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Abstract 
 
 Saltwater intrusion, which is commonly associated with extensive groundwater 
extraction, is an important problem for coastal regions. To avoid saltwater intrusion and maintain 
the integrity of coastal aquifers, proper management of groundwater supplies is necessary. In this 
study, which includes the research results of phase one of our two phase research program, we 
present a multi-objective optimization approach to determine pumping rates and well locations to 
prevent saltwater intrusion, while satisfying desired extraction rates in coastal aquifers. The 
proposed method is an iterative sub-domain method, in which the algorithm searches for the 
optimal solution by perturbing the well locations and pumping rates simultaneously. The 
decision variables of the optimization problem are modeled as continuous independent variables. 
In the proposed approach, sharp interface solution for homogenous steady state problem is used 
along with the Dupuit and Ghyben-Herzberg assumptions. The analytical solution developed 
follows the single-potential theory concept introduced by Strack [1976]. Using this approach, the 
direct method of searching for saltwater intrusion points is formulated by comparing the location 
of the stagnation points of flow fields, and the saltwater intrusion profiles obtained from the 
single-potential theory solution. These critical conditions are incorporated into the formulation as 
the constraints of the problem. The search for the optimal solution, within each sub-domain, is 
conducted using Genetic Algorithm (GA). The multi-objective problem is formulated to 
maximize pumping rates while minimizing the distance between critical stagnation point and the 
reference coastline location, such that the wells are placed as closely to the coast as possible. The 
efficiency of the optimization process is improved by solving the problem through a sub-domain 
perturbation approach. Several numerical experiments are conducted to evaluate the 
effectiveness of the proposed method. As a case study, the numerical results obtained from the 
proposed method are compared with the work of Cheng et al., [2000], with the proposed 
approach yielding higher pumping rates than was reported in their study. The sequential use of 
multi-objective criteria, with pre-selected weights, successfully demonstrates the capability of 
the model to achieve two objectives simultaneously. This approach provides cost effective 
solutions to an important management problem in coastal aquifers. In phase two of the proposed 
research program, 3-D density dependent models will be solved to evaluate saltwater intrusion 
problem. The optimization algorithm developed in this study will be coupled to the 3-D models 
to determine the optimal solutions in a similar manner.   
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1. Introduction 
 
 Saltwater intrusion is an important problem, which may lead to the degradation of 
freshwater aquifers, especially in areas that are seasonally populated or due to gradual increase 
of water supply needs of a region, proportional to population increase. Once an aquifer is 
intruded by saltwater, the damage is very costly to repair [Frind, 1982; Cheng et al., 2000]. The 
two important objectives that are associated with the management of groundwater extraction in 
coastal aquifers is the maximization of the water supply and the minimization of the cost of this 
supply, while avoiding saltwater intrusion at all times. In coastal areas, where the groundwater is 
the major or the only source of freshwater, achieving these goals is of great interest.  
 
 In the multi-objective control and management problem, associated with saltwater 
intrusion in coastal aquifers, various challenging questions are in the minds of scientists, 
engineers and managers. For example, answers to the following questions are of interest to 
managers: What is the safe pumping rate for each existing well in a coastal aquifer, before 
saltwater intrusion becomes a problem? How many wells are needed to supply the required 
freshwater to a community, before saltwater intrusion becomes a problem? From a more 
practical point, where should these wells be placed and what should their pumping rates be, 
before saltwater intrusion becomes a problem? How close can these wells be placed to the coast, 
before saltwater intrusion becomes a problem? Given some restrictions on aquifer heterogeneity, 
the mathematical models presented in this report and the software tool developed can be used to 
answer these questions. In this sense, the software tool included to this report, provide a useful 
and practical tool to analyze these problems. 
 
 The use of optimization approach in the solution of saltwater intrusion problems are 
relatively recent and few [Shamir et al., 1984; Willis and Finney, 1988; Finney et al., 1992; 
Hallaji and Yazicigil, 1996; Emch and Yeh 1998; Das and Datta, 1999a, 1999b; Cheng et al., 
2000]. Cheng et al. [2000] used an optimization approach to solve for pumping rates for an 
existing multiple well extraction scenario in a coastal aquifer using a Genetic Algorithm (GA). In 
their study, the analytical solution of the sharp-interface saltwater intrusion model was used for 
simplicity. The use of a more complex model is deferred, in part due to the long computation 
time required by the repetitive use of the model during the optimization process. In their 
solution, they discretized the pumping rate and used the Structured Messy Genetic Algorithm 
(SMGA) approach with the pumping rate selected as the decision variable.  
 
 Following Cheng et al. [2000], the analytical solution of the steady state sharp-interface 
saltwater intrusion model is also used in this study. This solution is based on the single-potential 
formulation of Strack [1976]. However, in this study we expand the concept of the stagnation 
point approach to two-dimensions for multiple wells, which leads to the optimization of pumping 
rates for each well. Eventually, the process is also extended to include the determination of the 
best location for extraction wells in this solution. The comparison of the location of the 
stagnation point relative to the saltwater intrusion point is used as a constraint in the optimization 
model. In this study, we show that this approach can improve the results of the optimized 
solution significantly.  
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 GA is a robust method, when optimal solutions are searched for nonlinear problems. In 
the literature, numerous researchers have demonstrated that the GA could yield a significant 
improvement in computational efficiency for these problems [McKinney et al., 1994; Huang and 
Mayer, 1997]. This approach is used in numerous engineering fields to achieve optimal solutions 
to complex problems. The GA approach is further extended to progressive GA (PGA) approach 
to improve efficiency of the solution process. The basic idea in this method may be defined in 
the following way: search as little as possible, get the trend of the solution in a sub-domain and 
reach the optimal solution through a sequence of solutions. Often in reality, the number of 
possible solutions are simply too many to complete an exhaustive search for an optimization 
problem. Even a search of only one percent of all possible cases is too many in most of the 
problems, where optimization techniques are required. Therefore, the formulation of the 
optimization problem is of great importance to reduce the unnecessary simulations, before the 
search begins. This concept is well incorporated in this study via using the Progressive Genetic 
Algorithm, which is the combinatorial optimization approach, introduced by Aral and Guan, 
[1997] and Guan and Aral, [1999a, 1999b]. With this approach, the pumping rates and the 
locations of multiple wells can be optimized simultaneously, while allowing the unknown 
variables to be continuous variables. In this study, the PGA is used along with the stagnation 
point model in the iterative sub-domain solution of the saltwater intrusion problem.  
 
