), and 91% within a range limit of ± 7.5 points (61.5 to 76.5 points). The average Riehle compression results in the in- and acrossmachine directions were 17.7 and 11.5 pounds, respectively. The standard deviations for the Richle compression indicate that a range limit of ± 1.0 pound should include 46% of the rolls in the in-machine direc-

TABLE I.I

Mile V
Roll Averages

		Basis Weight, lb .	Caliper,	Apparent	Mois-	Bursting	G.E. Punc-	$\begin{aligned} & \text { Riehle } \\ & \text { Compression, } \\ & \text { Ib. } \end{aligned}$		Elmendorf Tear, g./sheet		Anthor. Tensile, lb./in.		Amthor Stretch, \%	
R	Date	$\begin{aligned} & 12 \times 12 \\ & / 1000) \end{aligned}$	in.	Density,	$\begin{aligned} & \text { ture, } \\ & \% \end{aligned}$	Strength, points	units	In	Across	In	Across	In	Across	In	Across
1	1-26-45	26.0	10.4	30.0	8.4	31	8	12.9	10.0	95	112	30.3	15.2	1.4	1.9
2	10-21-44	27.3	9.4	34.8	8.4	39	12	13.1	10.1	143	165	37.6	18.0	1.8	2.6
3	-	26.4	10.0	31.7	10.0	31	10	12.9	9.3	123	128	30.3	16.5	1.5	2.7
4		24.3	-9.9	29.4	11.7 -	29	-11-	-11.3	- 9.0	101^{-}	-123 - -	28.2	14:1	1.4	2.6
5	-	25.7	10.4	29.7	10.1	31	12	13.7	10.1	113	125	31.0	17.0	1.3	2.2
6	-	26.1	9.9	31.6	10.0	36	11	14.7	11.4	128	159	36.1	20.0	1.5	2.5
7	.	26.1	10.3	30.4	. 8.5	31	13	12.4	-10.3 -	115	129	31.4	18.0 -	-1.2	2.4.
8		26.9	9.5	34.0	5.9	33	12	14.4	9.9	1.33	157	35.5	16.4	1.0	2.5
-9	-	25.3	10.1	30.0	5.5	. 31	12	11.8	12.6	146	132	24.3	23.8	1.3	2.7
10	-	25.0	10.3	29.1	7.6	30	11	14.7	95	109	127	31.8	14.4	1.3	2.2
11	-	25.5	10.5	29.1	9.8	34	13	12.1	11.2	133	144	28.8	17.8	1.6	2.2
12		24.4	10.1	29.0	15.5	38	13	12.9	10.9	141	140	30.9	18.2	1.8	2.3
13	-	26.3	10.3	30.6	7.9	26	10	11.4	9.3	89	100	27.1	13.7	1.4	2.1
	Average	25.8	10.1	30.7	9.2	32	11	12.9	10.3	121	134	31.0	17.2	1.4	2.4

TABLE LII
Statistical evaluation of physical tests on .009/26-Lb. boGUS CORRUGating medium
Mile V

	Basis Weight, lb. (12×12 /1000)	Caliper, 0.001 in.	Bursting Strength, points	G.E: Puncture, units	Riehle. Compression, tb.		Elmendorf Tear, g./sheet		Amthor Tensile, lib./in.		Amthor Stretch, $\%$	
					In	Across	In	Across	In	Across	In	Across
Test values												
Maximum	27.3	10.5	39	13	14.7	12.6	146	165	37.6	23.8	1.8	2.7
Minimum	24.3	9.4	26	8	11.3	9.0	89	100	24.3	13.7	1.0	1.9
Average	25.8	10.1	32	11	12.9	10.3	121	134	31.0	17.2	1.4	2.4
Standard deviation	0.889	0.341	3.64	1.45	1.17	1.01	18.7	18.7	3.70	2.72	0.224	0.249
Range limit (\pm)*	0.5	1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	42	99	51	51	60	68	31	31	32	29	35	58
Range limit (\pm)*	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Approximate probability, \%	74	100	83	70	80	86	58	58	58	54	63.	89
Range limit (\pm)*	2.0	-	7.5	3.0	3.0	3.0	30:0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	98	-	96	96	99	99	89	89	82	73	82	98

'TABLE LIII

HHVSICAL CHARACTERIS'ILCS OF . $004 / 26-L B$. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mili. W
Roll Averages

TABLE LIV
STATISTICAL EVALUATION OF PHYSICAL TESTS ON .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM

TABLE LV
PHYSICAL CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mile X Roll Averages

TABLE LVI
STATISTICAL EVALUATION OF PHYSICAL TESTS ON .009/26-LB: FOURDRINIER KRAFT CORRUGATING MEDIUM

TABLE ATI
PHYSICAL CHARACTERISTICS OF . $009 / 26-1 B$. FOURDRINIER KRAFT CORRUGATING MEDIUA
Mins. Y
Roll Averages

Roll	Date Manuf.	Rasis Weight, lb. $(12 \times 12$ /1000)	$\begin{gathered} \text { Caliper, } \\ 0.001 \\ \text { in. } \end{gathered}$		Moisture, \%	Bursting Strength, points	G.E. Puncture, units	RiehleCompression,lb.		Elmendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, \%	
								In	Across	In	Across	In	Across	In	Across
1	3-12-45	25.4	9.1	33.5	7.2	48	15	18.5	11.0	186	205	45.4	19.5	1.9	3.8
2	10-14-44	25.7	8.9	34.6	8.9	70	13	24.2	15.1	161	188	59.0	27.4	2.3	3.1
	3-12-45	25.3	9.1	33.4	6.8	48	14	17.0	12.2	183	185	46.3	19.9	2.1	3.1
1	. 3-10-45 -	26.0	-. 9.5..	32.8	11.7	72	17.	16.9	13.7	-194.	243	55.4	22.3	2.2	3.7
5	3-10-45	26.8	9.8	32.8	7.3	73	18	18.7	13.7	206	238	55.5	21.1	1.9	4.6
6	3-10-45	27.0	9.8	33.1	10.5	65	18	16.8	13.1	238	270	54.0	26.6	2.1	3.7
7	3-12-45	26.1	9.4	33.3	10.8	47	14	15.7	11.3	183	206	46.6	19.4	2.0	3.9
8	3-12-45-	27.1	$8: 2$	39.6	12.5	55	13	14.9	10.6	176	220	49.6	224	2.1	3.8
9	3-12-45	261	9.2	34.0	11.1	51	13	10.0	11.9	180	219	49.0	22.1	1.9	3.3
10	3-12-45	249	9.5	31.5	10.1	48	13	14.3	10.0	182	214	45.9	20.2	1.8	3.0
	Average	26.0	9.3	33.9	9.7	58	15	17.3	12.3	189	219	50.7	22.1	2.0	3.6

TABLE LVIII
STATISTICAL EVAlUATION OF PHYSICAL TESTS ON .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM

					MiL	Y						
	Basis Weight, ib.		Bursting	G.E.	$\begin{array}{r} \mathrm{R} \\ \operatorname{Comp} \end{array}$	ehle ression, b.		ndorf ear. sheet	Amtho	Tensile, /in.	Amthor	Stretch, \%
	/1000)	$\begin{aligned} & \text { Caliper, } \\ & 0.001 \mathrm{in} . \end{aligned}$	points	units	In	Across	In	Across	In	Across	In	Across
Test values												
Maximum	27.1	9.8	73	18	24.2	15.1	238	270	59.0	27.4	2.3	4.6
Minimum	249	8.2	47	13	14.3	10.0	161	185	45.4	19:4	1.8	3.0
Average	26.0	9.3	58	15	17.3	12.3	189	219	50.7	22.1	2.0	3.6
Standard deviation	0.746	0.474	11.0	2.10	2.80	1.61	208	25.9	4.90	2.83	0.157	0.488
Range limit (\pm)*	0.5	10	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	50	97	18	37	28	46	28	23	24	27	48	32
Kange limit (\pm)*	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	3.0	2.0	0.2	0.4
Approximate probability, \%	82	99	35	52	41	64	53	44	46	52	80	59
Kange limit (\pm)*	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	99	-	50	83	72	94	85	75	69	71	94	78

TABISE IAX
PHYSICAI, CHARACTERIS'ICS OF . $009 / 26-L B$. FOURDRINIER KRAFT CORRUGISTANG MEIMUA
Mile Z
Roll Averages

TABLE LX
STATISTICAL EVALUATION OF PHYSICAL TESTS ON .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mill Z

	Basis Weight, lb . (12×12 /1000)	Caliper, 0.001 in.	Bursting Strength, points	G.E. Puncture, units	Riehle Compression, lb.		EImendorf Tear, g./sheet		Amthor Tensile, lb./in.		Amthor Stretch, $\%$	
					In	Across	In	Across	In	Across	In	Across
Test values												
Mavimum	27.9	10.2	85	22	21.4	17.7	283	316	59.5	35.8	2.3	5.4
Minimum	26.3	8.9	65	19	17.1	14.2	226	236	47.3	26.1	1.7	3.1
Average	26.8	9.3	75	20	19.9	15.8	251	262	53.8	33.0	2.0	4.7
Standard deviation	0.522	0.366	5.21	1.03	1.59	1.22	17.1	24.6	3.86	2.65	0.155	0.659
Range limit ($\pm)^{*}$	0.5	1.0	2.5	1.0	1.0	1.0	7.5	7.5	1.5	1.0	0.1	0.2
Approximate probability, \%	66	99	37	67	47	59	34	24	30	30	48	24
Range limit (\pm)*	1.0	2.0	5.0	1.5	1.5	1.5	15.0	15.0	30	2.0	0.2	0.4
Approximate probability, \%	95	100	66	86	65	78	62	46	56	55	80	46
Kange limit (\pm *	2.0	-	7.5	3.0	3.0	3.0	30.0	30.0	5.0	3.0	0.3	0.6
Approximate probability, \%	99	-	. 85	99	94	99	92	78	81	74	95	64

* Range limits were arbitrarily selected.
tion and 82% in the across-machine direction. A range limit of ± 1.5 pounds should include 65% in the inmachine direction and 96% in the across-machine direction, and a range limit of ± 3.0 pounds should include 84 and 99%, respectively. Elmendorf tear and -Amthor-tensile- and-stretch exhibited rather -large standard deviations, signifying that considerable variation should be expected.

Mill $\mathrm{X}{ }^{*}$.

--The average-test.results obtained on samples of the kraft corrugating medium made. by Mill X are presented in Table LV (see also Table LXXVI of the Appendix). It mäà be observed that the average basis weight was 27.4 pounds. The average caliper was 0.0098 inch and the average apparent density was 33.7 pounds per cubic foot. The average bursting strength was 68 points and the average moisture 8.7% on an ovendry basis. The average Riehle compression values in the in- and across-machine directions were 17.1 and 13.1 pounds, respectively.

