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SUMMARY

The objective of this dissertation research is to develop a model independent sequen-

tial adaptive sampling technique for surrogate model (SM) applications based on a local

linear model. This technique, called Nearest Neighbors Adaptive Sampling (NNAS), is

conceived to be conceptually simple, computationally robust, and easy to apply, all char-

acteristics that are crucial for effective surrogate modeling application during early phases

of the engineering design process. SMs are now regarded as powerful engineering tools

for the approximation of expensive responses – obtained either from computer simulations

or real experiments – via less computationally expensive mathematical models. The use

of SMs is especially valuable during the preliminary design phase when engineers need

fast and accurate tools to assess the performance of different configurations and to define

the top-level specifications that will guide the entire design process. Due to the increasing

importance of SMs, new strategies are continuously being devised to build more flexible

SM formulations, to rigorously select an SM technique from a set of candidates, and to

efficiently sample the design space to collect the data required to train an SM.

The considerable influence of the sample distribution on SM accuracy motivates ef-

forts to develop advanced strategies to improve for the sampling process. In particular, the

adoption of sequential adaptive sampling techniques has been empirically shown to reduce

the number of samples required to obtain an SM of specified accuracy. However, these

techniques are typically challenging to implement, limited by assumptions about the re-

sponse, and dependent on the SM formulation selected to supervise the sampling process

(e.g. cross validation and Kriging based strategies), making them impracticable for most

engineering design applications. In particular, model dependence – a common character-

istic of most state-of-the-art adaptive sequential sampling techniques – may decrease the

sampling efficiency if the guiding SM is inappropriately chosen.
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The proposed NNAS technique avoids the limitations of model dependence by intro-

ducing a new refinement metric – the Non Linearity Index (NLI) – which estimates the

local nonlinear characteristics as the difference between the actual response value f(xT,i)

and the local function approximation represented by the hyperplane obtained via weighted

least squares regression of the closest D + k points in the neighborhood of xT,i, where

D is the domain dimensionality. The use of local linear models to assess the nonlinear

characteristics of the response without the need for a global SM is the key characteristic of

NNAS that makes this strategy model independent. Additionally, NNAS introduces a new

stochastic Pareto-ranking-based selection criterion to simultaneously maximize the refine-

ment and exploration of the design space search, thereby ensuring a balance between the

two behaviors. The initial NNAS and NLI formulations have also been expanded to include

a form of directional sampling in which the algorithm identifies both region and direction

of sampling.

NNAS embodies the capabilities of sampling multi-response design spaces, working

in batch-mode (i.e. adding more than one sample at time), and continuing the sampling

process even in the event of a critical error in the f evaluation, e.g. the lack of convergence

of a computational model at points in the design space. These characteristics together with

its ease of implementation make NNAS a valuable, efficient and robust sampling strategy

to use during the early phases of engineering design.

A comprehensive set of test cases from low to high complexity and from low to high

dimensionality is used to compare the performance of the proposed technique with that of

other state-of-the-art sampling strategies, specifically a standard Latin hypercube design,

a model dependent technique, and a model independent strategy. Results show the sam-

pling effectiveness and the reduced computational cost of NNAS even in multi-response

applications or in situations of function evaluation failure.
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CHAPTER 1

INTRODUCTION

The use of high fidelity numerical models and simulations in place of costly and time

consuming real life experiments is now a common practice in engineering applications.

Computer simulations such as computational fluid dynamics (CFD) [1, 2, 29, 88] and finite

element method (FEM) [57, 106] are useful throughout the design process and particu-

larly during the preliminary design phases [15, 101]. The field of research that is active

in proposing new methodology to integrate high-fidelity numerical models into the design

process is usually called simulation-based design (SBD) ([9, 15, 17, 91, 100]). Unfortu-

nately, although computational power is continually growing, developers have correspond-

ingly increased the fidelity and associated complexity of these numerical models, making

their use still expensive for the conceptual and preliminary phases of complex engineered

system design processes [30, 47]. A famous example is reported in [36, 40], where Ford

Motor Company describes how a single crash simulation of a car can take from 36 to 100

hours. The need to find a tradeoff between accuracy and computational cost of models for

early design phase usage has led to the active field of research in surrogate models (SM)

[46, 87, 98, 103], which are now popular and powerful tools for engineering modeling ap-

plications. The set of operations needed to “create” an SM is called the surrogate modeling

process which requires the completion of several steps including training data collection,

SM selection and training, and SM validation. As widely reported in the literature [30, 31,

87, 102, 105], the techniques adopted to execute each of these steps can substantively affect

the accuracy of the final SM, and therefore, each phase must be carefully carried out.

This dissertation is focused on the data collection phase (sampling) that is responsible

for collecting pertinent information about the high-fidelity response at different locations

in the design space. Previous studies [18, 20, 30, 31, 37] have shown how an inappropriate
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design space sampling may lead to a completely inaccurate SM. As a consequence, several

sampling strategies have been developed with the objective of efficiently collecting as much

information as possible with the fewest required high-fidelity simulation runs to reduce the

overall surrogate modeling time. However, these techniques are typically conceptually and

computationally complex, limited by assumptions about the response, and dependent on

the SM formulation selected to supervise the sampling process (model dependence). Model

dependence is a common characteristic of most of state-of-the-art techniques that has been

shown [30, 31] to deteriorate the sampling efficiency if the guiding SM is inaccurately

chosen. A comprehensive literature review has revealed the need for a sampling strategy

that is simple, robust, and computationally inexpensive in order to be suitable for early

design phase applications.

The proposed technique called Nearest Neighbors Adaptive Sampling (NNAS) re-

moves the model dependence limitation by introducing a new refinement metric – the Non

Linearity Index (NLI) – which estimates the local nonlinear characteristics of the response

from the training data. NLI at every training point xT,i is computed as the prediction error

between the actual response value f(xT,i) and the local function approximation represented

by the hyperplane obtained via weighted least squares regression of the closestD+k points

in the neighborhood of xT,i (whereD is the domain dimensionality). The use of local linear

models to assess the nonlinear characteristics of the response without the need of a global

SM is the key characteristic of NNAS that makes this strategy model independent. Addi-

tionally, NNAS introduces a new stochastic Pareto-ranking-based selection criterion to si-

multaneously maximize the refinement and exploration of the design space search, thereby

ensuring a balance between the two behaviors. The initial NNAS and NLI formulations

are have also been expanded to include a form of directional sampling where the algorithm

identifies both the region and the direction of sampling. NNAS also includes capabilities

for sampling multi-response design spaces, working in batch-mode (i.e. adding more than

one sample at time), and continuing the sampling process even in the event of a critical
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error in the f evaluation, e.g. a computational simulation that does not converge at a point

in the design space. These characteristics together with its ease of implementation make

NNAS a valuable, efficient and robust sampling strategy for early phases of engineering

design.

Even though design space sampling is the primary objective of this work, a description

of the entire surrogate modeling process is necessary to infer the requirements for a good

sampling strategy and to understand its effects on the efficiency of the overall process. The

first part of this chapter (Sections 1.1 to 1.5) provides the definition of a SM itself and a

description of all the SM creation phases; particular attention is focused on aspects related

to the final accuracy of the SM and to the overall modeling efficiency. The second half of

the chapter briefly introduces the characteristics of the proposed technique (section 1.7) and

the objectives of this work (section 1.6). Chapter 2 describes the current state-of-the-art in

sampling strategies, with an assessment of the positive and negative aspects of the predom-

inant techniques in terms of surrogate modeling efficiency. Chapter 3 states the objectives

of this dissertation, including the motivations for the development of the proposed tech-

nique based on deficiencies of current methods identified in chapter 2. Chapter 4 presents

a comprehensive study which highlights the effect of model dependence on sampling pro-

cesses conducted by using state-of-the-art model dependent sequential adaptive strategies

(MDSASs). Chapter 5 describes the NNAS formulations, algorithms, and an estimation of

its algorithmic complexity. Chapter 6 presents a comprehensive set of results and analy-

ses which stress key aspects of the NNAS strategy, including the sampling efficiency for

multi-response applications, the batch operational mode and the capability of continuing

the sampling even in the event of a critical error in the computer simulation solver. Finally,

chapter 7 summarizes the key outcomes of this dissertation and provides suggestions for

future development of the NNAS technique.
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1.1 Definition and Uses of Surrogate Models

This section provides a description of surrogate models (SMs) that is sufficient to under-

stand the material presented in this dissertation. SMs and the adopted nomenclature are

defined in section 1.1.1, followed by a description of the principal SM classes for engineer-

ing applications in section 1.1.2.

1.1.1 Definition

High fidelity simulation models are typically excessively computationally expensive to be

used in preliminary design phase activities such as trade space exploration, evaluation of al-

ternative concept architectures, and design optimization. For this reason, SMs have gained

considerable attention [60] because, if used judiciously, they have the potential to efficiently

and accurately approximate the response of high fidelity simulations by means of simpler

mathematical models. An SM has been defined by Simpson as “an efficient approximation

of the analysis codes that yields insight into the functional relationship between the inputs

and the outputs” [80, 103]. A similar definition is provided by Kleijnen [52] who sees a SM

as “an approximation of the input/output (I/O) function that is defined by the underlying

simulation model (high-fidelity model)”. Likewise, surrogate modeling has been described

as “the practice adopted in recent times for extracting relevant information from the out-

comes of costly and lengthy experiments by determining the functional relation between

the inputs and the outcome of an experiment” [64, 71]. This computationally inexpensive

replacement model can be therefore used for the analysis or the optimization of complex

systems while minimizing the required number of expensive simulations [44].

A surrogate model is sometimes designed as a metamodel, a word which literally means

“model-of-a-model” [36, 50, 82]. Indeed, the metamodel is intended as a simpler represen-

tation of the base model, devised at a higher level of abstraction. This concept is represented

in the example illustrated in figure 1.1. The globe is the first level of approximation (high
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Figure 1.1: Example of “model of a model”

fidelity) of the Earth, where some characteristics such as composition, geology, and atmo-

spheric phenomena are completely lost, but fundamental geographic characteristics such

as scaled distances and shape are preserved. The globe makes is possible to gather geo-

graphic intuition and approximate information about distances in a easier and faster way

rather than traveling around the Earth: accuracy is traded to gain efficiency. A second level

of approximation is obtained in the world map. As a 2D projection, either distances or

angles can be preserved throughout the map but typically not both, and the full character of

the 3D spherical shape is lost: another level of accuracy is traded to gain further efficiency.

The same idea of trading accuracy to gain efficiency is the motivation in engineering appli-

cations of SMs where the expensive code and the SM represent the first and second level

approximations of the real physics, respectively [40, 59, 66, 81, 83].

Moving from a qualitative to a more formal mathematical description of a SM, Queipo

[87] sees surrogate modeling as “a non-linear inverse problem for which one aims to deter-

mine a continuous function of a set of design variables from a limited amount of avail-

able data.” Presume that the output y of an expensive computer simulation is known
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at several design space locations xT,i with x ∈ RD, establishing the training dataset

DT = {XT = [x1, . . . ,xnT
],yT = [y1, . . . , ynT

]}. An SM is a mathematical model

ỹ = f̃(x,θ) that is created from the limited data DT and is used to approximate the true

response y = f(x) represented by the computer simulation. The vector θ contains all the

parameters necessary to fully define f̃ , and these parameters are identified fromDT through

a set of operations called training process. This definition introduces the three fundamental

“ingredients” required to build an SM : the training dataset DT (section 1.5, chapter 2), the

functional form f̃ (section 1.4), and the training process needed to infer the vector θ from

DT (section 1.4).

1.1.2 Local vs Global: Surrogate Model Uses in the Engineering Field

SMs are generally characterized as local or global models depending on their specific ap-

plication ([37, 52, 58]). Local SMs approximate f in a small restricted region of the design

space, and they are mainly used as function representations to guide and speed up opti-

mization algorithms. Usually, local SMs are discarded and retrained multiple times during

the optimization process, as the search proceeds in the design space. Examples of applica-

tions of local SMs in the context of surrogate-based analysis and optimization (SBAO) or

metamodel assisted optimization are available in [8, 27, 49, 72, 87].

On the other hand, a global SM has the goal of representing f as accurately as possible

over the entire design space, and it can be used, for example, during the preliminary design

phase for assessing the performance of several different designs in a limited amount of

time, filtering out regions of the design space that violate certain constraints, or identifying

regions with high probability of having an optimal design. All the methods discussed in

this dissertation are intended to create global SMs.
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1.2 Surrogate Model Quality Assessment

As previously described, an SM is a function approximation method that trades represen-

tation accuracy to gain model evaluation efficiency. Since an SM is trained starting from

limited information (DT ) about the true function f which it is intended to mimic, it is un-

realistic to expect that the SM is able to perfectly match f over the entire domain. Indeed,

every SM is affected by a certain degree of representation error whose estimation is crucial

for a conscious use of SMs in the design process [36, 87, 103].

As described in [30, 71], SM error estimators can be classified from two different per-

spectives. The first perspective discerns between [69]:

• methods that require additional data (validation data DV );

• methods that use existing data.

Error estimators of the first kind (like R2 (A.9) or root mean squared error (RMSE) (A.5))

are usually not convenient when the evaluation of f(x) is computationally expensive and

the collection of validation data would lead to a significant additional computational time.

On the other hand, error metrics which intensively reuse the available training data (like

the cross validation (CV)-based error estimators in equations A.1 and A.13) do not require

further function evaluations but may suffer of inductive bias caused by an excessive trust

on the data.

The second differentiation is between [34]:

• global error estimator (GEE) methods that provide information about the SM quality

over the entire design space;

• local error estimator (LEE) methods that return the accuracy of the SM at specific

locations in the domain.

In particular, GEE metrics (e.g. R2 in eq.(A.9) and RMSE in eq.(A.1)) do not require the

specification of the location where the error has to be estimated, while LEE estimators
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(e.g. relative absolute error (RAE) in eq.(A.11) and CV-variance (σCV) in eq.(A.13)) are

also function of the design space location where they have to be computed. As described

in section 1.4 and chapter 2 and applied in chapter 4, a GEE is a suitable metric for SM

functional form selection, whereas a LEE is frequently used in model dependent adaptive

sampling strategies to identify the design space locations in which sampling refinement is

required.

A complete survey of SM error estimators is unnecessary for the goals of this disser-

tation (comprehensive reviews are available in [34, 71, 87]), but a brief description of the

metrics considered in this work is provided in appendix A.

1.3 Surrogate Modeling Process

The SM definition given in section 1.1 helps to identify the fundamental phases of the sur-

rogate modeling process (table 1.1): the creation of the training dataset DT in the sampling

phase, the selection of the SM functional form f̃ during the SM functional form selection

phase, and the computation of the coefficient vector θ in the training phase [102]. As pre-

viously illustrated (section 1.2), it is also imperative to assess the quality of the SM before

using it, and this task is accomplished by computing certain error estimators – suitable GEE

or LEE metrics – during the validation phase. Even though in many practical applications,

the SM functional form is selected a priori by the user at the beginning of the surrogate

modeling process without performing a formal SM selection phase, several studies [30, 31]

show how the use of an inappropriate f̃ can have a strong negative impact on the accu-

racy of the final SM. Therefore, the SM selection phase should be always included in the

surrogate modeling process.

The order in which these four steps are performed in the surrogate modeling process

is mainly determined by the specific sampling technique and architecture (chapter 2). For

example, if the sampling strategy is model dependent, and therefore it is guided by a global

SM, the sampling, the SM selection, and the training phases must be carried out simul-
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Table 1.1: Relations between SM creation process elements and phases

Element Phase

Training dataset DT Sampling
Functional form f̃ Functional form selection

Training coefficient vector θ Training
Error estimators (GEE and LEE) Validation

taneously (section 2.3.4). With the goal of deriving suitable performance metrics for the

surrogate modeling process, consider – without loss of generality – a process with a model

independent sampling strategy in which the phases follow the scheme shown in figure 1.2.

First, the sampling algorithm creates nT training sample locations (XT ), and consequen-

tially nT simulations are run to obtain the system responses yT and to create the training set

DT ; the sampling phase requires tsampl time, and each simulation runtime is tev. Second,

f̃ is selected within a set of possible candidates by the SM functional form selection phase

in tsel time. Third, DT and f̃ are used in the training process to determine the coefficients

θ required to fully define the SM f̃(x,θ), and the SM training process is completed in ttr

time. Finally, tval is the time spent in the validation phase to assess the quality of result-

ing SM; depending on the chosen error estimators, additional simulations (nV ) might be

needed to create the validation dataset DV . Each phase with its relative inputs, outputs, and

time is listed in table 1.2, and the overall surrogate modeling process is illustrated in figure

1.2.

Table 1.2: Phases of the surrogate modeling process: input, output, and time required

Phase Input Output Time

Sampling Design space ranges XT tsampl

Simulation runs XT yT nT tev
f̃ selection DT = {XT ,yT} f̃ tsel
Training DT ,f̃ θ ttr

Validation f̃ , θ, DV GEE tval + nV tev
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Evaluation TrainingselectionSampling Validation
GEE

Figure 1.2: Example of surrogate modeling process with timeline

The total time (ttot) required to complete the surrogate modeling process with this par-

ticular process architecture is (1.1):

ttot = (tsampl + nT tev)︸ ︷︷ ︸
Sampling

+ tsel︸︷︷︸
Selection

+ ttr︸︷︷︸
Training

+ (tval + nV tev)︸ ︷︷ ︸
Validation

(1.1)

Equation (1.1) can be rearranged to highlight the impact of evaluation time tev and any

other additional time tadd on the total process time ttot as shown in equations (1.2) to (1.3):

ttot =

ntot︷ ︸︸ ︷
(nT + nV ) tev +

tadd(nT , nV )︷ ︸︸ ︷
tsampl + tsel + ttr + tval (1.2)

= ntottev + tadd (1.3)

where the notation tadd(nT , nV ) is intended to underline the dependence of all tadd compo-

nents on nT and nV . For example, tsampl and tval are affected by the number of samples nT

that the sampling algorithm has to define and the validation points nV , respectively. If tadd

is divided by ntot obtaining the average additional time per single evaluation t̄add, equation

(1.3) can be written as:

ttot = ntottev

(
1 +

t̄add(nT , nV )

tev

)
(1.4)

= ntottev (1 + τ(nT , nV )) (1.5)
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where τ = t̄add/tev is the ratio between the average additional computational time per

function evaluation and the single simulation runtime. It is now evident from equations 1.4

and 1.5 that if the ttot required to build a SM with a certain level of accuracy has to be

reduced, it is not always true that this objective is achieved by using sampling strategies

devised only to decrease ntot, because attention should also be paid to the tadd required

by all of surrogate modeling process operations. For example, some sophisticated adaptive

sampling methods are computationally expensive, and the benefit obtained by the reduction

in ntot can be overshadowed by the increase in t̄add, i.e. the computational overhead of the

sampling strategy itself, as described by Garbo in [30, 31]. This behavior is more evident

when high dimension problems are considered and the “curse of dimensionality” starts to

have a significant impact on the scaling of the additional computational time.

The effect of ntot and τ on ttot (Equation 1.4) is one reason why simple SM techniques

are usually employed for problems where the tev is low (such as wind tunnel experiments

[22, 74, 76]), and advanced SM strategies are instead used for highly computationally ex-

pensive simulations (like CFD [29]). Advanced strategies are beneficial in this context

because they usually require fewer ntot than simple strategies at the cost of additional com-

putational time. On the other hand, if tev is low, the additional t̄add could lead to such

a τ increase that ttot grows even if ntot decreases, thereby making the simple strategies

preferable to the advanced ones. An example is the wide use of simple factorial design

sampling strategies for current wind tunnel applications [22, 74, 76], where the cost of the

experiment is directly connected to the rental cost of the facility – therefore with ttot –,

and the “evaluation time” tev is very low. As shown in equation 1.5, a low tev requires

SM techniques with low t̄add to mitigate the τ effect on ttot, and given that factorial design

sampling techniques have negligible t̄add, they are the most appropriate for these kinds of

applications.
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The total cost involved in the SM creation can be represented as a linear combination

of the evaluation cost and the time cost (Equations (1.6),(1.7)):

$tot =

Evaluation cost︷ ︸︸ ︷
$evntot +

Time cost︷ ︸︸ ︷
$tttot (1.6)

= $evntot + $t [ntottev (1 + τ)] (1.7)

where $tot is the total cost, $ev is the cost of a single function evaluation, and $t is the cost

per unit time. When the single function evaluation is economically expensive (high $ev,

negligible $t) and the goal is the reduction of $tot – e.g. combustion experiments – Equation

1.6 indicates that the ntot reduction should be the guiding criterion for the selection of the

SM techniques to use. If instead $ev is low and $t is high, both ntot and τ can play a crucial

role to determine $tot, and two different scenarios are possible:

1. tev is very high implying a low value of τ (CFD simulations [29]); strategies should

be selected to reduce ntot as much as possible.

2. tev is very low (like in real wind tunnel tests) causing a high value of τ ; a trade off

between ntot reduction and limited t̄add has to be found.

As discussed earlier, the increasing interest in SM applications has led to the develop-

ment of numerous techniques that claim to increase the efficiency of the surrogate modeling

process [4, 87, 98, 99, 103]. Focusing on the sampling phase, the majority of previous re-

search [60, 98, 99] mainly focused on engineering applications involving computational

expensive simulations (high tev) with a resulting negligible τ effect on ttot, and therefore

they proposed sampling techniques with the unique objective of reducing ntot as much

as possible. It is opinion of the author [30, 31] that the additional time t̄add required by

advanced sampling techniques and sophisticated model training processes can significantly

lower surrogate modeling efficiency, in particular for mildly computationally expensive and
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high dimensional applications. Reducing the total surrogate modeling time by reducing

both ntot and t̄add is one of the primary motivations for the proposed sampling technique.

1.4 Surrogate Model Functional Forms and Training Process

The objective of this section is to provide an overview of some SM classes and their training

processes with the goal of discerning the key aspects affecting both the accuracy and the

efficiency of the surrogate modeling process. A complete description of all SM functional

forms is out of the scope of this dissertation, and good references on this topic include [4,

87, 98, 99, 103].

The first part of this section presents the SM classification based on the training process,

and a simple example illustrates the impact of training complexity – and therefore ttr – on

the overall surrogate modeling process time ttot (section 1.4.1). Secondly, section 1.4.2

enunciates the No-Free-Lunch theorem with a description of its consequences on the sur-

rogate modeling process. Finally, some approaches for the selection of the SM functional

form are briefly described at the end of section 1.4.2.

1.4.1 SM Functional Forms and Training

Commonly, SM functional forms are grouped in families or classes that share similarities

in their mathematical formulation; SMs within the same family differ in terms of small

adjustments that are introduced to improve the algorithm performance or to create a specific

version for a specific application. A list of some of the predominant SM classes is reported

in table 1.3.

A more useful SM classification for the analysis of surrogate modeling process effi-

ciency is based on the characteristics of the training technique required by each functional

form. It is important to remember that one of the additional computational time (tadd)

components is the time required by the SM training process (ttr) (Equation (1.1)). Within

the available SM techniques, two different classes of training algorithms are recognizable:
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Table 1.3: Classes of surrogate models

Class Training References

Kriging Non-linear [11, 67, 75, 84, 89, 113,
114]

RBF Linear and Non-linear [25, 43, 73]
Spline Linear and Non-linear [28]
Artificial Neural Network Non-linear [41, 95, 112]
Response surfaces Linear [10, 77]

linear and non-linear training. A linear training process requires the solution of a single

linear problem to estimate the coefficient vector θ from the training dataset DT , meaning

that the training process is simple, robust, and computationally inexpensive (In term of

computational complexity, a linear training process can take at most O(n3
T ) operations).

On the other hand, a non-linear training requires the solution of a non-linear problem by

an iterative procedure, and therefore by algorithms that are more complex, less robust, and

more computationally expensive than the linear solvers. This SM classification is important

for the purpose of this dissertation because it qualitatively provides insights on the impact

that the training process of a particular SM functional form can have on the total process

time ttot (Equation 1.2). Extreme attention is needed when non-linear SM are adopted be-

cause the high ttr required to solve the non-linear training problem could seriously impact

the total surrogate modeling time ttot as studied by Garbo in [30]. Consider an example

taken from [30] where a model dependent sequential adaptive strategy (MDSAS) is used

to create the DT of an eight-dimensional test function. As explained later in section 2.3.4,

a MDSAS sequentially samples the design space and populates DT by using a global SM

which therefore must be selected and retrained at the beginning of each sampling iteration.

In this particular example, five different SM functional forms can be actively selected by

the algorithm, specifically four radial basis functions (RBFs) with linear training and an or-

dinary Kriging (OKRG) SM with non-linear training. Figure 1.3 reports the plot of the total

process time ttot required to obtain an SM with a certain accuracy (NRMSECV < 0.05) as
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Figure 1.3: Example of impact of non-linear training time on total SM creation process
time

a function of the evaluation time tev. As reported in the original study [30], the SM cre-

ation process requires an average of 22 samples when the OKRG is included in the set of

available SM functional forms (All SMs), compared to the 34 required when only RBFs

(Only RBF) are considered. Figure 1.3 shows how the All SMs configuration is worth-

while only for tev higher than around 101 sec; for smaller tev, the additional computational

time required by the OKRG non-linear training at the beginning of each sampling iteration

strongly impacts ttot (Equation (1.2)). For this reason, in this example, the All SMs config-

uration is “time-inefficient” for tev < 101 even though it completes the process with fewer

ntot than Only RBF.

1.4.2 SM Functional Form Selection: the No-Free-Lunch Theorem

It is clear how the conspicuous number of available SM functional forms confronts the user

with an elementary question: which one should I use?

A typical way to choose the SM functional form is to rely on historical data or experi-

ence about previous studies that attempted to model a similar function. For example, it is

well known in the aerospace community that there is a quadratic relation between the lift

and drag aerodynamics coefficients, and therefore it would be unwise and wasteful to use
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an artificial neural network to model the drag polar of a NACA 4-digit airfoil. But what if

previous literature is limited or even absent? The user could begin to speculate about the

existence of a powerful and “general” SM formulation that is able to accurately model all

possible functions; if it existed, the user would then be relieved from the burden of selecting

the SM functional form. First of all, such an SM formulation would likely be tremendously

complex and involve a very large number of training coefficients θ making the computa-

tional complexity prohibitive for engineering applications. Secondly, a “general” SM does

not exist as indicated by the No-Free-Lunch theorem (NFL) [107, 108, 109].

Avoiding the mathematical and formal proof of the theorem available in [107, 108,

109], the essence of the NFL is contained in a sentence written by Wolpert in [107]:

...for any two learning algorithms, there are just as many situations (appropri-

ately weighted) in which algorithm one is superior to algorithm two as vice

versa, according to any of the measures of superiority.

where “learning algorithm” can be considered as synonymous to SM functional forms. In

addition to the formal proof, several studies [16, 30, 31, 35, 71, 86, 105] have elucidated

this limitation by testing different SM techniques on a wide range of test functions and

comparing their modeling performance. For example, Garbo [30] tests four different RBF

SMs and an OKRG SM with Sum Squared Exponential covariance function (OKRK-SSE)

on five different test functions with dimensionality from 2 to 8. The modeling performance

is assessed considering the average number of samples – generated by a maximin Latin

hypercube sampling (LHS) – required to obtain a given SM quality level (NRMSECV and

R2) out of fifteen repetitions. The results reported in tables 1.4 and 1.5 show the per-

centage of cases when a specific SM reaches the quality requirement with fewer samples

than all the others. As it is possible to notice, the consequences of the NFL theorem are

clearly demonstrated: for both the quality metrics and for all the accuracy levels, it is

impossible to identify one SM functional form that outperforms all others in all the situa-

tions. Even though the OKRG-SSE has better performance in most of the cases (70.2% for
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NRMSECV = 0.05 and 48.3% for R2 = 0.99), there is still a notable portion of cases in

which other SM techniques have better predictive behavior.

