TABLA: A Unified Template-based Framework for
Accelerating Statistical Machine Learning

Divya Mahajan

Jongse Park Emmanuel Amaro

Hardik Sharma

Amir Yazdanbakhsh Joon Kim Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology

{divya_mabhajan, jspark, amaro, hsharma, a.yazdanbakhsh, jkim796} @ gatech.edu

ABSTRACT

A growing number of commercial and enterprise systems increas-
ingly rely on compute-intensive machine learning algorithms.
While the demand for these compute-intensive applications is
growing, the performance benefits from general-purpose plat-
forms are diminishing. Field Programmable Gate Arrays (FP-
GAs) provide a promising path forward to accommodate the
needs of machine learning algorithms and represent an interme-
diate point between the efficiency of ASICs and the programma-
bility of general-purpose processors. However, acceleration with
FPGA:s still requires long design cycles and extensive expertise in
hardware design. To tackle this challenge, instead of designing an
accelerator for machine learning algorithms, we develop TABLA,
a framework that generates accelerators for a class of machine
learning algorithms. The key is to identify the commonalities
across a wide range of machine learning algorithms and utilize
this commonality to provide a high-level abstraction for program-
mers. TABLA leverages the insight that many learning algorithms
can be expressed as stochastic optimization problems. Therefore,
a learning task becomes solving an optimization problem using
stochastic gradient descent that minimizes an objective function.
The gradient solver is fixed while the objective function changes
for different learning algorithms. TABLA provides a template-
based framework for accelerating this class of learning algo-
rithms. With TABLA, the developer uses a high-level language to
only specify the learning model as the gradient of the objective
function. TABLA then automatically generates the synthesizable
implementation of the accelerator for FPGA realization.

We use TABLA to generate accelerators for ten different learn-
ing task that are implemented on a Xilinx Zynq FPGA platform.
We rigorously compare the benefits of the FPGA acceleration to
both multicore CPUs (ARM Cortex A15 and Xeon E3) and to
many-core GPUs (Tegra K1, GTX 650 Ti, and Tesla K40) us-
ing real hardware measurements. TABLA-generated accelerators
provide 15.0x and 2.9x average speedup over the ARM and
the Xeon processors, respectively. These accelerators provide
22.7x,53.7x, and 99.2 x higher performance-per-Watt compare
to Tegra, GTX 650, and Tesla, respectively. These benefits are
achieved while the programmers write less than 50 lines of code.

1 Introduction

A wide range of commercial and enterprise applications such
as mobile health monitoring, social networking, e-commerce,
targeted advertising, and financial analysis, increasingly rely on
Machine Learning (ML) techniques. In fact, the advances in ma-

hadi @cc.gatech.edu

chine learning are changing the landscape of computing towards
a more personalized and targeted experience for the users. For
instance, services that provide personalized health-care and tar-
geted advertisement are prevalent or are on the horizon. Machine
learning algorithms are among the computationally intensive
workloads. Specifically, learning a model from data requires
ample amount of computation that is repeated over the training
data for a relatively large number of iterations. While the demand
for these computationally intensive techniques increases, the ben-
efits from general-purpose computing are diminishing [1} 2]. As
shown in the Dark Silicon study [2] and others corroborate [1} 3],
with the effective end of Dennard scaling [4], CMOS scaling
is no longer providing performance and efficiency gains that
are commensurate with the transistor density increases [1H3].
The current paradigm of general-purpose processor design falls
significantly short of the traditional cadence of performance
improvements [Sl]. These challenges have coincided with the
explosion of data where the rate of data generation has reached
such an overwhelming level that is beyond the capabilities of
current computing systems to match [6].

As a result, both the industry and the research community are
increasingly focusing on programmable accelerators, which can
provide large gains in efficiency and performance by restrict-
ing the workloads [3} [7H11]. Using FPGAs as programmable
accelerators has the potential for significant performance and
efficiency gains while retaining some of the flexibility of general-
purpose processors [12]. Commercial parts that incorporate gen-
eral purpose cores with programmable logic are beginning to
appear [13|[14]. For instance, Microsoft employs FPGAs to ac-
celerate their Bing search service [7]. This increasing availability
of FPGAs for acceleration and their flexibility makes them an
attractive platform for accelerating machine learning algorithms.
However, a major challenge in using FPGAs is their programma-
bility. Development with FPGAs still requires extensive expertise
in hardware design and implementation, and the overall design
cycle is relatively long even for experts [7]. This paper aims to
tackle this challenge for an important class of machine learning
algorithms. To this end, we develop TABLA, a template-based
solution — from circuit to programming model — for using FP-
GAs to accelerate statistical machine learning algorithms. The
objective of our solution is to devise the necessary programming
abstractions and automated frameworks that are uniform across
a range of machine learning algorithms. TABLA aims to avoid
exposing software developers to the details of hardware design
by leveraging commonalities in learning algorithms.

Model Model Accelerator
Specification Compiler :
b Accelerator | | | Programmable Logic
rogrammer M PP,
9 Predesigned 9 Design Accelerator Scheduls
Template Builder Template
| Interface]
Accelerator ? Accelerator
High-level FPGA Memory Memop{
Interface Constraints Interface Layout [Models | [Training Data |

Figure 1: Overview of the workflow with Tabla. The programmer only provides the gradient of the objective function representing the learning
algorithm in Tabla’s high-level programming language. Tabla is comprised of two major components: (1) the design builder that automatically
generates the synthesizable Verilog of the accelerator; and (2) the model compiler that generates the execution schedule for the accelerator. The
design builder automatically generates the synthesizable code from a set of predesigned templates.

While developing TABLA, we leveraged the insight that many
learning algorithms can be expressed as stochastic optimization
problems [15]. Examples of such learning models are support
vector machines, logistic regression, least square models, back-
propagation, conditional random fields, recommender systems,
Kalman filters, linear and nonlinear regression models, and soft-
max functions. These types of learning models can be optimized
using stochastic gradient descent [16]. That is, the learning task
becomes solving an optimization problem using stochastic gra-
dient descent that iterates over the training data and minimizes
an objective function. Although the stochastic gradient descent
solver is mostly fixed across different learning algorithms, the
objective function varies. Therefore, the accelerator for these
learning tasks can be implemented as a template design, uniform
across a set of machine learning algorithms. This template de-
sign comprises the general framework for the stochastic gradient
descent optimization.

To be able to specialize the template design for a specific learn-
ing task, a hardware block implementing the gradient of the ob-
jective function for the particular algorithm needs to be designed
and integrated. TABLA provides a template-based framework to
automatically generate the hardware block which implements the
gradient of the objective function. Therefore, with TABLA, the
developer only needs to specify the learning model as the gra-
dient of the particular objective function. The gradient function
can be implemented with less than 50 lines of code for logis-
tic regression, support vector machines, recommender systems,
backpropagation and linear regression. TABLA automatically gen-
erates a concrete accelerator (synthesizable Verilog code) for the
specific learning algorithm while considering high-level design
parameters of the target FPGA.

(1) We observe that many common data analytics and machine
learning tasks can be represented as stochastic optimization prob-
lems. This observation enables TABLA to provide a high-level,
intuitive, uniform, and automated abstraction using FPGAs to
accelerate an important class of machine learning algorithms.

(2) Using this observation, we develop a comprehensive solution
— from circuits to programming model — that abstracts away the
details of hardware design from the programmer, yet generates
accelerators for a range of machine learning algorithms.

(3) We used TABLA to generate accelerators for five different
learning algorithms — logistic regression, SVM, recommender
systems, backpropagation, and linear regression — each with
two different topologies. We implemented these accelerators
on a Xilinx Zynq FPGA platform. We use TABLA to generate
ten different accelerators for ten different learning task that are
implemented on a Xilinx Zynq FPGA platform. We rigorously

Back e
Propgation

Recommender
System

Linear
Regression

Logistic
Regression

Gradient Gradient Gradient Gradient Gradient
Objective Objective Objective Objective Objective
Function Function Function Function Function

Stochastic Gradient Descent
(The Abstraction between Hardware and Software)

Xeon Phi][GPU]

Figure 2: Tabla leverages stochastic gradient descent as an abstraction
between the hardware and software to create a unified framework for
accelerating machine learning algorithms. The highlighted blocks are
the focus of this work.
compare the benefits of the FPGA acceleration to both multicore
CPUs (ARM Cortex A15 and Xeon E3) and to many-core GPUs
(Tegra K1, GTX 650 Ti, and Tesla K40) using real hardware
measurements. TABLA-generated accelerators provide 15.0x
and 2.9x average speedup over the ARM and the Xeon pro-
cessors, respectively. These accelerators provide 22.7 <, 53.7x,
and 99.2x higher performance-per-Watt compared to Tegra,
GTX 650, and Tesla, respectively. These benefits are achieved
while the programmer write less than 50 lines of code.
These results suggests that TABLA takes an effective step to-
ward widespread use of FPGAs as an accelerator of choice for
machine learning algorithms.

