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SUMMARY

This study presents a method for determining upper and lower
bounds for the influence coefficients of a thin circular cylindrical
shell of variable wall thickness. The shell is considered to be stressed
by a bending moment Mo and a shearing force HO applied along its lower
edge. The upper edge of the shell is not subjected to any external
forces. Under the loading described, the lower edge of the shell under-

goes a radial displacement u, and a rotation ﬁoa The relations expressing

uo andp,.o in terms of M0 and Ho are assumed to be linear and have the follow-

ing form.

o
!

o =T CuHHo + CuMMo

Po CgHHo - C5MM0

The coefficients C C

ul? Cum? CBH, CEM are called the influence coeffic-

ients of the shell under consideration. An exact determination of the
influence coefficients for shells of variable wall thickness is in gen-
eral impossible because of the difficulty of integrating the relevant
differential equations; so methods such as the one described in this
study must be used to find suitable approximate values.

The method of the hypercircle is based upon the concepts of func-
tion space. A function space is introduced in which the "points" are
quadruples of functions representing the stress resultants and couples
in the wall of the shell. The expression for the strain energy provides

a metric in the function space, in which various planes and spheres are
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defined by using the differential equations which govern the behavior of
the shell. Ultimately it is shown that the actual solution to the differ-
ential equations is represented by a point which lies on a certain hyper-
circle in the function space. Upper and lower bounds on the strain energy
associated with any point on the hypercircle are derived; and thus, in
particular, upper and lower bounds on the strain energy associated with
the actual solution are obtained.

Bounds on the influence coefficients are then deduced from the
upper and lower bounds on the strain energy of the shell by using element-
ary results from the theory of quadratic forms, and a numerical example
is presented which illustrates the calculations which must be performed
in order to obtain numerical values for the various bounds. In the nu-
merical example a shell is considered in which the wall thickness decreases

exponentially with distance from the loaded edge:
h=he
r

Bounds obtained by using the methed of the hypercircle are compared to
results previously obtained by Reissner and Sledd by use of the varia-
tional principles of elasticity. In the particular example considered,
the method of the hypercircle yields slightly better results than the
variational method with approximately the same effort. The results ob-
tained are presented in tabular and graphic form as functions of the
parameter p, the thickness hr of the shell wall at the loaded edge, and
the radius a of the undeformed middle surface.

Chapter I summarizes the basic equations needed from the theory

of elasticity and uses them to calculate the influence coefficients for




viii

shells of constant wall thickness. These constant-thickness coefficients
subsequently serve as reference values to which the bounds for the influ-
ence coefficients of shells of non-constant wall thickness may be compared
in order to obtain a quantitative indication of the effect of the thickness
variation. In Chapter II the method of the hypercircle is presented in
terms which facilitate an estimate of the amount by which the strain energy
associated with an approximate solution differs from the strain energy of
the actual solution. Chapter III applies the method of the hypercircle

to the actual problem of obtaining bounds for the influence coefficients

of thin circular cylindrical shells. In Chapter IV the numerical results
obtained in this study are compared to the results previously obtained by
Reissner and Sledd [2, 4]. Since successful use of the method of the hyper-
circle depends strongly on the selection of suitable functions to define
the various approximate solutions needed, some comment on this point is

included in Chapter III.




CHAPTER I

INTRODUCTION

In 1947 Prager and Synge [1] discussed the approximate solution
of certain problems in the theory of elasticity by use of the method of
the hypercircle, which is essentially a procedure for establishing upper
and lower bounds of pertinent quadratic functionals. In 1957 Reissner
and Sledd [2] computed upper and lower bounds for the influence coeffic-
ients of semi-infinite circular cylindrical shells of non-uniform wall
thickness by using the variational principles of elasticity. The present
study is an application of the method of the hypercircle to solve the
problem considered by Reissner and Sledd. The work is also extended to
shells of finite length. An interesting feature of the work is that
bounds for all three of the influence coefficients are obtained simul-

taneously.

Definitions and Basic Equations

The cylindrical shell dealt with in this study is considered
stressed by a radially directed shearing force H0 and a bending moment
MO applied uniformly to the circumference of the bottom edge of the shell
and acting about a circumferential tangent to the lower edge of the mid-
dle surface (see Figure 1). The upper edge of the shell is not subjected
to any external forces.

The governing equations for a shell with the geometry shown in

Figure 1 were derived by Reissner [3] and are as follows (the prime
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Figure 1. Geometry and Sign Conventions.



denotes differentiation with respect to £, the normalized coordinate in
the axial direction).

1. The Equilibrium Equations

U
]

aH + ME

Ng - H' =0 (1)

N =0

2. The Boundary Conditions

ME(O) =M
H(0) = H
(2)
MK(L/a) =0
H(L/a) =0
3. The Compatibility Equation
u' = ap (3)

4. The Strain-Displacement Relations

u/a

m

1}

1
<
©~

“~.
a1

~
n
=~
~
)



5. The Stress-Strain Relations

CEQ = Né - th
Ct-:E = NE - ng
(5)
DK, = (M, - Wg)/(1 - v7)
DKy = (Mg - th)/(l - v2)
Here C = Eh,
(8)
D = En/12(1 - v2)

E is Young's modulus of the material and v is Poisson’s ratio; 8 is the
azimuthal angular coordinate; NE is the meridional stress resultant in
the shell wall (see Figure 2); N, is the hoop stress resultant; £, is
the hoop straing KE is the change in meridional curvature; and p is the
decrease (under load) in the angle of inclination of the meridional tan—
gent to the middle surface of the shell.

These equations can be solved exactly in the case h = constant;
and the solution, which will ke given in the next section of this chap~
ter, can be used to determine exact values of the influence coefficients.
These constant-thickness coefficients later serve as reference values
with which to compare the results for shells of non-constant wall thick-

ness. In the case of the thickness variation
h = hre-pE ,

which will also be studied, the equations become too difficult to integrate;
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Figure 2. Stress Resultants and Couples Acting
upon an Element of the Cylinder.




so an approximate method is introduced which yields upper and lower bounds

on the influence coefficients.

Shells of Constant Thickness

If the thickness of the shell is constant, equations (1) - (5) can
be summarized by the equation (Sledd, [4])

V) v % =0, (7)

where

A2 ='\13(1 - v f,_ . (8)

r

The general solution of equation (7) is

p = ePM:(cl cos Af + ¢, sin AE)
(9)
+ e)\E(c3 cos N + ¢, sin A ).
From equations (3) and (9) it follows that
E_KE[-(C + ¢.) cos A + (¢, - ¢,) sin AE]
a 1 2 1 2
u = o . (10)

+ eM[(c3 - c4) cos A\f + (c3 + c4) sin A¢ )

Equations (9), (4), and (5) yield

e_hz[(c2 - cl) cos AE - (cl + ¢,.) sin W]

2)
ME = — . (11)

+ ehz[(c3 +c,) cos N + (¢, - c3) sin AE ]




Equations (11) and (1} then give

e-m(c2 cos M -~ ¢, sin AT )

= . (12)

+ ekz(—c cos AE + c. sin AE)

4 3

The coefficients Cys Cps Cgy and c, are to be determined from the bound-

ary conditions, equations (2). In determining the values of these con-

stants, it is convenient to consider two cases, L/a = and L/a < e .