The statistical evaluation of these results is given in Table LVI. On the basis of a standard deviation of 0.881 for basis weight, it should be expected that 43% of the rolls should fall within a range limit of ± 0.5 pound (26.9 to 27.9 pounds), 75% within a range limit of ± 1.0 pound (26.4 to 28.4 pounds), and 98% within a range limit of ± 2.0 pounds (25.4 to 29.4 pounds). With a standard deviation for caliper of 0.507 , approximately 95% of the rolls should fall within a range limit of ± 0.001 inch (0.0088 to 0.0108 inch). Approximately 58% of the rolls. should fall within a bursting strength range limit of ± 2.5 points (65.5 to 70.5 points), 89% within a range limit of ± 5.0 points (63.0 to 73.0 points), and 98% within a range limit of ± 7.5 points (60.5 to 75.5^{\prime} points). The standard deviation for the Riehle compression in the in-machine direction indicates that 58,77 , and 98% of the rolls should fall within range limits of $\pm 1.0, \pm 1.5$, and ± 3.0 poúnds, respectively. For the across-machine direction, approximately 71,89 , and 99% of the rolls should fall within range limits of $\pm 1.0, \pm 1.5$; and $\pm 3.0^{\prime}$ pounds, respectively:

The statistical evaluation of the Elmendorf tear, Amthor tensile and stretch, and G. E. puncture indicates that, on the average, approximately 50% of the rolls should fall within the second arbitrarily selected range limit for each test.

Mile Y

The average results obtained on samples of the kraft corrugating medium made by Mill Y are given in Table LVII (see also Table LXXVII of the Appendix). The average basis weight was $26: 0$ pounds, the average caliper 0.0093 inch, and the average apparent density was 33.9 pounds per cubic foot. The average bursting strength was 58 points, and the average Riehle compression values in the in- and across-machine directions, were 17.3 and 12.3 pounds, respectively. The average moisture content was 9.7% on an ovendry basis.

The statistical evaluation of these results is found in Table LVIII. On the basis of the standard deviation,
 it should be expected that 50% of the rolls made in : this grade by Mill Y should fall within a basis weight range limit of ± 0.5 pound (25.5 to 26.5 pounds), 82% within a range limit of ± 1.0 pound (25.0 to 27.0 pounds), and 99% within a range limit of ± 2.0 pounds (24.0 to 28.0 pounds). Approximately 97% of the rollsshould fall within a caliper range limit of ± 0.001. inch (0.0083 to. 0.0103 inch). The standard deviation for the bursting strength was 11.0 , which indicates that only 18% of the rolls should be expected to fall within a range limit of ± 2.5 points (55.5 to 60.5 points), 35% within-"-range limit- of $\pm 5.0^{-}$points ${ }^{-}\left(53.0-\right.$ to ${ }^{-} 63: 0$ points), and 50% within a range limit of ± 7.5 points (50.5 to 65.5 points). The standard deviations for the Riehle compression in the in- and across-machine directions indicate that 28 and 46%, respectively, should fall within the range limit of ± 1.0 pound, 41 and 64% within the range limit of ± 1.5 pounds, and 72 and 94% within the range limit of ± 3.0 pounds. The standard deviations for Elmendorf tear, G E. puncture, and Amthor tensile and stretch indicate considerable nonuniformity of these characteristics in the $.009 / 26-\mathrm{lb}$. kraft corrugating medium.

Mile Z

The average test results obtained on samples of the kraft corrugating medium made by Mill Z are given in Table LIX (see also Table LXXVIII of the Appendix). The average basis weight was 26.8 pounds, the average caliper 0.0093 inch, and the average apparent density 34.7 pounds per cubic foot. The average moisture content was 9.1% on an óvendry basis. The average bursting strength was 75 points and the average Riehle compression values for the in- and acrossmachine directions were 19.9 and 15.8 pounds, respectively. It should be noted that Rolls Z-2 and Z-3 were made approximately the middle of 1943 and thus were substantially older than the others; however, the average results obtained for these rolls do not vary markedly from the average of the values for the other rolls.

The statistical evaluation of these results is presented in Table LX. The magnitude of the standard deviation for the basis weight indicates that 66% of the rolls should fall within the range limit of ± 0.5 pound (26.3 to 27.3 pounds), 95% within the range limit of ± 1.0 pound (25.8 to 27.8 pounds), and 99% within a range limit of ± 2.0 pounds (24.8 to 28.8 pounds). Approximately 99% of the rolls should fall within a caliper range limit of ± 0.001 inch ($0: 0083$ to 0.0103 inch). The standard deviation of the bursting strength indicates that 37% of the rolls should fall within a range limit of ± 2.5 points (72.5 to 77.5 points), 66% within a range limit of ± 5.0 points (70.0 to 80.0 points), and 85% within a range limit of ± 7.5 points (67.5 to 82.5 points). The standard deviations for the Riehle compression values in the in- and acrossmachine directions indicate that 47 and 59% of the rolls, respectively, should fall within a range limit of ± 1.0 pound; 65 and 78% within a range limit of ± 1.5 pounds, and 94 and 99% within a range limit of ± 3.0 Founds. The standard deviations for Elmendorf tear, G. E. puncture, and Amthor tensile and stretch indicate the respective uniformities of these characteristics.

SUMMARY

The results presented in this part of the baseline study are concerned with the problem of sampling, in a truly impartial cross-sectional manner, the current routine production of the co-operating mills and evalu--ating-these samples as completely as possible by means of existing board testing methods.
The second phase of the baseline study involved (1) the selection of the most representative rolls of each mill's sampled production, and (2) the fabrication of these representative rolls into corrugated combined boards and their conversion into boxes.
Because the first part of the baseline study was concerned only with the sampling and evaluation of the component parts, no conclusions regarding the relationship between the quality of component parts and the performance of combined board and boxes fabricated from these components can be made at this time.
However, the results of this phase of the study indicate that the average quality of the sampled $42-\mathrm{lb}$. D.F.B.S. Fourdrinier kraft liner and of the $.009 /$ $26-\mathrm{lb}$. kraft and bogus corrugating mediums were as follows:

	Liner	Corrugating Medium
Basis weight, lb./1000 sq. ft.	42.1	26.8
Caliper, in.	0.015	0.010
Apparent density, lb./cu. ft.	33.7	32.3
Bursting strength, points	98	62
G. E.puncture, units	36	18
Moisture, $\%$	8.1	9.4
Riehle compression, lb.		
\quad In	29.0	17.6
\quad Across	22.5	13.0

	Liner	Corrugating Medium
Elmendorf tear, g./sheet		
In	354	223
Across	394	251
Amthor tensile, lb./in. . .-.--77.8 - 495		
	77.8	495
Across	37.8	24.8
Amthor stretch, \%		
In	2.1.	-1.9
Across	3.7	4.3

It should be remembered that these data are based on the actual rolls sampled and on conventional test methods.

For those tests in which orientation of the specimen is specified, the approximate ratios observed in the inmachine direction and in the across-machine direction were as follows:

	Ratio
	In:Across
Riehle compression	$4: 3$
Elmendorf tear	$0.9: 1$
Amthor tensile	$2: 1$
Amthor stretch	$1: 2$

The ratio of the bursting strength to the G. E. puncture on $42-\mathrm{lb}$. D.F.B.S. Fourdrinier kraft liner was of the order of 2.7:1.

The ratio was not computed for the $.009 / 26-\mathrm{lb}$. corrugating medium since the relatively high capacity of the G. E. puncture tester did not allow sufficient subdivision of the scale to permit distinguishing between the low values obtained with any degree of accuracy.
\square

APPENDIX'

TABLE LXI
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B S. FOURIDRINIER KRAFT LINER
Mile A

TABLE LXII
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B S. FOURDRINIER KRAFT LINER
Mill B

Institute File No.	Roll	Basis Weight, lb.$(12 \times 12 / 1000)$			Caliper, 0.001 in.			Apparent Density, b./cu.ft.	Moisture, \%			Bursting Strength, points			G.E. Puncture, units			Riehle Compression, lb .			
						In															
		Max.	Min.	Av.				Max.	Min.	Av.											
116426/28	1	432	41.4	42.2	16.3	14.9	15.7		32.2	9.5	8.6	9.0	117	78	101	37	32	34	35.0	25.0	29.7
116429/31	2	44.8	446	44.7	16.5	15.4	15.9	33.7	8.8	8.1	8.4	124	67	106	42	36	39	34.0	28.0	30.2	
116432/34	3	44.4	43.6	44.1	16.0	14.8	15.5	34.1	9.3	8.2	8.9	126	88	105	38	34	36	33.5	250	28.7	
116726/28	4	43.3	42.6	42.9	14.0	12.5	135	38.1	82	82	8.2	128	78	102	40	35	37	36.0	280	31.3	
116729/31	5	41.3	40.8	41.1	14.1	13.4	13.8	35.6	8.7	8.1	8.4	119	70^{\prime}	92	40	32	35	33.5	23.5	27.5	
116735/37	6	43.0	41.7	42.4	16.4	15.5	16.0	31.8	9.7	9.3	9.6	130	72	104	40	32	37	37.0	26.5	30.0	
116949/51	7	42.3	414	42.0	16.5	15.1	15.7	32.0	7.1	6.3	6.8	112	71	94	37	30	34	38.0	30.0	34.0	
116952/54	8	42.6	41.6	42.2	15.9	146	15.3	33.0	6.9	5.1	6.0	120	76	96	37	32	35	37.5	28.0	339	
116955/57	9	44.0	40.6	42.7	16.7	14.8	15.9	322	7.7	58	6.8	110	66	91	42	35	39	325	260	29.3	
117753/55	10	45.7	44.0	45.0	16.8	15.8	16.4	32.9	11.3	10.2	10.8	119	84	104	42	37	40.	335	280	31.1	
117756/58	11	43.6	42.0	42.7	16.5	15.0	15.9	32.2	10.2	9.3	9.7	$10{ }^{\circ}$	73	91	40	34	37	34.0	25.0	29.1	
117759/61	12	45.2	44.8	45.0	16.8	15.7	16.2	33.3	10.3	9.2	9.7	119	80	103	44	38	40	34.5	27.5	31.6	
117762/64	13	43.2	42.4	42.8	16.0	15.0	15.6	32.9	11.4	10.9'	11.1	120		103	47	35	38	37.5	27.5	32.3	
117765/67	14	44:0	42.8	43.5	16.2	15.0	15.7	33.2	10.3	9.2	9.7	120	87	106	42	35	39	39.0	32.0	35.2	
117768/70	15	46.1	45.1	45.7	16.4	14.7	15.6	35.2	8.9	7.7	8.1	138	88	112	41	37	40	36.5	29.0	32.0	
118017/19	16	41.9	41.8	41.8	15.2 ,	14.0	14.8	33.9	9.3	8.9	9.1	144	67	101	39	33	36	31.5	22.0	27.9	
118020/22	17	43.4	41.5	42.3	15.5	14.5	15.0	33.8	10.3	8.9	9.6	132	88	108	41	33	37	335	24.5	30.3	
118023/25	18	43.0	41.2	42.3	17.0	15.8	16.4	31.0	8.5	7.6	8.0	108	74	93	41	35	37	330	24.0	29.4	
118026/28	19	43.1	42.4	42.7	15.5	14.8	15.1	33.9	8.3	7.3	7.7	134	94	111	39	33	36	35.5	25.	31.3	
118029/31	20	41.7	41.1	41.3	15.3	14.8	15.0	$33.0{ }^{\text {t }}$	8.3	7.6	8.0	108	71	95	37	32	35	32.0	25.5	28.9	
118032/34	21	41 ". 2	41.1	41.2	15.0	14.5	14.9	33.2	9.0	7.2	8.1	124	78	98	38	31	34	32.0	24.5	28.7	
Average				42.9			15.4	33.4			8.7^{\prime}			101			37			30.6	