 
2. Governing Equations 
 
 Analytical solutions used in this study are valid if the following assumptions can be made 
for the aquifer under study. First, we assume that a sharp interface exists between the saltwater 
zone and the fresh water zone, rather than a miscible transition zone [Bear, 1972, 1979]. Second, 
the aquifer is assumed to be homogeneous, and steady state conditions are considered. Third, the 
Dupuit assumption is used to obtain two-dimensional from three-dimensional geometry, by 
averaging the flow equation in vertical direction [Bear, 1972, 1979]. Fourth, the interface 
location is deduced from the Ghyben-Herzberg assumption [Bear, 1972, 1979]. Finally, the 
single-potential theory approach [Strack, 1976] is adopted to use a single governing potential 
equation across zones (Figure 1). 
 
 Following Strack [1976] and Cheng et al. [1999, 2000], a potential φ is defined for both 
confined and unconfined aquifers as follows: 
 
For confined aquifers: 
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For unconfined aquifers: 
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Figure 1.  Cross-sections of a coastal aquifer in a confined and unconfined aquifer. 
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where hf is the freshwater head, d is the elevation of mean sea level above the datum, and B is the 
confined aquifer thickness. The density ratio of the saltwater and freshwater is,  
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where ρs and ρf are the saltwater and freshwater densities respectively.  
 
 Since the previously defined potential function satisfies the Laplace equation 02 =∇ φ , 
the interface location ξ can be obtained by solving for the interface location with proper 
boundary conditions: 
 
For a confined aquifer: 
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s
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For an unconfined aquifer: 
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From Figure 1, the toe of saltwater can be evaluated at d=ξ . Hence, the potential at the toe can 
be calculated from (6) and (7). 
 
 
For a confined aquifer: 
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For an unconfined aquifer: 
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 Since the Laplace equation is linear, the freshwater potential for multiple pumping wells, 
in an aquifer with uniform flow, can be obtained using the method of superposition [Strack, 1976 
and Cheng et al. 2000]. 
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Using either (8) or (9) in (10), the toe location for the multiple wells can be solved. 
 
 The location of multiple stagnation points of the flow field is important to define the 
maximum pumping rate for the pumping wells. The locations of the stagnation points can be 
obtained from the following relation [Strack, 1972],  
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Differentiating (10): 
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Equations (12) and (13) form a set of nonlinear equations. Newton-Raphson method was used to 
solve the stagnation points from these equations. These equations need to be further 
differentiated following the Newton-Raphson method. The derivatives of these equations are 
provided in Appendix A. The stagnation point location is used to detect the well-intrusion, by 
comparing the location of this point relative to the toe location on the coastline. In Figure 2, we 
describe various cases of the well intrusion condition for one- and two pumping well conditions. 
 
 
3. Formulation of saltwater intrusion problem 
 
 In most cases, one of the objectives in the optimal solution of a saltwater intrusion 
problem is maximizing the pumping rate. The optimization of the saltwater intrusion problem 
becomes unique, if the extraction wells are forced to be placed as closely as possible to the coast, 
since the development region is selected close to the coastline. These situations, in practice, 
cause saltwater intrusion problems. If the extraction wells can be placed further away from the 
coastline, all the extraction wells may be allowed to pump higher rates of fresh water with no  
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Figure 2. Stagnation points: (a) One pumping well un-intruded case; (b) One pumping well 
intruded case; (c) Two pumping well un-intruded case; (d) Two pumping well intruded case; (e) 
Symmetric two pumping well intruded case; (f) Asymmetric two pumping well intruded case. 
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limitations. In order to integrate this constraint into the saltwater intrusion problem, the authors 
have introduced a second objective. That is, all extraction wells should be placed as close to the 
coastline as possible. This, in turn, restricts the first objective, that is maximizing the pumping 
rate. Researchers working on these multi-objective problems have attempted to solve the multi-
objective optimization problem using various techniques. Fonseca and Fleming [1993, 1995] 
used the GA for solving multi-objective problems and introduced the concept of dominated and 
non-dominated populations. There are other techniques associated with the solution of multi-
objective problems, such as fitness sharing, niche approach, etc. GA uses the survival of the 
fittest idea for selecting the competitive populations. This selection process is linear in the scalar 
objective value of each population. However, the main difficulty originates from the multi-
objective nature of the problem. There is no simple way to differentiate the relative importance 
of each objective in the selection of the fittest. The easiest way to deal with multiple objectives is 
to use the summation of each objective function to form a single scalar objective function. 
However, this brings disadvantages such as the difficulty of adjusting the weight of each 
objective. This is basically because a single scalar objective function generated is not capable of 
representing the vector tendency of each objective. Nonetheless, in this work we use the single 
scalar objective function approach for simplicity. The two objectives of the optimization problem 
are given as follows: 
 
The first objective: Maximizing the pumping rate. 
 

∑
=

n

i
iQMax

1
                                                              (14) 

 
 
The second objective: Minimizing the distance between the stagnation points and the reference 
coastline location. 
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Equation (15) is modified to convert the second objective to be a maximization problem,  
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The combined and normalized objective function can be written as, 
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Subject to the following conditions,  
 

),,(),,( YXQxYXQx i
c

i
toe <                                         (18) 

 
niyyyxxxQQQ iiiiiiiii ,...,1,, maxminmaxminmaxmin =<<<<<<               (19) 

 
 
where iQ  is the pumping rate of well i, i

cx  is the stagnation point associated with the pumping 
well iQ , refx  is the toe location determined only by hydraulic parameters such as freshwater 
discharge, hydraulic conductivity, saltwater depth, density difference between saltwater and 
freshwater, or aquifer thickness for the confined aquifer when there is no pumping, i

toex  is the toe 
location, and α  and β  are the objective function weighting parameters. The independent 
variable vectors, Q, X, Y, will be re-defined in the modified optimization formulation for the 
progressive genetic algorithm application. 
 