2 Overview

Machine learning generally involves two phases—the learning
phase and the prediction phase. The learning phase which is a
precursor to the prediction phase generates a model that maps
one or more inputs (independent variables) onto one or more
outputs (dependent variables). This generated model is used in
the prediction phase to predict the dependent variable for a new
unseen input. The learning phase is more compute intensive and
can benefit significantly from acceleration. Therefore, TABLA
aims to provide a comprehensive solution— from programming
model down to circuits—that can automatically generate accelera-
tors to accelerate the learning phase of a class of machine learning
algorithms. Figure |l|illustrates an overview of TABLA and its
workflow. Below, we briefly discuss each component of TABLA.
@ High-level programming model. TABLA provides a high-
level programming model that enables the programmers to spec-
ify the gradient of the objective function that captures the learning
algorithm. TABLA focuses on learning algorithms that can be im-
plemented using stochastic gradient descent, therefore, the gradi-
ent function is sufficient to generate the entire accelerator design.

As TABLA’s template, i.e. the stochastic gradient descent is uni-
form across a range of ML algorithms, this programming abstrac-
tion requires the programmer to only provide the gradient of the
objective function. The programmer also provides the initial and
meta parameters of the learning algorithm, such as learning rate.
@ Design builder. After the programmer provides the gradi-
ent of the objective function, one of the major components of
TABLA, named the design builder, automatically generates the
accelerator and its interfacing logic. The design builder uses a
predefined set of accelerator templates to generate the accelerator.
The output of the design builder is a set of synthesizable Verilog
codes that concretely implements the accelerator. The inputs to
the design builder are the (1) gradient function, (2) a high-level
specification of the target FPGA (number of hard DSP slices,
number of hard SRAM structures (Block RAMs), the capacity
of each Block RAM, number of Block RAM read/write ports,
and off-chip communication bandwidth), (3) a predesigned set
of accelerator templates in Verilog.

@ Predesigned template. The design builder generates the ac-
celerator design from a predesigned template. This template is
generic and uniform across a large class of stochastic machine
learning algorithms and supports all the language constructs that
are defined in TABLA’s programming language. The template
provides a general structure for the accelerator without mak-
ing it specific to a certain algorithm or accelerator specification.
The unified template also contains a section that implements the
stochastic gradient descent, which is uniform across all the target
machine learning algorithms. These predefined templates are
designed by expert hardware designers and comprise of both the
accelerator and the interfacing logic that connects the accelerator
to the rest of the system (e.g., the memory).

O Model compiler. Another component of TABLA is the model
compiler that statically generates an execution schedule for the
accelerator. Statically generating a schedule for the accelerator
significantly simplifies the hardware. The inputs to the model
compiler are the structure of the accelerator and the specification
of the gradient function. The model compiler converts the gradi-
ent function to a dataflow graph and augments it with the dataflow
graph of the stochastic gradient descent. Then, it uses a minimum-
latency resource-constrained scheduling algorithm [[17]] to gener-
ate the accelerator schedule. The model compiler also generates
an order for the model parameters that will be learned. This
order will determine the layout of parameters in the memory
and streamlines the interfacing logic that communicates with the
memory. The model compiler also generates the schedule for the
memory interface.

As Figure [2| depicts, TABLA can potentially target different
platforms, including Xeon Phi, GPUs, FPGAs, CGRAs, and
ASIC. To support each of these target platforms, new backends
need to be developed for each target. In this paper, we focus
on FPGAs since they represent a middle-ground between the
efficiency of ASICs and programmability of CPUs. Before dis-
cussing the components of TABLA for FPGA platforms, the next
section discusses the theoretical foundation of stochastic gradient
descent.

3 Background on Stochastic Gradient Descent

Stochastic gradient descent (SGD) forms the abstraction between
hardware and software for TABLA that generates machine learn-

ing accelerators and therefore forms the template-base of TABLA.
SGD is an optimization algorithm that aims to find the set of
parameters that minimize a function. This function is more
commonly referred to as the objective or the cost function.
Objective Function. Each machine learning task in our target
class is characterized by its objective function. The objective
function has a set of parameters that are learned in accordance
to the training data such that the machine learning algorithm can
make data-driven predictions or decisions on new unseen data.
The objective function is a cost function that is defined over the
training data for a given set of parameters. The cost function
quantifies the error between the predicted value of the output
and the actual output value corresponding to an input dataset.
The ML algorithm learns the model by solving an optimization
problem that minimizes the objective/cost function (or prediction
error) over the entire training data as shown in Equation[I] In the
equation, w' represents the parameters of the model (at iteration
t) over which the objective function is to be minimized for the
training data (7). Here, x; corresponds to the (¢)th input element
provided by the user and f(w'x;) is the objective/cost function
(prediction error over the training data). This objective function
is minimized using the stochastic gradient descent optimization
algorithms that iterate over the training data. While the stochastic
gradient descent is fixed across different learning algorithms, the
objective function varies. The Table[T|shows five sample machine
learning tasks that can be trained using stochastic gradient de-
scent. Table [T]also presents the objective function corresponding
to each machine learning algorithm.
Stochastic Gradient Descent. Stochastic gradient is a derived
gradient descent optimization problem that aims to minimize the
following objective function:
g};g{ilf (wixi) M

The objective function to be minimized is defined by a set of
parameters. Gradient descent starts with an initial set of parame-
ter values and iteratively moves toward a set of parameter values
that minimize the objective function. This iterative minimization
is achieved by taking steps in the decreasing direction of the
function’s derivative or gradient. Hence the gradient algorithm

can be written as:
9 (Lif (Wixi))
—= 2
E ()
As the above equation shows, w'*! goes in the negative direc-

tion of % with a rate . That is, in a single iteration of gradient
descent, it calculates the derivative of the objective function over
the entire training data and generates the next set of parameters
(w*1) as shown by equation [2| For very large training datasets,
the gradient descent can impose a high overhead by iterating
over the entire data to just generate the next set of parameters.
Furthermore, this process is repeated until the function reaches
close to its minimum which is tested by convergence algorithms.
To avoid this large data overhead, stochastic gradient descent
(SGD) is used. SGD is a modification of conventional gradient
descent as it divides the objective function into smaller differen-
tiable functions. As it can be seen from Equation|[] the objective
function is a summation of a function over all the training data.
Instead of taking the derivative of the function calculated over the
entire dataset, SGD divides the objective function into smaller

Wl :Wt_“x

Table 1: Machine learning algorithms, their objective function and gradient function that have been integrated with Tabla.

Machine Learning Algorithm Objective Function (f)

Gradient of the Objective Function (9f)

Logistic Regression

I {yielogf(w'xy) + (1-y;) e log(1-f(w'xy)) } +A[lwll

(W) -yi)ex) } +Aew

Classification (SVM)

Ti{1-yiw'x}+ Allwl

ZiyiXit Aew

Recommender Systems

T (Y -w'™x)* + Al w, x|

Syw'x- Y)e xi+ Aew, I, (w'x - Y)e wt dex

Backpropogation

i X {y@elogfwx)® + (1-y®) « log(1-fw'x)™)} +Allwl|

2 2 (e 87)

Linear Regression

X Y (wWixi-yi)? + Awl|

Y (WX -y) e xi+ Aew

functions requiring a single element. Therefore, the gradient of
the smaller function is only calculated over a single element. The
equation for stochastic gradient descent transforms into:
W 207)
aw'
This step of SGD is looped for all training elements individually
until the function converges at its minimum value. SGD typically
takes more iterations to converge in contrast to the conventional
gradient descent, however, the benefits obtained by avoiding the
data access to all the input elements for each iteration is signif-
icantly higher than the cost incurred by having more iterations.
Using SGD to find the minimum of the objective function is
imperative for large training datasets across different domains of
machine learning algorithms. This insight motivated us to choose
SGD as the abstraction between the software and the hardware
for TABLA that generates accelerators as shown in Figure 2]
To specialize the template, TABLA framework only requires the
programmer to specify the learning model as the gradient of the
objective function. The only programming task is to implement
this gradient function for the respective algorithm. Our expe-
rience shows that this gradient function (as shown in Table
can be implemented with less than 50 lines of code for logistic
regression, SVM, recommender systems, back-propagation, and
linear regression. Other algorithms such as conditional random
fields, Kalman filters, portfolio optimization, and least square
models can be integrated with TABLA as they can be optimized
using SGD. After the programmer provides the gradient of the
objective function, TABLA workflow can automatically generate
a concrete accelerator for the specific learning task. We now
describe the different components of TABLA- programming in-
terface, model compiler and accelerator design in Sections 4} 3]
and|[f] respectively.