TABLF LXI
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.IB.S. FOURDRINIER KRAFT LINER
Mill A

TABLE LXII
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT I.INER
Mill B

	le Com sion, lb	s-	Elmendorf Tear, g./sheet						Amthor Tensile, lb./in.						Amthor Stretch, \%						
Across			In			Across			In			Across			In			Across			
Max.	Min	Av.	Max.	Min	Av.	Max.	Min.	Av,	Max.	Min.	. iv .	Max	Min.	八.	Max.	Min.		Max.			Roll
285	19.0	22.6	408	288	337	456	352	412	93.1	74.2	83.6	396	295	35.4	2.8	19	24	4.6	24	3.6	2
28.5	21.5	25.2	424	344	394	488	336	426	101.6	81.3	90.0	51.1	32.7	420	2.8	16	2.1	4.4	2.0	3.3 3	2
25.5	19.5	22.6	392	312	356	456	360	395	84.5	59.1	776	40.1	32.2	36. 1	3.0	1.6	2.4	4.7	2.8	3.9	3
29.0	23.0	25.5	456	368	415	456	360	398	78.7	59.3	713	53.7	34.9	43.8	3.0	1.6	22	6.9	1.9	4.3	4
275	17.5	23.3	432	360	402	432	320	367	79.6	59.6	70.0	50.8	26.9	41.3	2.5	1.6	20	7.6	1.0	41	5
26.0	18.5	22.4	440	328	368	496	392	428	98.2	77.9	89.2	430	33.0	38.7	2.7	1.5	2.1	4.8	2.6	3.5	6
26.5	220	24.4	400	304	346	448	328	377	84.7	70.6	81.4	36.9	29.1	33.2	24	1.8	2.1	5.6	2.7		7
29.0	220	25.0	432	320	365	440	344	397	88.0	72.8	83.1	42.7	261	36.6	2.4	1.8	2.1	6.0	2.0	4.1	8
27.0	18.0	23.8	456	328	391	472	360	418	91.4	61.0	78.0	43.2	322	38.3	22	1.4	. 1.8	5.1	1.8	3.8	9
25.5	19.5	22.5	400	312	365	448	344	416	99.9	77.9	89.3	42.5	33.7	39.4	2.9	2.1	25	4.4	2.4	3.6	10
25.5	19.5	22.9	376	288	329	424	320	376	93.1	69.4	799	418.	32.3	37.9	2.3	1.6	2.0	4.2	2.0	3.2	11
27.5	21.5	24.2	424	320	373	464	360	433	96.5	77.9	90.1	44.0	34.7	393	2.7	2.11	2.3	4.2	2	3.3	12
28.0	21.0	23.8	392	304	352	456	376	407	99.9	67.7	85.7	422	23.0	38.7	2.7	1.6	2.4	4	26	3.5	13
27.0	22.0	25.2	384	304	345	464	368	407	99.9	83.0	914	44.2	318	39.5	28	2.1	2.4	4.1	2.1	3.4	14
29.0	21.0	25.5	432	352	389'	448	384	421	96.5	71.1	896	47.1	381	42.4	3.0	2.2	26	5.4	2.6	3.8	15
	18.5	22.1	34.4	280	314	424	328	379	931	67.7	831	40.6	31.8	35.9	2.7	20	23	6.7	3.1	5.0	16
26.5	22.0	24.3 .	376	240	319	424	344	389	105.0	81.3	92.4	43.8	35.4	393	2.8	2.0	23.	4.8	2.9	3.6	17
25.0	220	236	360	264	319	408	312	380	91.4	74.5	81.2	3). 4	27.8	3.39	24	1.7	2.1.	50	20	3.5	18
27.5	190	24.7	368	296	332	416	352	381	982	77.9	909	44.2	$3+5$	391	25	1.8	2.2	53	2.4	3.8	10^{-}
245	20.0	22.0	360	264	307	408	328	371	99.9	66.0	8.35	415	284	34.6	2.5	2.1	2.3	6.4	2.7	4.4	20
25.0	18.5	21.7	344	204	304	424	328	366	91.4	72.8	839	39.1	28.6	34.8	2.6	1.7	22	5.6	2.0	43	21
23.7			353			- $\overline{307}$			- $\overline{84.1}$			38.1			2.2			3.8			

TABLE LXIII
PHYSICAL CHARACTERISTICS OF 42-LIB. D.F.B.S. FOURDRINIER KRAF'T LINER
Mill C

Institute File No.	Roll	- Basis Weight, lb.$(12 \times 12 / 1000)$			Caliper, 0.001 in.			Apparent Density, lb./cu.ft.	Moisture, \%			- Bursting Strength, points			G.F. Puncture, units			Riehle Compression, lb.				
						In																
		Max.	Min.	Av.				Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.		Max.	Min.	Av.
116360/62	1	44.6	42.8	43.7	14.0	13.4	13.7		38.2	8.0	7.5	7.7	122	79	98	41	34	37	34.0	22.0	28.0	
116,363/65	2	43.6	42.1	42.8	13.8	12.8	13.4	38.3	8.2	7.3	7.8	119	76	98	38	33	35	37.0	22.5	29.4		
116366/68	3	45.2	42.9	44.0	14.3	135	14.0	37.7	8.2	7.3	7.7	129	90	109	40	34	38	36.5	27.5	31.2		
116960/62	4	42.1	41.2	41.7	14.8	13.9	14.2	35.2	8.7	-7.7	8.2	107	75	88	42	33	36	34.5	29.0	31.2		
116963/65	5	43.0	42.4	42.6	15.1	14.3	14.8	34.5	7.8	6.8	7.4	135	75	104	50	37	41	38.5	28.5	31.6		
116975/77	6	42.5	41.9	42.2	15.3	14.7	15.0	33.8	8.9	7.9	8.3	134	77	(9)	45	39	42	37.5	27.5	31.0		
116078/80	7	42.3	41.8	42.1	15.0	14.1	14.6	34.6	8.3	7.2	7.6	125	80	101	45	38	41	36.0	22.0	29.7		
116981/83	8	42.6	42.4	42.5	$15.2{ }^{-}$	14:5	14.9	34.2	8.5	7:9	8.2	118	80	99	43^{-}	37.	41°	37.0	27.5	32.8		
117459/61	9	42.6	41.6	42.1	15.4	14.6	15.0	33.7	5.9	5.0	5.5	124	65	99	42	38	40	35.5	26.5	29.9		
117462/64	10	43.0	41.2	42.3	15.3	14.0	14.7	34.5	6.6	4.9	5.8	142	53	103	43	36	40	32.5	25.5	28.9		
117977/79	11	44.9	42.8	43.8	14.5	13.0	13.9	37.8	6.9	3.9	5.6	124	80	102	41	35	38	33.0	26.0	30.3		
117980/82	12	42.1	41.6	41.8	15.2	14.5	15.0	33.4	7.5	5.6	6.6	120	78	99	40	35	38	33.5	25.5	28.3		
117983/85	13	42.7	42.6	42.7	15.4	14.1	14.9	34.4	6.5	5.3	6.1	113	63	93	41	35	38	29.5	25.0	27.3		
117986/88	14	42.7	42.1	42.5	15.4	14.6	15.0	34.0	6.8	54	6.3	133	78	97	42	34	38	32.0	24.0	27.6		
117989/91	15	44.5	43.6	44.0	15.0	14.2	14.7	35.9	7.8	6.6	7.1	131	87	109	44	37	41	35.0	24.5	30.5		
Average				42.7			14.5	35.3			7.1			100			39			29.8		

TABLE LXIV
PHYSICAI, CHARACTERISTICS OF 42-LB. D.F.B S. FOURDRINIER KRAFT LINER
Mill D

Institute File No.	Roll	Basis Weight, lb. ($12 \times 12 / 1000$)			Caliper, 0.001 in.			Apparent Density, lb./cu.ft.	Moisture, \%			Bursting Strength, points			G.E. Puncture,			Riehle Compression, lb .				
						In																
		Max.	Min.	Av.				Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.	$A v$.	Max.	Min.	Av.	Max.	Min.	Av.
117006/08	1	41.1	40.3	40.8	15.0	14.3	14.7		33.3	8.9	8.3	8.6	110	80	94	40	33	38	33.5	24.0	28.3	
117009/11	2	41.8	40.4	40.9	15.0	14.0	14.7	33.4	8.7	6.8	7.9	118	82	102	39	35	37	33.0	24.0	28.6		
117012/14	3	41.8	40.2	41.0	15.1	14.1	14.8	33.2	9.1	6.9	7.9	118	63	93	40	35	37	29.5	22.0	25.8		
117015/17	4	40.3	40.3	40.3	15.2	14.3	14.9	32.4	8.2	6.3	7.1	118	63	84	38	31	36	29.5	20.0	24.4		
117018/20.	5	45.4	42.9	43.9	17.3	16.2	16.7	31.5	8.6	6.7	7.7	126	69	100	47	40	44	31.0	25.0	27.4		
117021/23	6	46.4	44.6	45.4	17.7	16.0	16.6	32.8	7.9	6.5	7.4	133	75	100	48	41	44	355	23.0	28.8		
117054/56	7	42.9	41.5	42.4	15.9	14.8	15.3	33.2	11.5	7.6	9.4	117	73	97	40	32	36	33.5	25.0	29.9		
117060/62	8	41.0	39.8	40.4	14.9	13.8	14.4	33.6	14.1	11.0	124	123	79	102	39	32	34	36.5	25.5	29.4		
11706.3/6,	9	42.8	41.8	42.3	168	15.4	16.0	31.7	12.8	10.5	11.7	120	79	101	40	34	37	34.0	26.0	30.1		
117090/92	10	38.9	38.8	38.8	13.7	12.7	13.3	34.9	5.8	3.1	4.2	124	70	91	32	28	3)	33.5	27.0	31.4		
117003/95	11	40.3	38.9	39.6	13.5	12.4	13.0	36.5	5.3	3.6	4.3	120	71	95.	33	28	30	36.5	27.0	31.3		
117111/13	12	42.0	40.8	41.6	14.8	14.0	14.3	34.8	7.7	6.3	70	111	68	9.4	37	30	33	29.5	24.5	27.0		
117114/16	13	40.3	39. 2	39.7	13.5	12.3	12.8	37.2	7.8	7.0	7.4	121	89	104	33.	29	32	30.5	24.0	27.0		
117123/25	14	41.6	40.4	40.8	15.5	13.9	14.3	34.2	8.6	7.1	8.0	114	80	95	37	30	33	30.0	22.0	26.1		
117167/69	15	43.0	41.8	42.5	15.0	14.5	14.7	34.7	6.2	5.7	6.0	125	82	102	38	31	35	30.5	25.5	27.8		
117170/72	16	44.6	41.6	43.4	15.8	14.4	14.9	34.9	7.1	5.6	6.3	130		105	39	31	35	35.0	26.5	31.1		
117173/75	17	42.2	41.4	41.9	14.9	14.1	14.5	34.6	7.6	5.5	6.6	131	85	105	37	32	34	30.0	23.0	26.9		
117176/78	18	43.2	40.4	41.9	17.9	15.4	16.8	29.9	9.0	6.1	8.0	104	64	86	38	32	35	29.0	21.5	25.9		
117260/62	19	43.7	42.7	43.3	15.1	14.0	14.6	35.6	7.5	5.7	6.7	147	78	110	37	33	36	35.0	23.0	28.2		
117266/68	20	41.2	40.8	41.0	15.4	14.5	15.1	32.6	5.7	5.1	5.5	108	72	93	39	33	36	33.0	24.0	27.8		
117269/71	21	43.0	42.6	42.8	15.1	14.3	14.8	34.7	8.2	4.6	6.2	122	76	102	41	35	38	29.0	23.0	25.9		
Average				41.7			14.8	33.8			7.4			98			36			28.1		