Table 1.4: Percentage of cases where a SM reaches
specific levels of NRMSECV with the fewest num-
ber of samples [30]

NRMSECV 0.10 0.08 0.07 0.05

RBF C 4.5% 3.7% 4.5% 7.0%
RBF G 0.0% 0.0% 0.9% 0.9%
RBF MQ 24.5% 24.1% 22.7% 20.2%
RBF invMQ 5.5% 3.7% 2.7% 1.8%
OKRG-SSE 65.5% 68.5% 69.1% 70.2%

Table 1.5: Percentage of cases where a SM reaches
specific levels of R2with the fewest number of sam-
ples [30]

R2 0.90 0.95 0.97 0.99

RBF C 3.5% 6.8% 12.9% 12.2%
RBF G 0.0% 0.9% 4.3% 8.7%
RBF MQ 29.8% 22.2% 20.9% 19.2%
RBF invMQ 4.4% 6.8% 9.4% 11.6%
OKRG-SSE 62.3% 63.2% 52.5% 48.3%

Similar conclusions are obtained by Garbo and German in [31] where the authors inves-

tigate the effect of NFL when a model dependent sampling strategy (i.e. it uses an SM to

identify the design space region in need of sample refinement) is used to sample the design

space of eleven test functions. The results summarized in the pie chart in figure 1.4 clearly

indicate how it is impossible to determine an SM functional form able to perform better

than others irrespective to the test function. More details about the effect of NFL on model

dependent sampling performance are discussed and analyzed in chapter 4.

This set of results leads to the conclusion that an SM functional form selection strategy

is needed every time an SM has to be used, and no previous studies have been conducted on
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Figure 1.4: Percentage of sampling repetitions when a specific SM reaches NRMSEV <
102 with fewer samples than the other SMs considering all the test functions

(a) Branin function surface (b) Branin SM obtained with cu-
bic RBF

(c) Branin SM obtained with
gaussian RBF

Figure 1.5: Example of two different SM functional forms applied to the same training
dataset

similar problems. Even though the training datasetDT accurately samples the design space,

the use of an inappropriate SM technique can lead to a complete misinterpretation of the

collected information. Figure 1.5 shows a test function response (figure 1.5a), and two SMs

obtained using two different RBFs (figures 1.5b and 1.5c) and the same training dataset;

the importance of an accurate selection of the functional form formulation is evident by

noticing the considerable difference between the two SM surfaces.

If no historical data or experience about modeling similar responses are available,

global error estimators (GEEs) are commonly used as metrics to assist in the selection

of the SM technique by observing the following procedure:
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1. define a set of possible candidate SM functional forms;

2. train all the candidate SM functional forms;

3. choose a GEE and evaluate it for all the trained SMs;

4. select the functional form with the lowest GEE.

Unfortunately, the “best” resulting SM can be strongly dependent on the adopted GEE,

and this dependency is evidenced by the discrepancy between the results in tables 1.4 and

1.5. It may therefore seem that the difficulty of choosing the functional form has been

transfered to the GEE selection. However, the choice of the GEE is usually guided by

the quality requirement for the final SM: it is much easier to decide the GEE to use as

an SM selection criterion than to directly choose the f̃ form. For example, the maximum

absolute error (MAE) metric could be considered if the final SM must have the MAE

under a give threshold, or normalized root mean squared error (NRMSE) could be used if

an average modeling performance over the entire design space is desired. Unfortunately,

the main drawback of the SM selection process is the resulting additional computational

cost required by the training of all the considered SMs, in particular if non-linear SMs are

included. The increase in computational time caused by the necessity of implementing

an SM selection process every time an SM has to be created is magnified when model

dependent sampling strategies are used [30], as described in section 2.1.3 and chapter 4.

The impossibility of finding a general SM technique implied by the No-Free-Lunch

theorem, and the consequential additional computational time required by an SM selection

process based on a GEE are the main motivations behind the objective in this thesis research

of developing a model independent sampling technique, as described in chapter 2.

1.5 Surrogate Model Training Data

The last element of the surrogate modeling process to introduce is the training dataset DT .

At this point a user of SM should ask the following question: if I have the opportunity to

19



run a given number of experiments, how should I determine the elements of the matrix XT

that represent the locations of these experiments in the design space? In other words, what

is a good strategy to decide the set of design points where the experiments should be run

to appropriately sample the design space? The main hope behind this question is that there

exists a strategy that is able to select the experiments so as to maximize the information

obtained about the response. The application of such a strategy would make it possible

to either reduce the number of samples required to achieve a certain level of error or to

increase the amount of knowledge obtained using a fixed number of samples.

The techniques and algorithms used to define the design space locations of the experi-

ments are generally called sampling strategies, and the related research field for engineer-

ing applications is usually termed Design of Experiments. The set of points defined by

XT is generally referred to as training points, sample points or simply samples, but dif-

ferent terminology is sometimes used in the literature. Some clarification about the term

“experiment” in this context is required. In this document, the term “experiment” is used

synonymously with “simulation”, whereas in a large part of the literature, it directly refers

to XT . This is the reason why the field of research connected with sampling strategies is

sometimes indicated as Design of Experiment and not Design of Experiments ([52]).

The importance of the sampling phase has been emphasized by various studies [30, 60,

103] that have shown how the SM accuracy heavily depends on the sample point locations.

Indeed, a poor sampling could have the same consequences of a poor choice of SM func-

tional form: the resulting SM might be completely inadequate to approximate the “true”

function f . Even though the selection of both SM functional form and sampling strategy is

equally important for the accuracy of the final SM, there is a substantial difference: train-

ing data are available at the time of choosing the SM technique and they can be used to

select the most appropriate SM, whereas no information is available at the time to decide

the sampling strategy to use.
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As described in chapter 2, several different sampling strategies have been proposed

in literature, and they can be classified according to their architecture and behavior [30,

60]. The architecture can be either one-shot or sequential, and the behavior can be either

space-filling or adaptive. Regarding the sampling architecture, a one-shot approach defines

all the sample locations in a single step, whereas a sequential strategy sequentially pop-

ulates XT during the sampling process. Considering the sampling behavior, space filling

approaches completely neglect response values yT available in DT and they focus only

on evenly spreading the samples across the design space; conversely, adaptive sampling

techniques use the response information yT contained in DT to concentrate the samples in

regions of the domain that need refinement based on considerations of the local behavior

of the function being approximated. As described in chapter 2 and widely shown in the

literature [30, 36, 39, 47, 53, 61, 65], the adaptive-sequential is the most suitable class of

sampling strategies when the number of simulation required to obtain an accurate SM has

to be reduced as much as possible (e.g. in case a single experiment run is expensive in

terms of time and/or money). Indeed, an adaptive-sequential technique not only uses all

the information contained in DT – both XT and yT –, but also gives the opportunity to

monitor the process and to stop it when a certain level of accuracy is reached.

The importance of the sampling strategy in the overall SM creation process perfor-

mance and the simultaneous increase of SM popularity led to the continuous development

of new sampling strategies [60]. The main goal in this research area has been to develop

sampling techniques that are applicable to a wider range of problems and that reduce as

much as possible the number of choices that the end user has to make. Unfortunately,

many of the sampling techniques that have been developed for this purpose have substantive

shortcomings, and – as described in chapter 2 – some common characteristics of state-of-

the-art adaptive-sampling techniques degrade their usability for model-based engineering

applications [30]:
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high computational complexity Some sampling techniques like integrated mean squared

error (IMSE) [39, 98] or the cross-validation error based techniques [30, 47, 53]

suffer from high computational complexity that makes them unscalable to high-

dimensional applications.

SM dependency Some strategies – like cross-validation sampling and IMSE – use an SM

to synthesize the information in DT and to identify the region of the design space

where the next sample should be located. Therefore an SM functional form has to be

chosen at the beginning of the sampling process, meaning that such techniques are

affected by the consequences of the No-Free-Lunch (NFL) theorem (section 1.4.2).

In other words, the SM selected by the user at the beginning of the process with no

available problem-specific prior information could be inappropriate for that problem,

and therefore, it can negatively influence the performance of the sampling strategy

and of the overall surrogate modeling process [30, 31].

high conceptual complexity Usually, a wider applicability is obtained by introducing ad-

vanced features and additional degrees of freedom in the process formulation, leading

to sampling strategies that are highly conceptually complex. For an inexperienced

user, these strategies are very challenging to implement and to use properly without

a deep understanding of the mathematical formulation, and this is one of the rea-

sons why advanced techniques are not widely considered for real-world applications.

The gap between user knowledge and the knowledge required to properly use the

strategies is so high that well-known and simpler strategies are preferable.

lack of robustness Some of the advanced sampling strategies suffer a lack of robustness.

As with many sophisticated numerical formulations, the risk of numerical issues is

high and can strongly affect the robustness of the overall process; examples include

the sampling techniques that require the use of Kriging-like SM. Additionally, a sam-
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pling strategy for engineering application must be able to handle situations when the

solver used for the f evaluation (e.g. CFD) does not converge or returns an error.

It is apparent how these negative aspects of most of the state-of-the-art adaptive-sequential

sampling techniques make their application very challenging in model-based engineering.

Consequently, classical designs of experiment approaches are usually used in practice due

to their ease of implementation and robustness even if they probably require a higher num-

ber of simulations to achieve a particular representation accuracy.

1.6 Motivations, Objectives, and Contributions

The scope of this section is to provide a high level discussion about the motivations and the

fundamental objectives of this dissertation listed in chapter 3.

The previous section (section 1.5) identifies four main concerns about current adaptive-

sequential sampling formulations: high computational complexity, model dependency, high

conceptual complexity, and deficient algorithm robustness. Most of the current sampling

techniques for engineering design [60] embody elegant mathematical formulations to ef-

ficiently use the collected response information with the goal of reducing the number of

required samples, but usually they are limited by their assumptions and conceptual com-

plexity, and, in the experience of the author, they are typically not used by practicing engi-

neers.

Considering the introduction to sampling techniques provided in section 1.5 and the de-

tailed literature review available in chapter 2, it is reasonable to expect that an effective and

practical sampling strategy for surrogate modeling during the early phases of engineering

design should:

1. be adaptive to use response information initially available or collected during the

process to guide the sampling phase, thereby reducing the number of samples re-

quired to obtain a good representation of the response over the entire design space

([29, 30, 53, 96]);
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2. be sequential to permit in-the-loop SM quality checks and the suspension of the

sampling process whenever a certain accuracy level is reached ([29, 30, 53]);

3. be flexible to be applicable to a wide range of problems ([30]);

4. be simple and robust to be implementable by users with limited know-how in tech-

nical statistics and numerical methods ([4]);

5. have low computationally complexity and good scaling behavior with respect to the

problem dimensionality to make the method usable in high-dimensional engineering

design problems ([4]);

6. be model independent to reduce the impact of the particular SM choice on the surro-

gate modeling process efficiency. [30]).

The review of currently available sampling techniques presented in chapter 2 indicates that

there is no present formulation able to achieve all of these characteristics. This gap in

the capabilities of present methods is the main motivation behind this dissertation, which

focuses on the development of a sampling strategy that attempts to address all six char-

acteristics above. Additionally, literature lacked a thorough study about the influence of

sampling strategy model dependency on the resulting representation accuracy. For this rea-

son, a secondary objective of this dissertation is to complete a research which highlights

the relevant impact that model dependency may have on the quality of the resulting sample

distribution. The complete study, which also proposes a sampling architecture that miti-

gates the identified drawbacks of model dependence, is reported in chapter 4 and it has also

been published in [31].

Liu et al. in [4, 60] identifies two additional characteristics that a sampling strategy

should have:

• capability to work in either single or batch selection mode. Most current adaptive-

sequential strategies have been developed to work only in single selection mode in
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which a single sample is added at every iteration. On the other hand, a batch selection

approach would give the opportunity to add more than one point per iteration, a

property particularly important for an effective use of high performance computing

(HPC) resources;

• capability to handle multiple responses. Indeed, it is common in engineering appli-

cations to deal with several responses at the same time; examples are the lift and

the drag of a wing, or thrust and noise of an engine. In these cases, the sampling

technique should be able to combine the information about the behavior of all the

responses throughout the design space and to identify sample locations that are good

in the sense of balanced effect in reducing the error of all of the responses.

Considering the complexity of state-of-the-art simulation codes and the development that

they had during the last decade, the author believes that a sampling algorithm for engineer-

ing applications should also include two additional fundamental features:

• capability to use response derivatives. The development of adjoint methods ([32,

79]) led to simulation codes able to compute both the value and the gradient of the

response with a limited impact in the computational time. A sampling strategy should

embody the capability of using the gradient information to guide the sampling pro-

cess.

• capability to handle critical errors in the simulation code. As previously described,

the sampling algorithm usually samples the design space of an unknown response,

and therefore it could happen that some designs are infeasible or their performance

cannot be assessed using standard settings in the solver. In these cases, critical er-

rors may occur in the solver, and consequentially no response yT is returned to the

sampling algorithm. Consider for example a CFD simulation of a rotor at different

rotational speeds which may need distinct solver settings in presence of transonic or

supersonic conditions. A robust sampling algorithm should be able to continue the
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sampling process without being affected by solver critical errors, and also it should

give to the user the opportunity of adjusting the simulation and refreshing the training

dataset without stopping the sampling process.

The inclusion of these four additional characteristics in the proposed sampling technique is

a secondary objective of this dissertation.

As described in chapter 2, all the adaptive-sequential strategies couple a refinement

metric for the identification of design space regions in need of a sample refinement with an

exploration metric to spread the points across the entire design space. A more detailed anal-

ysis of these algorithms (section 2.3.4) show two characteristics in common of all adaptive

sequential techniques. First, all the formulations attempt to balance refinement and explo-

ration by converting the multi-objective optimization problem (simultaneous maximization

of exploration and refinement metrics) to a single-objective problem via penalty function or

weighted sum approaches. Second, all the proposed model independent refinement metrics

identify regions of the design space where more samples are required, without providing

any indication about a direction along which next samples should be placed. The devel-

opment of a technique able to achieve a refinement-exploration balance by keeping the

multi-objective flavor of the problem, and to leverage directional information to guide the

sampling process are other two main objectives of this dissertation.

1.7 Proposed Technique: Nearest Neighbor Adaptive Sampling

The proposed sampling strategy is developed with the objective of creating an effective and

usable approach for engineering design problems. This objective is pursued by developing

an adaptive-sequential sampling technique based on a local linear model, which is named

Nearest Neighbors Adaptive Sampling (NNAS). Even though the details of the technique

are discussed in chapter 5, it is important to understand how an adaptive-sequential sam-

pling strategy based on a local linear model can potentially meet the requirements discussed

above for a good sampling strategy:
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• adaptive-sequential. Uses the available information about the response to guide the

sampling process and makes it possible to perform in-the-loop operations such as

SM accuracy evaluation;

• based on local model. This characteristic reduces the algorithm complexity and

makes the NNAS model independent. Indeed, the adoption of a local model does

not require the selection of a global SM functional form (as commonly required in

most of the existing adaptive sampling strategies), and the effect of a sample addition

is localized to its neighborhood, leading to a meaningful reduction in computational

complexity (chapter 5);

• based on a linear model. The training process of a linear model is simple, fast, and

robust; practicing engineers have sufficient knowledge about linear models and how

to build them. Furthermore, linear model formulations can be easily adapted to use

any type of available derivative information (e.g. from the adjoint method).

NNAS achieves the balance between the exploration and refinement by a stochastic selec-

tion criterion based on a Pareto-ranking procedure applied on the exploration-refinement

metric domain. Additionally, the advanced NNAS algorithm formulation is able to han-

dle solver critical errors and it includes batch selection, multi-response, and directional

sampling capabilities.

Table 1.6 summarizes the solutions adopted to meet the sampling strategy requirements

and indicates how these solutions are related to the characteristics of the early phases of the

engineering design process.

1.8 Document Structure

The structure of this dissertation document is illustrated in figure 1.6.

In particular, chapter 2 provides a detailed literature review and classification of the

currently available sampling strategies which is useful to highlight some of their key char-
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Table 1.6: How NNAS can meet our sampling strategy requirements

Engineering design
requirements

Sampling strategy
requirements

NNAS

Use all the information
available to define the sam-
ple locations and to reduce
the total number of required
simulation runs

Adaptive Adaptive

Permit in-the-loop SM
quality checks

Sequential Sequential

Be implementable by users
with a wide spectrum of
knowledge

Simple and robust Based on linear models

Usable in typical engineer-
ing design problems where
the dimensionality is usu-
ally high

Low computational com-
plexity with respect to
problem dimensionality

Based on local models

Reduce the impact of the
SM type chosen by the user

Model independent Based on local models
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Figure 1.6: Document structure

acteristics that motivate the development of the proposed technique. Chapter 3 references

to the outcome of the literature review in chapter 2 to formulate the objectives, motivations,

and hypothesis of this dissertation. Chapter 4 includes an exhaustive analysis about the ef-

fect of model dependence on sampling efficiency, which is the first objective of this disser-

tation. Chapter 5 describes in details the proposed Nearest Neighbors Adaptive Sampling

technique, including the formulations for batch-mode, multiple responses and infeasible

region applications. Chapter 6 includes a description of the experiment plan and a com-

plete set of results used to stress several aspects of the proposed sampling technique. This

analysis is designed to substantiate the hypotheses introduced in chapter 3. Finally, chapter

7 summarizes the key outcome of these dissertation.
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CHAPTER 2

SAMPLING STRATEGIES

This chapter presents a more detailed description of the sampling phase in the context of

the surrogate modeling process that is fundamental to properly understand the motivations

behind the proposed technique and the reasons for particular choices involving its formu-

lation. After a brief description of the importance of the sampling phase in the surrogate

modeling process, the chapter continues with an exhaustive survey of existing sampling

strategies, how they are classified, and the analysis of their positive and negative aspects

with respect to the overall process efficiency.

At this point, it is important to remember that this dissertation is focused on the process

of creating global SMs for computer experiment applications. The fact that only computer

experiments are considered removes the need for characteristics in sampling procedures

necessary to evaluate aleatory uncertainties – such as experiment repetitions – that usu-

ally are necessary to estimate the output value y obtained by real experiments. Computer

simulations are typically deterministic, which means that the unknown function f(x) has

a one-to-one correspondence between the input vector x and the output y, and aleatory

uncertainties are not present [60, 87, 103].

Several studies [18, 20, 36, 39, 60, 102] show how the sampling phase is crucial for

the creation of an accurate SM, because it is during this phase that information about the

phenomenon modeled by the computer simulation is gathered and collected in the training

dataset DT = {XT ,yy}. The objective of the sampling algorithm is to populate the matrix

XT that defines the design space locations (samples) where the response f will be evaluated

by the computer simulation. This process is schematically represented in figure 2.1.

In principle, an infinite number of samples, uniformly distributed across the domain,

would make it possible to create an SM that perfectly matches the unknown f (in the case
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Sampling
Strategy

Figure 2.1: Schematic representation of a sampling strategy

of an interpolating SMs), but unfortunately the allowable number of samples is bounded

in practice by the limited amount of time available to build the SM and by the simulation

runtime tev (Equation (1.1)). Therefore, the goal of a sampling technique is to efficiently

gather as much information as possible about f by limiting the total process time ttot (or

the total process cost $tot). As described in section 1.3 and studied by Garbo in [30], time

efficiency depends on a trade-off between the total number of samples ntot and the ratio

between the additional computational time and the evaluation time (Equation (1.7)).

The question at this point is: what does “efficiently gather information” mean? The

example illustrated in figure 2.2 should help to qualitatively answer this question. Figures

2.2a and 2.2b report two different sets of sample locations, while figures 2.2c and 2.2d rep-

resent the contour and surface plots of the real function f that has to be modeled. Imagine

that you have to select one of the two sample distributions shown in figures 2.2a and 2.2b

to define the set of experiments used to collect information about the unknown function

f , and assume that you do not have access to figures 2.2c and 2.2d. Most people would

likely select the option in figure 2.2a because the samples are evenly spread over the entire

design space. This logical choice would be based on the consideration that, for a given

number of samples, obtaining an even distribution of samples across the domain increases

the probability of capturing all the interesting characteristics of f . Now, imagine repeating

the decision considering also the information contained in figures 2.2c and 2.2d: do you
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still choose the sample locations of figure 2.2a? In this case, most of people would likely

select the sample distribution of figure 2.2b. The information about f contained in the two

lower figures leads one to choose the second set of samples because their distribution is

more suitable to model the region of the design space where f has a high variability. It is

also clear that the first set of samples is not appropriate to efficiently gather information

about f , and it would probably cause a severe misrepresentation of the highly nonlinear

portion of the response. Therefore, “efficiently gather information,” in the context of adap-

tive sampling, must be understood to mean to distribute the samples such that the entire

design space is explored, and the regions where the response has high variability are ac-

curately described. The test function used for this example is not fictitious and expressly

created for this exercise, but rather is the input noise current of a low noise amplifier [20,

38] (section D.7).

This simple example helps to introduce the two desired behaviors that should guide the

sampling process: exploration and refinement (section 2.1.1).

2.1 Exploration vs Refinement: Space Filling vs Adaptive Sampling Strategies

2.1.1 Exploration vs Refinement

As introduced in the previous example, a sampling strategy should both explore the design

space to detect as many response features as possible, and refine the sample distribution

in portions of the design space where particular features are detected. These two behav-

iors are commonly termed exploration and refinement (or exploitation) in sampling and

optimization research areas [36, 49, 60].

In the optimization field, a good algorithm has to balance exploration and exploitation

actions to increase the probability of finding the global optimum: exploitation refines the

search around possible optimal regions identified by the exploration of the design space.

The algorithm cannot rely only on exploitation because it will probably converge to the first

detected local optimum, and therefore exploration is required to identify other possible op-
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(a) Samples generated using a one-shot space-
filling algorithm

(b) Samples generated using a sequential adap-
tive algorithm

(c) Response contour (d) Response surface

Figure 2.2: Importance of choosing the correct sampling strategy
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timal regions, thereby increasing the probability of converging on a global optimum. Sev-

eral optimization algorithms try to embody these two search characteristics, and a famous

example is the EGO algorithm proposed by Jones [49] based on the expected improvement

formulation.

A similar behavior is desired in the sampling strategies where discrete information

about f has to be collected to properly model the response by an SM. This point-wise

information must be spread over the entire design space to identify as many features as

possible (exploration), but also samples have to be concentrated where the response shows

a high variability (refinement). These two opposite behaviors must coexist in the same

strategy to efficiently sample the design space, and therefore a logic to make the two be-

haviors cooperate is required. Ideally, a sampling strategy should determine the location of

the samples (XT ) by simultaneously maximizing both exploration and refinement metric

leading to a two-objective optimization problem:

Maximize
x

[R(x, ι), E(x)]

subject to xL ≤ x ≤ xU (2.1)

where the vector ι contains the available knowledge about the response f used in the evalu-

ation of the refinement metricR, the exploration metricE is usually based on euclidean dis-

tance, and xL and xU are the lower and upper bounds of the design space, respectively. How

the optimization problem in (2.1) is solved is a characteristic of each sampling strategy. For

example, some techniques evaluate the refinement metric at candidate samples generated

by a preliminary exploration phase [53], others perform the exploration of a design space

region previously identified by the maximization of the refinement metric [20], yet oth-

ers combine the two behaviors in a single sampling metric S (x) = S (E (x, ι) , R (x, ι))

[16]. As described in section 5.1, the technique proposed in this dissertation achieves

the exploration-refinement balance by a more rigorous Pareto-ranking approach due to the
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Exploration

Refinement

Figure 2.3: Schematic representation of a sampling metric

multi-objective characteristic of the problem in (2.1). A schematic representation of the

metrics involved in the sampling process is illustrated in figure 2.3.

2.1.2 Space-filling vs Adaptive

The absence or the presence of refinement in the sampling behavior determines the first

sampling strategy classification: space filling or adaptive sampling techniques, respectively.

Space-filling Space-filling sampling strategies have as a unique goal to evenly spread the

samples across the design space without taking any refinement action; examples of

these techniques are the factorial and Latin hypercube designs [4, 48, 98]. The ad-

ditional computational time needed by the sampling phase tsampl is almost negligible

for this class of techniques since the algorithms are fast, robust, and well developed.

Because of these properties, space-filling designs are usually adopted at the begin-

ning of the surrogate modeling process when no information about f is available,

and some samples are required to ignite more advanced techniques like sequential

adaptive strategies. Other common applications are problems where the function

evaluation time tev is very low (e.g. in wind tunnel experiments [22, 74, 76]), and a

low tsampl is desired to mitigate the impact of additional computational time t̄add on

the total process time ttot (equation (1.2)).

Adaptive Adaptive techniques synthesize the available knowledge ι into a refinement met-

ric to detect the design space regions where more samples are required (“regions of

interest”) to enhance the response representation. The specific formulation of the
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metric R, and the type of required information ι are unique characteristics of each

adaptive sampling strategy, as it is illustrated in the brief description of state-of-the-

art techniques in section 2.3. Unfortunately, relying only on R to guide the sampling

is not possible, since it may lead to a sample clustering around the first detected re-

gion of interest. To avoid this side effect, adaptive techniques always combine R

with an exploration metric E, and the approach used to couple these two metrics is

specific to each particular sampling strategy formulation.

2.1.3 Model Dependency of Adaptive Sampling Strategies

Particular attention must be paid to a specific trait of some adaptive sampling techniques:

model dependency. As previously stated, adaptive sampling strategies use the information

vector ι to evaluate the refinement metric R that helps in the identification of design space

regions where additional samples are needed to enhance the response representation. A

subset of adaptive formulations uses a global SM to synthesize the information ι, thereby

making the resulting sampling behavior dependent on the chosen SM formulation. Addi-

tionally, the challenge of selecting a priori a suitable SM functional form to sample and

model the unknown response (No-Free-Lunch (NFL) section 1.4.2) may lead to an unex-

pected and poor design space sampling in case of an inappropriate choice. As studied in

[30, 31] and reported in chapter 4, model dependence consequences can be mitigated by in-

cluding an active SM selection process within the sampling algorithm, however causing an

increase in computational complexity as side effect. Some examples of model dependent

adaptive strategies (described later in section 2.3) are the Kriging-based strategies (such

as maximum variance and IMSE) that depend on the chosen covariance function, or the

CV-based strategies that are influenced by the functional form used in the cross-validation

process.

As shown by Garbo and German [30, 31], the selection of the most appropriate SM is

crucial to efficiently sample the design space with a model dependent sampling strategy.
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The expected reduction in ntot due to the usage of an adaptive sampling procedure may

completely vanish if an inappropriate SM functional form is adopted. In addition, the re-

quired SM selection process may lead to a considerable increase in computational time –

particularly if SMs with nonlinear training procedures are involved – and consequentially

on the total SM creation process time ttot (Equation (1.1))[30, 31]. These two side effects

of model dependent adaptive sampling strategies are the main motivations behind the ob-

jective of developing a model independent adaptive sampling technique in this work. Such

a strategy will remove the risks connected to the selection of an inappropriate SM or the

need for performing an active SM functional form selection, with direct benefits to the

overall surrogate modeling process efficiency.

More details about model dependence in sampling strategies are available in chapter

4 which is entirely devoted to present a study that underlines the need of coupling model

dependent sampling strategies with active SM selection.

2.2 Sampling Strategy Architectures: One-shot vs Sequential

The algorithm architecture is the characteristic considered in another classification of sam-

pling strategies [30, 39, 60]: one-shot (open-loop) vs. sequential (closed-loop). As is illus-

trated in figures 2.4 and 2.5, the terms open-loop and closed-loop are respectively related

to the absence or the existence of a feedback connection in the algorithm implementation

scheme.

one-shot (open-loop) A one-shot sampling strategy creates the entire set of sample loca-

tions XT in a single algorithm run before the beginning of the evaluation phase. Once

XT is generated, there is no remaining sampling budget to refine particular design

space regions that a post processing phase may reveal as inappropriately sampled.

Additionally, all the sample locations in XT must be evaluated before performing

post processing actions such as checking SM quality, because most one-shot algo-
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rithms do not follow any particular order when they populate XT , and therefore a

partial XT evaluation may result in an uneven design space sampling.