4 Programming Interface

The programmer needs to express different learning algorithms
by specifying the gradient of the objective function. This pro-
gramming interface possesses following properties that enable
it to represent a wide range of ML algorithms: (1) It is a high-
level interface that enables the representation of ML algorithms
in a fashion that is familiar to ML experts and is close to the
mathematical model presented in Table |1} (2) It comprises of
language constructs and keywords that are commonly seen in
several statistical ML algorithms. The programming interface
comprises of two types of constructs, data declaration and math-
ematical operations. Data declarations allow the programmer to
express different data types that represent the training data and
model parameters. These data elements are used in expressing
the gradient function. The mathematical operations enable the
programmer to express different mathematical operations used in
the gradient of a wide range of objective functions for different
machine learning algorithms. Table[2] summarizes these language
constructs and their corresponding keywords. Both declaration

Table 2: Language declarations that allow easy representation of several
ML algorithms. Language declarations with their type and classification.

Type Classification Language Keywords
Model inputs model_input
Model outputs model_output
Data Model Parameters model
Gradient of objective function gradient
Iterator variable iterator
Basic +,-,<,>, %
Operation Group pi, sum, norm
Non Linear gaussian, sigmoid, sigmoid_symmteric, log

types are explained in further detailed in sections [f.1]and
4.1 Data Declaration

As the name suggests these declarations enable the programmer
to specify the different data elements that are used in the gradi-
ent of the objective function. These data types include - model
input, model output, model parameters, gradient, and iterators.
The data declarations emphasize the different semantics held by
them in an ML algorithm. The model_input keyword refers to
a single input dataset while the model_output declaration refers
to the corresponding output provided as the training data. Both
these data types are inputs to the machine learning task and are
read-only while the ML algorithm learns the model. The model
keyword refers to the model parameters that get updated every
iteration in accordance to the gradient of the objective function.
Parameters are read-only in the gradient function; however, the
SGD algorithm both reads and writes to these parameters.

The gradient keyword in our programming interface numeri-
cally represents the gradient of the objective function. We provide
a separate keyword for these gradients, as it is the output of the
gradient function and is used as an input to the SGD algorithm.
Finally, the iterator declaration enables the programmer to de-
clare the dimensions of arrays. For example, in our language a
statement Q[j] = A[j] * B[j], means that element j in A is mul-
tiplied with the element j in B for all the values of j. Iterator
provides a concise way to declare the dimensions of these vec-
tors. That is, iterator j[0:n] declares that j starts from O and goes
to n. Moreover, iterators also clearly depict the autonomy of
operations. For example, A[j] * B[j] can be easily parallelized
over all the values of j. In addition to the data, another major
component of ML algorithms is the computation performed over
the data. Therefore, we define several constructs to support these
mathematical operations used in different machine learning al-
gorithms. These mathematical operation constructs are discussed
in detail in the next section.

4.2 Mathematical Operations

Mathematical operations allow the programmer to express dif-
ferent operations and functions. These declarations are further
subdivided into three categories - basic, group and nonlinear.

Basic Operations. The basic operations constitute mathematical
operations like -,+,<,>,* and require two arguments A and B.

Group Operations. These operations are performed over a
group of elements and includes the following operations,), (sum),

IT (group multiply), and Il Il (norm). The pi and sum keywords
take in two arguments while the norm keyword only takes one.
Apart from the input values, these operation type require an iter-
ator argument that decides the group of elements it operates on.
As these operations process groups of elements, they produce an
output with dimension one less than the input dimension. For
instance, operating on a vector input produces a scalar output.
Nonlinear Operations. These operations constitute nonlinear
functions like Log, Sigmoid, Gaussian, and Sigmoid Symmet-
ric. The output has the same dimensionality as the input as this
operation is performed element by element.

Using the data and operation language declarations defined
above, programmer can easily represent several statistical ML
algorithms. One such example is Logistic Regression. The
following code shows how the gradient of logistic regression
(given in Table[T) can be expressed in a few lines using TABLA’S
programming interface.
model_input x[m]; //model <input features
model_output y’[nl; //model outputs

model wlnl [m]l; //model parameters
gradient glnl [ml; //gradient

iterator i[0:m]l; //iterator for group operations
iterator j[0:nl; //iterator for group operations

//m parallel multiplications followed by
//an addition tree; repeat n times in parallel

s[j]l = sum[i]l (x[i] * w[jl[il);

y[j]l = sigmoid(s[jl); //n parallel sigmoid operations
eljl = y[jl - y’[jl; //n parallel subtractions

glj1[i]l = x[i]l * el[jl; //n*m parallel multiplications
rgljl[i] = A * wlil([jl; //n*m parallel multiplications
gljl0i]l = glj1[il + rgljl[il; //n*m parallel additions

The above code shows the simplicity of our programming
interface and expresses a complicated mathematical function of
the gradient of the objective function into smaller and much sim-
pler operations. In this code the programmer first declares the
data types: model_input, model_output, model and the gradi-
ent. Then, two iterators i and j are declared as the model values
are two dimensional. Next, operations are performed over the
declared data types beginning with the sum operation. This op-
eration performs multiplication x/i] * w/j][i] and adds up all the
multiplication results into a single result (s[j]) in the i dimension
assuming a constant j. On the other hand, the left hand side of the
statement s/j] shows that the summation operation is repeated
n times using the j iterator. Subsequently, other operations are
performed by following a similar concept where the iterator on
the LHS of the equation signifies a loop over that iterator variable.
Finally the result generated by this code is the gradient for the
given model_input, model_output and model.

Several ML algorithms can be represented using the above
mentioned language declarations. The simplicity of these decla-
rations to express mathematical models makes the programming
interface easy to use. Furthermore, the programming interface
can be extended to incorporate more declarations so as to accom-
modate the representation of an even wider range of statistical
ML algorithms. Although MATLAB and R can also be used
to represent the same ML algorithms, we designed and used
TABLA’s in-house programming interface due to the following
reasons: (1) easier representation of gradient functions using
the common mathematical constructs used in ML; (2) ease in
identifying parts of code that can be made parallel; (3) convenient

conversion of gradient function into the final hardware design
using the model compiler described in the Section [5}

In the next section we detail the flow of the model compiler
which illustrates how the gradient of the objective function pro-
vided by the programmer using our language declarations can be
appended with the stochastic gradient descent. Furthermore, the
model compiler also has the responsibility of converting the uni-
fied objective function gradient and SGD into a data-flow graph
and finally into a schedule that can be mapped onto a hardware.

S Model Compiler for TABLA

After the programmer provides the gradient of the objective func-
tion, TABLA’s model compiler first integrates this objective func-
tion with the stochastic gradient descent. To generate a concrete
accelerator, the model compiler then generates a dataflow graph
that can be mapped and scheduled onto a hardware. Dataflow
graphs (DFGs) are intermediate representations that can be trans-
lated into the accelerator and its execution schedule. Thus, the
final phase of compilation is the scheduling phase in which the
compiler generates a static schedule for the learning task from
its corresponding dataflow graph.

5.1 Integration of Stochastic Gradient Descent

An optimization algorithm is required to solve a machine learning
task. The target is to find the minimum value of the objective
function corresponding to the learning task. To solve this task,
the programmer provides the gradient of the cost function and
TABLA subsequently uses stochastic gradient descent as the op-
timization algorithm to determine the parameters best suited for
the given training data. Since SGD is independent of the learning
task, we devise a general template to implement it. As a result,
we need a mechanism to integrate the gradient of the objective
function with our template.

As seen in Section] the programmer provided code generates
a final result, which is the gradient of the cost function and is rep-
resented using the gradient argument. Stochastic gradient descent
is then executed using this gradient result and model declarations
provided by the programmer using the following code:

model winl[ml; //model parameters
gradient glnl[ml; //gradient

g[314]
g[j1i]

The gradient of the objective function provided by the program-
mer and the stochastic gradient descent together form the entirety
of the learning task. Once the entire algorithm is available, the
data-flow graph (DFG) is generated. This graph represents the
entire ML algorithm.

5.2 Data-Flow Graph Generation

The code provided by the programmer is converted into a data-
flow graph. The model compiler appends the above generate
DFG with the of stochastic gradient descent. Before delving into
further details of generating a DFG for a particular ML algo-
rithm, we visualize the DFG of each language construct in our
programming interface as shown in Table [2]

Dataflow graph of individual operations. Figure 3| shows the
data-flow graph for at least one operation of each type - basic,
group and nonlinear. These dataflow graphs show the input and
output edges along with the intermediate nodes that perform the
computation of each operation. The group operations involve

u * gljllil //n*m parallel multiplications
wljl[il -g[jl1[il; //n*m parallel subtractions

Nonlinear

Sigmoid

Basic Group

o

Multiply
Figure 3: Dataflow graph for basic, group and nonlinear type of
operations. The DFG for multiply, sum, norm and sigmoid operations
are shown.