TABLE LXIII
PHYSICAL. CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KKAF゙「' LINER
Mill C

TABLE LXIV
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER
Mill D

Riehle Compres- sion, lb.		
Across		

In			Across		
Max.	Min.	Av.	Max.	Min.	Av.
408	288	355	392	336	374
392	296	336	424	344	392
424	328	383	408	320	349
416	328	375	384	304	3.47
448	344	391	472	360	415
480	336	407	512	392	442
440	320	384	456	320	366
376	312	3.4	424	312	373
536	288	369	456	336	406
376	264	320	432	304	348
400	288	334	384	296	341
424	336	378	376	320	345
368	280	332	368	288	335
352	280	310	416	304	361
400	344	366	448	360	399
464	344	374	464	368	409
400	328	357	424	344	382
416	. 328	370	464	336	387
392	328	360	440	360	402
408	320	358	424	320	372
400	320	362	424	360	398
		360			378

Amthor Stretch, \%						
In			Across			Roll
Max.	Min.		Max.	Min.		
2.2	1.2	1.8	4.0	2.0	3.1	
2.3	1.5	1.8	4.0	1.0	3.0	2
2.2	1.2	1.8	4.0	2.2	3.1	3
2.0	1.1	1.6	4.0	1.4	2.8	4
2.8	1.4	1.9	4.0	1.5	3.2	5
3.5	1.5	2.0	4.7	2.1	3.6	6
3.4	1.4	1.8	4.9	1.7	3.7	7
2.0	1.1	1.5	5.3	2.2	3.8	8
2.6	1.2	1.7	3.9	2.6	3.3	9
2.2	1.5	1.9	5.5	1.3	4.0	10
2.4	1.2	1.9	5.6	2.6	4.3	11
2.4	1.3	2.0	4.6	1.9	3.3	12
2.4	1.1	2.0	4.3	1.5	3.5	13
2.3	1.6	1.9	4.1	1.5	31	14
2.5	1.3	2.1	4.2	1.6	3.1	15
2.5	1.7	2.2	5.4	2.8	4.3	16
2.6	1.8	2.3	4.3	1.8	3.2	17
2.4	1.6	2.0	4.9	2.5	3.8	18
3.2	1.7	2.2	5.2	1.6	3.7	19
2.6	1.9	2.3 .	5.5	1.8	4.1	20
2.6	1.9	2.3	4.9	1.8	3.8	21
		2.0			3.5	

TABLE LXVI
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER
Mill F

Institute File No.	Roll	Basis Weight, 1b. ($12 \times 12 / 1000$)			Caliper, 0.001 in.			Apparent Density, lb./cu.ft.	Moisture, \%			Bursting Strength, prints			G.E. Puncture, units			Kiehle Compression, lb			
						In															
		Max.	Min.	Av.				Max.	Min.	Av.											
118066/68	1	41.5	40.5	41.1	14.1	11.8	13.5		365	11.8	9.9	10.7	117	80	98	48	35	39	28.5	18.5	24.3
118069/71	2	429	41.3	42.4	14.7	12.1	13.9	36.6	12.9	10.3	11.4	119	66	96	39	34	37	26.0	17.5	21.5	
118072/74	3	38.5	36.0	37.5	14.0	12.2	13.1	34.3	93	7.7	8.7	93	55	76	32	24	28	25.5	20.0	22.3	
118075/77.	4	42.8	40.8	41.6	14.0	12.7	13.5	37.0	12.0	10.2	11.1	96	57	75	41	28	32.	24.0 -	190	21.6	
118108/10	5	40.1	387	39.3	13.6	12.3	13.0	36.3	11.8	8.8	10.3	109	68	83	32	26	29	26.5	19.0	23.7	
118111/13	6	40.0	39.0	39.4	13.8	12.5	13.4	35.3	8.1	7.5	78	97	58	78	34	25	31	25.5	20.0	23.2	
118114/16	7.	380	36.2	36.9	13.1	12.0	12.6	35.1	12.6	7.2	9.5	93	58	76	30°	26	28	25.5	21.0	23.3	
118117/19	8	40.5	39.3	40.0	14.1	13.0	13.7	35.0	11.5	9.3	10.5	118		97	41	32	37	28.0	21.0	23.4	
118120/22	9	41.1	39.9	40.5	14.0	11.6	13.5	36.0	11.4	9.7	10.6	116	75	95	46.	26	37	29.5	24.0	26.9	
118123/25	10	39:1	37.3	38.4	14.0	13.1	13.5	34.1	10.5	8.5	9.5	94	57	74	33	23	29	25.5	18.5	22.6	
Average				39.7			13.4	35.6			10.0			85			33			23.3	

TABLE IAVVI
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER
Mill G

Institute File No.	Koll	Basis Weight, 16.$(12 \times 12 / 1000)$			Caliper, 0.001 in.			Apparent Density, $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Moisture, \%			Bursting Strength, points			G E. Puncture, unts			Riehle Compression, lb.			
						In															
		Max	Min.	Av.				Max.	Min.	Av.	Max.	Min.	A								
117245/47	1	42.9	42.0	42.6	16.1	14.9	15.5		330	7.7	6.8	7.3	114	66	93	40	34	37	30.5	22.0	27.4
117248/50	2	42.9	42.1	42.5	16.2	15.5	15.9	32.1	5.5	4.4	4.9	109	55	87	45	35	. 38	30.5	230	26.7	
1172.51/53	3	42.1	41.9	420	16.1	15.3	158	31.9	7.8	7.1	7.4	107	72	88	39	34	37	28.0	225	25.7	
117254/56	4	424	41.0	417	16.1	15.3	15.7	31.9 ,	7.2	63	6.8	114	69	85	39	34	37	29.0	24.5	26.1	
117257/59	5	42 S	41.8	42.2	16.2	154	15.9	31.8	8.7	7.3	8.1	109	65	92	40	35	38	30.0	21.0	255	
117263/65	6	41.4	409	41.2	16.5	15.6	16.1	30.7.	7.2	4.3	5.8	107	63	89	43 .	33	36	33.5	24.5	28	
117272/74	7	41.9	41.5	41.7	168	15.9	16.2	30.9	84	6.3	7.0	113	. 72	92	42	36	38	325	25.0	28.	
117320/22	8	426	41.5	42.0	15.6	14.1	15.0	33.6	10.8	10.3	105	- 129	84	106	40	36	. 38	320	260	28.8	
117393/95	9	417	41.3	415	16.2	15.0	155	32.1	8.4	$7.9{ }^{\circ}$	8.2	127	61	97	39	33	36	34.5	25.0	28.9	
117396/98	10	42.4	41.3	417	16.0	14.8	15.2	32.9	8.0	4.0	63	122	60	95	38	32	35	38.0	23.5	27.9	
117480/82	11	44.0	427	43.3	159	14.6	15.3	34.0	7.5	65	6.9	120	65	88	47	41	44	35.0	225	27.4	
117483/85	12	40.4	39.8	40.2	16.0	14.8	15.3	31.5	63	5.2	5.8	122	68	91	42	35	39)	330	25.0	28.1	
117486/88	13	420	41.3	41.6	15.9	14.9	15.3	326	68	4.0	5.5	101	4)	79	41^{\prime}	36	39	$2^{9} .0$	23.0	25.	
117489/91	14	432	41.7	\$2.6	16.3	15.6	16.0	31.9	8.3	6.1	7.3	103	72	88	42	33	. 36	32.0	25:5	28.8	
117492/94	15',	42.0	403	41.0	15.5	14.5	15.0	32.8	8.8	66	7.9	114	78	9.4	38	34	37	29.5	24.0	26.6	
Average				41.9			15.6	32.2			7.0			91			38			27.	

TABLE LXV
PHISIC.V. CIAARACTERISTLCS OF 42-LB. D.F.B.S. FOURDRINIER KRAFI I.INER
Mill E.

TABLE LXVI
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER
Mill F

TABLE LXVII
PHYSICAI. CHARACTERISTICS OF $42-L B$. D F.B.S. FOURDRINIER KRAF'T LINER

Elmendorf Tear, K / sheet					
In			Across		
Max.	Min.	Av.	Max.	Min.	Av.
424	336	373	528	376	429
432	320	382	456	360	413
456	336	382	504	352	426
440	352	392	480	384	420
424	352	390	456	384	423
416	320	377	440	360	399
496	328	394	528	368	436
416	344	377	464	368	405
448	344	383	424	336	375
448	336.	381	440	344	382
440	344	39.4	472	360	424
416	320	364	528	360	407
440	320	383	448	376	410
456	328	382	384	312	358
384	328	353	432	328	371
		380			405

\ln			Across		
Max.	Min.	Av.	Max.	Min.	Av.
86.3	69.4	76.0	44.4	37.1	41.4
83.0	67.7	73.5	45.4	35.6	408
8.3 .0	677	730	45.2	35.6	41.7
84.7	66.0	73.5	45.4	35.6	41.9
86.3	69.4	74.7	46.2	35.7	40.7
79.6	643	71.5	41.8	32.8	37.1
81.3	62.6	72.3	45.7	33.7	40.8
77.9	60.1	70.7	576	45.4	50.6
79.6	60.9	71.6	49.9	37.2	44.7
82.3	565	70.0	53.2	33.9	44.4
83.5	61.3	73.9	427	33.7	37.9
81.9	60.3	708	42.7	308	38.6
81.8	56.4	69.7	38.4	31.7	35.7
8.3 .0	626	70.3	57.1	42.7	48.4
83.0	62.6	725	50.1	36.9	42.8
		72.3			41.8

[n			Across			Koll
Max.	Min.	Av.	Max.	Min.	Av.	
2.0	1.0	1.7	4.0	23	3.1	1
1.8	1.0	1.4	3.8	2.2	2.9	2
1.9	1.2	1.6	4.4	2.0	3.1	3
1.8	1.2	1.5	3.5	1.6	2.8	4
1.8	1.1	15	3.8	2.2	2.8	5
2.3	1.6	2.0	5.1	2.8	4.0	6
2.2	1.6	2.0	5.0	2.7	3.8	7
4.0	14	2.0	44	2.8	3.7	8
2.7	1.6	20	5.2	3.2	4.3	9
2.4	1.5	2.0	5.9	2.5	42	10
2.4	0.9	1.8	6.0	32	4.0	11
2.0	13	1.6	49	2.0	3.6	12
1.7	0.9	1.4	3.9	2.1	3.3	13
20	1.4	1.8	5.1	3.0	4.1	14
2.1	1.4	1.8	5.6	2.9	43	15°
		1.7			3.6	