The a priori availability of the fully populated XT makes the evaluation process

embarrassingly parallelizable; nowadays, this property is important due to the wide

availability of HPC resources. Examples of one-shot strategies are the fractional

factorial designs [4, 98], Latin Hypercube [4, 49], and the one-shot versions of the

adaptive techniques based on Kriging SM [29, 39, 97, 98].

sequential (closed-loop) A sequential sampling strategy sequentially adds batches of sam-

ple locations to XT , and it waits until the end of the last sample batch evaluation

before proceeding with the generation of the next batch. It is important to clarify

that “sequential” is not meant to label the way in which the matrix XT is generated,

but instead, it describes the alternating execution of the sampling and the evaluation

phases. If a sampling algorithm sequentially creates the full XT before the evaluation

phase, it is not intended as a sequential strategy in our terminology. Indeed, several

one-shot techniques use this approach to populate XT because the solution of the

optimization problem required to simultaneously identify all ntot sample locations

is computationally prohibitive, especially when ntot is high or when the sampling

metric evaluation is computationally expensive.

A sequential technique consumes the sampling budget as the process proceeds and

does not expend the entire budget at the beginning as in a one-shot strategy. This

characteristic of the algorithm architecture allows to analyze the available data incre-

mentally during the process, and to guide the subsequent sampling behavior using the

information already collected if the strategy is adaptive. For example, if the available

training dataset DT reveals a highly nonlinear behavior of the response f a specific

region of the design space, part of the remaining sampling budget can be used to

perform a better investigation of that region.
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Figure 2.4: One-shot sampling architecture scheme

Sampling
Strategy

Figure 2.5: Sequential sampling architecture scheme (i = k (nit − 1))

A schematic representation of these two classes of sampling strategies is reported in figure

2.4 and 2.5, and examples of several state-of-the-art sampling techniques are provided in

section 2.3.

2.3 Sampling Technique Configurations: Analysis and Survey of Existing Techniques

Sections 2.1 and 2.2 introduced two different sampling strategy classification paradigms:

behavior (space-filling or adaptive), and architecture (one-shot or sequential). The two

classifications are not mutually exclusive, and therefore all the four behavior-architecture

combinations are possible. The objective of this section is to describe and characterize

these four configurations to identify their positive and negative aspects.

All the behavior-architecture configurations are schematically represented in table 2.1

where the positive and negative characteristics – described later in this section – are listed

for each combination.
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Table 2.1: Summary of positive and negative characteristics of the four possible sampling
configurations

Architecture
One-shot Sequential

B
eh

av
io

r

Sp
ac

e-
fil

lin
g

- Easy to use

- Fast and robust

- Wide software availability

- Easy to use with HPC re-
sources

, No refinement

, All function evaluations must
be run before proceeding
with the SM creation process

- Easy to use

- Fast and robust

- Implementation from one-
shot space-filling technique

- Opportunity to run quality
check during the surrogate
modeling process since it is
not required that all the func-
tion evaluations be completed
to have an evenly sampled
distribution

, No refinement even if an SM
has been created to check the
quality of the process

A
da

pt
iv

e

- Refinement is achieved using
function information avail-
able before the beginning of
the sampling process (ι0)

- Easy to use with HPC re-
sources

, Some computational com-
plexity is introduced to in-
clude ι0 in the algorithm

, All function evaluations must
be completed before proceed-
ing with the SM creation pro-
cess

- Refinement is achieved us-
ing all the available collected
data

- Opportunity to run quality
check during the surrogate
modeling process since it is
not required that all the func-
tion evaluations be completed
to have an evenly sampled
distribution

, Difficulty to use it with HPC
resources

, High computational com-
plexity

, Some formulations are model
dependent

40



Sampling
Strategy

Figure 2.6: One-shot space-filling sampling configuration scheme

2.3.1 One-shot Space-filling Sampling

A one-shot space filling sampling technique defines all the sample locations XT in a single

stage using only their reciprocal distance in the design space d(xi,xj) as a sampling metric;

therefore, no refinement is involved in the process, and the sampling metric can be written

as S(x) = E(x). Once XT is populated with the ntot samples, the samples are evaluated

to obtain the response vector yT required to create the training dataset DT , as illustrated in

figure 2.6.

This configuration inherits from the one-shot architecture the lack of suitability for

performing a SM quality check during the evaluation phase because the order of samples

in XT is usually random and therefore the already-obtained samples are not assured to be

evenly distributed across the design space (In other words, a large number of randomly

sampled points is needed before we can have confidence of an even distribution of points

in an n−dimensional design space. By stopping short with only a few points, one should

not expect an even distribution).

One-shot space-filling sampling techniques are the easiest to use and to implement. The

algorithms have been throughly studied, and they are robust and efficient [4, 68, 98], re-

quiring a negligible additional computational time during the sampling phase (tsampl). On

the other hand, the fact that no refinement metric is considered during the sampling pro-

cess makes this approach inefficient in terms of ntot. Indeed, the only goal of a one-shot

space-filling technique is to evenly spread all the samples across the design space, with the

assumption that this will lead to a good sampling of the response. Unfortunately, this as-
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Table 2.2: List of some existing one-shot space-filling sampling techniques

Name References

Full Factorial [4]
Fractional Factorial [4, 77, 98]
Latin Hypercube [4, 49, 77]

sumption is not always correct, in particular when the response function f is non stationary

and anisotropic, as it is in many practical applications. For example, a highly nonlinear

region may be concentrated in a limited portion of the overall design space, leading to an

inefficient use of the sampling budget.

Consider the examples illustrated in figure 2.7, where the same XT of 15 points is used

to sample two different functions. In the first case (figures 2.7a and 2.7b), the function has a

qualitatively isotropic variability across the entire design space, and the samples are able to

capture the overall trend of the function; some misrepresentation errors may appear on the

lower left corner of the design space where a steep function change is present. In the second

case (figures 2.7c and 2.7d), the sample distribution completely misses the important peak

in the function in the lower middle part of the design space; most of the samples are located

on an almost flat region, and only few are used to sample the zone with high variability in

the function. This is caused by the fact that a one-shot space-filling design has no access

to any piece of information about f , either available at the beginning of the SM creation

process or collected during the evaluation phase.

The fact that the entire XT is completely populated before the evaluation phase makes

this sampling approach attractive for applications where HPC resources are available. These

parallel computing architectures gives the opportunity to evaluate several samples at the

same time and consequentially to reduce the time required during the evaluation phase.

Examples of existing one-shot space-filling techniques with relative references are listed

in table 2.2.
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(a) Branin function surface (b) Branin contour plot with samples

(c) LNA function surface (d) LNA contour plot with samples

Figure 2.7: Examples of samples resulting from a one-shot space-filling method for two
different test functions
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Figure 2.8: Sequential space-filling sampling configuration scheme adding k samples at
iteration

2.3.2 Sequential Space-filling Sampling

A sequential space-filling sampling strategy sequentially adds sets of samples to the matrix

XT using only their reciprocal distance in the design space d(xi,xj) as the sampling metric.

Similarly to one-shot space-filling techniques, no refinement is involved in the process, and

the sampling metric can be written as S(x) = E(x).

The sequential architecture implies that a new set of samples is added to XT only when

the evaluation of the previously generated one is completed, as illustrated in figure 2.8. A

direct consequence of this “sampling-evaluation schedule” is the opportunity to run quality

checks during the sampling phase. For example, it is possible to create the SM, compute

a GEE, and add other samples if the quality requirement is not satisfied. On the other

hand, no information about the function f can be returned to the sampling algorithm in a

space-filling technique, even though it is available. The sampling approaches which allow

information feedback belong to the sequential adaptive category that is described in section

2.3.4.

The implication of the absence of refinement previously described for one-shot space-

filling techniques is valid also for the sequential ones: the sampling algorithm is not able

to refine the sample distribution using function information, and that may cause a misrep-
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(a) Branin function surface (b) Branin contour plot with samples

Figure 2.9: Examples of samples resulting from a sequential space-filling method

resentation of the function f (figure 2.7). The inability of using the collected data to guide

the sampling process makes the use of sequential space-filling techniques very rare.

Similarly to the one-shot space-filling techniques, the sequential ones can be efficiently

used when HPC resources are available if the number of samples generated at every itera-

tion is proportional to the number of simulations that can be run in parallel. Usually, the

sequential space-filling algorithms are simply the one-shot versions used in a sequential

fashion (table 2.2).

An example of a sequential space-filling technique is reported in figure 2.9, where three

sets of five samples (different colors) are sequentially added to XT .

2.3.3 One-shot Adaptive Sampling

A one-shot adaptive sampling technique defines all the sample locations in a single stage

using both an exploration metric E (usually based on reciprocal distance d(xi,xj)) and

a refinement metric R computed from the function information vector ι as prescribed

by the specific formulation. The sampling metric can therefore be written as S(x) =

S (E(x), R(x, ι)).

Since the entire XT is created in a single stage (one-shot) using only the preliminary

information ι0 available at the beginning of the process (adaptive), the refinement accuracy
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Figure 2.10: One-shot adaptive sampling configuration scheme

strongly depends on the quality of ι0. If ι0 were incorrect, no refinement can be performed

after the end of the function evaluations because no remaining sampling budget is available

(one-shot architecture). Therefore, the resulting sample locations can be completely inac-

curate in representing the response f . As previously described (section 2.1.2), an adaptive

technique also needs an exploration metric E to avoid excessive sample clustering in par-

ticular regions of the design space. The one-shot adaptive sampling strategy configuration

is illustrated in figure 2.10.

The use of information ι in the sampling process usually implies a more advanced algo-

rithm formulation with a resulting increase in the computational complexity and sampling

time tsampl. On the other hand, if ι0 is accurate, the adaptive behavior of the algorithm

usually reduces the number of samples required to achieve a given quality in the final SM

[39, 97]. As already discussed, the one-shot architecture does not allow intermediate qual-

ity checks because all the samples in XT must be evaluated before any analysis can be

performed on DT .

The type of information required by one-shot adaptive techniques depends on the spe-

cific strategy formulation. The two most commonly used techniques are the covariance-

based and the region-of-interest-based ones. In a covariance-based technique, ι0 is used to

fully define the covariance functionK(xi,xj,h) – where h is the vector of covariance coef-

ficients – required by the algorithm to evaluate the refinement metric R. Covariance-based

one-shot adaptive techniques are “model dependent” since the resulting sample locations

strongly depend on the selected covariance “model” K and the estimated h.
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(a) Region of interest values (b) Resulting samples distribution

Figure 2.11: Example of region-of-interest-based one-shot adaptive technique

Table 2.3: List of some existing one-shot adaptive sampling techniques

Name References

Covariance-based [39, 75, 97, 98]
Region-of-interest-based [4, 98]

In a region-of-interest-based technique, the preliminary information ι0 is used to sub-

divide the design space into regions with different “interest levels” that will guide the sam-

pling algorithm to unevenly distribute the samples across the domain. Usually, these al-

gorithms are derived from the one-shot space-filling algorithms: a one-shot space-filling

technique is used to generate in each design space subregion a number of samples pro-

portional to its “interest level”. This approach inherits the simplicity and robustness of

the space-filling approach, but it is extremely dependent on the quality of information ι0

used to determine the regions of interest. An example of region-of-interest-based sampling

technique is illustrated in figure 2.11

Similarly to the one-shot space-filling strategies, these techniques generate XT in a sin-

gle stage, and therefore they are suitable for applications where HPC resources are avail-

able.

A list of existing one-shot adaptive techniques is reported in table 2.3
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Figure 2.12: Sequential adaptive sampling configuration scheme adding k samples at iter-
ation

2.3.4 Sequential Adaptive Sampling

A sequential adaptive sampling technique sequentially adds sample locations to the matrix

XT by using both an exploration metric E and a refinement metric R computed from

the response information (ι). Therefore, the sampling metric can be written as S(x) =

S (E(x), R(x, ι)) in which the approach followed to combine E and R depends on the

specific formulation.

Thanks to the adaptive behavior, the information vector ι is used identify the regions

of the design space where a sample refinement is needed, but in contrast to the one-shot

techniques, the sequential architecture permits the update of ι during the sampling process,

softening the dependence of the resulting sample distribution on the initial information vec-

tor ι0. Similarly to other adaptive techniques, an exploration metric E is usually included

in the sampling metric to avoid sample clustering and to enforce a certain degree of explo-

ration. A schematic representation of a sequential adaptive sampling strategy is illustrated

in figure 2.12.

Since ι is updated every time new information about f is collected, the overall com-

putational complexity of this class of sampling strategies is the highest of all four possible

sampling approaches. Obviously, the degree of complexity mainly depends on how the
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specific algorithm formulation implements the collection, update, and use of ι. The addi-

tional computational complexity directly affects the sampling time tsampl, but the efficient

use of information about f makes it possible to drastically reduce the number of required

samples compared to the other classes of sampling techniques [30, 47, 53, 61]. A prelim-

inary study of the interaction between ntot and tsampl for a particular sequential adaptive

sampling strategy is presented by Garbo an German in [30]. In this article, the authors show

that sequential adaptive techniques are generally worthwhile when the evaluation time tev

is high enough to mitigate the impact of the additional sampling time tsampl on the total

process time ttot (Equation (1.4)).

Likewise the sequential space-filling strategy, this sampling configuration permits qual-

ity check analyses during the process. The matrix XT is sequentially populated by the

addition of new samples only when the evaluation of the old ones is completed, thereby

making possible to stop the sampling process once a certain level of representation quality

is reached, even if the sampling budget ntot is not completely used.

Unfortunately, most of the available sequential adaptive sampling techniques work in

“single selection mode,” making their use inefficient when HPC resources are available.

This characteristic is mainly due to the computational complexity of the adopted sampling

metric S that causes the solution of the sampling optimization problem to be practically

feasible only for the single selection mode.

Since the technique proposed in this dissertation is a sequential adaptive sampling strat-

egy, the chapter concludes with a more detailed description of three representative classes

of state-of-the-art techniques: covariance, cross validation, and Voronoi based strategies.

Before that, an analysis of two categories of sequential adaptive technique is proposed,

namely the model dependent sequential adaptive strategies (MDSASs) and model inde-

pendent sequential adaptive strategies (MISASs). As can be foreseen from the names,

the model dependence/independence is the characteristic that determines the classification
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within the two groups. This analysis highlights the benefits of MISAS which is the class of

the sampling technique proposed in this dissertation.

Model Dependent vs Model Independent Sequential Adaptive Strategies As previ-

ously described, a sequential adaptive strategy populates the training dataset DT by se-

quentially adding batches of samples in design space regions where a refinement is needed

to increase the response representation accuracy (sequential). The identification of these

regions is usually supervised by a refinement metric which is synthesized from the most

updated DT (adaptive). In the majority of the sequential adaptive strategies, this synthe-

sis process is conducted by means of a global SM, leading to a sampling behavior that is

dependent on the chosen SM functional form. Such techniques are usually called model

dependent sequential adaptive strategies (MDSASs) [60](figure 2.13a). The implication

of model dependence of MDSASs is investigated by Garbo and German in [30, 31] and

described in chapter 4, where the authors underline the importance of carefully selecting

the SM functional form when such techniques are used. The results clearly indicate how

the reduction in number of samples expected by the use of an MDSAS may vanish if an

inappropriate SM formulation is chosen to supervise the sampling process. This MDSAS

side effect can be mitigated by adopting a sampling architecture with active SM selection

[31] which reduces the risk of selecting an inaccurate supervising SM at the price of an

increased computational complexity (in particular when complex and advanced SMs are

considered). Examples of MDSASs are the Kriging-based integrated mean squared error

(IMSE) and maximum entropy (ME) methods ([39, 98]), or the strategies based on local

error estimators ([30, 31, 47, 53, 61, 111]).

The need to reduce the dependency of the sampling behavior on the selected SM led to

the development of model independent sequential adaptive strategies (MISASs) [60]. By

introducing refinement metrics that are not computed from a global SM, MISASs decou-

ple the sampling process from SM training (figure 2.13b), thereby making it possible to
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(a) MDSAS (b) MISAS

Figure 2.13: Adaptive sampling architectures

test all the desired SM classes without affecting the sampling process, which continuously

and independently updates DT . This flexibility is not available in applications of MDSASs

in which an updated global SM is required at the beginning of each sampling iteration to

compute the model dependent refinement metric used by the algorithm (figure 2.13a). Ex-

amples of MISASs are the Voronoi-based [18, 20, 44] and Lipschitz-based [64] strategies,

and the technique presented in this dissertation. Some techniques such CV-Voronoi ([111]),

that are occasionally referred to as model independent [45], are considered as model depen-

dent in this context because the evaluation of CV metrics always requires the specification

of an SM.

Covariance Based Sequential Adaptive Sampling This class of sequential adaptive

sampling techniques includes all the strategies that use a covariance function K(xi,xj,h)

to compute the sampling metric. These strategies are usually closely related to Kriging

SM where the covariance function is the principal “parameter” of the SM functional form

f̃ (however, Kriging is usually described as “non-parametric”). These strategies share the

same core formulation with the covariance-based one-shot adaptive techniques, with the

difference being that the sequential architecture implies a continuous update of the covari-

ance parameter vector h every time a new entry is added to the training dataset DT . The
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Table 2.4: List of some existing covariance-based sequential adaptive techniques

Name References

Maximum variance [29, 75, 98]
Integrated Mean Squared Error [29, 39, 98]
Mutual Information [98]
Interquartile Range [115]

adopted algorithms to estimate h from ι are usually computationally expensive due to their

nonlinear formulation, and sometimes they suffer robustness issues [89].

The dependency on the covariance function choice is another drawback of this class of

sampling techniques, making them “covariance model dependent” and therefore MDSASs.

Some authors suggest to actively select the covariance function within a set of possible

alternatives using the available training dataset DT [24], but to the best knowledge of the

author, the active covariance function selection has never been applied to sequential adap-

tive sampling applications due to the extremely high computational cost required by the

process.

A list of covariance-based sequential adaptive techniques with relevant references is

reported in table 2.4.

Cross Validation Based Sequential Adaptive Sampling This class includes all the adap-

tive sampling strategies that synthesize the information vector ι into a cross validation (CV)

local error estimator (LEE) which is then used to evaluate the refinement metric R.

Unfortunately, these approaches are highly computationally expensive due to the linear

increase of the number of training processes required by CV as samples are added to the

training dataset DT (section A.2). This effect on sampling time tsampl is magnified when

nonlinear SMs are used, as highlighted by Garbo in [30].

In addition, the necessity of using an SM to compute the sampling metric makes this

class of techniques “model dependent” (MDSAS). The use of an inappropriate SM can
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(a) LNA test function contour plot (b) Resulting sample distribution

Figure 2.14: Example of sample distribution obtained with a CV-based sequential adaptive
sampling technique

lead to an inefficient sample distribution as described in [30, 31], requiring an active SM

selection process to increase the robustness of this class of sampling techniques [30, 31].

An example of a sample distribution obtained using a CV-based technique is shown in

figure 2.14, where the balance between exploration and refinement is clearly visible: more

samples are placed in the middle lower region of the design space (figure 2.14b) where the

test function has a higher variability (figure 2.14a).

A list of CV-based sequential adaptive sampling strategies with their relative references

is given in table 2.5. Unfortunately, to the best of author’s knowledge, all the CV-based

sampling techniques work in a single-selection mode, and therefore they are not efficient

when HPC resources are available.

The following paragraph presents the cross validation variance adaptive sampling (CV-

VAS) strategy which is the MDSAS representative in both the study about model depen-

dence consequences on sampling behavior (chapter 4) and final performance result com-

parison (chapter 6).

cross validation variance adaptive sampling (CVVAS) cross validation variance

adaptive sampling (CVVAS) is a CV-based technique developed by Lam ([16]), but similar

approaches have been proposed by Jin ([47]) and Kleijnen ([53]). The identification of the
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Table 2.5: List of some existing CV-based sequential adaptive techniques

Name References

Variance based [16, 47, 53]
Jackknife based [53]

design space regions in need of a sample refinement is guided by the leave-one-out cross

validation variance (σ2
LOO−CV):

σ2
LOO−CV(x) =

1

nT

nT∑
i=1

(f̃(x)(−i) − f̃(x))2 (2.2)

where f̃(x)(−i) is the LOO-CV SM trained without considering the i-th training data of DT

(Figures 2.15a and 2.15b). The new sample to include in DT is the design space location

that maximizes the modified leave-one-out cross validation variance (σ̃2
LOO−CV):

xnew = argmax(σ̃2
LOO−CV) (2.3)

where

σ̃2
LOO−CV(x) = σ2

LOO−CV(x) · φ(x) (2.4)

and φ(x) is the penalty function which enforces the spread of the points by penalizing the

locations that are too close to existing samples. Indeed, it often happens that the point with

the highest σ2
LOO−CV coincides with a design already included in DT , as shown in figure

2.15b. The penalty function φ(x) (2.5) is specified as the distance between the candidate

point x and the closest existing sample, normalized by the maximin distance between all

existing training points:

φ(x) =
d̄min(x)

d̄MaxMin

(2.5)

Once the location of the new training point xT,i+1 has been identified, the corresponding

response f(xT,i+1) is evaluated, and this information is appended to DT . The process is
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(a) f̃ (−i)(x) (b) σ2
LOO−CV

(c) φ(x) (d) σ̃2
LOO−CV

Figure 2.15: Example of the σ̃2
LOO−CV sampling strategy adopted in this study

repeated by adding one sample at the time using the most updated DT until a convergence

criterion is reached.

An example of the σ̃2
LOO−CV sampling strategy is shown in figure 2.15. figure 2.15a

shows the true function f(x) and the LOO-CV SMs f (−i)(x), figure 2.15b shows the value

of σ2
LOO−CV evaluated using eq.(A.13), figure 2.15c shows the distance penalty function

φ(x), and figure 2.15d plots the sampling function σ̃2
LOO−CV. Considering figure 2.15d, the

next training point should be located around x = 1.66. Clearly, a different location would

have been found if a different SM formulation had been used: the choice of an SM affects

the shape of f̃ (−i) and consequently the sampling metric σ̃2
LOO−CV, making this technique

model dependent. This characteristic is confirmed by the results described in section 4.3.2.
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To implement this strategy, the initial training dataset DT,in required to “ignite” the

sampling process is generated by the MATLAB routine lhsdesign with 20 iterations,

and a sample size set equal to two times the problem dimensionality D, which corresponds

to 20% of the typically-suggested final sample size of 10D [63]. Due to the multi-modal

characteristic of the objective function σ̃2
LOO−CV (figure 2.15d), the maximization problem

is solved using a genetic algorithm (MATLAB ga) coupled with a gradient based strategy

(MATLAB fmincon): the optimal x returned by the genetic algorithm is used as initial

point condition for the gradient based search.

Voronoi-based Sequential Adaptive Sampling This class of sequential adaptive sam-

pling techniques sequentially adds samples to XT by using local gradient approximations

to evaluate R and an estimation of the Voronoi tessellation volumes to enforce exploration.

This class of sampling strategies is the inspiration basis for the technique proposed in this

dissertation. The main positive aspect of these approaches is their “model independence”

meaning that no global SM is used to guide the sampling process, making this technique a

model independent sequential adaptive strategy (MISAS). This fundamental characteristic

both relieves the user from the burden of SM selection and removes the need of an active

SM selection in the sampling process like in CV-based techniques. The Voronoi-based

formulations are usually easy to understand and to implement, and the algorithms seem to

have an high degree of robustness.

A specific Voronoi-based strategy called LOLA-Voronoi developed by Crombecq [20]

is considered to briefly analyze some crucial aspects of this type of technique. LOLA-

Voronoi formulation assigns a score H to each sample xT based on both its Voronoi tessel-

lation volume and a metric that assesses the nonlinearity of its neighborhood:

H(xT,i) = V (xT,i) + Ē(xT,i) (2.6)
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Figure 2.16: A set of data points and their Voronoi cells in a two-dimensional (2D) design
space. Larger Voronoi cells have a darker color. The data points are drawn as white dots.
Unbounded Voronoi cells are black [20]

where V (xT,i) is the volume of the Voronoi cell relative to xT,i, and Ē(xT,i) is the metric

that estimates the non linearity of xT,i neighborhood. New samples are sequentially added

by applying a space-filling approach on the Voronoi cell with the highest score.

The Voronoi cell volume V (an example of 2D Voronoi tessellation is reported in fig-

ure 2.16) is proven to be a good exploration metric, because cells in regions with a more

coarse sample distribution have a higher value of V compared to the ones in a more finely

sampled region. Unfortunately, performing the Voronoi tessellation is prohibitive for high

dimensional problems (at worst Ω(nD/2) [51]), and therefore the LOLA-Voronoi technique

estimates the cell volume by a Monte-Carlo approach.

The term Ē(xT,i) in equation (2.6) is responsible for the detection of Voronoi cells

where the nonlinearity of the response requires a sample refinement. Even though a detailed

description of the Ē formulation is provided in [20], it is important to discuss aspects of the

formulation to identify certain negative characteristics that the technique proposed in this

dissertation is intended to mitigate. The evaluation of Ē requires the identification of the
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(a) Bad neighborhood (b) Ideal neighborhood

Figure 2.17: Example of bad and ideal neighborhood [20]

“ideal neighborhood” N (i) for each sample point xT,i in XT [20]. The samples in such a

neighborhood must lie relatively close to the reference sample to be meaningful (cohesion),

but they must also lie far away from each other in order to cover each direction as equally as

possible (adhesion) [20]. A complete description of the metrics required to accomplish the

identification of the ideal neighborhood is beyond the scope of this section, but a discussion

is available in the original article [20]. Figure 2.17 clearly illustrates examples of a bad

(figure 2.17a) and an ideal (figure 2.17b) neighborhood containing m = 5 points [20].

Once the ideal neighbors have been identified for all the samples in XT , the gradient

is estimated at each sample xT,i by fitting a hyperplane through xT,i and its ideal neigh-

borhood N (i). The original formulation suggests using m = 2D (where D is the problem

dimensionality) points to define each neighborhood N (i), meaning that the hyperplane fit-

ting problem is overdetermined: there are D + 1 unknowns (hyperplane equation in D

dimensions) and 2D + 1 equations (number of ideal neighbors and the considered refer-

ence point). The approach followed by Crombecq [20] keeps the overdetermined system,

but he forces the hyperplane to pass through xT,i. The coefficients computed by the solution

of the hyperplane regression are then used to estimate the gradient g at xT,i.
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Finally, the local nonlinearity E (xT,i) is estimated at each sample point using the equa-

tion (2.7) which “computes how much the response at the neighbors differs from the local

linear approximation” [20]:

E (xT,i) =
m∑
k=1

‖yNi,k −
(
yT,i + gi ·

(
xN(i),k − xT,i

))
‖ (2.7)

where the subscript N (i) is relative to the ideal neighborhood of sample point xT,i. The

normalized version Ē is computed as:

Ē(xT,i) =
E (xT,i)∑nT

j=1E (xT,i)
(2.8)

Even though the LOLA-Voronoi technique may seem complex from this brief descrip-

tion, a careful reading of the original article [20] reveals the fundamental simplicity of the

strategy. The attractive characteristics of the LOLA-Voronoi are:

Model independent This technique requires the fitting of local hyperplanes, and it does

not need the selection of a global SM functional form.

Parallelizable The local hyperplane fitting problem can be easily parallelized using HPC

resources.

Conceptually simple The basis of the LOLA-Voronoi sampling is conceptually simple

and well described in the original paper [20].

Robust The mathematical operations involved in the process are simple, and their relative

algorithms are well developed and robust.

The description of LOLA-Voronoi strategy includes an extended algorithm capable of deal-

ing with multi-response problems and to sample in a batch mode, but to the best of author’s

knowledge it has never been tested in such applications. Additionally, some pitfalls affect

the LOLA-Voronoi formulation. First, the statement that “the ideal neighborhood provides
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(a) Surface representation of the test function (b) Resulting sample distribution using LOLA-
Voronoi technique

Figure 2.18: Example of LOLA-Voronoi technique application [20]

Table 2.6: List of some existing Voronoi-based sequential adaptive techniques

Name References

Voronoi Sampling [18]
LOLA-Voronoi [20]
Fuzzy logic LOLA-Voronoi [44]

more information about the behavior of the system around the reference sample than other

neighborhoods” [20] is not proved or empirically shown. Secondly, the computational

complexity of the ideal neighborhood identification algorithm grows with O(n2
T ) [20], and

it can severely slow down the sampling process when nT is large.