Case I: L/a = oo

Equations (2) yield ¢, = ¢, = 0 and

3 4
KDI
—Z (cy-c) =M, (13)
2°D_
® c, = H . (14)
a2H0
Hence €, = (15)
2 2K2D
aMO a2HO
and cy 5= + > (16)
AD 2D
r
These values for ¢ and o vield
B = e M (- 72) cos N (17)
T
2

+ Ho( 2 2)(sin AE + cos AE)]

2Drx




2 3
u = e—kE[MO( 2—)(cos AL - sin AZ) + H (-225) cos ax] . (18)
2D_\ ° 2D \

When ¥ = 0, equations {17) and (18) become

B, = (—a/hDr)Mo + (a2/2Drk2)HO , (19)

v, = (%2007 + (=a/2 D )H_ (20)
or, in terms of the influence coefficients,

Bo = —CE)MM0 + CgHHo s (21)

uo = CuMMo B CuHHo ? (22)
where

cﬁM = a/AD_, (23)

Cy = a3/2Dr)\3 , (24)

Con = Cop = 32/2Drk2 n (25)

Equations (21} and (22) define the influence coefficients CuH’

CﬁM’ and CUM for any shell, whether it is c¢ylindrical or not and whether

it is of constant thickness or not. In the event that the shell is cylin-
drical, of constant thickness, and of infinite length, the wvalues of the
influence coefficients are given by equations (23), (24), and (25).

Case II: L/a <

In the case of a shell of finite length, the boundary conditions




(2) yield

!
o

+
O

+
O

+
[q]

Il

aMo/wr 3 (26)

_ .2 25
a Ho/zx D_ ; (27)

O
N
i
9]
I
|

-(cos AL/a.+ sin AL/a)e” c. +e cos AL/a
- sin ?\L/a)c2 + elL/a(cos AL/a - sin kL/a)c3

+ ekL/a(cos AL/a + sin M./a)c4 =0 3 (28)
-e_kL/a(sin kL/a)cl + e-hL/a(cos )\L/a)c2

+ eKL/a(sin hL/a)c3 - eKL/a(cos hL/a)c4 = 0. (29)

Equations (26) through (29) simplify to

+c, tc, tc

=c 2 T 3Ty

1 aMO/KDr ; {30)

3]
i
[¢]
I

_ .2 25 .
a Ho/zx D_ ; (31)

—(cos 2)\L/a)cl + {1 - 2 sin 2kL/a)c2+e2AL/é(l-2 sin 27\L/a)c3

+ eQKL/a(cos 2)\L/a)c4 =0 ; (32)

-(sin AL/a)c. + (cos AL/a)c. + esz/a(sin A\L/a)c
1 2 3

- ezxL/a(cos '}\L/a)c4 = 0. (33)

These equations can be solved rather easily, although the general
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solution is too complicated to be of much instructive value. The equa-
tions are simpler in the case AL/a = 2, and the solution then provides
insight into the effects of the finite length of the shell upon the
values of the influence coefficients. If AL/a = 2nx for some integer

n > 1, equations (30) through {33) simplify to

-c, te,tey o, = aMO/?\Dr : (30)
2 2. . ‘
c, ~c,=a Ho/zx D_ 3 (31)
—c. +c. + ednn(c +¢,) =0 (34)
1 2 3 4 ’
4anm _
c,~e ¢, =0 (35)

These equations have the solution

) ) o dnm
c, = (a“H /2D - aMo/wr)(l__-:fin-;) (36)
Inn
.2 2 -e .
¢, =(aH /22" D) ) (37)
1 - e
.2 2 o oAy
¢,y = (aH /2D + aM /D }/(1 - &™) 5 (38)
a1 2 2
6y =S —a Ho/2}\ D_ . (39)
l-e
Now from equation {(9)
ﬁo = cl + c3
2 2 2
= a“H_/2\D_ - a/AD_(1 + . e4m)Mo

CBHHO - CEMMO ’ (40)
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where
C ., = a2/2K2Dr (41)

and

. 2
- + —).
cﬁM (a/xnr)(l T e4”“) (42)
In a like manner it is found that
4nm
= (a3/n°3p J(—te
Cop = (a”/2n Dr)(-l N e4n1t) . (43)

A comparison of equations (41), (42), and (43) with (25), (23), and (24)

shows that the finite-length effects on C ,, and CUH are negligible for

EM
even moderate values of L/a. For the particular values of AL/a = 2nm,
there are no finite-length effects at all on CPHQ

The computations in this section indicate that for shells of
constant thickness the effects of finite length upon the influence coeffi-
cients are negligible when the ratio of the length of the shell to the
radius of its middle surface is greater than unity. In Chapter IV the
results of evaluating the influence coefficients of shells of finite
length and non-constant wall thickness are presented. Those results,
which will be interpreted in detail when presented, bear out the con-
jecture suggested by the results of the presenti chapter — namely, that
whether the wall thickness is constant or not, the influence coeffic-
ients for shells of finite length differ very littie from those for

shells of semi-infinite length provided the length of the finite shell

exceeds the radius of the middle surface. That this fact is of
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computational importance is evident from the two cases discussed above,
where the influence coefficients for the shell of semi-infinite length

were obtained much more easily than those for the shell of finite length.
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CHAPTER 11

THE METHCD OF THE HYPERCIRCLE

In this chapter the method of the hypercircle is used to de-
rive upper and lower bounds on the strain energy of a thin circular
cylindrical shell subjected to the external forces described by equa-
tions (2). A procedure by which these bounds can be made successively
better (that is, closer together) is also described.

After a function space has been introduced in which the "points"
of the space are quadruples of functions representing the stress result-
ants and couples NE, N, ME’ Mg, geometric intuition plays an important
role in the discussion. In fact, much of the power of the method of the
hypercircle lies in the analogy which may be drawn between the function
space and ordinary three-dimensional Euclidean space. The analogy is
helpful in suggesting useful relations, in motivating reasoning which
might otherwise be obscure, and in interpreting complex analytical re-
sults which have simple geometric meanings. Distance in the function
space is measured in terms of strain energy, and an inner product is ob-

tained by generalizing the expression for strain energy.