 
4. The modified optimization model 
 
 Cheng et al. [2000] used the discretized pumping rate as independent variable for 
optimizing pumping rates of fifteen fixed wells in a case study. This independent variable itself 
requires a large number of simulations for the solution of the optimization problem. For a typical 
application, it is almost impossible to complete an exhaustive search for the global solution. To 
avoid this computationally intensive approach, we propose to change the decision variables of 
the optimization problem. Rather than having pumping rates and well locations as decision 
variables, we chose the perturbations of these variables as decision variables. In this way, GA 
solution can eliminate a considerable amount of unnecessary simulations at each step of the 
iterative solution. To achieve this, for each optimization step of each perturbation, a sub-domain 
should be defined, and the search is conducted within this sub-domain. No matter where the 
simulation starts, there is a path from this starting point to the optimal solution. The direction 
from the current to the next location on the correct path may be determined easily by GA within 
the pre-determined sub-domain, even if it is far away from an optimal solution. This approach 
allows the consequent sub-domains to move in the optimal direction as well, which leads the 
solutions closer to the global optimum. Thus, within each step the solution gets closer to the 
optimal solution by effectively eliminating the unnecessary paths, as shown in Figure 3a. 
 
 The saltwater intrusion problem is complex, due to the dependence of the pumping rates 
and well locations on each other. The sub-domain concept handles this dependence issue 
effectively and provides good feedback as the simulation proceeds. This approach filters out the 
unnecessary runs by taking the direction of the moving wells or increasing and decreasing the 
pumping rates during iteration. One other advantage of this method is that the independent 
variables are continuous variables rather than discrete. Figure 3a illustrates the concept of the 
perturbation solution approach. 
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Figure 3.  (a) The concept of eliminating unnecessary runs using perturbation method; (b) 
Coding and crossover of design variables. 
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 In this approach, the modified objective function, the constraints and the independent 
variables of the perturbations yield the following formulation: 
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000 ,, iii yandxQ  are initial starting points, and the bounding sub-domain is determined to be 
polyhedron having the starting points at the center of the polyhedron. 
 
 In order to handle the inequality constraint of Equation (18) properly in the objective 
function of GA, the slack vector and penalty functions are introduced. Thus, the modified 
objective function and constraints can be given as follows, 
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It should be noted that the independent variables of this formulation are the perturbations 
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5. Genetic Algorithm 
 
 In GA’s [Holland, 1975; Goldberg, 1989; Davis, 1991], the parameter set of the 
optimization problem is coded as a finite-length string. Traditionally, the binary numbers are 
used to represent such a string. Thus, each bit of a string can be either 0 or 1. Owing to the 
dramatic growth of computer technology, the use of a binary representation is somewhat 
cumbersome these days. Since the vector representation of real numbers for real function 
optimization is more natural and of no difficulty, the real-number coding is used in this study 
[Obayashi et al., 2000]. Thus, the length of the real-number string corresponds to the number of 
design variables. 
 
 In order for the modified model to work inside the sub-domain, GA search process must 
be limited to a sub-domain in the neighborhood of { }000 ,, YXQ . The search sub-domains of 
independent variables are evaluated as follows, 
 
 

1
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Q ii
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In the neighborhood of { }000 ,, YXQ , the intervals, [ ]upperlower QQ ΔΔ , , [ ]upperlower XX ΔΔ , , and 
[ ]upperlower YY ΔΔ ,  are determined by, 
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where 1k , 2k , and 3k  are positive integers (e.g. 5321 === kkk ), k is the index of iteration, η  is 
a positive coefficient (e.g. 001.0=η ), ke η−  is a contraction coefficient for the sub-domain. The 
sub-domain defined by (26) forms a regular polyhedron, with the center located at { }000 ,, YXQ . 
The volume of the polyhedron decreases by the contraction function as the number of iterations 
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increases. The idea of decreasing sub-domain size makes sense, especially when the solution 
approaches to a local (sub-domain) or to the global optimal solution. In this way, a more precise 
populations generated in the reproduction of GA. Obviously, the sub-domain defined should 
satisfy, 
 

[ ] [ ]maxmin ,, QQQQ upperlower ΔΔ⊆ΔΔ                                    (27a) 
[ ] [ ]maxmin ,, XXXX upperlower ΔΔ⊆ΔΔ                                    (27b) 
[ ] [ ]maxmin ,, YYYY upperlower ΔΔ⊆ΔΔ                                       (27c) 

 
 
 The GA approach consists of generating populations, applying genetic operators such as 
crossover and mutation. Normally, the populations are generated in the discretized domain 
randomly. Since each optimization step works within its sub-domain, populations generated for 
that step should satisfy the sub-domain constraints. The other technique introduced here, is the 
contraction function used in defining the sub-domain. For this purpose, various contraction 
functions, including the one used in this study, can be defined. This approach would be similar to 
the definition of the energy used in the Boltzmann probability distribution, when simulated 
annealing approach is employed. This process reduces the number of iterations and thus the 
computational time [Dougherty and Marryott, 1991; Shonkwiler, 2000].  
 
 The crossover of GA is designed such that the offspring inherits the gene from either 
parent with equal chance. Figure 3b illustrates the coding of the crossover.  
 
 The purpose of mutation operator in GA is to give diversity to the genes in the 
population. This diversity is hoped to seek better optimum, when the solution is stuck in a lower 
local optimum. In this work, the mutation is designed to reassign different pumping rates to the 
selected population within the allowed bounds previously defined. Generally, the probability of 
the mutation is set much lower than that of the crossover.  
 