An example of the resulting sample distribution obtained using a LOLA-Voronoi algo-

rithm is shown in figure 2.18, and a list of Voronoi-based sequential sampling techniques

with relative references is reported in table 2.6.

2.4 Motivations for a New Sampling Technique

Section 1.6 lists six characteristics of a good sampling strategy for engineering design

applications: adaptive, sequential, flexible, simple and robust, with low computationally

complexity, and model independent. Additionally, Liu in [60] identifies other two desired
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Table 2.7: Summary of the characteristics of existing classes of sampling strategies (O-S
one-shot, Seq. sequential, S-F space filling, Ad. adaptive)

Sampling Class Adap. Seq. Flex. Simp.
& Rob.

Low
Comp.
Compl.

Mod.
Indep.

Batch
Sel.

Multi-
res.

O-S S-F no no no yes yes yes yes no
Seq. S-F no yes no yes yes yes yes no
O-S Ad. yes no yes some some some yes no
Seq. Ad. CV-based yes yes yes no no no no no
Seq. Ad. Cov-based yes yes yes no no no no no
Seq. Ad. Vor-based yes yes yes yes no yes N/A N/A

features for a sampling technique: the capability to work in a batch selection mode, and

the ability to handle multi-response problems. These eight requirements are compared in

table 2.7 for all the classes of sampling strategy described in the first part of the chapter: as

apparent in the table, no sampling class is able to meet all the recognized requirements.

In particular, the space filling approaches are really powerful when a simple and com-

putationally inexpensive technique is desired, but the absence of the adaptive formulation

implies an increase in the number of evaluations required to accurately sample the design

space. The one-shot adaptive techniques include the refinement metric in their formula-

tions, but their sampling efficiency is extremely dependent on the quality of the initial

response knowledge. In addition, the more advanced techniques (Covariance-based) are

model dependent, a characteristic that can affect both the sampling efficiency and the total

process time.

Considering only the quality and the efficiency of the sample distribution, the sequen-

tial adaptive techniques are the most effective ones. They embody a refinement metric, and

they update the knowledge about the response every time a new sample is added to the

training data set. Unfortunately, these sampling strategies are usually model dependent and

they require complex and computationally expensive algorithm for the refinement metric

evaluation. Most of the requirements are met by the Voronoi-based sequential adaptive

class, which is able to synthesize a refinement metric without the need for a global SM

by using a local approximation of the response gradient. Unfortunately, the Voronoi-based
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formulations are still affected by excessive computational complexity, even though it is sig-

nificantly reduced when compared to the other sequential adaptive techniques. Moreover,

none of the sequential adaptive strategies has shown the ability to work in batch selection

mode, making these techniques probably inefficient when HPC resources are available.

After the analysis of the characteristics of existing formulations, it is apparent that a

technique that satisfies all the requirements for a good sampling strategy for engineering

design is missing. A strategy that embodies all these characteristics will be an extremely

powerful tool for early phases of the design process, and its development is the main ob-

jective of this dissertation.

In addition, the review of state-of-the-art sequential adaptive techniques (section 2.3)

showed how all refinement metrics identify the regions where additional samples are re-

quired without providing any information about particular directions in the design space

along which the samples should be concentrated. Making an analogy with the optimiza-

tion field, these techniques are similar to sequential grid-search optimization algorithms,

where a refinement is made around the optimal point of a coarser grid. Considering the

performance improvements that can be achieved when gradient information is included

in optimization algorithms, we speculate that the introduction of directional information

will also improve the efficiency of the sampling algorithm for SM creation. To the best of

our knowledge, this field is completely unexplored, and therefore the development of this

sampling feature is one of the main objectives of this dissertation.

Furthermore, no sequential adaptive formulation has been developed and tested to be

usable in multi-response applications. A literature review shows that strategies have been

defined to treat either general [6, 19, 58, 62, 64, 90, 94], or symmetric [56, 78, 92, 93],

or asymmetric [7, 42, 85] multi-response problems by single-response algorithms, but no

sampling techniques have been developed to directly handle multi-response problems [60].

Additionally, there are not available results about sampling processes conducted in batch

mode or in situations with critical errors in the solver. For this reason, the final version
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of the proposed sampling technique includes the capability of dealing with multi-response

and critical error situations, and it can be used in either single-selection or batch mode.
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CHAPTER 3

DISSERTATION OBJECTIVES

The present chapter summarizes the hypotheses, the motivations, and the objectives of this

dissertation; a quick overview is reported in table 3.1.

Table 3.1: Dissertation objectives, motivations, and hypotheses

Objectives Motivations Hypotheses

Study model dependence
effect on adaptive sampling

No comprehensive study
available about conse-
quences of model depen-
dence in adaptive sampling
strategies

Sampling efficiency of
model dependent sequen-
tial adaptive techniques
reduces if an inappropriate
SM is used

NNAS development Create a sampling tech-
nique suitable for early
phases of engineering de-
sign

NNAS meets all the re-
quirements for a good sam-
pling technique

Directional sampling No existing directional
sampling technique

Increase in sampling per-
formance

Batch selection mode HPC resources

Multi-response formulation Multi-response problems
are common in engineering
design

Formulation unaffected by
solver critical errors

Critical errors commonly
occur in engineering simu-
lation codes
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3.1 Objective 1

Study the effect of model dependence in the sample distributions obtained by model

dependent sequential adaptive strategies.

3.1.1 Motivation

As seen in the previous chapter, model dependent sequential adaptive strategies (MDSASs)

use an SM to synthesize the available information in DT and to compute the refinement

metric R, thereby causing the resulting sample distribution to be influenced by the particu-

lar SM choice. Literature about MDSASs lacks a complete analysis of model dependence

effects on the representation efficiency of resulting sample distributions. In other words,

there is not a study able to address the following question:“What happens if the SM se-

lected a priori to supervise the sampling process is inaccurate in modeling the unknown

response?”

3.1.2 Hypotheses

1. The representation efficiency of sample distributions obtained by an MDSAS is sub-

stantially reduced if the supervising SM functional form is inappropriate to model

the unknown response.

2. A sampling architecture which couples an MDSAS with an active SM selection mit-

igates the reduction in sampling efficiency caused by model dependence.

3.1.3 Tasks

1. use an MDSAS to repeatedly sample the design space of several responses using

different SM functional forms;

2. compare the sampling performance;
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3. repeat the sampling processes by coupling the MDSAS with an active SM selection

process.

3.2 Objective 2

Develop an adaptive-sequential sampling technique based on a local linear model:

Nearest Neighbors Adaptive Sampling.

3.2.1 Motivation

A technique that is adaptive, sequential, simple, robust, computationally efficient, and

model independent is missing in the state-of-the-art sampling strategies. All these prop-

erties are fundamental for engineering design applications.

3.2.2 Hypothesis

An adaptive-sequential sampling strategy based on local linear models which are created

from information about nearest neighbors will meet the requirements to be suitable for

engineering design applications, leading to a reduction of both the required number of

samples and computational time.

3.2.3 Tasks

1. define the exploration and refinement metrics;

2. define the stochastic selection approach based on Pareto-ranking to achieve a refinement-

exploration balance;

3. assess the NNAS sampling performance on several example functions from low to

high dimensionality, and from low to high complexity;

4. compare the NNAS performance with the results obtained using other adaptive-

sequential techniques, in terms of both number of samples and computational time.
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3.3 Objective 3

Introduce directional sampling into the NNAS technique

3.3.1 Motivation

Current model-independent sequential adaptive sampling strategies add samples in the re-

gion of interest identified by a refinement metric, but they do not guide the sampling along

a specific direction.

3.3.2 Hypothesis

Prediction errors in the neighborhood of each sample can be used to guide the sampling

behavior, leading to a reduction in the required number of samples at the price of a limited

increase in computational cost.

3.3.3 Tasks

1. expand the NNAS algorithm to use the prediction error in the neighborhood of each

training point as a local refinement metric;

2. define a criterion to balance local refinement and exploration;

3. assess the performance of the directional NNAS implementation on several example

functions from low to high dimensionality, and from low to high complexity;

4. compare the NNAS performance with the results obtained using other adaptive-

sequential techniques and the standard NNAS, in terms of both number of samples

and computational time.
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3.4 Objective 4

Extend NNAS to be used in batch selection mode

3.4.1 Motivation

The wide availability of high performance computing (HPC) resources makes it possible to

simultaneously run several simulations making the batch selection mode a requirement for

modern and future engineering applications.

3.4.2 Tasks

1. define the strategy to identify a batch of sample locations;

2. assess the performance of the batch mode NNAS on several example functions from

low to high dimensionality, and from low to high complexity;

3. compare the batch mode NNAS performance with the results obtained using single

selection mode NNAS, in terms of both number of samples and computational time.

3.5 Objective 5

Extend NNAS to work with multiple responses

3.5.1 Motivation

A common engineering design has to deal with several outputs at the same time (i.e. lift

and drag of a wing). The ability to simultaneously handle multiple responses will extend

the class of applications for NNAS.

3.5.2 Tasks

1. define a refinement metric able to handle multiple responses;
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2. assess the sampling performance of multi-response NNAS implementations on sev-

eral example functions from low to high dimensionality, and from low to high com-

plexity;

3.6 Objective 6

Modify the NNAS formulation to be unaffected by critical errors in the computer

simulation solvers

3.6.1 Motivation

Sampling strategies usually sample the design space of an unknown response, and therefore

it may happen that a particular design is infeasible or the standard solver settings are not

suitable for that particular condition. In these cases, the solver used to assess the response

value at that particular design point is likely to return a critical error, meaning that no yT is

returned to the sampling algorithm. A robust sampling algorithm should be able to continue

the sampling process without being affected by solver critical errors, and also it should give

to the user the opportunity to adjust adjusting the simulation and refresh the training dataset

without stopping the sampling process.

3.6.2 Tasks

1. reformulate the refinement metric such that it is not affected by missing response

training values;

2. assess the sampling performance on several example functions in which a portion of

the design space is infeasible, i.e. the evaluation of f returns a critical error.
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CHAPTER 4

SAMPLING STRATEGY MODEL DEPENDENCE

This chapter presents a study that has been conducted to investigate the effects of model

dependence on the sampling efficiency and behavior of model dependent sequential adap-

tive strategies (MDSASs). As described in section 2.1.3, these techniques use refinement

metrics which are computed from an SM that is trained using the available DT , making

the sampling behavior dependent on the considered SM functional form. Some examples

of state-of-the-art MDSASs are the Kriging-based Integrated Mean Squared Error (IMSE)

and Maximum Entropy (ME) ([39, 98]), or the ones based on local error estimators ([47,

53, 61]). To the best of the author knowledge, no studies have been conducted to assess the

importance of a careful SM selection when such a technique is used for the sampling phase

of a surrogate modeling process.

The goal of the first part of this chapter is to investigate to what extent model depen-

dency can affect the performance of a sequential-adaptive sampling technique. In other

words, what happens if the chosen SM functional form which is selected a priori is not

the most appropriate to model the initially unknown response f? To answer this question,

different a priori SM formulations (figure 4.1a) are used with a model dependent sequential

adaptive strategy, and the number of samples required to obtain a certain level of approx-

imation accuracy is compared. The results (section 4.3.2) clearly show how the choice of

the SM significantly affects the sampling performance: the expected reduction in the num-

ber of required samples may vanish if an inappropriate SM formulation is adopted in the

process.

A possible solution to mitigate the consequences of model dependency is presented

and tested in the second part of this study. The same MDSAS is coupled with an active

SM selection technique (figure 4.1b) which chooses the SM formulation that best models
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Figure 4.1: Comparison of different surrogate modeling architectures

the existing and most updated DT (with respect to a chosen accuracy metric). The results

(section 4.3.3) confirm how this architecture enhances the “robustness” of the surrogate

modeling process performance in terms of the number of samples required to obtain an

accurate SM. This architecture inherits the advantages of both constituent elements: the

sequential adaptive sampling strategy efficiently uses all the available information to effec-

tively sample the design space, and the active SM selection identifies the “best” formulation

to represent the training dataset, DT , relieving the user from the burden of choosing a good

SM a priori.

The MDSAS considered in this study is the CVVAS presented in section 2.3.4. This

technique is tested with and without active SM selection for the sampling phase of nine

two-dimensional and two five-dimensional examples (table 4.1), representing both simple

analytic functions and engineering models (e.g. an equation describing the admittance of a

low noise amplifier ). The suite of tested SMs includes five RBFs, each with a different ker-

nel function, and an OKRG model (appendix B); this test suite is guided by the intention of

considering models with different levels of formulation complexity and modeling capabil-

ity. For an actual engineering application of the technique, the selection of the formulations

to include in the suite of SMs should be guided by historical data or experience in modeling

similar responses. Indeed, the choice of SM formulations for particular problems is still a
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challenging open question in the literature about SMs for engineering applications. The

influence of other parameters – specifically the SM selection criterion and frequency – on

the number of samples required to complete the modeling process is also investigated to

define useful guidelines for the application of the method.

At this point, it is important to underline one aspect of this research. The leave-one-

out cross validation (LOO-CV) is the only cross-validation formulation tested in this study

because it was the approach adopted in sampling techniques similar to the one considered

in this research ([16, 47, 53]). However, the sampling strategy can be easily extended to

use other CV formulations that are available in literature, i.e. k-fold or leave-k-out ([69]),

which are particularly useful when there is a large number of training samples and the

LOO-CV approach may become extremely computationally expensive.

This chapter is organized as follows: section 4.1 presents the proposed architecture with

the active SM selection process, section 4.2 lists the settings used to complete the analysis,

and finally the results are presented in section 4.3.

4.1 Sampling with an Active Surrogate Model Selection Architecture

The SM dependence of the sampling behavior leaves an open question: how should the SM

technique for the sampling phase be selected? It is widely agreed ([33, 71, 84, 87, 105,

107]) that it is impossible to devise a SM technique that outperforms all others in terms

of approximation quality for all possible applications. The natural approach is therefore to

select the SM formulation that better represents the training dataset DT by minimizing a

global error estimator (GEE) [87]. Therefore, the problem of SM selection can be stated as

follows: given a set of possible SMs and a GEE, find imin such that argmin GEE(SMi) =

SMimin
.

The proposed sampling architecture (figure 4.1b) couples a model dependent sequential

adaptive strategy with the previously described SM selection approach. The goal is to

mitigate the effect of the model dependence by actively selecting the “best” SM (relative to
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a GEE) to use in the sampling phase. The general algorithm of such a sampling architecture

can be summarized as follow (figure 4.1b):

1. Define a suite of SM formulation options.

2. Select the metric that will be used to rank the SM accuracy.

3. Create the initial XT using a classical DoE strategy such as maximin Latin hyper-

cube.

4. Evaluate the function at XT (yT = f(XT )) to create the training dataset DT .

5. At the beginning of the sampling process and after φupd samples have been added

since the last SM selection, train all candidate SMs using DT and select the best SM

based on the accuracy metric chosen in step 2.

6. Run the selected sequential adaptive strategy to identify the next sample point, and

update XT .

7. Repeat from 4 until a threshold level of SM quality is reached.

The value φupd is the “frequency of SM selection”, or in other words the number of samples

added to DT between each SM selection. For example, if φupd = 10 and the initial DT has

4 samples, the selection of the SM formulation used to compute σ̃2
LOO−CV is done at the

beginning of the process and when there are 14, 24, 34, . . . samples in DT .

Among all the possible GEEs ([46, 71, 87]), the ones considered in this study are two

versions of Root Mean Squared Error (RMSE), one based on LOO-CV (eq.(4.1)) and one

based on additional validation points (eq.(4.2)). To obtain comparable results, the RMSEs

are normalized as indicated in eq.(4.3).

RMSECV =

√√√√ 1

nT

nT∑
i=1

(
yT,i − ỹ(−i)

i

)2
(4.1)
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RMSEV =

√√√√ 1

nV

nV∑
i=1

(yV,i − ỹ(xV,i))
2 (4.2)

NRMSE =
RMSE

max(yT )−min(yT )
(4.3)

4.2 Analysis Plan

The CVVAS sampling process is tested on 11 test functions (table 4.1, appendix D) first

considering a single SM at a time (therefore without the SM selection process, figure 4.1a),

and afterward using the proposed architecture with active SM selection (figure 4.1b) and

the 6 SM options (5 RBFs, 1 OKRG). As previously introduced, this study investigates the

influence of other parameters on the sampling performance, in particular:

• 2 ways of obtaining the leave-one-out (LOO) SMs when OKRG is considered. As

described in section 2.3.4, CVVAS requires training the LOO SMs to compute the

sampling metric (2.4), and this process can be highly computationally expensive in

the case of a SM that requires non-linear training such as OKRG. For example, if

DT contains 100 points, it is necessary to train the 100 LOO OKRGs to compute

the σ2
LOO−CV required by eq.(2.4). A way to reduce this computational cost is to

create a OKRG using the entireDT , and reuse its hyperparameters to define the LOO

OKRGs. In this way, only one OKRG has to be trained at each sampling iteration

leading to a sensible reduction in the computational time.

• 5 different values of φupd (SM selection frequency, section 4.1): 1, D, 2D, 5D, and

10D where D is the dimensionality of the problem;

• 2 different GEEs as SM selection criterion (section 4.1): NRMSECV and NRMSEV.

The latter requires a set of validation points which may lead to additional computa-

tional time if the evaluation of f is computationally expensive.
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• 6 different numbers of validation points for the NRMSEV selection criterion: 2D,

4D, 6D, 8D, 10D, and 20D.

Each sampling setting is repeated 15 times, each time with a different set of 2D starting

points, and it is stopped when the training dataset DT contains 50D points. The quality of

the final SM is assessed using NRMSEV based on 100D validation points and normalized

respect to the real response range within the design space. The locations on the unit cube of

the 15 sets of starting points and the sets of validation points used either for SM selection or

final quality assessment are kept the same for problems with the same dimensionality. This

avoids the introduction of additional aleatory effects which can be caused by the random-

ization of the validation points at each repetition. Additionally, the analysis about the LOO

OKRG training approach and the number of validation points for the NRMSEV selection

criterion have been independently conducted to limit the number of sampling process runs

required to complete the study. The summary of all the tested sampling configurations is

reported in table 4.2.

Table 4.1: List of test functions with relative dimensionality and
references

Function name Dimensionality (D) References

f2DBranin 2 [3, 31, 116]
f2DPeaks3 2 [20, 31]
f2DPeaks5 2 [20, 31]
f2DPeaks8 2 [20, 31]
f2DExponential 2 [16, 31]
f2DNonPolySurf 2 [16, 31, 70]
f2DSixHumpCamelBack 2 [16, 31, 70]
f2DLNA 2 [31, 38, 55]
f2DWitchHat 2 [31]
f5DCantilever 5 [31, 33, 110]
f5DLNA 5 [31, 38, 55]
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Table 4.2: Setting summary

SMs
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All SMs

SM sel. criterion NRMSECV NRMSEV

SM sel. frequency 1 D 2D 5D 10D 1 D 2D 5D 10D
number of val. points 2D 4D 6D 8D 10D 20D 4D 4D 4D 4D

Te
st

fu
nc

tio
ns

f2DBranin X X X X X X X X X X X X X X X X X X X X X X
f2DPeaks3 X X X X X X X X X X X X X X X X X X X X X X
f2DPeaks5 X X X X X X X X X X X X X X X X X X X X X X
f2DPeaks8 X X X X X X X X X X X X X X X X X X X X X X

f2DExponential X X X X X X X X X X X X X X X X X X X X X X
f2DNonPolySurf X X X X X X X X X X X X X X X X X X X X X X
f2DSixHumpC. X X X X X X X X X X X X X X X X X X X X X X

f2DLNA X X X X X X X X X X X X X X X X X X X X X X
f2DWitchHat X X X X X X X X X X X X X X X X X X X X X X
f5DCantilever X X X X X X X X X X X X X X X X

f5DLNA X X X X X X X X X X X X X X X X

4.3 Results

4.3.1 Ordinary Kriging Hyperparameter Reuse

The results presented in this section compare the CVVAS sampling performance for the two

approaches to obtain the LOO OKRGs: specifically with and without reuse of full model

hyperparameters. This analysis is conducted only on two-dimensional functions because

the results give a clear indication about the more efficient approach which is therefore used

for higher dimensional problems.

The median NRMSEV computed using the results of the 15 repetitions is reported in

figure 4.2 as a function of both number of samples and computational time for the f2Branin

test function (similar trends are obtained for the other two-dimensional example functions).

As expected, the NRMSEV rate of decrease with computational time is higher when LOO

OKRGs are obtained by reusing the hyperparameters of the full OKRG. Indeed, the reuse

of the hyperparameters prevent the independent training of all the LOO OKRGs leading

to a relevant time saving. Additionally, the two approaches do not show significant differ-

ences when the median NRMSEV is plotted versus the number of samples, suggesting that

the independent training of the LOO OKRGs does not lead to any meaningful advantage

in terms of the number of samples required to reach a prescribed accuracy level. A simi-
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(a) NRMSEV vs nT (b) NRMSEV vs time

Figure 4.2: NRMSEV history for f2DBranin test function

lar behavior is observable in figure 4.3 which shows the box plots of both the number of

samples and the computational time required to reach NRMSEV < 10−2 for four different

two-dimensional test functions: the performance in terms of number of samples is simi-

lar (first row of figures), while the difference in terms of computational time is significant

(second row of figures).

Looking at these results, it is possible to conclude that computing the σ2
LOO−CV by

reusing the hyperparameters of the OKRG created using the entire DT is much faster and

does not consistently nor substantively degrade the sampling performance compared to re-

training the hyperparameters for each LOO evaluation. For this reason, it has been decided

to consider only the OKRG configuration with the reuse of the model hyperparameters for

the subsequent analyses in this chapter. This decision helped to significantly reduce the

computational time required to complete the study. Therefore, all the labels displaying

OKRG henceforth refer to OKRG with the reuse of the hyperparameters.

4.3.2 Single SM performance

Before analyzing the results obtained coupling a model dependent adaptive sequential sam-

pling strategy (CVVAS) with an active SM selection technique, it is important to see how

much the model dependence of CVVAS is affecting the sampling performance when a sin-
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f2DBranin f2DNonPolySurf

f2DPeaks5 f2DSixHumpCamelBack

Figure 4.3: Boxplots of number of samples and time to reach NRMSEV = 10−2 for four
different test functions. The percentage of repetitions able to reach the NRMSEV before
the maximum number of samples is reported in parenthesis.78



(a) f2DBranin (b) f2DNonPolySurf (c) f2DLNA

Figure 4.4: Number of samples to reach NRMSEV < 10−2 considering a single a-priori
chosen SM

gle SM is used in the process. In other words, what happens if CVVAS with the same SM

technique is used to sample the design space of different responses? Is the performance

consistent or does it have a high variability across the different test functions?

figure 4.4 shows the boxplots of the number of samples required to reach NRMSEV <

10−2 when CVVAS is used without active SM selection for three different test functions.

The bar labels indicate the SM formulation and the percentage of the 15 repetitions able

to achieve the NRMSEV < 10−2 accuracy level before the maximum number of samples

convergence criterion (50D samples) is reached. Figures 4.4a and 4.4b suggest that the

Gaussian RBF and the OKRG are suitable models to use for these test functions; however,

if one of these SMs is used to sample the response of the third test function which describes

the behavior of a low noise amplifier, the process is not able to reach the required accuracy

level within the 50D = 100 training samples limit. This is a first clue of how risky it is to

use a model dependent sampling strategy without carefully selecting the SM technique.

The need to create a single plot able to express the sampling performance variability

across all the test functions leads to the definition of the ∆̄samp metric. This metric is based

on the fact that all the 15 sampling process repetitions are repeated using the same 15 sets

of starting points. For each test function, we can therefore compare the performance of all

the CVVAS-SM configurations when they start the process from the same initial condition.

∆̄samp is intended to measure how many additional training samples each configuration
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requires with respect to the best performance obtained with that initial condition. The

mathematical formulation of the ∆̄samp metric for the i-th configuration is:

∆̄samp,i =
ni − nSM,best

nSM,best

(4.4)

where ni and nSM,best are the numbers of samples required to reach the accuracy level

for the i-th configuration and for the best configuration respectively. The denominator is

used to normalize the metric and to remove the dependency of ∆̄samp on the specific test

function.

figure 4.5 reports the ∆̄samp boxplots when all the single SM tests are considered. These

plots clearly reveal the significant variability in the number of training points required to

achieve a NRMSEV < 10−2 accuracy if a single “a priori chosen” SM is used with CVVAS

to sample all the test functions. For example, if CVVAS is used with RBF-TPS to sample

the design space of all the test functions, 75% of the 15 repetitions (top of box in boxplots)

requires up to 60% (∆̄samp = 0.6) more training points than the number required by the

SM formulation which achieves the best performance on that particular test function and

with that particular set of initial points (figure 4.5b). Similarly, if RBF-G is considered, the

third ∆̄samp quartile is around 5, meaning that in 75% of the cases the sampling process

can take up to 5 times more samples than the most appropriate SM technique. Limited to

the SM options and test function considered in this study, these results indicate that RBF-C

seems the option which gives the most “robust” sampling performance if CVVAS is used

without active SM selection.

The pie charts in figure 4.6 are another way to view the performance variability caused

by the CVVAS model dependence. They show the percentage of repetitions when a spe-

cific CVVAS-SM configuration reaches an accuracy level of NRMSEV < 10−2 with fewer

samples than the other options for three test functions. (Again, this comparison is possible

because all the configurations are tested with the same 15 sets of starting points). Even
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(a) No zoom (b) Zoomed

Figure 4.5: ∆̄samp to reach NRMSEV < 10−2 considering all the test functions

though RBF-G clearly prevails in two test functions (figures 4.6a and 4.6b), it is dominated

by other CVVAS-SM configurations in the f2DLNA case (figure 4.6c). The pie chart ob-

tained considering all the test functions is shown in figure 4.7, and – as expected – there is

not a prevailing CVVAS-SM configuration. This plot seems to indicate that RBF-G could

be a good initial choice if no information is available about the response to model, and this

fact is in conflict with the results in figure 4.5 which indicate RBF-G as one of the worst

options. This disagreement is caused by the fact that figure 4.7 is not showing how RBF-G

performs in the 70% of the cases when it is not the best option, information that is instead

included in the boxplot in figure 4.5 which clearly indicates how RBF-G would lead to poor

sampling performance in most of the cases when it is not the most appropriate SM.

This modeling performance variability is mainly caused by the intrinsic capability of

a SM to accurately model some specific class of functions. For example, OKRG built on

a stationary covariance is expected to perform well in representing stationary responses

such as f2DBranin and f2DNonPolySurf, and to perform pourly in modeling highly non

stationary responses such as f2DLNA (figure 4.4).

The results shown in Figures 4.5 and 4.7 support the hypothesis that when a model

dependent sampling strategy is used, the SM must be carefully selected because an inac-

curate choice can negate the performance improvement expected by the adaptive sampling
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DLNA

Figure 4.6: Percentage of the 15 sampling repetitions when a specific SM reaches
NRMSEV < 10−2 with fewer samples than the other SMs for three different functions

Figure 4.7: Percentage of sampling repetitions when a specific SM reaches
NRMSEV < 10−2 with fewer samples than the other SMs considering all the test functions
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technique. Unfortunately, most of the time the shape of the response is unknown at the be-

ginning of the process, and therefore it is challenging to select a priori the model to use. As

shown in the next sections, this problem can be mitigated by including active SM selection

in the sampling process.

4.3.3 Cross Validation Variance Adaptive Sampling with Active Surrogate Model Selection

The results presented in section 4.3.2 lead to the conclusion that no CVVAS-SM config-

uration is able to outperform the others across all the test functions, and this is the main

motivation for including an active SM selection step in the sampling process (section 4.1,

figure 4.1b).

