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CHAPTER I

INTRODUCTION

Weiss Molecular Field

The first good phenomenological theory of ferromagnetism was
proposed by Pierre Weiss in 1907, . His theory was that each atom in
a ferromagnetic substance was acted on not only by external magnetic
induction fields but also by an internal field, the Weiss Molecular Field,
which was in the same direction and linearly proportional to the average
magnetization. The effective field that each atomic magnetic dipole
moment sees according to this theory is o+ qI\_;[ where H is the applied
field, M is the magnetization, and q is a constant on the order of 107 oe
for iron and nickel. This theory gave results that were qualitatively
right for the behavior of the magnetization and susceptibility. The Weiss
model was quantitatively wrong at low temperatures in that it predicted
a smaller decrease in M at low temperatures than was observed. For
example, at a temperature 20% of the Curie temperature (the tempera-
ture where the spontaneous magnetization disappears) the decrease in
the relative magnetization is predicted by the Weiss model to be €. 0002
as compared to the observed value for iron of about 0. 01. Alsoc above

the Curie temperature, Tc’ the Weiss model predicted that the inverse



sus ceptibility, x-l, would vary like (T - TC) which is observed for

-1
temperatures T much greater than T ; however, near Tc:’ X7 is

4/3 9,11, 12, 31
observed to vary like (T - TC) .

The Heisenberg Ferromagnet

The origin of the strong interatomic coupling that must exist in
ferromagnetic materials such as iron and nickel was not understood until
1928, when Heisenberg gave the first explanation based on quantum
mechanics. 2, 3 Heisenberg's theory is that the coupling is due to the
electrostatic interaction between electrons of different atoms whose wave
functions overlap in space. In particular the coupling is due to the
exchange term in the energy expression which is necessitated by the
symmetry requirements on the wavefunction of two fermions and for this
reason the interaction is called the ''exchange interaction.'" Dirac
showed that except for a constant term which is not important the coupling
between two electrons on atoms i and j was equivalent to a potential of the

form:

ij ij5 (1)

where §i is the spin angular momentum vector (operator) of atom i

measured in units of # and Jij is the exchange integral of atoms i and j.



For the case in which this thesis is interested where there are
a large number of atoms arranged on a crystal lattice, Equation (1)} is
generalized into the "Heisenberg Hamiltonian' operator for the whole

system which is of the form:

ZJ_ §,.§,-zuHZsz (2)
; j 1 i

where the sums over i and j range over all of the atoms in the system.
The second term on the right is interaction of an external field, H, with
the magnetic moment, u, associated with each unit of spin {(#/2). The
"z direction is defined by H and Sf is the ''z"" component of the §1 opera-
tor. It should be noted that the Heisenberg theory not only explains the
origin of the '"Molecular Field' but changes the mathematical form of the
interaction.

The Heisenberg model is based ona solid where the magnetic
electrons are in states localized about the lattice sites with exchange of
electrons taking place between nearest neighbor pairs. The model does
not take into account the spreading of the electronic energy levels into
bands by the kinetic energy. While it is generally thought that this model
may be very good for nonconducting ferromagnets such as EuQO, its appli-

cability to conductors such as iron and nickel is not certain. However,



the Heisenberg model seems to give better predictions for the magneti-
zation of nickel at low temperatures than calculations that begin with an
itinerant electron picture.

From the comparisons of the results of the calculations done in
this thesis and the experimental results for nickel and iron it appears
that the Heisenberg model is very good for equilibrium properties if one
adds a temperature dependent magnetic moment quenching factor. This
factor seems to change in nickel from 0. 606 at 0°K to 0. 642 at 627°K.
This might be explained as a change in the magnetic polarization of the
4s conduction band which is partially polarized antiparallel to the more
localized 3d electrons.

In some ways the Heisenberg Hamilitonian is very simple. The
physical model that is used with it consists of a large number, N, of
spins on a typical lattice. The system can be completely described in
the quantumn mechanical sense by describing the spin state of each lattice
site; that is, no knowledge of the real-space wave functions is necessary
other than the constant values of the integrals Jij which for the cases con-
sidered in this paper are assumed to be zero unless i and j are nearest
neighbors where Jij = J. This is because once the spin state is known,
the Fermi statistics fix the real space wave functions. Also the system
has a well defined ground state with all spins aligned in the z direction.

The excited states with one reversed spin are given by



LT
18y = N2 0% 570y =82 [0) (3)

where | 0 ) is the ground state and SJ_- is the operator that reduces the
z component of the spin at the j'th lattice site by one unit. The operator
Sl_c defined by Eq. (3) is the spinwave creation operator. The vector k
may be any of the vectors in the lattice's reciprocal space which is
defined as the set of vectors k such that for i = x, y, or z, ki = zrrni/Li
where n, is an integer and Li is the length of the lattice in the i direction
in lattice units. For a simple-cubic lattice containing N lattice points in
real space this set can be reduced to a complete set of N nonequivalent
vectors. > One such set can be constructed by requiring

(0< n <L, 0 E n <L, 0<n < L ). The addition of another atom
- X X y y -z z
to the cubic unit cell to make a body-centered-cubic lattice requires that

another set of N points be added to k space to have a complete set. This

additional set of points can be constructed by either letting

(L €n <2L ,05n <L ,0%n “L)or(0Sn <L , L <n <2L ,
X x x y vy z z X x y v y

05<n <L ) or (0..<_n <L ,0%n <L, L < n <2L ). All three sets
z 2 x X y y z — z z
of points defined in the last sentence must be added to the simple cubic set

for a body-centered-cubic lattice. These sets are complete in the sense

that



\._\'
N "L e = 4 {3a)
k J

where 6. is the Kronecker delta function.
J

The energy of the state defined by Eq. (3) is given by

}C|k)=ZSJ(y0-yk)|k) (3b)
SW
= B | x>
where
oo g
¥ = Z. elk (3c)
ke [4)

and & represents the set of vectors in real space that join a lattice site
to its nearest neighbors.

Spinwave theory uses as a basis the set of states created by
acting on the ground state with all possible combinations and numbers of
the N spinwave creation operators. To see why this leads to difficulties
at higher temperatures, consider the set of spinwave states with two

reversed spins,



k,k »=8 S |o) (3d)
Acting on this state with the Hamiltonian produces

Kk, k, ) = (EZY

1’ %2 e FED Mk KD (3e)

1 2

-1 ) ,
- 2JN é(ykl-k “y Mk +k, - k)

which shows that the two spinwave state is not exactly an eigenstate of
the Hamiltonian. Usually the non-diagonal term is treated as an inter-
action term and perturbation theory is used to find renormalized energies
which are temperature dependent due to the interaction between a spin-
wave and other thermally excited spinwaves. If the diagonal part of the
last equation (i.e. k=k, or k= kZ) is used as the interaction energy

1

between kl and kz. the renormalized energy for k would be

SW s5W -1
E (Ty = E - 2JN Zn (y -v, +¥ - Y, ) (3f)
kl kl kz kz o k2 kl-kz kl
.1 ) ~
_Jl:l-ZN .fl_(.nk (Yo'YkZ)/YoJ(Yo'Yk)

2 2 1



g sW
n, = 1/Qexp(Ek

(T)/k_T) - 1 (3g)
, . B J

ESW

K (T}, derived in this way agree with

The renormalized energies,
i 36
those M. Bloch found by minimizing the free energy ~ and those Dyson
7
found by considering the Born scattering of two spinwaves. The tem-

perature dependence is contained in the term in square brackets which

/2

which is

/2

3
a slower decrease than (Sz) which decreases like 1 - cl(T/TC) .

5
Dyson showed varied at low temperatures like 1 - cz(T/TC)

The constants < and c, are of the same order of magnitude. A more
detailed discussion of the renormalized spinwave is contained in
Appendix III.

The difficulty of using the spinwave states as basis for any type
of perturbation theory is due to the fact that for more than one reversed
spin they are not an orthogonal set and therefore are not the eigenstates
of any Hermitian operator. Consider the Hilbert space of states with n
reversed spins on a lattice of N spins with S = 1/2. An orthogonal basis
for this space is the set of states built up by acting on the ground state
with all possible products of n operators that reverse the spin on a parti-
cular site, S, . Since the S, operators commute for different values of
j, and for S = 1/2 none of the n values of j can be the same; the number

of distinct states, D is given by

n, N



N!
Dn,N T n!{N-n)!

The value of D N is also the dimension of the space. Since the space
n,

is preserved under the Hamiltonian, it contains Dn N eigenstates. The

spinwave picture represents this space by the set of states produced by

acting on the ground state with all possible products of n spinwave

operators, Sl_( . The Sl-c operators commute for different values of k,
but there is no rule limiting the number of times a single value of k can

be repeated. The number of spinwave states in the space is

_ (N+n-1)!

Bn,N T n!(N-1)

which exceeds the dimensionality of the space. Dyson shows that the
effect of this surplus of states is to add a term to the free energy propor-
tional to exp(J/kB T). He argues that since this term decreases as T goes
to zero faster than any positive power of T, it will not affect the power
series in T of the free energy but will only limit the range of validity. He
estimates that this range is up to a value of T such that the magnetization
has decreased to about 75% of its value at zero temperature. !

There are also methods of finding the properties of the Heisenberg

ferromagnet at temperatures above the Curie point. The first of these was

developed by Peter Weiss from a technique used by Bethe and Peierls in



10

the order-disorder problem. Known as the BPW theory,it treats the

interaction between a given atom and its nearest neighbors exactly but

2,8

averages over the effect of the rest of the lattice on this unit. ’
Opechowski introduced a method of expanding the partition function of
10
a Heisenberg ferromagnet in powers of {1/T). Domb and Sykes have
. . . -1 4/3 _
used this technique to show theoretically the X = A(T - TC) behavior
for T slightly greater than Tc of the Heisenberg ferromagnet which is

11,1
similar to the behavior observed for nickel and iron. 9,11,12

Temperature Dependent Green Functions

The fault of the techniques described in the preceding section for
the Heisenberg model is that there is a range of temperatures in the
vicinity of the Curie temperature where neither technique is valid. The
convergence of the (1/T) series becomes slow as T -oTZ and the spinwave
interactions become large for T>0.5 TC. The application of a
temperature ~-dependent, double-time Green function formalism to the
Heisenberg ferromagnet problem by Bogolyubov and Tyablikov offered a
means of finding solutions over the entire range. 13,14,15

The problem with the Green function technique is that the
equations are not in closed form. The time derivative of the first order
Green function has a term which is proportional to higher order Green

functions, and there is a similar relation between each Green function

and the higher order Green functions. In order to find approximate



11

solutions it is necessary to break up this hierarchy of equations. Some
work has been done by decoupling in the second order equation and good
results for life times of spinwaves and bound-spin states at low tempera-
tures have been obtained; however, the resulting equations are not

presently solvable over the whole temperature range even using a com-

16,17,18

puter In this paper, as in some previous works, the decoupling

has been done in the first order equation by approximating the second

14,19

order Green function as a function of first order Green functions.
[ ]

The decoupling used here was chosen because it seems to be required by

certain theoretical and phenomenological criteria.
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CHAPTER II

REVIEW OF GREEN FUNCTION THEORY

Properties of Green Functions

The following review of the properties of the temperature -
dependent, double-time Green functions is patterned after the more
general presentation in a review paper by Zubarev. 15 The retarded
and advanced Green functions for a pair of Heisenberg operators A(t},

B(t) is defined as follows

G_(t) =-ie(t) <[A(t), B(o)]) (4)

G (t) = i6(-t) ([ Alt), Blo) |)

{t) = 1 if t>0

0 if t<O

where the square brackets indicate the commutator and the angular

brackets indicate an average over the canonical ensemble:
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(Al = Q7' {exp (-83¢) AlD) } (5)

O
i

Tr {exp (-BX) }

The symbol B represents the inverse of the product of Boltz-
mann's constant and the absolute temperature, Q is the partition

function, and Tr indicates the sum of the diagonal matrix elements of

the operator it precedes.

The following time correlation functions will be necessary.

Fapt) = CA(t) Blo)) (6)

( Blo) Af(t}))

!
—
o+
At
i

BA

The time correlation functions do not contain the step function
6(t) and are defined for t = 0 where they give the expectation value for

products of operators, FAB(O) = ( AB ),

The spectral representation of the time correlation functions
is obtained by considering the eigenfunctions | C ) and eigenvalues E
v v

of the Hamiltonian X.