Xl wol e i _w[;]: A W]) wim]

Programmer's
Code

w(O0] w[1 w[m-1 w[m]
Stochastic
Gradient Descent
+ 1 { {

Figure 4: A complete dataflow graph of the logistic regression algorithm

more than one computational node. Figure 3| shows the dataflow
graph for sum and norm. They both involve multiplication of
input elements and use an adder tree to generate the final results.
The dataflow graph also depicts the opportunities for parallelism
that will be exploited by the hardware accelerator. Once the
dataflow graphs for individual operations are available, the model
compiler can combine these dataflow graphs in accordance with
the code that expresses the gradient of the learning task.
Dataflow graph of the learning algorithm. The DFG for a ML
task can be generated by combining the DFG of each operation
with the code of the gradient function, while maintaining the
dependencies. The DFG for the Logistic Regression along with
the appended stochastic gradient descent step is presented in
Figure @ This DFG corresponds to the example code given in
section[4.2) with n = 1. As illustrated in Figure [d] the gradient
function can be easily converted to a DFG using the individual
DFGs of the operations. For example, the summation operation
in the programmers code (sum/i](x[i] * w[j][i])) is directly con-
verted to a series of multiplications followed by an adder tree by
the compiler. In addition to the DFG of the objective function,
the DFG in the figure is appended with the DFG of stochastic
gradient descent, thereby generating a complete dataflow graph
for the entire machine learning algorithm.

After the compiler framework generates the DFG, different
scheduling algorithms can be used to schedule each operation in
the DFG. We perform this scheduling using a Minimum Latency
- Resource Constrained Scheduling algorithm, which schedules
operations given a limited set of resources. The details of this
scheduling algorithm are presented in the next subsection.

5.3 Scheduling

Once the compiler generates the DFG for the entire ML algo-
rithm, the scheduler can generate a step-by-step schedule of the
operations for a given resource constraint gb . The DFG for Lo-

gistic Regression shown in Figure dis an As-Soon-As-Possible
(ASAP) graph. This graph can be easily scheduled using the
ASAP algorithm. An ASAP algorithm schedules an operation as
soon as all predecessors of the particular operation are completed.
This ASAP schedule generated as the result, achieves minimum
latency however assumes infinite resources. However, generating
accelerators with unlimited resources is infeasible. Thus, there
is a need to use a more practical algorithm that aims to reduce
latency for a given resource constraint. The scheduling algorithm
presented in this paper is referred to as the Minimum Latency -
Resource Constrained Scheduling (ML-RCS).

Inputs: RR: Available Resources
O: Set of all the operations to be scheduled
D: Distance to sink for each operation
Output: S: Final schedule
Initialize S < 0
Initialize cycle_count <— 0
while (O # 0) do
for (r € R) do
Initialize s < 0
if 0 C O where o.predecessors = DONE & D[s] = max(D) then
s5.0p = 0; s.cycle = cycle_count
S.append(s)
O.remove(0)
end if
end for
cycle_count = cycle_count + 1
end while

Algorithm 1: ML-RCS Scheduling for the Dataflow graph.

The algorithm shown above is commonly referred to as Hu’s
scheduling algorithm [17]. This algorithm schedules operations
by making the following assumptions: (1) all the operations
are single step; and (2) all operations use a single type of re-
source. These assumptions hold valid for our accelerator design,
as our base design comprises of only one type of resource called
the Processing Engine that takes one step to generate the result.
The details of our design and processing engine are provided
in section [6| By making these assumptions, Hu’s scheduling
provides an optimal solution for the ML-RCS optimization prob-
lem. Before delving deeper into the intricacies of the scheduling
algorithm, we define a term — distance from sink. Distance from
sink of an operation (op) is the number of operations that need to
be performed after the op to reach the final output/sink. Distance
from sink is an important metric that quantifies the priority of
each operation. The higher the distance from sink, the higher its
priority is. In algorithm|I] an operation (op) is scheduled at cycle
(c) if all the following conditions are met: (1) all the predecessors
have been scheduled and completed; (2) it has the highest priority
(or distance from sink) among the unscheduled ready ops; (3)
resource is available to accommodate the op. The algorithm
terminates when all the operations are successfully scheduled.

After the schedule for all the operations is generated using the
ML-RCS algorithm by the compiler, TABLA framework then
generates the design for the hardware accelerator that can accom-
modate this schedule. This hardware generation procedure and
our basic accelerator design is described in Section [6}

Table 4: CPU and GPU platforms used for Tabla evaluation

Platform Cores Core (Cé?_'czl; Freq Mem(%r\é)l\vall Year I‘?V'; Tecl(\:;l)ogy Cost

ARM Cortex A15 4+1 23 2 (shared) 2014 5 28 $191
Intel Xeon E3-1276v3 4 3.6 16 2014 84 22 $339
Tegra K1 GPU 192 0.852 2 (shared) 2014 5 28 $191
GeForce GTX 650 Ti 768 0.928 12012 110 28 $150
Tesla K40 2880 0.875 12 2013 235 28 $5,499|

Table 3: Benchmarks, their brief description, size of the training data sets, and the model topology.

Global Bus

Input/Output

(a) Processing Engine (PE) (b) Processing Unit (PU)
Figure 5: (a) A processing engine comprising of compute and memory
units.(b) Processing unit comprising of 8 processing engines connected
through a intra-PU bus

PEO || PE1 pee || PE7 || 8
s
o
> —
5] . —
5 Sefl . peo || PEI pes || Pe7 || 2
PIRER £
= 25| 3 [$)
£ < E|l® L
g <=
£ :
@ i
PEO || PE1 pes || PE7 || 2
s
o

Figure 6: Accelerator design showing the processing units and
processing engines. The processing engines are connected through
intra-PU bus and the processing units are connected through the
inter-PU bus. The 4 AXI interfaces provide communication between
external memory and the accelerator.

6 Accelerator Design

Due to the flexibility and reconfigurability provided by FPGAs
we choose FPGAs to accelerate the machine learning task rep-
resented as a schedule provided by the compilation framework.
In this section, we describe the architecture of the hardware that
accelerates this learning task.

6.1 Processing Unit

TABLA’s compilation framework produces different schedules
for different learning algorithms. Thus, we propose a reconfig-
urable accelerator design that can accommodate these schedules

Name Model Algorithm Name Description Input Vectors | # of Features| Model Topology | Lines of Code | Optimal # of PE/PU
. M1 L . Estimates the probability of dependent variable 581,000 54 54 20 32/4
LogisticR Logistic Regression . . .
M2 given one or more independent variables 500,000 200 200 20 64/8
M1 P Classifies data into different categories by 581,000 54 54 23 32/4
SVM Classification (SVM) . e
M2 identifying support vectors 500,000 200 200 23 64/8
M1 Information filtering system that predict the 1,700,000 27,000 1700x1000 31 64/8
Reco Recommender Systems . .
M2 preference a user would give to an item 24,000,000 100,000 6000x4000 31 64/8
Back M1 Back i Trains a neural network that model the mapping 38,000 10 10->9->1 48 16/2
ackprap M2 ackpropogation between the inputs and outputs of the data 90,000 256 256 -> 128 -> 256 48 64/8
) M1 . X Models relationship between a dependent 10,000 55 55 17 32/4
LinearR Linear Regression X .
M2 variable and one or more explanatory variables 10,000 784 784 17 64/8
FDataoder] — Table 5: FPGA hardware platform.
 Buffer o I— PE 4 PE3 FPGA hardware platform
Model Xilinx Zynq ZC702
Neighbor Technology TSMC 28nm
Input FPGA Artix-7
. 53K LUTs
FPGA Capacity T06K Flip-Flops
PES5 PE2 Peak Frequency 250MHz
BRAM 630 KB
DSP Slice DSP48EL
MACC Count 220
TDP (W) 2
PE6 PE 1
and can be specialized to accelerate a range of ML algorithms.
The fundamental component of this accelerator architecture is
PE7 PEO a Processing Engine (PE). The components within a PE and
its interconnection with other PEs is designed to accelerate the
Bos Schaduler learning algorithm. The design tradeoffs and variability of a PE

is discussed in further detail below.

Processing Engine (PE). Processing engine (PE) is the funda-
mental unit of our design and hence needs to be customized
according to the ML task. A comprehensive and reconfigurable
design of processing engine is shown in Figure[5a] As the figure
illustrates, the processing engine comprises of a computational
unit (ALU) that performs calculations and a storage unit (data/-
model buffer) that stores the model parameters and data elements.
Some of the components shown in the Figure [Sa]are fixed within
a PE, while the others can be reconfigured.

