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SUMMARY 

 

The study of energy transfer in mixtures or blends of light-emitting conjugated 

polymers has great implications not only in energy-saving applications such as organic 

light-emitting diodes (LEDs) and photovoltaic (PV) technology but also in improving our 

understanding of the fundamental science underlying the interactions between light and 

matter. However, research in this field of study is often complicated by the different 

modes of phase separation and dewetting in the films, membranes, and microstructured 

surfaces of the blends as a consequence of a host of parameters ranging from the 

chemical and physical properties of the polymers and their blends, the interactions among 

the polymers and between the polymers and the substrates, to the kinetics and 

thermodynamics involved in the preparation of these structures. Obviously, any further 

advancement in this area requires a better understanding of the correlation of the 

morphological structures of the polymer-polymer and polymer-dye blends and their 

optoelectronic properties. Such knowledge will allow industrial applications to be 

tailored accordingly. For instance, polymer blends having bicontinuous nano-sized phase 

separation pattern would be beneficial in PV applications as charge carriers can be 

extracted at the interface. This type of phase separation, on the other hand, is detrimental 

to LEDs and organic lasers because the formation of donor-acceptor pairs is too 

insufficient for energy transfer to be efficient. 

Here we report a study on the correlation of thin film morphology and energy 

transfer efficiency of three systems of blends, namely, PFO-P3HT, PFO:MEH-PPV, and 

PFO-TPP. Two sets of films were prepared and studied: one consists of thin films 

xix 



fabricated by drop casting from carbon disulfide (CS2) and chloroform (CHCl3) solutions 

of the polymer-polymer or polymer-dye mixtures, and the other is comprised of 

microstructured films having ordered hallow bubble arrays on surface. These 

microstructured surfaces were prepared by blowing moist air over a drop of the blend 

solution to induce condensation of water into droplets which grow and pack into 

hexagonal arrays without coalescence. After the solvent and the water droplets evaporate, 

the cavities that are left behind by the water droplets form arrays of spherical air bubbles 

on the surface of the polymer film. This study was done under a hypothesis that the high 

solvent evaporation rate involved in the process of bubble array formation kinetically 

inhibits the modes of phase separation that are observed in thin films prepared by drop 

coating where the solvent evaporates at a much slower rate. 

Using fluorescence energy transfer as a means to study phase separation, we 

found that phase separation in the breath figures of the polymer-polymer and polymer-

dye blends is influenced by a number of factors, including material transport dynamics, 

solubility of the blend components in the solvents, interactions of the solvents with the 

substrates, and the diffusion rates of the blend components. Phase separation in direction 

perpendicular to the substrate surface is more extensive in the breath figures cast from 

carbon disulfide solutions compared to those cast from chloroform solutions. However, 

lateral phase separation into donor-rich and acceptor-rich domains is observed in samples 

prepared from either solvent. The classification of the phase-separate morphology is 

made difficult by the highly non-equilibrium states of the systems.  

Phase separation in the drop-coated films, on the other hand, is determined mainly 

by the solvent evaporation rates. While solvents evaporate rapidly in the breath figure 

 xx



formation process, they do so at slower rates in the drop-coating procedure and thereby 

enable the blend components to de-mix in both vertical and lateral directions and to form 

aggregates and crystals. The time it takes for the solvent to dry in the drop-coating 

process is too short for equilibrium to be established and, consequently, the phase 

behavior resembles neither spinodal decomposition nor nucleation and growth, the two 

types of phase-separate morphology often observed in systems at equilibrium. These 

findings were confirmed by fluorescence microscopy, AFM, and XRD. 