TABLE LXVIII
PHYSIC.IF: CHARICCEFRISTICS OF 42-LB. D.I.B.S. FOURDRINIFR KRAFT LINER
Mill H

TABLE LXLX
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINIER KRAFT LINER

			*						Mill I											
																		Riehl s	Comp on, lb.	pres-
		Basis (12	$\begin{aligned} & \text { Weigh } \\ & \times 12 / 10 \end{aligned}$	$\begin{aligned} & \mathrm{t}_{1} \mathrm{lb} . \\ & 000) \end{aligned}$	Calip	$\text { er, } 0.0$		Apparent		ture,		$\begin{array}{r} \mathrm{B} \\ \text { Stren } \end{array}$	$\begin{aligned} & \text { urstir } \\ & \text { gth, } \end{aligned}$	oints	G.E	$\begin{aligned} & \text { Punct } \\ & \text { units } \end{aligned}$			In	
Institute File No.	Roll	Max.	Min.	Av	Max.	Min.	Av.	Density, lb./cu.ft.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min		Max.	Min.	Av.
116732/34	1	43.0	41.8	42.5	15.9	149	15.3	33.3	9.1	8.3	8.7	128	93	111	42	37	40	33.5	23.5	30.5
116738/40	2	43.4	. 41.8	42.7	159	14.7	15.1	33.9	9.4	8.2	8.9	137	90	107	45	40	42	33.0	23.0	28.7
116741/43	3	43.1	41.0	42.5	159	14.4	15.3	33.3	8.7	8.4	8.5	147	85	109	45	40	42	31.5	26.0	. 7
116910/12	4	44.6	42.9	439	15.7	14.6	15.1	34.9	7.5	6.6	7.0	130	84	106	45	37	40	34.0	23.5	29.0
116913/15	5	44.2	42.6	43.5	15.8	14.3	15.2	34.3	7.7	6.1	7.1	124	86	105	45	37	41	31.5	21.5	26.7
116928/30	6	43.4	42.4	43.1	15.9	14.9	15.5	33.4	7.1	6.4	6.9	133	81	108	45	37	41	33.0	25.0	29.5
116943/45	7	44.2	42.6	4.3 .5	16.1	14.8	15.5	33.7	7.5	6.3	7.0	129	80	104.	45	37	41	350	25.5	30.0
116946/48	8	+2.6	413	$42: 1$	15.8	144	15.2	33.2	7.0	6.0	6.5	129	76	102	42	37	39	32.0	26.0	29.2 29.9
117423/25	9	43.8	42.7	43.4	161	15.0	15.5	33.6	10.3	9.8	10.0	132	83	106	43	37	40 40	34.0	25.5	29.9 29.8
117426/28	10	43.7	42.7	4.3 .2	16.0	15.0	15.5	33.4	9.9	8.3	8.9	133	82	109	44	38	40	34.5	26.0)	29.8
117429/31	11	44.6	42.7	43.6	15.9	138	15.3	34.2	90	8.5	8.8	131	96	114	43	38	41	35.0	27.0	31.0
117432/34	12	44.4	43.1	43.8	16.1	15.1	15.7	33.5	10.1	9.2	9.6	129	95	109	42	37	40	34.5	27.5	30.0
117435/37	13	44.0	42.5	43.3	16.7	15.1	15.9	32.7	10.5	8.0	9.4	126	77	100	45	38	41 39	33.0	26.0	29.7 31.2
117471/73	14	43.5	42.2	42.8	15.1	13.9	14.7	34.9	10.5	8.8	9.7	139	91	119	4.3	37	39	33.5	29.0 27.0	31.2 32
117474/76	15	45.9	45.1	45.4	15.9	14.5	15.1	36.1	11.5	97	10.8	147	94	121	46	39	42	39.0	27.0	32.3
117477/79	16	46.0	44.5	45.0	$15: 7$	14.6	15.3	35.3	11.9	10.9	11.4	128	71	112	45	38	42	35.0	29.0	32.1
117495/97	17	42.7	42.4	42.6	156	14.4	15.0	34.1	9.0	7.6	8.2	120	67	104	42	35	38.	35.0	30.0	321
117498/500	18	45.1	44.1	44.5	15.6	14.1	14.9	35.8	7.7	6.5	7.3	133	82	110	46	40	42	39.0	33.0 275	35.5 34.5
117501/03	19	43.7	42.6	43.3	15.2	14.1	14.9	34.9	6.7	6.3	6.6	142	91	107	478	38	42 43	42.0 41.0	275 28.0	34.5
117504/06	20	44.0	43.8	43.9	15.9	14.7	15.3	34.4	8.6	78	8.1	124	88	110	48	39	43	41.0	28.0	33.6
117507/09	21	45.6	44.0	45.0	16.4	15.0	15.6	34.6	8.5	6.4	7.6	143	85	108	46	40	43	40.0	30.0	34.5
117510/12	22.	44.8	43.6	44.1	16.1	14.8	15.6	33.9	9.7	7.5	8.4	- 141	81	110	49	41	44	37.0	25.0	30.3
Average				43.5			15.3	34.2			8.4			$10{ }^{\circ}$			41			309

T:DBLE LXVIII.
PHYSICAL. CILAR.ICTERISTICS OF 42-LB. D.F B.S. FOURDRINIER KR.IFT LINER

Mil.c. If

Richle Compres-
$\frac{\text { Across }}{-\quad \text { sion, } 1 \mathrm{~b} .-}$
27.5 5 $\begin{array}{lll}27.0 & 20.5 & 24.5\end{array}$ $\begin{array}{lll}32.0 & 21.0 & 25.7\end{array}$ $29.0 \quad 23.5 \cdot 25.4$ $\begin{array}{lll}29.5 & 23.5 & 26.1\end{array}$
$\begin{array}{lll}25.5 & 19.0 & 22.8\end{array}$ $\begin{array}{lll}25.0 & 18.0 & 22.7\end{array}$ $\begin{array}{lll}26.0 & 20.5 & 23.9\end{array}$ $\begin{array}{lll}26.5 & 21.5 & 24.4\end{array}$ $\begin{array}{lll}26.0 & 20.0 & 23.8\end{array}$
$\begin{array}{lll}26.5 & 21.0 & 23.7\end{array}$ $\begin{array}{lll}28.5 & 23.0 & 24.8\end{array}$ $\begin{array}{lll}28.0 & 22.0 & 25.0 \\ 27.0 & 23.5 & 25.4\end{array}$ $\begin{array}{lll}27.0 & 23.5 & 25.4\end{array}$
$\frac{\text { Elmendorf Tear, g./shect }}{\frac{\operatorname{In}}{\text { Max. Min. Av. Mas. Min. Av. }} \text { Across }}$
.... Amthor Tensile, tb /in

In			Across		
Max.	Min.	Av.	Max.	Min.	Av.
88.0	60.9	73.5	56.5	28.1	47.8
71.1	54.2	62.7	58.7	33.4	50.3
91.4	57.4	69.2	53.5	36.9	45.7
--73:0	54.0	63.9	58.7	41.6	49.7
93.1	69.4	80.0	48.4	36.1	42.5
96.5	63.1	79.5	45.4	33.0	39.1
84.3	67.0	75.9	41.8	-33.7	37.7
93.1	67.7	80.5	48.9	28.1	40.9
96.5	66.0	80.9	48.1	31.7	41.7
93.1	69.4	80.8	45.7	31.5	39.2
96.5	57.6	80.0	46.0	34.5	41.0
93.1	71.1	82.1	45.4	32.2	40.2
94.8	67.7	79.1	47.4	32.2	41.3
91.4	49.1	73.7	45.5	29.8	40.3
		75.8			42.7

$\frac{{ }^{-} \quad \text { Amthor Stretch. \% }}{\text { In }}$
Max. Min. Av. Max. Min Av. Rell

2.9	2.0	2.5	5.2	1.3	3.8	1
3.9	1.6	2.3	5.8	2.1	4.4	2
3.3	1.4	2.0	5.9	.2 .1	4.4	-3.
2.7	1.5	2.0	5.8	2.3	4.5	4
2.5	1.2	2.1	5.2	2.4	3.7	5
2.7	1.3	2.1	5.0	2.9	4.0	6
2.6	1.5	1.9	4.6	2.5	3.6	7
2.5	1.6	2.3	5.7	1.6	3.9	8
2.7	1.9	2.4	5.4	2.2	4.3	9
2.8	1.8	2.4	5.7	2.3	3.8	10
2.8	1.2	2.3	5.8	2.6	4.1	11
2.7	2.0	2.4	5.4	2.1	3.8	12
2.7	1.7	2.3	5.5	2.5	4.4	13
2.9	1.3	2.3	6.0	20	4.2	14

TABLE LXIX
PHYSICAL CHARACTERISTICS OF 42-LB. D.F.B.S. FOURDRINLER KRAFT LINER

Mill I

| Kiehle Compres-
 sion,
 Ib. |
| :--- | :--- | :--- |
| Mcross |

In			Across		
Max.	Min.	Av.	Max.	Min.	Av.
464	360	418	568	400	468
480	392	428	592	416	473
496	368	422	624	448	506
512	392	434	496	448	470
464	360	411	544	416	462
456	360	401	560	400	462
456	368	408	576	424	487
456	376	407	488	408	443
520	352	411	520	368	442
448	360	405	5.36	400	463
424	352	390	536	432	466
496	352	422	592	400	470
472	336	390	488	416	458
432	328	39.4	520	408	474
488	392	431	544	456	497
480	320	416	5.4	440	491
4.40	304	366	464	368	430
464	336	391	504	400	453
488	352	416	504	416	451
46.4	368	412	488	416	454
496	352	411	544	408	443
472	360	401	576	400	469
		408			465

In			Across		
Max.	Min.	Av.	Max.	Min.	Av.
103.3	79.6	90.9	41.8	29.1	36.6
98.2	72.8	88.2	42.8	28.8	37.9
98.2	77.9	88.4	41.3	32.0	37.7
98.2	72.8	88.5	40.8	33.0	37.1
101.6	76.2	86.3	41.0	27.1	35.8
94.8	74.5	85.3	44.2	33.5	38.0
96.5	77.9	87.5	41.1	31.5	35.3
85.3	67.4	78.6	42.0	30.5	36.6
91.4	69.4	81.9	41.8	30.5	37.1
93.1	72.8	83.9	41.6	29.6	36.5
91.4	76.2	85.5	41.1	33.5	37.2
88.0	67.7	80.5	44.4	30.3	37.0
863	69.4	78.4	40.3	29.5	35.3
931	72.8	83.5	42.3	27.6	36.3
91.4	72.8	84.2	42.8	28.8	37.8
94.8	52.5	85.6	44.0	30.5	38.3
94.8	66.0	82.5	45.0	27.8	35.1
99.9	76.2	89.6	41.1	31.0	36.5
98.2	79.6	86.9	41.8	32.7	36.3
98.2	71.1	87.0	44.5	26.1	38.0
106.7	76.2	922	38.4	29.1	35.4
965	69.4	83.4	44.5	30.8	37.9
		85.4			36.8