Preliminaries

By a state of stress is meant a set of four functions NE’ N.,
MF’ Mg defined on the closed interval 0 < ¥ < L/a. The unstressed state
NE = N9 = ME = Mg = 0 is represented by the origin in the function space.

A state distinct from the origin may be thought of as a point P in the
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function space, or alternatively (and figuratively) as the position vector
beginning at the origin and terminating at the point P.
Addition and subtraction of vectors and multiplication of a vec-

tor by a real number k are defined in the usual way. Thus, if

Spo= (N, Nopy Meys Mgg)
and
Sy = (Neps Noos Mepy Mgy,
then
5 3 = + N, =N
Sp £ 5y = (N 2o Ng =Ngos My £ Moy Mg 2 M)
and
kS, = (kNEl, KNy, KM, kMg ) s
The inner product of two vectors 51 and §2 is defined by the re-
lation

= = .0
5. . 5. = 2ra j 1/2(e Ny *

rl Eg1Ngn ¥

KM ¥ KoM

where eﬁl’ Eg12 KEl’ Kel’ are strains calculated from the stresses of the
state §l by using the stress—strain relations (5). The inner product de-
fined above has the following properties.

(1) Linearity in the left-hand factor
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and
(k§l) « 5. = k(5 3

(2) Symmetry (this property is an expression of the reciprocity relation)

5 L/a _
[ * 8, = 2na I) 1/2(eg Ny + € Ngy + <o)

(4]}
wn
13

5 L/a
2na f /2[1/C(8, | - wNg N,

o}

1

1
+CU%1-v¥lﬂ%2+cgJ&

o L/a .
ona j 1/201/C(N, , = wNgy Ny

o]

n

oo ™ vNEQ)N92 + ... dE

"
¥
o

N

C_’

1/2[5E2NE1 *eg Ny *+ ool lde

(3) Positiveness
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L/a
2
15 2ra J; 1/2(5

wl
wl
1}

£l ?’1 QlNQl +K€lM€l

+ KglMQl)dE

[
N
=
[sT)

N
—
—
~
N
rm
<
O
+

2
Ng; - 2vNi1Nél)

$ —— + M - 29M_ M )dr
T O o'

> 0 unless §l;5 0, sirce C > 0, D > O and

0<yv <1

The length S or |§] of a vector S is defined as the nom-negative

square root of the inner product of S with itself. Thus,

5 =3 -3 = 2na j 1/2(e, N, + egNy + ... )

where

= 1/2( s N tEgNg + KM+ KM )

L/a
is the strain energy function and Qnaz f Wdr is the strain energy of
0



the state S. Thus, the length of a vector is the non-negative square
root of the strain energy associated with the state of stress which the
vector represents.

Since the inner product has the three properties listed above,
it follows that the space 1is Euclidean, and thus that the inner product

just defined satisfies the Schwarz inequality

and the triangle inequality
‘§1 +§2] <[5+ ]5,] .

are both non-zero states, then the angle & between S. and

If Sl and S 1

2
§2 may be defined by the relation

- -l L ow
0 = cos (Sl 52/8182)

The distance between two points S, and §2 (or between the ends of

the vectors §l and S.) is defined as the length of the difference of the

2

two points |3, - 5

1 2|, so that

= |
1 2! = 2?[!32[ 1/2[(5}.:1 - EEQ)(NKJ-ENEz)
+ ... 0dr

The distance so defined has the usual metric properties of ordinary
space.
If the inner product of two states i3 zero, then the two states

are sald to be orthogonal. If the inner product of a state with itself
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is unity, the state is said to be normalized.

Of the theorems which can be carried over from the geometry of
ordinary space, the Pythagorean theorem is particularly easy to verify.
For, if §l and S

, are any two vectors, then

§1“§2’2=(31”§2) © (5, - 8,)
=sf-zslu‘§2+s§u
If §l and §2 are orthogonal, then
5, - 5,1° =7 +s2.

States of Stress

The following is a list of symbols and definitiocn: which are used
in the ensuing discussion. Each symbol in the list is used throughout
the rest of this chapter to denote a state of stress satisfying the indi-

cated conditions or having the indicated properties.

Symbol Name Explanation

G complete any state which satisfies the
equilibrium equilibrium equations (1), the
state boundary conditions {2), but not

necessarily the compatibility
equation (3)

S# homogeneous a set of m states each of which
P equilibrium satisfies the equiiibrium equa-
states tions (1) and the homogeneous

{p=1,...,m) boundary conditions £=0, M, =H=0;
r=L/a, M, =H=0, but not necéssarily
the compatibility equation (3)[the
states S* are assumed to be linearly

independent ]
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T# orthonormal a set of m orthonormal states; each
P homogeneous of which is & linear combination of
equilibrium the states S% [and therefore satis-
states fies the samk equilibrium eguations
(p=1,2,...,m) and boundary conditions]
*§q compatible a set of n states each of which satis-
states fies the compatibility equaticn (3),
(g=1,2,...n) but not necessarily the equilibrium
equations (1) nor any boundary con-
ditions{the states ¥3, are assumed
to be linearly independent]
*] orthonormal a set of n orthonormal states, each
q compatible of which is a linear combination of
states the states *S_ [and therefore satis-
{(g=1,2,...,n) fies the compatibility equation (3}].
5 actual the state actually existing within

state the shell. This state satisfies the
equilibrium equations (1), the com-
patibility equation (3), and the
boundary conditions (2).
The orthoneormality of the states T; and of the states Tz may be exs

pressed by the relations

where bjkg the Kronecker delta, is defined by the relation
1if j =k
bjk o

0if j #k

The Hyperplane of Equilibrium and the Hyperplane of Compatibility

A large part of the power of the method of the hypercircle lies

in the geometrical interpretations of the method. The analogy between
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the function space and the familiar three-dimensional physical space is
helpful in suggesting interesting relations and inequalities which might
otherwise be obscure and in suggesting lines of reasoning which might
otherwise be poorly motivated.

In this geometric interpretation, the hyperplanes of equilibrium
and of compatibility figure so prominently that they are discussed
separately below before proceeding with an exposition of the method of
the hypercircle.

By virtue of the linearity of the equilibrium equations {1) and
the homogeneity of the boundary conditions satisfied by a homogeneous
equilibrium state, any linear combination of homogeneous equilibrium
states is itself a homogeneous equiiibrium state. For the same reasons,
if a complete equilibrium state be added to any homogeneous equilibrium

state, the result is a complete equilibrium state. Thus the state

m

S# +z a* G¥ (44)

P P
p=1

is a complete equilibrium state for any real values of the constants a;n
If these constants are allowed to assume arbitrary real values, the re-
sulting class of vectors of the form (44) is an m~dimensional hyperplane
L; in the function space. This hyperplane is called the hyperplane of
equilibrium.