}c|cv> = EV|CV) (7)
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By using the definition of averaging over the canonical ensemble,

{3, FBA(t) can be written:

( Blo) Alt) ) = Q_lz (C_ | Blo) A(t)|C_) exp(-8E ) (8)
v v v v

where

Q = Z exp(-BEv)

v

By the completeness property of the set | Cv> and the definition of A(t)

in units such that 2 =1,

At) = exp(-iKt) A(o) exp(iiC t) {9)

Eq. (8) can be written

{ Blo} A(t) ) = Q'IZZM: | Blo)|C Y {(C |A(a)|C » (10)
v u u v

v . u

X exp(-BE.\'r -1 (Ev - Eu) t)

also

{A(t) Blo) = Q" ZZ («, |A(o)|Cu) (CulB(o) | c) (11)
v ou

X exp(-BEv + i(Ev - Eu) t)
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By interchanging u and v in Eq. (11), Eq. (10) and (11) can be

written

BA(t) = J J{w) exp(-iwt) dw (12)

ao

FAB(t) = j J(wlexp(iwt) exp{Bw) dw

-0

where

Jw) = (13)
Q2 (e |A(0) [C ) (C | B(o)| C_Yexp(-8E ) &(E -E_-u)
uv v u u v u u v

The function J(w) is the spectral intensity of FBA(t).

The spectral representations of the advanced and retarded Green
functions are obtained from the spectral representations of the time
correlation functions. The Fourier component of Gr(t), GIr(E), is

defined as

G_(t) =I G, (E) exp(-iEt)at (14)

Gl (E) = ﬁj G_(t) exp(iEt) dE (15)
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By using the definition of Gr(t), Eq. (4), and Eq. {12), GI'-(E)

can be written in terms of J{w)

1
2mi

I exp(iEt) 6(t) (F, o -Fp ) dt (16)

-

G'(E) =
I

co

[ J(w)(exp(Bw)-l)é"lr-f-i'Jl exp i(E-u) ) 8(t) dt du

The step function 6(t) can be written in the form

_ lim 1" exp(-ixt)
8t = Lot zn J:m xtie dx (17)

To verify Eq. (17), consider x as the real part of a complex
variable and that the integral is taken over one of the contours shown

below.

¢ -ic ® -ig

t >0 t < 0
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The integrand has a pole in the lower half plane at x = -ie,
When t > 0 the contm;.r must be closed in the lower half plane and the
right side of Eq. (17) is equal to one by Cauchy's Integral Law. If
t >0 then the contour must be closed in the upper half plane and does
not enclose the pole, so the right side of Eq. (17) is zero. Since these

are the defining properties of B(t), as given by Eq. (4), Eq. {17) is

valid.
Now one factor in the right side of Eq. (16) can be written
[ee] /: - 1 (o] w l
meepr(E-w)t) a(e) dt = == _L _L exp 1(E-w-x@ dx dt  (18)
B xtie
. 1
T E-wtie
Since
1 Jm i(E )t ;jdt = 8(E ) (19)
21 exp\ M -w-x)t = -W-x

-0

Thus the Fourier component of Gr(t), Egq. (16} is given by

vy o lim 1 7 (Cexp(Bw) -1 )I(w) du
alm = I, “L C E_w+ie> (20)
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A similar calculation for the advanced Green function yields

lim 1 Iw (Fxp(Bm)-1;>J(m)dw (21)

1
E) - —
Ga( ) e-0t 21

E-w-ic

An important property of Glr(E) is that it can be continued
analytically into the upper complex plane for E = g+i}) where A > 0.
When A >0 the limit €~ 07 can be taken by setting € = 0. Similarly
G; ({E) can be continued analytically into the lower complex plane

(A <0). In this case

G (E) = lim, G (E+ie) (E real) (22)
! _ lim ' .
G (E) = "M, G (E -ic)

Taking the difference between Eq. (20) and (21) and using

Eq. (22)

:if:ﬁ. (G;(E+ie)— G;(E-u:)) {(23)

t:if]oJfELTTJ::G"P(B‘”)‘I)J“”)[E-LE ‘E-ml-ie ]d“’

-i@xp(BE)-l) I(E)
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where E is real since

lim 1 _ 1 - . . i
e=0 E-ytie E-uw -ic 2mid(E - w) (24)

Equations (22) and (12) can be used to write the time dependent

correlation functions in terms of the Green function.

F,g(t) = At) Blo) (25)

AB

lim ) = exp(-iwt) ' ) ' )
c.ot 1 ‘.L, expl~ 551 (Gr(w+1e)-Ga(w-1e)>dw

Therefore if solutions for the Green functions can be found, so
can those physical properties which are determined by the time correla-

tion function.

Green Function for the HeisenberiMignet

For the case where only the nearest neighbor interaction is of

importance, the Heisenberg Hamiltonian, Eq. {(2) can be written as

W = JZZ(S.ZS.Z +8Y sy +8VsY N2 i), 8 (26)
j o6 N3 jte g oj¥d o §o+d Llj.l

where j is summed over the lattice and & is summed over the nearest

neighbor vectors.



Since the raising and lowering operators are defined by

and have the commutation rules

Equation (26) can be written

X = _Jsza (sj"s‘."‘

j+d

]I
-+
tn

Fom N z
+ 8. S -2 HZS
J j+6) H i h]

20

(27)

(28)

(29}

The particular first order, or one particle, Green function used

is defined as

Gl 1) = - 16(t) ([57(0), S (o) ])

o(t) =

l1ift>0

0ift< 0

(30)
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The equation of motion of G(j, t) is
i -Gl = 8 (87, Sl(0) ]) (31)
+ o0 ([ 4757 (4, 81o) ]
The time derivative of the operator is given by {for # = 1)
1—s “(t) = [s (e), % | (32)

Using Equations (20}, (28), and (29), Eq.(31l)becomes

zZ .
dt G(J,t) = 25(t) BJ_ (Sj Y+ 2uH G (j,t) (33)
. Z - +
+27Ji B(t); ([Sj+6(t)Sj(t). SO(O)]>

; z - +
- lee(t); <[sj(t) LS so(o)]>

where &(t) is the Dirac delta function and 6j is the Kronecker delta,
6j o The right side of Eq. (33) contains two terms which involve higher

. z . .
order Green functions when the S| operator in the commutator is

+ -
expanded in terms of Sj and Sj operators. For example
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s = s-s-s' (for S = 1/2) (34)

The method of decoupling used here was originated by Callen,
and is most easily described for the case S = 1/2. In addition to
Eq. (34), S; can also be written

s® = 1/2(5'8] - 55 (35)
J ) ) J )

by rewriting Eq. (28). By multiplying Eq. (34) by an arbitrary parameter

o and Eq. (35) by (1 - a) and adding it follows that:
z + - -+
Sj = aS+ (1/2){1 -a)Sj Sj -{l/Z)(l'l'(X.)Sj Sj (36)
Using Eq. (36) in the second term on the right side of Eq. (33) produces:
Z - + - +
(87,50 5,10, S (o) | = as ([S]0, S(0) ] (37)
Mot - "
+ (/201 -a) ([S] (08 (6) 81t} S, (o) |

- (1/2) 0 - ) ([5., 0 8) (057(0, S (o) ])
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The higher order Green functions are decoupled in the following

symmetric way:

+ - - + + - - +
([5,50) 8;,5(008710), 5010) ) » (] (5., (60) ([ (8). 8(o) |

-t - +
# (S](08], (1)) (8, (1.5 (o) | (38)

This is analogous to the Hartree-Fock procedure in second quantization

theory. 20 After decoupling Eq. (37) becomes;
z - + z - +
C[8],50s] (0.5 0) [y = (ST) ([8](4). 8 (o) ] (39)

-t - +
- (]S ) ([5], 411 S to) |

When no times are shown for operators, all of the operators in the
angular brackets are at the same time making the resulting expectation
value independent of time. Also since (sz) is independent of j, it may
be written simply (Sz Y. The third term on the right of Eq. (33) is
identical to the second if the subscripts j and j+ & are interchanged.
As Callen points out, if a is set equal zero, the result will be

the same as setting the operator sz in Eq. (33) equal to the number
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(s*®

>. This is what Tyablikov did and obtained spinwave energies at

low temperatures proportional to (Sz) which would decrease like
3/2. . .. . . e

(1 - clT ) in disagreement with spinwave theory's prediction of a

2 ,14,15,19,
{1 - C2T5/ )dependence.7 5.19,22

His results over the higher
temperature range are in agreement with the present results.

Callen reasoned that g should be approximately equal to unity
when (Sz) = S because an approximation of sz based on Eq. {32}
would be more accurate in this region of temperature. Also he
reasoned that g should go to zero as (Sz )= 0 since an approximation
of S; based on Eq. {35) should be more accurate. As shall be shown
later, these same requirements are necessary in order that agreement
with spinwave theory shall be obtained at low temperatures
((Sz) = S) and that a finite Curie temperature shall exist. The ter-
mination function, a, chosen by Callen was { s%) /ZSZ for arbitrary S.
Since the requirements above do not completely determine g, the first
step of this work was to find additional physical criteria that would more

completely determine g. This determination is covered by Chapter V.

The resulting function is

z 3 4
a = (S8") /28 (40)
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There will be more discussion on this form later. For the rest
of the development of the Green function equations ¢ will be left arbi-
trary. The equation of motion for G(j, t), Eq.(33), can now be written

as:

(i%-zuH+2Jyo(<sz)+a<s:;sg>)>c (41)

(j, t)
-ZJZ (<sz>+ a ¢ s+s_'>>c(j+a,t) = 25(t) 8(j) (52)
5 e

Looking back over Eq. (4) and (30) through (41) it can be seen
that Eq. (41) would be equally valid if G(j, t) had been defined as the

advanced Green function rather than the retarded Green function. By

Eq. (25)

m i Jm exp(-iwt)

(Sj-(t)S:(o)) = ii_,0+ - expl-u/8)-1 (G'(j, w+ie) -G'(j, w-ie)dw

In order to find Gl(j, w), G{j,t) in Eq. (41) is replaced by the

expression on the right side of Eq. (14)
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J‘ {i% - 2uH + 2Ty (5"y + a (S:S;MG‘(LE) (43)

-ZJZ( (S%Y + o (s:;s;) ) G'(j+ G,E)}exp(—iEt) dE
= 25(t) 5j (5%

By multiplying both sides of Eq. {43) by (1/2 1) exp(iwt) and

integrating over t one obtains

(w-ZuH+ZJYO((SZ)+a (sZsé))G'(j,m) (44)

_sz((Sz)+a(S+S-))G'(j+6,w) = Tr-l (SZ)ES.
5 o b J

Notice that (SZS;) is independent of the particular nearest neighbor
vector & and can be moved out of the summation. At this point it is

[ ]
convenient to represent G (j, w) as

G'(j,w) = I%Tz G'(k, w) exp(ik'+ 7) (45)
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where k ranges over the set of N vectors defined after Eq. (3). By
using Eq. (45} within Eq. (44} and then multiplying by exp(-ik - j) and

summing over j, Eq. (44) becomes

! Zz + .- |
[w-2uBE +2506%) + a (8] S (v, - v) |Gk ) (46)
= (5%
The solution to this equation is
-1 Z
Gk, 9) = TS50 (47)
wt+E
k
where
E - - ! Zz + .- _
K 2uH" +2J((8%) +oc(SC’S6 ))(Yo Yk) (48)

It is now apparent that the temperature dependent renormalized

energies, E , are dependent on the termination function, ¢.

k
By using Eq. (47) and (45) in Eq. (42)
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(sI(t)s’ (o)) = (49)
it :
lim Z i (8%) Texplik-j -iwt) 11 )dm
e-0" g N J exp(-Bw)-1 w+Ek+ie m+Ek-ie

Again using Eq. (24)

2 (Sz) z explik- j-iwt)

N { exp(BE)-1 (50

(57(1)s (o)) =
J (e}

For the case S = 1/2, the relative magnetization is given by

z

M = 2(8%) = 25-2(S555) (51)

Utilizing the expression for (So- S:) from Eq. (50)

zZ
) 4 ({5%) 1
M =1-—¢ i exp( BE, ) -1 (51a)
Eq.(51) may be written in the form
1
M= —+— {51lb)

1+2%
(o]
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where

1 explik . i)
= 51

The magnetic energy of the spin system can be evaluated by

finding the expectation value of the Hamiltonian, Eq. (26)}.
ZoZ + .- z
. = - S
(30D NJ vy (( s7S%) + (sosé))+zNuH (s%) (52)

The correlations of the z components appearing in Eq. (52} may be

written in the following form for S = 1/2.

u

(8257) = ({5 -5]87) (5 -8;5;)) (53)

1l

2 - ot cat am ot
5% -2(5_S_ )+ (8.8 5.5, )

In order to find the last term on the right of Eq. (53) exactly
it is necessary to have a solution for the second order Green function
involving four operators. In the spirit of this work it can be contracted

by the same procedure that was used to contract the second order Green

function.
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- -t -+ - -+ +,.-
(50505656)-:(SOSO>(5686)+a(5056)(5056) {55)
When this is done Eq. {52) and (53) become

Z_Z Z 2 -t 2
(SOSG) = (87) + “(Sosa) (56)

YA 2
0 = - Ny ((8%) +(S]5)) + a(s]S})) (57)

All of the expectation values on the right side of Eq. {57) can now be
calculated by using Eq. (50), (47), and (40). Once {(3X) is known as a
function of temperature the specific heat, d {(})/dT, and the entropy,

dS =d (i) /T, can be obtained.