 
6. Convergence 
 

Since it is impossible to know if the solution has reached the global optimum, the relative 
error of the objective function was used to escape the GA loop. Thus, the convergence criterion 
is defined as, 
 

ε≤
−

0

01

f
ff

                                                        (28) 

 
 
ε  is a predefined tolerance for the convergence of iterations. If two consecutive objective values 
satisfy the criterion given in Equation (28), then { }111 ,, YXQ  is taken as a final solution in the 
corresponding sub-domain. Otherwise, the solution sequence continues with the new starting 
point as nikkyyxxQQ iiiiii ,...1,1,,, 101010 =+==== . 
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7. Numerical Experiments 
 

Several numerical experiments are performed to test the accuracy of the proposed model 
and the solution algorithm. The numerical examples included here are single- and multi-
objective problems, where well locations and pumping rates are selected as independent 
variables. For single objective problems, maximization of the pumping rate is considered as the 
objective. For one- and two-well cases, the global solution can be deduced from the heuristic 
observation that the pumping well needs to be placed farther inland, limited by the boundaries of 
the selected solution domain. This way, the pumping rates can be increased to a maximum value, 
given the constraint that the pumping wells are not to be intruded by saltwater. This constraint is 
evaluated by comparing the position of the stagnation point and the location of each well. Table 
1 lists the physical parameters used in the examples included here, and the GA parameters used 
for the simulation of one- and two- pumping well cases for an unconfined aquifer. In these 
applications, the aquifer domain setting and physical parameters selected are similar to that used 
in Cheng et al. [2000]. 

 
Example 1:  In this example, a one-well and two-well cases are considered.  The aquifer domain 
is 4,000 m by 7,000 m. A uniform freshwater flow of 0.6 m2/d exists in the negative x-axis 
direction. The aquifer is an unconfined aquifer with a hydraulic conductivity of 100 m/d. The 
saltwater depth at the coastline is 14 m. The minimum and maximum allowable pumping rates 
are selected as 100 m3/d to 6,000 m3/d for the one-well case and 100 m3/d to 5,000 m3/d for the 
two-well case. The starting position of the well (x, y) is at coordinates (1,000, 0) for the one-well 
case and (1,000, -1,500); (1,000, 0) for the two-well case. Other parameters of this problem can 
be found in Table 1.   
 
 As shown in Figure 4a, as the solution progresses, the extraction well moves farther 
inland for the one-well case, while the pumping rate increases, reaching a maximum value 6,000 
m3/d. Since there is no well interaction in the one-well case, there are an infinite number of 
solutions for this problem. That is, a well placed on any y-coordinate position would yield the 
same results at all iteration steps as well as the final solution. In all figures, the dotted line shows 
the location of the saltwater interface, the cross marks show the location of the stagnation point 
and the plus sign shows the location of the pumping well. Unlike with the one-well case, there is 
only one global optimum for the two-well case. This is because of the interaction between the 
two wells. Obviously, in the two-well application, the extraction wells spread as far as possible 
from each other to reduce the well interaction, which also leads to the maximization of the 
pumping rates. In Figure 4, we show the trace of the well positions for these two cases, including 
the global optimum positions after the solution is completed.  
 
Example 2:   With the same single objective of maximizing the pumping rate, the results of 
three-, two of four- and five-well cases are shown in Figure 5. In these cases, the aquifer domain 
and aquifer parameters are the same as in the previous example. Other selected modeling 
parameters are given Table 2. Although the number of pumping wells for each of these four 
cases is different, the optimal total pumping rates are close to each other. This result indicates 
that, for a single objective problem, the optimal total pumping rate for a finite domain can be 
achieved by a finite number of wells, and adding more wells to the domain will not improve the 
maximum pumping rate significantly. This can be seen in Figure 6. The maximum number of  
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Figure 4. (a) One pumping well placement optimization path; (b) Two pumping well placement 

optimization path. 
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Table 1.  Summary of modeling parameters for one and two pumping well cases.   

Aquifer parameters Value MOGA parameters Value 

Aquifer type unconfined α 1 
Saltwater density 1.025 g/cm3 β 0 
Uniform flow rate 0.6 m2/d Population size 40 
Saltwater depth 14 m Mating probability 0.9 

Hydraulic conductivity 100 m/d Mutation probability 0.1 
  Convergence 0.001 

Sub-domain and bounding parameters (for all wells) 

 Single well Double wells 
k1 250 250 
k2 150 150 
k3 150 150 
η 0.00001 0.00001 

Qmin, Qmax  m3/d 100, 6000 100, 5000 
xmin, xmax  m 0, 4000 0, 4000 
ymin, ymax  m -3500, 3500 -3500, 3500 

Starting Points Optimal Points 
Q,  m3/d x,  m y,  m Q,  m3/d x,  m y,  m 

One well 
Q1 = 300 x1 = 1000 y1 = 0 5433.74 3999.7 33.9 

Two wells 
Q1 = 300 x1 = 1000 y1 = 0 4474.88 3998.5 3497.1 
Q2 = 300 x2 = 1000 y2 = -1500 4477.56 3998.3 -3497.4 
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wells for this domain are 3, since the total pumping rate does not increase significantly, if we add 
more wells to the solution. In this figure, we also show the average pumping rate for the wells. 
Based on the heuristic stated previously, the global maximum pumping rates for this simple 
application can be obtained, when we perturb the well locations and the pumping rates 
simultaneously. It should be noted that once the critical number of wells is established within the 
problem domain, adding more wells often creates a similar shape of toe delineation to that of the 
critical number of wells case. This can be observed from Figure 5d, i.e. there are three peaks 
even though the number of wells is four. We note that this figure represents an intermediate 
solution obtained from the four well solution. This indicates that the same optimal pumping rate 
from three pumping wells can be obtained from four pumping wells by formulating a similar 
pattern of toe delineation. Since Figure 5d is an intermediate solution, continuing the simulation 
will reach to the results shown in Figure 5b. Obviously, the improvement achieved is minimal as 
shown in Figure 6, since the four pumping wells are already more than the critical number of 
wells for this case. 
 