Similarly, any linear combination of compatible states

i #y #5 (45)
q=
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is also a compatible state, since the compatibility equation (3) is linear
and no boundary conditions are impesed on the states *gqq If the cone-
stants *aq are allowed to assume arbitrary real values; the resulting
class of vectors of the form (45) is an n-dimensional hyperplane *Lny
the hyperplane of compatibility.
If the two hyperplanes L; and *Ln have a point in common, then
that point represents the actual state S, since the equilibrium equa-
tions, the compatibility equation, and the boundary conditions are satis-
fied by the state represented by the common point. But since the two
hyperplanes have only m+n dimensions, while the function space has in-
finitely many dimensions, the hyperplanes will not in general have a point
of intersection. In either case, there is a point in L; and a point in *Ln
at which the distance between the two hyperplanes is a minimum, and as
will appear later, the location of these two points is a key step in
finding upper and lower bounds for the strain energy of the actual state.
A property of the hyperplanEﬁL; and *Ln which is used in the fol-
lowing discussion is their mutual orthogonality, which may be shown as
follows.
Any vector §E lying in the hyperplane of equilibrium L; has the form

(see Figure 3)

Any vector lying in the hyperplane of compatibility *Ln has the form



L

Figure 3. The Hyperplanes of Equilibrium and Compatibility
for the Case m=n=1,
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S as =O= (46)
From the definition of the inner product,

L/a

- 2 :
c * 9 T ma J; I/Z(EECNEE *egcNge T K Mg

it
W
LI}

+ KocMgp)

211a2/2 j‘L/a [('v/a)UCNEE + (l/a)ucNgE
Q
de
+ (1/a) = Mg tO- Mgg]dz

L= 0 and Ny = dHE/dEj,

_ - 5 L/a
5. * 5 = na L (ugdHp/ot + dp o/dEM, )k

An integration by parts gives

/a

/a

wl
vl

L
* [ﬁCMEE]O

L/a
-j; (Hodu/dE + ¢ dMe/dE )dE

L
c g [UCHE]O

The third term of the above equation is zero since
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Hp = ~1/a thE/dE
and
duc/dE = aﬁc .

Since SE is & lirear combination of homogeneous equilibrium states,

HE(O) = MgE(O) HE(L/a) = M.EE(L/a) =0,

and so

o
)l
1
(o]

-

as was to be shown.
In particular, then, since T; and *Tq are vectors lying in the

hyperplanegLﬁ;and *Ln respectively,

] . I®
q p

18

=0 (p=1,2, «.o, ms g=1, 2, ..., n)

Figure 3 is a representation of the hyperplanes L; and *Ln when
m=n=1, in which case the hyperplanes are straight lines.

An Qutline of the Discussion to Follow

The succeeding steps in establishing bounds on the strain energy
of the actual state (i.e., on the square of the length of 5) may be des-
cribed in geometrical terms as follows:

a) The actual state is located on a hypersphere, on m+n hyper-

planes related to *Ln and L;, and then on a hypercircle I’
which is the intersection of the m+n hyperplanes and the

hypersphere.
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b} The center C and the radius R of the hypercircle I' are
determined.

c) A minimal property of the hypercircle is verified and the
extremities of a diameter of I' are located (these extre-
mities are the points in *Ln and L; at which the distance
between the two hyperplanes is a minimum).

d) A proof is given of the fact that the squares of distances
of these extremities from the origin are respectively
lower and upper bounds on Sza

Location of the Actual State on the Hypercircle

Let S be the actual state, and let S* be any complete equilibrium
state. Then, since S is itself a complete equilibrium state, S - 5% ig
a homogeneous equilibrium state. Also S is a compatible state, and hence,

by (46)
§.(5-5%) =0, (47)

Thus, S and § -~ 3% are orthogonal, and so the end of 5 lies on a hyper-

sphere of which S* is a diameter. The center of the hypersphere is at

N~

S*  and the radius is %'S* (see Figure 4).
If S is the actual state (and hence a compatible state) and §E

is any homogeneous equilibrium state, then by (46)

In particular, since each T; is a homogeneous equilibrium state, it

follows that
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(48)

[4p)]
i
I
o
o
o
n
=
-
3]
N
-]
-
=
g

Thus, S is orthogonal to the hyperplane of equilibrium and lies in each
- B
of the m hyperplanes orthogonal to the wvectors Ip (see Figure 5).
- *
If § is the actual state and 3 any complete equilibrium state,

then S - S is a homogeneous equilibrium state. It follows from (46)

that if §C is any compatible state, then

§C-(§-S)=oo (49)

Thus, the difference between the actual state S and any complete equili-

iy
brium state S 1is orthogonal to any compatible state. In particular,

*.
since each Iq is a compatible state,

- - #*_
(§-5)-1T =0
q
or
- *_ -3 *_, ;
8. I,=8- 1. (@=1,2, .., n) (50)
%

This means that the difference S - § is orthogonal te the hyperplane of
compatibility (see Figure 6) and lies in each of the n hyperplanes which

ol
pass through the extremity of S and are orthogonal to each of the vectors
#*_

q
Equation (47) locates the end of the vector S on a hypersphere;
equation (48) locates it in each of the m hyperplanes passing through the

#
origin and orthogonal to L_; and equation (50) locates it in each of the

= #
n hyperplanes passing through the extremity of S and orthogonal to Ln°
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u\

O

-3
Figure 4. The Hypersphere of which 5 1is a Diameter.
Also shown grgﬁthe actual state S and the
difference 5-5 .

L
| % \,

(0]

f
H

¥
Figure 5. The Hyperplgne Orthogonal te T ,

Showing S, I, and TT for the Case

m=n=1,
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So the end of 5 lies on a hypercircle I’ which is the intersection of the
hypersphere and the m+n hyperplanes just described.

Definition of the Center € and Determination of the Radius R of

the Hypercircle I'

The center C of the hypercircle I' is defined to be the point

m n
— —% P -3 ¥ - ¥
C=1/2% - (3 - 1 +ZISoI . 51
/ ), TE 1) 5T (51)
p:l q:l
The radius of " may be found from the relation
2 - = -
R"=(5~C) . (s-20C)
or
m n
2 _ #D A LY ¥ %o D
R =1/4|s° - Z(s )% Z(s 1% (52)
p=1 q=1

The preceding discussion may be summarized as follows.

The extremity of 5 {the actual state) is located on a hypercircle

' whose equations are

=l
——
>

|

]
[}

>
Ll

I =0 (p =1, 2, vos, m) , (53)

>
L
1)
€3]
—t
-
e}
1}
—
-
N
-
-
L ]
=3
~r
-

i where X is any point on I'. The center C and radius R of " are given by
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equations (51) and (52) respectively.

