Computational Model for an Extendable Robot Body Schema

Alexander Stoytchev
Mobile Robot Laboratory, Georgia Institute of Technology

Atlanta, Georgia 30332-0280 U.S.A.
e-mail: saho@cc.gatech.edu
Technical Report GIT-CC-03-44
October 21, 2003

Abstract

The body schema is a perceptually derived model of the body which the brain uses to register the location of sensations
on the body and to control body movements. This model of the body is not static and can be extended by noncorporeal
objects attached to the body such as clothes, ornaments, and tools. This paper describes a computational model for a robot
body schema that has extensibility properties similar to its biological analog. The model is based on the model developed
by Morasso and Sanguineti (1995) which is modified here to have extendibility properties. The notion of extended robot

body schema is introduced.

1 Introduction

The sense of body is probably one of the most important senses and yet it is one of the least well studied. It is a complex
sense, which combines information coming from proprioceptory, somatosensory, and visual sensors to build a model of the
body called the body schema. It has been shown that the brain keeps and constantly updates such a model in order to
register the location of sensations on the body and to control body movements (Head and Holmes, 1911, Berlucchi and
Aglioti, 1997, Berthoz, 2000, Graziano et al., 2002).

Recent studies in neuroscience have shown that this model of the body is not static but can be extended by noncorporeal
objects attached to the body such as clothes, ornaments, and tools (Aglioti et al., 1997, Iriki et al., 1996, 2001). Thus, it
may be the case that as far as the brain is concerned the boundary of the body does not have to coincide with anatomical
boundaries (Iriki et al., 1996, 2001, Tiemersma, 1989).

An important problem that many organisms have to solve early in their developmental cycle is how learn a model of



the sensory stimuli produced by their own bodies. Another important problem is how to relate the capabilities of one’s
own body to the capabilities of objects that can be attached to the body, i.e., how to discover the affordances of objects
(Gibson, 1979).

Many autonomous robots are faced with the same problems (Asada et al., 2001, Yoshikawa et al., 2002). The robotics
literature, however, provides few answers to these important problems. This paper attempts to address both of these
problems by describing a computational model for a robot body schema that has extensibility properties similar its
biological analog. The first problem is addressed by building a sensory motor model of the robot’s body that combines
visual and proprioceptive information. The second problem is addressed by morphing the body representation of the robot
to accommodate the attached object. The robot control algorithms, however, remain unchanged which allows the robot

to control the object as if it is controlling its own body.

2 Related Work on Body Schemas

The notion of body schema was first suggested by Head and Holmes (1911) who studied the perceptual mechanisms that
humans use to perceive their own bodies. They define the body schema® as a postural model of the body and a model of the
surface of the body (Head and Holmes, 1911). It is a perceptual model of the body formed by combining information from
proprioceptory, somatosensory, and visual sensors. They suggested that the brain uses such a model in order to register
the location of sensations on the body and to control body movements.

Indirect evidence supporting the existence of a body schema comes from numerous clinical patients who experience
disorders in perceiving parts of their bodies often lacking sensations or feeling sensations in the wrong place (Frederiks,
1969, Head and Holmes, 1911). One such phenomenon called phantom limb is often reported by amputees who feel
sensations and even pain as if it was coming from their amputated limb (Melzack, 1992, Ramachandran and Rogers-
Ramachandran, 1996).

Direct evidence for the existence of a body schema is provided by recent studies which have used brain imaging techniques
to identify the specialized regions of the primate (and human) brain responsible for encoding it (Berlucchi and Aglioti,
1997, Iriki et al., 1996, 2001, Graziano et al., 2000). Other studies have shown that body movements are encoded in terms
of the body schema (Berthoz, 2000, Graziano et al., 2002). This seems to be the case even for reflex behaviors (Berthoz,

2000).

!The exact term that they use is “postural scheme”. The term body schema was first used by Pick (1922) and was later made

popular by Schilder (1923) who published a monograph in German entitled “Das Korperschema”.



Perhaps the most interesting property of the body schema is that it is not static but can be modified and extended
dynamically in very short periods of time. Such extensions can be triggered by the use of noncorporeal objects such
as clothes, ornaments, and tools (Iriki et al., 1996, Tiemersma, 1989). Thus, the body schema is not tied to anatomical
boundaries. Instead, the actual boundaries depend on the intended use of the body parts and the external objects attached
to the body. For example, when people drive a car they get the feeling that the boundary of the car is part of their own
body (Schultz, 2001). However, when they get out of the car their body schema goes back to normal. In some cases,
however, it is possible that a more permanent modification of the body schema can be established by objects such as
wedding rings that are worn for extended periods of time (Aglioti et al., 1997).