Extending the Results to S >1/2

The following technique for calculating (8%) for 5 > 1/2 is due

to Callen. 19 He used the following Green function
. _ . - z T
Gla,j, t) = -i6(t){ [sj (1), exp((as” (o) )S(0) ]) (58)

which reduces to the Green function defined in Eq. (30) when a = 0.

The equations of motion and termination procedure, Eq. (31) through
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(44), are essentially the same for Ga, j, t) except for obvious substitu-

tions. For example Eq. (44) will become

(w— 2uH + ZJYO( (s®)y + a(S:Szg))G'(a,j,w)

-ZJZ((SZ> +a(st87))G (aj w)
5 o b

1 - z, .+
= -5 ([Sj . exp(—aSo) So ])
Equation (50) becomes
(S](t) exp asz(oD s:(o)>

- + 1. s
. <[So , exp(asz) So:l) Z elk_] -iwt
N k exp(BE )-1

where the Ek remain unchanged from Eq. (48). Callen's technique

requires the following definitions

(59)

(60)
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8la) = ([S] explas?), s, |) (61)
a(a) = (explaS))) (62)
wla) = (8] exp(aSZ)SZ> (63)

D= = (64)

Equation (60} implies

pla) = —§08(a) (65)

where @0 was defined in Eq. (5lc).
The following identity can be proved valid for all values of n by

mathematical induction.

[s+ (s> )n] = {{s?% - 1)n -(s")n} st (66)
o’ o i o o o
This implies that

[Sz, exp(aSz)] = (e™2-1) exp(aS:)S:; (67)



33

and that

B(a)

il

‘<s; [exp(aSi), s: ] + [So SZ ] exp(a.SZ)) (68)

{1 -e-a)(S- exp(a.Sz)S+) -2 (Sz exp(a.SZ))
o o' o o o

Equation (67} can be written

z, .t a .+t Z
exp(aSO) S0 = e So exp(aSo) {69)

and used in Eq. (68) along with this identity from Pauli spin theory

2
s st = s(s+1)-5%-(s?%) (70)
o 0O o] O
These replacements put Eq. {68) in the form
Bla) = S(S+1) (e* ~1) <exp(as§)> (71)
2

- (ea-!- 1) (Sz exp(asz ) ) - (ea -1 ((Scz)) exp(a.SZ )

S(S+1) (62 -1) q -{e*+1)Da -(e* -1) D% q (72)

1]

B(a)
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By using Eq. (69) and (70), Eq. (63) becomes
wla) = ea[S(S+1)Q-DQ-DZQ] (73)

Now Egs. (65), {72) and (73) can be used to find the differential

equation for ) in terms of S and. @o.

a
2 1+ +
D Q+{ @o)e §o DQ-S(S+1)Q= 0 (74)

(1+3)e” -8
Q [e]

The two boundary conditions required to solve Eq. (74) uniquely

are given by Eq. (62)
Q{e) = 1 {75)

and by the operator identity

‘” (s -p) = 0 (76)
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which by using Eq. (62) can be written

S
I] (D-p) Qo) = 0 (77)

p=-35

The solution to Eq. {74) satisfying the boundary conditions,

Eqgs. (75) and (77), is

S5+1 -S + +
Q(a) = @i e 72 -{1+ Qo)zs le(s la (78)
25+1 25+l
(257 -1+ ) J[a+ee® -3 ]
o o o
The value of (Sz) can be found by differentiation.
(6% = Dalo) = (5-8 )M1+2 ) "4 (s+1+8 )s™"! (79)
25+1 25+1
(1+3 ) -3
o o

As expected Eq. (79) reduces to Eq. (50) for the case S = 1/2. This

result also agrees with earlier work by Tahir-Kheli and ter Haar.
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CHAPTER 111

CALCULATIONAL PROCEDURE

In order to calculate the physical properties of the Heisenberg

ferromagnet by using the theoretical framework described in the last

chapter, it is necessary to calculate the sums @o and Qé defined by
Eq. (51)
N
1 Z explik- j)
3. = — (87)
j N exp(Ek/kBT) -1
where from Eq. (46)
E = H' + JL{y -
Kk 2y J (YO Yk) (88)
+ -
L = 2((5% +a(S 5,)) (89)
Ye = z exp(ik - §) (90)

&

where b as before signifies a nearest-neighbor vector or the set of

nearest-neighbor vectors. These sums were calculated by using the
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Algol program contained in Appendix 1 on a Burroughs' B-5500 com-
puter. In Eq. (87) the simple cubic set of k vectors discussed in
Chapter 1 is summed over. However for the body-centered~cubic and
face -centered-cubic lattices, instead of adding additional sets of points
to the summation it is easier to assign additional sets of energy values
to the basic set of k vectors. 22 This procedure is equivalent to that
used for the "optical modes'' in lattice vibration theory. If the lattice
consists of L by L. by L. lattice units (L L. L. = N/gq), then
X y z X y Z

k=(k, k, k )wherek =21n /L , etc., andn , n , n are integers,

y z x x’ Tx X 'y 2z

X

0< n < Lx, etc. For the simple cubic lattice where the number of
X
atoms per unit cell, g, is one, there is only one ""mode of oscillation"

and

Yo " Vi = 6 -2 cos(kx) - 2 cos (ky) -2 COS(kz) {(sc) (91}

For body-centered-cubic where q = 2 and face -centered-cubic
where q = 4, there will be q '""modes of oscillation' indicated by the mul-

tiple signs in the following equations. For body-centered-cubic

Yo Yy T g™ 8 cos (kx/Z) cos(ky/Z)COS (kz/z) {(bec) (92)

and for face-centered cubic
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Yo " Y T 12 ¢ 4 cos (kx/Z) cos (ky/Z) {(fcc} (93)
i: 4 cos(ky/Z) cos (kz/z)
i 4 cos(kz/Z) cos (kx/z)

Each mode is summed over k.

The problem is to find self consistent solutions to Eq. (87) for
j =0, 5 and to Eq. (88), since L is a function of @6 by Eqs. (40), (48},
(79), and (89). The following technique is used to find solutions for zero

applied field without reiteration. Define

R = kBT/JL = 8/L (94)

where 8 is the temperature multiplied by Boltzmann's constant and
divided by the exchange constant.

Equation (87) can be written in terms of R

N
exp{ik - j)

1
5. = =
i TN eXP((Y0~Yk)/R>-1

(95)
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The computer is now used to find @0 and & 5 for a fixed value

of R. Next L(@o, & _, S) is found from Eqs. (40), (48), and (79). The

b
requirement for self consistency is satisfied if finally the reduced tem-
perature, 6, is set equal to LR, where R is the value initially chosen.

As the parameter R is stepped from 0 to » by the computer, values of
all the terms of interest are obtained for a set of values of 6 from zero
to the Curie point, GC, where (Sz ¥, L, and all Ek go to zero.

Results for 8§ > BC can be obtained if ZuH' is set equal to a non
zero value and the limit taken as ZuH‘ -+ 0. Experience with these cal-
culations has shown that if 8 is more than 2% greater than GC, the
results for susceptibility, specific heat, and energy of nickel obtained
for a value of 2 p,H' equivalent to an applied field of 125 oe are essentially
the same as the results for Zqu -0 (see Fig. 7). The physical proper-
ties of interest in this region are the initial susceptibility,

X = lim(H - 0)M/H, the specific heat which is proportional to (S: Sg )
in this region(Eqs. (52) and (57)), and the correlation function (S: SJ_- )
which is related to neutron magnetic scattering.

From Eq. {79) it can be seen that as (Sz) -0, @O - o and that in

this limit

(8%y = CS(S+1)/3)§0‘1 (96)
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and from Eq. (48)

<S’;SJ.'> = (ZS(S+1)/3) 8./%, (97)

While @0 and Qj both become infinitely large as 2yuH' -0 and
] >8C, their ratio is well behaved (see Chap. IV).

The specific heat, C, and the entropy, S, are calculated by
starting the program with a small value of R and then increasing R by
small increments so that each value of § calculated is only slightly
larger than the preceding value. The value of {(H) is also calculated
by using Eq. (52) and Eq. (57) for each 6 If the set of 8's calculated
are designated by en(en > en-l) and the corresponding value of {H) by

En, and if 1 is the number of atoms per unit volume or per unit weight

c(lo_+8__)/2 )= -nky/INE_-E__)/(9 -8__) (98)

s(le +8 )/2 )= -;ﬂ 2nkg/INE_(-E  )/(8.+8, ;) (99)

The accuracy of Egs. (98) and (99) depends on the smallness of the

).

intervals (68 -8
n n-1l

The sum on the right side of Eq. (87) has a singularity in the

term for k= 0 when 2 pH‘ -+ 0. In the limit N~ », the sum becomes an
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integral and this singularity takes the form k_z, where k is the distance
from the origin. This type of singularity does not prevent convergence
of a three-dimensional integral. For a finite sized crystal the singu-
larity is removed by a small value of 2 H' (or by crystalline anisotropy)
since this term corresponds to a uniform rotation of M away from the
z-axis.

Since this thesis is concerned with properties of bulk materials,
the sums were made to approximate the equivalent integrals. The

Algol 60 computer program which was used is presented in Appendix I.
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CHAPTER IV
BEHAVIOR WHEN MAGNETIZATION VANISHES

When the magnetization, M, vanishes, it is possible to obtain
the behavior of M just below the Curie temperature, TC, the energy
remaining in the X-Y correlations at TC, and the initial susceptibility
above Tc by expanding expressions as power series of M and looking
at only the first few terms. This technique is good only for M < < 1.
These results are interesting in themselves, and they serve as a check
on the computer results.

In order to obtain M(8) as £ goes to EIC {and @O goes to =), the
numerator and denominator on the right side of Eq.(79) are expanded in

descending powers of @o to obtain

(8%y= |:S(S+l)/3] [@js'1+ (1/2)(25-1) @028‘2+(3/1o)(zs-l)(s-l)éis ;3' _ ] (100)

@25 +8 @28-1 +(S/3) (25-1)§23'2+ o
o] [} o]

The expansion is correct to three orders of @o so that the results will be
correct to three orders of M = (8” >/S. The following algebraic equa-

tion will be used
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(1+ aX+bX2)_1 =1 —aX+(a.2 -b)X2+O(X3) (101)

3
where O(X") indicates terms that vanish at least as fast as X~ when X

goes to zero. Using Eq. (101), Eq. (100) becomes

(8% = [5(s+ 1)/3][:;;1 -1/2 @0-z+a{>;3+ 0(@0'4)] {102}
a = 3/10 -5(S+1)/15

The next step is to expand @o in powers of L = 2 (8% + Za(S: S;)

which is O(M) if g is O{M}.

1 1
=L Q
Qo N z exp@(yo—yk)/(B) -1 (103)
-1
(Yo -~ Yk)
EY) N
NL & [1+ (1/2)(L/8)y_~ v, )+ (1/6)L/8) (y_- )"+ OL )]

Using Eq. (101) once

@0 = bd/L -1/2+ yoL/IZB + O(Lz) (104)
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and then using Eq. (101) again

2 3

| L L L 1 bYo
5 -+ + [4‘12 + oLy (105)
o bs  2b°9%  bog3
where
1 Z -1
N | (Yo~ Yy (106)

and since Z Yy © 0 as can be seen from Eq. (90)
k

z {v (107)
k

(o]

o°
A Ly

Using Eqs. (102), (105), and M = (S%) /S

[is+ 1)/3] [L/ve - ar’/e>+ oLt | (108)

d=(3+ yb - 12:31)/121:3

It is interesting to look at the bebavior of M as 8§ approaches
BC for termination functions of the form a{x) = (SZ)K/ZS]H1 = MX/ZS

for which

L = zSM+s'1M"(s: S;) (109)



45

By dropping the O(L3+) terms from Eq. (108) and assuming an expansion

of (SZS‘; ) in powers of M of the form
<s:s;5> = ¢+ eM + fMZ + O(M°) (110)

the following asymptotic forms are found

2
2 39 25(S+1)
x > 3: M™ = -8 (111)
a(285)°(5+1) ( 3b )
x =3
2
2 3bS 6 -25(S+1)
M = -6 (112)
(s+1)(8bas®.cf) ~ 3P )
3>x>1:
-1 3bS 25(S+1)
M s c{S+1) 3b B e) (113)
x =1 ({if e = O}:
3bS6° 2
2 (25 +c)(5+1) e) (114
M" = (si1)(8bast + £6%) 3bS

where b = 0.2527 (sc), 0.1742 (becc), 0.1122 {(fcc). The value of d
which depends on the lattice type and S can be found from Eqs. (108)

and {102). The values of c are given by Eq. (118). The computer
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calculations for x = 1 (Callen's termination) give MZ as a linear func-
tion of T from M = 0. 4 to M = 0 implying that e in Eq. (110) is zero.