Verification of 3 Minimal Property of the Hypercircle [

and Location of the Extremities of a Diameter

The next step in the argument is motivated by the following

observation: If S is the actual state, S any complete equilibrium

state, and S. any compatible state, then

9]

The preceding equation may be verbalized as: the actual state lies on
every hypersphere whose diameter is the line joining any point of the
hyperplane of equilibrium to any point of the hyperplane of compatibility.

- ¥ *
Now points Vn and V; in Ln and Lm respectively can be found for

which the length of their difference is less than or equal to the length

* 3
of the difference of any twc points in Ln and Lm respectively. Thus,

e ¥ =3
Vn is the best approximation to S in Ln, and Vm is the best approxi-
- 3
mation to S in Lm. These two points may be found by using the following
procedure.

%
The general point in Lm is

H
and the general point in Ln is
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* ¥
where bp and bq are arbitrary real numbers. The square of the distance

between the two points is

m n
- e -t # ¥ # How
p? = [0 - ]2=(S+Zb T~ )b T )?
P P qa q
p=1 q=l
m n
*2 #¥_ 3 =3 ¥ 3 ¥—
=s+2st I—2ZbS=I
p p q q
p=1 g=l
m n
+Zb*2+z*‘b2
p q
p=1 q=1

The quantity D2 (and hence D itself) is a minimum when the constants

% %
bp and bq have the wvalues

- e 3% *
that is, when U - U is orthogonal to both Lm and Lno Thus,

and

n
*v =Z*i (3 . "1 ). (55)
q=
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Comparing (54) and (55) with (51) and with (52) shows that

- % R
C = 1/2(vm + vn)

and

2 o*  Ho (2
R 1/4(vm - V)T

Thus, the hypercircle I' previocusly constructed enjoys the property
that the points *Vn and V;, where the hyperplanes of compatibility and
equilibrium are closest together, are the extremities of a diameter of
I'. Furthermore, since any chord of I' may be represented by a vector
Y=X - 32, where X, and X, terminate on I', it follows from the last of

1 1 2
equations (53) that

% Iq = (X, - X,) I
=%, -1 -%, 1
! q 2 q
-5 *_ - L .
= 1 -5 i
q q
=0 (g =1, 2, .c., n)
and hence that
- H o
Y =0
n

®o
That is, Vn is orthogonal to the plane of L.
=3 Hom
In summary, the vertices Vm and Vn of the hyperplanes of equili-
brium and ¢f compatibility are the extremities of a diameter of the hyper-

- ¥
circle ' on which the actual state S lies. The position vector Vn of
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the vertex of the hyperplane of compatibility is orthogonal to every chord
of T.

3 ¥
Proof that sz and Vi are Respectively Upper and Lower

Bounds on 82

The summary just stated and an examination of Figure 7 suggest

the inequalities

*¥2 ¢ g2
C <

<Vl
= m

A proof may be constructed as follows. By reason of equations {55), any

point X on ' satisfies the relations

X-Vv)-(X-"V)=0 (57)

and
XV =3 v ., (58)

The first of these relations is deduced as follows.

- —H — Fom
(X - vm) (X - n)
m n
I - E:('* ':)T: % - E:(‘* *‘q)*fq
p=1 q=1
m
- =% - - - —H R
=(X-3). X +% - E:( 1T




by reason of equations (53) and (46). The second equation is implicit

¥#_
in the third of equations (53), since Vn is a linear combination of the

Ho
Iq. From (57),

X< = X + « X - V)
m n m n
or, by use of equation (58),
=2 =% o oE ¥ =¥ Mo
X2=V -X+5 . (vm n) (59)
But by virtue of equation (46)
- 3o - ¥
v =3 ,
m n n
and hence
52 o o
XT =V X (60)

From the preceding equation, ?2 has its maximum value when

- ¥*
since X must lie on . Thus, Vm is the maximum of X.

On the other hand, equation (60) may be rewritten in the
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P

NOTE: This figure is in some respects deceiving.

Actually, I" consists of the two points V? and

*Vl. But to make an illustration more sugges-
tive of the general case, I' 1s shown here also as
a (hyper) circle.

#_
Figure 7. The Hypercircle I, Showing Vn’ Vm and 5.

35
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equivalent form

X% = v;x cos 9, (61)

where & is the angle between V; and X. The left-hand side of (61) is

small when X is small and © is large. The vector to the point *?n has
the smallest length of any point on I' and the angle between *Vn and v;
is larger than the angle between V; and any other vector terminating on
I" {since V; and *Vn terminate on the opposite ends of z diameter of I').

o~ Homo
Hence, the minimum of X occurs when X = wﬁ Thus, for any point X on

I‘S‘

Since 5 lies on I', inequality (56) is proved.

In summary, the distance of the actuai state from the origin is
bounded above by the distance from the origin to the vertex of the hyper-
plane of equilibrium and below by the distance from the origin to the

vertex of the hyperplane of compatibility. That 1is,

n
Cv)? =Y "1 )% <8 < (8
g=1 (63)

These inequalities bound the strain energy of the actual state

§ above and below.
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CHAPTER III
BOUNDS ON THE INFLUENCE COEFFICIENTS

In this chapter, bounds on the influence coefficients CuH’ CﬁM’

and C ., are derived from inequality (62). A numerical example is pre-

gH
sented which illustrates the procedure normally followed in obtaining
values for these bounds, and some discussion is devoted to the problem

of making astute choices of the several states necessary to carry out

the computations.

The Strain Energy in Terms of the Influence

Coefficients CuH’ CEM’ and CBH

The strain energy of the actual state S is given by the relatiecn

5 5 L/a

s° = 2na ]; 1/2(e, N + ey + KMo + KMl (64)
By equations (1), t, = 0, and by equations (4} K, = 0. Hence equation
(64) may be written in the form

L/a
52 = naQJ‘ (e, + KM )aE
. ¥

which, when combined with the strain-displacement relations (4) and the

equilibrium equations (1) becomes
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Lfa“ '
52 =ma” [ & v B e (65
0 d =1 ¥
Integrating (65) once by parts and applying equations (1} and (3) orce

again yields the relation

2 L/a L/a
S = na[(uH + BM)] - (U?H + [erE)d?: (66)
0 o .
L/a
= ““a(UOHO tBMy) - na J; H{u' - ap)dr

= —ga(u

-

cHo * Ety)

L

since S satisfies the relation 4 ap. If u, and BO are expressed in

0

terms of the influence coefficients, then (66] becomes

2 _

§° = -na[(-CUHHO + CUMMO)HO + CCpHHO - CﬁMMO)MOj {67)
or, since CuM = CﬁHy

2 2 2

$° = ma[C_ Hj - ZCEHHOMC + CﬂMMO] . (68)

Thus the strain energy of the actual state S can be expressed as
a quadratic form in the guantities HO ard MO with coefficients related to

the influence coefficients as shown by equation (68).