TABIAE IXX
PHYSICAI. CIIARACTERISTICS OF 42-LR. D.F.B.S. FOURDRINIER KRAFT I.INER
Mini, J

TABLE LXXI
PHYSICAL CHARACTERISTICS OF'.009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mile S

			Weir															Rieh	Com sion, lb	pres-
			12/1	0)	Calip	er, 00	1 in .	Apparent		isture,		Stren	th,	ts		units			In	
File No.	Roll	Max.	Mın.	Av.	Max.	Min.	Av.	lb./cu.ft.	Max.	Min.	Av.									
117275/77	1	28.0	27.0	27.5	10.0	9.0	9.6	34.4	5.3	1.6	3.4	96	49	72	23	18	21	22.0	16.0	19.5
117278/80	2	28.1	27.2	27.8	10.2	9.4	9.9	33.7	7.2	5.2	6.2	85	46	66	22	19	20	26.0	17.0	21.2
117281/83	3	28.0	27.0	27.6	10.1	9.4	9.7	34.1	7.0	6.1	6.4	78	4.4	64	21	18	20	22.5	17.0	19.7
117323/25	4	27.6	26.6	27.1	10.9	10.0	10:5	31.0	12.0	11.1	11.5	95	54	71	23	19	21	26.0	14.5	19.7
117326/28	5	27.6	26.8	27.3	10.8	9.9	10.3	31.8	11.0	8.3	9.6	99	55	69	23	19	21	24.5	16.0	19.8
117329/31	6	28.0	26.2	27.1	10.7	9.4	101	32.2	10.7	8.9	9.8	95	43	71	23	19	21	22.0	16.0	18.5
117332/34	7	27.2	268	27.0	10.7	10.1	10.3	31.5	13.5	11.1	12.3	85	43	64	23	19	21	21.0	17.5	19.0
117335/37	8	27.6	26.6	27.2	10.6	10.1	10.4	31.4	12.0	11.8	11.9	86	45	70	21	18	19	21.5	17.0	19.4
117414/16	9	27.9	27.5	27.7	10.8	9.9	10.3	32.3	9.1	2.5	4.9	84	52	69	23	19	21	22.5	17.0	19.4
117417/19	10	27.2	26.4	26.8	10.5	9.8	10.1	31.8	10.0	7.3	8.5	84	50	67	21	18	19	20.5	16.0	18.4
Average				27.3			10.1	32.4			8.5			68			20			19.5

PHYSICAL. CHARACTERISTICS OF 42-IB. I.F.B.S. FOURDRINIER KRAFT L.INER
Mini. J

TABLE: LXXI
PHYSICAL CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mill S

Riehle Compression, lb.	Elmendorf Tear, g./sheet						Amthor Tensile, lb./in.						Amthor Stretch, \%						
Across	In			Across			In			Across			In			Across			Roll
Max. Min. Av.	Max.	Min.	Av.	Max.	Min	Av.	Max.	Min.	Av.										
$\begin{array}{lll}16.5 & 11.5 & 14.8\end{array}$	284	222	250	298	244	268	63.5	41.6	56.8	31.0	24.4	27.9							
$\begin{array}{lll}19.0 & 13.5 & 15.6\end{array}$	294	226	253	288	254	270	64.3	49.1	57.2	32.2	25.4	28.9 28.9	2.0	1.4	1.7	6.3	2.9 4.0	4.6	$\frac{1}{2}$
16.5111 .0	278	226	250	288	248	269	67.4	41.1	53.9	32.5	24.2	28.5	2.4 2.3	1.2	1.8	6.2	4.0 2.9	5.1	2
$\begin{array}{llll}18.0 & 12.0 & 14.4\end{array}$	306	252	281	286	246	269	66.0	41.5	49.7	34.7	24.2	38.5	2.3 1.8	1.2	1.7	7.7	2.9 2.6	5.1 4.8	3
$19.0 \begin{array}{lll}13.0 & 15.2\end{array}$	328	260	288	340	240	282	58.9	38.1	50.0	35.0	23.5	29.5	1.8 1.8	1.3	1.6	6.3 7.0	2.6 2.0	4.8 4.6	4
$\begin{array}{llll}19.0 & 12.5 & 15.9\end{array}$	282	240	265	364	252	286	62.5	41.5	51.6	36.2	26.2	30.7				6.4		4.6 +8	
$\begin{array}{llll}18.0 & 13.5 & 15.6\end{array}$	348	256	279	356	272	300	56.7	39.6	49.6	36.2	26.2 27.1	30.7 31.6	2.0 2.0	1.3 1.3	1.6 1.6	6.4	2.6	4.8	6
$\begin{array}{lll}18.0 & 13.5 & 16.0\end{array}$	316	262	287	332	256.	285	57.1	41.6	49.2	34.9	26.7	31.0	1.9	1.3	1.6	6.6	2.6	4.8	7
$\begin{array}{llll}18.5 & 14.5 & 16.7\end{array}$	284	252	265	308	244	269	60.1	40.6	52.2	37.9	26.2	31.0 33.4	1.9	1.3	1.5	6.5	3.0	4.9 4.2	8 9
$\begin{array}{llll}19.0 & 14.0 & 16.4\end{array}$	320	228	263	300	234	261	60.9	46.2	52.8	36.7	26.2 26.7	33.4 31.9	1.8 1.9	1.1	1.5	5.3 5.6	2.6 3.1	4.2 4.5	9 10
15.5			268			276			52.3			30.4			1.6			4.7	

TABLE LKXH

PHYSICAI, CHARACTERISTICS OF .009/26-LR. FOURITRINIER KRANT CORRUGATLNG MEDIUM
Milf. 'T

		Basis-Weight, It.$(12 \times 12 / 1000)$			Caliper, 0.001 in .			Apparent Density, $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Moisture, \%			Bursting Strength, points			G.E. I'uncture, units			$\begin{aligned} & \begin{array}{l} \text { Riehle Compres- } \\ \text { sion, } \mathrm{lb} . \end{array} \\ & \text { In } \end{aligned}$		
File No.	Roll	Max.	Min.	Av.	Max	Min.	Av.		Max.	Min.	Av.	Max.	Min	v.	Max.	Mitr.		Max.	Min.	Av.
118078/80	1	309	28.0	29.5	11.9	10.7	11.2	31.6	11.6	9.4	10.8	60	36	47	24	19	22	160	11.5	14.2
118081/83	2	30.0	29.2	29.5	13.1	10.7	11.8	30.0	13.8	10.8	12.5	68	31	43	26	18	23	15.5	11.5	13.7
118084/86	3	26.3	25.2	25.9	10.2	8.9	9.5	32.7	14.4	12.4	13.3	74	43	61	22	17	20	22.0	14.0	18.1
118087/89	4	26.8	26.4	26.6	10.1	9.2	9.5	-33.6	14.2 .	-11.2	12.9	76	43	. 63	23	17	20	- 19.5	14.0	16.9
118000/92	5	27.7	26.0	26.6	10.2	9.4	9.8	32.6	13.0	11.8	12.5	72	42	59	22	17	19	21.0	13.0	16.7
118093/95	6	27.0	25.8	26.4	10.0	9.0	9.7	32.7	12.9	11.9	12.6	75	51	63	23	18	19	22.5	13.0	15.5
118096/98	7	28.3	26.3	27.1	10.4	9.4	9.9	32.8	138	9.1	10.8	76	41	55	20	14	18.	21.0	13.0	17.1
118099/101 -	- 8-	27.2-	25.2	26.4	10.0	8.7	-9.3-	34.1	$13.1{ }^{\text {- }}$	9.6	'11.4	78	47	62	22	17	19	19.0	11.0	15.3
118102/04	9	27.0	24.4	25.9	10.4	9.0	9.7	32.0	12.1	9.5	10.9	74	32	58	23	17	20	20.0	11.0	15.9
118105/07	10	27.4	25.3	26.4	10.0	9.1	$9.5{ }^{\text {² }}$	33.3	11.6^{-}	10.0	10.7		49	60	20	15	18	22.5	11.0	15.8
Average				27.0			10.0	32.5			11.8			57			20			15.9

TABLE LXXIII
PHYSICAI. CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mille U

Institute File No.	Roll	Basis Weight, lb. ($12 \times 12 / 1000$)			Caliper, 0.001 in .			Apparent Density. lb. /cu.ft.	Moisture, \%			Bursting Strength, points			G.E. Puncture, units			Riehle Compression, lb .				
						In																
		Max.	Min.	Av.				Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min	Av.	Max	Min.	Av.
116381/83	1	26.5	26.2	26.3	11.4	99	10.7		29.5	12.1	110	11.6	88	65.	74	22	18	21	20.0	13.0	16.8	
116384/86	2	25.4	24.5	25.0	11.5	9.1	9.7	30.9	12.0	10.5	11.3	90	52	70	19	17	18	20.5	12.5	16.6		
117024/26	3	27.5	26.3	26.9	11.9	10.7	11.4	28.3	9.2	8.0	8.7	75	55	62	22	17	20	23.0	14.5	19.9		
117027/29	4	275	26.4	26.9	101	9.4	9.9	32.6	9.6	8.1	9.0	71	54	63	23	20	22	24.5	18.0	20.1		
117030/32	5	280	26.7	27.4	10.3	9.7	100	32.9	11.2	6.6	8.3	83	46	61	26	18	22	22.0	14.0	18.6		
117033/35	6	27.8	26.8	27.2	12.2	107	11.5	28.4	11.8	8.1	9.7	74	54	64	23	18	21	27.0	16.5	21.5		
117036/38	7	26.5	25.7	26.2	9.9	9.0	9.4	33.4	9.5	8.9	9.1	70	45	59	22	17	19	240	17.5	21.6		
117513/15	8	26.8	247	26.0	10.8	9.5	10.1	30.9	94	7.9	8.8	85	19	65	20	17	19	22.5	17.0	19.3		
117516/18	9	27.7	26.2	27.2	115	10.1	10.7	30.5	8.3	7.0	7.7	87	55	68	21	18	20	26.5	20.5	23.4		
117519/21	10	27.7	26.6	27.1	11.5	9.9	10.4	31.3	100	9.0	9.4	84	55	68	22	16	19	24.0	10.5	22.0		
117525/27	11	28.8	26.0	27.6	11.8	10.4	11.2	29.6	8.4	8.1	8.3	$8)$	55	70	21	17	19	25.5	15.5	20.9		
117522/24	12	28.8	27.9	28.5	12.0	11.1	11.6	29.5	11.0	7.8	9.5	89	49	66	2.3	19	21	290	15.5	21.1		
117780/82	13	260	24.0	25.1	11.4	9.9	10.5	28.7	6.4	6.1	6.3	97	42	59	20	15	17	23.5	15.5	$1{ }^{1} .4$		
117783/85	14	28.6	27.2	27.8	11.5	10.3	109	30.6	7.9	5.5	6.7	76	42	61	23	18	20	24.0	18.5	20.5		
117786/88	15	28.4	27.6	28.1	11.4	10.7	11.0	30.6	6.1	5.3	5.8	9.3	48	67	22	17	21	23.5	14.5	19.1		
117789/91	16	27.5	26.4	26.8	10.8	99	10.4	30.9	8.0	6.5	7.4	83	23	64	25	18	20	21.0	15.0	18.2		
117792/94	17	28.0	27.2	27.6	11.6	10.6	11.0	30.1	92	8.1	8.7	73	38	59	23	18	22	22.0	16.5	18.8		
117795/97	18	26.2	26.0	26.1	11.2	9.9	10.3	30.4	8.7	6.1	7.6	70	43	54	21	17	19	220	14.0	18.1		
117995/97	19	269	25.4	26.3	12.3	9.8	109	28.9	6.3	4.9	5.5	94	59	74	19	15	17	22.5	18.0	20.8		
117998/8000	20	280	27.1	27.5	12.8	10.9	11.6	28.4	8.4	7.3	7.7	86	57	68	22	18	20	19.5	130	17.8		
118001/03	21	27.6	26.8	27.3	12.0	10.5	11.4	28.7	9.1	7.9	8.7	86	50	69	23	18	20	21.5	15.0	18.4		
. ${ }^{\text {vecage }}$				26.9			10.7	30.2			8.4			65			20			19.7		