The fixed components in PE include the ALU, Data/Model
Buffer, Register and Bus. As all the statistical machine learn-
ing tasks have some form of mathematical operation making
the ALU a crucial component of PE. In addition to the ALU,
a buffer is necessary to store the model or any other incoming
data from external DRAM. The register is essential for some
of the group operations such as sum (}’) and pi (IT). Finally, a
bus interface is crucial and is reserved for retrieving data from
the external memory. Communication between a PE and the
external memory is inevitable as the external DRAM provides all
the training data and the initial model parameters. Contrastingly,
the communication with other PEs is not always required and is
dependent on the algorithm.

The exchangeable components in a PE include — specialized
control unit, nonlinear unit, multiplexers, and the neighbor input
and output communication. The reconfigurability of the non-
linear unit is due to the fact that some algorithms like SVM,
recommender system and linear regression, do not require any
nonlinear operations. Furthermore, even the algorithms that em-
ploy a nonlinear operation, use this unit sporadically. The DGF of
Logistic Regression in Figure] demonstrates one such scenario.
The figure shows that the nonlinear function is only employed
on the summation output. Therefore, incorporating a nonlinear
unit in every PE is a waste of area and power. Therefore, a

nonlinear unit is only provided in the PE which accrues all the
results and generates the final sum result. Finally, communication
between neighboring PUs is useful for algorithms that combine
data. Reading the neighbor’s result would avoid contention on
the bus if multiple PEs need data from the other PEs. Allowing
neighbor input and output in our PEs conforms with the tradi-
tional concept of spatial locality in computer architecture. It has
been observed that the likelihood of referencing a resource is
more if the resource is spatially close. Once the PE is finalized
in congruence with the ML algorithm, it can be incorporated into
the bigger design i.e the processing unit.

Processing Unit (PU). The PU contains eight identical process-
ing engines (PEs) as shown in Figure[5b] Although the design
can scale to higher or fewer numbers of PEs, we find that the
allowable frequency is maximum with 8 PEs (see section[7). The
PEs in the PU are statically scheduled according to the schedul-
ing generated by the compiler. The scheduling information is
part of the configuration information derived from the generated
schedule that is based on the model topology. Our final accel-
erator can comprise of one or more than one PU depending on
the requirements of the algorithm and availability of resources.
Therefore, a global bus is provided which can access other PUs
and can interface for communicating with the core. The bus
between the PEs is referred to as the intra-PU bus and the one
between the PUs is referred to as an inter-PU bus. This design
comprising of PUs and PEs is implemented on a Xilinx Zynq
FPGA as described in the next section.

6.2 Target FPGA Platform

We use a Xilinx Zyng-7000 programmable SoC evaluation plat-
form. Figure [6]illustrates our entire design synthesized on an
FPGA platform. The design comprises of multiple processing
units connected through a pipelined global bus. This pipelined
global bus also connects our design to the AXI interface which
in turn connects to an external memory. The training input and
output data in the training data is transferred from the exter-
nal memory to the programmable logic after every iteration of
the learning algorithm. The initial model parameters are only
transferred once at the start of the execution. The number of
processing units in the design are dependent on the algorithm
being implemented. A range of accelerators can be generated
to cater for different machine learning algorithms supported by
the TABLA framework. This reconfigurability and flexibility
provided by the TABLA framework is evaluated using the Zynq
FPGA and the results are presented in the next section.

7 Evaluation

We evaluate the TABLA framework by implementing the hard-
ware accelerator using the Xilinx Zynq ZC702 off-the-shelf
FPGA platform (see Table [5) and compare its performance and
energy utilization against different CPU and GPU platforms. We
rigorously compare the benefits of the FPGA acceleration to
both multicore CPUs (ARM Cortex A15 and Xeon E3) and to
many-core GPUs (Tegra, GTX 650 Ti, and Tesla K40) using real
hardware measurements.

7.1 Experimental Setup

Benchmarks. Table [3]lists the machine learning algorithms that
are used to evaluate TABLA. We study five popular machine
learning algorithms: Logistic Regression (LogisticR), Support

Vector Machines (SVM), Recommender Systems (Reco), Back-
propagation (BackProp) and Linear Regression (LinearR). These
algorithms represent a wide range of statistical learning processes
encompassing regression analysis, statistical classification, infor-
mation filtering systems, recommender systems, and backpropa-
gation. Table 3]also includes some of the most pertinent learning
parameters such as the number of training vectors, model topol-
ogy, the number of lines required to implement their gradient
function in the TABLA programming interface and the number
of PEs/PUs constituting the design of each algorithm. Each
algorithm is evaluated with two models M1 and M2 each corre-
sponding to a different topology. This evaluation across multiple
models allows us to evaluate the flexibility of the TABLA frame-
work in accommodating the machine learning algorithms when
their topology changes. These models are used in the literature
for different machine learning task. For LogisticR and SVM, we
use two model topologies from the UCI repository. One dataset
has 54 features and the other has 200. We modified the datasets to
incorporate binary output values. For Reco, we used two different
topologies from movieLens [18,19]], a movie database. For Back-
Prop we use two topologies - one with a larger neural network
topology (256—128—256) [20] and the other with a smaller
neural network topology (10—9—1) [21]]. For LinearR we use
one topology from the UCI repository and one from MNIST.
CPU and GPU platforms. As Table E] shows, we evaluated
TABLA through comparison with a wide range of diverse plat-
forms using direct hardware measurements. We compare TABLA
to two multicore CPU processors: (1) the low-power quad-core
ARM A5 that is available on the Nvidia Jetson TK1 develop-
ment kit [22] and operates at 2.3 GHz; (2) the high performance
quad-core Intel Xeon E3 with hyper-threading support that op-
erates at 3.6 GHz. Further, we compare TABLA to three GPU
processors: (1) the low-power Tegra K1 GPU which is available
on the Jetson TK1 board with 192 SIMD cores, (2) the desktop-
class GeForce GTX 650 Ti with 768 SIMD cores; (3) and the
high-performance Tesla K40 GPU accelerator with 2880 SIMD
cores. All the platforms run Ubuntu Linux version 14.04.
Multithreaded code for CPU execution. To compare TABLA
with the CPU platforms, we use optimized open-source multi-
threaded implementation of the machine learning algorithms. We
use Liblinear [23] for logistic regression and SVM, Mlpack [24]
for recommender systems and linear regression and Caffe [25]]
for backpropagation. All the code are compiled with gcc 4.8 with
the -O3 -ftree-vectorize -march=native flags to enable aggres-
sive compiler optimizations and utilize vector executions. All
the codes runs 4 threads on ARM and 8 threads on Xeon since
the quad-core ARM does not support multithreading where the
quad-core Xeon does. The multithreaded support is either im-
plemented using OpenMP (Liblinear) or using OpenBLAS [26]]
(Mlpack and Caffe). In addition to libraries which were reported
in the paper, we also tried a wide spectrum of other libraries
(LibFM [27], Libsvm [28], FANN [29]). These libraries provide
inferior performance compared to the ones reported in the paper
which provide the highest performance on the CPUs.
Optimized CUDA implementation for GPU execution. For
the GPU platforms, we use highly optimized CUDA implemen-
tations from [30], Caffe+cuDNN [25]], and LibSVM-GPU [31].
Execution time measurements. The execution time for both
CPU and GPU implementations are obtained by measuring the

wall clock time, averaged over 100 runs. The CPU and GPU
execution times are compared with FPGA runtime obtained from
the hardware counters synthesized on the programmable logic
that measure the cycle counts.

FPGA synthesis and hardware utilization. We synthesize the
hardware with 64-bit Vivado v2015.1, which also generates the
area utilization. The FPGA area and resource utilization is pro-
vided in Table 6] The accelerators operate at 150 MHz.

7.2 Experimental Results

Performance improvements. Figure [7a] shows the benchmark
speedups of TABLA-generated FPGA accelerator and the Xeon
E3 CPU in comparison to ARM A15 CPU. The ARM is the
baseline in all the speedup graphs. ARM is a low power CPU and
therefore is outperformed by both Xeon and TABLA-generated
accelerators. TABLA outperforms ARM by an average speedup
of 15.0x while Xeon outperforms ARM by an average speedup
of 5.2x. TABLA exhibits a higher speedup than Xeon by a factor
of 2.9x. The maximum speedup of 46x is seen by the TABLA
design while a maximum speedup of 10.5x is seen by the Xeon,
both for the Reco M2 benchmark. This result is observed because
of the relatively larger model topology of Reco M2, which pro-
vides greater opportunities for parallelism that can be exploited by
the accelerator more than the multicore CPUs. In only one case
Backprop M2, TABLA design provide lower speedup in compari-
son to Xeon (0.59) but still outperforms Xeon for Backprop M1
by 1.6x. This observation can be attributed to the fact that even
though the backpropagation algorithm has some intra-operation
parallelism, the parallelism among different operations is fairly
limited. The bottleneck from the serialization of operations is
not as limiting in the smaller model of Backprop M1, however
clearly shows its impact for the much larger topology (Backprop
M2). One possible solution to avoid this bottleneck can be to
simultaneously run multiple iterations of the gradient function
over different training input elements.