Example 3: Another practical application of the procedure developed in this study is the solution 
to the saltwater intrusion problem for fixed well locations. In a sequential approach, the model 
developed can first be used to optimize the pumping rates for the existing wells to prevent the 
saltwater intrusion. In such a case, the independent variable vector consists of only the pumping 
rates of each well. With the current model, this situation can be simulated very easily by not 
allowing perturbations for well locations.  To test the current model for fixed well location case, 
a comparison between Cheng et al.’s work [2000] and the model developed in this study is 
presented for two cases. In Table 3, we provide the physical parameters of the aquifer and all 
other related pumping well information. After the evaluation on the physical parameters used by 
Cheng et al., the authors have reached to the conclusion that there was a typing error in their 
fresh water discharge of 40 m2/d, since this freshwater discharge is too large. For this problem, a 
value of 0.4015 m2/d is used as the fresh water discharge to duplicate their results. 
 
 The first case is the Case 1 of the example problems presented in Cheng et al. [2000] 
which consists of eight wells. The second is the Case 3 of the same work which contains seven 
wells. In their work, the authors initially started with a total of fifteen wells and eventually 
screened down to eight and seven. Here, we compared our results with their results for only eight 
and seven wells cases. The pumping rates of all wells are initially set to the minimum pumping 
rate, 150 m3/d, as suggested by Cheng et al. [2000]. While this solution was obtained by Cheng 
et al. [2000] on a Pentium 450-MHz microcomputer using about 6 hours of CPU time, we have 
used less than 30 minutes of simulation time on a compatible machine to obtain our results. Both 
runs obtained better results than those of Cheng et al. One of the reasons for this may be that the 
independent variable in this study is continuous, while in their case the independent variable, that 
is the pumping rate, is discretized. The continuous variable approach provides a flexible design, 
and it leads to a better result. Comparison of the results is given in Figure 7 and Table 3. We note 
here that the optimal pumping rates are still far less than the global pumping rates, estimated 
from the moving well simulations, even though more wells are used for the fixed location case. It 
is obvious from this result that the locations of the wells are not optimized. Hence, the existing 
wells may be moved to new locations to further increase the total pumping rate, while avoiding 
saltwater intrusion. This, for practical purposes, means that the old wells must be abandoned and 
new wells must be placed at the different locations with new pumping rates. The model  
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Figure 5.  (a) Three pumping well placement optimization path; (b) Four pumping well 
placement optimization path; (c) Five pumping well placement optimization path; (d) Four 
pumping well placement optimization path (an intermediate solution – similar toe pattern to that 
given in (a)) 
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Figure 6. The relationship between the number of wells and the maximum pumping rates and the 
well efficiency. 
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Table 2. Summary of modeling parameters for three-, four- and five pumping well cases. 
 

Aquifer parameters Value MOGA parameters Value 

Same with Table 1. 

Sub-domain and bounding parameters (for all wells) 

 Three wells (a) Four wells (b) Five wells (c) Four wells (d) 
k1 250 
k2 150 
k3 150 
η 0.00001 
Qmin, Qmax  m3/d 100, 4000 
xmin, xmax  m 0, 4000 
ymin, ymax  m -3500, 3500 

Starting Points Optimal Points 
Q,  m3/d x,  m y,  m Q,  m3/d x,  m y,  m 

Three wells (a) 
Q1 = 300 x1 = 1000 y1 = 0 2195.6 3987.1 89.7 
Q2 = 300 x2 = 1000 y2 = -1500 3561.5 3994.3 -3491.4 
Q3 = 300 x3 = 1000 y3 = 1000 3530.3 3997.3 3499.4 

Four wells (b) 
Q1 = 300 x1 = 1000 y1 = 0 1447.4 3997.1 -596.4 
Q2 = 300 x2 = 1000 y2 = -1500 3371.9 3995.0 -3497.6 
Q3 = 300 x3 = 1000 y3 = 1000 1293.3 3975.4 993.9 
Q4 = 300 x4 = 1000 y4 = 2500 3207.5 3998.4 3495.0 

Five wells (c) 
Q1 = 300 x1 = 1000 y1 = 0 725.1 3966.2 -161.6 
Q2 = 300 x2 = 1000 y2 = -1500 1031.2 3981.4 -1136.0 
Q3 = 300 x3 = 1000 y3 = 1000 1206.4 3997.0 978.7 
Q4 = 300 x4 = 1000 y4 = 2500 3200.2 3995.6 3492.0 
Q5 = 300 x5 = 1000 y5 = -2500 3155.6 3999.9 -3498.8 

Four wells (d) 
Q1 = 300 x1 = 1000 y1 = 0 1817.5 3997.6 -474.9 
Q2 = 300 x2 = 1000 y2 = -1500 3385.2 3996.9 -3491.9 
Q3 = 300 x3 = 1000 y3 = 1000 1402.5 3994.3 1902.6 
Q4 = 300 x4 = 1000 y4 = 2500 2567.9 3989.9 3490.5 
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Figure 7. Comparison of results between Cheng et al. [2000] and MOGA application; (a) Cheng 
et al. Case 1 results; (b) MOGA Case 1 results; (c) Cheng et al. Case 3 results; (d) MOGA Case 3 
results. (e) MOGA results obtained after abandoning one well given in Case 3. 
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Table 3.  Summary of modeling parameters and the comparison of results with Cheng et al. 
[2000] fixed well optimization example. 