TABLE INXIL
PHYSICAL CHARACTERISTICS OF . $00 \% / 26-L B$. FOURDRINLER KR.IFT CORRUG.ITING MEIACMI

- MitiL T

TABLE LXXIII
PHYSICAL CHARACTERISTICS OF ,009/26-LB.'FOURDRINIER KRAFT CORRUGATING MEDIUM

Riehle Compression, lb.									Mill U												Roll
			Elmendorf Tear, g./sheet						Amthor Tensile, lb/in.												
Across			In			Across			, In			Across			In			Across			
Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.		Max.	Min.	Av	Max.	Min.	Av.	- Max.	Min.	Av.	Max.	Min.	Av.	
15.5	11.5	12.9	278	250	264	310	264	291	58.4	42.3	51.7	34.4	20.7	28.5	3.4	1.7	2.5	6.0	2.0	4.8	1
15.0	11.5	13.0	272	206°	225	284	220	239	55.9	41.3°	48.1.	34.9	20.7	29.6	27	1.9	2.4	6.4	2.5	5.2	2
15.0	12.0	13.2	240	206	224	294	244	272	57.9	447	52.0	23.4	190	21.0	2.4	1.7	2.0	6.4	3.4	5.1	3
175	13.5	14.9	300	244	276	308	254	280	57.6	36.4	47.8	34.9	18.6	28.8	2.1	1.1	1.6	57	1.7	4.0	4
17.0	13.0	14.5	294	240	264	308	250	268	56.2	35.0	48.5	36.1	23.0	29.1	2.0	09	1.6	5.1	2.4	4.2	5
15.5	11.0	13.1	270	200	239	304	236	277	61.5	47.6	54.1	21.8	17.1	207.	2.3	1.4	1.9	6.4	3.6	5.0	6
16.0	12.0	14.3	258	218	241	284	224	254	53.8	38.1	45.3	35.2	24.0	29.5	1.9	1.3	16	5.7	2.9	4.6	7
165	11.5	13.2	268	186	223	286	224	246	61.3	489	55.4	28.3	186	24.1	24	1.5	2.1	6.7	2.5	5.1	8
170	115	14.2	248	208	226	322	238	275	64.3	50.1	57.7	29.6	19.0	25.0	2.2	1.5	1.9	68	3.0	5.0	9
190	10.0	14.0	246	184	221	338	218	258	62.3	45.0	54.6	303	17.1	24.2	2.4	1.5	2.0	6.4	3.7	5.1	10
18.0	11.0	14.9	270	212	238	280	230	255	63.8	44.4	54.4	30.5	20.1	26.3	2.6	1.8	22	6.7	3.1	4.9	11
17.0	12.0	13.9	292	208	256	318	278	295	67.2	+5.7	58.0	28.1	176	23.3	1.7	1.2	1.5	5.7	2.8	4.3	12
16.5	9.5	13.5	246	186	209	272	212	238	62.1	23.2	49.6	26.2	19.0	22.6	2.5	09	2.1	66	. 3.3	4.9	13
17.5	11.5	15.0	248	206	229	308	256	283	67.4	48.6	57.7	29.0	21.3	241	2.5	1.5	1.9	7.0	3.6	5.0	14
15.5	12.0	13.2	276	212	214	292	252	271	65.5	47.1	56.5	31.0	21.8	266	2.3	1.7	20	5.1	2.9	4.1	15
18.0	12.0	14.4	280	232	256	258	2.30	24.3	49.8	38.1	44.2	42.2	27.4	35.7	3.0	1.9	2.5	7.2	3.4	5.8	16
14.0	8.5	11.8	. 266	216	239	298	242	272	69.4	42.3	55.3	27.9	21.2	24.3	2.1	1.5	1.9	7.1	3.3	52	17
14.0	10.0	12.1	240	200	220	274	242	259	57.7	405	51.1	25.1	16.6	21.7	2.4	1.9	2.2	78	28	5.0	18
16.5	10.0	12.9	234	194	210	270	220	243	69.8	50.8	59.4	32.2	21.8	26.7	2.4	18	2.1	5.9	2.5	4.3	19
14.0	9.0	11.9	248	224	236	298	260	280	64.7	47.4	55.2	27.1	20.8	239	2.6	1.6	2.0	5.9	2.9	4.4	20
15.5	10.5	12.7	322	214	258	346	244	284	61.5	44.7	55.6	27.9	20.8	24.3.	2.2	1.3	1.8	6.4	2.8	4.6	21
		13.5			238			260			53.0			25.7			2.0	-		4.8	

TABIEE LXXIV
PHYSICAL, CHARACTERISTICS OF $.009 / 26-\mathrm{LB}$. BOGUS CORRUGATING MEDIUM
Mill V

\qquad
File No. Roll Max Min. Av. ' Max. Min. Av. lb./cu.ft. Max. Min. Av. Max. Min. Av. Max. Min. Av. Max. Min. Av.

TABLE LXXV
PHYSICAL , CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM

Mile W

	Roll	Basis Weight, lb.$(12 \times 12 / 1000)$			Caliper, 0.001 in .			Apparent Density, $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Moisture, \%									Riehle Compression, lb.			
					$\begin{array}{r} \text { B } \\ \text { Stren } \end{array}$	urstin th, p						G.E.	$\begin{aligned} & \text { Punct } \\ & \text { inits } \end{aligned}$			In					
Institute File No.		Max.	Min.	Av.				Max.	Min.	Av.											
116411/13	1	28.6	27.1	28.0	10.2	9.5	10.0		33.6	12.6	11.4	12.0	95	56	77	22	17	20	23.0	12.5	18.7
116414/16	2	28.3	27.7	28.0	10.9	10.1	10.5	320	11.8	10.9	11.4	89	52	70	22	18	20	240	14.0	183	
116417/19	3	27.6	27.3	27.5	10.5	9.7	10.2	32.4	12.1	9.9	11.2	90	58	74	21	18	19	21.5	14.0	18.2	
116420/22	4	28.0	26.9	27.4	11.3	10.5	11.0	29.9	11.0	10.2	10.7	81	57	67	23	18	21	21.0	12.5	16.4	
116423/25	5	28.3	27.1	27.6	12.3	10.1	10.9	30.4	13.2	12.1	12.5	91	41	68	24	18	21	24.0	15.5	19.7	
116435/37	6	26.3	25.5	25.9	9.3	8.8	9.0	34.5	13.9	12.8	13.2	100	62	74	20	17	18	20.0	13.0	16.0	
116438/40	7	25.7	25.1	25.4	9.4	8.8	9.1	33.5	12.4	12.0	12.2	91	53	71	19	16	18	19.0	12.5	15.8	
116441/43	8	26.4	25.0	25.7	9.3	8.7	9.1	33.9	10.8	9.0	10.0	95	51	69.	20	16	18	21.0	14.0	17.3	
117057/59	9	27.6	26.9	27.4	10.9	10.1	10.4	31.6	14.5	11.7	13.5	82	53	66	22	18	20	22.5	16.0	18.9	
117072/74	10	26.8	25.5	26.2	10.9	9.8	10.4	30.2	15.0	13.0	14.3	93	47	62	22	16	19	24.0	14.5	20.3	
117081/83	11	26.7	25.6	26.0	9.9	8.9	9.4	33.2	12.9	9.3	11.0	90	46	65	21	17	18	22.0	15.5	18.3	
117747/49	12	27.7	26.8	27.2	11.3	9.9	10.6	30.8	6.5	5.8	6.1	89	49	65	22	17	20	17.5	11.5	14.9	
117750/52	13	27.7	25.8	26.5	11.0	9.0	10.2	31.2	7.4	4.9	6.2	73	49	63	20	17	18	20.5	13.5	16.7	
Average				26.8			10.1	31.8	11.1			69					19			17.7	

TABLE LXXIV
PHYSICAL CHARACTERISTICS OF .009/26-LB. BOGUS CORRUGATING MEDIUM
Mill. V

TABLE LXXV
PHYSICAL CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM Mill W

Rieh	Com ion, lb	ores-	Elmendorf Tear, g./sheet						Amthor Tensile, lb./in.						Amthor Stretch, \%						
Across			In			Across			In			Across			In			Across			Roll
Max.	Min.	Av.																			
15.0	10.0	12.4	276	218	240	356	270	315	74.5	57.6	64.4	28.8	19.8	23.6	2.8	2.0	2.4	4.7	2.4	3.7	1
15.5	10.0	12:0	250	224	236	350	274	316	69.4	49.1	61.1	26.9	17.3	22.1	2.6	2.0	2.3	4.6	1.8	3.4	2
14.0	10.0	12.1	250	206	229	370	286	323	64.3	55.9	60.2	26.4	17.4	22.3	2.9	1.8	2.3	4.4	2.6	3.5	3
14.0	8.5	10.9	296	242	260	364	276	371	62.3	46.7	54.0	24.4	16.8	20.5	2.3	1.5	1.9	4.5	2.4	3.2	4
15.0	10.0	12.5	288	218	249	354	274	301	64.5	37.1	51.4	24.4	17.4	20.8	2.6	1.4	2.1	5.3	3.0	4.1	5
14.0	8.0	11.5	238	202	214	330	256	293	67.7	45.4	59.6	26.2	17.9	22.4	2.9	2.2	2.5	4.9	3.3	4.1	6
13.0	7.0	10.3	232	194	213	338	262	292	67.0	50.3	56.5	23.2	19.1	20.9	2.7	1.8	2.2	4.9	2.5	3.6	7
13.0	7.5	10.7	254	200	226	372	270	310	68.7	46.6	55.5	27.3	19.5	22.6	3.1	2.1	2.5	5.1	2.7	3.7	8
14.5	10.0	11.9	238	190	215	336	274	300	59.3	$42.7{ }^{\prime}$	52.9	25.7	18.6	22.2	1.5	0.7	1.2	5.9	2.5	3.9	9
12.5	10.0	11.7	242	202	221	346	264	304	63.7	40.8	54.2	24.4	17.6	20.9	2.4	1.1	1.9	3.6	2.2	3.0	10
15.0	9.0	11.7	264	184	214	304	244	269	62.8	45.5	54.8	25.1	17.6	22.0	2.4	1.6	1.9	6.2	2.9	4.5	11
12.5	7.5	10.3	272	204	231	308	234	277	64.7	42.8	55.3	24.5	17.3	21.6	2.2	1.4	1.9	6.8	2.6	4.1	12
14.0	8.5	11.7	234	192	212	304	248	276	65.0	48.9	55.8	24.5	18.6	21.8	2.4	1.8	2.1	5.8	2.9	4.3	13
		11.5			228			300			56.6			21.8			2.1			3.8	

