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Contract Software Deliverable 
(E25-L31) 

The software developed under this contract has been accessed by electronic means 
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performed the major part of the work while at Georgia Tech, is currently a Post 
Doctoral Fellow at the sponsor and has thereby assisted in this process. In addition, 
a listing of the software is attached. 



Software 

ORNL.CPP - Path planner for triangle trajectory and transfer control 

II Robtest.cpp 
/19-24-94 
II 
II Lonnie J. Love 
II 
II Uses classes Vector, Matrix, Estimator, Filter, and Robot to control 
II a 2 dofrobot Herb. 

/ll///ll/////////////////lll////////////////l//ll/ll/ll/ll//////l/11//////// 
II INCLUDED HEADER FILES 
/l/l/////lll///////////////////l///ll////////////l/11/////////l/l//ll//l//// 
!/#include "envir _t.h" 
#include "main.h" 
#include "alarm.h" 
#include "control2.h" 
#include "ds/00/_i.h" 
#include "timer.h" 
#include "display.hpp" 
#include "filter.hpp" 
#include "estimatr.hpp" 
#include "robenvir.hpp" 
#include "traj.hpp" 
#include <.conio.h> 
#include <.math.h> 
///////ll///////////////l//ll//////////l/////ll//////////////ll////ll////l/1 
II GWBAL /NIT/AUZATION OF OBJECTS 
///////////l/1/lll//ll//////////ll//ll//////////l////l//////////////////ll// 

II Parameters for Robot object Herb 
RobotParms HerbParms[2]; 
void lnitParms(void); 

II Copy of robot object Herb used in Timer ISR 
Robot manipulator(2); 

Matrix RawData(4000,6); 
Matrix Power(50,3); 

Matrix Path(2,3); 

hPORTpO; 

extern int TRANSMIT_FLAG; 
extern int TELEOP _FLAG; 
extern int TELE_QUIT_FLAG; 
extern int SET_TELE_PD_FLAG; 
extern int SET_TELE_IS_FLAG; 
extern int SET_TELE_MCF_FLAG; 
extern int SA VE_DATA_FLAG; 
///ll/l/lll/11//////////ll/ll//l///////lll/ll////l/l////////l///ll/ll/l/1/// 
II MAIN PROGRAM 
/////////l/l/ll/ll//////ll///////////ll/lll/ll///ll/ll//ll////ll///////////1 
void main( void) 
{ 

lnitParms(); 
Robot Herb(HerbParms,2); 

II Copy object Herb to object manipulator used in 
1/Timer/SR 
manipulator=Herb; 

Herb.lnitRobot( ); 



II Initialize Timer JSR 
Herb.lnitiSR( ); 
RobotDisplay my Display( Herb); 
my Display. run(); 

II Perform any cleanup before exiting 

II Quit controller on VME 
C_JJUtc(p0, 'Q'); 
while(c_txcount(pO) < 1023) {}; 

IIStopiSR 
Herb. CleanUpiSR( ); 

clrscr(); 
Raw Data. CP P2MA T("rawdata.mat"); 
Power.CPP2MAT("power.mat"); 

1111111111111111111111111111111111111111111111111111111111111111111111111111 
II I NITRO BOT FROM ROBOT ClASS 
1111111111111111111111111111111111111111111111111111111111111111111111111111 

void Robot::lnitRobot(void) 
{ 

II Initialize Dual Port Ram 
unsigned board_addr; 
if ( get_,board_addr("DSJOOI .SIT", &board_addr)) 
{ 
printf("Error reading DSJOOJ.SET setup file .'\ri'ld"); 
exit(O); 
} 
if ( DSJ 00 ]_enable( board_addr)) 
{ 
printf("Error enabling DSJOOJ DSP-board !\n\o."); 
exit(O); 
} 

II Initialize Serial Port 
pO = u8250_init(COM2, 38400L, DATABITSB, PARITY_NONE, STOPBITSJ); 
install_ipr(pO, RECENE, NULL, 1024); 
install_ipr(pO, TRANSMIT, NUU, 1024); 
install_isr(pO, 3, (PI HANDLER) NUU); 

II Flush 110 on Serial ports 
do{} 
while(c_rxjlush(pO,O) !=0); 

do{} 
while(c_txjlush(pO,O) !=0); 

DSJOOJ_write_dual_JJort_memory(Ox30,False); 

1111111111111111111111111111111111111111111111111111111111111111111111111111 
II TIMER ISR FROM ROBOT ClASS 
1111111111111111111111111111111111111111111111111111111111111111111111111111 
II Sample time set in main.h 

int DataCount=O; 
int DataMax=4000; 
float MasterPower=O; 
float SlavePower=O; 
int Tasklteration=O; 

extern hPORT pO; 
extern char *SaveStat; 
extern char *FrcFlg; 



int daJal; 
int daJa2; 
unsigned int tempold; 
int GRJP_FLAG, PREV_GRIP_FLAG, FORCE_FLAG; 
int TRAJ_FLAG=False; 
//extern Matrix Path; 

void Robot::control () 
{ 

static Row Vector XYMasterFrc(2); 
static RowVector XYS/aveFrc(2); 
static RowVector XYMasterPos(2); 
static RowVector XYS/avePos(2); 
static Row Vector XYMasterVel(2); 

static char chr[J= "C"; 
static char ch[ ]=" "; 

#definP lobyte Ox003F 
static double tempg; 
static unsigned char string][]=" ", string2[]=" "· 
static unsigned char force[]=" "· 

static unsigned long RALF _Ql_ADR = OXJJ, 
RALF _Q2_ADR = OX12, 
RALF_GRJPPER =0x06, 
RALF_Sl = OXJ6, 
RALF _S2 = OX17, 
RALF _S3 = OXJB, 
TRAJ_X = OxlA, 
TRAJ_Y = OxlB; 

static unsigned int tempql,tempq2,tempq3,tempui,biflag,· 
static double deg2numl = 0.304; 
static double deg2num2 = 0.271; 

static RowVector x1(2); 
static Row Vector x2(2); 
static Row Vector x(2); 

static Trajectory Line(2); 

static int Linelndex; 
static int Pointlndex; 
static int NumPoints; 

II Initial position 
II Target Position 
II Intermediate position vector 

static int PATH_FLAG=True; 

static double V= 117; II target velocity (w. r.t. Herb's coordinates 
static double a=517; II target acceleration 
static double Ts=O.Ol; 

II Begin Timer ISR 

//This flag dictates what type of target impedance to use 
DSJOOJ_write_dual_port_memory(Ox31,TRAJ_FLAG); 

if(TELE_QUIT_FLAG == True) 
{ 

biflag=Fa/se; 
DSJ 00 l_write_dual_port_memory(Ox30, biflag ); 

c_putc(pO, 'Q'); 
while(c_txcount(pO) < 1023) {}; 
TELE_QUIT_FLAG =False; 
TRANSMIT_FLAG =False; 
TELEOP _FLAG=False; 



if(TELEOP _FLAG== True) 
{ 

if(TRAJ_FLAG ==True) 
{ 

if(PATH_FLAG ==True) 
{ 

for(int j=O;j<2,j++) 
{ 

J 

xl [j]=Path[ Linelndex1 [j}; 
x2[j]=Path[Linelndex+ 11 [j}; 

II Pull initial point from path 
II Pull final point from path 

Line.Reset(xl, x2, V, a, Ts); II Object creation 
NumPoints=Line. GetT( ); 
Pointlndex=O; 
PATH_FLAG=False; 

J 

x=Line. Update( Pointlndex); 
Pointlndex+ +; II Current position 

if( Pointlndex= =NumPoints-1) 
{ 

Linelndex++; 
PATH_FLAG=True; 

if(Linelndex>Path.GetColLength()) 
TRAJ_FLAG=False; 

tempui=int(x[O 1 * 32757 ); 
DSlOOl_write_dual_port_memory (TRAJ_X, tempui); 

tempui=int(x[ 1 }* 32757); 
DSlOOl_write_dual_port_memory (TRAJ_Y, tempui); 

PREV_GRlP _FLAG= GRIP _FLAG; 

biflag=True; 
DS 100 l_write_dual_port_memory(Ox30,biflag ); 
II While waiting for force data to come, get command joint angles 
DS100l_read_dual_port_memory (RALF_Ql_ADR, &tempql); 
DSlOOl _read_dual_port_memory ( RALF _Q2_ADR, &tempq2); 
DSlOOl_read_dual_port_memory (RALF_GRJPPER, &tempq3); 

if(tempql < 6553)1135.7 
tempql=6553; 

if(tempql > 20024) Ill 10.7 
tempql=20024; 

datal = int( deg2numl *(tempql-6553) ); 

if(tempq2 < 4369) 1123.4 
tempq2=4369; 

if(tempq2 > 19478) 11107.7 
tempq2=19478; 

data2 = int( deg2num2*(tempq2-4369) ); 

if(tempq3 > 32768) 
tempg = -((jloat)(-(tempq3-1)) ); 

else 
tempg = (jloat)(tempq3); 

tempg=tempgl32768; 

if(tempg > .25) 
GRIP _FLAG= True; 

else 



GRIP _FLAG=False; 

if(GRJP_FLAG != PREV_GRIP_FLAG) 
Tasklteration+ +; 