Bounds on the Influence Coefficients

B
If 52 is given by equation (68), and the equiiibrium state S 1is

*
chosen sc that S 2 is also a quadratic form in MO and HO, then the
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inequalities (62) take the form

a H2 - 2a HM + a3 M2

10 200 30
< cuHHS - g M, + cf_Mmg (69)
< bng - b H M+ baMg ,
where the numbers 815 8ps Agy bl’ b29 and b3 are calculable. Each mem-

ber of (69) is positive definite, and the inequalities are valid for all

values of Hy and My. 1In particular, then, if Hy =1 and My = 0,

£C ., <b, ; {70)

a uH = %)

1

if Hy = 0 and M, = 1,

ay £ C;;,M <b, . (71)

Bounds for ch which are not particularly confining can be deduced

from the fact that 82 is positive definite, so0 that

2
(Cp,H) - CuHcEM <0

or

ICoul < A/CuCom

More exacting bounds can be obtained by the following reasoning. For

values of HO and MO for which H

comes, upon division by HOM

Mg > 0, the right inequality in (69) be-

O’
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cHI 2 b, - l/2[bl - CUH]HO/MO - l/2[b3 - CﬁM]MO/HO . (72)

The exact values of C and C , are not known, but lower bounds, C
uH BM uH

and C Me can be found by inequalities (70} and (71). Using these bounds

in (72) will not destroy the sense of the inequality, and so {72) may be

written in the form

CEH > b, - 1/2[1:>l - EU_H]HO/MO - 1/2[b3 - E&M]MO/HO . (73)

If the right side of {(73) is thought of as a function of HO/MO (HOﬂMO)>O),

then the right member assumes its largest value when

HoMg =A[ (b, = C)/(b) - G

and hence inequality (73) in its most restrictive form is

C.y 2 by —'\/(bl - Eﬁi)(b?» - C ) . (74)

pH = M

For values of HO and MO for which HOMO < 0, the right inequality in {69)

becomes

CPH Kb, + 1/2[bl - C gl{-H /M) + 1/2[b3 - CFJM](—MO/HO) .

By reasening as above, the inequality

Con < b, +'\/(bl - E:U_H)(JD3 - E&M) (7%)

is obtained. The combining of (74) and (75) vields
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1A
0
o

by -/ (b, - Cun) (b - E;:‘-_M.)

+V(b, - Gy (b, - Com)

The left inequality of (69) similarly yields

4 "\I(Cuﬁ - 31)(Cp,m - ag) < Con S 3

o Cp = )y - )

41

(76)

(77)

By collecting the inequalities (70), (71), (76}, and (77), the

following summary of bounds for the influence coefficients is obtained.

Here 31y 8ps and a, are the coefficients of Hg,

3

2 .
—2HOMO, and MO respectively
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. . 1 *, N2, o .

in the expression ma ( Vn) H bl’ b2, and b3 are the similar coeffic

. . ' . 1 *\2, = =

ients in the expression na (Vm) ; and CUH’ CﬂM’ CUH’ and € M» 3T€ upper

and lower bounds on the guantities CuH and CeM respectively.

A Numerical Example

In this section the relations derived above are used to compute
bounds on the influence coefficients for the shell of the type shown in
Figure 1 described by the parameters a = 1, L = 3, and h = hre"pz, where

h =0.1and p = 2.8.
#

The choices of the functions which define the states *§ and S
should be made in such a way that the strain energies of the two states
are about equal to each other, and thus almost equal to the strain energy
of the actual state. To insure that the strain energy of the equilibrium
state 3* is almost equal to the strain energy of the actual state S, it
is necessary that the state §* be chosen so that the stresses closely
approximate those of the actual state. Likewise, the compatible state *§
should be chosen in such a way that the displacements closely approximate
those of the actual state. Since the shell is subjected to external
forces and moments only along the lower edge, it is physically reascnable
to assume that the behavior of the shell will be determined almost en-
tirely by the characteristics of the part of the shell near the lower edge.
In particular, for small values of p, the strains and stresses within the
shell should be nearly the same as those in a shell with a constant thick-
ness equal to the lower edge thickness, or refgrence thickness, of the
variable shell. Thus, it seems proper to chose the functions defining
*3 and 3" to be of the same form as given in equations (9), (10), (11),

and (12).
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#_
In choosing the state 819 which will then define the normalized
#_ ¥ oM
state Il = Sl/ Sl, the simplest procedure to follow is to assume a dis-
placement u and use equations (3) and (4) to find the strains. Equation

(5) may be used to express the inner product in the form

[Ceg + DK?]dE (78)

L/
-r[j a‘[cuz +D(p")%ax

o}

2]

u is assumed to be of the form

u = a/2m ie—mg[—(cl + 02) cos mf, + (Cl - Cz) sin mE]Z {79)

by analogy with equation {9), where m, Cl’ and C2 are considered to be

optimizing parameters. Then | is given by the relation

, cos mE + G, sin mE ) (80)

since equations (3) must be satisfied.
For a complete equilibrium state, a suitable function ME can be
chosen; then H and Nj are determined from equations (1). Equations (5)

may be used to express the inner product in the form

5*2 = naz J

L
/a(NS/c + M?/D)d{‘ ) (81)
o]

By analogy with equation (11), ME is chosen to be of the form
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M = mDr/aE"’"‘E[(c2 - cl) cos mf ~ (C; + C,) sin mr] (82)

+ emzl:(C3 + C4) cos mf + (C4 - C3) sin mzfgu

-
Since 5 must satisfy equations (1), H must therefore satisfy the rela-

tion

H = 2m2Dr/a2 {}‘mg[cz cos ¥ - C. sin n¥ ] (83)

1

+ emz’,[—C4 cos m¥ + C3 sin nfj} s

where

- -3 2
D, =D, = En_/[12(1-v")

]

and Cl, C2, C3, and C4 are chosen so that equations (2) are satisfied.

¥
To compute lower bounds, Sf is first computed by substitution of

(79) and {80) into (78). This yields

L/a
e—(2m+p)E cos2 o o (84)

*s2 = n{‘craz/-‘imQ [(Cl + C2)2J‘

0

L/a
—2(Cf - CS) j e"(zm-lbp)Ej cos M sin mrde
o

2 J'L/a - (2mhp)E

e}

+(c, - C sin® mEdE ]

2

L/a
)2 f e-(2m + 3p)€ cos2 m df,



43

sin mf cos mEdE

2, IL/a o~ (2mt3p )

2
uz(cz - cl

L/a
+(c, +c)? [ (AN 2
o}

_ 2 2
= XlCl + X2C1C2 + X302 .