Equations {111) and (112) show that for x~ 3 the asymptotic
behavior of M(8) as 8 - Bc is given by

Mm% = E (1 - e/ec)

Values of the constants £ and Gc derived from Eqs. (111) and (112) are
shown in Tables I and 2 in Chapter V. Figure 6 in Chapter VI shows that
the computer solution for d(Mz)/d( B/BC) approaches from below as M —~ 0
the value of E found from Eq. (112) for a face-centered-cubic lattice
with S = 1/2.

For 3>x>1, Eq. (113) implies that M(0) is double valued since
0 initially increases above Bc as M increases from zero. This behavior
is also apparent from the computer solutions.

The limit of (S: S; > as M goes to zero can be found and yields
the constant ¢ used in the last section and the energy in the X-Y correla-

tions at the Curie temperature. Equations (50) and (51c) combine to yield
(sts’y=2(s* s (115)
o s’ "~ 8

using the value for (S”) from Eq. (102), there results
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+ -
(SOSE)) = 25(S+ 1)@5/3604-0(M) {115a)
The function
ik- &
1 e
= = 116
% = N Z exPlLy_ - ¥, )/0) - 1 (116}

can be approximated near the Curie temperature as

Vi~ Y ©
I E(k 0}Yo + O(M®) (1162)

5 =
i) LN -
YO k (YO Yk)

0 1
= I (b - —)
YO YO
Similarly
& = .1 B O(Mo) (117)
o YOL
So that
lim + -
Mo 0 (sosé) = (2/3) S(S+1){1 - l/byo) (118)

where the values of b are given in the text after Eq. {114). Values of

+ -
(Sosé ) /S2 for 6= 8 _are shown in Table III, Chapter VI. Equation (118)
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is valid for all terminations such that L goes to zero as M goes to zero.
The initial susceptibility above the Curie point can be found by
putting the 2 uH' term in Eq. (103) and expanding to first order in M and

H'. If H=uH/J then

Z 1 (119)

1
o ° N exp((L(Yo-Yk)+2H)/9>-l

Y Z 1

= — L C
Ny Ly +2H-Ly_

. BA(2H/L)

- LY0+2.H

where the function A (2H/L) is defined by

1
1y —
7~(X)—Nk - Y (120)

Y0+X

A table of values of A (X) is contained in Appendix II.

To the first order for all terminations a(x) with x > 1, L is 25M,

From Eqs. {102) and (119) to first order in M

(S+ 1)(25My,_+ 2H)
36 X (H/SM)

M = (121)
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-1
If a relative inverse susceptibility, ¥ , is defined by

:

X 25IM (122)
. 2
= 25M
then Eq. (121} can be written
-1 -1
¥ = [3x(zx )/4sus+1)]e - v /2 (123)

The behavior of the susceptibility can be understood by writing

Eq. (123) for S = 1/2 and using the Weiss-Law Curie point, 8w= Y, /2.

-1 -1
x = A(2% Y6 - 8 (124)

o) = 1
A{o) = 1.5164 (sc)
= 1.3932 (bcc)

= 1.3447 (fcc)

-1
If M2y ') were always unity, Eq. (124) would agree with the

Weiss molecular field model results. As it is, the Weiss law is a lower
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limit of X-l which is approached asymptotically as 6 and xhl become
increasingly large as 'is shown in Fig. 8 in Chapter VI. The values of
A{o) were obtained by Watson who put Eq. (120) in the form of an
elliptic integral. 34,35
The susceptibility given by Eq. (124) agrees with the results

from direct computation (Figs. 7 and 8). Also since A (o) = bYo the

Curie points implied by Eq. (123) agree with those implied by Eq. (112).
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CHAPTER V
CHOOSING THE TERMINATION FUNCTION

The formalism has been developed up to this point for an
arbitrary termination function, a. Results for a set of functions,
o (x) were derived in the last chapter, but in order to choose the proper
function @, one must go outside of the Green function formalism to com-
pare with results of other solutions of the Heisenberg model and experi-
ment.

Liooking back at Eqs. (94) and (95) it is apparent that the sums Qj
depend uniquely on R (R = kBT/JL) and the reduced magnetic field H,
(H = uH'/J). Therefore (Sz), (SZ Sj- Y, and all other expectation values
are functions of R and H. The termination function's role is in the rela-

tion between R and the reduced temperature 8(6 = kBT/.T) which is
z + -
8 = R(2{S )+Za(SOSB)) (125)

The assumption is made that o is a function only of (Sz). This is
reasonable since for a fixed value of applied field, the functions R,

+ -
(SO Sj Y, and @j are all functions of (Sz). Equations {50) and (89) show

that @0 is a monotonic function of (Sz) and Eq. (95) shows that @0 is
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also a monotonic function of R; therefore, R is a monotonic function of
(s®y. An expectation values are functions of R and hence are functions
of (SZ). The variables H, S, and lattice structure are contained im-
- . - z
plicitly in {S ).
There is no unique means for determining a; however, there

follows a number of arguments that indicate the best choice is a{x = 3)

or

3 4
a = (s8%y /28 (126)

The Héisenberg model is probably a very good model for an
insulating ferromagnet such as EuO where the Eu atoms are on a face-
centered-cubic lattice and seem to have a2 magnetic mmoment of 7 Bohr
magnetons indicating S = 7/2. If the M vs. T curve measured for EuO
(Ref. {42}) is assumed to represent a Heisenberg ferromagnet, then a
could be determined over the whole range of O < (Sz) < S by using
Eq. {125) and values of R as a function of (Sz) as computed by the
Green function formalism. As shown in Fig. 1, the function a given
by Eq. {126) produces the correct magnetization curve.

The values of the reduced Curie temperature, BC, for various
termination functions, can be compared with the values obtained by high
temperature series solutions for the Heisenberg model. 1 This is done

in Table 1. The result of this comparison is that the functions o(x) with
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Figure !. The magnetization of EuO as measured by

Matthias, Bozorth, and Van Vleck compared
with a theoretical curve calculated by using
the Green function technique.
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x > 3, which all give the same Curie point, give better agreement with

the (1/T) series results than a(l). The functions with x < 1 are ruled

out because they do not produce a transition and the function with

1 <% < 3 are ruled out because they imply a first order transition.

Table 1. Curie Temperatures Given by Use of Two Different
Termination Functions in Green Function Formalism
Compared with High Temperature Expansion Results

3kBTc
45(S+1)J
Calculation S=1/2 S=1 S=o
Simple -cubic (yo: 6)
Present work {x = 3) 2.0 2.0 2.0
Callen (x = 1) 2.7 2.4 -
(1/T) Series 2.0 2.2 2.4
Body-centered-cubic (yo: 8)
Present work (x = 3) 2.9 2.9 2.9
Callen (x = 1) 3.7 3.4 -
(1/T) Series 2.7 2.9 3.2
Face-centered-cubic (yoz 12)
Present work 4.5 4.5 4.5
Callen 5.6 5.3 4.9
(1/T) Series 4.0 4.4 4.8
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Another comparison can be made with the behavior of M as a
function of H at the Curie temperature. Kouvel and Fisher9 have

23
analyzed data for Nickel = and have shown that at the Curie point.

M H' %% (6=9) (127)

They also point out that the applied field, H, and magnetization, M, of
a ferromagnetic system are thermodynamically isomorphic with the
pressure and density of a gas. The Curie point of the magnetic system
is analogous with the critical point of a gas where the density, p, and

the pressure, P, obey the following relation
T
P-P |= -
|P-P_|=cl|p -0

At the critical point of Xe, CO_, and H_ the exponent, T, is 0.24 or

2 2

0.25. 3

Using the a(x=3) termination function, M{H) at 0= Gc was cal-
culated for H = 125; 100; 4160; 10, 000 oe (see Figs. 2, 3). Agreement
with the experirmental data for nickel was obtained with a value for y of
0. 642 Bohr magnetons. The value u = 0. 642 Hp was deduced by Kouvel
and Fishe r9 by comparing the behavior of the susceptibility of nickel
above the Curie temperature with Domb and Sykes' results from high

temperature series expansions for a Heisenberg ferromagnet with spin

1/2.
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Figure 2. Theoretical magnetization curves in the

vicinity of the Curie point for four values of
applied field. The scales correspond to nickel.
The calculations were for a 60 X 60 x 60 face-
centered-cubic lattice with spin equal to 1/2.
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Figure 3. Magnetization as a function of applied field, H, at the Curie temperature.
The theoretical points were taken frorn the curves shown in Figure 2. The

experimental points were measured by Weiss and Forrer.
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The limit of sz/d(T/TC) as M vanishes, £, is very sensitive
to the termination function. The value of £ for a(x=3) for a face-
centered-cubic lattice for S = 1/2 from Eq. (112) is 5. 19, which is
much higher than the value 2.23 for a(x > 3) and the value for a(x=1}
indicated by computer results of about 1. 7. The Weiss and Forrer

23 . . — . . 3
data = shown in Fig. 6 indicates that € is about 5. 6 for nickel. Belov

reports a value of 6. 7 for nickel. These results are shown in Table 2.

Table 2. Resulis for a F. C. C. Lattice with Spin 1/2 for Termination

2 x x+1
Functions of the Type: alx) = (8 ) /2S
2
. _lim M
Function kBTc/J E= M=0 1 ‘T/Tc Comments
0=x<1 @ - x = 0 same as Hartree-Fock
. 19
1 5.6 1.7 Callen's function
l<x<3 4.5 - M(T) double valued
3 4.5 5.2 Present function
< ) 14
3<x T > 4.5 2.3 X = ®» same as Tyablikov
. ] 23
Experiment - 56 -6.7 Weiss-Forrer and Belov

In general, the results of calculations using a(x=3), Eq. (126},

have shown good agreement with experimental results from EuO and



59

nickel and the results of high temperature solutions for the Heisenberg

model. More of these results are discussed in the next chapter.
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CHAPTER VI

GENERAL RESULTS

All of the results of the calculations are given in terms of the

dimensionless quantities 6, M, H defined by

B = kBT/J (130)
M = MY(21nuS) (131)
H = 2uH'/J (132)

where T is the temperature in degrees Kelvin, H' is the applied field
in oersteds, and M' is the magnetization per unit weight or per unit
volurme depending on whether mn is the number of atoms per unit weight
or per unit volume.

The lattice type and density of a real material are easily
determined from non-magnetic measurements; however, values of the
exchange constant, J, the spin per lattice site, 5, and the magnetic
moment, u, per atom per unit of spin, #/2, generally require compari-

son with a particular theory. Since the actual Curie temperature, TC,
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of most materials is known, J can be determined by
= 1
J kBTC/ 8, (133)

where BC depends on the theory used for comparison. The step indi-
cated by Eq. (133} is implied when comparisons are made on the basis
of a reduced temperature scale (T/TC). When the comparison is
between theoretical results, as in Fig. 4, the implication is that a dif-
ferent value of J for each theory has been used. For real materials
there may be small changes in J at high temperatures due to lattice
expansion or changes in the conduction band occupation.

The magnetic moment, |1, can be determined at low tempera-
tures where M = 1 by using Eq. {131). The value of u for nickel from
this method for S = 1/2 is 0. 606 Mg while the value which best agrees
with the Heisenberg model at temperatures around the Curie point is

0. 642 Mg ? The magnetic moment of a free electron, can be re-

Hge
duced in a crystal by a mixing of s% states by the crystalline field and

. i s . 26, 27
by a negative magnetic polarization of the conduction electrons.

Neutron diffraction experiments may eventually determine whether the
apparent change in the magnetic moment is a real effect or whether it
. . . . . 28, 29, 30
is a deficiency of the Heisenberg model when applied to nickel.

Figure 4 shows the magnetization curve for nickel compared to the theo-

retical curves for | = 0. 606 My and y = 0. 642 Mg from the present
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calculations on a T/Tc temperature scale. The results of using
Callen's termination fimction, a(x=3), with y= 0. 606U.B is also shown
for comparison. The magnetization curves for a b. c. c. lattice with

S =1 is compared with iron in Fig. 5.