As indicated in section 4.2, different numbers of validation points are tested when

NRMSEV is used as the SM selection criterion: in particular 2D, 4D, 6D, 8D, 10D,

and 20D points (where D is the problem dimensionality). The analysis of this parameter

is conducted only on two-dimensional functions and with an update frequency φupd of 1 to

limit the overall number of sampling process runs. As already stated in section 4.2, the sets

of validation points are kept fixed to avoid any other aleatory effects. n̄T is defined as:

n̄T =
nT,m·D

nT,2D

(4.5)

where nT,m·D is the number of samples required to reach NRMSEV < 10−2 (computed

using a different set of 100D validation points (section 4.2)) by CVVAS with NRMSEV

as the SM selection criterion and m · D validation points. figure 4.8 shows the boxplots

of n̄T obtained considering all 15 sampling process repetitions for all the two-dimensional

test functions. Surprisingly, there is a limited performance improvement (decrease of n̄T )

as the number of validation points used for the SM selection increases. A more evident

performance enhancement was expected due to the fact that a higher number of validation

points should presumably help to better identify the most appropriate SM during the SM
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Figure 4.8: Normalized number of samples considering all the test function and 6 different
values of number of validation points for NRMSEV as SM selection criteria

selection phase. A thorough understanding of this outcome needs a deeper investigation

of the dynamics between the sampling algorithm and the SM selection, an analysis that is

not included here because out of the scope of this dissertation. Based on the median values

in figure 4.8, the remaining sampling processes involving the NRMSEV selection criterion

have been conducted considering only 4D validation points.

The boxplot of ∆̄samp required to reach a NRMSEV < 10−2 level of accuracy consid-

ering all the test functions and all the tested CVVAS-SM configurations (single SM, active

SM selection with both NRMSEV and NRMSECV criteria, and different φupd) is presented

in figure 4.9. The first aspect that is immediately apparent is the sampling performance

enhancement in terms of both robustness and total number of samples when the sampling

phase is conducted with the active SM selection architecture. The use of this architec-

ture for sampling different test functions makes it possible to not only reduce the required

number of samples to reach the specified accuracy level (as indicated by the median being

closer to zero) but also to reduce the performance variability (as indicated by the reduced

box height representing the distance between the 25% and 75% quantiles). The reason

for this improvement in the sampling performance has to be attributed to the capability

of the active SM selection architecture to “learn” the most appropriate SM formulation to

model the specific response. Surprisingly, in some cases, the number of samples required to

reach the desired model accuracy is lower than the number needed by the most appropriate
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SM technique for the particular test function and set of initial points, as indicated by the

whiskers extending below the zero level.

The increase in robustness due to active SM selection is also evident in figure 4.10

where the average evolution of NRMSEV as samples are added to the training set is re-

ported for three different test functions. As expected, the NRMSEV has a decreasing trend

which is consistent with prior observations of CVVAS convergence ([16, 47]); the differ-

ent rates of convergence between sampling configurations are due to the differences in the

inherent appropriateness of the functional form of each SM in modeling the particular test

function. Additionally, the value of the NRMSEV at a particular nT obtained when CVVAS

is coupled with an active SM selection (dashed line in figure 4.10) is always very close to

the best single SM performance, irrespective of the test function and of which SM is the

most suitable to model it. This behavior provides additional evidence of the convergence

and improved robustness of the proposed sampling architecture which couples an adaptive

sequential algorithm with active SM selection.

The second observation is about the performance of the two SM selection criteria

adopted in this study: NRMSEV and NRMSECV. Considering figure 4.9b, it is clearly

visible how using NRMSEV (and 4D validation points as previously discussed) as selec-

tion criterion have slightly better performance than NRMSECV. As preliminarily noticed

in [30], this is another indication that better sampling performance is obtained when the

metric used as the SM selection criterion is the same as the one used to assess the quality

of the final SM. In other words, if a final SM with a low NRMSEV is desired, NRMSEV

should be preferred over other accuracy metrics as SM selection criterion.

The last modeling parameter investigated in this study is the SM selection update fre-

quency φupd. Focusing on figure 4.11 (which is an enlargement of the right part of figure

4.9), it is possible to notice how this configuration parameter generally seems to have a

negligible effect on ∆̄samp. A minimally better performance may be obtained if φupd = 1

is used with NRMSEV as the selection criterion, but it is difficult to identify a clear and
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(a) No zoom

(b) Zoomed

Figure 4.9: ∆̄samp to reach NRMSEV < 10−2 considering all the test functions and all the
sampling settings

(a) f2DBranin (b) f2DNonPolySurf (c) f2DLNA

Figure 4.10: Evolution of NRMSEV as samples are sequentially added to the training set
by CVVAS with and without active SM selection
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Figure 4.11: Effect of SM selection frequency on ∆̄samp to reach NRMSEV < 10−2 con-
sidering all the test functions

definite trend that would make possible to formalize a guideline. Similarly to the effect of

the number of validation points, these results indicate the need for a deeper study of the

dynamics between the sampling strategy and the SM selection process to define guidelines

for a finer tuning of these parameters. Such analysis is out of the scope of this dissertation

but is recommended for a future study.

A question that may arise at this point is: does the last SM selected in the active SM

selection process correspond to the best SM identified by running all the CVVAS-SM con-

figurations independently? This question is addressed in figure 4.12 which shows two sets

of pie charts for 4 different test functions. The charts on the left indicate the percentage of

repetitions for which a SM formulation reaches NRMSEV < 10−2 with the fewest number

of samples when no active SM selection is used, while the charts on the right represent

the percentage of times a particular SM formulation is the final one selected by the active

SM selection when the accuracy reaches NRMSEV < 10−2. As evident in the figure, the

left and right charts look very similar in terms of both the selected SM formulations and

the percentages, meaning that the final SM formulation chosen by the active selection is

–with high probability– the one which can be identified by running all the CVVAS-SM

configurations independently and selecting the one with the best performance.
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(a) f2DBranin no selection (b) f2DBranin with selection

(c) f2DLNA no selection (d) f2DLNA with selection

(e) f5DCantilever no selection (f) f5DCantilever with selection

(g) f5DLNA no selection (h) f5DLNA with selection

Figure 4.12: Percentage of the 15 sampling repetitions for four test functions. (a,c,e,g)
without active SM selection when a specific SM reaches NRMSEV < 10−2 with fewer
samples than the other SMs. (b,d,f,h) with active SM selection (NRMSEV as selection
criterion and 4D validation points) when a specific SM is the chosen one at the moment
that NRMSEV < 10−2

88



4.4 Key Outcomes of Model Dependence Study

The first objective of this study was to investigate to what extent the appropriateness of

the SM formulation selection can affect the performance of a surrogate modeling process

when a model dependent sampling technique is adopted. Next, the performance of the

same sampling technique was tested within an architecture which includes an active SM

selection. Specifically, a strategy based on modified leave-one-out cross validation vari-

ance (σ̃2
LOO−CV) was used to sample the design space of 11 example functions, and the

sampling performance was assessed in terms of number of samples required to obtain a

SM with a certain accuracy level. The first set of results (section 4.3.2) clearly indicates

how the sampling performance enhancement expected by the use of an adaptive sequential

technique may vanish if an inappropriate SM is chosen at the beginning of the process.

Additionally, even the SM leading to the most robust sampling performance shows a high

variability in the number of required samples when used on different test functions.

These results motivate the second part of this study where an active SM selection is

coupled with the CVVAS sampling strategy. This architecture actively chooses the SM

formulation to use in the sampling phase as the one that better represents the available

training dataset. Results (section 4.3.3) show how the addition of the active SM selection

phase in the surrogate modeling architecture drastically reduces the performance variability

observed when the SM formulation is selected a priori. This aspect relieves the user from

selecting the SM formulation at the beginning of the process when there is usually lim-

ited knowledge about the function to model, resulting in direct benefit to the performance

robustness of the overall surrogate modeling process.

The influence of both the number of validation points used in the SM selection and the

SM update frequency has also been investigated. The results of this preliminary analysis

showed how these two parameters seem to have a negligible effect on the sampling per-

formance. Nevertheless, the author acknowledges that additional research is necessary to
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thoroughly analyze the dynamics and the coupling between the sampling algorithm and the

active SM selection. Such a study will improve understanding of the influence of these

two parameters and others that were fixed in this work (i.e. the suite of candidate SMs, the

strategy and the size of the initial training set, and the GEEs used in the SM selection) on

the overall process performance. In particular, the choice of the initial training set and of

candidate SMs are well known challenges in surrogate modeling for engineering applica-

tions; future research is needed to assess their impact on the sampling performance and to

more completely characterize the proposed architecture.
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CHAPTER 5

SEQUENTIAL ADAPTIVE SAMPLING BASED ON LOCAL LINEAR MODELS:

NEAREST NEIGHBORS ADAPTIVE SAMPLING

The present chapter describes the formulation of the proposed model independent sequen-

tial adaptive strategy (MISAS) technique named Nearest Neighbors Adaptive Sampling

(NNAS). NNAS has been conceived and developed with the intention of fulfilling all the

sampling strategy requirements for engineering applications described in section 1.6.

Like all MISASs, the NNAS algorithm decouples the sampling phase from the SM

selection and training (figure 2.13b). As described in section 2.3.4, this architecture is ad-

vantageous compared to model dependent algorithms (MDSASs) because it reduces com-

putational time and removes bias which may be introduced by the user’s a priori choice

of the SM functional form. Similarly to the majority of sequential adaptive algorithms (of

both MDSAS and MISAS types), the NNAS sampling phase is guided by a refinement (R)

and an exploration (E) metric: the former helps to identify the regions in which more sam-

ples are needed to achieve a better response representation, and the latter is responsible for

spreading the samples across the entire design space.

The basic NNAS (NNAS-B) formulation (section 5.2) introduces the Non Linearity In-

dex (NLI) as refinement metric (section 5.2.1) that is then coupled with a measure of the

euclidean distance between samples as exploration metric (section 5.2.2). As described in

algorithm 1 and shown in section 5.7, the basic R and E formulations lead to a sampling

algorithm that is simple to implement and has a quasilinear complexity (O(nT log(nT )))

which is significantly lower than complexity of other state-of-the-art sequential adaptive

strategies, e.g. O(n4
T ) and O(n2

T ) for CVVAS and LOLA Voronoi (LOLA-V) algorithms,

respectively. The drawback of using these simple R and E formulations is a decrease in

sample distribution representation quality which however results to be negligible in most
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of the tested functions (chapter 6). The objective of introducing directional sampling to

enhance the representation quality of the sample distributions obtained via NNAS-B leads

a second version of NNAS, named directional NNAS (NNAS-D). Despite new refinement

and exploration metric formulations, NNAS-D retains the quasilinear complexity of the

overall algorithm, but it requires some additional computational time for the approximate

Monte-Carlo Voronoi tessellation involved in the exploration and directional sampling. Be-

cause the algorithm computational time is directly related with tsampl, the choice between

NNAS-B and NNAS-D should be guided case-by-case by the effect of tsampl on the overall

surrogate modeling time (τ effect in eq.(1.5))

Similarly to optimization algorithms ([21, 49]), a good sampling technique must bal-

ance the influence of the exploration and refinement metrics to avoid excessive sample

clustering and to assure that samples are sufficiently spread across the entire design space.

Such a balance should lead to a finer sampling in highly non-linear regions while captur-

ing response features throughout the entire domain. To the best of author’s knowledge, all

current adaptive sampling techniques achieve this exploration-refinement balance either by

forming a convex sum of R and E (as in LOLA-Voronoi ([20])) or by combining R with a

distance penalty function (as in CV ([31, 47]) or Lipschitz ([64]) techniques). The NNAS

technique presented in this dissertation instead approaches the exploration-refinement bal-

ance by adopting a different form of multiobjective optimization approach to maximize

both metrics, and therefore to solve the problem in (2.1). First, a Pareto-ranking procedure

is used to identify the design space regions that are equally “optimal” for the maximization

of both the exploration and refinement metrics. Then, a target exploration-refinement bal-

ance is obtained by choosing the region around which the next sample will be placed by

means of a stochastic selection criterion (section 5.1).

The first part of this chapter describes the Pareto-ranking based stochastic selection cri-

terion that is used by both NNAS-B and NNAS-D to achieve a target exploration-refinement

balance. Sections 5.2 and 5.3 present the NNAS-B and NNAS-D formulations, respec-
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tively, and they are followed by the description of the algorithm modifications required to

avoid the influence of critical error in the solver, and to use NNAS in multi-response and

batch-mode applications. Finally, section 5.7 estimates the computational complexity of

both NNAS formulations.

5.1 Refinement-Exploration Balance: Pareto-ranking Based Selection

The refinement and exploration metrics are used in both NNAS formulations to select a

sample in DT (x∗
T ) as identifier of the region in which the next sample (xnext) should be

placed. Ideally, xnext should be located in a region around an xT which maximizes both

R and E, meaning that x∗
T is one solution of the following multiobjective optimization

problem (previously introduced in section 2.1.1):

Maximize
i

[RT,i, ET,i]

subject to 1 ≤ i ≤ nT (5.1)

where RT,i and ET,i are the refinement and exploration metrics evaluated at xT,i, respec-

tively. The Pareto frontier (PF) representing the solution of eq.(5.1) (PF∗) is obtained by

the application of a Pareto ranking procedure on theR and E values for all the samples xT,i

in the design space.

PFs usually contain more than one point, and therefore a criterion is needed to select a

single x∗
T from PF∗. Based on the definition of Pareto dominance ([14]), the PF∗ points

are equally “optimal” solutions of the optimization problem in eq.(5.1), and therefore a

possible legitimate approach is to randomly draw x∗
T from the PF∗ points. However, this

randomly selected x∗
T may not be “optimal”, as can be seen in figure 5.1. Consider for

example the situation in figure 5.1a, where PF∗ spreads over a much smaller range in R

than E. If R and E are properly normalized to have comparable metrics, the PF∗ points

in figure 5.1a are almost equivalent with respect to the maximization of R. Assuming
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(a) High E (b) High R

Figure 5.1: Example of max(R)-max(E) Pareto frontiers

that R and E are equally important, point A in figure 5.1a is one of the best solution of the

optimization problem in eq.(5.1). A similar conclusion can be drawn for the case illustrated

in figure 5.1b, where instead point B should be chosen as solution of eq.(5.1). Additionally,

it is possible to realize from the high level definition of exploration and refinement metrics

that PF∗ naturally evolves toward the center of the R-E axes as more points are added to

DT . Indeed, anytime a new sample xnext is added to DT , both E and R around xnext are

expected to decrease because of the reduced distance between samples and the improved

response representation in the surrounding region (assuming that a new highly nonlinear

region is not detected at xnext).

Hence, it is reasonable to presume that a good refinement-exploration balance is achieved

when PF∗ evolves toward the center of the R-E axes (which naturally happens) keeping

the lengths of its projections on the R and E axes as equal as possible. More formally

ρ =
projE(PF∗)

projR(PF∗)
≈ ρ̂ = 1 (5.2)

where projE(PF∗) and projR(PF∗) are the lengths of PF∗ projections on the E and R axes

(figure 5.1), respectively, and ρ̂ is the target value for the ratio ρ. Such an evolution of PF∗
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is achieved in NNAS by a stochastic selection of x∗
T based on a probability distribution

function (φPF∗) which is continuously adapted to guide the sampling process toward ρ ≈

ρ̂ = 1: different target values for ρ̂ can be adopted to obtain behavior more heavily weighted

towards exploration or refinement.

The chosen φPF∗(t) is a trapezoidal distribution with bases proportional to projE(PF∗)

and projR(PF∗); the variable t is the linear coordinate along the line connecting the two

extreme points of the PF∗, as illustrated in figure 5.2. The mathematical definitions of

φPF∗(t) (eq.(5.3)) and its cumulative density function ΦPF∗(t) (eq.(5.4)) are:

φPF∗(t) = mt+ q (5.3)

ΦPF∗(t) =
1

2
mt2 + qt (5.4)

where,

m =
2

tmax

(
1− ρ/ρ̂
ρ/ρ̂+ 1

)
(5.5)

q =
2ρ/ρ̂

(ρ/ρ̂+ 1)tmax

(5.6)

ΦPF∗ (eq.(5.4)) is invertible, and therefore the inverse cumulative density function method

([104]) can be used to draw a random value tr from the φPF∗:

tr(s) = Φ−1
PF∗(s) (5.7)

=
−q +

√
q2 + 2sm

m
(5.8)

where s is a random value between 0 and 1 drawn from a uniform distribution. Finally, x∗
T

is chosen as the PF∗ point with the t coordinate closer to the random value tr drawn using
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(a) High E (b) High R

Figure 5.2: Example of trapezoidal probability distributions for the stochastic Pareto-
ranking-based selection criterion

eq.(5.8):

x∗
T = xT,j∗ (5.9)

where,

j∗ = argmin
j

(|tj − tr|) with j = 1 . . . nPF∗ (5.10)

and nPF∗ is the number of points in PF∗.

As it is possible to see from figure 5.2, the extreme values of the coordinate t ( t = 0

and t = tmax ) are located outside the limits defined by the projection of PF∗ on the t-

axis. Using the notation EM and RM for the points on PF∗ which maximize E and R

respectively, t = 0 is located at t equal to t(EM) minus half the distance from EM and

its neighbor in the t-axis. Similarly, t = tmax is located at t equal to t(RM) plus half the

distance from RM and its neighbor in the t-axis. This is done to assign the PF∗ extreme

points a fair chance of being selected as x∗
T . An example of PF∗ evolution as training

points are added to DT is illustrated in figure 5.3.
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Figure 5.3: Example of Pareto frontier evolution as samples are added to DT

The stochastic selection of x∗
T described above has been introduced in NNAS to limit

inductive bias by assigning to every PF∗ point a probability – even if very small – to be

selected. Additionally, the approach gives the PF∗ points which are closely spaced on the

t-axis a similar likelihood to be drawn as x∗
T (i.e. points A and C in figure 5.1a and points

B and C in figure 5.1b). This behavior is appropriate because R is based on an approximate

estimation of the response nonlinearity and therefore there is not strong motivation to prefer

one point compared to another if they are close on the PF∗.

5.2 Basic Nearest Neighbors Adaptive Sampling

The basic NNAS (NNAS-B) is the simplest implementation of NNAS algorithm that uses

local linear model to estimate the response non-linearity around each existing training sam-

ple. The following sections provide the details about the NNAS-B refinement and explo-

ration metrics (Sections 5.2.1 and 5.2.2), the approach used to select the next sample xnext

once x∗
T has been selected by the Pareto-ranking based approach (section 5.2.3), and fi-

nally a detailed description of the overall NNAS-B algorithm and implementation (section

5.2.4).
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5.2.1 Refinement Metric: Non Linearity Index

The proposed Non Linearity Index (NLI) refinement metric has been devised to produce

a finer sample distribution in design space regions where the response shows a higher de-

parture from linearity. NLI estimates the level of nonlinearity in the neighborhood of a

training sample without need for a global SM – a key characteristic that makes NNAS-B a

model independent sampling strategy.

NLI at the ith training sample xT,i (NLIi) is defined as the difference between the true

response yT,i and an approximation of f in the neighborhood of xT,i. This approxima-

tion is represented by the D-dimensional hyperplane (Π(i)) obtained by a weighted least

squares regression (WLSR) on the D + k nearest neighbors of xT,i which constitute its

neighborhood N (i) (figure 5.4). More formally,

NLIi =
∣∣yT,i − Π(i)(xT,i)

∣∣ (5.11)

where Π(i) is

Π(i)(x) = c
(i)
0 +

q=D∑
q=1

c(i)q xq (5.12)

and c(i)q are the coefficients returned by the WLSR. Based on eq.(5.12), the WLSR linear

system is


w(i,1)

. . .

w(i,D+k)




1 x
(i,1)
1 · · · x

(i,1)
D

...
...

...
...

1 x
(i,D+k)
1 · · · x

(i,D+k)
D



c
(i)
0

...

c
(i)
D

 =


w(i,1)

. . .

w(i,D+k)



y
(i,1)
T

...

y
(i,D+k)
T


(5.13)
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(a) 1D (b) 2D

Figure 5.4: Graphical representation of NLI evaluation. Crosses denote the XT location in
the design space, while dots represent the [XT ,yT ] pairs. The xT,i sample where NLI has
to be computed is displayed in blue, while the points in its neighborhood N (i) are in green.

or more compactly

W(i)
[
1,X

(i)
T

]
c(i) = W(i)y

(i)
T (5.14)

where superscript (i, j) indicates “the jth neighbor of the ith training point”, and w are

the weights of WLSR. Therefore, the notation x(i,j)p indicates the pth coordinate of the jth

neighbor of the ith training point. The weights w(i,j) (eq.(5.15)) are defined as the inverse

of the euclidean distance between the jth neighbor and the ith training points around which

the nonlinearity of the response is intended to be estimated by solving eq.(5.14):

w(i,j) =
1

|xT,i − xT,j|
(5.15)

This choice is based on the assumption that closer neighbors better represent the region

around xT,i.

A D + k dimensional regression (eq.(5.14)) is used instead of a linear interpolation of

the D + 1 nearest neighbors because preliminary tests have shown a frequent incidence of

singular matrices due to point alignment. A value of k = 2 has led to a complete removal
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of the singularity issues on all the test cases that we have examined. Nevertheless, the value

of k can be increased case-by-case if the matrix inversion returns a singularity warning, as

described in the algorithm implementation section (section 5.2.4).

Finally, the refinement metric at xT,i (RT,i) is defined as the NLIi normalized by the

range of the collected responses:

RT,i =
NLIi

max(yT )−min(yT )
(5.16)

5.2.2 Exploration Metric: Mean Neighborhood Distance

Similarly to other sampling techniques ([47, 53, 64]), the exploration metric E used in

NNAS-B is based on the euclidean distance between samples. In particular, E at xT,i (ET,i)

is defined as half of the mean distance between xT,i and its neighbors in N (i) normalized

by the diagonal of the design space:

ET,i =
0.5
D+k

∑D+k
j=1

∣∣xT,i − x(i,j)
∣∣√∑D

d=1(UBd − LBd)2
(5.17)

where UBd and LBd represent the upper and lower bounds of the dth dimension (if all the

design variables are normalized within a 0-1 range, the denominator of (5.17) is obviously
√
D). ET,i can be considered as the normalized radius of the hypersphere representing –

with high level of approximation – the locus of points in the design space that are closer

to xT,i than other samples (this is also the motivation for the 0.5 factor in (5.17)). A more

rigorous approach would require a design space Voronoi tessellation ([5]) based on XT , but

such an approach scales poorly with increasing dimension, D (at worst Ω(n
D
2 ) [51]). As

shown in the results (chapter 6), the E formulation of eq.(5.17) is able to achieve effective

design space exploration with a negligible impact in algorithm complexity.
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5.2.3 Random Search: Identification of the Next Sample

Once R and E have been computed for every sample in DT , the Pareto-ranking based pro-

cedure described in section 5.1 selects x∗
T which is the indicator of the region where xnext

should be placed to improve the response representation by keeping a target exploration-

refinement balance. At this point, two questions are still unanswered: how is the region

surrounding x∗
T defined? And how is xnext selected within it?

Assume for now that the design space can be partitioned by the Voronoi tessellation

([5]), where every location x in the domain is “assigned” to the closest xT : the Voronoi

cell (VC) of xT,i (VCi) is the locus of domain locations that have xT,i as closest point.

VC∗ is therefore a reasonable representation of x∗
T surrounding as illustrated in the 2-

dimensional Voronoi tessellation example in figure 5.5a. Ideally, we would like to select

xnext to maximize a “local” version of the exploration and refinement metrics – Ẽ and R̃

respectively – within the limits of VC∗. Since NLI is a point-based metric computed at

training points and there is not a simple and elegant approach to extrapolate NLI at every

design space location without the use of an SM, we assume that – at any point within VC∗ –

Ẽ is equal to the distance from x∗
T , and R̃ is equal toR at x∗

T (RT,i∗). With this assumption,

the multiobjective optimization of maximizing both Ẽ and R̃ turns into a single objective

problem where the only objective is the maximization of Ẽ, and the solution is the VC∗

corner located at the highest distance from x∗
T (figure 5.5a).

Even though it is possible to exactly compute the Voronoi corners, the Voronoi tes-

sellation algorithm is extremely computationally expensive (at worst Ω(n
D
2 ) [51]) making

this approach to find xnext infeasible for most high dimensional engineering applications.

Therefore, NNAS-B adopts an approximate strategy that creates a large number (propor-

tional to problem dimensionality (nR ∝ D)) of random points xR in an extended surround-

ing of x∗
T , and then it selects xnext as the random point that is within VC∗ (i.e. among the

random points that have x∗
T as the closest sample) and with the greatest distance from x∗

T .

The extended surrounding is defined as the hypercube centered at x∗
T with an edge equal
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(a) (b)

Figure 5.5: Example of 2D Voronoi tessellation (5.5a), and random search of xnext (green
dot) in the surrounding (blue Voronoi cell) of x∗

T (red dot) (5.5b). The region limited by
the dashed line represents the hypercube, and the gray dots the random candidates points

to double the max distance from x∗
T to any of its neighbors in N (i∗) (figure 5.5b). More

formally, the location of xnext is the solution of the following maximization problem:

xT,next = xR,inext (5.18)

where,

inext = argmax
i

(|xR,i − x∗
T |) with xR ∈ VC∗ (5.19)

5.2.4 Basic NNAS Algorithm

In summary, the overall NNAS-B algorithm can be qualitatively described as follows:

1. Initialize DT with a set of initial training points (nT,in > D + k) using standard

space-filling algorithms.

2. Compute NLI for each training point in DT (eq.(5.11)).

3. Compute E (eq.(5.17)) and R (eq.(5.16)) at each training point.
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4. Identify the Pareto frontier PF∗ for the max(E)-max(R) problem .

5. Randomly select x∗
T in PF∗ based on the probability distribution function φPF∗ (Eq.5.5)

using the inverse cumulative distribution function method (eq.(5.8)).

6. Create nR random points spread over a hypercube centered in x∗
T with edge length

equal to double the maximum distance between x∗
T and its neighbors in N (i∗).

7. Select the next sample location xnext as the random point within the Voronoi cell of

x∗
T that has the maximum distance from x∗

T .

8. Evaluate f(xnext).

9. Add {xnext, f(xnext)} to the training set DT .

10. Repeat from step 2 until a stopping criterion is met.

Regarding the stopping criteria, possible options can be based on the current number of

samples, the maximum value of the refinement metric R which is a rough metric of the

representation quality of the training set DT , or the maximum value of the exploration

metric E which is an index of the spreading distance between samples.

NNAS-B can be efficiently implemented by leveraging the k-nearest-neighbors search

(kNN-S) algorithm and by computing R and E only at the neighborhoods affected by the

addition of the new samples. Even if some parts of the algorithm can be easily parallelized,

the scheme presented and discussed in this section (algorithm 1) is a serial implementa-

tion of NNAS-B which has been shown to be extremely fast even for high dimensional

applications. The NNAS-B algorithm inputs are the black-box or the code used to evaluate

the unknown function f , a value k which specifies the additional neighbors considered to

avoid singularity in the NLI evaluation, and a stopping criterion SC; the output of the al-

gorithm is obviously the training dataset DT . As previously introduced, a value of k = 2

was sufficient to avoid matrix singularity issues in all the completed tests. If not adequate,
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the algorithm implementation can easily incorporate a temporary increase of k in case of

singularity warnings during the NLI evaluation (row 16).

Considering algorithm 1, rows 1 to 5 perform the preliminary operations of variable

initializations:

• Step 1 creates an initial set of nT,in training points (XT,in) by a space-filling algorithm

like LHS. Since NNAS-B uses D + k neighbors, nT,in must be greater than D + k.

• Step 2 evaluates the training response values yT,in = f(XT,in)

• Step 3 combines XT,in and yT,in to create the initial training dataset.

• Step 4 initializes the Nst matrix where the algorithm will store the indeces of the

neighbors used to compute the NLI at each training point.

• Step 5 initializes the NLI vector where the algorithm will store the values of the

computed NLI.

Nst stores the indices of theD+k nearest neighbors of each samples inDT (row 17), and it

is used in row 15 to prevent the computation of NLI for points whose neighborhoods have

been unaffected by the addition of the new sample at the end of the previous iteration (row

26).