II Convert to string of chars 
string] [OJ=( unsigned char)( (datal>>6) & lobyte); 
string2[0]=(unsigned char}( (data2>>6) & lobyte); 
string] [ 1 ]=(unsigned char)(datal &lobyte); 
string2[ 1 ]=(unsigned char}( data2&lobyte); 
string] [2]=stringl [O]+stringl [ 1 ]; 
string2[2]=string2[0]+string2[ 1 ]; 

II Blast position data up to VME 
chr[O] = 'D'; 
c_putc(pO, chr[O]J; 
c_putc(pO, stringl[O]); 
c_putc(pO, string] [ 1 ]); 
c_putc(pO, string 1 [2]); 

c_putc(pO, string2[0]); 
c_putc(pO, string2[ 1]); 
c_putc(pO, string2[2]); 

II Blast 'F' to VME to request latest force data 
chr[O] = 'F'; 
c_putc(pO, chr[O]); 

II Get Force Data 
chr[O]=c_getc(pO); 
if(chr[O]=='F') 
{ 

FORCE_FLAG=True; 
FrcFlg= "True"; 
force[ 1 ]=c_getc(pO); 
force[2]=c_getc(p0); 
force[ 3 ]=c_getc(pO}; 
force[4]=c_getc(p0); 
force[5]=c_getc(p0); 
force[6]=c_getc(p0); 
force[7]=c_getc(p0); 
force [ 8 ]=c_getc(pO ); 
force[9 ]=c_getc(pO); 

II Error Checking. If good, update current force data, 
II If there is an error, don't update force value. 
II Shift an extra 4 bits to convert to 16 bit number for DSP 
if((jorce[ l]+force[2])==force[3]) 
{ 

J 
else 

tempui=(force[ 1 ]<<10)+(jorce[2]<<4); 
DSJOOJ_write_dual_port_memory (RALF_Sl, tempui); 

FORCE_FLAG=False; 

if((jorce[4 ]+force[5 ])==force[6]) 
{ 

J 
else 

tempui=(jorce[4]<<10)+(jorce[5]<<4); 
DSJOOJ_write_dual_port_memory (RALF_S2, tempui); 

FORCE_FLAG=False; 

if((jorce[7] +force[B ])==force[9]) 
{ 

tempui=(force[7]<<10)+(jorce[8]<<4); 
DSJOOJ_write_dual_port_memory (RALF_S3, tempui); 



else 
{ 

} 

FORCE_FLAG=False; 
FrcFlg="False"; 

if(FORCE_FLAG ==False) 
c_rxjlush(pO, 0); 

XYMasterFrc=GetTipForce( ); 
XYSlaveFrc= GetSlaveTipF orce( ); 
XYMaste rPos=GetTipPosition( ); 
XYSlavePos=7.0*XYMasterPos; 
XYMasterVel=GetTipVelocity(); 

ij(SA VE_DATA_FLAG == True) 
{ 

RawData[DataCount][O]=XYSlavePos[O]; 
Raw Data[ DataCount] [ 1 ]=XYSlavePos[ 1 }; 
RawData[DataCount][2]=XYSlaveFrc[O]; 
Raw Data[ DataCount] [ 3 ]=XYSlaveFrc[ 1 ]; 
RawData[DataCount][4]=XYMasterFrc[O]; 
Raw Data[ Data Count}[ 5 ]=XYMasterFrc[ 1 }; 
DataCount++; 

if(DataCount >= DataMax) 
{ 

SA VE_DATA_FLAG =False; 
Save Stat= "Off"; 

II Set controller, begins running next sample period 
if(SET_TELE_PD_FLAG ==True) 
{ 

ch[O]='S'; 
ch[ 1}='1'; 
c_putc(pO, ch[O]); 
c_putc(pO, ch[ 1 }); 
while(c_txcount(pO) < 1023) {}; 
SET_TELE_PD_FLAG =False; 
TRANSMIT_FLAG = True; 
TELEOP _FLAG=True; 

if(SET_TELE_IS_FLAG ==True) 
{ 

ch[O]='S'; 
ch[J}='2'; 
c_putc(pO, ch[O]); 
c_putc(pO, ch[ 11 ); 
while(c_txcount(pO) < 1023) {}; 
SET _TELE_IS_FLAG = False; 
TRANSMIT_FLAG = True; 
TELEOP _FLAG= True; 

if(SET_TELE_MCF_FLAG ==True) 
{ 

ch[O]='S'; 
ch[l]='3'; 
c_putc(pO, ch[O]); 
c_putc(pO, ch[ 1 ]); 
while(c_txcount(pO) < 1023) {}; 
SET_TELE_MCF_FLAG =False; 



TRANSM1T_FLA.G =True; 
TELEOP _FLA.G=True; 

return; 

1111111111111111111111111111111111111111111111111111111111111111111111111111 
II 1N1T1AUZE ROBOTPARAMS STRUCTURE FOR HERB OBJECT 
1111111111111111111111111111111111111111111111111111111111111111111111111111 
void 1nitPanns(void) 
I 

float n1 =60,n2=20; 

Path{OJ[0]=0.25; 
Path{ OJ[ 1 1=0.55; 

Path{ 1 ]{01=0.25; 
Path{ 1 ]{ 1 ]=0.75; 

Path/2}{01=0.25; 
Path[2][1 1=0.55; 

HerbParmsf01.1tFrcAddr=Ox07; 
HerbParms[1 ].JtFrcAddr=OxOB; 
HerbParms[01.1tPosAddr=Ox02; 
HerbParms[1 ].JtPosAddr=Ox03; 
HerbPannsf01.1tVe/Addr=Ox04; 
HerbPanns[1 ].JtVe/Addr=Ox05; 
HerbPanns{01.TipPosAddr=Ox09; 
HerbParms{ 11. TipPosAddr=OxOA; 
HerbParms{O 1. TipFrcAddr=OxOB; 
HerbPannsf 11. TipFrcAddr=OxOC; 
HerbPanns[O].TipVe/Addr=OxOD; 
HerbParmsf 1 }.TipVe/Addr=OxOE; 

HerbParms{01.1tFrcGain=11.179*n1; 
HerbParmsf 1 ].JtFrcGain=4.815*n2; 
HerbParms[O 1.1tPosGain=82. 3551n1; 
HerbParms[1 ].JtPosGain=82.3551n2; 
HerbPanns[O].JtVelGain=349.081n1; 
HerbPannsf 1 1.JtVelGain=349.08/n2; 
HerbPannsf01.TipPosGain=1; 
HerbPanns[1]. TipPosGain=1; 
HerbParms{O 1.DesTipPosGain= 1; 
HerbParms[1 ].DesTipPosGain=1 ; 
HerbParms{O]. TipFrcGain=466.55; 
HerbParms[1}. TipFrcGain=466.55; 
HerbParms{01.TipVelGain=349.08/n2; 
HerbParmsf 1]. Tip VelGain=349.08/n2; 

Traj .cpp Trajectory class 

IITraj.cpp 
II--------
11 
#===================================================================== 
II 
II Description: 
II------------
11 A 5th order straight line trajectory generator for multiple degree 
II of freedom robots. Provides ramp increase on acceleration profile. 
II Path provides zero initial and final velocity. Variables passed to 



II the path include desired velocity and maximum accleration, as well as 
II sampling rate. Constructor computes the total path time as well as 
II the time required for acceleration and deceleration. in addition, 
II the constructor provides the parameters required for the geteration 
II of the path. The actual computation of the path is performed during 
II run time. This increases, slightly, the computational burden of the 
II computer, but adds flexibility to the path if an obstacle or external 
II stimuli is provided to robot. The "update" method is passed an index 
II which corresponds to the time along the path. It returns the resulting 
II desired position in the robot's cartesian workspace. 

#===================================================================== 
II 
II Copyright (c) 1995 by Lonnie J. Love 
II All rights reserved. 

#===================================================================== 
II 
II modification history 
II--------------------
1/0la, 19aug95, ljl First release 
II 02a, 06sep95, ljl Moved basic trajectory concept to a base class 
II Now have Min Time and Minlerk trajectory classes 
II that inherit basic trajectory methods. 