Equation (112), which was derived by taking the first two non-zero
terms in a power series expansion of M, showed that as M approaches
zero, M2 approaches g(l - (T/TC)> where £ is 5.2 for a f.c.c. lattice
with S = 1/2. Figure 6 shows d(MZ)/d(T/TC) derived by the calculations
for a f. c. c. lattice with S = 1/2 and the values for nickel measured by
Weiss and Forrer. The curves show that d(MZ)/d(T/TC) approaches £
only as M approaches zero. The decrease in d(Mz)/d(T/TC) is very
rapid when plotted on a (T/Tc) scale since M = 0.1 corresponds to a
value of (T/TC) about 0. 998.

The inverse initial susceptibility, x_l, calculated from
Eq. {123) is shown in Fig. 7 in units that correspond to nickel. Also
shown are values of H/M for four values of H calculated using Eqs.
(51), (87), and {88). The inverse susceptibilities calculated by the
Green function equations are lower than the experimental points9 for
nickel but approach the e'xperimental values as the temperature in-
creases. Also the calculated susceptibilities vary proportional to
(T - TC)2 near the Curie point instead of (T - Tc)‘i/3 as predicted by
high temperature series for the Heisenberg ferrornagnet1 and as is

9

observed for nickel "’ 31 and iron.
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Figure 4. The magnetization curve for nickel compared

with three theoretical curves. The curves
marked C & G were calculated using the
present termination function and the two
values for the magnetic moment. The curve
marked Callen was made using Callen's
original fermination function.

63



RELATIVE MAGNETIZATION

1.0

o
tn

| V
& ———=—="__|RON
GREEN FUNCTION
[ (BCC, S = 1)
| | | | | |
0 0.5 1.0
RELATIVE TEMPERATURE, T/T,

Figure 5. Magnetization curve for iron compared with

theoretical curve for a body-centered-cubic
lattice with spin equal to one.
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NICKEL, WEISS & FORRER

3 —
2l— GREEN FUNCTION
FCC,5-1/2
P: n-sos PB
1 —
0 | ] | ] [ ] ]
0 0.5 1.0
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Figure 6. Derivative of the square of the relative

magnetization with respect to the relative
temperature from Weiss and Forrer'’s data
and from the Green function equations.
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Figure 7. Calculated inverse susceptibilities for a face-
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to the Weiss molecular field result.
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The calculated exchange energy of a face-centered-cubic,

S = 1/2, Heisenberg ferromagnet is shown in Fig. 9. The portions of
the energy due to nearest neighbor Z component correlations and X-Y
components are also shown. At zero temperature there is maximum
correlation between the nearest neighbor Z components since all the
spins are in + 1/2 eigenstates of s* As the temperature increases the
portion of the energy due to the Z component correlations decreases
approximately like MZ; however, this decrease is almost compensated
by the increase in X-Y component correlations for temperatures up to
about half Tc' At Tc’ the Z component nearest neighbor correlations
disappear, the energy due to the X-Y nearest neighbor correlations rises
rapidly to 51 per cent of the maximum energy, then decreases above TC,
and the total exchange energy has an inflection peint. Above TC, the ex-
change energy is entirely due to X-Y correlations between nearest neigh-
bors which disappear asymptotically as T increases.

The specific heat of a Heisenberg ferromagnet found by a high
temperature series expansion has been integrated over T from Tc to =
by Domb and Sykes. 1 The result for S = 1/2 was that approximately
45 per cent of the exchange energy remains at TC, which is reasonably

close to the 51 per cent value predicted by the Green function theory. A

more thorough comparison is made in Table 3 using values from Egq.(118).
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Figure 9. The relative magnetic energy of a face-centered-cubic lattice with S = 1/2.
The component due to the S” 5% correlations and the component due to

S}; S)g and Sg Sg correlationos are also shown.

69



70

Table 3. Fraction of the Exchange Energy Present at the Curie Point

Calculation S=1/2 S =1 S=2 S =«

Green Function

Simple -cubic 0.68 0.45 0.34 0.23
Body-centered 0. 56 0.38 0.23 0.19
Face-centered 0.51 ¢. 34 0.26 ¢.17
(1/T) Series 0.45 0. 34 - 0.19

The specific heat given by the derivative of the total exchange
energy shown in Fig. ¢ is presented in Fig. 10 with units derived by
using the Curie temperature and atomic weight of nickel. The dotted
curve was obtained by Bozorth by subtracting from the total specific
heat of nickel the components due to lattice vibrations, expansion, and
conduction electrons. The agreement between the Green function theory
and the experimental values of specific heat is quite good, perhaps
because the comparison is independent to the magnetic parameter .

The entropy corresponding to the energy and specific heat curves
of Figs. 9 and 10 is shown in Fig. 11. The maximum value of the en-
tropy of a system of N particles with two states is NkBln(Z). At the

Curie temperature, the calculated entropy for the S = 1/2, f.c.¢c. system
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The entropy of a face -centered-cubic lattice with spin 1/2.

value for the entropy as temperature increases is NkB In (2).
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is 0. 44 kBN which is 64 per cent of the limiting value. The correspond-
. . . : 11
ing value calculated by high temperature series is 60 per cent,

The effect of temperature on the energies Ek is to multiply them

+ -
by a renormalization factor, ( SZ) + q ¢ Sc Sé >} /S which reduces the
effective value of the exchange constant., The renormalization factor
. . . . 39 ..
can be measured by inelastic neutron diffraction. Figures 12 and 13
show the calculated renormalization factors for a face-centered-~-cubic
lattice with S = 1/2 and for a body-centered-cubic lattice with S = 1
: , , 38
and the results from experiments on nickel and iron by Lowde.
+ -

The correlation function { S0 Sj > can be calculated using the
Green function technique. As can be seen from Fig. 14 the correlation
function increases for all values of j as the temperature increases up
to the Curie temperature, then decreases rapidly. If the function

ta-y . . P, + - .
(SOS_ > is normalized by dividing by (SOSO) and plotted versus j for
J

several fixed temperatures the following behavior is observed (Fig. 15).
At T = 0 the correlation is infinite since the first reversed spin is in a
plane -wave distribution state. At T = 0.05 Tcthe normalized correlation
function is down to 0.1 at j = 5 lattice spacings and decreases almost
exponentially with j. At T = Tc’ the renormalized function is down to
0.0bat j=2 andat T =1.13 Tc,it is down to 0.0l at j = 2. These re-
sults are consistent with the picture of the reversed spins being in plane-

wave states at low temperatures(spinwaves) and localized states at high

temperatures where the Weiss theory and BPW results are valid.
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Figure 12.

The renormalization factor for a face-
centered-cubic lattice plotted versus the
relative temperature to the first power
and to the 5/2 power. The experimental
results by Lowde are plotted versus the
5/2 power scale.
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Figure 13.

The renormalization factor for a body-
centered-cubic lattice plotted versus the
relative temperature to the first power
and to the 5/2 power. The experimental
results by Lowde are plotted versus the
5/2 power scale.
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The spin-spin correlation function ( ' S_ )
on a logarithmic scale versus the

relative temperature. It should be noted that
(SZ ST ) = (S."S'; ) except when j = 0. The
pointsJWere coJrnputed for a 60 x 60 x 60
lattice with magnetization in the -z direction.
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Figure 15. The spin-spin correlation function (SZST)
normalized to one for j=0 for four
temperatures versus the distance in lattice
spacings along the (1 00) direction. The
points were computed for a 60 X 60 X 60
lattice with magnetization in the -z direc-
tion.
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The Fourier transform of the correlation function, F(k), is

defined by
F(k) = Z,<s+ STy eld kK (134)
j ¢ J

which from Eqs. (50) and (3a) is given by

2(s%)

P = (e ) - 1

(135)

where 8 is l/kBT.

By using the same technique that was used in Chap. IV to obtain
Eqg. (121), the following form is obtained for F(k) from Eq. (135) for

temperatures above the Curie temperature.

8
-1
“Y T X

F(k) = (M- 0)  {136)

Y

o

where the susceptibility, ¥, is given by Eq. (124). This is similar to
40 . . . .
the form used by Van Hove. The most important implication of
-1
Eq. (136) is that at the Curie temperature where Y goes to zero,
F(k) becomes very large for small values of | ic" | , which in turn im-
plies a large neutron cross-section for diffuse magnetic scattering at

small angles.
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The disappearance of the (SZ Sg) correlation function above the
Curie temperature seems to be a deficiency of the Green function tech-
nique used in this thesis since the symmetry of the Hamiltonian when the
applied field is zero would lead one to expect that ¢ SZ S;) = (Si‘)I S}g )

_ Yg¥y _ t -
= (s¥s)) = (sls;) /2.
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CHAPTER VII

CONCLUSIONS

Because of the agreement between the results of these calcu-
lations, using equations derived by using H. B. Callen's termination
procedure in the first order double -time temperature -dependent
Green function equation and the termination function given by Eq. (40),
and the results of other methods of calculation, it is believed that
these results are good approximations to the physical behavior of the
Heisenberg model over the whole temperature range. The comparison
of these results and the behavior of nickel and iron indicates that the
general magnetic behavior of these elements is explained by the basic
Heisenberg model. It is hoped that the question of the temperature
dependence of the effective magnetic moment of nickel and iron will be

resolved by further neutron diffraction experiments.
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APPENDIX I
COMPUTER PROGRAM

The computer program, which is written in Algol 60 for the
Burroughsg' B-5500 computer, calculates the sums <§o and @6 as
functions of R, Eg. {95). The parameter R is convenient for calcu-
lation because it eliminates the need for reiteration.

Once @O and § 5 have been calculated for a value of R and a
type of lattice, it is a matter of algebra to calculate the corresponding
temperature and magnetization for any value of spin, S, by using

Eqs. (40), (50), (51c), (57), (79), (89), and (94) which can be summa-

rized using the program notation, C = @o and D = @6

s
M o2 8-610+0) v s 1)
S[(1+C)ZS+1 _ CZS +1] (140)
T = R (2SM + M* D) (141)

2
For S = 1/2 the energy divided by NJYOS is given by

E = MZ +4MD + 4 M D? (142)

The values of C and D (PHI (0) and PHI (D)) computed for a set of

values of R are tabulated in Appendix II,
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The running time of the program is reduced by a factor of
about 15 from the time it would take to sum over all the points in k-
space for a certain lattice by taking advantage of the equivalence of
many points. For this calculation the point (kx’ ky’ kz) is equivalent
to seven other points generated by changing the signs of kx’ ky’ and kz.
By making the restraint that the lattice have equal size in the X and Y
directions, it is convenient to also include in the same set the points
generated by interchanging the values of kx and ky' The maximum
number of points in a set, U, is 2.4 or 16. If kx = ky’ kx =0 or m,

k =0or m, kz = 0 or m, then U is reduced by one power of 2 for
each relation that is true since + 0 = -0 and +7and - 17 are equivalent
because of the 27 periodicity. One and only one point of each set is
summed over by restricting the sum to the following volume of k-space:
(0 XS W/2, X<Y<W/2, 05 Z< H/2) where k = 2m(X/W, Y/W,
Z/H), X, Y, and Z are integers, W is the size of the lattice in the X
and Y directions, and H is the size of the lattice in the Z direction.
The values of H and W must be even in this program.

The space summed over is 1/16 of k-space. Another way of
determining the value of U for each point is as follows. The points
which are entirely within the subspace are weighted by a factor, U, of
16 in the sum. The points which lie on the boundary of the subspace are
weighted by 16 multiplied by the fraction of the immediate surrounding

volume which is in the subspace. For example a point on the interior of
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one of the faces of the subspace would be at the center of a small sphere
that was half in the subspace and would be weighted by U = 8. The
points on the edges and corners of the subspace are weighted by factors
of U=4, 2, or 1 depending on their exact location. The weighting fac-
tor, U, appears in the sums C (for @O) and D (for §>5) in procedure

PR 2. The program section with U = 3 accounts for two sets such as
(0, W/2, 0}, U=2, and (0, O, H/2), U = 1.

The first run over the points in k-space is to evaluate the cosine
and sine functions that are independent of R and store the values in
arrays EB, EN, NN, and NB. This is accomplished by procedure PR1.

Next R is set to its initial value and @O and @6 are calculated
by running over the points in k-space and using procedure PR2. The last
part of the program evaluates algebraic expressions for temperature,
magnetization, and energy for the current value of R and prints out the
results. Then the program control returns to the '"FOR R'" statement
which sets R egual to the next listed value and repeats the operations
described in this paragraph.