The while loop within rows 6 to 27 is the core of the NNAS-B algorithm, and it is

entered until the stopping criterion (SC) is not satisfied. More specifically:

• Row 7 updates the sample-to-sample distance matrix ∆ by computing the distances

between the training point added at the end of the previous iteration and the samples

already in DT (at the first iteration, ∆ must be initialized with the distances between

points in the initial training set).

• The for loop in rows 8 to 10 identifies the D + k neighbors of the new training point

by using the efficient kNN-S algorithm, and it stores the neighbors indices in the
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matrix Nst. The kNN-S takes as input the distance matrix ∆ previously updated to

reduce the algorithm computational cost, as described in section 5.7.

• The for loop in rows 11 to 13 checks if the addition of the new training sample at the

end of the previous iteration has affected the neighborhoods of the existing training

samples. This operation is efficiently implemented by using ∆ and the neighbor

indices stored in Nst, without the need of running a completely new kNN-S.

• The third for loop (rows 14 to 19) is responsible for the update of the NLI vector.

As it possible to see, the actual NLI evaluation (row 16) is done only if the up-

dated neighborhood (N (i)) differs from what was computed at the previous iteration

(N (i)
st ) (condition of the inner if statement (row 15)). The k value can be temporar-

ily increased depending on the condition number of eq.(5.13) or if the solution of

eq.(5.13) faces some singularity issues.

• Rows 20 and 21 use NLI, ∆ and DT to compute the refinement and exploration

metrics.

• Rows from 22 to 25 identify the new training sample by using the stochastic Pareto-

ranking selection and the approximate random search within the chosen Voronoi cell.

• Rows 26 appends the new training information to the training dataset DT .

5.3 Nearest Neighbors Adaptive Sampling with Directional Sampling

As highlighted by the results (chapter 6), the simple NNAS-B refinement metric formu-

lation may lead in same cases to a lower sample distribution efficiency if compared with

techniques that have more advanced approaches to define neighborhoods or to compute the

refinement metric. On the other hand, those advanced sampling formulations have a higher

computational cost (e.g. O(n2
T ) and O(n4

T ) for CVVAS and LOLA-V, respectively) in
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input : f(x), k, SC
output: DT

1 Create nT,in initial samples (XT,in) using a space-filling algorithm
(nT,in > D + k);

2 Evalute yT,in = f(XT,in);
3 Create the initial DT = {XT,in,yT,in};
4 Initialize Nst as a zeros matrix of size nT,in ×D + k;
5 Initialize NLI as a zeros vector of size nT,in ;
6 while SC is false do
7 ∆← update distance(XT);
8 for i = nT − nadd + 1 : nT do
9 N (i) ← knnsearch(i,∆);

10 end
11 for i = 1 : nT − nadd do
12 N (i) ← neighborhoodUpdate(i,Nst,∆);
13 end
14 for i = 1 : nT do
15 if N (i) 6= N

(i)
st then

16 NLIi ← NLIeval(N (i), XT (N (i)),yT (N (i)));
17 N

(i)
st ← N (i);

18 end
19 end
20 R← (NLI, DT );
21 E ← (∆);
22 PF∗ ← ParetoRanking(R,E);
23 x∗

T ← invCumulative(PF∗);
24 xT,new ← randomSearch(x∗

T);
25 yT,new ← eval(f(xT,new)) ;
26 DT ← append(xT,new,yT,new) ;
27 end

Algorithm 1: NNAS-B algorithm
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comparison to the quasilinear complexity of NNAS-B. Even though this sampling perfor-

mance degradation occurs only in a limited number of cases (chapter 6), directional NNAS

(NNAS-D) is conceived in the attempt to mitigate or possibly solve this side effect.

The following sections provide the details about the NNAS-D refinement and explo-

ration metrics (Sections 5.3.1 and 5.3.2), the directional sampling approach used to select

the next sample xnext once x∗
T has been chosen by the Pareto-ranking based criterion (sec-

tion 5.3.3), and the overall NNAS-D algorithm and implementation (section 5.3.4).

5.3.1 Refinement Metric: Local Root Mean Squared Error

Similarly to NNAS-B, the NNAS-D refinement metric has been devised to produce finer

sample distribution in design regions with higher response departure from linearity. Those

regions are identified by using hyperplanes created in the neighborhood of each training

point, thereby keeping NNAS-D model independent. Specifically, R at the ith training

point xT,i is the RMSE of the hyperplane Π(i) that passes through xT,i and is created via

weighted least squares regression (WLSR) of the nN nearest neighbors of xT,i that consti-

tute its neighborhoodN (i) (figure 5.6). The number of neighbors to consider (nN ) is an user

choice, but the analysis conducted and reported in chapter 6 shows that nN = 2D is an ap-

propriate value (where D is the design space dimensionality). The approach of forcing the

hyperplane to pass through the training point whereR has to be computed is borrowed from

LOLA Voronoi (LOLA-V) technique [20], which however has a more complex approach

to define the neighborhood N (i).

Formally, R for NNAS-D is computed as:

RMSEi =

√√√√ 1

nN

nN∑
j=1

(
y
(i,j)
T − Π(i)(x

(i,j)
T )

)2
(5.20)

=

√√√√ 1

nN

nN∑
j=1

(PE
(i)
j )2 (5.21)
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where PE
(i)
j is the prediction error at the jth neighbor of ith training point, Π(i) is

Π(i)(x) = c
(i)
0 +

q=D∑
q=1

c(i)q xq (5.22)

and c(i)q are the coefficients returned by the WLSR. Based on eq.(5.22), the WLSR linear

system is


w(i,1)

. . .

w(i,nN )



x
(i,1)
1 − x1;T,i · · · x

(i,1)
D − xD;T,i

...
...

...

x
(i,nN )
1 − x1;T,i · · · x

(i,D+k)
D − xD;T,i



c
(i)
1

...

c
(i)
D

 =


w(i,1)

. . .

w(i,nN )



y
(i,1)
T − yT,i

...

y
(i,nN )
T − yT,i


(5.23)

and

c
(i)
0 = yT,i −

D∑
q=1

c(i)q xq;T,i (5.24)

where the notation is the same as that in eq.(5.13), xk;T,i indicates the kth coordinate of the

ith training point, and the weights are defined as in eq.(5.15).

Finally, the NNAS-D refinement metric at xT,i (RT,i) is defined as the RMSEi normal-

ized by the range of the collected responses:

RT,i =
RMSEi

max(yT )−min(yT )
(5.25)
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(a) 1D (b) 2D

Figure 5.6: Graphical representation of NNAS-D R evaluation. Crosses denote the XT

location in the design space, while dots represent the [XT ,yT ] pairs. The xT,i sample
where R has to be computed is displayed in blue, while the points in its neighborhood N (i)

are in green.

5.3.2 Exploration Metric: Equivalent Voronoi Cell Edge Length

As explained in the following section, the introduction of the directional sampling enhances

the sampling performance by giving the possibility of local refinement within the Voronoi

cell of x∗
T (VC∗), which is selected via the stochastic Pareto selection. On the other hand,

this NNAS-D capability of local refinement requires the use of a more accurate sample

clustering estimator in comparison to NNAS-B formulation. Indeed, NNAS-B locates the

next sample at the farthest estimated corner of VC∗ without considering any local refine-

ment metric; this “only-local-exploration” behavior compensates for the underestimation

of the sample clustering in the NNAS-B exploration metric in eq.(5.17).

The NNAS-D exploration metric E at the ith training point xT,i is the normalized edge

length of the hypercube that has the same volume of the xT,i Voronoi cell (VT,i)

ET,i =
V

1
D
T,i√∑D

d=1(UBd − LBd)2
(5.26)
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Due to the extremely high computational complexity of Voronoi tessellation algorithm (at

worst Ω(n
D
2 ) [51]), VT,i must be estimated via a Monte-Carlo approach with a number of

random points proportional to nT , as suggested in LOLA-V formulation [20].

5.3.3 Directional Sampling: Identification of the Next Sample

Similarly to NNAS-B formulation, NNAS-D requires the computation of R and E for

every sample in DT , and the use of the stochastic Pareto-ranking procedure (section 5.1) to

select x∗
T which identifies the region where xnext should be placed to improve the response

representation by keeping a target exploration-refinement balance.

At this point, two questions motivate the development of a directional sampling formu-

lation:

1. is it possible to devise a strategy that prioritizes some points within the Voronoi cell

VC∗ with respect to the degree of desired local exploration/refinement?

2. how is the degree of local exploration/refinement within VC∗ defined?

A simple and straightforward approach would fit an SM on the local prediction errors

(PE) of x∗
T neighbors, and use a Monte-Carlo approach to identify a point within VC∗ that

maximizes a weighted sum of the PE estimated via SM and the distance from x∗
T . Unfor-

tunately, such an approach requires the selection of an SM functional form, and therefore

it would turn NNAS-D into a model dependent sampling strategy. Therefore, NNAS-D

addresses the second question by using a binary rule that determines if pursuing either full

local exploration or full local refinement. The rule is based on the t coordinate of the x∗
T

which is the projection of the [R(x∗
T ), E(x∗

T )] point on the line connecting the extremes of

the Pareto frontier representing the solution of eq.(5.1) (figure 5.2). The binary rule is:


exploration, if t∗ ≤ 0.5

refinement, otherwise
(5.27)

110



Regarding the first question, assume that the exact Voronoi tessellation has been com-

puted and the coordinates of Voronoi corners are available. NNAS-D considers VC∗ cor-

ners as the potential xnext locations because they minimize the risk of future point align-

ment and are located at the farthest distance from x∗
T (figure 5.7a); the final selection of

the corner which will become xnext depends on the outcome of the binary rule in eq.(5.27).

In case of “refinement”, NNAS-D firstly identifies the x∗
T ’s neighbor with the maximum

prediction error (PE) among those that are contiguous to VC∗, and then selects as xnext

the corner on the x∗
T -xmax,PE bisectional hypersurface that has the smallest distance to x∗

T

(figure 5.7b). It is important to underline that the PE values have been already computed

for the evaluation of the refinement metric in eq.(5.21). If instead eq.(5.27) returns “explo-

ration”, NNAS-D selects as xnext the VC∗ corner which maximizes its distance from x∗
T

(figure 5.7c). The requirement of “Voronoi contiguity” between the considered neighbors

and x∗
T is introduced because it is not guaranteed that the nN nearest neighbors coincide

with the Voronoi neighbors (figure 5.7a).

As already mentioned several times, the Voronoi tessellation has a prohibitive com-

putational complexity with respect to the problem dimensionality (at worst Ω(n
D
2 ) [51]),

and therefore an approximate Monte-Carlo approach is used to identify the Voronoi corner

regions. The description of the procedure is available in appendix C.

5.3.4 Directional NNAS Algorithm

In summary, the overall NNAS-D algorithm can be qualitatively described as follows:

1. Initialize DT with a set of initial training points (nT,in > nN > D) using standard

space-filling algorithms.

2. Compute the local RMSE for each training point in DT (eq.(5.20)).

3. Compute E (eq.(5.17)) and R (eq.(5.25)) at each training point.

4. Identify the Pareto frontier PF∗ for the max(E)-max(R) problem .
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(a) Contiguous vs Neigh-
bor points

(b) Local refinement (c) Local exploration

Figure 5.7: (a) shows the difference between the neighbor points considered in the local
RMSE evaluation (squares) and the points contiguous to VC∗ (blue markers). (b) illustrates
all the elements involved in the local refinement: neighbor with maximum PE (red square),
contiguous neighbor with maximum PE (blue square), bisectional hypersurface (blue line),
and corner selected as xnext (green dot). (c) shows the local exploration case.

5. Randomly select x∗
T in PF∗ based on the probability distribution function φPF∗ (Eq.5.5)

using the inverse cumulative distribution function method (eq.(5.8)).

6. Use the Monte-Carlo approximate procedure to identify the corner regions of the x∗
T

Voronoi cell.

7. Select the next sample location xnext among the corner random points based on the

binary t coordinate rule and the prediction error of the neighbors contiguous to x∗
T .

8. Evaluate f(xnext).

9. Add {xnext, f(xnext)} to the training set DT .

10. Repeat from step 2 until a stopping criterion is met.

As for NNAS-B, possible stopping criteria can be based on the current number of samples,

the maximum value of the refinement metricRwhich is a rough metric of the representation

quality of the training set DT , or the maximum value of the exploration metric E which is

an index of the spreading distance between samples.

Similarly to NNAS-B, some parts of NNAS-D algorithm can be easily parallelized, but

the scheme presented and discussed in this section (algorithm 2) is a serial implementation
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of NNAS-D which has been shown to be extremely fast even for high dimensional appli-

cations. The NNAS-D algorithm inputs are the black-box or the code used to evaluate the

unknown function f , a value nN which specifies the number of nearest neighbors consid-

ered in the local RMSE evaluation, and a stopping criterion SC; the output of the algorithm

is obviously the training dataset DT . As shown in the results, a value of nN = 2D has

shown to be an appropriate choice for nN .

Rows 1 to 6 of algorithm 2 perform the preliminary operations of variable initializa-

tions:

• Step 1 creates an initial set of nT,in training points (XT,in) by a space-filling algorithm

like LHS. Since NNAS-D uses nN neighbors, nT,in must be greater than nN .

• Step 2 evaluates the training response values yT,in = f(XT,in).

• Step 3 combines XT,in and yT,in to create the initial training dataset.

• Step 4 initializes the Nst matrix where the algorithm will store the indeces of the

neighbors used to compute the local RMSE at each training point.

• Step 5 initializes the RMSE vector where the algorithm will store the values of the

computed RMSE.

• Step 6 initialize the PEst matrix where the algorithm will store the local predicted

error at the neighbors of each xT,i.

Nst stores the indices of the nN nearest neighbors of each samples in DT (row 18), and it is

used in row 16 to prevent the computation of local RMSE for points whose neighborhoods

have been unaffected by the addition of the new sample at the end of the previous iteration

(row 28). Similarly, PEst stores the computed prediction errors at the neighbors of training

points, and is updated only if there is a change in the neighborhood compositions caused

by the previous xnext inclusion.
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The while loop within rows 7 to 29 is the core of the NNAS-D algorithm, and it is

entered until the stopping criterion (SC) is not satisfied. More specifically:

• Row 8 updates the sample-to-sample distances matrix ∆ by computing the distance

between the training point added at the end of the previous iteration and the samples

already in DT (at the first iteration, ∆ must be initialized with the distances between

points in the initial training set).

• The for loop in rows 9 to 11 identifies the nN neighbors of the new training point by

using the efficient kNN-S algorithm, and it stores the indices of the neighbors in the

matrix Nst. The kNN-S takes as input the distance matrix ∆ previously updated to

reduce the algorithm computational cost, as described in section 5.7.

• The for loop in rows 12 to 14 checks if the addition of the new training sample at the

end of the previous iteration has affected the neighborhoods of the existing training

samples. This operation is efficiently implemented by using ∆ and the neighbor

indices stored in Nst, without the need of running a completely new kNN-S.

• The third for loop (rows 15 to 20) is responsible for the update of the local RMSE

vector. As it possible to see, the actual RMSE evaluation (row 17) is done only if

the updated neighborhood (N (i)) differs from what was computed at the previous

iteration (N (i)
st ) (condition of the inner if statement (row 16)).

• Rows 21 and 22 use RMSE, ∆ and DT to compute the refinement and exploration

metrics, respectively.

• Rows from 23 to 27 identify the new training sample by using the stochastic Pareto-

ranking selection and the approximate corner search described in section 5.3.3 and

appendix C.

• Rows 26 appends the new training information to the training dataset DT .
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input : f(x), nN , SC
output: DT

1 Create nT,in initial samples (XT,in) using a space-filling algorithm (nT,in > nN );
2 Evalute yT,in = f(XT,in);
3 Create the initial DT = {XT,in,yT,in};
4 Initialize Nst as a zeros matrix of size nT,in × nN ;
5 Initialize RMSE as a zeros vector of size nT,in ;
6 Initialize PEst as a zeros matrix of size nT,in × nN ;
7 while SC is false do
8 ∆← update distance(XT);
9 for i = nT − nadd + 1 : nT do

10 N (i) ← knnsearch(i,∆);
11 end
12 for i = 1 : nT − nadd do
13 N (i) ← neighborhoodUpdate(i,Nst,∆);
14 end
15 for i = 1 : nT do
16 if N (i) 6= N

(i)
st then

17 [RMSEi,PEi]← RMSEeval(N (i),XT (N (i)),yT (N (i)));
18 N

(i)
st ← N (i);

19 end
20 end
21 R← (RMSE, DT );
22 E ← VoronoiVolEst(XT);
23 PF∗ ← ParetoRanking(R,E);
24 [x∗

T , t
∗]← invCumulative(PF∗);

25 Xcrn ← VoronoiCornerApprox(x∗
T ,Ei∗);

26 xT,new ← cornerSelection(x∗
T ,t∗);

27 yT,new ← eval(f(xT,new)) ;
28 DT ← append(xT,new,yT,new) ;
29 end

Algorithm 2: NNAS-D algorithm
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5.4 Avoiding Solver Critical Errors

Sampling algorithms usually sample the design space of an unknown response, and there-

fore it could happen that some designs are infeasible or their performance cannot be as-

sessed using standard settings in the solver. In these cases, critical errors may occur in the

solver, and consequentially no response yT is returned to the sampling algorithm. There-

fore, a robust sampling algorithm should be able to continue the sampling process without

being affected by critical errors in the computational simulation solver, and it should also

give to the user the opportunity of adjusting the simulation and refreshing the training

dataset without stopping the sampling process.

Both NNAS formulations can be adapted to handle critical solver error situations by a

minimal modification in the sampling algorithm. In particular, the training samples with a

missing response value are not considered during the definition of the neighborhoods that

will be used for either NLI or local RMSE evaluation. However, the whole training set

– even the samples with missing response – must be considered for the evaluation of the

exploration metric. Indeed, the expected sample distribution should continue to concentrate

samples in region with high departure from linearity, but the algorithm must continue the

exploration of the entire design space even in region with missing response.

An example of sample distribution obtained by the application of NNAS-D for the

design space sampling of an analytic test case is shown in figure 5.8.

5.5 Multi-response Formulation

Real-world engineering problems often involve analyses with multiple responses: consider

for example the aerodynamic lift and drag of a wing, or the static and dynamic responses

of a structure. In this context, sampling techniques that balance exploration and refinement

based on consideration of all of the responses simultaneously are particularly valuable.
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(a) Function contour (b) Sample distribution obtained with
NNAS-D

Figure 5.8: Example of sample distribution obtained by the application of NNAS-D for
the design space sampling of an analytic test case with infeasible region. (a) shows the
contour plot of the response with a circular infeasible region in the center of the domain.
(b) plots the resulting sample distribution with red markers representing the samples in the
infeasible region

The applicability of both NNAS formulations can be easily extended to nf -response

applications by considering the maximum of the refinement metrics individually computed

for each response fj (R(j)
T,i) as refinement metric RT,i:

RT,i = max(R
(1)
T,i, . . . , R

(nf )
T,i ) (5.28)

where R(j)
T,i is the refinement metric computed for the jth response at the ith training point.

5.6 Batch-mode Formulation

The high computational cost of current high fidelity solvers for engineering applications

leads to a frequent use of high performance computing (HPC) resources, in particular dis-

tributed computing architectures. These architectures give the opportunity to simultane-

ously test several designs by running each simulation in a different computer node of the

architecture, thereby reducing the total runtime required to complete the analysis. There-
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fore, NNAS must have an algorithm architecture able to identify nB samples at each itera-

tion (“batch-mode”) to efficiently use distributed computing HPC resources. The proposed

“batch-mode” NNAS assumes that the evaluation of all the nB designs is completed before

the next batch of nB training points is generated by the sampling algorithm. The author is

aware that in a real problem the evaluation time may significantly vary across the design

space, but the development of a sampling strategy able to efficiently deal with this kind of

situation is out of the scope of this dissertation, and it could be pursued in a future work.

The simplest approach to create a batch of nB training points at each sampling iter-

ation is to introduce a for loop that repeats nB times the stochastic selection of x∗
T and

the identification of xnext. Once xnext is appended to the batch, it is crucial to discard the

“used” x∗
T from the possible stochastic selection candidates before repeating the process to

identify the next xnext to include in the current batch. Indeed, if x∗
T is not discarded and it

is selected again as the identifier of VC∗, the process returns a point at the same location

of the previous point in the batch. Unfortunately, discarding x∗
T is not enough to prevent

point clustering within the same batch. Consider the example in figure 5.9 in which the

stochastic selection has chosen point 4 as x∗
T and xb,1 is the first point added to the current

batch. If point 4 is removed from the R-E domain and the repeated stochastic selection

chooses point 5 – which is in PF∗ – as x∗
T , the second batch point xb,2 can coincide with

xb,1 because the former is located on a Voronoi corner that is shared by VC4 and VC5. In

the actual NNAS implementation with approximate Voronoi tessellation, this may lead to

an excessive point clustering. Therefore, to properly use NNAS in batch-mode it is neces-

sary – during the creation of a batch – to remove both the “used” x∗
T and the training points

whose VCs share with it the corner added as batch point. Considering the example in figure

5.9, training points 4,3, and 5 must be discarded before proceeding with the selection of

xb,2.

The NNAS-D algorithm that makes it possible to create a batch of nB samples at each

sampling iteration as detailed in algorithm 3, but similar algorithm modifications can be
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(a) Sample distribution (b) R-E domain NNAS-D

Figure 5.9: Neighborhoods affecting the NNAS batch selection

applied to algorithm 1 to obtain an NNAS-B batch-mode formulation. Small changes from

algorithm 2 are the new input nB representing the number of samples in the batch, and

the modified indices in for loops at rows 9 and 12 to take into account that nB samples

are added to the dataset at every sampling iteration . The more consistent modification is

the while loop from rows 23 to 30. This loop is entered until the entire batch of samples

has been created or there are no remaining training points available as candidates for the

stochastic selection. Some particular details of note:

• Row 24 applies the Pareto-ranking procedure to find the Pareto frontier representing

the solution of eq.(5.1) considering only the [R,E] pairs related to the training points

not yet discarded.

• Row 29 discards x∗
T and all the training points whose Voronoi cell share with it the

corner selected in row 26 as new batch sample from the possible candidates for the

stochastic selection.

5.7 Computational Complexity

This section derives the computational complexity of NNAS-D algorithm, which is found

to be O(nTD
2 + nT log2(nT ) +D4), in which the first term is related to the neighborhood
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input : f(x), nN , SC, nB

output: DT

1 Create nT,in initial samples (XT,in) using a space-filling algorithm (nT,in > nN );
2 Evalute yT,in = f(XT,in);
3 Create the initial DT = {XT,in,yT,in};
4 Initialize Nst as a zeros matrix of size nT,in × nN ;
5 Initialize RMSE as a zeros vector of size nT,in ;
6 Initialize PEst as a zeros matrix of size nT,in × nN ;
7 while SC is false do
8 ∆← update distance(XT);
9 for i = nT − nB + 1 : nT do

10 N (i) ← knnsearch(i,∆);
11 end
12 for i = 1 : nT − nB do
13 N (i) ← neighborhoodUpdate(i,Nst,∆);
14 end
15 for i = 1 : nT do
16 if N (i) 6= N

(i)
st then

17 [RMSEi,PEi]← RMSEeval(N (i),XT (N (i)),yT (N (i)));
18 N

(i)
st ← N (i);

19 end
20 end
21 R← (RMSE, DT );
22 E ← VoronoiVolEst(XT);
23 while nT,new < nB and R 6= ∅ do
24 PF∗ ← ParetoRanking(R,E);
25 [x∗

T , t
∗]← invCumulative(PF∗);

26 Xcrn ← VoronoiCornerApprox(x∗
T ,Ei∗);

27 xT,new ← cornerSelection(x∗
T ,t∗,Xcrn);

28 XT,new ← append(xT,new);
29 [R,E]← removeContiguous(R,E,XT ,xT,new);
30 end
31 yT,new ← eval(f(XT,new)) ;
32 DT ← append(XT,new,yT,new) ;
33 end

Algorithm 3: NNAS-D algorithm
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identifications, the second is a result of the Pareto-ranking procedure, and the last is due

to the matrix inversion required for fitting the hyperplanes in the refinement metric evalua-

tion. With a similar derivation is it possible to prove that NNAS-B is of the same order of

computational complexity as NNAS-D.

Considering algorithm 3 as a reference algorithm, the operations that are relevant for

the computational complexity estimation are:

• Row 8. The matrix ∆ is continuously built up and updated during the NNAS algo-

rithm (row 7) to store the euclidean distances between the points in DT . The update

of the ∆ matrix has an algorithm complexity of O(nB(nTD)).

• Rows 9 to 11. Row 10 identifies the nN nearest neighbors for each of the new added

points via kNN-S. Because the distances between training points are already available

in ∆, this operation requiresO(nNnT ) operations. Since it is repeated nB times, this

loop has a computational complexity of O(nB(nNnT )).

• Rows 12 to 14. This for loop implies nT − nadd pairwise comparisons and therefore

is completed in O(nT − nadd) operations.

• Rows 15 to 20. As described in the NNAS-D implementation section (section 5.3.4),

local RMSE is computed only for the xT,i whose neighborhoods N (i) have been

affected by the addition of the last training samples. Therefore, to quantify the com-

putational cost of the RMSE evaluation, it is necessary to estimate the number of

neighborhoods affected by the addition of XT,new in DT . Unfortunately, this number

is obviously influenced by the non-linearity of the response f that drives the sample

refinement across the design space. However, it is possible to obtain a rough esti-

mation of the number of neighborhoods affected if we assume that the samples are

uniformly randomly added to DT . In this case, it is possible to prove that the aver-

age number of neighborhoods affected by the addition of a sample in DT is equal

to nN , and it is independent from the number of samples in DT . Since each local
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RMSE evaluation (row 16) requires O(n3
N) operation to solve the RMSE linear sys-

tem (eq.(5.23)), the computational cost for the local RMSE evaluation is O(nBn
4
N).

• Row 21 has negligible complexity.

• Row 22 estimates the Voronoi cell volumes. As already explained, the Voronoi tes-

sellation algorithm is extremely computationally expensive (at worst Ω(n
D
2 ) [51]),

and NNAS uses a Monte-Carlo approach to estimate the Voronoi cell volumes. The

Monte-Carlo approach requires to generate nR random points in the domain, and to

count the number of random points that have a particular training point as the closest

point. As suggested in the LOLA-V formulation ([20]), the number of random points

should be proportional to the number of training points in DT , i.e. nR = kV nT .

Instead of creating fresh random points at each iteration that would have required

O(n2
TD) operations, only kV nB new random points are generated at each iteration

and the process is completed in O(nRnBD).

• Row 24. The Pareto-ranking has a complexity of O(nT log2(nT )) [54].

• Row 25 has negligible computational complexity.

• Row 26. The Voronoi corner estimation using the procedure described in appendix

C requires the identification of the D + 1 closest neighbors of kCD random points.

The procedure is completed in O(kCnTD
2) via kNN-S.

• Rows from 27 to 29 have negligible computational complexity
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Combining all the analyzed operations involved in NNAS algorithm and considering

nN ∝ D, the overall computational complexity as a function of nT and D is:

Citer =O(nB(nTD))︸ ︷︷ ︸
row 8

+O(nB(nNnT ))︸ ︷︷ ︸
rows 9-14

+O(nT − nB)︸ ︷︷ ︸
rows 12-14

+O(nBn
4
N)︸ ︷︷ ︸

rows 15-20

+

+O(kV nTnBD)︸ ︷︷ ︸
row 22

+O(nT log2(nT ))︸ ︷︷ ︸
row 24

+O(kCnTD
2)︸ ︷︷ ︸

row 26

(5.29)

=O(nTD
2 + nT log2(nT ) +D4) (5.30)

Therefore, the NNAS algorithm has a quasilinear complexity with respect to number of

training samples in DT .
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CHAPTER 6

NEAREST NEIGHBORS ADAPTIVE SAMPLING RESULTS

This chapter presents the results of numerous analyses conducted on sample distributions

obtained by applying NNAS algorithms for the design space sampling of of several exam-

ple functions. These analyses have been planned to stress different aspects of the proposed

technique such as sampling efficiency with respect to number of samples and computa-

tional time, ability to deal with critical errors in the computational simulation solver, multi-

response problems, and batch-mode applications.