#===================================================================== 
II 
II includes 
#include "math.h" 
#include "matrix.hpp" 
#include "traj.hpp" 

#====================================================================== 
II Base Class - Trajectory 
II 
II Purpose : Pass current position, desired position, velocity, and 
II max acceleration along with sample rate. This constructor 
II computes the parameters that go with a basic three phase 
II trajectory. Each phase of the trajectory is computed using 
II the model: 
II d(t)=a+bt+ct"'2+dt"'3+et"'4 
II 
//Methods: Reset -permits modification of parameters of path in run 
II 
II 
II 
II 
II 
II 

Update 

time. This is beneficial to emergency stop, hybrid 
teleoperationlautomonous commands ... 

- Returns a position vector (in terms of the cartesian 
coordinate system) with respect to a time index. 

GetVelocity - Similar to update, but returns scalar velocity 

#========================================================================== 
Trajectory: :Trajectory() 
( 

}; 

DOF=l; 
Amax=l; 
Vd=l; 
SampleTime=l; 

Trajectory::Trajectory(RowVector Xl, Row Vector X2, double V, double A, 
doubleTs): Xtraj(Xl.GetVecSize()), m(Xl.GetVecSize()), Xhome(Xl.GetVecSize()) 

II Make sure dof is comparable 
if(Xl.GetVecSize() != X2.GetVecSize()) 

printf("Jncompatable Desired Points"); 

Xhome=Xl; II Call first vector "home" 

DOF=Xl.GetVecSize(); II Get Degrees of Freedom 
Amax=A; II Maximum Acceleration 
SampleTime=Ts; II Sample rate 
D=O; II Compute distance of path 



}; 

for(int i=O;i<DOF;i++) 
D=D+(X2[i]-XJ [i])*(X2[i]-Xl [i]); 

D=sqrt(D); 

for(i=O;i<DOF;i++) /!Compute slopes to project path to cart. coord. 
m[i]=(X2[i]-Xl [i])ID; 

if(D > V*VIA11UU) 

I 
Vd=V; II Desired Velocity 
Tl = Vd!A11UU; 
TJ i=int(Tl/Ts); 
T=Tl+D!Vd; 
Ti=int(T!Ts); 

II Compute time required for accel. and dec ell. 

II Compute total time to finish path 

else 

I 
Vd=sqrt(D*A11UU); 
Tl = Vd!A11UU; II Compute time required for accel. and de cell. 
TJ i=int(Tl/Ts); 
T=2*Tl; 
Ti=int(T!Ts); 

tau=T-Tl; 
al=O; 
bl=O; 
cl=Amax/2; 
dl=O; . 
a2= V*V/(2 *A11UU); 
b2=Vd; 
c2=0; 
d2=0; 
a3=A11UU*(T-Tl); 
b3=Vd; 
c3=-Amax/2; 
d3=0; 

val=O; 
vbl=A11UU; 
vcl=O; 
vdl=O; 
va2=Vd; 
vb2=0; 
vc2=0; 
vd2=0; 
va3= Vd+A11UU*(T-Tl ); 
vb3=-Vd; 
vc3=0; 
vd3=0; 

II Copy constructor 
Trajectory::Trajectory(const Trajectory &tmpTraj) 

I 
DOF=tmpTraj.DOF; 
A11UU=tmpTraj.A11UU; 
Vd=tmpTraj. Vd; 
D=tmpTraj.D; 
T=tmpTraj.T; 
Tl=tmpTraj.Tl; 
Ti=tmpTraj. T; 
Tli=tmpTraj.Tl; 
SampleTime=tmpTraj.SampleTime; 

II Xtraj=tmpTraj.Xtraj; 
}; 

II Constructor 
Trajectory::Trajectory(int doj): Xtraj(doj), m(doj), Xhome(doj) 

I 



}; 

II Update method 
Row Vector Trajectory::Update(int index) 

I 

}; 

static double t; II time 
static double t3; II time cubed 

, t=index*SampleTime; 

II Computation of path, d(t) 
if( (index<= Tli) & (index >=0)) 

I 
t3=t*t*t; 
d=al +bl *t+cl *t*t+dl *t3+e 1 *t3*t; 

II Check to see if accelerating 

else if( (index> Tli) & (index< Ti-Tli)) II Check to see if holding velocity 
d=a2+b2*t+c2*t*t+d2*t*t*t+e2*t*t*t*t; 

else if( (index>= Ti-Tli) & (index<= Ti)) 

I 
t3=t*t*t; 
d=a3+b3*t+c3*t*t+d3*t3+e3*t3*t; 

II Check to see if decelerating 

else II Check to see if an error has occured 
print/( "Index is out of Range"); 

II Project to cartesian coordinate system 
II The vector of slopes, m. is computed in the constructor 
for(int i=O;i<DOF;i++) 

Xtraj{i]=Xhome[i]+d*m[i]; 

II Rerum the current desired tip position 
retum(Xtraj); 

double Trajectory::GetVelocity(int index) 

I 

}; 

static double t; II time 
static double t3; II time cubed 
static double vel; 

t=index*SampleTime; 

II Computation of path, d( t) 
if( (index<= Tli) & (index >=0)) 

I 
t3=t*t*t; 
vel=val +vbl *t+vcl *t*t+vdl *t3; 

II Check to see if accelerating 

else if( (index> Tli) & (index< Ti-Tli)) II Check to see if holding velocity 
vel=va2+vb2*t+vc2*t*t+vd2*t*t*t; 

else if( (index>= Ti-Tli) & (index<= Ti)) II Check to see if decelerating 
{ 

t3=t*t*t; 
vel=va3+vb3*t+vc3*t*t+vd3*t3; 

else II Check to see if an error has occured 
printf("lndex is out of Range"); 

retum(vel); 



double Trajectory::GetAcceleration(int index) 
{ 

}; 

static double t; II time 
static double ace; 

t=index*SampleTime; 

II Computation of path, d( t) 
if( (index<= Tii) & (index >=0)) 
{ 

acc=aai +abi *t+acl *t*t; 

II Check to see if accelerating 

else if( (index> Tli) & (index< Ti-Tli)) II Check to see if holding velocity 
acc=aa2+ab2 *t+ac2*t*t; 

else if( (index>= Ti-Tii) & (index<= Ti)) II Check to see if decelerating 
{ 

acc=aa3+ab3*t+ac3*t*t; 

else II Check to see if an error has occured 
printf("Index is out of Range"); 

return( ace); 

#====================================================================== 
II Class - MinTimeTrajectory 
II 
II Purpose: Inherits basic components of Trajectory class. Constructor 
II bases parameters of model on a minimum time trajectory. e.g 
II this approach uses max acceleration until desired acceleration 
II is established and then uses maximum acceleration to stop motion. 
II 

#========================================================================== 
MinTimeTrajectory::MinTimeTrajectory(RowVector XI, Row Vector X2, double V, double A, 

doubleTs) : Trajectory(XI, X2 , V, A, Ts) 

II Make sure dof is comparable 
if(XI.GetVecSize() != X2.GetVecSize()) 

printf("lncompatable Desired Points"); 

Xhome=XI; II Call first vector "home" 

DOF =XI.GetVecSize( ); II Get Degrees of Freedom 
Amax=A; II Maximum Acceleration 
SampleTime=Ts; II Sample rate 
D=O; II Compute distance of path 
for(int i=O;i<DOF;i++) 

D=D+(X2[ i)-XI [i])*(X2[i]-XI [ i}); 
D=sqri(D); 

for(i=O;i<DOF;i++) II Compute slopes to project path to cart. coord. 
m[i]=(X2[i]-XI [i])ID; 

if(D > V*VIAmax) 
{ 

else 
{ 

Vd=V; 
TI=Vd!Amax; 
TI i=int(Tl/Ts); 
T=TI+DIVd; 
Ti=int(T/Ts) ; 

II Desired Velocity 
II Compute time required for accel. and decell. 

II Compute total time to finish path 

Vd=sqrt(D*Amax); 
T I =DIV d; II Compute time required for accel. and dec ell. 