Aquifer parameters Value MOGA parameters Value 

Aquifer type unconfined α 1 
Saltwater density 1.025 g/cm3 β 0 
Uniform flow rate 0.4015 m2/d Population size 20 
Saltwater depth 15 m Mating probability 0.9 
Hydraulic conductivity 40 m/d Mutation probability 0.1 
  Convergence 0.1 

Sub-domain and bounding parameters (for all wells) 

 Case 1 (eight wells) Case 3 (seven wells) 
k1 150 250 
k2 0 (fixed-well) 150 
k3 0 (fixed-well) 150 
η 0.000001 0.000001 
Qmin, Qmax  m3/d 150, 1500 100, 5000 
xmin, xmax  m 0, 4000 0, 4000 
ymin, ymax  m -3500, 3500 -3500, 3500 

Starting Points Optimal Pumping Rate 
Q,  m3/d x,  m y,  m Q,  m3/d 

Case 1 (eight wells)  fixed-well 
 Cheng et al.’s This work 

Q1 = 150 x1 = 1000 y1 = 2500 Q1 = 255 Q1 = 221.7 
Q2 = 150 x2 = 1700 y2 = 1100 Q2 = 402 Q2 = 579.8 
Q3 = 150 x3 = 1800 y3 = -300 Q3 = 158 Q3 = 154.4 
Q4 = 150 x4 = 3500 y4 = -500 Q4 = 728 Q4 = 733.2 
Q5 = 150 x5 = 1600 y5 = -800 Q5 = 150 Q5 = 151.1 
Q6 = 150 x6 = 3600 y6 = -2800 Q6 = 1500 Q6 = 1402.9 
Q7 = 150 x7 = 1400 y7 = -3000 Q7 = 185 Q7 = 215.9 
Q8 = 150 x8 = 2000 y8 = -2000 Q8 = 232 Q8 = 178.4 
 Qtotal = 3610 Qtotal = 3637.4 

Case 3 (seven wells) fixed-well 
 Cheng et al.’s This work 

Q1 = 150 x1 = 1000 y1 = 2500 Q1 = 201 Q1 = 198.1 
Q2 = 150 x2 = 1700 y2 = 1100 Q2 = 351 Q2 = 380.0 
Q3 = 150 x3 = 1700 y3 =  200 Q3 = 150 Q3 = 150.1 
Q4 = 150 x4 = 3500 y4 = -500 Q4 = 1497 Q4 = 1462.0 
Q5 = 150 x5 = 2000 y5 = -2000 Q5 = 155 Q5 = 150.0 
Q6 = 150 x6 = 3600 y6 = -2800 Q6 = 1387 Q6 = 1406.6 
Q7 = 150 x7 = 1400 y7 = -3000 Q7 = 150 Q7 = 150.2 
 Qtotal = 3891 Qtotal = 3897.0 
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developed is a very useful tool for such purposes. Based on the previous results, another 
simulation is conducted to see if optimization of the well locations can improve the solution. The 
model and the software developed is capable of assigning a moving well condition to any 
number of wells (i.e., none, some or all of the wells), the simulation was conducted by only 
moving one well which is the first well of Case 3 in Table 3. In this case, the total pumping rate 
increased to 4642.8 m3/d from 3897 m3/d (Figure 7e). This suggests that optimization of the well 
locations together with the pumping rates improves the results.  
 
Example 4: Separate simulations of the two-well case, each with one component of the multi-
objective criteria were conducted, before experimenting with a full multi-objective problem. The 
results for these cases are given in Figures 8a and 8b. As shown in Figure 8a and 8b, each 
objective successfully forces the solution in opposite but expected directions. The first objective 
forces the wells to be placed farther inland, while the second objective forces them to move 
closer to the coastline. As seen in Figure 8b, the optimal solution is obtained when the pumping 
rate of both wells are decreased to the minimum pumping rate, so that the distance between the 
stagnation point and the reference location of the initial saltwater interface is minimized. To 
demonstrate the use of the model for the multi-objective formulation, simulation starts with the 
parameter set, given in Table 5 (β = 0, to maximize pumping rate only), and as the pumping rate 
reaches the maximum allowable pumping, the pumping wells stay  around the location identified 
by the circles in Figure 8c. Then, the second objective, which is intended to minimize the 
distance between the stagnation point and the reference saltwater interface location is turned on 
(β = 1, to minimize the distance between the stagnation point and the reference location together 
with maximizing the pumping rate). The objective weighting coefficient was determined from 
previously conducted numerical experiments. When the model works with multi-objective 
criteria, the wells position themselves in a way to minimize the distance between their stagnation 
points and the reference saltwater interface location, while maintaining the maximum pumping 
rates. Figure 8c illustrates this multi-objective tendency, and the results obtained for this case. As 
the final solution, the two wells are located at extreme y-axis locations and at around x-axis 
location 2000 m. 
 
 
8. Conclusions 
 
 The problems we have tested and presented here have shown that the proposed 
mathematical formulation have produced optimal solution in an efficient manner as indicated in 
Example 3. The efficiency of this method makes it possible to include well locations as 
continuous independent variables. The formulation of the optimization problem combined with 
GA is straightforward and can be applied to the homogenous coastal aquifers under steady state 
freshwater flow.  While the previous work often focuses on indirect methods or pumping rate 
optimization only, in this paper we present a new formulation in which the perturbations of 
pumping rates and well locations are used as continuous independent variables explicitly [Cheng 
et al., 2000]. This approach produces the optimal solutions not only for the fixed-well cases, but 
it also handles the optimization of well location cases as well. The proposed model perturbs the 
well location and pumping rate within the sub-domain, and GA is applied to simultaneously find 
the optimal well location and pumping rate in the defined problem domain. The advantage is a 
significant reduction in model runs which consequently reduces the computational time and cost. 
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The constraint for detecting the well intrusion uses the stagnation point concept. This is a more 
relaxed constraint for the well-intrusion detection when compared to the studies which uses the 
well location instead. This in turn may have improved the optimal solution we have obtained 
when compared to the results obtained earlier.  
 

 To produce results for fixed-well cases, perturbation of well locations are turned off. The 
results generated are compared with the best solution by Cheng et al.’s. Our model produced 
slightly better results than theirs, indicating that both models solve the problem of pumping rate 
optimization successfully. 
 
 The proposed model is also run for several moving well cases. The results indicated that 
the total pumping rate, from a selected finite domain, can be improved significantly by 
introducing well locations as independent variables to the model. For practical purposes, being 
able to use well locations as independent variables is of great importance in the design stage. 
 