By equation (63),

*v2 (E* . *3/*5)2 (85)

1

12 2
[-ma(ugH,, + p My) “1/%S

It

22 2, % 2
n"a"[-(C, + C)H, + C M ] / s° .

Equations (70) and (85) yield

2, % D
na(C, +C,) / s°< Coy s (86)

where C CQ, and m may all be used to make the left-hand side of the in-

l’

equality {86) as large as possible. The optimum value for 02 with

Cl = 1 may be found by setting Cl = 1, differentiating the left-hand

side of inequality (86), and solving for the value of C2 which makes the

above derivative vanish. The results of these operations are found to

be

c, =1,
(87)

@]
|

= (X, - 2x)/(x, - 2x,) ,

3
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where X X2, and X, are defined by equation (84). By trial and error,

1’ 3

the maximizing value of m is found to be given approximately by the re-

lation
m=(1+ 0.41pANM , (88)

where X is defined by equation (8).
For the particular case being considered, the results of the

above computations are as follows.

X, = 703.55
X, = =366.02
X, = 564.04
c, = 1

C, = 0.36

*s2 = 1172.92

0.00013 £ C_ (89}

H

By using equation (24), the value of C,y for a shell of constant thickness

hr and infinite length is found to be

(e = 0.815 x 1077 ,

UH)CT

and hence (89) can be written in the form

1.6(0U C . . {90)

H)CT < uH




For CﬁM’

By using this equation and performing calculations similar to those

giving a lower bound on CuH’ the following results are obtained.

By equation (23),

and hence inequality

Requiring equations (82) to satisfy the boundary conditions H

0

ing results.

the analogue to equation (88) is

m= (1 - 0.32p/A M

X, = 703.55

X, = ~366.02

Xy = 564.04

C, =1

C, = 1.19

*s? = 1063.54
0.0052 < cﬁM
(CpM)CT = 0,0027 ,

(92) can be written in the form

1.95(C < C

EM)CT— EM °

17 727 73

47

(92)

(93)

o- b

M_ = 0 and solving for the constants C., C,, C,, and C4 yields the follow-
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1.15 x 10°°

(@]
1
o
1

C_.=C, =0 (04}

Substituting equations (82) and (83) into equation (81) and using the

values of the constants given by (94) yields the result

# -
S 2. 1.39 x 10 4ﬂa

when the appreoximate minimizing value
m = 6.89

is used. Upon comparing this result with equation (69) and recalling

that MO = 0 and HO =1, it is seen that

_ -4
Cg$bp =1.39x 10 . (95)

By equation (24),

(c T = 8-13 x 107° R

uH)C

and so {95) can be rewritten in the form

C y < 1.70(C, (96)

H)CT ‘

A similar computation with M_ =1, H = 0, and m = 6.85 yields

0 0

the results

#* -
§°2 = 6,75 x 10 °ra {97}

and
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_ -3
CBM'S by = 6.75 x107" . (98)

By equation (23},

_ -3
(CgM)CT = 2.69 x 10 ~ ,

and so (89) can be rewritten in the form

CpM < 2,51(cﬁM)CT . (99)

The following procedure is found to yield good upper and lower

bounds on the influence coefficient CUM(=C ). The values of a, a

pH 2’

and a, are computed from equation (85) by using the values for Cl and

02 given by equation (87) and the value of m given by equation (88).

These values are found to he

[+1)
[}

8.477 x 107>,

1
a, = 6.638 x 1074,

_ -3
ag = 5.198 x 10 ° . (100}

The above values and the upper bounds on C ., and CEM given by (95) and

(98), when substituted into equation (77), yield

6.22 x 104 < C(=C, ;) < 9.240 x 1074 . (101)

M gH)
The value of CUM for a shell of constant thickness hr and infinite length

is

-4
(cuM)CT = 3.,3x 10,
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and so equation (101) can be written in the form

(CUM)CT CuM (CUM)CT

1.89 < < 2.81 . (102)
(Coner o H (Conler

e’

Inequalities {90), (93), (95), (98), and (102) can be summarized

as follows.

1.60(C ..) < ¢, £ 1.70(C

uH’CT = TuH uH)CT

1.95(C_,,) 2.51(C

I~

C

I~

Com’cT LM om)CT

(103)

1.89{Cc ,,)JCT < ¢C 2.81(C
uM =

1A

uM uM)CT

) < C 2.81(C )

1-89(C yer £ Gy S eH’CT

Fa

pH

The resolution of these results as compared to results obtained by other

methods is discussed in Chapter IV.
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CHAPTER 1V
RESULTS AND CONCLUSIONS

In this chapter bounds on the influence coefficients obtained by
repeatedly applying the procedure of Chapter III are presented graphically
and in tabular form and compared with similar results obtained by Sledd
[4]3.

As is shown in Sledd [4] and in the appendix to this paper, the
influence coefficients for semi-infinite c¢cylinders depend only on the
value of the parameter p/&. Since the results obtained by the method of
the hypercircle showed no appreciable effects due to finite length, the
approximation was made that the influence coefficients are essentially
functions only of the parameter p/ko Confidence in this approximation
may be gained by an examination of Table 1, which shows the bounds on
the influence coefficients obtained by fixing the parameter p/x and vary-
ing L/a.

In the computations yielding the upper bounds on the influence

coefficients Cu and C M? the parameter m is available as an optimizing

H p
parameter. The utilization of this parameter is absolutely necessary in
order to obtain good (i.e., small)} upper bounds, especially in the higher

ranges of the parameter p/k. By trial and error, the approximate mini-

mizing values of m were found to satisfy the equations

m o= {1+ 1.01p/AN (104)
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Table 1. Variation of Bounds on the Influence Coefficients
CUH and CBM with L/a for Fixed p/X. (Values shown

have been divided by the appropriate influence coef-
ficient for a semi-infinite constant-thickness shell
of the same reference thickness.)

L/a (CUH)upper (CuH)lower (CEM)upper (CEM)lower
p/N = 0.25

1.0 1.03 1.025 1.03 1.03

2.0 1.03 1.025 1.03 1.03

4.0 1.03 1.025 1.03 1.03
o/\ = 0.49

1.0 1.50 1.41 1.91 1.62

2.0 1.50 1.41 1.91 1.62

4.0 1.50 1.41 1.91 1.62
p/\ = 0.74

1.0 1.76 1.57 2.68 1.93

2.0 1.76 1.57 2.69 1.93

4.0 1,76 1.57 2.69 1.93

6.0 1.76 1.57 2.69 1.93

and

m=(1+0.90/AN

for the computation of Cu and G, respectively. Values obtained from

H BM
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equations (104) were used in all the computations of this chapter as well
as in the numerical example given in Chapter III.