}; 

Tli=int(Tl/Ts); 
T=2*Tl; 
Ti=int(T/Ts); 

tau= T-Tl; 
al=O; 
bl=O; 
cl =Amax./.2; 
dl=O; 
el=O; 
a2=Amax*Tl*Tl/2-Vd*Tl; 
b2=Vd; 
c2=0; 
d2=0; 
e2=0; 
a3=D-0.5*A *T*T; 
b3=Amax*T; 
c3 =-Ama.x./.2; 
d3=0; 
e3=0; 

val=O; 
vbl=Amax; 
vcl=O; 
vdl=O; 
va2=Vd; 
vb2=0; 
vc2=0; 
vd2=0; 
va3= Vd+Amax*(T-Tl ); 
vb3=-Amax; 
vc3=0; 
vd3=0; 

aal=Amax; 
abl=O; 
acl=O; 
aa2=0; 
ab2=0; 
ac2=0; 
aa3=-Amax; 
ab3=0; 
ac3=0; 

MinTimeTrajectory::MinTimeTrajectory(int dof): Trajectory(dof) 
{ 
}; 

void MinTimeTrajectory::Reset(RowVector Xi , RowVector X2, double V, double A, 
doubleTs) 
{ 

II Make sure dof is comparable 
if(Xl.GetVecSize() != X2.GetVecSize()) 

printf("lncompatable Desired Points"); 

Xhome=Xl; II Call first vector "home" 

DOF =Xl.GetVecSize(); II Get Degrees of Freedom 
Amax=A; II Maximum Acceleration 
SampkTime=Ts; II Sample rate 
D=O; II Compute distance of path 
for(int i=O;i<DOF;i++) 

D=D+(X2[i]-Xl [i])*(X2[i]-Xl [i]); 
D=sqrt(D); 

for(i=O;i<DOF;i++) II Compute slopes to project path to cart. coord. 
m[i]=(X2[i]-Xl [i] )ID; 



}; 

if(D > V*V/Amax) 
{ 

Vd=V; 
Tl=Vd!Amax; 
Tli=int(Tl/Ts); 
T=Tl+DNd; 
Ti=int(T/Ts); 

II Desired Velocity 
II Compute time required for accel. and decell. 

II Compute total time to finish path 

J 
else 

Vd=sqrt(D*Amax); 
TJ =DN d; II Compute time required for accel. and de cell. 
Tli=int(Tl/Ts); 
T=2*Tl; 
Ti=int(T/Ts); 

J 

tau=T-TJ; 
al=O; 
bl=O; 
cJ =Ama.x/2; 
dl=O: 
el=O; 
a2=Amax*Tl *Tl/2-Vd*Tl; 
b2=Vd; 
c2=0: 
d2=0; 
e2=0; 
a3=D-0.5*A *T*T; 
b3=Amax*T; 
c3=-Ama.x/2; 
d3=0; 
e3=0; 

val=O; 
vbl=Amax; 
vcl=O: 
vdl=O; 
va2=Vd; 
vb2:.0; 
vc2=0; 
vd2=0; 
va3= Vd+Amax*(T-Tl ); 
vb3=-Amax; 
vc3=0; 
vd3=0; 

aal=Amax; 
abl=O; 
acl=O; 
aa2=0; 
ab2=0; 
ac2=0; 
aa3=-Amax; 
ab3=0; 
ac3=0; 

II Emergency Stop. Pass index so it can look up current velocity 
II This method modifies trajectory so that only last portion of 
II trajtectory is executed. 
void MinTimeTrajectory::Stop(int index) 
{ 

Xhome=UpdaJe(index); 
Vd=GetVelocity(index); II Base trajtectory on current velocity 
TJ =0; II Compute time required for accel. and decell. 
Tl i=int(TliSampleTime)-1; 
T= Vd/Amax; II Compute time required for accel. and decell. 
Ti=int(TISampleTime); 



1: 

tau=T-TI; 
a2=0; 
b2=Vd; 
c2=-Amax/2; 
d2=0; 
e2=0; 
a3=0; 
b3=0; 
c3=0; 
d3=0; 
e3=0; 
ai=O; 
bi=O; 
cl=O; 
di=O; 
ei=O; 
va2=Vd; 
vb2=-Amax; 
vc2=0; 
vd2=0; 

#====================================================================== 
II Class - MinTimeTrajectory 
II 
II Purpose: Inherits basic components of Trajectory class. Constructor 
II bases parameters of model on smooth jerk trajectory. e.g 
II this approach uses departs from the bang bang approach used 
II in the minimum time approach to ensure finite jerk during motion. 
II 
#========================================================================== 
MinJerkTrajectory::MinJerkTrajectory(RowVector XI. Row Vector X2, double V, double A, 

doubleTs): Trajectory(XI, X2, V, A, Ts) 

II Make sure dofis comparable 
if(XI.GetVecSize() != X2.GetVecSize()) 

printj("Incompatable Desired Points"); 

Xhome=XI; II Call first vector "home" 

DOF=XI .GetVecSize(); //Get Degrees of Freedom 
Amax=A; II Maximum Acceleration 
SampleTime=Ts; II Sample rate 
D=O; II Compute distance of path 
for(int i=O;i<DOF;i++) 

D=D+(X2[i]-XI [i])*(X2[i]-XI [i]); 
D=sqrt(D); 

for(i=O;i<DOF;i++) II Compute slopes to project path to cart. coord. 
m[i]=(X2[i]-XI [i])ID; 

if(D > 3*V/(2*Amax)) 
{ 

1 
else 
{ 

1 

Vd= V; II Desired Velocity 
TI =( 3*Vd)I(2*Amax); II Compute time required for accel. and de cell. 
TI i=int(TI/Ts); 
T=TI +DNd; II Compute total time to finish path 
Ti=int(T/Ts); 

Vd=sqrt(2*D*Amaxl3); 
TI =sqrt( 3*D/(2*Amax)); 
TI i=int(TI/Ts); 
T=2*TI; 
Ti=int(T/Ts); 

tau=T-TI; 



}; 

double tau2=tau*tau; 
double tau3=tau2*tau; 
double tau4=tau3*tau; 
double TI2=Tl*TI; 
double Tl3=Tl2*TI; 
ai=O; 
bi=O; 
ci=O; 
di=Vd/Tl2; 
ei=-Vdi(2*Tl3); 
a2=-Vd*TI/2; 
b2=Vd; 
c2=0; 
d2=0; 
e2=0; 
a3= Vd*(tau41(2*Tl3)+tau3/TI2-Tl/2); 
b3= Vd*( I-3*tau2/Tl2-2*tau3/TI3 ); 
c3=Vd*(3*tau/Tl2+3*tau2/TI3); 
d3=- Vd*( I/Tl2+2*tau/TI3); 
e3=Vdi(2*Tl3); 

vai=O; 
vbi=O; 
vcl=3*Vdi(TI*Tl); 
vdi=-2*Vdi(TI*TI*TI ); 
va2=Vd; 
vb2=0; 
vc2=0; 
vd2=0; 
va3=T*T*Vd*( 3-2*T/TI )I(TI *TI ); 
vb3=6*T*Vd*(T/TI - l)I(TI *Tl); 
vc3=3*Vd*( I-2*T/TI )I(Tl *Tl ); 
vd3=2*Vd/(TI *TI *Tl ); 

aai=O; 
abi=6*Vdi(TI*TI); 
acl =-6*Vdi(TI *TI *Tl ); 
aa2=0; 
ab2=0; 
ac2=0; 
aa3=6*T*Vd*(T/TI - I )I(TI *TI ); 
ab3=6*Vd*( I-2*T/TI )I(Tl*Tl ); 
ac3=6*Vdi(TI *Tl *Tl ); 

MinJerkTrajectory::MinJerkTrajectory(int dof): Trajectory(dof) 
{ 

}; 

void MinJerkTrajectory::Reset(RowVector XI, Row Vector X2, double V, double A, 
doubleTs) 
{ 

II Make sure dof is comparable 
if(XI.GetVecSize() != X2.GetVecSize()) 

printf("/ncompatable Desired Points"); 

Xhome=XI; II Call first vector "home" 

DOF=XI.GetVecSize(); II Get Degrees of Freedom 
Amax=A; II Maximum Acceleration 
SampleTime=Ts; II Sample rate 
D=O; II Compute distance of path 
for(int i=O;i<DOF;i++) 

D=D+(X2{ i)-XI { i]) *(X2[ i)-XI { i] ); 
D=sqrt(D); 

for(i=O;i<DOF;i++) II Compute slopes to project path to cart. coord. 
m[i}=(X2[i]-XI [i]JID; 



}; 

if(D > 3*VI(2*Ama.x)) 
{ 

else 

Vd= V; II Desired Velocity 
Tl =( 3*Vd)I(2*Ama.x); II Compute time required for accel. and decell. 
Tli=int(Tl/Ts); 
T=Tl +D/Vd; II Compute total time to finish path 
Ti=int(T/Ts); 