We further compare the speedup benefits with different GPU
platforms in Figure [/b] The baseline is the ARM multicore pro-
cessor. Tesla provides an average speedup of 17.9x, followed by
GTX 650 Ti with an average speedup of 15.5x. TABLA closely
follows GTX 650 Ti by providing a speedup of 15.0x. However,
Tegra K1, TABLA provides only 2.7 x speedup. Furthermore,
in comparison to Xeon, Tesla provides an average speedup of
2.8x%, followed by GTX 650 speedup of 2.4x. Tegra, on the
other hand shows a slow down of 2.5 in comparison to Xeon.
The higher power consumption of Tesla (235W of TDP) and
GTX 650 (110W of TDP) explain their higher speedup numbers.
Comparatively the TDP of Zynq is 2W.

These results conform with three other recent investigations
which reported GPUs to have 15X to 49 [32], 10x to 60x [33]
and 10x to 100x [30] speedups over CPU for ML applications.
Performance-per-Watt comparison. As the speedup results
show, the TABLA-generated FPGA accelerators provide signif-
icant speedup over both multicore CPUs and the Tegra K1 GPU
within a limited power budget of 2W. The performance bene-
fits of our FPGA accelerators are on average in par with the
desktop-grade GTX 650 Ti GPU with the TDP of 110W. How-
ever, the more high-performance Tesla K40 with the TDP of
235W provides higher performance as expected. We compare
the performance-per-watt to understand the benefits of FPGA

acceleration without the variations in the power budget. Figure[8a]
compares the performance-per-Watt for ARM A15, Xeon E3 and
TABLA. Similarly, Figure[8b|illustrates the performance-per-Watt
for the GPU platforms. TABLA, on average, achieves 30.1 x and
81.7x over ARM and Xeon, respectively. On the GPU side,
TABLA’s FPGA accelerators provide 22.7x, 53.7 X, and 99.2x
higher performance-per-Watt compare to Tegra, GTX 650, and
Tesla, respectively.

Interestingly, ARM A15 achieves 2.7x higher performance-

per-Watt than Xeon. It is also interesting that GTX 650 achieves
a level of efficiency which is relatively closer to ARM, yet it pro-
vides much higher performance. The TABLA-generated FPGA
accelerators close the performance gap to a large extent but pro-
vide much higher efficiency and operate at significantly lower
power budget. In any case, GPUs are an attractive back-end for
TABLA that can be explored in future work. However, as Table E]
shows, they require much higher power.
Area and FPGA utilization. Table [0 shows the resource utiliza-
tion for different components on the FPGA for each learning
algorithm. Backprop M1 utilizes the least area among all the learn-
ing algorithms as it has a relatively smaller model and requires
only 16 PEs for its default configuration. On the other hand,
Reco M1 and M2 and Backprop M2 utilize a much larger area
and BRAM as their default configuration is large and they also
have a significantly higher numbers of parameters that need to
be stored within the accelerator.

7.3 Design Space Exploration

Number of PEs per PU. During the development of the template
based designs, we perform a design space exploration to find
the PE and PU configuration that provides the highest frequency
while maintaining parallelism within each PU. Empirically, a PU
design with 8 PEs strikes a balance between frequency and intra-
PU parallelism. Note that this design space exploration is not
the responsibility of the programmer and is part of TABLA. It is
usually done when the templates are tuned for a FPGA platform
by expert hardware designers.

Number of processing engines. TABLA provides a template-
based architecture that can generate reconfigurable hardware
accelerators. As described in section[6.1] the number of process-
ing engines and processing units can be customized in accordance
with the algorithm. Figure[9] shows the effect of varying the num-
ber of processing engines on the speedup for each benchmark.
The baseline is the ARM multicore CPU. As expected, initially
the increase in number of PEs leads to a fairly linear increase in
the speedup. However, beyond a certain number of PEs we either
observe diminishing returns or a decrease in the speedup. This
observation can be attributed to the fact that the parallelism in the
algorithms is limited and increasing the number of PEs beyond a
point would just lead to waste of resources. For example, in the
LogisticR M1 benchmark, a maximum of 54 operations can be
done in parallel at a given time. Therefore, providing PEs beyond
54 is inconsequential. However, our base design only allows 8
PEs per PU, hence the design for LogisticR M1 has 32 PEs or 4
PUs. Increasing the PEs beyond 32 leads to either decrease in the
speedup or has no impact on the speedup for all the benchmarks.
This anomaly is observed because as the number of PEs increase
the operational frequency also decreases due to the requirement
of a wider and bigger global bus. Therefore, adding more PEs

X [yple2]
@ 83
40x = 60x
35 1 ARMA15 1 TegraK1
* [|EEE Xeon E3 50x HEE GTX 650 Ti
30x {EEE Tabla o4 I Tesla K40
S 25x E 0x {EEE Tabla
§ 20x 8 30x%
& 15x & 20«
10x b [
5x ;-: 10x
0x M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 G 0x M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 Gmean
LogisticR SVM Reco Backprop LinearR mean LogisticR SVM Reco Backprop LinearR

(a) Speedup of Xeon E3 and TABLA design in comparison to ARM A15. (b) Speedup of the GPUs and TABLA design in comparison to ARM A15.
Figure 7: Speedup of Tabla in comparison to a range of CPU and GPU platforms. The baseline is ARM.

g 'Y £ ARMAIS| ¥ 1000
2 100 =3 XeonE3 (| = 100 = S
5 10 I Tabla 5% 10 [Tesla K40
Al 0w I Tabla
28 1 © O 1
Q [51%]
g o 01 So 01
<) T o
ES 001 EJ oot
£ o001 2 o001
a. X 1 o
0.000 MM [oME T M2 00001 = =T M2 | Mt | M2 | M1 | M2 | M1] M2 | Mi
LogisticR SVM Reco Backprop LinearR LogisticR SVM Reco Backprop LinearR
(a) Performance-per-Watt comparison between ARM, Xeon and TABLA. (b) Performance-per-Watt comparison between Tegra, GTX 650 , Tesla
and TABLA
Figure 8: Comparison of performance-per-Watt between CPUs, GPUs and Tabla
50x%
1 1PE
— ZEES
4 [4PEs
0 '3 gpEs
= 16PES
o BN 32PEs
2 307 [immm 64PEs
] BN 128PEs
joR
& 20x
N ﬂ r‘l_r[.
o0x rrl'[. I
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 Gmean
LogisticR SVM Reco Backprop LinearR
Figure 9: Speedup change for varying number of PEs in the design in comparison to ARM CPU
60x
1 0.25x Bandwidth
1 0.5x Bandwidth
50x [IE=3 1.0x Bandwidth
[1.5x Bandwidth
40x |/{HEE 2.0x Bandwidth
=3 Bl 4.0x Bandwidth —
el
2 30x —
o
9 20
0x | CT T |
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 G
LogisticR SVM Reco Backprop LinearR mean
Figure 10: Speedup with varying Bandwidth for Tabla generated accelerator in comparison to ARM CPU
Table 6: Resource utilization on the FPGA for each learning algorithm.
Benchmark LUT (Total Available: 53200) BRAM (Total Available: 630KB) Flip-Flops (Total Available: 106400) DSP Slices (Total Avilable: 220)
Name Model Total Used Utilization Total Used(Bytes) Utilization Total Used Utilization Total Used Utilization
) M1 1873 3.52% 440 0.07% 1230 1.16% 32 14.56%
M2 3843 7.22% 1612 0.25% 2446 2.30% 64 29.09%
. M1 1326 2.49% 440 0.07% 1206 1.13% 32 14.56%
M2 3296 6.20% 1612 0.25% 2422 2.28% 64 29.09%
a M1 1326 2.49% 115504 17.90% 1206 113% 32 14.55%
leco
M2 3296 6.20% 439652 68.15% 2422 2.28% 64 29.09%
M1 1916 3.60% 400 0.06% 648 0.61% 16 7.27%
i M2 7672 14.42% 262148 40.64% 2602 2.45% 64 29.09%
M1 3296 6.20% 444 0.07% 2422 2.28% 64 29.09%
LinearR
M2 3296 6.20% 6284 0.97% 2422 2.28% 64 29.09%

10

might not improve speedup due to lack of abundant parallelism
but rather decreases the speedup due to a slower hardware. The
varying number of PEs also gives us the optimal design that
utilizes minimum resources and still provides maximum benefits
from acceleration.