It has been suggested that the pliability of the body schema plays a role in the acquisition of tool behaviors (Head and
Holmes, 1911, Paillard, 1993). Recent studies conducted with primates seem to support this hypothesis (Iriki et al., 1996,
Berlucchi and Aglioti, 1997, Berti and Frassinetti, 2000). Iriki et al. trained a macaque monkey to retrieve distant objects
using a rake and recorded the brain activity of the monkey before, during, and after tool use. They discovered a large
number of bimodal neurons (sensitive to visual and somatosensory stimuli) that appear to code the schema of the hand
(Iriki et al., 1996). Before tool use the receptive fields (RF) of these neurons were centered around the hand. During tool
use, however, the somatosensory RF stayed the same but the visual RF was altered to include the entire length of the rake
or to cover the expanded accessible space (Iriki et al., 1996).

This modification of the visual receptive field is limited to the time of tool usage and is conditional upon the intention
to use the tool. When the monkey stopped using the tool, or even continued to hold the tool without using it, the visual
RF contracted back to normal (Iriki et al., 1996). In a follow up study the monkey was prevented from directly observing
its actions and instead was given feedback only through a camera image projected on a video monitor. In this case the
visual RF of the bimodal neurons was projected onto the video screen (Iriki et al., 2001).

These studies suggest that the encoding of the body schema in the brain is extremely pliable and tools can easily be
incorporated into it. Studies conducted with humans have reached similar conclusions (Berti and Frassinetti, 2000, Farné
and Lidavas, 2000). In addition to tools, the body schema can also be modified by prosthetic limbs in amputee patients.
These patients can incorporate the prosthetic limb into their body schema in such a way that they can perform the same
or similar tasks as if with their real limb (Tsukamoto, 2000).

Unfortunately, little is known about the neural organization of the body schema in primate brains. One recent study,
however, has made some quite striking and unexpected discoveries which seem to reject previous theories of the organization

of the map of the body and how it is used to control body movements. Graziano et al. (2002) microstimulated the primary



motor and premotor cortex of monkeys at behaviorally relevant time scales (500 ms). Previous studies have already
established that stimulation in these areas produces muscle twitches but the stimulation times have always been quite

short. The longer stimulation times allowed the true purpose of these areas to be revealed:

“Stimulation on a behaviorally relevant time scale evoked coordinated, compler postures that involved many
joints. For example, stimulation of one site caused the mouth to open and also caused the hand to shape into a
grip posture and move to the mouth. Stimulation of this site always drove the joints toward this final posture,
regardless of the direction of movement required to reach the posture. Stimulation of other cortical sites evoked

different postures.” (Graziano et al., 2002)

Similar results were obtained not only for hand movements but also for facial expressions: stimulation of a particular
site always produced the same final facial expression regardless of the initial facial expression. Similar results were also
obtained even when one of the monkeys was anesthetized but the accuracy of the final postures in this case was less
precise. Another interesting observation was that obstacles were completely ignored during arm movements induced by
microstimulation. If there was an obstacle along the trajectory from the starting posture to the final posture the hand will
try to go straight through as if the obstacle did not exist.

These results have led Graziano et al. to conclude that these sites in the primate brain form a coherent map of the
workspace around the body. What is even more important, however, is the realization that this map plays an active part
in the formation and execution of all kinds of movements. Achieving complex postures involving multiple joints may not
be a highly complex task but a consequence of the encoding of this map. Interpolation between different building blocks

of this map (i.e., final postures) can be used to produce highly coordinated movements across multiple joints.

Section 3 describes a computational model of a Self-Organizing Body-Schema (SO-BoS) developed by Morasso and
Sanguineti (1995) which is adopted and extended in this paper. This model displays similar properties to the observations
made by Graziano et al. The equivalent of final postures in Graziano et al.’s paper are called body icons in the model of
Morasso and Sanguineti (1995). When a body icon is stimulated it acts as an attractor causing the joint configuration of
the robot to converge on the one described by the body icon. Extension of SO-BoS model, motivated by the findings of

(Iriki et al., 1996), will be introduced in Section 4 to model the extensibility of the Robot Body Schema.