Vd=sqrt(2*D*Amax/3); 
Tl =sqrt(3*DI(2*Ama.x)); 
Tli=int(Tl/Ts); 
T=2*Tl; 
Ti=int(T/Ts); 

tau=T-Tl; 

double tau2=tau*tau; 
double tau3=tau2*tau; 
double tau4=tau3*tau; 
double Tl2=Tl*Tl; 
double Tl3=Tl2*Tl; 
al=O; 
bl=O; 
cl=O; 
dl=Vd!Tl2; 
el=-Vdi(2*Tl3); 
a2=-Vd*Tl/2; 
b2=Vd; 
c2=0; 
d2=0; 
e2=0; 
a3= Vd*(tau41(2*Tl3)+tau3/Tl2-Tl/2); 
b3= Vd*( J-3*tau2/Tl2-2 *tau3/Tl3 ); 
c3=Vd*(3*tau/Tl2+3*tau2/Tl3); 
d3=- Vd*(l/Tl2+2*tau/Tl3); 
e3= Vd/(2*Tl3); 

val=O; 
vbl=O; 
vc1=3*Vdi(Tl*Tl ); 
vdl =-2*Vdi(Tl *Tl *Tl ); 
va2=Vd; 
vb2=0; 
vc2=0; 
vd2=0; 
va3=T*T*Vd*(3-2*TITJ )I(Tl *Tl ); 
vb3=6*T*Vd*(T/TJ - 1 )I(Tl *Tl ); 
vc3=3*Vd*( l-2*TITJ )I(Tl *Tl ); 
vd3=2 *Vdi(Tl *Tl *Tl ); 

aal=O; 
abl=6*Vdi(Tl*Tl); 
acl =-6*Vd/(Tl *Tl *Tl ); 
aa2=0; 
ab2=0; 
ac2=0; 
aa3=6*T*Vd*(TITJ - 1 )I(Tl *Tl ); 
ab3=6*Vd*( 1-2 *TIT I )I(Tl *Tl ); 
ac3=6*Vdi(Tl *Tl *Tl ); 

II Emergency Stop. Pass index so it can look up current velocity 
II This method modifies trajectory so that only last portion of 
II trajtectory is executed. 
void MinlerkTrajectory::Stop(int index) 
{ 

Xhome=Update(index); 



Vd=GetVelocity(index); II Base trajtectory on current velocity 
TJ =0; II Compute time required for accel. and decell. 
Tl i=int(TJISampleTime ); 
T=3*Vd/(2*Amax); II Compute time required for accel. and decell. 
Ti=int(TISampleTime); 

II cout << "Tli=" << Tli <<"and Ti=" << Ti; 
double temp=3*Vd/(2*Amax); 

}; 

tau= T-Tl; 
a2=0; 
b2=Vd; 
c2=0; 
d2=-2*Ama.x/(3*temp); 
e2=Ama.xl( 3 *temp*temp ); 
a3=0; 
b3=0; 
c3=0; 
d3=0; 
e3=0; 
al=O; 
bl=O; 
cl=O; 
dl=O; 
el=O; 
va2=Vd; 
vb2=0; 
vc2=-2*Ama.x/temp; 
vd2=4*Ama.x/(3*temp*temp); 

#if !defined(_TRAJECTORY _HPP) 
#define _TRAJECTORY_HPP 1 

#include "matrix.hpp" 

class Trajectory 
{ 

public: 
Trajectory(); 
-Trajectory( void){} 
Trajectory(RowVector Xl, RowVector X2, double v, double a, doublets); 
Trajectory(const Trajectory &tmpTraj); 
Trajectory(int dof); 
Row Vector Update(int index); 
int GetT(void){ return Ti;} 
int GetStoplndex(void){ return (Ti-Tli);} 
double GetVelocity(int index); 
double GetAcceleration(int index); 

protected: 
double Vd; 
double Amax; 
double ctheta; 
double stheta; 
doubleD; 
doubled; 
dDuble SampleTime; 
doubleT; 
double TJ; 
double al,bl,cl,dl,el, 

a2,b2,c2,d2,e2, 
a3,b3,c3,d3, e3, 
tau; 

double val, vb 1, vel, vdl, 
va2, vb2, vc2, vd2, 
va3, vb3, vc3, vd3; 

double aal,abl,acl, 
aa2,ab2,ac2, 
aa3,ab3,ac3; 



}; 

int Ti; 
int Tli; 
int DOF; 
Row Vector Xtraj; 
Row Vector Xhome; 
Row Vector m; II slopes 

class MinTimeTrajectory : public Trajectory 
( 

}; 

public: 
MinTimeTrajectory(RowVector xi, Row Vector x2, double V, double A, doubleTs); 
MinTimeTrajectory( int doj); 
void Reset( Row Vector XI, Row Vector X2, double V, double A, doubleTs); 
void Stop(int index); 

class MinJerkTrajectory :public Trajectory 
( 

public: 

}; 

#endif; 

MinJerkTrajectory(RowVector xi, RowVector x2, double V, double A, doubleTs); 
MinJerkTrajectory( int doj); 
void Reset(RowVector XI, RowVector X2, double V, double A, doubleTs); 
void Stop(int index); · 
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Abstract 
Long reach manipulators are characterized by their 

light weight and large workspace. In order to fully utilize this 
workspace under teleoperated commands, motion 
amplification must exist between the master robot motion and 
the commanded motion of the slave robot. Unfortunately, this 
limits the accuracy with which an operator is capable of 
remotely executing a task. To extend the capabilities of our 
long reach testbed, our work focuses on the fusion of 
autonomous and te/eoperated commands. This combination 
provides full use of the robot's workspace without requiring 
large motion amplification between a master and slave robot. 

Combining autonomous and teleoperated commands 
provides the potential for large variations in the commanded 
momentum of the flexible robot. These variations excite the 
lightly damped, low resonant .frequencies associated with these 
manipulators. This phenomenon provides the motivation for 
further investigation on the ejfoct of joint control and path 
planning techniques on the tracking performance of flexible 
robots. Two techniques are proposed to reduce the vibration 
during sudden stops in the commanded motion of a flexible 
manipulator. First, a new command filtering approach that 
permits shorter delay times than standard input shaping 
methods is presented. Next, we propose dynamic alteration of 
the desired trajectory. Our investigation shows that filtering 
techniques exhibit an oscillatory response, more so than 
standard P D control algorithms, during hard stopping 
conditions. However, the shorter time delay filtering 
algorithm has less vibration than standard input shaping 
techniques. Furthermore, any vibration may be eliminated by 
commanding the· robot to decelerate instead of immediately 
stopping the motion. Analysis and experimental results are 
provided. 

1. Introduction 
The advantage of long reach manipulators has been 

well docwnented over 1he past twenty years (3], (15]. These 
robots are characterized by their large workspace and light 
structural weight. However, this reduction in structural mass 
results in lower natural frequency values. Therefore, these 
robots have a tendency to vibrate during the execution of tasks. 
This vibratory effect has led to a flurry of mechanical and 

control design concepts. Bayo [2] and Kwon [8] showed fast 
response with little vibration by using inverse dynamic 
techniques. Alberts [I] showed that 1hese techniques, in 

combination with passive damping on the elastic links, can 
reduce the magnitude of a broad band of frequencies during 
slewing motions. Unfortunately, 1he inverse dynamics 
technique requires an accurate definition of 1he robot's 
dynamic equations of motion which may prove difficult for 
multi-link robot systems. More recently, input shaping [13] 
and command filtering [II] techniques demonstrate reduced 
oscillatory effects without the sensitivity to modeling errors 
experienced wi1h inverse dynamic techniques. Fm1hermore, 
Magee has shown that filtering techniques applied to a rigid 
manipulator attached to the end of a long reach fleXIble robot 
reduces the residual VIbration of this combined system while 
still petforming meaningful tasks [12]. 

Recently, attention is shifting to the utility of such 
systems for complex problems associated with handling 
hazardous materials [7]. Preliminary experiments using force 
reflecting teleoperation of flexible robots illustrate a few 
problems that exist during simple contact tasks (I 0]. The large 
workspace associated with these robots requires motion 
amplification between the master and slave robots. This 
scaling reduces 1he positioning accuracy that is necessary 
during contact tasks. Alternative teclmiques are sought that 
provide 1he advantage of teleoperation without requiring 1he 
operator's constant interaction through teleoperation or large 
motion amplification First, a new approach is described to 
seamlessly combine bo1h autonomous and teleoperated 
commands. Autonomous commands provide course 
positioning of the robot in its workspace. Teleoperated 
commands are superimposed on 1hese commands to provide a 
pertmbation from the desired path of the robot In essence, the 
teleoperated commands permit the operator to execute 
articulated maneuvers while the autonomous component takes 
care of globally positioning the end of the robot 

Experiments show that 1he flexibility of 1hese robots 
pennits VIOration during 1he transition between 1hese two 
modes of operation This investigation examines control 
techniques and trajectory generation methods in an attempt to 
isolate this difficult problem Our investigation compares the 
performance of two control techniques, PD and command 
filtering, as well as an adaptive bang-bang path generator. 