Bandwidth sensitivity. Machine learning algorithms are both
compute and data intensive tasks. We design the accelerator to
exploit the fine-grained parallelism in the computational compo-
nent of the algorithm. On the other hand, the data is provided
to the compute elements of the design either through a memory
buffer in the PE or external memory. The data transferred from
external memory to the accelerator uses the AXI interface which
has limited bandwidth. We do an analysis of trends observed in
speedup with this changing bandwidth between external memory
and the accelerator. Figure[I0] shows the speedup for each bench-
mark if the bandwidth is varied from 0.25x of the default to 4x
the default. The figure shows that bandwidth can be bottleneck at
very low values such as 0.25x of the default bandwidth. As the
bandwidth increases the speedup starts to increases but observe
diminishing returns beyond a point. By providing a bandwidth
that is 4 x the default value the speedup numbers only increase
by 60% of the default speedup. The bandwidth sweeps are done
by creating a cycle-accurate simulator of the accelerator which
is validated against hardware.

8 Related Work

There have been several proposed architectures that accelerate
machine learning algorithms [21} 30} 34-46]. However, TABLA
fundamentally differs from these works, as it is not an accelerator.
TABLA is an accelerator generator for an important class of ma-
chine learning algorithms, which can be expressed as stochastic
optimization problems. Using this insight, TABLA provides a
high-level abstraction for programmers to utilize FPGAs as the
accelerator of choice for machine learning algorithms without
exposing the details of hardware design. There have also been
architectures that accelerate gradient descent [47] and conjugate
gradient descent [47-50]. However, these works do not specialize
their architectures in machine learning algorithms or any specific
objective function. They neither provide specialized program-
ming models nor generate accelerators. Below, we discuss the
most related work.

Gradient descent accelerators. The work by Kesler [47] fo-
cuses only on designing an accelerator suitable for different
linear algebra operations to facilitate the gradient descent and
conjugate gradient algorithms.

Machine learning accelerators. There have been several suc-
cessful works in the past that focus on accelerating a single or
a range of fixed ML tasks. Yeh, Manolakos and Stamoulias
focused on designing accelerators for a particular ML algorithm
(k-NN) [34} 35, |51]]. Furthermore, work has also been done
on accelerating k-Means [36-38]] and Support Vector Machines
(SVM) 39, 40] due to their wide applicability. These accelera-
tion techniques have also been extended to conventional and deep
neural networks [2143-46]. However, all these accelerators are
focused on accelerating a particular ML task.

To add more flexibility and accelerate beyond one algorithm,
several works focus on designs that accelerate a range of learning
algorithms [30} 41} 42]]. The work by Majumdar — MAPLE,
focuses on classification and learning, while PuDianNao ac-

11

commodates seven representative ML algorithms. Even though
PuDianNao does cover a large spectrum of ML algorithms, it
does not provide the flexibility to extend the accelerator for new
ML tasks. Besides, PuDianNao is an ASIC accelerator, whereas
TABLA can generate accelerators for any platforms if proper
backend support is provided.

FPGA accelerators. FPGAs have gained popularity due to their
flexibility and capability to exploit copious fine-grained irregu-
lar parallelism for higher performance execution. Furthermore,
the work in 34 36,39, 140, 51-55]] utilize FPGAs to accelerate
a diverse set of workloads, validating the efficacy of FPGAs.
LINQits [56] provides a template architecture for accelerating
database queries. The work by King et. al. [57] uses Blue-
spec to automatically generate a hardware-software interface for
programmer-specified hardware-software partitions. The work
by Putnam et. al. [7], designs an FPGA fabric for accelerating
ranking algorithms in the Bing server. They integrate this fabric
in 1632 servers at Microsoft. TABLA provides an opportunity to
utilize this integrated fabric in the servers for machine learning
algorithms. Conclusively, TABLA provides a comprehensive so-
lution — from programming language down to circuit design —
that can generate ML accelerators.

9 Conclusion

Machine learning algorithms include compute-intensive work-
loads that can benefit significantly from acceleration. FPGAs are
an attractive platform for accelerating these important applica-
tions. However, FPGA design still requires relatively long design
cycles and extensive expertise in hardware design. This paper de-
scribed TABLA that aims to bridge the gap between the machine
learning algorithms and the FPGA accelerators. TABLA leverages
stochastic gradient descent as the abstraction between hardware
and software to automatically generate accelerators for a class of
statistical machine learning algorithms. We used TABLA to gen-
erate accelerators for a verity of learning algorithms targeting an
off-the-shelf FPGA platform, Xilinx Zynq. Compared to a mul-
ticore Intel Xeon with vector execution, the TABLA-generated
accelerators deliver an average speedup of 2.9x. Compared
to the high-performance Tesla K40 GPU accelerator, TABLA
achieves 99.2x higher performance-per-Watt. These gains are
achieved while the programmers only write less than 50 lines of
code. These results suggest that TABLA takes an effective step
in a widespread use of FPGAs for machine learning algorithms.
We plan to make TABLA publicly available to the larger research
community in order to facilitate FPGA acceleration of machine
learning algorithms.

10 Acknowledgements

This work was supported by a Qualcomm Innovation Fellowship,

NSF award CCF #1553192, Semiconductor Research Corpora-
tion contract #2014-EP-2577, and a gift from Google.

References

[1] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(4):6-15,
July—Aug. 2011.

[2] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In ISCA, 2011.

[3] Ganesh Venkatesh, Jack Sampson, Nathan Goulding,
Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,
Steven Swanson, and Michael Bedford Taylor. Conserva-
tion cores: Reducing the energy of mature computations.
In ASPLOS, 2010.

[4] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous,
and A. R. LeBlanc. Design of ion-implanted mosfet’s
with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9, October 1974.

[5] Andrew Danowitz, Kyle Kelley, James Mao, John P. Steven-
son, and Mark Horowitz. Cpu db: Recording microproces-
sor history. ACM Queue, 10(4):10:10-10:27, April 2012.

[6] John Gantz and David Reinsel. Extracting value from chaos.

[7] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek

Chiou, Kypros Constantinides, John Demme, Hadi

Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth, Jan Gray,

Michael Haselman, Scott Hauck, Stephen Heil, Amir

Hormati, Joo-Young Kim, Sitaram Lanka, James R. Larus,

Eric Peterson, Aaron Smith, Jason Thong, Phillip Yi Xiao,

and Doug Burger. A reconfigurable fabric for accelerating

large-scale datacenter services. In ISCA, June 2014.

Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan

Sankaralingam. Dynamically specialized datapaths for

energy efficient computing. In HPCA, 2011.

[9] Ganesh Venkatesh, John Sampson, Nathan Goulding,

Sravanthi Kota Venkata, Steven Swanson, and Michael

Taylor. QsCores: Trading dark silicon for scalable energy

efficiency with quasi-specific cores. In MICRO, 2011.

Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott

Mahlke, and David August. Bundled execution of recurring

traces for energy-efficient general purpose processing. In

MICRO, 2011.

Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang,

Cheng Li, Austin Rovinski, Arjun Khurana, Ron Dreslinski,

Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason

Mars. Sirius: An open end-to-end voice and vision personal

assistant and its implications for future warehouse scale

computers. In Proceedings of the Twentieth International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), ASPLOS

’15, 2015.

Scott Sirowy and Alessandro Forin. Where’s the beef? why

FPGAs are so fast. Technical Report MSR-TR-2008-130,

Microsoft Research, September 2008.

[13] Xilinx. Zyng-7000 all programmable soc, 2014.

[14] Intel Corporation. Disrupting the data center to create the

digital services economy.
[15] Stephen Boyd and Lieven Vandenberghe.
optimization. Cambridge university press, 2004.

[16] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christo-
pher Ré. Towards a unified architecture for in-rdbms
analytics. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD
"12, pages 325-336, New York, NY, USA, 2012. ACM.

[17] David C Ku and Giovanni De Micheli. High level synthesis
of ASICs under timing and synchronization constraints.
Kluwer Academic Publishers, 1992.

[18] Ivan Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd

workshop on information heterogeneity and fusion in

(8]

(10]

[11]

[12]

Convex

12

recommender systems (hetrec 2011). In Proceedings of
the 5th ACM conference on Recommender systems, RecSys
2011, New York, NY, USA, 2011. ACM.

[19] Grouplens. Movielens dataset.

[20] Kamil A. Grajski. Neurocomputing, using the MasPar MP-
1. In K. W. Przytula and V. K. Prasnna, editors, Parallel Dig-
ital Implementations of Neural Networks, chapter 2, pages
51-76. Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

[21] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and
Doug Burger. "neural acceleration for general-purpose
approximate programs". In MICRO, 2012.

[22] Nvidia. Jetson. http://www.nvidia.com/object/
jetson-tkl-embedded-dev-kit.html) 2015.

[23] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. Liblinear: A library for large
linear classification. J. Mach. Learn. Res., 9:1871-1874,
June 2008.

[24] Ryan R. Curtin, James R. Cline, Neil P. Slagle, William B.
March, P. Ram, Nishant A. Mehta, and Alexander G.
Gray. MLPACK: A scalable C++ machine learning library.
Journal of Machine Learning Research, 14:801-805, 2013.