All of the sampling processes have been completed using a surrogate modeling software

framework developed specifically for this dissertation. The framework is written using an

object-oriented implementation in the MATLAB language, and it has the following char-

acteristics:

modular It is possible to add new components such as SM functional forms or sampling

techniques without changing the overall structure of the simulation framework.

parallelizable The code makes it possible to run specific parts of the simulation using

parallel computing resources.

process time bookkeeping The framework records the time required to perform each step

of the surrogate modeling process for the assessment of ttot performance.

Design spaces of real engineering applications are usually defined by design variables

with a variety of units and frequently have several orders of magnitude of difference be-

tween them (e.g. the lift coefficient and the surface area of a wing). For this reason, it is

generally viewed as good practice to perform the sampling process on a normalized de-

sign space to avoid any influence of the magnitude of design variables on the sampling

performance and behavior. Even though the NNAS algorithm does not specifically require
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the normalization of the design space, all the results presented in this chapter have been

obtained by running NNAS on a 0-1 normalized design space.

The first part of this chapter describes the analysis plan that has been followed to gen-

erate the results presented in the following sections (Sections 6.2 to 6.8).

6.1 Analysis Plan

Both NNAS-B and NNAS-D techniques proposed in this dissertation are tested for the

design space sampling of several test cases representing both analytic functions and black-

box solvers, in particular:

• ten two-dimensional analytic functions;

• one five-dimensional engineering test case based on the XRotor code ([23]);

• one two-dimensional two-response analytical case;

• one five-dimensional three-response test case based on XRotor;

• one two-dimensional analytic function with infeasible region;

• one two-dimensional test case based on XRotor with infeasible region.

It is important to underline that the term “infeasible region” does not indicate the portion

of the design space where designs violate some constraints, but instead the region of the

design space where the evaluation of f returns a critical error. A detailed description of

the test functions along with the variable ranges is provided in appendix D. The analytic

test functions are selected among the ones usually considered as example problems in the

surrogate modeling literature [20, 31, 47, 84]; they range from smooth behavior as the

Branin function to responses with non-linear features clustered in a limiter region of the

design space as in the low-noise-amplifier current function, thereby including the common

response characteristics of real engineering problems [84]. The engineering test cases are

125



based on the XRotor code which is a popular physics-based black-box solver used to esti-

mate propeller performance. XRotor is a valuable tool to test sampling techniques because

it is extremely fast, it makes it possible to easily increase the problem dimensionality, and,

since it is physics-based, it embodies all the practical issues that can be encountered using

other black-box engineering software, i.e. solution divergence, critical errors.

Each sampling process is repeated 15 times with a different initial training dataset to

remove the dependence of results from the specific set of initial samples, and it is stopped

when DT contains 200 and 5000 samples for the 2D and 5D cases, respectively. The initial

training datasets DT,0 are generated using a maximin Latin hypercube space-filling proce-

dure, specifically the lhsdesign Matlab routine with 20 iterations. The representation

quality of the resulting sample distributions is assessed by training a global SM, and com-

puting the NRMSE with respect to a validation dataset DV :

NRMSE =

√
1
nV

∑nV

i=1

(
f(xV,i)− f̃(xV,i)

)2
max(f)−min(f)

(6.1)

where f̃ represents the SM, and the normalization factor is the response range of variability.

The locations on the unit cube of the 15 sets of starting points and the sets of validation

points are kept the same for problems with the same dimensionality. In this way, we avoid

the introduction of additional aleatory effects which can be caused by the randomization of

the validation points at each repetition. The validation datasets DV consist of 10000 and

100000 points for the 2D and 5D problems, respectively.

The SMs considered to assess the quality of the sample distributions are RBFs with 4

different kernel functions, namely cubic, gaussian, inverse multiquadric, and multiquadric

(appendix B). The RBF tuning coefficients θi are found during the SM training process by

the minimization of the NRMSE that is conducted using a line search algorithm (fmincon

Matlab routine) started from several different initial points in the θ domain. The number of

θ initial points has been set equal to three times the problem dimensionality, and similarly
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to what was done with DT,0 and DV , the initial θ values are kept fixed for cases with the

same dimensionality.

The NNAS sampling performance is compared with the performance obtained using

other state-of-the-art sampling techniques, namely an LHS (lhsdesign Matlab routine),

the CV-based MDSAS with active SM selection presented in [31] and chapter 4, and a

LOLA-Voronoi MISAS proposed in [20]. It should be noted that the MDSAS strategy is

tested only on single-response 2D problems because of the computational time required by

the computation of LOO-CV error at the beginning of each iteration. NNAS

All the plots with errorbars included in this chapter display the median and an errorbar

ranging from the 25% to the 75% quantiles of the 15 repetition results. Furthermore, two-

dimensional histograms (e.g. figure 6.6a) are used for the visualization of the average two-

dimensional point distribution. These plots are obtained by dividing the design space into a

9×9 uniform grid, counting the number of samples which fall within each tile, normalizing

the resulting count as nT/(9× 9) (which represents the number of samples expected to fall

within each tile if the samples were perfectly homogeneously distributed across the design

space), and finally averaging over the 15 repetitions. Therefore, the resulting metric is an

indicator of the departure of a sample distribution from a perfectly homogeneous one with

the same number of points.

The experiment plan just described is designed to analyze different aspects of the sam-

pling process that are crucial to validate the thesis hypotheses introduced in chapter 3 and

some assumptions made in algorithm development. In particular, section 6.2 tests the in-

fluence of a ρ̂ 6= 1 on sampling behavior, section 6.3 shows the NNAS convergence, and

section 6.5 illustrates the sampling efficiency and reduced computational cost of NNAS in

comparison with other state-of-the-art sampling techniques.
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6.2 Influence of ρ Target Value (ρ̂)

As described in section 5.1, NNAS selects the design space region where xnext will be

placed by means of a stochastic selection. This is based on a trapezoidal probability distri-

bution (eq.(5.3)) which is intended to keep the ratio of the PF∗ projections (ρ) as close as

possible to a target value ρ̂. A high-level discussion also suggested that a value of ρ̂ = 1 is

a reasonable choice to obtain an exploration-refinement balance, due to the normalization

factors proposed for the refinement and exploration metrics. This leaves two questions: is

ρ̂ = 1 generally an appropriate value for target ρ? And does the stochastic selection in fact

push the evolution of PF∗ toward ρ ≈ ρ̂ = 1?

To answer the first question, five sampling processes have been completed (as described

in section 6.1) for the two-dimensional single-response test cases using five different values

of ρ̂, namely 0.25, 0.5, 1, 2, 4. The average NRMSE value across the 15 repetitions and at

different stages of the sampling process (nT = 30, 50, 100, 200) is plotted versus ρ̂ in fig-

ure 6.1. As expected, higher values of ρ̂ are beneficial to responses that have high level or

non-linearity concentrated in a restricted portion of the design space, i.e. f2DExponential

(6.1d), f2DLNA (6.1e), f2DPeaks5 (6.1h), f2DPeaks8 (6.1i). However, if the response

has a milder non-linearity behavior (e.g. f2DBranin in 6.1a, f2DNonPolySurf in 6.1b,

f2DSixHumpCamelBack in 6.1c, f2DWitchHat in 6.1f, f2DPeaks3 in 6.1g), a high value of

ρ̂ may be detrimental to the sampling efficiency, and a value of ρ̂ = 1 leads to the best per-

formance in most of the cases. More enlightening is the sampling of the f2DExponential2

response (figure 6.1j) which is characterized by two highly nonlinear regions at the opposite

corners of the design space (figure 6.8q). In this case an appropriate exploration-refinement

balance is crucial to achieve an accurate representation of both regions, and ρ̂ = 1 shows

a substantial performance improvement in comparison with the other ρ̂ values for an error

level around NRMSE ≈ 10−2. Overall, this analysis suggests that – limited to the consid-

ered test cases – a value of ρ̂ = 1 is a reasonable choice to obtain an exploration-refinement
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balance, and henceforth all the results presented in this chapter are obtained considering

ρ̂ = 1.

Regarding the convergence of ρ toward ρ̂ = 1, figure 6.2 shows the evolution of PF∗

during a sampling process of three different test functions. As samples are added to DT ,

PF∗ not only moves toward the center of the R − E axes as expected, but its shape is also

pushed toward the target value ρ̂ = 1. The convergence to ρ ≈ ρ̂ = 1 is evident in figure

6.3, which displays the mean value of ρ over the 15 repetitions as function of nT for the

same three test functions.

6.3 Convergence of the Method

The plots in figures 6.4 and 6.5 show the evolution of NRMSE medians (across the 15 repe-

titions) obtained by training the four RBFs as the design spaces of the ten two-dimensional

and one five-dimensional test functions are sequentially sampled by NNAS-B and NNAS-

D (whiskers extend from 25% and 75% quantiles). As can be seen, all the trends have

decreasing behavior except for the cases in which the specific SM itself is inadequate to

represent the response (e.g. the cubic RBF for the f2DLNA). These set of results confirms

the representation accuracy of training datasets sampled using both the NNAS algorithms,

irrespective of the nonlinearity level of the response. The sampling performance compari-

son between NNAS algorithms and other state-of-the-art techniques is presented in section

6.5 after a description of some resulting sample distributions in section 6.4.

The other interesting aspect resulting from this analysis is the high variability in the

rate of convergence across different SMs and test functions: for example, the cubic RBF

is extremely efficient in modeling the f2DBranin response but completely unable to accu-

rately represent the f2DLNA test function. The impossibility of finding an SM formulation

that unequivocally outperforms all others in terms of modeling capability for any possible

function has been already investigated in previous studies ([31]) and presented in chapter
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2

Figure 6.1: Influence of ρ̂ on the sampling performance assessed in terms of NRMSE

130



(a) (b) (c)

Figure 6.2: PF∗ evolution for f2DBranin (6.2a), f2DLNA (6.2b), and f5DXrotor (6.2c)

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: ρ evolution for f2DBranin (6.3a, 6.3b), f2DLNA (6.3c, 6.3d), and f5DXrotor
(6.3e, 6.3f). 6.3b, 6.3d, and 6.3f report the ρ evolution of the last 100 sampling iterations.
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4. As discussed in chapter 3, this theoretical result is one of the main motivations behind

the development of model independent sampling strategies.

6.4 Example of Sample Distributions

This section presents an analysis of the resulting sample distributions obtained by using

NNAS-B and NNAS-D for the design space sampling of three two-dimensional functions,

specifically f2DBranin (figure 6.6), f2DLNA (figure 6.7), and f2DExponential2 (figure

6.8). These three example functions are representative of three different scenarios that

are possible to encounter in the application of surrogate modeling techniques for engineer-

ing applications: a smooth response (f2DBranin), a situation with accentuated nonlinearity

that is limited in a subregion of the domain (f2DLNA), and a case in which there are mul-

tiple portions of the design space where the response has a high departure from linearity

(f2DExponential2).

Figures 6.6 to 6.8 display the evolution of sample distribution as samples are sequen-

tially added to the training set by NNAS-B and NNAS-D, specifically:

• the first two columns report an example of sample distribution for NNAS-B (first

column) and NNAS-D (second column);

• the last two columns illustrate the average sample distribution across the 15 repetition

for NNAS-B (third column) and NNAS-D (fourth column) (the description about the

creation of these plots has been given in section 6.1);

• the first four rows are related to different number of samples in DT , namely 20, 40,

80, 100;

• the contour of the response is displayed at the bottom of each figure.

The effect of the NNAS refinement behavior is evident in figures 6.7 and 6.8: more

samples are placed in the regions of the design space where the algorithm has indicated
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2 (k) f5DXrotor

Figure 6.4: NNAS-B convergence using 4 RBFs, namely cubic (C), Gaussian (G), multi-
quadric (M), and inverse multiquadric (InvM)
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2 (k) f5DXrotor

Figure 6.5: NNAS-D convergence using 4 RBFs, namely cubic (C), Gaussian (G), multi-
quadric (M), and inverse multiquadric (InvM)
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a higher departure from linearity of the response. By examining figure 6.8, it is possible

to see how NNAS also detects the different degrees of response nonlinearity (figure 6.8q)

and how it accordingly places more points in the top-right than in the bottom-left region.

Instead, in the case of f2DBranin test function (figure 6.6), the refinement slightly pushes

the samples away from the response plateau roughly along one diagonal of the design space.

Additionally, the refinement effect is less notable than in the other test functions due to the

milder variation of the f2DBranin response in the domain (figure 6.6q).

“Reading” the figures from the top to the bottom it is possible to obtain some insights

about the evolution of sample distributions during the sampling process. In figure 6.6, the

gentle variation of the f2DBranin test function leads to an almost uniform sample distribu-

tion with a light refinement on the left part of the design space where the response presents

some nonlinearity (figure 6.6q). More interesting is the case of the f2DExponential2 test

function which is characterized by two localized nonlinear regions (figure 6.8). The non-

linearity on the top-right corner of the design space is higher that the one in the bottom-left

corner, but it is also confined to a smaller region. It is interesting to observe how NNAS

initially focuses attention on refining the wider nonlinear bottom-left region until the ex-

ploration does detect the smaller but more prominent nonlinearity on the top-right of the

design space.

Similar behaviors have been noticed in all the sampling processes completed for this

study, showing the capability of both NNAS algorithms to adaptively distribute samples

based on the nonlinearity characteristics of the response. In particular, the proposed refine-

ment metrics and stochastic Pareto sampling approach are capable of sufficiently detecting

the response nonlinearity and of successfully balancing the exploration and refinement be-

havior.

Some differences between the sampling behavior of NNAS-B and NNAS-D can be

identified by comparing the resulting distributions of f2DLNA and f2DExponential2 ex-

ample functions. Analyzing the last row of figures of f2DLNA and f2DExponential2, it is
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possible to notice how NNAS-D leads to more clustered samples than NNAS-B. More im-

portant, the directional sampling criterion that guides NNAS-D seems to help the algorithm

to better cluster the samples along the direction of maximum response nonlinearity, as it is

evident by comparing figures 6.7m and 6.7n. As discussed in the next section, these dif-

ferences in the sample distributions does not result in a substantial enhancement of NNAS

sampling performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q)

Figure 6.6: Example of samples distribution for f2DBranin function (q). The first two
columns report an example of sample distribution for NNAS-B (a,e,i,m) and NNAS-D
(b,f,j,n). The last two columns illustrate the average sample distribution across the 15
repetition for NNAS-B (c,g,k,o) and NNAS-D (d,h,l,m). The first four rows are related to
different number of samples in DT , namely 20, 40, 80, 100.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q)

Figure 6.7: Example of samples distribution for f2DLNA function (q). The first two
columns report an example of sample distribution for NNAS-B (a,e,i,m) and NNAS-D
(b,f,j,n). The last two columns illustrate the average sample distribution across the 15 rep-
etition for NNAS-B (c,g,k,o) and NNAS-D (d,h,l,m). The first four rows are related to
different number of samples in DT , namely 20, 40, 80, 100.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q)

Figure 6.8: Example of samples distribution for f2DExponential2 function (q). The first
two columns report an example of sample distribution for NNAS-B (a,e,i,m) and NNAS-
D (b,f,j,n). The last two columns illustrate the average sample distribution across the 15
repetition for NNAS-B (c,g,k,o) and NNAS-D (d,h,l,m). The first four rows are related to
different number of samples in DT , namely 20, 40, 80, 100.



6.5 Comparison with Other Sampling Techniques

This section compares the NNAS algorithms with other state-of-the-art sampling tech-

niques in terms of NRMSE as a function of number of samples (figure 6.9) and sampling

time (figure 6.10). As introduced in section 6.1, the three additional sampling techniques

considered for this comparison are LHS, LOLA-V, and CVVAS with active SM selection.

The CVVAS with active SM selection architecture presented in chapter 4 is a model de-

pendent strategy which uses NRMSE to select the most appropriate SM at the beginning

of each iteration. Instead, NNAS, LOLA-V and LHS are model independent techniques,

and therefore there is no information regarding the SM formulation that better describes

the training set available at a particular stage of the sampling phase. For this reason, the

NRMSE values reported in figures 6.9 and 6.10 for the model independent techniques

(NNAS, LOLA-V, and LHS) are obtained by performing the SM selection and the NRMSE

evaluation at the end of the sampling phase. Additionally, it is important at this point to

clarify that even though extreme attention has been paid to efficiently implement all the

algorithms, a quantitative analysis of the computational time performance can be challeng-

ing since it would be affected by the specific code implementation. On the other hand, the

qualitative analysis presented in this chapter is valuable to understand how some aspects of

each sampling algorithm impact the computational time. In the following results, LHS is

not included in the time comparison plots because it is an a priori method and it does not

have an appreciable sampling time, and CVVAS is considered only on the two-dimensional

cases due to its extremely high computational cost for high dimensional applications.

Figure 6.9 displays the evolution of NRMSE median as a function of the number of

training points for the ten two-dimensional and one five-dimensional test cases, and the

five different sampling strategies evaluated. As it is possible to notice, all the adaptive

sequential strategies have similar performance in terms of NRMSE vs nT for most of the

test functions, while – as expected – the sample distributions obtained with LHS are in-
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adequate to represent highly non linear responses like f2DExponential (6.9d), f2DLNA

(6.9e), f2DWitchHat (6.9f), f2DPeaks5 (6.9g), f2DPeaks8 (6.9i), and the f2DExponential2

(6.9j). These results show the ability of the proposed NNAS techniques to efficiently sam-

ple the design space of different responses with performance comparable to other sampling

techniques, and without the support of a global SM (as in CVVAS), thereby limiting the

computational complexity of the algorithm.

However, both NNAS algorithms show a degraded sampling performance in compar-

ison to LOLA-V (the other MISAS) when the algorithms are used for the sampling of

responses with high and localized nonlinearity like f2DExponential (6.9d) and f2DEx-

ponential2 (6.9j). This advantage in terms of nT of LOLA-V is related to its more ad-

vanced formulation of the neighborhoods used for the evaluation of the local nonlinearity,

which however causes an increase in computational complexity (O(n2
T )) and sampling

time (figure 6.10). Results in figure 6.9 also highlight how the directional sampling be-

havior of NNAS-D does not generally lead to a performance enhancement in comparison

with NNAS-B; a clear reduction of number of samples required to reach a given level of

accuracy is limited to f2DExponential and f2DExponential2 test cases.

Figure 6.10 shows the evolution of NRMSE as a function of the total sampling time

(tsampl) for all the considered example cases. Although it is negligible, function evaluation

time is not included in tsampl to focus the comparison between the different techniques only

on the computational time required by the sampling algorithm. As derived in section 5.7,

NNAS techniques have a quasilinear complexity with respect to nT (O(nT log2(nT ))) that

is caused by the Pareto ranking in the E-R domain. In comparison, MDSASs like CVVAS

have a complexity of at least O(n3
T ) if the supervising SM has a linear training process,

moving to higher order dependences in cases of nonlinear SM techniques such as artificial

neural network (ANN) or KRG. LOLA-V – which is the most similar MISAS to NNAS –

has instead a computational complexity of O(n2
T ) due to the algorithm used to define the

local neighborhoods involved in the refinement metric evaluation. Therefore, as expected,
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the CVVAS has the lowest rate of convergence due to the need of retraining a full SM

after each iteration to compute the refinement metric. Comparing NNAS and LOLA-V

techniques, the difference in sampling time is evident in all the test cases, and it increases

as more samples are added to the training set due to the quadratic dependence on nT of

LOLA-V complexity. For example, there is a difference of about two orders of magnitude

in tsampl required to reach a NRMSE level of 10−3 for the f5DXrotor problem. In this case,

the advantage of NNAS against LOLA-V is partially due to the fewer samples required to

reach this accuracy level (figure 6.9k), but is also due to the reduced algorithm complexity.

Another interesting observation can be made by comparing figures 6.9d with 6.10d, and

figures 6.9j with 6.10j. For both f2DExponential and f2DExponential2 cases, LOLA-V

requires fewer samples than NNAS to reach NRMSE < 10−2, but this advantage in term

of nT vanishes or it is overturned when sampling time performance is considered. The

main reason why LOLA-V preserves its advantage in tsampl for f2DExponential and not for

f2DExponential2 is the number of samples required to reach NRMSE < 10−2 in the two

cases that is 30 and 70, respectively. The higher nT together with the O(n2
T ) complexity

overturns the LOLA-V advantage in favor of NNAS for f2DExponential2 case.

This final analysis of the effect of algorithm complexity on sampling time is extremely

important if related with the study about total sampling time presented at the beginning of

this dissertation in section 1.3. While a difference between 100 and 101 seconds has proba-

bly a negligible effect in the total SM creation time, completing the sampling process in 101

or 103 second (as in the f5DXrotor case for NRMSE < 10−3) may lead to a considerable

reduction in overall surrogate modeling time and cost. This consequence is especially true

for engineering applications with a low function evaluation time, and therefore the τ -effect

in eq.(1.5) prevails.
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2 (k) f5DXrotor

Figure 6.9: Comparison with respect to nT
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2 (k) f5DXrotor

Figure 6.10: Comparison with respect to tsampl
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6.6 Sampling in Presence of Solver Critical Errors (Infeasible Region)

This section shows the results obtained by using the NNAS-D formulation presented in

section 5.4 for the design space sampling of two two-dimensional responses with infeasible

regions. The choice of limiting the analysis on two-dimensional design spaces is necessary

for a clear visualization of the resulting sample distributions. The first test case is the

analytic f2DPeaks5 function with a circular infeasible region at the center of the domain

(figure 6.11a), while the second one is based on XRotor solver in which the infeasibility

of the response is caused by impossibility of the software to solve supersonic conditions

(figure 6.12a).

Figures 6.11 and 6.12 display the contour plots of the two responses (6.11a and 6.12a),

the average sample densities across the 15 repetitions (6.11b and 6.12b), and sample distri-

bution examples where the training points in the infeasible region are marked in red (6.11c

and 6.12c). As it possible to see, NNAS-D succeeds in efficiently sampling the design

spaces without being affected by the unavailable response values in the infeasible regions.

Furthermore, the algorithm appropriately refines the portions of the domain with higher

nonlinearity, and it keeps exploring the infeasible region. The continuous exploration of

the entire design space is necessary because the algorithm does not know a priori the exact

extension of the infeasible region.

6.7 Multi-response Sampling

This section analyzes the NNAS-D sampling performance when used for multi-response

applications (formulation described in section 5.5). Specifically, the two example problems

considered are a two-dimensional two-response analytic function (f2DExponential2Split)

and a five-dimensional three-response case based on XRotor solver. In both cases, the

two responses are assumed equally important, and therefore the sampling algorithm has no

priority in enhancing the representation of one response against the other.
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(a) (b) (c)

Figure 6.11: f2DPeaks5 with infeasible region. Response contours (a), average sample
density (b), and a resulting sample distribution (c) with initial points marked in blue and
training sample in the infeasible region marked in red

(a) (b) (c)

Figure 6.12: f2DXrotor with infeasible region. Response contours (a), average sample
density (b), and a resulting sample distribution (c) with initial points marked in blue and
training sample in the infeasible region marked in red
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(a) (b) (c) (d)

Figure 6.13: Multi-response sampling results for f2DExponential2split test function: sin-
gle sample distribution (6.13a), average sample distribution (6.13b), contour plots of first
(6.13c) and second response (6.13d)

(a) (b)

Figure 6.14: NRMSE evolution for the first (6.14a) and second response (6.14b) of
f2DExponential2Split test function.

The sampling results for the f2DExponential2Split in figure 6.13 clearly show how the

NNAS multi-response formulation is able to efficiently sample the design space of this

two-responses problem, even though the range of two outputs differs by roughly an order

of magnitude (Figures 6.13c and 6.13d). The need for the capability of dealing with multi-

response problems with a large difference in output ranges is the reason for the refinement

metric normalization factor in eq.(5.16).

As additional confirmation of the accurate sampling of the multi-response design space,

figures 6.14 and 6.15 display the decreasing NRMSE of response representations for both

test cases as samples are sequentially added to DT by NNAS.
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(a) (b) (c)

Figure 6.15: NRMSE evolution for the first (6.15a), second (6.15b), and third response
(6.15c) of five-dimensional three-response test case based on XRotor solver.

6.8 Batch-mode Sampling

This section analyzes the sampling performance of the NNAS-D batch-mode formulation

presented in section 5.6. As described in section 5.6, batch-mode sampling algorithms are

extremely valuable because they identify nB new samples per sampling iteration, thereby

allowing the use of nowadays available high performance computing (HPC) architectures.

Batch-NNAS-D is used with different batch sizes (nB = 5, 10) for the design space sam-

pling of the two-dimensional example functions, and the results in terms of NRMSE as

function of number of samples in the training set (nT ) and number of simulated batches

(nS) are reported in figures 6.16 and 6.17, respectively. The batch results are also com-

pared with those obtained by the one-sample-at-time algorithm (nB = 1). It is important to

remember that batch-NNAS waits the complete evaluation of the previous batch of samples

before generating the next one because the current formulation does not have the ability to

handle situations in which there is a significant difference in evaluation time across the

design space.

Figure 6.16 clearly shows that an increase in batch size leads to a degradation in sam-

ple usage efficiency as indicated by the lower convergence rate of green and red lines in

comparison with the blue line. This performance decay with increase in batch size was

expected because the batch size nB represents the knowledge update rate of the algorithm.

In other words, the algorithm has to wait the complete evaluation of nB points before it
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can “refresh” is knowledge about the response, and therefore lower nB means more fre-

quent knowledge update, and consequentially a better sampling efficiency in terms of nT .

However, the main objective of a batch-mode algorithm is to efficiently leverage HPC ar-

chitecture by simultaneously running several function evaluations, thereby reducing the

total sampling time. Indeed, if the architecture has nB nodes available, the time cost for the

evaluation of nB designs is equivalent to the time required to evaluate a single design in a

single node architecture. Figure 6.17 shows the same results of figure 6.16 as a function

of evaluated batch nS . If we assume that the evaluation time for each batch is constant,

the lines in figure 6.17 also represent the NRMSE behavior as function of process time.

These results clearly show the remarkable reduction in simulation time that is achievable

by using the batch-mode NNAS algorithm coupled with an HPC architecture: the decrease

in sample usage efficiency in figure 6.16 is dominated by the reduction in simulation time

due to the simultaneous evaluation of nB designs.
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2

Figure 6.16: Comparison of batch sampling performance with respect to nT
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(a) f2DBranin (b) f2DNonPolySurf (c) f2DSixHumpCamelBack

(d) f2DExponential (e) f2DLNA (f) f2DWitchHat

(g) f2DPeaks3 (h) f2DPeaks5 (i) f2DPeaks8

(j) f2DExponential2

Figure 6.17: Comparison of batch sampling performance with respect to nT
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CHAPTER 7

CONCLUSIONS

This dissertation presented and tested a new class of model independent sequential adap-

tive strategies (MISASs) for early phases of engineering design, named Nearest Neigh-

bors Adaptive Sampling (NNAS). During the last decades, the increase in popularity of

surrogate models (SMs) for engineering application encouraged the development of more

advanced and efficient surrogate modeling techniques; in particular, several studies under-

lined how an accurate sampling phase is crucial to obtain SMs with a high representation

quality. Indeed, a poor distribution of training samples across the design space may lead to

a complete misinterpretation of the response that has to be modeled. The discussion about

the sampling phase for early phases of engineering design provided in chapter 1 resulted in

a list of requirements for effective sampling strategies:

• be adaptive to guide the sampling behavior based on the response information ini-

tially available or collected during the process;

• be sequential to permit in-the-loop SM quality checks and the suspension of the

sampling process whenever a certain accuracy level is reached;

• be flexible to be applicable to a wide range of problems;

• be simple and robust to be implementable by users with limited know-how in tech-

nical statistics and numerical methods;

• have low computationally complexity and good scaling behavior with respect to the

problem dimensionality to make the method usable in high-dimensional engineering

design problems;
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• be model independent to remove the impact of the particular SM choice on the sam-

pling efficiency and consequentially on the surrogate modeling representation qual-

ity.