The program can be used on the Burroughs' B-5500 to find sums
for up to 10 values of R for H=W = 40 within 10 minutes. A face-
centered-cubic lattice of this size with S = 1/2 has a Curie point of
SC = 4.53 which is 1. 6 per cent higher than the bulk GC which is 4. 46.
The results for very large H and W can be approximated better by let-

ting each point represent a cubic cell in k-space centered around the
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point whose width is equal to the distance between points, d. Instead
of evaluating the summand, f, at the point, the average value over the
cell is approximated by expanding f about the point in a Taylor series.
The zero order term will be f evaluated at the center point which gives
the same result as before. The first order terms are of the form
fx(X } - (X - X ) which has an average value of zero over the range of

o o g g
X, (XO -d/2, X0 + d/2), where XO is the center point and the super-
script indicates a partial derivative. The second order terms of the

X 2 .

form {1/2) fx (XO)- (X - XO) are the only terms of second or third
order which have a non-zero average value over the cell. The average

value of these terms for a point or cell, E, is
g(F) = (F5E) + V(E) + 23R a2

To approximate the bulk solution, H = W - =, the same points are summed
cver as before, but the summand is changed from f(lz) to f(E) +g(§).

This technique using H = W = 30 gives a value of SC which is within

0.1 per cent of the bulk value.

The program which follows is a photographic reproduction of the
computer print out., The procedures PR1 and PR2 shown are for a face-
centered-cubic lattice. The modifications for simple-cubic and body-
centered-cubic lattice calculations are shown separately after the entire

prograrm.



The computer program used to calculate the function X (2 X-

defined by Eq. (120) is shown in this appendix as '""Susceptibility

Program." In this program the integral equation
™
1 J dz _ 1
- 1
em - a + b cos(z) (az—bz) /2

has been used to reduce the three dimensional integral invelved in

h

Eg. (120) to a two dimensional integral which is evaluated by the com-

puter. A region near the origin has been reduced to a one dimensional

integral by making the approximations cos{x) =1 - x2/2 and cos (y)

2 -1
1 -y /2. The error in the values of A(2¥ ) calculated by this pro-

gram is 0.1 per cent or less. The results are shown in Tables 7 and 8

in Appendix II.
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BEGIN
FILE GUT  LINE & (2,150)

TFORMAT TUT 7 HEAD (X445, "FATE=CENTERED=CURTIC™//X23»"#%™,X7 ,"ALL SPIN®,

K10, "+ SPIN 172%,%X8," # SPIN 7/2 «"/7%X23»
S T T T TR T UPRTCGY . T PHIGRY

KT/J MaG, ENERGYS,

W KTT TRAG Y )

CFORMAT DUT TRESULY (XZ0,F 8 1 2ET s 30 F9 35 2F 7 0,F10,3,F7F 3% 3 7 7

TREAL S T TR B Ca D F G s UK LM N U, P G Ry SaToUsVaN, Xa Y, ZsHES HH,
T C PIsMIsT,CXFCYaC2a5X,8Y,82 o T Ty

INTEGER T»12 }
TREALT ARRAY T TUTEBSEN,NN,NBFOTI0,0110007 3 T

TPRNCEDURE TPRITBEGIN T+I+1 ]

TF I>1000 THEN BEGIN TI+0 3 T12¢[2+1 END 1§
T T TRRETOS (R IXX /WY ¥ CY«COS{PIxY/WY 1 CZeCOS(PIXZ/H) }

TUSXESIN(PTIxX W) 3 SYCSIN(PIxY/WI 5 SZeSINC(PIxZ/H) }
- ENTTS, I T CXRCYFCVRCIACZRCH T
TTT T T ERITOITEE O CYSCYXCISCIREN d

NN I 2 T e 1A (SN I (CY 4TI w24 ST ( O+ LT Ye24

STe2u(CX+CY2a2) )

T UNBTIZ 1TV (SXA N CY=C LI N2+ 5T 2N(CX"CT I 23

S T T - SZw2x(CXICYIN2Y §
FND J
"PROCEDURE ~ PR2) BEGIN [+¢141 - []

TYF I>1000 THEN BEGIN I+#0 3 Tgel2+1 END J
NET 7 "EX » -

T T T TR e T (EXP(ASBREH( T2, 1 THHHY =1

T NeNxCLHINNTTZ, TIX(2%XNw243xN+1)/R43«C  BxENTT2,T1Yx(N+1)/RI%P)S

Computer Program, Sheet 1
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T BxEBLT2,1)3x(N+1)/R)IXPYS

TGHGx UL+ (NBIT2, 11XC2XN+2+3xN+1)/Rw2=(

T CeCH(NSINGIXU

DeN3aTNxENTIZ2, TI+GEBTT2, TI%3)x0 §

END el e . S
_ e N . A P
PIe¢3,1415926 } -
o PelPI/WY2/34 3 i T
TTHWRITE (LINEsHEADY ¥ T T T - T
REGIN B - T T T
FOR Xe2 sTERP { UNYT (W/2={3y 00 ~—~ "~~~ 7777 - T
FAR v€1 STER 1 UNTIL ¢ "X=1) DO~~~ T o
T FOR 71 STEP T UNTIL (H/Z=13 00 CommT
PR1 3 o ) - -
FOR xXe¢f STEP 1 UNTIL (W/2=1) DO T
FIAR Ye0,%x OD T o
TTFOR F41 STEP 1 UNTIL (H/2=1y DO T T ) - _“
" PR1 ’ ) o
NeW/7 B - T
o T FDR yef STEP T UNTIL (w/2-1y 00 T o o
FOR Ze1 STEP 1 UNTIL (H/2-1) DO ’ o
- - S e
- TFOR e STEPTL ONYTL TWN/2-4Y 00T T T T
) FOR y#&1 STEP T ONTIL XY no"  — 777" o
T T TTTTTTTEDR Ze0,H/Z DD o T
e g g S e
T ~ FOR Xe1 STEP 1 UNTIL ¢W/2=1) DO ST
REGIN YeX$
T FOR zoo,',’ﬁ'/z po T T T T N -
T 777 PRUEND P T
Xe0} Yews?2) FOR Z¢1 STEP 1 UNTIL (H/2%1) DO
T T PR T B T

""FDR XeW72,0 pO

Computer

Program, Sheet 2



AEGIN YeX 3

FOR Z*1 STEP T UNTIL (H/2=1) DO~

TTHCeO §T

T CAMMENT ~ FOR ZERn APPLIEN FIELD 3~

PRI END J - -
FOR X¢1 STEP { UNTIL (W/2=1) DO -
e g e S
FDOR Z+«0,H/2 DD
-  PR1 3 - ST S o
" X¢W/2 3 FMR Y#0,N/2 DO BEGIN Z*0 3} T
PRT END 3 -
o TNeYeW/P 3 LeW7Z Y T T s o T
oal e e ) U
YeYe § 740,04 § —
S e ] - . o

FOR Ne0G.2 STEP 0,2 UNTIL 2,01,2:5 STEP 0,5 UNTIL 9,5,

10 STEP | UNTIL 20,28,30,80,602100,200,500,1000,2000 DO

" REGIN

Ael2/R }

Bed/R COMMENT FACE=CENTERED=CUBIC ONLY

~ FDR Yvel STEP 1 UN

Computer Program, Sheet 3

e By g T T e e
g e —
FOR Xe¢2 STEP 1 UNTIL (W/2~1) DO
i TUFOR vel STEP f UNTIL € Xx=ty OO T
o FOR Ze1l STEP 1 UNTIL (H/2=1) DO o
PRZ 3
e E g , o o S
TTUTFOR X#1 STER 1 UNTIL (W/2-1y 00 0 T T
FOR Y«0,X OO
" FDR Z+1 STEP 1 UNTIL (H/2®1) DO
T . e e e e e
¢ 8 }
e . ——.

89



TTTTFOR Xe2 STEP 1 UNTIL (W7Z=y) DU

FOR Zen,H/2 DO

BR2

. TUTTBRZ 3T T T e e e
o TR YT - T T T T e e
FOR x¢1 STEP 1 UNTIL (N/2=1) DO
~ REGIN YeXJ o T -
o " FOR zeD,ws2 DO i
PR2 END }
. S e el
i T T xeD7 Yews2) FOR Zey STEP 1 UNTILU (H/2-1) DO
PRZ J
_ g e e O
T UUTTROR xeW72,0700 T T e s s e
AEGIN YeX ¥
o " FOR Zet STEP 1 UNTIL (M/2=1) 0D T
7 PR2 ENp } T o
e a4 3 -
TTTTTUUUPOR xey STEP { UNTIL (W/72=1y DD T T T
B " FDR Ye0,ws2 D0 T e e e
7 FOR 7+0,H/2 DD

Ue 33

X+«W/72 3 FOR YeU,w/2 DO BEGIN Z¢0 7

TPRZ END }

j¢« 1 } "PRZ § PRZ }

CeC/(axHxU*2) }

DeD/T12xHuW#2) '} COMMENT F.C,C, ONLY

3

" COMMENT M, T,E FON Sei/2, M1,T1 FOR S=7/2 }

Met/C142xC) 3

Computer Program, Sheet 4
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TeRx{M&2xMuaxn) J

T EeMeZaaXMXD+AuMaSxDNZ §

MEe(C3,5"C)x{1+4CI#B+(4,54CInCeBI/(C{+CIAB=CHBIN2/T

T T RN (TRNL 42X 08X DY 3

"WRITE (LINESRESULTIRsCDsToMsESsT1aM1) 3

HHeo W ho0 3417l /T TOMWENT FOR NTCKEL,S=172, HE 15 FIELD KOE J

T¢12¢0eDed 3

END ENN END

Computer Program, Sheet 5
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Procedures:

COMMENT  BODY=CFNTERED=cuBYC 3 T T T
PRNCEDURE PRIV BEGIN T¢T+1 1}
T T T T OF T»1000 THEN REGIN Te0 F 12¢Y2+0 END VT T

T RXeCDS(PIXX/W) J  CYeCOS(PIxXY/W) 3 CZeCOS(PIXZ/H)

SXeSTNCPIxK/W)Y 3 "SYeSINCPIxY/W) 3 SZeSINCPIxZ/H) )

N LIS EZR S LI T4 £ 40 . T T
B B ERLIZ2s17e~ENTTIZ2,1Y 3 o0,/ T o
NNET25 T1ep8x{(SXRCYXCZI* 2+ {CXXSYXCZIN2+(CXNCYXSZI*2) J
T CUNARLID,TTeNNCIZ2HTY 1 T T
e e - } S,
PRNCEDURE PRZY BEGIN 1eT+y ;
7 fF 1>1000 THEN BEGIN I¢0 § 712¢I2+1 END 3

CUNeL/CEXP(A=BXENT T2, 10+HHY=1) 3

GE1/7(EXP(A=BXEB[ 12, 11+HH)=1) }

T NeNxC1+(NNTT2,11%¢2xN#243xN+1)/R*2=C 24xENTI2»T1IX(N+1)/RIXP)}

T GeGxC 4 CNBIIZ, TIX(2XN#2+3xN+1)/Ru2=0 2AxgBlI2,11)XIN+1)/RIXP)}
B T CeCH+iNs  GIXU 5 I - - o
B C Den+CNxENTTIZ,T1+GREBLI2,1Y Ixu 3 o N ) B
END 7 N
Line 77:

A¢B/R J Reg/R 3 COMMENT BODY=CENTERED-CUBIC ONLY 3

Line 121:

TUEECT (2N HxR* DS} DeD/C 2xXHxWN*2Y §

Computer Program Modifications for Body-centered-cubic Lattice
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93

COMMENT ~ STWMPLE cDBTC 3~ 7 T T o
PROCEDURE ~ PR1J BEGIN Tel+y 3 . S T
TF I>1066 THEN BEGIN [«0 J T2¢lZ+1 END

TOUENUT2,TYe T T COSE2xPIXX/W)4CASTZXPIXY/N)HCOS(2XPIXZI /WY

UNET25 T1€aXCSINC2XPTIXX/ W) #24SINC2XPIXY/NI#24SINC2XPIXZ/W)

PROCEDURE

" END

TUNENXOY e (NNET2, TIX(2XN* 24 3xN+ 1) /Ré2=(

*2) }

~ PR2S BERIN TeI+y Ty

TTUUIFTIS1000 THEN REGIN T€0 J T2¢i2+%1 END §

MeT/{EXP{ASRYXENETZ, TT+HRYI=17 3

2XENITIZ2,11IxCN+1)/RIXP)YS

CeC+Nxn 3
S T F R U T S F TS A R -
T END TS B
Line 77:
R TTA€G/R} Re2/RJ COMMENT SIMPLE cusIcC DNLY 3 T
Line 121:
S CeC/C HxW*2) 3 DeDZ(3IX HxWw2) 3 -

Computer Program Modifications for Simple -cubic Lattice



BEGIN

FILE UUT  LINE 8 (2s15); ) -
FoaMaT ) HEAD (X25,"FACE=CENTEREN=CUBIC"// T

X19s"INV,.SUS, LAMBDA  3KT/4JS(S+1) YY)
Forvar _ RESULT (F25,8,2F12,3) 3 . B

REAL BAsBsCaDsEsFaGaHs Jo Ko LsMaNsDrPr@sRoSsToldsVeWsXsYrZoHEsHH,

PIsMIsT1sCXsCYrnZsSX,5Y,87 ;

INTEGER 12 y

REAL ARRAY EB»ENsNN,NBEOI30,0310001

PR[]CE_() LIQE_ . F'ng ; B{_Q_I i 1:] ‘1_ e S SN

IF 1>1000 IAEN BEGIN 1¢0 3 I2¢12¢1 END 3

CXeCUSCPIXA/W) B CYCCOS(PIxY/d)Y 3

L ENLIZ»iledXcrcXxcy) ¥

SN[ [2»TJedXCrxeCy) 8 ——
e e NBLI2eT)eAXCEXRCY) 3 o

- END 3

PROCFDRE ~ ~ PR2) BEGIN .Tel+1 1

e e LB 129000 TAEN BEGIN T¢0 3 T2e[2+1 END 3.

e . G CAUSSRRTLLI 242X SENLTI2a ) 42 NN 124 322) & . . .