 In water management problem for coastal aquifers, the two main objectives are 
maximizing the pumping while placing the pumping wells as close to the coast as possible. Here, 
the possible restriction considered is the pumping site boundaries, which may be close to the 
shore line. In this work, these two objectives are combined into a single scalar objective function. 
In order to test the proposed single objective, a hypothetical coastal aquifer is set up (see Table 
5). First, the impact of each separate objective is demonstrated. The results for maximizing 
pumping rates and minimizing the distance between the stagnation points and the reference 
location are shown in Figures 8a and 8b respectively. Based on the heuristic provided previously, 
both cases produced expected results. The wells move apart from each other in order to 
maximize pumping rates and they move closer to the coastline to minimize the distance. As can 
be seen from Figure 8a and 8b, these two objectives conflict with each other. In our formulation, 
the decision maker must assign weights for each of these objectives to control the preference 
weight of each objective in the solution. There are other approaches to solve multi-objective 
problems. The details can be found in Fonseca and Fleming, 1993; Fleming and Fonseca 1995; 
Obayashi et al., 2000. 
 
 In the approach presented here, to find the optimum solution for the multi-objective case, 
first the model is run only maximizing the pumping rates. Once the wells reach the allowed 
maximum pumping rates, the second objective is activated so that they can be placed close to the 
coastline as much as possible. This is achieved by reducing the interaction between the wells by 
moving them further apart from each other. However, this does not imply that the model should 
run on a sequential two-step process to satisfy multi-objective criteria. The proposed model is 
capable of performing multi-objective analysis without using the sequential approach. In such 
cases, the weighing of objective weighing parameters is of importance and should be determined 
appropriately by the user. Most of the time this process is empirical, and the choice of relative 
importance of the multi-objective criteria depends on the preferences of the user.   
 
 The saltwater intrusion detection algorithm works efficiently when small perturbations in 
independent variables are used, especially when the search continues in near optimal solutions. 
When the saltwater toe location moves further inland than the current pumping well location, 
oscillations in toe delineation start. These oscillations feed wrong information about the well 
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intrusion to the GA resulting in failure of the optimization procedure. However, this problem can 
be prevented by using small sub-domains which will not let the toe location to move over the 
well location. For instance, as is the case in the problems discussed here, the model can start the 
simulation with a large sub-domain so that each perturbation can be long without feeding wrong 
information to the GA due to failure of well-intrusion detection. Later the solution can continue 
with a smaller sub-domain as the solution reaches the optimal solution.  
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Figure 8.  (a) The pumping rate maximization objective for two pumping well case; (b) 
Placement of the well as close as possible to the shoreline objective for two pumping well case; 
(c) Use of multi-objective criteria for two well case.   
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Table 4. Summary of modeling parameters and the results of pumping well placement - 
Case 3 of Cheng et al. [2000]. 

Aquifer parameters Value MOGA parameters Value 

Same with Table 3 

Sub-domain and bounding parameters – Case 3 Well #1 moving 

Same as Table 3 except for well number 1 k1= 150, k2 = 75, k3 = 75. 

Starting Points Optimal Pumping Rate 
Q,  m3/d x,  m y,  m Q,  m3/d 
Q1 = 150 x1 = 1000 y1 = 2500 Q1 = 1477.4 x1 = 2403.4 y1 = 3492 
Q2 = 150 x2 = 1700 y2 = 1100 Q2 = 166.4 
Q3 = 150 x3 = 1800 y3 = -300 Q3 = 150.1 
Q4 = 150 x4 = 3500 y4 = -500 Q4 = 1220.7 
Q5 = 150 x5 = 1600 y5 = -800 Q5 = 186.9 
Q6 = 150 x6 = 3600 y6 = -2800 Q6 = 1275.1 
Q7 = 150 x7 = 1400 y7 = -3000 Q7 = 166.2 
   Qtotal = 4642.8 
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Table 5.  Summary of modeling parameters and the results of MOGA simulation. 

Aquifer parameters Value MOGA parameters Value 

Same as Table 1 initially. β is changed to be 1 when the pumping reaches the maximum 
pumping 

Sub-domain and bounding parameters (for all wells) 

 Two wells for multi-objective analysis 
k1 150 
k2 75 
k3 75 
η 0.00001 
Qmin, Qmax  m3/d 100, 2000 
xmin, xmax  m 0, 4000 
ymin, ymax  m -3500, 3500 

Starting Points Optimal Points 
Q,  m3/d x,  m y,  m Q,  m3/d x,  m y,  m 

Double wells 
Q1 = 300 x1 = 1000 y1 = 0 1999.2 1986.8 3467.9 
Q2 = 300 x2 = 1000 y2 = -1500 1996.4 1986.6 -3495.8 
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Appendix A 
A typical way to solve a set of nonlinear equations is Newton-Raphson method. The advantage 
of this method is that it is fast and easy to use. However, it requires the derivatives of a nonlinear 
equation, and this makes it tricky, since most of the times it is difficult or impossible to obtain 
these derivatives. For the analytical solution of the saltwater intrusion problem, there are two 
nonlinear equations to solve for the stagnation point. These equations are the following: 
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Taking only the first two terms from the Taylor series expansion of (A1) and simplifying it for x 
and y, the rearranged equation can be written as,  
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 is the determinant. 

 
The corresponding derivatives for multiple wells of the saltwater intrusion problem can now be 
evaluated from (10). These are given below, 
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Appendix B 
WinSaltPGA Version 0.6, the simulation software for the saltwater optimization problem 
discussed in this report, was developed using Microsoft Visual C++. This software is developed 
as a tool to accompany this report and can be used for practical applications. The software 
transfers the expert knowledge on optimal saltwater intrusion problem solution to the 
practitioners. The description and functions of several data input windows of the WinSaltPGA is 
provided in Appendix B. 
 