3 Computational Model for a Robot Body Schema

The computational model chosen for the implementation of the RBS is based on the Self-Organizing Body-Schema
model introduced in (Morasso and Sanguineti, 1995). This section provides a brief summary of that model and interprets
it in terms of existing robotics research.

The method is presented for a robot with M degrees of freedom each with an associated joint angle 8;. The configuration

space, C, of the robot is determined by the Cartesian product of the joint angles:

C=01x80, x...0u CRM

Suppose that there are IV locations on the body of the robot which can be reliably detected with the robot’s sensors.
Let Lg = {Ly,,Lr,,..., Ly} be the set of labels referring to these locations. Let each location L,; have an unique sensory
signature S,;. For each location L,; there is also a function s,, which maps the position of L,, into ego-centric sensor

coordinates, i.e.,

Sr; : SensorData, S,;, - X, Y, Z

Let the range of s,, be the set of three-dimensional vectors V,, ( V», C ®*) and let v,, be a specific vector in this space.

The sensor space S of all sensory stimuli coming from the robot’s body is given by the Cartesian product of all V,,

S=Vr X Vry X.. Vry

The main idea behind the SO-BoS model is to link the configuration space and the sensor space of the robot into one

CS-space.

CS—space =C x S

The CS-space can be used to identify the current robot configuration as well as to plan robot movements. Previous
approaches described in the robotics literature have noted the usefulness of this space for planning and specifying robot
movements (Hervé et al., 1991, Sharma et al., 1992, Sharma and Sutanto, 1996). However, they have used algebraic
techniques to express this space as an (M+N)-dimensional manifold which is hard to use even for simple robots (Sharma
and Sutanto, 1996). The current approach uses non-parametric statistical techniques to approximate the CS-space.

Let p = [01,62,...,60n] represent a joint angle vector and let p; = [éﬁ, 65, ..., é}vj] (p; € C) be a specific instance of
this vector. Let 8 = [vy;, Ury, ..., Ury ] be a vector which represents the coordinates of body locations L,, through L,, in

sensor space. Also, let §; = [ﬁil, 17;‘;2, - ,ﬁiN] (ﬂl € 8) be a specific instance of this vector.



The body schema model is built around the concept of a body icon which is a pair of vectors (4, 37,) representing the
motor and sensory components of a specific joint configuration of the robot. A large number of empirically learned body
icons, [(;Ii, ,81), i=1,... ,I] , is used to approximate the CS-space. It is believed that the brain uses a similar representation
encoded as a cortical map (Morasso and Sanguineti, 1995, Graziano et al., 2002).

The main building blocks of the SO-BoS model are processing elements (PEs) which have an activation function U; and
a preferred body icon (g, Bl) The body icons are learned from self-observation data gathered while performing random
joint movements using the algorithm described in (Morasso and Sanguineti, 1995). The activation function of each PE is
determined by the normalized gaussian or softmax function,

oy _CUn= i)
U = S G .

where G is a gaussian function of equal variance and zero mean, y is the current joint angle configuration, and ji; is the
motor component of the preferred body icon for this PE. The variance, o2, of the gaussian function G is the same for all
PEs and its magnitude determines the size of their receptive fields. If ¢” is small then a PE will be activated only if its
preferred motor vector fi; is close to the current joint vector p. If o2 is large then more PEs will be activated for any
specific joint configuration pu.

The motor-sensory mapping (or forward kinematics) is explicit for motor vectors which are the same as one of the fi;
prototypes in the learned body icons (i.e., B; can be obtained directly from the sensory component of the same body icon).
For an arbitrary joint vector p (u # fii,t = 1,...,Z) the corresponding 8 vector can be approximated with the following

formula (Morasso and Sanguineti, 1995),
BT () = Y Bili(p) 2)

which can be interpreted as a minimum variance estimator. Thus, the forward model 8 = 8(ji) can be approximated for
any joint vector using Formula 2. This formula can also be interpreted as a two step approximation algorithm using look
up and interpolation. The first step looks up the most highly activated PEs for the given joint angle p. The second step

sums the §3; vectors of these PEs (scaled by their activation value U;) to approximate 8(y).