2. Seamless Transfer Between Autonomous and 
Teleoperated Commands 

both 
Methods are sought that permit the combination of 

autonomous and teleoperated commands for 
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manipulation. Our approach consists of treating teleoperated 
commands as perturbations from the command trajectory 
provided by an autonomous path planner. This approach 
differs slightly from the teclmiques described by Guo [5] . 
They proposed event-based planning and control as a means of 
fusing autonomous and teleoperated commands. Their system 
contains four basic ftmctions: Stop, SlowDown, SpeedUp, and 
Orthogonal The commands from the master robot, a 
spaceball in their system, provide velocity modifications to the 
command trajectory of the slave robot Om approach is 
slightly different in that commands from the master robot 
consist of position modifications to the command trajectory of 
the slave robot Tiris approach permits easy implementation of 
force reflection but requires careful consideration dming the 
transition between velocity and position commands. 

Our testbed, descnbed by Book [4], requires a 
position amplification of 7:1 between master and slave robots. 
Scaling provides a comfortable match between the slave 

robot's workspace and the hl!Illail operator. For pure 
teleoperated commands, end point accuracy is limited when 
using position based control schemes. This position 
amplification may be reduced by using autonomous 
commands for large motions and teleoperated commands for 
fine articulated manipulation. 
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Figure 1. Autonomous and Teleoperated Task Execution 

Consider the 1ask illustrated in Figure 1. The robot 
uses autonomous commands for global positioning. However, 
when interaction between the robot and the environment is 
required, the system switches to a teleoperated mode. After 
completing the task, the control system transfers back to an 
autonomous mode and continues along its path. The following 
section describes how the switching between autonomous and 
teleoperated modes is accomplished and the problems that 
exist. 

2.1 Impedance Controlled Master Robot 
Our testbed consists of two kinematically dissimilar 

manipulators. The slave robot, RALF, is a two link, long 
reach manipulator. Each link is ten feet in length. 
Furthermore, the structural weight of the robot does not exceed 
100 pmmds while its payload capacity is approximately 60 
pmmds. The first natural frequency of this robot is about 4.5 
Hz with a damping ratio of 0. 01. 

The master robot, HURBIR.T, is a two degree of 
freedom impedance controlled robot designed for studies in 
the interaction of hmnans and robots [9]. The target 
impedance for the robot is defined as 

M,xm +B,xm +F: = Fh +1F. (1) 

where xm is the position of the master robot, F11 is the force 

applied by the human operator and F. is the force applied by 

the environment The target mass and damping matrices, 

M, andB,respectively, control the ease with which the 

operator moves the master robot The virtual force,F" , 

represents 1he repulsive force produced by deforming virtual 
fixtures in the robot's workspace. One example using the 
target impedance on a master robot is illustrated in Figure 2. 

Figure2. Virtual Walls for Bilateral Teleoperation 

Since the workspaces of the master and slave 
manipulators are dissimilar, simple tasks such as moving the 
slave robot to its home position prove to be difficult by visual 
cues alone. Vntual walls are used to constrain the motion of 
the master robot to the scaled workspace of the slave robot 
The target impedance of the master robot, using the same 
philosophy of superimposing impedances described by Hogan 
[6], is augmented with virtual walls that constrain the operator 
from commanding the slave robot outside it's workspace. Four 
compliant circles replicate the limits of the slave robot's 
workspace mapped inside the master robot's workspace. If the 
operator manipulates inside the scaled slave robot's workspace, 
the robot effectively "feels" like a mass moving through a 
viscous fluid However, if the human attemptS to command the 
robot outside it's workspace, the virtual walls attempt to push 
the operator back into the workspace. Position commands 
from the master robot to the slave robot are scaled by the 
amplification,A (for ourtestbed, A= 7.0), 

x. =Ax. (2) 

where x. is the position of the slave robot The operator 

maneuvers the robot about its workspace tracing the trajectory 
to follow during autonomous manipulation. 

During autonomous motion, a slightly different target 
impedance for the master robot is selected. The virtual force 

F: = K e-alz.-.sol {x,. -xo} (3) 



is now a decaying potential well. This force can provide a 
localized equilibrium position on the master robot. The 
stiffness, K, controls the attractive potential while ex controls 
the rate of decay of the force as the operator moves away from 
the equilibrium position. After the tip of the robot moves 
sufficiently far away from equilibrium, controlled by a , the 
robot behaves like a mass moving through a viscous fluid. 
Without any external forces applied to the master robot, the tip 
position of the master robot stays at the equilibrium 

position, x0 • If the tip position of the slave robot is within a 

defined radius of the equilibrium position, o, the slave robot is 

lDlder autonomous commands alone. A vector x, denotes the 

current commanded position along a desired trajectory and k 
specifies the discrete time index. In purely autonomous mode, 
the CtUTent position of the trajectory is passed along to the 

slave robot as the new desired slave positioD+., . 

x.,=x,[k] (4) 

If the human grabs the master robot and moves it 
away from the equilibrium position, the control system 
transforms from autonomous to teleoperated mode. First, the 

time index, k, associated with the command trajectory, x,[k], 
is suspended. The command to the slave robot now consists of 
two components, the last position on the trajectory and the 
perturbation provided by the human through the master robot. 

x.,=x,[k]+xm-Xo (5) 

Commands from the master robot provide a deviation from the 
commanded path. This approach provides a natmal method 
of switching between autonomous and teleoperated 
commands. The operator needs only to grab the master robot 
and move it to switch between modes. Furthermore, after 
completing the teleoperated task, the operator needs only to 
move the master robot into the vicinity of the equilibrium 
position and release the master robot The attractive potential 
field will draw the robot to the equilibrium position and the 
robot will then switch back to autonomous mode. 

Of central concern now is the transfer between 
autonomous and teleoperated modes. The transition may 
require a dramatic shift in the commanded momentum of the 
fleXIble slave robot Furthermore, when the operator 
completes the teleoperated task and the system switches back 
to autonomous mode, it must again accelerate to the command 
velocity. These issues are aggravated by the compliance 
associated with the long reach slave manipulator. A shift in 
momentum may excite vibration in the link structure of the 
robot The following sections compare the performance of 
path planners and joint motion controllers and their influence 
upon the VIbration of the slave robot during abrupt changes in 
momentum. 

3. Command Filtering 
The command ftltering approach used here is based 

on pole-zero cancellation of the second-order equations of 
motion describing the flexible behavior. The three tenn fiher 
takes the form 

1- 2COS (mlT) eo•T e-sT+ e2o•T e-.r2T 

F(s) = ( (6) 
l-2cos m1T) e 01 T +e20iT 

to cancel poles located ats = u1 ± j m1 • This s-domain filter 

can be transfonned to the digital domain with the 

transformation z = e"T, where T, is the inverse of the 

sampling rate of the discrete-time system See (12] for a more 
detailed discussion of the command filtering method. 

After identifying the poles of the system to be 
canceled, the delay time value, T, must be chosen. Previous 
ftlter design work has shown that an effective gain can be 
generated if the delay time is shorter than one-half the damped 
period of the second-order system. In standard shaping 
methods, the maximum gain is unity because the method is 
restricted to one value of delay time. In this work, we 
compare two different delay times. First, we use the delay 
time associated with Singers input shaping technique (IS) 
[14]. For our system, the delay time is 0.091 seconds. Next, 
we use a general command filter (CF) which has a shorter 
delay time of 0.045 seconds. These filters are applied to the 
feedback error signal in a PD control scheme on the slave 
manipulator (i.e. RALF) in a similar manner as given in [11]. 

4. Trajectory Generators 
When the robot switches between these autonomous 

and teleoperated modes, dramatic shifts in the commanded 
momentum of the robot exist To reduce this effect, smooth 
blending between constant velocity trajectories and 
teleoperated commands are proposed. As an example, 
consider the case where the robot is commanded to depart 
from an existing constant velocity trajectory to teleoperated 
commands in an orthogonal direction. Simply switching from 
velocity to · position commands excites lower modes of 
vibration in the compliant slave robot An ahernative 
approach is to smoothly blend these commands so the robot 
reduces its momentum before switching completely over to 
teleoperated commands. The problem also exists when 
transferring back fromteleoperated to autonomous commands. 