 
B.1 Data configuration 
 
The startup window of WinSaltPGA is shown in Figure 9. The physical problem domain is not 
set and drawn in the window until either read from the existing file or entered by the user. Any 
domain size can be set by properly configuring the range of x and y in the “PGA (Progressive 
Genetic Algorithm) Configuration”.  
 
Once WinSaltPGA is opened, there are two different modes to conduct simulations. User can 
start with configurations of both the “Aquifer Properties and Uniform flow” and the “PGA 
Configuration”, or by opening one of the existing sample files in the distribution package. For 
the novice, it is easier to run the model using the latter method and the user does not have to 
worry about the model configuration. 
  
Next step is to open the window “Seawater Optimization” by clicking either “WinSaltPGA |  
Aquifer Configuration” from the menu or “C” icon in the toolbar under the menu. In the 
“Seawater Optimization” window, there are two sub-windows consisting of “Aquifer Properties 
and Uniform flow” and “PGA Configuration”. As shown in Figure 10, “Aquifer properties and 
Uniform flow” can be configured depending on the aquifer to be modeled. The last two boxes, 
“Range for initial guess” and “Step of range for initial guess” are necessary to guarantee that the 
stagnation points are obtained properly in a smaller domain. The stagnation points are obtained 
using the nonlinear solver (Newton-Raphson Method). The “Range for initial guess” means that 
the model starts randomly with an initial guess (or a point) within the user-defined square region, 
having each stagnation point to be centered by default. The second box, “Step of range for initial 
guess” is to determine how dense the initial guess grid will be (i.e., available initial guess 
locations to start search) in the defined region. 
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Figure 9. The startup window of WinSaltPGA V 0.6 

 
After configuring the “Aquifer Properties and Uniform flow”, it is the “PGA Configuration” that 
needs to be set. The “PGA Configuration” consists of three sub-sections. The first one, 
“Objectives and GA,” is mainly related to MOGA. Note that the problem may be turned into a 
single objective problem by setting either “Objective Weighting Factor (alpha)” or “Objective 
Weighting Factor (beta)” to be zero. For MOGA as given in Figure 8d, both α and β are assigned 
to be “1”. The second sub-section, “Population and Convergence”, is to configure the number of 
populations and tolerance of convergence. Increasing the number of populations gives more 
genetic divergence while increasing the time of single iteration. The default value is set to 40. 
Similarly, as the tolerance of convergence decreases, the time of single iteration will be longer. 
The optimized value for tolerance of convergence is found to be 0.001. The third sub-section, 
“Contraction Coefficients and Bounds” is for configuring the problem domain and the sub-
domains for each well. Based on our experience, the proper coefficients are determined and can 
be found in the sample files and tables presented in this paper. Contraction coefficients, such as 
k1, k2, k3, can be used directly to set the size of the sub-domain as defined in Equation 25. The 
other alternative to form the sub-domains is to adjust η so that it decreases the size of the sub-
domain gradually as the number of iterations increases. If any of k1, k2, or k3 is set to zero, the 
model will not make any perturbation on the corresponding variable. In this way, we can 
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optimize the fixed well or the moving well locations. For instance, the user may select the 
optimization problem for the fixed well locations case (pumping only), by selecting k2 and k3 as 
zero. With this selection, the model does not perturb the xΔ and yΔ  variables, thus the well 
location is not changed.  It should be noted that selecting large k1, k2, or k3 coefficients may lead 
to convergence problems. If the model fails to solve for the stagnation point, it feeds false 
information to the GA and this leads to error. Thus, the user should be aware of configuring the 
parameters conservatively. Authors recommend the user to start with the k1, k2, and k3 values 
provided in the sample files, then increase them to at least double as the simulation goes on, so 
that the model will not fail to solve for the stagnation points.  
 
 
 

 
 

Figure 10. Aquifer properties and uniform flow in saltwater optimization window 

 
Note that each well has its own “PGA Configuration” and these can be reconfigured any time 
during the simulation. 
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Figure 11. PGA configuration in saltwater optimization window 

 
B.2 Well Initial Conditions and Simulation 
 
After properly configuring “Aquifer Properties and Uniform flow” and “PGA Configuration” in 
Seawater Optimization, the model is ready to roll for saltwater optimization. Currently, the 
maximum number of wells is fixed to be eight. The initial locations and pumping rates of four 
wells are provided as an example in Figure 12. 
 
 

 
 

Figure 12. Well initial conditions and the simulation panel 
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As the optimization goes on by clicking “PGA”, the model displays the visualization of every 
optimization step in the main window (see Figure 13) as well as the corresponding values in the 
“Well Initial Conditions” window. If only stagnation points are of interest, they can be obtained 
by clicking the “GET IT” button. Anytime during the simulation, the parameter set can be 
modified by clicking the “Stop” and revising the parameters which are selected initially. The 
simulation may then be continued by clicking the “Resume” button. After this point, the revised 
parameter sets will become effective.  
 
 

 
 

Figure 13. Visualization of the optimization results at each step of simulation 

 
If the solution does not seem to improve considerably and if the user believes the optimal 
solution is reached, the simulation can be stopped to see this result. The user will find it difficult 
to stop the simulation at the best result due to the fast update of iteration. The best result of the 
current simulation can be obtained by clicking the “Get Best” button, since the model 
automatically records all the trace of the simulation. The user may see all records of the 
simulation, clicking “WinSaltPGA | PGA Result” from the menu or the “R” button in the toolbar. 
This will open up the results of the simulation in table format in a new window. In this window, 
by clicking any sequence of “No.” column and then clicking “Update” button on the “Well Initial 
Conditions” window, the user can continue optimization starting from the indicated step. When 
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satisfied with the results of the optimization. The results can be saved by clicking either the 
“save” from the menu or the “disk icon” in the toolbar. Whenever the user starts the simulation 
from the previously stored file, the user has to click “Confined aquifer or Unconfined aquifer” in 
“Aquifer Properties and Uniform flow” and the “Apply” button in “PGA Configuration” to 
properly assign all the parameters.  
 
 

 
 

Figure 14. Results of the optimization viewed in a text window 

 
 
 
 
 

 