3.1 Achieving Goal Directed Movements

This body schema representation can also be used for control of goal directed movements. The idea is to specify the
robot movements in S-space, but carry the movements in C-space. The body schema representation allows that without

the need for inverse kinematics transformations because the two spaces are combined into one in the form of body icons.



The learning algorithm described in (Morasso and Sanguineti, 1995) guarantees that each processing element has a
neighborhood of other processing elements whose body icons are similar to its own. This similarity is both in terms of
their p and 8 vectors as well as their activation levels for a fixed joint vector (Morasso and Sanguineti, 1995). This locality
property can be exploited to implement a gradient ascent strategy for moving the robot from one configuration to another.

The gradient ascent is carried out in a potential field £ in which the location of the target has a maximum value and
all other points are assigned values in proportion to their distance from the target. The potential field is imposed on the
fii components of all PEs but is computed based on the B; components and their distance to the goal in S-space. The
calculation of the potential field is similar to the motor schema approach to robot control (Arkin, 1998). In this case,
however, the potential field is discretized across all PEs. Each PE; is assigned a value é which is a sample of the magnitude

of the potential field. The global potential field can be approximated using the following equation:
€)=Y &Uiw) (3)
i

Taking advantage of the locality property of the PE array and the form of the softmax activation function, the gradient

ascent strategy can be achieved with only local computation (Morasso and Sanguineti, 1995),

p= Z(ﬂi — W)&Us(p) (4)

4 Extending the Robot Body Schema

The RBS model described in the previous section is not pliable, i.e., it is not affected by objects attached to the robot.
This section modifies that model to have extensibility properties similar to the biological body schema. The extension of
the RBS by an object should be subject to three conditions: 1) there must be a physical contact with the object; 2) there
must be a motivation to use the object (i.e., just touching an object during a collision should not trigger an extension);
and 3) there must be perceptual and computational routines to update the RBS model to incorporate the object and thus
produce the Eztended Robot Body Schema (ERBS). This extension process is shown on Figure 1.

The main idea behind the extension method presented here is to add offset vectors to the sensory components of all
body icons. Thus, the extended body icons have the form < [, Bi + offset; >. In order to achieve this extension the
sense of touch will be used. This is a natural choice because touch plays an important role in the extension of the body
schema in primates (Iriki et al., 1996). As before, let Lg = {L,,, Ly,, ..., L,y } be the set of robot body locations and let

C={C,,,Cr,,...,Cry} be the set of contact (or touch) sensors associated with these locations. Let each contact sensor,
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Figure 1: The extension of the robot’s body schema is conditional upon touch sensations produced by the object

when it is grasped as well as motivation to use the object.

Cj, have an activation function, ¢;, which returns a binary value according to the following activation function

0 : if Fo, <F,
ci =

1 : otherwise

where F} is a threshold value (one and the same for all C;) and Fg, is the magnitude of the contact force applied at Cj.
For the sake of explanation, assume that only one contact sensor is triggered whenever an object is attached to the
robot. Let this sensor be C,; and let its corresponding body location be L, (this location will be referred to as the
attachment point). Furthermore, assume that the attached object has only one location, Lo, that can be detected by the
robot’s sensors and let v, represent its coordinates in ego-centric sensor space. Now the RBS can be extended by adding

offset vectors to the sensory components of all body icons that correspond to the attachment point. In other words,

f)ij = ﬁij + oﬁsetij (5)

The offset vectors effectively shift the centers of the visual receptive fields of the body icons. Once the extended body
icons are calculated the position of L, can be controlled using the potential field method described in Section 3.1. The
offset vectors are computed continuously which allows the RBS to be extended dynamically. For example, if the object is
re-grasped the position of L, relative to the attachment point will change and so will the extended body icons. The same
holds true if another location on the object is chosen for the extension.

The magnitudes of the offset vectors are the same for all body icons. They are equal to the distance between the
position of the object location, v,p, and the position of the attachment point, v,;. The orientations of the offset vectors,
however, are different for all body icons since they depend on the joint configuration of the robot. Because the body icons
already contain the positions of all body locations for different joint angles the offset vectors will be expressed in terms of
these stored positions. This approach simplifies the calculations needed to extend the RBS.

The idea is to express the offset vectors in a coordinate system that is centered at the attachment point (Figure
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Figure 2: The offset vector is expressed in a coordinate system centered at the attachment point L,;. See text

for details.