Mine. X

- -		Basis Weight, Lb .--$(12 \times 12 / 1000)$			Caliper, 0.001 in .			Apparent Density, lb./cu.ft.	Moisture, \%			- Bursting Strength, points			G.E. Puncture, units			Riehle Compression, lb .		
Institute File No.	Rol!	Max.	Min.	Av.	Max.	Min.	Av.		Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.		Max.	Min.	Av.
117117/19	,	26.8	25.8	26.3	9.5	9.0	9.3	33.9	6.4	3.9	5.5	81	49	64	19	16	18	20.0	15.5	17.8
117120/22	2	28.4	26.2	27.1	9.9	9.1	9.5	34.2	7.5	6.3	6.7	83	52	67	21	17	19	23.0	13.0	18.1
117284/86	3	26.5	25.6	26.0	9.6	8.9	9.2	33.9	6.6	3.8	5.1	94	53	71	20	17	18	21.5	15.5	18.1
117287/89	4	27.1	25.3.	26.4	9.9	8.9.	9.3	3-4. 1	6.2	4.3	5.3	. 89.	44	70	21	.17	- 19	-21.0-	15.5	18.7
118051/53	5	28.4	26.6	27.4	11.2	10.2	10.7	30.7	8.4	7.5	7.8	101	49	66	23	18	21	20.0	15.0	17.7
118054/56	6	29.3	26.2	27.3	12.0	10.2	10.7	306	10.8	6.9	9.0	86	52	68	25	18	21	21.0	14.5	17.5
118057/59	7	29.2	26.2	27.3	9.6	8.9	9.1	36.0	9.4	7.5	8.6	88	57	68	23	18	20	20.0	15.5	17.2
$118060 / 62$	$8{ }^{-}$	29.3	28.9	$29.1{ }^{+}$	10.6	9.0	10.1	34.6	9.8	8.4	9.1	75	48	63	26	21	24	18.0	13.0	15.7
118063/65	9	28.4	27.7	28.1	10.6	9.1	9.9	. 34.1	8.7	7.5	8.2	94	57	68	25	20	23	19.0	13.0	16.2
118127/29	10	28.5	27.1	27.7	10.5	9.3	10.0	33.2	12.8	11.5	12.0	79	47	67	24	18	21	18.5	13.0	14.7
1181,30/32	11	284	27.4	27.8	10.0	9.2	9.8	3.4 .0	- 11.8	10:4	11.2	79	46	64	23	18	20	23.0	14.0	17.4
118133/35	12	29.5	26.8	28.1	10.3	9.0	10.0	33.7	11.3	10.7	11.0	97	57	75	23	19	22	19.0	15.0	16.8
1181,36/38	13	29.5	27.8	28.5	9.9	9.0	9.5	36.0	11.9	10.4	11.2	93	53	70	23	18	21	23.0	16.0	18.8
1181,39/41	14	28.3	25.0	26.7	10.7	9.2	9.9	32.4	11.3	10.7	11.1	86	58	68	24	20	22	20.5	12.5	15.3
Average				27.4			9.8	33.7			8.7			68			21			17.1

TABLE LXXVII
PHYSICAI. CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUAI
Mine Y

Institute File $\mathrm{N} \%$.	Roll	Basis Weight, th.$(12 \times 12 / 1000)$			Caliper, 0.001 in .			Apparent Density, lb./cu.ft.	Moisture, \%			Bursting Strength, points			G.E. Puncture, units			Riehle Compression, lb.			
						In															
		Max.	Min.	Av.				Max.	Min.	Av.											
116990/92	1	26.0	24.6	25.4	9.4	8.9	9.1		33.5	7.5	6.6	7.2	55	40	48	17	12	15	22.5	15.5	18.5
116993/95	2	26.0	25.4	257	9.1	8.4	8.9	34.6	9.9	7.1	8.9	82	58	70	14	12	13	27.5	21.0	24.2	
$116996 / 98$	3	25.8	25.0	25.3	9.5	8.9	9.1	33.4	10.2	3.9	6.8	61	39	48	16	13	1.4	20.0	13.5	17.0	
117453/55	4	26.4	25.7	26.0	9.8	8.9	9.5	32.8	15.0	9.5	11.7	92	57	72	19	15	17	20.0	15.0	16.9	
117456/58	5	272	26.0	26.8	10.6	9.1	9.8	32.8	8.0	6.0	7.3	98	58	73	19	15	18	23.0	16.0	18.7	
118204/06	6	27.5	26.7	27.0	10.1	9.4	9.8	33.1	10.9	10.2	10.5	74	53	65	19	17	18	20.0	14.5	16.8	
118207/09	7	27.1	25.2	26.1	9.8	9.0	9.4	33.3	12.3	10.0	10.8	53	39	47	16	12	14	19.0	12.5	15.7	
118210/12	8	27.6	26.5	27.1	8.5	7.9	8.2	39.6	12.7	12.2	12.5	65	46	55	14	12	13	18.5	13.0	14.9	
118213/15	9	26.8	25.5	26.1	9.5	9.0	9.2	34.0	11.8	10.1	11.1	58	42	51	18	12	13	19.0	13.5	16.0	
118216/18	10	25.3	24.4	24.9	9.9	9.1	9.5	31.5	11.2	9.2	10.1	57	32	48	14	12	13	16.5	12.5	14.3	
Average				26.0			9.3	33.9			9.7			58			15			17.3	

TABLE LXXVIII
PHYSICAL CHARACTIERISTICS OF . $009 / 26-L B$. FOURDRINIER KRAFT CORRUGATING MEDILIM
Mile \%

Institute File No.	Roll	Basis Weight, H.$(12 \times 12 / 1000)$			Caliper, 0.001 in			Apparent Density, $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Moisture, \%			Bursting Strength, points			G.F. Puncture, units			Riehle Compression, lb.				
						In																
		Max.	Min.	$A v$.				Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Iv.	Max.	Min.	Av.
116931/33	1	26.7	26.2	265	9.8	8.9	9.2		34.6	9.0	8.0	8.4	89	55	70	20	17	19	23.0	18.0	20.2	
$116034 / 36$	2	27.9	26.2	27.3	9.4	8.6	8.9	36.8	8.1	7.5	7.8	105	56	78	20	17	19	33.0	18.0	21.4		
116937/39	3	28.1	26.5	27.4	10.7	9.7	10.2	32.2	8.9	8.6	8.7	77	50	65	25	20	22	21.0	14.5	17.1		
116940/42	4	28.1	27.5	27.9	10.3	9.0	9.5	35.2	10.1	8.3	9.1	104	43	85	22	20	21	33.0	16.0	21.0		
1174.38/40	5	27.0	25.9	26.5	9.8	8.8	9.3	34.2	8.8	6.0	7.5	99	50	73	22	18	20	26.0	17.5	21.3		
117.4.1/43	6	272	25.9	26.5	9.6	8.7	9.1	34.9	10.1	8.8	9.5	102	36	77	20	17	19	24.0	15.5	20.8		
11744/46	7	26.8	25.7	26.4	9.5	8.7	9.0	35.2	9.6	8.5	9.1	98	60	79	22	17	19	24.0	17.0	20.9		
117447/49	$8 \cdot$	26.9	25.5	26.4	9.5	8.7	9.0	35.2	10.6	9.5	9.9	96	62	75	21	17	19	24.0	16.0	20.1		
117450/52	9	27.0	25.9	26.6	9.8	8.6	9.0	35.5	12.5	9.6	10.9	98	48	78	22	18	19	25.0	15.5	20.8		
117465/67	10	26.9	26.4	26.6	9.9	9.0	9.4	33.9	10.5	7.3	8.6	8.4	56	74	22	17	19	22.0	15.5	18.5		
117468/70	11	26.5	26.0	26.3	10.1	9.0	9.4	336	11.7	9.3	10.8	92	49	73	23	18	20	21.5	13.0	17.2		
Average				268			9.3	34.7			9.1			75.			20			19.9		

TABLE LXXYI

- PHSSIC.NL CHARACTERISTICS OF ,OO9/26-LB. FOURDRINIER KRAFT CORKUGATLNG MEIMLMM.

PHYSICAL CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEI)IUM
Minle Y

Rieh	le Com sion, lb	pres-	Elmendorf Tear, g./sheet						Amthor Tensile, lb./in.						Amthor Stretch, \%						
Across			In			Across			In			Across			In			Across			Redl
Max.	Min.	Av.	Max.	Min.	$A v$.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Min	Av.	Max	Min.	Av	
120	8.5	11.0	240	164	186	232	170	205	51.6	37.6	45.4	22.3	14.7	19.5	2.8	1.6	1.9	6.0	24	3.8.	1
17.5	12.0 105	15.1 12.2	200	136 168	161 183	216	170	188	64.3 50.8	52.0	59.0	30.5	24.0	27.4	32	2.0	2.3	4.4	23	3.1	2
16.0	11.5	13.7	220	174	194	260	160	185	50.8 62.3	41.3 430	46.3 55.4	22.0	17.1	19.9	2.5	15	21	39.	20	3.1	3
$16.0{ }^{\text {2 }}$	11.5	13.7 .	236	190	206	280	192	238	64.5	45.5	55.4	22.7	19.1	21.1	2.5	1.6	2.2 1.9	5.4 6.0	2.6 34	3.7 4.6	5
15.5 13.0	10.0 9.5	13.1	258	202	238	300	240	270	63.0	$49.8{ }^{\text {' }}$	540	31.3	21.7	26.6	2.5	1.6	2.1	5.4	2.2	37	6
12.5	9.0	10.6	214	148	183	224	192	206	53.8	40.8	46.6	22.2	17.6	19.4	2.4	1.6	2.0	5.4	2.7	39	7
14.0	9.0	11.9	200	164	180	274	188	219	54.5	42.0	49.6 49.0	25.6	20.1	22.4	2.4	1.6	21	4.7	3.0	3.8	8
12.5	8.5	10.0	200	162	182	230	176	214	52.3	37.6	459	21.8	19.3 17.4	20.2	24 2.2	1.3	19 1.8	4.2 3.8		3.3 3.0	9 10
		12.3			189			219			50.7			22.1			2.0			3.6	-

TABLE LXXVIII
PHYSICAI, CHARACTERISTICS OF .009/26-LB. FOURDRINIER KRAFT CORRUGATING MEDIUM
Mini Z