BH/SORTC(C1242xS4FNITA, T 1)w2=NA(T247122) §

e ENDE - — [

e e 20O X e e
Pled, 1815924 3
T WRITE (LIMNE»HEAD) o

HEGIN

Susceptibility Program, Sheet 1
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FOR Yel STEP 1 UNTIL (X=1) DO

PRY i
o . F['jF;_-x':aﬂs s i“ [JNfIL(_w;2;1S_Q_EI O

- TEOR YeO,x un
PRI J
T Xewrz v ) o o
"7 FDR Ye1 STEP | UNTIL (Ws2=1) 9O )
PR 3 '
L XeD 5 Yedf2 3
PR} [
Lo XeYew/2 3 . - e _ .
) L UBRL S .

FOR SeH,0060001,0,000%,0,0007,0,001 200,0015,0,002,0,003,0,005s
. 0007 50,0120,01%520,02,0,03,0.05,0,07204150,1520,250,3»
e e w520 T p 121,522 325, 72102152202300502100 DO . ...

HFGIw

L. le]2¢0 3

o _ . UeB }

FOR Xe2 STE2 1 ULNTI| (W/2=1) DO _

7 © FDR Yel STEP 1 UNTIL (X=1) 00 - i
PR?_3 _ B - .
R ved B _ .
e _._FOR Ae2 STEP ) UNTI) (W/2=1)_D0 e
FOR_Ye0sX DO
PRe -
I Xen/2 3 - .

FOR Yel STEP t UNTIL (W/2+1) 00

PR2 3

e ;

Susceptibility Program, Sheet 2
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Xeld J YeW/2 } e e
R T - e
Jel 3
o T Xevews2 3y T T i e e
R orp s o .
FOR £¢0,150 STEP 0,550 UNTIL 1+45 00 o
h i DeD+2XZ/SART((PTIxZ/Ad*245/72) 5§ o
FOR 2¢0,075 STEP 0,150 UNTIL 1.5 0O
DeD+uxZ/SARTC(PIXZ/N)42+5/72) } T R
- ~ Ze0,15 3T
DD+ Z/SART(CPIXZ/WI2+5/2) 3
CeC+9x(PT/1800XN+(A=P1)/32/SQRT((1+ROXPI/WI#245/2)7 3
Le(1242X5IX0/(PxHWRD) 3 )
Te(64S)/L i . _
MeM1 3 #1eLN(T=a,461952) } S )
GeTl 3 TieLN(S) 3 S
e Ee(@=11)/(MeM1) F___IF_5<0,0001 THEN E&0 3 . .
WRITE C(LINE,RESULTSS»lT Y 3
_[eI2¢CEDe0 3 o .
. ENp FNb END . . R
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APPENDIX 11
COMPUTER RESULTS

This appendix contains tables of results obtained by using the
basic program and modifications described in Appendix I.

Tables 4, 5, and 6 list the sums éo and §:6 defined by Eq. (95)
for a set of values of R. The three tables are for the three types of
cubic lattices, face-centered, body-centered, and simple. The values
of the reduced temperature, kBT/J, the relative magnetization, M,
and the fraction of the magnetic exchange energy, E, as calculated
from Eqs. (140), {141), and (142) for S = 1 /2 are listed for each value
of R. Also values of kBT/.]' and M for another value of S are listed.

Tables 6 and 7 list the values of inverse susceptibility, X-l,
defined by Eq. (122}, the function X {2 X-l) defined by Eq. (120) (under
LAMBDA}), and the reduced temperature 8 = 3kBT/4JS(S+1) corres-
ponding to the value of x_l as given by Eq. (124). Table 6 is for a
face -centered-cubic lattice and Table 7 is for a body-centered-cubic
lattice.

The notation 1. 357 @-03 represents 1. 357 x 10-3.
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FACE=CENTERED=CUBIC

e TALLSPIN T TTSPIN 172 * SPIN 7/2 »

R PHICD) PHT(D) KT/J MAG, ENERGY KT/J MAG,
0.2 1.318%=03 1,3008=03 0.200 0,997 1.000 1,800 1,000
__ 0.8 3,772P8=03 3,668#-03 0,400 0,993 1,000 2,800 0,999
0.6 7.0108=03 ¢, 7153-03 D.599 0.986 0,999 4,200 0,998
0,8 1.0928=p2 1,0308=02 D.,798 0,979 0,998 5,599 0,997
1.0 1.5460«02 1{,4348=0>2 0.995 0,970 0,997 6.997 0,996
_ 1.2 2,0K00=02 1,8778"02 1,191 0,960 0,996  B,395 0.994
1.8 2,6358=02 2,3538=07 1.384 0,950 0,993 9,790 0,992
_ 146 __3.773B=D2 2,8578=07 1.573 0,939 0,99} 11,1863 0,991
18 3.9778=0p2 3,3860=02 1.757 0,926 0,987 12,573 0.%989
2,0 A,7508=02 3,935@8=02 1,936 0.%913 0,982 13,959 0,986
2.5 6,9958=02 5§, 3728«02 2.352 0.877 0,964 17,398 0,980
3,0 9,5930=02 4,8468=D2 = 2,716 0,838 0,940 20,787 0,972
3,5 1,2789=01 §,3858~07 3.024 0,796 (,.910 24,111 0,963
8,0 1.,874P=01 9,9148=02 3,277 0,755 0.87%  27.356 0,9%4
4,5 2.001F=01 {,1348=01 3,482 o,714 0,847 30,513 0,943
5,0 2,4n038=n1 §,.2970=n 3,647 0,675 0,816 33,572 0.931
5:9 2.827Penl 1 ,8480+01 3,779 0.639 0,787 36,528 0,919
. 6,0 3.269P=01 1,599f=01 = 3,885 0,605 0,761 @ 39,376 0.907
6.5 3.7258=01 §,7508=n{ 3,970 0,573 0,737 42,112 0,894
_TeQ 8,193%=p1 1,8998=01 4,040 _0_§ﬂ£m 04716 84,733 0,830
T.5 4.8728=01 2,0a288=0y 8,096 0,517 0.697 47,238 0,847
8,0 5,1608=p1 2, 1978=04 4,143 0.492 0,680 49,628 0,853
8,5 5,A558=01 2,3458=2% 4,182 0,869 0,665 51,901 0,839
. 9.0 A.157P=01_  2,4938-01 6,214 0,448 0,652 _ 54,060 0,825
9.5 K.K658+01 2,6800=01 4,281 0,429 0,680 56,107 0,611
10,0 7,1778epy 2,7B78=01 = 4,265 0,811 0,630 58,045 0,797
11,0 B8.2148«n1 1,0808=0t 4,301 0,378 0.612 61.608 0,769
12,0 9.,2638=n1 3,3728=01 4,32% 0,351 0,598 64,770 0,742
13,0 1.03204p0 3,663F=01 4,350 0,326 0,587 6T.577 0,715
14,0 1.1398+400 3,954%=01 4,366 0,305 0,577 70,062 0.689
15,0 1.2a7P+n0 g ,2a48=01 4,379 0,286 0,569 T2.259 0.665
_ 1640  1.355P+00 04,5348~01 4,390 0,270 0,563 74,203 0,641
17,0 1.2638400 a,8238=01 §.399 0,255 0,557 75,924 0,618
18,0 1,57284+00 5,1120=0] 3,006 0,241 0.553 TT.249 0,596
19.0 1.681P+00 5,4018=01 8,412 0,22% 0,548 13.504 0.576
20,0 1.7918400 s5,690PF=01 4,817 0,218 0,545 80,010 0,556
20,0 2,2319+00 &,8a28=D1 8,031 0,183 0,535 Bl,666 04487
30,0 2.,8958400 8,5680=01 4,842 0,187 0,527 87,010 0,408
40.0 4,0nB88+00 1,1448+400 8,851 0,111 0.520 89.809 0.317
60,0 642410400 t,TIBR+D0 4,457 0,074 0,515 91,928 (0,218
200,0 -1?2§¢91w_5 T298+00 m_mﬂmﬂgj 0,022 0,512 93,522 0,087
500,00 5.554F+01 1,83208+409 4,861 0,000 0.511 93,657 0,027
1000.0 1.1168+02 2,665P+01 4,461 0,004 0,511 93,676 0,013
2000,0 2.72378+p2 5§,7300+4079 4,461 0,002 0,511 93,580 0,007

Table 4. Computer Results {for dS and @6 for a Face-centered-

cubic Lattice



BODY=CENTERED=CUBIC
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* ALL SPIN * SPIN 172 * SPIN 1 *

R PHTI{O)D PHICD)Y KT/J MAG, ENERGY KT/d MAG.,
ND.1 9.72818=04 06 178F=0y4 0,100 0,998 1.000 0,200 0,999
. Da2 2445NP=n3 2,5048=n3 D.200 0,995 _ 1,000 0,800 0,997
0.3 4,911#=n3 4,7578=03 0,300 0,990 1,000 0.600 0,995
0,84 T.42BR=03 7,3078=03 0,399 0,985 0,999 0,800 0,992
0,5 1.n768=02 1,0198=02 0,899 0,979 0,999 0.999 n,9389
0,6 1.4288=02 1,3358=02 0,598 _0.972 0.998 _ .. 1,198 0.986
0.7 1,8178=02 1,6778=02 D896 0.965 0,997 1,396 0.982
0.8 2.2 4B=N2 2,()[3‘;9-02 . 0,793 0,957 0,995 1,594 0,978
0.9 2.,7098w0? 2 4708=05 0,889 0,949 0,994 1.791 0,973
1.0 3.2t48=p2 2,8338=0p 0,984 0,940 0,992 1,986 0,968
1.2 2,3448=n2 13,601%=02 1,167 0,920 0,986 2.370 0.957
1.6 7.1278=02 5,5538=02 1,505 0,875 0,967 3,107 0,930
2,0 1.n588&8=n1 7,539@8=02 1,790 0,625 0.939 3,782 0,897
2.4 1.4448=01 0o 5R88=02 24021 0,773 0,905 _ 4,379  0.860
2.8  1.9208=01 1,1568=01 2,201 0.723 0.870 5,891 o0.B821
. TY - ZL&LL?-QJ.m1;31;@:&1_“_w2,332_mﬂ;§1&_uulili“w,Amillzj__n;LiL_
3,6 2.94580=01 1,5838=01 2.484 n,629 0,808 5,681 0,741
T 3.5008=01 1,7908=D1% 2524 0588 0.776. _ _ 5,976 0,703
4.4 1,0758=01 1,9978=01 2,586 0,551 0.752 6219 D0.667
4,8 BD,46TR=01 2,2020=~0) 2,638 0,517 0,730 6.418 D0.$33
S5¢2 S5.2738=01 2,4n768=01 2+6TL 0,487 0,712 6.583 0,601
. 5:6 5.£008=n1 2,6118=01 2,701 0,859 0,696 6,719 0,572
6.0 6H.5168=01 2.8B148=01 2.725 0,434 0,682 6,833 0,585
6.4 T.$50P=01 3,0179=0} 2,748 0,412 0,670 6,929 0,519
6,8 7.7210=pn1 3,2188=D1 2.760 0,391 0,660 7.009 0,496
7.2 A,4388=n1 3,4208=0 2,773 0,372 0,651 7,078 0,474
7.9 9.5R18=n{ 3,7718=09 2,791 0,343 0.638 T.175 0,440
e Beb  1.0T4®+00 4,.1218=01 2,805 0,318 0,627 7,250 0,610
9.3 1.9900400 4,4708=0Y 2.815 0,296 0.618 7,309 0,383
10,0 130708400 4,8198=01 2823 0,277 0.611_ 7.356 0,360
10.7 14258400 5.1668=01 2.830 0,280 0.606 7T.394 0e339
1144 15838400 5,5138=01 2.835 0,245 0,601 7,826 0,320
121 1.6828400 ©5,8408=01 2,839 0,231 0.597 7.852 0.303
12,8 1.7R18400 4,2069<0y = 2,843 0,219 0,593 7,474 0,288
13.5 1.9008+00 6,5528=01 2.846 0,208 0,590 7T.492 0,274
18,2 2.0208+00 4,8078=0] 2,848 0,198 0.587 7,508 0.261
16,0 ».37B8+0n  7,TASE=D1 2,853 0,177 0.58?2 7.540 0.233
20,0 3.016F400 9,75308=01  2+860 0,142 0,575  T«582 0.188
30,0 Ra7HTE400 1 ,4A58+00 2.866 0.095% 0.568 T.623 0,127
50,0 _R.D220400 2,4460+0N0 _ 2.B69 0,057 _0.568 7,883 0,074
T100.0 146938401 8,B048+00 2.870 0,029 0.563 T.652 0,038
250,00 4.3058+401 1,2200401 2,870 0,011 0.562 7,654 0.015
500.0 A.6600401 2,4878401 2.A70 0.0068 0,562 7.654 0,008
1000,0 1.7378+02 4,895P+01 2,870 0,003 0,562  7.654 0,004