2). The basis vectors of this coordinate system, Z,;, #;, and Z,,, are chosen so that they are expressible in terms of
the positions of the body locations of the robot. In other words, &»; = f(Vry,Vrg,---,Vry)s Fr; = 9(Vry,Vrgs - v o Ury),
Zr; = h(Vry,Vry, - - ., Ury ). The problem of how the basis vectors can be identified and learned automatically is left for future
work. The offset vector for the current joint configuration of the robot can be expressed as: oﬁset,j = PuZr; +Dylr; + P22,
The scalars pg, py, and p, can be obtained by projecting the offset vector onto the three basis vectors (Figure 2).

In order to compute all offset vectors the basis vectors, fc'ij, gjﬁj, and Z‘;j should be computed for all joint configurations

stored in the body icons. These vectors are given by

ﬁjzf(ﬁipﬂiz:--wﬁi]v)v ﬁj=g(ﬁ£11ﬁ£27---7ﬁ£1\7)7 Zf‘jzh(ﬁi17ﬁf‘2""7ﬁi]\])

Thus, the offset vectors are given by

Oﬁsetij :piﬂiﬁj +py?f;j +pz2_fij

5 Experiments

The ideas presented in Section 4 were tested with a simulation of a two-dimensional manipulator arm with two rigid
limbs and two rotational joints (Figure 3a). The limbs have lengths I; and I, and the joints can be rotated independently
at angles 6; and #2. Both joints can rotate only 180 degrees, i.e., 0 < 61,62 < m. The free end of the second limb has a
gripper which can be used to grab objects. The robot also has a camera which can observe the movements of the limbs.

The robot has two body locations, L,, and L,,, associated with the joint between the two limbs and the free end of
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Figure 3: (a) The two joint robot used in the experiments. The robot has two body locations L,, and L,, and
two joint angles 6; and 65. (b) The coordinates of the two body locations in visual space are given by the two
vectors v, and v,,. The coordinates of the attractor object are given by the vector vg,. (c) The motor vector,

i, for the robot configuration shown in a).

the second limb (Figure 3a). Their coordinates in sensor space are given by the vectors v,, and v,,. Both v,, and v,, lie
in a two-dimensional space XY defined by the camera image (Figure 3b). The sensory vector 3 is given by 8 = {v,,, vr, }.
An attractor object (AO) is placed in the robot environment and its coordinates are given by the vector v4,. The motor
(or joint) vector is given by u = {61,602} (Figure 3c).

The parameters of all PEs in the body schema representation can be computed automatically using the algorithm
presented in (Morasso and Sanguineti, 1995). Figure 4a shows the 1721 components of the sensory vectors 3; for all body
icons (i.e.,; = 1...Z). These points belong to the V,, sensor space which represents the set of all possible positions of
the “elbow” joint. Similarly, Figure 4b shows the positions of the 6}12 components of all sensory vectors 3;. These points
belong to the V,, sensor space which represents the set of all possible end effector positions?.

The first experiment involved reaching toward an attractor object placed in the environment around the robot. The
task of the robot was to touch the attractor object with its end effector. As described in Section 3.1, this task can be

solved with a gradient ascent strategy (Equation 4) carried out in a potential field. The potential field is specified as an

2These results were obtained after fifteen epochs of the learning algorithm (Morasso and Sanguineti, 1995) with Z=400 body icons.
The initial values of the learning rate parameters were 71 = 12 = 0.4 and the initial variance was o2 = 0.16. After each epoch, 7;

and 772 were decreased by 0.025 and ¢2 was decreased by 0.01. The lengths of the robot limbs were {7 = 0.5 and l» = 0.35.

10



(a) o (b)

Figure 4: The sensory components of all learned body icons, i = 1...Z. (a) o% - elbow; (b) &%, - wrist.

inverse function of the squared Euclidean distance between v,, and v,, for all PEs, i.e.,

1

£ =¢ (u)=m

(6)
The magnitude of each point in the potential field is computed in S-space but using the body icon representation the field
is imposed on C-space. Figure 7 shows several trajectories defined by the end effector moving toward the goal from various
starting positions. Note that in Figure 7b the placement of the attractor object is is outside the effective sphere of reach
of the robot. In this case the tip of the manipulator moves to the point on the boundary of the reachable space that is
closest to the goal.