4.1 BangBang Acceleration Profile 
The first trajectory considered in this investigation is 

the Bang Bang acceleration profile. This profile accelerates at 
a maximum rate lDltil the desired velocity is reached. When 
close to the destination, the robot decelerates at its peak rate. 

l ~ax/ I~ Ji ) 
v( t) = vd Ji < t < T- ~ (7) 

Vd- ~axt +~ax(T-Ji) T-Ji ~ t 

~ =2._ T=!!._+2_ (8) 
~IX vd Amax 

Equation (7) provides the velocity profile with the time 
constants defined in Equation (8) where Dis the distance of 

the path, Vd is the desired velocity and Amax is the maximum 

acceleration. 
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4.2 Seamless Transfer 
To pennit smooth transitions between autonomous 

and teleoperated states, dynamic alteration of the commanded 
path is required. To smoothly decrease the momentum of the 
robot when transforming from autonomous mode to 
teleoperation, the present velocity of the manipulator is first 
measured. Next, the parameters of the profile to go from this 
initial velocity to zero velocity are computed. This 
computation is easily accomplished within the sampling rate of 
the robots controller. Thus, dwing the first few cycles of the 
teleoperated commands, the effective trajectory of the 
autonomous mode decelerates. This deceleration provides a 
smooth transition between autonomous and teleoperated 
modes. After completing a teleoperated task, the hmnan 
moves the master robot to its equilibrimn position. When the 
master robot reaches the equilibrium position, the CWTent 
position of the slave robot is measured and the parameters of 
the trajectory are updated. Finally, the slave robot smoothly 
accelerates along its path towards its next target point 

5. Experimental Results 
The following series of experiments illustrate the 

effect joint control and path planning have in the vibration 
response of a flexible robot during abrupt changes in the 
commanded momentum. Examples where this effect is 
relevant include the transfer between autonomous and 
teleoperated commands as well as emergency stop commands. 
The slave robot is commanded to follow a triangular path, 

illllStrated in Figure 1. The horizontal and vertical portions of 
the path are one meter in length. The desired velocity along 
each segment of the triangle is 0.75 m/s with a maximum 
acceleration of 3.5 m/s2

• During the vertical line segment, at 
point (4) in Figure 1, the slave robot executes an abrupt stop. 
This effect can represent a transition produced through human 
intervention in teleoperation or an emergent stop situation. 

Tlrree joint control schemes are considered. First, the 
robot has a PD algorithm that is tuned to provide excellent 
joint tracking capabilities as illustrated in Figure 3. 
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Figure 3. Joint Angle Response for Triangular Trajectory 

The commands are then modified using either IS or CF, 
described in Section 3. Figure 4 illustrates the tracking 
performance of each of these algorithms. A landmark tracking 
system provides absolute tip position measurement Evidently, 
some tracking error is due to the static deflection of the 
manipulators links. Joint controllers alone do not compensate 
for this effect. 
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Figure4. Tip Motion During Triangular Trajectory 

Figure 5 illustrates the vibration produced in link 1 of 
RALF dwing the process of this task. It is evident that both 
filtering techniques reduce the level of vibration during 
motion. This reduction in vibration is also evident in the 
spectral response in Figure 6. Both filtering techniques reduce 
the magnitude of vibration of the first mode by approximately 
20dB. 