In the computations yielding lower bounds, all maximizing param-
eters were chosen by the method ocutlined in Chapter III.

Table 2 shows the effect of the minimizing parameter m in the cal-
culation of upper bounds by comparing results obtained by choosing m

according to equations (104) and the results obtained by choosing m = \.

Table 2. Effect of Utilizing the Minimizing Parameter m.

(Values shown have been divided by the corresponding
influence coefficients for a semi-infinite shell of
constant thickness. )

L/a = 3.0
(CUH)m (C M)m
p/\ (CUH)m=k by eqns. (104) (CﬂM)m=K by egns. (104}
0.1 1.12 1.1 1.14 1.13
0.6 5.05 1.60 4.95 2.19
0.8 303.6 1.76 191,2 2.89

The results obtained by the method of the hypercircle are sum—
marized in Table 3. This table gives the ratio of the upper and lower
bounds for each influence coefficient to the appropriate influence coef-
ficient of a semi-infinite shell of constant thickness equal to the
reference thickness of the finite shell of variable thickness. All
values were computed for a shell with a ratio of length to meridional

radius {L/a) equal to 3.
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Table 3. Bounds on the Influence Coefficients C
C..» and C (=C. ) uHt
BM? uM® TBH""

L/a = 3

p/k (CUHLpper (CuH%ower (chLpper (CﬁMhower (CUM%pper (CUM)lower

0.05 1.05 1.05 1.06 1.06 1.06 1.06
0.1 1.10 1.10 1.13 1.12 1.13 1.12
0.2 1.20 1.19 1.29 1.25 1.29 1.24
0.5 1.0 1.44 1.91 1.66 1.91 1.57
G.8 1.81 1.67 2.89 2.11 2.81 1.89
1.0 2.03 1.82 3.84 2.44 3.29 2.09

Figures (B8-10) show a comparison of the results obtained in this
paper with similar results obtained by Sledd [4]. As can be seen by
examining these figures, the results do not differ significantly except
in the case of the coefficient CUH (Figure 8), where the results obtained
in this paper represent a significant improvement.

Based on the results presented in this chapter the following con-

clusions can be stated.

1. The method of the hypercircle provides an elegant method for
bounding the influence coefficients of shells of varying wall
thickness. The results obtained can be expected to be com
parable to results obtained by the method of minimum potential

and complementary energies as outlined by Sledd [4].
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Whenever practical, approximating functions should be chosen
which contain arbitrary parameters to be used to optimize

the results obtained.

Influence coefficients of shells of even moderate length-to-
radius ratio do not differ significantly from their infinite-
length counter-parts. This fact is important computationally
because it simplifies the boundary conditions which the ap-
proximating functions must satisfy and also simplifies the
many integrals which must be evaluated in a computation of the
strain energies from which the bounds on the influence coeffi-
cients are obtained. From an engineering point of view, it
means that for practical application the influence coeffic-
ients depend only on the characteristics of that part of the
shell in the immediate vicinity of the applied loads and that

the influence coefficients of finite shells can be considered

to be functions of the parameter p/& alone.
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Appendix

Bounds on the Influence Coefficients CEM

for a Shell of Infinite Length

and CUM

In the case L/a = o, the boundary conditions which must be satis-

-
fied by the state S are

ME(O) = MO 3
H(0) = Hy 3
%qusEqw; A-1

H=>0 as £—pwx ,
The functions

ME = (mDr/a)e_mEEC2 - Cl)cos m - (Cl+C2) sin m{}

and

H'= (aszr/a)e"mE(C2 cos m - G, sin mz )
with

c, = a2H0/2m2Dr - aM /mD_
and

C, = a2Ho/2m2Dr

"
define a suitable state S .
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*

The upper bound on C_,, can be found from the strain energy of S

M
with HO = 0 and MO = 1. In this case,
Cl = -a/mDr
and
02 =0

_#*
The strain energy of S is found by using equation (81},

5 2 2 1% 2/ ¢ M2 D)dr
a J; g/ ME/

naz[l/cr(4m4/32)(l/(p - 2m))

+ T (-an?/a%n/ ((p-2m)? + an®)
r

+ (1/p )(1/(3p - 2m))

+ (1/0_)m/ ((3p-2m)% + an®) T . A2
It follows from equations (6) and (8) that
4,2
C, = 4D /a“
and by use of this relation equation A-2 may be rewritten in the form

§*2 - na(a/xnr)[(m/x)4 « 1/{p/\-20/\) - 2(mA)°

c 1/ (A = 2A)2 + almA)D + 1/(3pA-20A)
+ (mA)/ ((3p/A = 2mA) + almA)?)].

From equation (23),
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2
(Comler =7p. 3
I

and from inequalities (63) and (69) with My =1 and Hy =0,

CEM < —

Thus,

Cow/ Cower < (A - 1/ (oA - 20/A)
- 2(m/')\)5 - 1/ ((p/ - 2m/i)2
+ 4(m/7\)2) + 1/(3p/ - 2m/\)
+ (mA)/ ( (3pA-2mA) *+a(mA) )]

A-3

Inequality A-3 gives an upper bound on CBM in terms of the parameter p/k
and the influence coefficient (CEM)CT' The parameter m is to be assigned
the value which makes the bound as small as possible.

Similar calculations with MO = 0, H0 = 1 yield the folleowing upper

bound on the coefficient CuH'

Cw/C ey < [(mA)2(1/ (/A - 2mA))

(oA = 20A)/ (oA - 2mA)? + 4(mA)?)
(/m)2(1/BoA - 20A))

(3pA - 2mA)/((3p/A - 2mA)?
amA)?) 7 . fed

-+

+

+

Hom
To find lower bounds on CUH and CBM’ the state S may be defined

by the relations

3 -
u=5-e ““’5[(r:l + Cz) cos mE + (02 - Cl) sin m¢] ,
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B = e‘"‘i[c1 cos mE + C, sin m] .

¥
The strain energy of S is given by the relatien

*s? = x_fn [cu® + D(g')%]de

o}

Performing the indicated integrations gives the following expressions

for the terms Xl, X, and X_ defined by equation (84).

2 3
X, = DX/[n°(2m + p) 1+ m’D_/(2m + 3p)
- 2%_/(n[ (2m + ) + an°])
+ 2m3Dr/[(2m + 3p)2 + 4m2] ;
X, = 2Dr(2m + p)/[(2m + p)2 + 4m2]
- 2m2Dr/[(2m + 39)2 + 4m2] 3 A-5
X, = Dr/[m2(2m +p)] + m2Dr/(2m + 3p)

+ 2x4Dr/h[(2m + p)2 + 4m2]

- 2maDr/[(2m +3,)% + 4n°] .

The lower bounds can be found from equations A-5 using the pro-

cedure oputlined in Chapter III.
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