To test the extensibility properties of the RBS model the same experiment was repeated with the robot holding a stick
(Figure 5). In this case, the robot has two contact sensors C; and C3 associated with its two body locations, L,, and
L,,. The stick was modified to have three locations, Ls,, Ls,, and Ls,, which are easily identifiable by the robot’s vision
system (Figure 5).

The exrtended sensory components of the body icons corresponding to the wrist (i.e., the attachment point) were

computed as follows

Uny = Upy + rg |00 — 0o (7)
where vs stands for the image coordinates of one of Lg,, L,, or Ls;. Because the stick is a linear extension of the second
limb only one basis vector is necessary to compute each offset vector. The unit basis vectors, g‘iz, are computed using the
stored positions for the two robot body locations in all body icons as shown below

S Oy — Ty

y?"g =

- ”5;‘2 - 651 ”

)

Figures 6b, 6¢, and 6d show the extended ﬁﬁQ vectors for all body icons when each of the three tool locations are used in

11



the extension. Note how the extended reachability space differs from the original RBS representation shown in Figure 6a.

The potential field method can still be used to control the position of the stick: £°¢7°% = g&tick () = In

1
||Uaa*U1~2 [(MIEN
this case, however, vy, (u) refers to the extended body icons computed using Formula 7. For example, the tip of the stick
can be controlled using the same algorithm used to control the end effector if v,, is used in Formula 7 to compute the

extended body icons. Figure 8 shows several trajectories defined by the tip of the stick as it moves toward the goal from

various starting positions.

Attractor .\ Lg

Object

Robot

Figure 5: The robot from Figure 3a holding a stick. The stick has three locations, Ls,, Ls,, and L,,, that are

identifiable by the robot’s vision system.

(a) (b) () o (d)

Figure 6: The figure shows the extended sensory components of the body icons after a stick is attached to the
robot. In this case only the wrist components, 17£2, are extended. (a) Original configuration before the stick is

attached (same as in Figure 4b); (b), (c), and (d) Extended configurations when vs, , vs,, and vy, respectively are

used in Formula 7.

12



(a) (b) (c)

Figure 7: Trajectories defined by the movement of the end effector toward the attractor object starting from

various initial positions. Note that in b) the attractor object is placed outside the space reachable by the robot.

(a) (b) (c)

Figure 8: Trajectories defined by the movement of the tip of the stick toward the attractor object starting from
various initial positions. The three positions of the attractor object are the same as in Figure 7. Note that in c)

the attractor object is placed outside the space reachable with the tip of the stick.

13



6 Conclusions and Future Work

This paper introduced the notion of extended robot body schema and described a computational model that implements
this notion. It was shown how the extensibility of the RBS can be achieved by combining visual, tactile, and proprioceptive
sensors to extend the visual components of the body icons. As noted in Section 2, the results of the extension module are
similar to the results observed by Iriki et al. (1996) in their experiments with monkeys. At this time, however, we do not
claim that the proposed model is a model of how biological brains compute the extended body schema.

The model presented here has several advantages over traditional methods for robot control. First, the RBS model is
learned from self observation during a motor babbling phase. Unlike world models, which are generally avoided by many
robot architectures because they are often inaccurate and difficult to learn, the RBS represents a model of the robot which
is significantly simpler to learn. Furthermore, this model is not likely to change over time and specialized routines can be
used to learn it and to update it over time. Second, it provides the robot with a sensory-motor model of its own body
that can also be used to control robot movements. Third, the RBS representation makes explicit the distinction between
sensory stimuli coming from the environment and sensory stimuli coming from the robot which can potentially simplify
the process of behavioral specification. And finally, through the process of extension the RBS can accommodate changes
in the configuration of the robot triggered by attached objects and tools.

Several problems, however, remain to be addressed. First, the proposed approach makes the assumption that visually
distinct locations on the surface of the robot body can be identified. Finding perceptual algorithms for autonomous selection
of the robot body locations and their sensory stimuli is an important problem that needs to be addressed. Second, it is not
clear what is the optimal number of body icons necessary for a given task. Also, it is not clear how many body locations are
necessary in order to accommodate body extensions by objects with complicated geometries. And finally, it is important
to find ways of extending the RBS that take into account the dynamics of the robot and the attached object. For example,
a long stick may have the potential to extend the reach of the robot but if the stick is heavy this extension may not be

achievable for some or all joint configurations of the robot.
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