[25] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[26] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-
driven level 3 blas performance optimization on loongson
3a processor. In Proceedings of the 2012 IEEE 18th
International Conference on Parallel and Distributed
Systems, ICPADS ’12, pages 684—691, Washington, DC,
USA, 2012. IEEE Computer Society.

[27] Steffen Rendle. Factorization machines with ibFM. ACM
Trans. Intell. Syst. Technol., 3(3):57:1-57:22, May 2012.

[28] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library

for support vector machines. ACM Trans. Intell. Syst.

Technol., 2(3):27:1-27:27, May 2011.

S. Nissen. Implementation of a fast artificial neural

network library (fann). Technical report, Department of

Computer Science University of Copenhagen (DIKU),

2003. http://fann.sf.net.

Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,

Shengyuan Zhou, Olivier Teman, Xiaobing Feng, Xuehai

Zhou, and Yunji Chen. Pudiannao: A polyvalent machine

learning accelerator. In Proceedings of the Twentieth

International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS

’15, pages 369-381, New York, NY, USA, 2015. ACM.

Andreas Athanasopoulos, Anastasios Dimou, Vasileios

Mezaris, and Ioannis Kompatsiaris. Gpu acceleration

for support vector machines. In WIAMIS 2011: 12th

International Workshop on Image Analysis for Multimedia

Interactive Services, Delft, The Netherlands, April 13-15,

2011. TU Delft; EWI; MM; PRB, 2011.

G. Teodoro, R. Sachetto, O. Sertel, M.N. Gurcan, W. Meira,

U. Catalyurek, and R. Ferreira. Coordinating the use of gpu

and cpu for improving performance of compute intensive

applications. In Cluster Computing and Workshops, 2009.

CLUSTER °09. IEEE International Conference on, pages

[29]

[30]

(31]

(32]

http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html

(33]

(34]

(35]

(36]

(37]

[38]

[39]

[40]

[41]

(42]

[43]

(44]

1-10, Aug 2009.

Dan C. Ciresan, Ueli Meier, Jonathan Masci, Luca M.
Gambardella, and Jirgen Schmidhuber. Flexible, high
performance convolutional neural networks for image classi-
fication. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume Volume
Tiwo, IICAT’ 11, pages 1237-1242. AAAI Press, 2011.
Toannis Stamoulias and Elias S. Manolakos. Parallel
architectures for the knn classifier — design of soft ip cores
and fpga implementations. ACM Trans. Embed. Comput.
Syst., 13(2):22:1-22:21, September 2013.

E.S. Manolakos and I. Stamoulias. Ip-cores design for
the knn classifier. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on,
pages 4133-4136, May 2010.

H.M. Hussain, K. Benkrid, H. Seker, and A.T. Erdogan.
Fpga implementation of k-means algorithm for bioinfor-
matics application: An accelerated approach to clustering
microarray data. In Adaptive Hardware and Systems (AHS),
2011 NASA/ESA Conference on, pages 248-255, June 2011.
Tsutomu Maruyama. Real-time k-means clustering for
color images on reconfigurable hardware. In Proceedings of
the 18th International Conference on Pattern Recognition
- Volume 02, ICPR "06, pages 816-819, Washington, DC,
USA, 2006. IEEE Computer Society.

A.Gda.S. Filho, A.C. Frery, C.C. de Araujo, H. Alice,
J. Cerqueira, J.A. Loureiro, M.E. de Lima, Mdas.G.S.
Oliveira, and M.M. Horta. Hyperspectral images clustering
on reconfigurable hardware using the k-means algorithm. In
Integrated Circuits and Systems Design, 2003. SBCCI 2003.
Proceedings. 16th Symposium on, pages 99-104, Sept 2003.
M. Papadonikolakis and C. Bouganis. A heterogeneous
fpga architecture for support vector machine training.
In Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium
on, pages 211-214, May 2010.

S. Cadambi, 1. Durdanovic, V. Jakkula, M. Sankaradass,
E. Cosatto, S. Chakradhar, and H.P. Graf. A massively
parallel fpga-based coprocessor for support vector
machines. In Field Programmable Custom Computing
Machines, 2009. FCCM °09. 17th IEEE Symposium on,
pages 115-122, April 2009.

A. Majumdar, S. Cadambi, and S.T. Chakradhar. An
energy-efficient heterogeneous system for embedded
learning and classification. Embedded Systems Letters,
IEEE, 3(1):42-45, March 2011.

Abhinandan Majumdar, Srihari Cadambi, Michela Becchi,
Srimat T. Chakradhar, and Hans Peter Graf. A massively
parallel, energy efficient programmable accelerator for
learning and classification. ACM Trans. Archit. Code
Optim., 9(1):6:1-6:30, March 2012.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun. Neuflow: A runtime reconfigurable dataflow
processor for vision. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2011 IEEE Computer
Society Conference on, pages 109-116, June 2011.
Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,
Chengyong Wu, Yunji Chen, and Olivier Temam. Diannao:
a small-footprint high-throughput accelerator for ubiquitous

13

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

machine-learning. In Proceedings of the 19th international
conference on Architectural support for programming
languages and operating systems, pages 269-284, 2014.
A.A. Maashri, M. DeBole, M. Cotter, N. Chandramoorthy,
Yang Xiao, V. Narayanan, and C. Chakrabarti. Accel-
erating neuromorphic vision algorithms for recognition.
In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 579-584, June 2012.

Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian
Sampson, Hadi Esmaeilzadeh, Luis Ceze, and Mark Oskin.
SNNAP: Approximate computing on programmable socs
via neural acceleration. In HPCA, 2015.

D. Kesler, B. Deka, and R. Kumar. A hardware acceleration
technique for gradient descent and conjugate gradient. In
Application Specific Processors (SASP), 2011 IEEE 9th
Symposium on, pages 94-101, June 2011.

Antonio Roldao and George A. Constantinides. A
high throughput fpga-based floating point conjugate
gradient implementation for dense matrices. ACM Trans.
Reconfigurable Technol. Syst., 3(1):1:1-1:19, January 2010.
G.R. Morris, V.K. Prasanna, and R.D. Anderson. A
hybrid approach for mapping conjugate gradient onto
an fpga-augmented reconfigurable supercomputer. In
Field-Programmable Custom Computing Machines, 2006.
FCCM °06. 14th Annual IEEE Symposium on, pages 3—12,
April 2006.

D. DuBois, A. DuBois, T. Boorman, C. Connor, and
S. Poole. An implementation of the conjugate gradient
algorithm on fpgas. In Field-Programmable Custom
Computing Machines, 2008. FCCM 08. 16th International
Symposium on, pages 296297, April 2008.

Yao-Jung Yeh, Hui-Ya Li, Wen-Jyi Hwang, and Chiung-
Yao Fang. Fpga implementation of knn classifier based
on wavelet transform and partial distance search. In
Proceedings of the 15th Scandinavian Conference on Image
Analysis, SCIA'07, pages 512-521, Berlin, Heidelberg,
2007. Springer-Verlag.

Andrew R. Putnam, Dave Bennett, Eric Dellinger, Jeff
Mason, and Prasanna Sundararajan. CHiMPS: A high-level
compilation flow for hybrid CPU-FPGA architectures. In
FPGA, 2008.

Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and
Huazhong Yang. Fpmr: Mapreduce framework on fpga. In
Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA
’10, pages 93-102, New York, NY, USA, 2010. ACM.
Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric
Chung, and Greg Stitt. A high memory bandwidth fpga
accelerator for sparse matrix-vector multiplication. In
International Symposium on Field-Programmable Custom
Computing Machines. IEEE, May 2014.

Eric S. Chung, James C. Hoe, and Ken Mai. Coram: An
in-fabric memory architecture for fpga-based computing.
In Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA
"11, pages 97-106, New York, NY, USA, 2011. ACM.
Eric S. Chung, John D. Davis, and Jaewon Lee. Lingits:
Big data on little clients. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA

"13, pages 261-272, New York, NY, USA, 2013. ACM.
[57] M. King, A. Khan, A. Agarwal, O. Arcas, and Arvind. Gen-
erating infrastructure for fpga-accelerated applications. In
Field Programmable Logic and Applications (FPL), 2013
23rd International Conference on, pages 1-6, Sept 2013.

14

	Introduction
	Overview
	Background on Stochastic Gradient Descent
	Programming Interface
	Data Declaration
	Mathematical Operations

	Model Compiler for TABLA
	Integration of Stochastic Gradient Descent
	Data-Flow Graph Generation
	Scheduling

	Accelerator Design
	Processing Unit
	Target FPGA Platform

	Evaluation
	Experimental Setup
	Experimental Results
	Design Space Exploration

	Related Work
	Conclusion
	Acknowledgements