• include a batch-mode formulation to efficiently use HPC resources;

• be able to deal with multi-response problems;

• have the ability to handle critical errors in the simulation code;

• be able to leverage derivative information which may be returned by the simulation

code.

The extensive literature review of available sampling techniques (chapter 2) revealed how

none of those is able to fulfill all the requirements listed above, thereby motivating the

development of a new sampling technique which is the main objective of this dissertation.

As discussed in section 2.1.3, the reason for model independence requirement is the

hypothesis that sampling performance of model dependent sequential adaptive strategies

(MDSASs) may deteriorate if the chosen supervising SM formulation is inaccurate to de-

scribe the response that has to be modeled. However, the literature about MDSAS lacks of

a comprehensive study regarding the effect of model dependency in the sampling perfor-

mance of such techniques. This motivates the first objective of this thesis that corresponds

to the analysis presented in chapter 4 in which an MDSAS was used for the design space

sampling of several example functions considering different SM formulations. The results

(section 4.3.2) validated the hypothesis showing that the sampling performance enhance-

ment expected by the use of an MDSAS technique may vanish if an inappropriate SM is

chosen at the beginning of the process. Therefore, we proposed a new sampling archi-

tecture in which the MDSAS is coupled with an active SM selection. In this way, the

algorithm actively chooses the SM formulation to use in the sampling phase based on its

representation accuracy of the available training dataset. The analysis of sample distribu-

tions obtained with the new architecture (section 4.3.3) showed how coupling an MDSAS
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with an active SM selection criterion drastically improves the sampling performance and

robustness of the overall surrogate modeling process, and it relieves the user from selecting

the SM formulation at the beginning of the process when there is usually limited knowl-

edge about the function to model. Even though the proposed architecture is able to improve

the sampling performance of MDSASs, the need of those techniques to retrain the super-

vising SM every time new information about the response becomes available results in an

excessive computational time, particularly for high dimensional applications. Furthermore,

any robustness or convergence issues, or other shortcomings affecting the supervising SM

formulation are inherited by the sampling algorithm. These aspects are the reasons why

“model independent” is one of the requirement for sampling techniques for engineering

applications.

The second objective of this dissertation was the development of a MISAS based on

local linear model, named basic NNAS (NNAS-B). The hypothesis was that the usage of

local linear model for the computation of the refinement metric efficiently spreads samples

across the domain accordingly to the response nonlinearity, resulting in a model indepen-

dent technique with a lower computational complexity in comparison with other state-of-

the-art MISAS. This goal has been achieved by the definition of a new refinement metric

that uses local hyperplanes to estimate the level of nonlinearity in the neighborhoods of

training samples. The application of hyperplanes as local approximations of the response

limits the complexity of the sampling algorithm (section 5.7) and it increases the ease of

strategy implementation (section 5.2.4). To assess NNAS-B sampling efficiency, NNAS-B

has been tested for the design space sampling of several example functions with different

level of feature complexity. In particular, the analytic test functions have been selected

among the most popular ones in the surrogate modeling research field, while the engi-

neering test case is based on the well-known XRotor software which estimates propeller

performance. The comprehensive set of results reported in chapter 6 showed how NNAS-

B has sampling performance similar to other state-of-the-art techniques, but with a lower
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computational cost thanks to the lower algorithm complexity. These results validate the

hypothesis that the proposed adaptive sampling technique based on local linear models is

model independent, robust, computationally efficient and ease to implement thanks to the

simple operations involved in the algorithm.

The third objective of this dissertation asked for a further development of the basic

NNAS to include a directional sampling criterion that was supposed to improve the sam-

pling performance. This goal has been achieved by a simple modification of the neighbor-

hood and hyperplane definitions used in the refinement metric evaluation, without affect-

ing the overall algorithm complexity. More specifically, the sampling phase in directional

NNAS (NNAS-D) is locally guided by the direction of the max hyperplane prediction error.

The opportunity to obtain sampling directionality by using an SM trained on the neigh-

borhood prediction errors has not been considered because it would have led to a model

dependent technique. Results (chapter 6) showed that the directional sampling criterion in

NNAS-D did not lead to the expected sampling performance enhancement in comparison

with NNAS-B, except for a limited number of cases. However, the NNAS-D formulation

makes it possible to directly use the response derivative information which may be returned

by the solver for the hyperplane definitions, thereby removing the need of solving the linear

system in eq.(5.23).

Both NNAS formulations introduced also a new approach to achieve the refinement-

exploration balance. As described in section 2.1.1, an efficient sampling technique should

both explore the design space to detect as many response features as possible, and refine the

sample distribution in portions of the design space where particular features are detected.

While most state-of-the-art techniques achieve the refinement-exploration balance either by

forming a convex sum of the two metrics or by combining the refinement metric with a dis-

tance penalty function, NNAS techniques approach the refinement-exploration balance as a

multiobjective problem: the sampling algorithm should place the samples in locations that

maximize both the exploration and the refinement metrics. Specifically, NNAS achieves the
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exploration-refinement balance by introducing a stochastic Pareto-ranking based selection

criterion in which the Pareto-ranking assures to identify the design space regions equally

optimal for the maximization of both exploration and refinement, while the stochastic fla-

vor mitigates any inductive bias which may be caused by an excessive confidence on the

collected data. Results in chapter 6 confirm the ability of the proposed stochastic Pareto-

ranking selection criterion to efficiently balance the exploration and refinement behaviors

of the sampling algorithm.

Regarding the computational complexity of the proposed NNAS algorithms, section 5.7

proved that both have a quasilinear computational complexity with respect to the number

of samples nT (O(nT log2(nT ))) which is lower than the complexity of other adaptive

sampling techniques like CVVAS (O(nn
T ) with n ≥ 3) and LOLA-V (O(n2

T )). Therefore

NNAS formulations meet the requirement of low computational complexity, at least in

comparison with other state of the art adaptive sequential techniques.

A further development of NNAS techniques included the batch operational mode, a

formulation for of multi-response applications, and the ability to deal with solver critical

errors, that are the fourth, fifth, and sixth dissertation objectives, respectively. As illustrated

in the results sections from 6.6 to 6.8, the final version of NNAS algorithms is able to

efficiently sample design spaces in all these three situations.

Overall, results showed that the proposed NNAS class of sampling techniques is able to

successfully fulfill all the requirements for early engineering design phase sampling tech-

nique listed at the beginning of this chapter. It is opinion of the author that the reduced

computational complexity, together with the ability of operating in batch-mode and being

unaffected by critical solver errors, make NNAS a valuable tool for high-dimensional SM

applications in early phase of engineering design. Summarizing, this dissertation provides

three main contributions to the research community: a comprehensive study about model

dependence effect on sampling efficiency, a new class of MISAS suitable for SM appli-
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cations in early engineering design phase, and a new approach to achieve an exploration-

refinement balance.

The research presented in this dissertation leaves open several starting points for future

development. First, a “more accurate approximation” of the Voronoi tessellation should

be included to remove the Monte-Carlo approach currently used in NNAS to estimate the

Voronoi cell volumes and corners. The use of a complete approximate Voronoi tessellation

would open the opportunity for a better definition of the neighborhoods, with expected ben-

efit in the overall sampling efficiency. Second, the NNAS techniques should be expanded

to incorporate response uncertainties, thereby making possible to apply NNAS also for real

experiment applications. Such a technique will be extremely valuable for hardware-in-the-

loop application like highly automated wind tunnel tests. Third, the usage of local linear

models to compute response approximation together with the stochastic Pareto-ranking

criterion to achieve exploration-refinement balance can be extended for optimization pur-

poses, thereby creating a model independent global optimization algorithm useful for prob-

lem with high dimensionality and/or limited function evaluation time. If coupled with the

ability of handling response uncertainties, such a technique will be a powerful optimization

tool for hardware-in-the-loop applications.
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APPENDIX A

SURROGATE MODEL QUALITY ASSESSMENT

This appendix illustrates the formulation of the GEE and LEE used in this dissertation.

A.1 Global Error Estimators

Conventional strategies to assess the global quality of a SM are cross-validation (CV) errors

[13], jackknife and bootstrap [26], Akaike’s information criterion (AIC) [12], and R2([61,

71, 87]); the two metrics considered in this dissertation are CV errors and R2.

CV is a common technique that investigates the SM quality using only the data avail-

able in the training dataset DT , without the need of a separate validation dataset DV . As

described in [69, 71], there are two prevalent CV strategies: the k-fold CV and the leave-

p-out CV. Both approaches firstly create certain subsets of DT , and then they train all the

SMs obtainable by leaving out one subset each time from the training set. The subset that is

not included in the training set is then used as validation data set to compute the CV error,

as described in [105]. The difference between k-fold and leave-p-out is the way the subsets

are created; whereas the k-fold randomly splits DT in k roughly equal subsets, leave-p-out

considers all the possible subsets obtainable leaving p points out. Obviously, the leave-p-

out approach is more computationally expensive than the k-fold, and several authors ([13,

61, 71, 105, 113]) suggest the use of p = 1 to reduce the computational time. The special

case of p = 1 is called leave-one-out CV (LOO-CV), which is the cross validation approach

considered in this study.

Once all the SMs required by the selected CV strategy are trained (nT in the case of

LOO-CV), it is possible to evaluate various GEEs. The RMSECV, also called PRESSRMS
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[71], AVERMSECV
[69], or σPRESS [33] is defined as

RMSECV =

√√√√ 1

nT

nT∑
i=1

(
yT,i − ỹ(−i)

i

)2
(A.1)

where ỹ(−i)
i = f̃ (−1)(xT,i) and f̃ (−1)(·) is the SM trained leaving the ith point out. Liu et

al.[61] define also the normalized RMSECV:

NRMSECV =
RMSECV

max(yT )−min(yT )
(A.2)

Another possible CV GEE is the CV maximum absolute error (MAECV) [71] in absolute

(A.3) and normalized version (A.4):

MAECV = max|yT,i − ỹ(−i)
i | i = 1 . . . nT (A.3)

NMAECV =
MAECV

max(yT )−min(yT )
(A.4)

Considering methods that require additional validation data DV , it is also possible to

define the corresponding versions of the metrics introduced above for cross validation:

RMSEV =

√√√√ 1

nV

nV∑
i=1

(
f(xV,i)− f̃(xV,i)

)2
(A.5)

NRMSEV =
RMSEV

max(y)T −min(y)T
(A.6)

MAEV = max|f(xV,i)− f̃(xV,i)| i = 1 . . . nV (A.7)

NMAEV =
MAEV

max(y)T −min(y)T
(A.8)

Another common GEE requiring validation data is R-square R2 ([46]):

R2 = 1−
∑nV

i=1(f(xV,i)− f̃(xV,i))
2∑nV

i=1(f(xV,i)− ȳV )2
(A.9)
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where ȳV is the mean value of the true function f evaluated at validation points.

Except for R2that indicates a good SM when it approaches 1 as it described by Equation

(A.9), a GEE value close to 0 is desirable as accurate SM indicator, as it is possible to infer

from Equation (A.1) to (A.8).

A.2 Local Error Estimators

Local error estimators provide metrics to assess the SM quality at specific locations in the

design space. They are commonly used to identify domain regions where the SM has a low

accuracy and additional training points are required for a SM refinement (section 2.1).

The relative absolute error (RAE) described in [71] can be defined either when the

validation data is available (RAEV) or when a CV approach is used (RAECV) ([113]):

RAEV,i =

∣∣∣∣∣f(xV,i)− f̃(xV,i)

f(xV,i)

∣∣∣∣∣ (A.10)

RAECV,i =

∣∣∣∣∣f(xT,i)− f̃(xT,i)
(−i)

f(xT,i)

∣∣∣∣∣ (A.11)

(A.12)

CV-variance (σ2
CV) is another LEE inspired by [16, 53]. The σ2

CV value at any location

x in the design space is the variance of the CV SM approximations f̃(x)(−i) as described

in Equation (A.13):

σ2
CV(x) =

1

nT

nT∑
i=1

(
f̃(x)(−i) − f̃(x)

)2
(A.13)

An example of σ2
CV evaluation is illustrated in Figures A.1 and A.2.
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Figure A.1: Example of SM involved in
the CV process f̃ (−i), complete SM f̃
and true function f

Figure A.2: Resulting σ2
CV for the exam-

ple reported in figure A.1
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APPENDIX B

SM FUNCTIONAL FORM FORMULATIONS

This appendix provides the mathematical formulations of the SM functional forms consid-

ered in the dissertation: radial basis function (RBF) SMs for the linear class, and a Kriging

(KRG) SM for the non-linear class. A comprehensive survey of available SM techniques is

out of the scope of this appendix, and overviews of most common SMs used in engineering

applications are available in [46, 87, 102].

B.1 Radial Basis Functions

The RBF models used in this study have 4 different kernel functions which are listed in

table B.1, and they consider a single basis function b(r̃) and a constant mean value ([25,

43, 47, 73]):

f̃(x) = µ+

nT∑
i=1

wib (r̃(x,xT,i)) (B.1)

= µ+ bTw (B.2)

where nT is the number of samples in the training dataset DT , and

µ = mean(yT ) (B.3)

The training process required to find the model coefficients wi involves the solution of a

linear system derived by the fact that f̃(XT ) = yT . The linear system equation is:

w = B−1(yT − µ) (B.4)
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Table B.1: Radial Basis Functions consid-
ered, [73]

Name Expression

Multiquadric (1 + (r/r0))
1/2

Inverse Multiquadric (1 + (r/r0))
−1/2

Gaussian exp(−(r/r0)
2)

Cubic 1 + (r/r0)
3

Thin Plate Spline (r/r0)
2 log(r/r0)

where B is the square symmetric matrix defined as:

B =


b(r̃(xT,1,xT,1)) · · · b(r̃(xT,1,xT,nT

))

... . . . ...

b(r̃(xT,nT
,xT,1)) · · · b(r̃(xT,nT

,xT,nT
))

 (B.5)

and the weighted radius r̃ between generic points xA and xB is:

r̃(xA,xB) =

√√√√ D∑
i=1

(
xA,i − xB,i

θi

)2

(B.6)

The tuning coefficients θi are found during the SM training process by the minimization

of the NRMSE. The minimization process is conducted using a line search algorithm

(fmincon Matlab routine) started from several different initial points in the θ domain.

The number of θ initial points has been set equal to three times the problem dimensionality,

and similarly to what was done with DT,0 and DV , the initial θ values are kept fixed for

cases with the same dimensionality.

B.2 Kriging Surrogate Models

The ordinary Kriging (OKRG) formulation adopted in this dissertation is based on [89], but

equivalent formulations are available in [33, 67, 87, 96, 98]. OKRG emulates the response

164



f(x) as a sum of a constant value µ and a departure term Z(x) which is a stochastic process

built with a distance-based correlation function. The model expectation and variance at

several locations X∗ = [x∗,1; . . . ;x∗,n] – representing the function prediction f̃(X∗) and a

measure for the local accuracy estimation respectively – can be computed as:

ỹ(X∗) = µ+ E(Z(x))

= µ+K(X∗, XT )K(XT , XT )−1(yT − µ) (B.7)

σ2(X∗) =var(f̌(X∗))

=diag(K(X∗, X∗)

−K(X∗, XT )K(XT , XT )−1K(XT , X∗)) (B.8)

where K(Xi, Xj) is the covariance matrix between two sets of sample locations Xi and

Xj , and µ is equal to the mean of the training response values (B.3).

The choice of the correlation function k(xA,xB) required to fully define a KRG model

has been proven to have a sensible impact on the resulting KRG model [24, 84, 89, 113,

114]. Although a proper choice of correlation function is crucial for the accurate modeling

of f(x) via a KRG model, a comprehensive discussion about this topic departs from the

scope of this dissertation, and detailed investigations are available in [24, 67, 84, 89, 113,

114]. The correlation function considered in this study is the widely used “Sum Squared

Exponential” (SSE) function ([67, 75, 89]):

k(xA,xB) = σ̃2
KRG exp

(
−

D∑
i=1

(
xA,i − xB,i

θi

)2
)

(B.9)

where [σ̃2
KRG, θi] are the model hyperparameters which represent the process variance and

the length scales of the model variations along each dimension ([89]). The estimation of

the hyperparameter values is done during the KRG training process, which is typically

accomplished by the maximization of the likelihood as described in [67, 84, 89]. Equations
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(B.7) to (B.9) represent the formulation of Ordinary Kriging Models (OKRG) used in this

study.
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APPENDIX C

ALGORITHM FOR APPROXIMATE VORONOI CORNER IDENTIFICATION

This appendix provides the description of the strategy for the approximate identification of

Voronoi corners; as described in sections 5.3 and 5.6, these geometrical details are required

by NNAS-D and NNAS batch-mode formulations.

Let’s assume that we would like to approximately identify the corners of the VC of

a generic point x∗ (VC∗) belonging to a D-dimensional dataset DA. The approximate

procedure described in this section returns the subset of randomly generated points that are

located “enough” close to the VC corners. The algorithm proceeds as follow:

1. creation of nR random points within an hypercube centered in x∗ and edge equal to

two times a length L that approximately represents the distance between x∗ and its

neighbors (e.g. the exploration metric Ei∗ for NNAS-B and NNAS-D if a 0-1 nor-

malized design space is considered). As a rule of thumb, nR should be proportional

to the dimensionality of the function, e.g. nR = cD.

2. Identification of the D + 1 nearest samples in DA for each random points. This

process can be efficiently completed by using k-nearest-neighbors search (kNN-S)

algorithm.

3. Identification of random points that are “enough” close to the VC∗ shell. A VC shell

is composed by the (D − 1)-dimensional hyperplanes that define the boundaries of

the VC (figure C.1a). First of all, we filter out all the random points that does not

have have x∗ as one of the first two closest neighbors (figure C.1b). Then we identify

the points that have the normalized value of difference of distances between them

and the first two neighbors in DA smaller than a given threshold (figure C.1c). More
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formally:

|d(xR,i,xcl,1)− d(xR,i,xcl,2)|
L

< cshell (C.1)

where d is the euclidean distance operator, xR,i is the ith random point, and the cl, j

indicates the jth closest sample of xR,i in DA. To these points, it is necessary to add

the random points that eventually are close to the external shell portion represented

by design space bounds. These points are identified by considering the random points

that have x∗ as closestDA neighbor and have a distance from whatever domain bound

less than a given threshold (it is possible to use the same value used for eq.(C.1)).

4. Identification of shell random points that are close to Voronoi corners. Those that

are close to an internal corner have the normalized maximum absolute value of the

difference in distance between them and the consecutive (D + 1) DA neighbors less

that a given threshold (figure C.1d), i.e.

max(|d(xR,i,xcl,1)− d(xR,i,xcl,2)|, . . . , |d(xR,i,xcl,D)− d(xR,i,xcl,D+1)|
L

< ccorners

(C.2)

The corner regions that are close to an external corner (i.e. that rests on one domain

bound) are instead found using the eq.(C.2), but considering only the (D+ 1−nbnd)

neighbors, where nbnd is the number of domain bounds where xR,i is closest to.

The described procedure returns a set of points that are located in the neighborhood of

Voronoi corners, and the index of DA points that rest on the approximate corners. The

two-dimensional procedure is illustrated in figure C.1.
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(a) (b)

(c) (d)

Figure C.1: Example of steps in the procedure to identify approximate Voronoi corners.
Figure C.1a shows the external (blu) and internal (red) portions of the Voronoi shell of the
cell “owned” by the red dot. Figure C.1b displays the hypercube delimiting the region in
which the random points are created. The points that have the red dot as one of the two
closest neighbors are in black. Figure C.1c plots the subset of random points that are close
“enough” to the Voronoi shell. Finally, figure C.1d shows the random points that have been
selected as representative of the Voronoi corners.
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APPENDIX D

TEST FUNCTIONS

This section provides the formulations and the ranges of the test function used in this study

(table D.1).

Table D.1: List of test functions with relative dimensionality and references

Function name Dimensionality (D) Number of responses (nf ) References

f2DBranin 2 1 [3, 116]
f2DPeaks3 2 1 [20, 31]
f2DPeaks5 2 1 [20, 31]
f2DPeaks8 2 1 [20, 31]
f2DExponential 2 1 [16]
f2DExponential2 2 1 New
f2DNonPolySurf 2 1 [16, 70]
f2DSixHumpCamelBack 2 1 [16, 70]
f2DLNA 2 1 [38, 55]
f2DWitchHat 2 1 [31]
f2DExponential2Split 2 2 New
f5DXrotor 5 1 New

D.1 Branin Function

Eq.(D.1) is a common test function used as optimization algorithm test case; more infor-

mation is available in [3]. This function is used as test case in [71, 116].

f(x1, x2) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos (x1) + 10 (D.1)

The ranges of the two design variables are listed in table D.2.
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Table D.2: List of f2DBranin design variable and their
ranges

Design variable Meaning Ranges

x1 First design variable [−5, 10]
x2 Second design variable [0, 15]

D.2 Peaks Function

The Peaks function is available as the built-in MATLAB function Peaks, and it is used

as test case in [20]. This function is obtained by translating and scaling Gaussian distribu-

tions. The same formulation is used for f2DPeaks3, f2DPeaks5, f2DPeaks8 by changing

the ranges of the design variables as indicated in table D.3.

Table D.3: List of f2DPeaks design variable and their
ranges

Design variable Meaning Ranges

x1 First design variable [−5, 5]
x2 Second design variable [−5, 5]

D.3 Exponential Function

f(x1, x2) = x1 exp(−x21 − x22) (D.2)

The ranges of the two design variables are listed in table D.4.

D.4 Exponential2 Function

f(x1, x2) = x1 exp(−x21 − x22) + 2
(
x̃1 exp(−x̃21 − x̃22)

)
(D.3)
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Table D.4: List of f2DExponential design variables
and their ranges

Design variable Meaning Ranges

x1 First design variable [−2, 6]
x2 Second design variable [−2, 6]

where

x̃1 = 2 (x1 − 5) (D.4)

x̃2 = 2 (x2 − 5) (D.5)

The ranges of the two design variables are the same for f2DExponential function and they

are listed in table D.4.

D.5 Non Polynomial Surface Function

f(x1, x2) =
(30 + 5x1 sin (5x1)) (4 + exp (−5x2))− 100

6
(D.6)

The ranges of the two design variables are listed in table D.5.

Table D.5: List of f2DNonPolySurf design variables
and their ranges

Design variable Meaning Ranges

x1 First design variable [0, 1]
x2 Second design variable [0, 1]
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D.6 Six-Hump Camel-Back Function

f(x1, x2) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 +

(
−4 + 4x22

)
x22 (D.7)

The ranges of the two design variables are listed in table D.6.

Table D.6: List of f2DSixHumpCamelBack design
variables and their ranges

Design variable Meaning Ranges

x1 First design variable [−2, 2]
x2 Second design variable [−1, 1]

D.7 LNA Function

Eq.(D.8) describes the admittance of a Low Noise Amplifier model; more information is

available in [55]. This function is used as test case in [38]
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y12 ∼=
gm

1− ω2Cgs(Ls + Lm) + jωLsgm
(D.8)

W = 100 · 10−6 · 10W (D.9)

Ls = 0.5 · 10−9 · 10Ls (D.10)

f = (11 + 10f) · 109 (D.11)

L = (90 + 30L) · 10−9 (D.12)

VGT = 0.275 + 0.2V GT (D.13)

Lm = 1 · 10−9 · 10Lm (D.14)

ω = 2πf (D.15)

gm = 1 · 10−4W

L
VGT (D.16)

Cgs = 0.01 ·WL (D.17)

The output considered is |y12| as function of W and Ls for the f2DLNA and of W , Ls, f ,

L and V GT for the f5DLNA. The meaning of the variables and the constant parameters are

listed in table D.7.

Table D.7: List of f2DLNA and f5DLNA design variables and their ranges

Design variable Meaning Ranges f2DLNA Ranges f5DLNA

W Normalized width [−1, 1] [−1, 1]
Ls Normalized inductance [−1, 1] [−1, 1]

f Normalized frequency 1 [−1, 1]
L Normalized length 1 [−1, 1]
V GT Normalized voltage 0 [−1, 1]
Lm Normalized inductance 0 0
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D.8 Witch Hat Function

f(x1, x2) =0.5 sin

(
−π

2
+

π√
2

(
cos
(π

4

)
x1 + sin

(π
4

)
x2

))
− exp

(
−(x1 − 0.5)2

2 · 0.12
− (x2 − 0.5)2

2 · 0.12

)
(D.18)

The ranges of the two design variables are listed in table D.8.

Table D.8: List of f2DWitchHat design variables and
their ranges

Design variable Meaning Ranges

x1 First design variable [0, 1]
x2 Second design variable [0, 1]

D.9 Exponential2Split Function

f2DExponential2Split is a two-responses function, and the formulation is inspired by the

f2DExponential2 test function (D.4).

f1(x1, x2) = 20x1 exp(−x21 − x22) (D.19)

f2(x1, x2) =
(
x̃1 exp(−x̃21 − x̃22)

)
(D.20)

(D.21)

where

x̃1 = 2 (x1 − 5) (D.22)

x̃2 = 2 (x2 − 5) (D.23)
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The ranges of the two design variables are the same for f2DExponential function and they

are listed in table D.4.

D.10 Estimation of propeller performance by Xrotor solver

f5DXrotor test functions use a black-box solver (XRotor) to estimate the performance of

different propeller geometries at different operative conditions. In particular, the single

response f5DXrotor compute the propeller shaft power, while three-response test case ad-

ditionally returns estimations of thrust and efficiency. The spanwise variations of chord

length and twist angle are described by two 1D NURBS functions of 3rd and 4th order,

respectively. The ranges of the five design variables and the fixed values for f5DXrotor

function are listed in table D.9 and table D.10, respectively.

Table D.9: List of f5DXrotor design variables and their ranges

Design variable Meaning Ranges

RPM Propeller rotational speed [2500, 3500] RPM
v Air speed [5, 40] m s−1

y
(c)
tw,1

y coordinate of the first
twist NURBS control point [65, 100] ◦

y
(c)
tw,2/y

(c)
tw,1

Ratio of y coordinates of the second and
first control points for the twist NURBS [0.3, 0.47]

y
(c)
tw,3/y

(c)
tw,2

Ratio of y coordinates of the third and second
control points for the twist NURBS [0.3, 0.47]
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Table D.10: List of f5DXrotor fix parameters

Parameter Meaning Value

RT Tip radius 0.6 m
h Altitude 0 m

x̄
(c)
ch,1

x coordinate of the first control point
of the chord NURBS normalized by RT

1/15

x̄
(c)
ch,2

x coordinate of the second control point
of the chord NURBS normalized by RT

0.27

x̄
(c)
ch,3

x coordinate of the third control point
of the chord NURBS normalized by RT

0.9

x̄
(c)
ch,4

x coordinate of the fourth control point
of the chord NURBS normalized by RT

0.9993

ȳ
(c)
ch,1

y coordinate of the first control point
of the chord NURBS normalized by RT

0.14

ȳ
(c)
ch,2

y coordinate of the second control point
of the chord NURBS normalized by RT

0.3

ȳ
(c)
ch,3

y coordinate of the third control point
of the chord NURBS normalized by RT

0.11

ȳ
(c)
ch,4

y coordinate of the third control point
of the chord NURBS normalized by RT

0.0137

x̄
(c)
tw,1

x coordinate of the first control point
of the twist NURBS normalized by RT

1/15

x̄
(c)
tw,2

x coordinate of the second control point
of the twist NURBS normalized by RT

0.4

x̄
(c)
tw,3

x coordinate of the third control point
of the twist NURBS normalized by RT

0.9993

αCL=0 Zero lift angle 0 ◦

dCL/dα Lift coefficient slope 2π
CL,max Max lift coefficient 1.5
CL,min Min lift coefficient -0.5

(dCL/dα)st Lift coefficient slope at stall 0.1
Cm Moment coefficient -0.1

CD,min Min drag coefficient 0.131̇0−1

CL@CD,min Lift coefficient at minimum drag 0.5
dCD/d(C2

L) Drag polar coeffiecient 0.41̇0−2
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