Table 5. Computer Results for EI: and @6 for a Body-centered-

cubic Lattice
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SIMPLE CuB1IC

* ALL SPIN * SPTN 172 * SPIN 7/2 »

R PHTCD) PHT(D) KT/7J MAG, ENERGY KT/J MAG,
Del 14R4H08=03 1,8330=p3 0.100 0,996 1,000 0,700 0.999
0.2 5.3278=03 5,1750=023 0,200 0,989 1,000 1,800 0,998
0.3 9,9n58=p3 9, 4R28=0) 0,299 0,981 0,999 2,100 0,997
_D,4  1.5448=02 1,8558=02 0,398 0,970 0.998 2.799 0,996
T 0.5 P?+1A78=p2 2,0278=02 0,496 0,958 0,997 3,898 0,994
0.6 2.9188=02 2,6548%02 = 0,592 0,945 0,995 4,196 0,992
0.7 3,7368=02 3,3308=07 0,686 0,930 0.993 4,892 0,989
0.8 d.6428=02 4,0508=02 0,777 0,915 0,990 5,587 0,987
0.9 SeA348=072 4 ,8068=02 0.86% 0,899 0,988 6.280 0.984
1,0 &.7128=pn2 5,5938-02 = 0,%49 0,882 0,981 6,969 0,981
1.2 9,11588=n2 7 2048=02 1,104 0,848 0,970 8,338 0,974
1.5 1+37298~01 9,8a9B=02 1,300 0,790 0,947 10,354 0,982
1.8 1.,A058=01 {,254%=01 1.454 0,735 0,922 12,315 0,938
2.1 2.37298=n1 1,5278=01 1,572 0.682 0,89% 14,209 0,933
2,7 3.8858=01 2,0788=01 1.726_ 0,589 0,848 AT, 755 0,900
1,0 4,1 DAe=n1 2,3468=01 1.776 0,539 0,828 19.395 0.883
3,3 A4,7428=p1 2 ,61B8=01 1.813 0,513 n,.811 20,942 0,865
3,6 5,3978=p] 2 8RBE=D| 1,842 0,481 0,795 22.394 0,846
3.Y  A.0ADRen1  3,1578=01% 1,865 0,452 0,782 23,750 0,828
4,2 A.T4BEen]  3,84258=0) 1.883 0,426 0.771 25,013 0,809
bS5 T.4338=01 3,6920=01 __ 1,897 0,402 0,761 . 26,185 _ D.7%0.
4,8 A,179¥=01 3,9588=31 1.908 D0.381 0,753 27.268 0,771
5.1 B.8318=n1 4,22398=n4 1.917 0,362 0,746 28,269 0,753
5.4 9,53199=01 4,4R88=01 1.925 0,348 0,740 29,191 04735
6.0 1.0078400 5,0169=01 1,936 0,313 0.729 30,819 0.699
&.5 1-??794'00 5.“5“@-01 1.944 0.291 0.722 31.930 0.671
.70 1.,3388400 5,8908=01 1,949 0,272 0,717 = 32,988 0,644
B.0 1.5R28400 §,7428=01 1,957 0,240 0,708 34,626 0,594
B.9 1.7N58400 7,196@=n1 1.960 0,227 0,705 15,290 0.571%
9.0 1.R2RA34p0 17,6300+ 1,962 n,215 0,703 35,871 0,550
9.5 149528400 A,0438=01 1.964 0,208 9,700 36,380 0,529
10,0 _2.0768400 A,4968=01 = 1.965 0,194 0,698 136,829 0,510
10,5 2,200084n0 4,9298m01 1,967 0,185 0,697 37,225 0.492
11.0 2.3248400 9,3618=01 1.968 0,177 0,695 37.575 0.474
12.0 245738400 ,0238+400 1,970 0.163 0,693 38.165 0.443
15.0  3.32284+00 {,2R18400 1,973 0,131 0,588 39,335 0,348
20.0 44S7TEL00  1,7118400 1.976 0,098 0,684 40,290 0,285
_30.0 7.095%4pnn  2,5718+00 1,978 0,066 0,681 40,993 0,198
50,0 12148401 4,2878+00 1.27% 0.080 0g,680 41,360 0.118
100,0 244778401 8,5778400 1,979 0,020 0,679 41,515 0.059
250,0 A.2858401 2,1848+401 1,979 0,008 0,679 41,559 0.024
_500.0 1.2588402 4,2R98+0)_ 1,979 0,904 0,679 _ 41,565 0,0t2
1000.,0 245219402 8,.5788+01 1,979 0,002 0.679 41,567 0.006
Table 6. Cormputer Results for €I>O and %, for a Simple-cubic Lattice

b
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FACE=CENTERED=CUBIC

INV.SUS, LAMRDA IKT/8JSC541)
0,0000 1.343 G868
0,0005 1+337 . Bea89
TTTD,0007 T U335 T 4.493
0,000 1.334 A4.8%99
06,0015 1,332 4,507
0,0020 1,330 4,514
n,0030 1,326 4,526
n,0050 14321  4.545 3
S 0.0070 1,317 4,561
) ~0.,0100 1.312 8,581
0,0150 1,305 4,609
0,0200 1,299 4,633
0.0300 1,290 4.674
..n,0500 o 1.276 4.743 _
n,0700 1.264 4,801
0,1000 1.251 4,878
0,1500 1.233 4,988
0,2000 14219 5.087
0 .3000 1e107 5.264
0,5000 1,166 5.574 L
) 07000 T 1.14% ° T 8.8s4 7 7 0T
1,0000 1.121 64243
T T LL,56000 0 1,005 © 64849
2,0000 1.078 Teti24
3,0000 i.055 B.528 -
) 5,0000 1.033  10.648
7.0000 1,022 12.718
10,0000 1.018 15.781
] T 15,0000 1,008 T 20.841
20,0000 1,005 25.874
30,0000 {.002 35,910
80,0000 1,001  55.940
1n0,0000 1.000 105.951

Table 7. Computer Results for Inverse Initial Susceptibility,
uH/ZSJM, for a Face-centered-cubic Lattice and the
Function A (2 X'l)
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BODY*CFNTERED=CUBIC
o COINV,L,SUS, T LAMBDA 3T /aJsts+1)
T n,0000 1.393  2.872
00,0005 1,383 2.893
TR, 0007 1.381 T T2.897
0,0010 1379 2.902
T 70,0015 1.375% 2.908
N,0020 1,373 2.914
000 " 13607 TR
0,0050 - 1,362 2.940
B 0,0070 1.357 2.953
0.,0100 1.350 24970
n,0150 1,341 2.994
00,0200 1.334 3.014
TTTTTTTTTR,0300 0 0 T 103210 3,050 o
N,0500 1.303 3.109
0,0700 1,288 3,159
0,1000 1.271 3.226
0.1500 1.249 3.324
0,2000 1,231 _3.412
0,3000 1,204 3.571
0,5000 1.168 3,854
N.7000 1,143 4.114
1,0000 1.116 4,479
1,5000 1.0R8 54055
2,0000 1,070 5,608
TTTTTTTTITTTRL0000 T 140487 T 6.680 -
5,0000 1.027 Re763
7.0000 1.018 10,810
10,0000 1.011 13.852
15,0000 1,006 18.890
20,0000 1,008 23.911
e e T 10005 T T3aiesa
50,0000 1.001 534943
160,0000 1.001 103.920

Table 8. Computer Results for Inverse Initial Susceptibility,
uH/25JM, for a Body-centered-cubic Lattice and the
Function A{2 X‘l)
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APPENDIX III
RENORMALIZED ENERGIES

The renormalized energies are part of the concept in which
the ground state, l 0), of the Heisenberg ferromagnet serves as the
background for the creation of guasiparticle spinwaves, or magnons.
The magnons obey Bose statistics and exist in N energy levels cor-
responding to the N magnon (or spinwave) creation operators, SI; .
The statistical expectation value of the number of particles in the

energy level denoted by k at a temperature T is

1
k exp(Eliw(T)/kBT) -1

(150)

where E;W(T) is the energy required to create a magnon in the parti-
cular level. The creation energy is temperature dependent hecause

there is not only the energy necessary to create the magnon in the

ground state, E;W(corresponding to kinetic energy of a real particle},

but there is an interaction energy, E t with each magnon that is

SW
k, k
already present. The number of other magnons present in the various
energy levels at temperature, T, is also given by Eg. (150). From

Eq. (3b)
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EY = 28] Y, -

K ) {151)

k

- Z explik - 8) (152)

y
ks

where & represents the set of real space vectors from a lattice site to

its nearest neighbors. The interaction energy is defined by

E o = (k, k|30 & kKD - (k'3[ k') - (kX [k (153)
If, in the spirit of the first order perturbation theory, the non-diagonal
terms in the sum on the right side of Eq. {3e) are ignored, the Egs.

{153), (3b), and {3e) imply that

-1
= - - - 154
Ex BIN 7 (y = Y ¥ Yr g ™ YV (154)
By using Egs. (150), {151), and (154) the renormalized creation energy

for a magnon in energy level k is

Ei“'(T) - g5V +Z n, E .

k K k' Tk, k {155)

36

This result agrees with the renormalized energies found by M. Bloch

from a technique of minimizing the free energy, and with the first
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7
order results found by Dyson {rom considering the Born scattering of
two spinwaves. Because of the cubic symmetry requirements placed

on n, and Yy by the lattice

] : L)
o e e = Vi) = 2 vy - v v o kK (156)

By using Eqs. (151), {154), and (156), Eqg. (155) can be written
SW B z 2 Z ]
ES(T) = ZSJl:Z(S y 4 Ny, % M Mo (v, - v (157)

All of the spinwave energies are reduced by the factor in square brackets
which is independent of k. At low temperatures, only the lowest energy
levels are appreciably occupied. To obtain the first order behavior of
the renormalization factor, the following approximation is made for a

simple cubic lattice

— 2

Using this approximation which produces spherical symmetry and replac-

ing the sum by the equivalent integral
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1
z 2
2(87) = B -I:IZ exp(kz/e)-l (159)
= l-c1 83/2
1 e
p = 02 | D) o1 exp(x’) - 1
)

The second term in the renormalization factor becomes

- (160)

2y 1 e(2 - k) 4nktdk
n = 2
o e e T 2m)® ) exp(®/e) -1

n
]
—
]
(g}
D

The approximation made in Eq. (158) suppresses some terms of

i 5/2 , , .
order B and higher in Egs. {159) and (160), however it can be seen
that the lowest order temperature term in the expansion for { %) is

3/2 L . 5/2
8 and the lowest order term for the renormalization factor is 9 .

While the Green function technique is not tied to a quasiparticle
concept, it can be shown that for a system of true Bose particles, the
poles of the Green function correspond to the creation or excitation

energies. The commutator of the creation and destruction operators

for Bose particles is necessarily unity, however for the magnons



107

+ -
[sp. 5. | = 2¢% (161)
which differs from unity at low temperatures by a term of order 83/2.
It might be expected that the energies of spinwave theory would agree
with the poles from the Green function to first order at low tempera-
tures.
The poles of the Green functions are given by Eq. (48). Using

Eq. (50) and letting H = 0

) z, . 4a (5% explik' - 8)
Ee = J[“S )t N z exp(Ekr/kBT)-l ](Yo"vk) (162)

The sum is independent of the particular nearest vector, §, used so
exp{ik - 6) can be replaced by Yk/ Yo 1f the low temperature limit of
o is 1/2S, then the poles of the Green function, Ek’ in the low tempera-
ture limit do agree with renormalized spinwave energies, Eq. (157), up

/2

5
to order f )
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