Lilic:1 Deflection - 0~--~----~--~~--~--------~ 

~~~ 
~-10~----~--~----~----~--~~--~ 0 0 2 4 6 8 10 12 
~ 0~--~----~--~r---~--------~ 

t~~J 
~-10~----~--~----~---L~--~~--~ 0 0 2 4 6 8 10 12 
~ 0~--~----~--~~--~--------~ 

i_:~cld 
0 0 2 4 6 8 10 12 

Time (sec) 

Figure 5. Link I Deflection During Triangular 1rajectory 
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Vibration is also evident dwing the hard stop, 
illustrated in Figures 7 and 8. Tills condition actually favors 
the PD controller over the filtering teclmiques. The increase in 
vibration for the shaping methods is due to the delayed 
response provided by the filtering process. The stop is 
initiated when the y position is 3.7 m. The PD controller 
overshoots the stopping point by 19 em. The CF controller has 
a maximum overshoot of 31 em while the IS has an overshoot 
of 52 em. The CF controller produces less overshoot because 
it has an overall shorter delay time than the IS controller. 

An alternative approach to stopping the momentum 
of the robot consists of commanding a smooth stop. This is 
accomplished by commanding the robot to execute the final 
stage of the velocity profile when the system is commanded to 
stop. Figure 9 illustrates the performance of the PD and CF 
controllers dwing this soft stop. It is evident that the 
magnimde of overshoot has decreased dramatically. The CF 
controller has a maximum overshoot of 1.75 em while the PD 
controller has a maximum overshoot of0.4 em. 
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Tills reduction in vibration is somewhat deceiving 
because the actual commanded endpoint with the soft stop 
does not correspond to the point where the stop was initiated 
While the approach reduces the magnitude of oscillation 
dming a stop, it increases the error between the desired and 
actual robot stop positions. 

6. Conclusions and Reco~mendations 
This investigation presented a new approach for the 

teleoperation of long reach fleXIole manipulators. Experiments 
showed that command filtering techniques provide excellent 
Vloration suppression dming normal operations. However, if a 
dramatic shift in the commanded momentmn of the robot 
occurs, the performance of the filtering techniques decreases. 
By shortening the filter's delay time, the amplitude of 
vibration was reduced. 

Tapering the command trajectory also reduced the 
level of vibration during hard stopping conditions. Further 
investigation is necessary to determine what profile or delay 
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time provides sufficient vibration absorption chuing slewing 
and hard stop trajectories. Also, these experiments suggest 
that some form of tip position feedback is necessary to 
compensate for the static deflection in the elastic robot 
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Final Report 

CONTROL METHODS FOR SEAMLESS TELEOPERATION MODE TRANSFER AND 
EMERGENCY STOPS USING LONG REACH, FLEXffiLE MANIPULATORS 

Summary 

The work performed during the term of this contract is broken into two subtasks as described in 
the statement of work. The first subtask focuses on the transfer between robotic and teleoperated 
commands. Issues addressed during this phase of the contract included the control of a force 
reflecting master robot and the adaptation of robotic path planning techniques. The second 
subtask focuses on an investigation of control techniques during the emergency stop condition of 
long reach, flexible manipulators. The following provides a brief description of the findings of 
this investigation. Additional details of each investigation are described in the detailed 
description of each project subtask. 

Seamless Teleoperation Mode Transfer 

The frrst phase of this contract focused on the development of a control method that combines 
robotic and teleoperation commands. This method treats teleoperated commands from an 
impedance controlled master robot as position perturbations along the robotic path of the long 
reach manipulator. Furthermore, a new impedance field was developed for the master robot 
during the term of this investigation. This field provides a decaying attractive potential. If the 
master robot is maneuvered close to its equilibrium point, the potential field will provide a stable 
asymptotic attraction to the equilibrium point. However, if the operator maneuvers the slave 
robot sufficiently away from the potential field, the resistance on the master robot will smoothly 
transfer to a mass moving through a viscous fluid. The advantage of this approach is two fold. 
First, when the master robot is near the equilibrium position, it will maintain this position 
without human interaction. During standard robotic operation, the operator does not have to 
maintain contact with the master robot. If the operator observes a condition which requires 
teleoperation, he or she needs only to grasp the master robot and move it to transfer to 
teleoperated commands. 

The next issue addressed during this phase of the investigation focused on the fusion of robotic 
and teleoperated commands. Teleoperated commands, in this investigation, are considered 
desired position perturbations from robotic path. When an operator moves the master robot 
sufficiently away from its equilibrium position, the robotic path planner suspends its operation. 
Deviations from the equilibrium position of the master robot are added to the last position 
computed from the robotic path planner. When the operator completes the teleoperated phase of 
the task, he or she moves the master robot into the vicinity of the attractive potential field and 
releases the master robot. When the master robot moves sufficiently close to its equilibrium 
position, the system transfers back to robotic mode and continues along its original path. An 
additional issue addressed during this phase of the investigation included the dynamic adaptation 
of the robotic path during the transition between robotic and teleoperated commands to reduce 
the excitation of vibrations modes on the flexible slave manipulator. 



Control of Long Reach, Flexible Robots During Emergency Stop Commands 

The second subtask executed during this contract addressed the control of long reach, flexible 
robots during emergency stop commands. This investigation compared two approaches to 
stopping the momentum of the robot and the performance of three joint level controllers. The 
three methods of stopping the momentum of the robot included: 

• Stopping at the position computed during the stop command (Hard Stop). 
• Smoothly stopping using the last phase of a minimum time trajectory (Soft Stop). 

Furthermore, the three joint level controller compared during this investigation included: 

• PD 
• PD with Command Filter set at half the damped natural frequency 
• PD with Command Filter set at one quarter the damped natural frequency. 

The results of this investigation show that shaping techniques increase the maximum overshoot 
of the tip position of the flexible robot during emergency stop commands. However, filtering 
techniques with shorter delay times provide less overshoot during emergency stops. 
Furthermore, vibration can be eliminated by softly stopping the momentum of the robot. 
Unfortunately, this changes the final command position of the robot. The smooth stop, while 
eliminating any vibration during the stop command, provides a final tip position that exceeds the 
maximum overshoot exhibited by all the controllers during hard stop conditions. 



Project Subtask: Seamless Teleoperation Mode Transfer 

The first phase of this contract focused on control methods that enable the seamless transfer 
between robotic and teleoperated commands. This investigation is motivated by the size 
discrepancy that exists between a master robot's workspace and a long reach slave manipulator, 
illustrated in Figure 1. Pure teleoperation control requires large motion amplification between 
the master and slave robot. This amplification reduces the accuracy with which an operator can 
position the tip of the slave robot. A strategy that combines robotic and teleoperated commands 
permits robotic commands to globally position the slave robot while teleoperation commands 
facilitate fine, articulated commands. 
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This subtask is divided into two additional tasks. First, an adaptive impedance control scheme is 
described for the force reflecting master robot. Two target impedance fields control the tactile 
response an operator experiences during robotic commands. The master and slave robots used 
during this investigation are kinematically dissimilar. The first field, developed prior to the 
execution of this contract, is selected during pure teleoperation commands. Compliant spheres, 
illustrated in Figure 2, constrain the motion of the master robot to the scaled workspace of the 
slave robot. If the operator maneuvers the master robot inside the scaled workspace of the slave 
robot, the master robot behave like a mass moving through a viscous fluid. However, the 
compliant spheres provide additional resistance if the operator attempts to command the slave 
robot outside of its workspace. This in effect is most relevant when the operator maneuvers the 
slave robot to its home position. 
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Figure 2: Virtual Walls for Bilateral Teleoperation 



The second impedance field, developed during the term of this contract, is a decaying potential 
well. Equation ( 1) described the target impedance of the master robot. 

M i + B x 
t m t m (1) 

The mass and damping matrix, ~ and B1 respectively, control the effective resistance of the 
master robot. The external forces provided to the robot include the human applied force, Fh, and 
the external force reflected from the slave robot, Fe· The scaling factor, A, is the motion 
amplification from the master robot to the slave robot. The virtual . force, Fvf, is a synthetic force. 
For pure teleoperation, the scale factor A is 7.0 and the virtual force is provided by the compliant 
spheres described previously. When operating in the hybrid robotic/teleoperated mode, the scale 
factor changes to unity. This provides a higher range of manipulation accuracy than the standard 
teleoperation mode. Furthermore, the virtual force switches to the decaying potential well, 
Eq.(2), when operating in the hybrid mode. 

F K -uiXa,-Ko l ( ) 
vf = e xm- ~ (2) 

Without any external forces applied to the master robot, the tip position of the master robot stays 
at the equilibrium position, Xo· If the tip position of the slave robot is within a defmed radius of 
the equilibrium position, o, the slave robot is under autonomous commands alone, where x1 is the 
current command position along a trajectory where k is a time index corresponding to the 
command trajectory. 

x, = x, ( k) (3) 

However, if the human grabs the master robot and moves it away from the equilibrium position, 
the system transforms from autonomous to teleoperated modes. First, the time index associated 
with the command trajectory is frozen. The command to the slave robot now consists of two 
components, the last position on the trajectory and the perturbation provided by the human 
through the master robot. 

This approach provided a natural method of switching between autonomous and teleoperated 
commands. The operator needs only to grab the master robot and move it to switch between 
modes. Furthermore, after completing the teleoperated tasks, the operator needs only to move 
the master robot into the vicinity of the equilibrium position and release the master robot. The 
attractive potential field will draw the robot to the equilibrium position and the robot will then 
switch back to the autonomous mode. 

An additional issue is the effect that a drastic shift in commanded momentum may have on the 
control of a flexible robot. Consider the limiting case where the slave robot is moving at a 
constant velocity and is commanded by the teleoperator to immediately move in an orthogonal 
direction. One approach to reduce the effect of this shift in command velocity is to smoothly 
stop the robotic commands while blending with the teleoperation commands. Likewise, when 
shifting from teleoperation to robotic mode, it is advisable to smoothly accelerate from zero 
command velocity to the maximum velocity. These issues are covered in detail in the next 
section. 

(4) 



Project Subtask: Control of Long Reach, Flexible Robots During Emergency Stop Commands 

The next phase of this contract focused on the effect emergency stop commands have on the 
performance of long reach, flexible manipulators. A large body of research has focused on 
vibration suppression and control of manipulators with elastic links. An additional problem not 
yet addressed by the robotics community is the effect this elasticity may have during an 
emergency stop condition. Consider the case where the robot is moving at a high speed and 
either end point motion sensors or a human detects that the robot is about to collide with an 
object. It may be disadvantageous to apply brakes to the joint actuators or suspend the desired 
joint angles. An immediate command to stop the motion at the robot's joints may result in a large 
overshoot at the end of the flexible robot. This overshoot may result in hard contact with the 
robot's environment. 

This investigation focused on the performance of three joint level controllers combined with two 
emergency stop trajectories. Endpoint position sensors were employed to measure the tip 
deflection and vibration for each case. A landmark tracking system provides a measure of the tip 
position with respect to the elastic robot's Cartesian coordinate system. Furthermore, lateral 
effect photo diodes measure the link deformation. The elastic robot's controllers were developed 
by David P. Magee under the combined support ofPNL and Sandia National Laboratories. 
These algorithms, written in C, run on a Motorola 68040 located on a VME bus system. The 
trajectory generators, described in this report, were written by Lonnie Love and executed the PC 
platform that controls the master robot. All of these algorithms, developed for this project, were 
written in C++. 

The experiments conducted for this investigation consist of commanding the elastic robot to 
execute a triangular trajectory, illustrated in Figure 3. The command velocity along each leg of 
the trajectory is 0.75m/s. Three controllers were compared during this investigation. These 
controllers include PD, PD with a command filter with a delay of half the damped natural 
frequency, and PD with a command filter with a delay of one quarter the damped natural 
frequency. Figure 4 illustrate the effect the filtering has on the link vibration of the robot during 
motion. There is approximately 20 dB decrease in the magnitude of vibration when either of the 
command filtering techniques is used. These results show that command filtering techniques 
successfully reduce the vibration of a flexible robot during manipulation. 
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The following series of experiments simulated an emergency stop condition. During the second 
leg of the trajectory, a vertical maneuver, the robot is commanded to stop midway through the 
path. The first series of experiments command the robot to execute a hard stop. This consists of 
commanding the robot to maintain the last command position at the time when the en1ergency · 
stop was executed. Figure 5 illustrates the motion of the tip during this experiment. This figure 
shows that the smallest overshoot occurs when the filtering techniques are disabled. However, 
the shorter delay filter does have less overshoot than standard filtering techniques. The next 
series of experiments commanded the robot to decelerate using the last phase of a minimum time 
trajectory. Figure 6 shows that vibration can be eliminated if the robot is commanded to execute 
a smooth stop. However, the position of the tip of the robot overshoots beyond the maximum 
overshoot experienced when using a hard stop command. 
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Conclusions and Recommendations 

This investigation provided two significant contributions. First, a new approach to teleoperation 
was developed during the term of this contract. A new approach to combining robotic and 
teleoperated commands provides the advantage of long reach manipulators without sacrificing 
the end point position accuracy of the teleoperation system. Under standard teleoperation 
commands, motion amplification must exist between the master and slave robots to provide full 
use of the slave robot's workspace. However, this motion amplification reduces the resolution of 
commands provided by the master robot. An alternative approach is to use robotic commands 
for global positioning of the slave robot and teleoperated commands for fine articulation 
manipulation. 

The second contribution of this work was an investigation of the performance of a flexible robot 
during an emergency stop command. This investigation shows that, while filtering techniques 
reduce vibration during slewing motion, they increase the maximum overshoot during an 
emergency stop. This overshot may be reduced by either disabling the filtering or commanding 
the robot to decelerate instead of executing an immediate stop. Unfortunately, while soft stops 
reduce the residual vibration after an emergency stop, the final end point position may exceed the 
maximum overshoot experienced during a hard stop. 

Additional work is proposed for the emergency stop condition. Alternative stopping paths may 
be available. One possibility is the inverse dynamic solution. There is the possibility of deriving 
the inverse dynamic solution to minimize the stopping distance based upon an initial velocity. 
Another possibility is through shorter delay filters. This investigation shows reduced overshoot 
with shorter delay filters. This would be advantageous in maintaining the benefit of vibration 
suppression during slewing motion. 
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