This dissertation is organized as follows. The first three chapters introduce bubble 

array formation, fluorescence energy transfer, and phase separation in polymer blends, 

respectively. All experimental results are presented in chapter four and are discussed in 

relation to the models reviewed in the first three chapters. The thesis is concluded with a 

sketch of the future research directions on the subject. 
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CHAPTER 1 

 

INTRODUCTION TO POLYMERIC BUBBLE ARRAYS 

 

1.1 Historical Background 

 

The process of water vapor condensing into droplets on cold solid surfaces was 

first studied by Aitken and Rayleigh in 1911.1,2 It was not until 1986 that this commonly 

observed fogging phenomenon was investigated further by Knobler and Beysens, and 

they found that these water droplets, termed breath figures, also formed non-coalescent 

semi-ordered arrays on thin films of oil.3 Water droplets with size approaching 100 µm 

were reported in these studies.  

In 1994, Francois and co-workers discovered a procedure for forming highly 

ordered arrays of air bubbles on the surfaces of star polystyrene (SPS) and poly(para- 

 

Figure 1.1 Bubble arrays of poly(9,9-dioctylfluorene) cast from CS2 solution.  

(0.7 wt% polymer concentration. Bubble size ~7 µm). 
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phenylene)-block-polystyrene (PPS) 1.4 The preparation of the breath figure arrays 

(BFAs) involves the exposure of a drop of the polymer solution in carbon disulfide (CS2) 

to a flow of moist air, thereby allowing the water vapor to condense into droplets on the 

surface of the polymer solution which, at the same time, is being concentrated by the 

evaporation of the solvent. After all of the solvent and the water droplets have 

evaporated, the surface of the polymer film is left with an imprint of the water droplets 

with hole sizes varied from 0.2 to 10 µm. Following the success story of PS-containing 

polymers, Jenekhe and Chen reported their observation on the formation of multilayered 

interconnected bubble arrays of polyquinoline-PS block copolymer 2 with bubble sizes of 

2-4 µm when cast from CS2 solution.5 
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Realizing the breath figure formation as a dynamic templating method, 

Hadziioannou and co-workers prepared bubble arrays from carbon disulfide solutions of 

PS-containing block copolymers of poly(phenylene vinylene) and used these BFAs as 

templates for the fabrication of vapor-deposited arrays of mutually connected aluminum 

cups with dimensions of 3-5 µm.6 
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All these studies share some similar parameters. First, carbon disulfide was the 

only solvent reported to have the capability of facilitating the formation of BFAs. 

Second, the presence of polystyrene sequence in the polymers, particularly rod-coil block 

polystyrenes, seemed to be necessary for the bubble array formation. However, 

Srinivasarao and others reported the fabrication of highly ordered bubble arrays of linear 

monocarboxy-terminated polystyrene from not only CS2 but also from benzene and 

toluene.7 Furthermore, Srinivasarao was able to show that, contrary to previous reports, 

samples prepared from heavier-than-water solvents such as CS2 give monolayer of arrays 

of open air bubbles on polymer surface while those prepared from solvents less dense 

than water produce multilayered bubble arrays. Recently, Han and co-workers reported 

their study on the formation of high-quality bubble arrays on surface of linear polystyrene 

prepared from chloroform.8 Arrays of holes having diameter in the range of 2-5 µm were 

fabricated from polystyrene that lacks polar terminating groups. Russell and others also 

used chloroform solution of polystyrene to prepare bubble arrays decorated with CdSe 

nanoparticles wherein the self-assembly of the CdSe nanoparticles was done in situ.9 

Since the dimensions of the bubble cavities prepared by the breath figure method 

can be dynamically controlled, polymeric bubble arrays may find such potential uses as 

microlens arrays,10,11 picoliter beakers for microanalysis,12-14 and superhydrophobic 

surfaces.15 Self-assembly of nanoparticles into microarrays by way of bubble array 

formation has been demonstrated9, 16-17 and may find applications in sensor, filtration, and 

catalysis.18,19 Stand-alone films of polymeric bubble arrays can be stretched or 

compressed20 to obtain non-spherical pores which may be useful in cell growth. Because 

of their porous nature, BFAs can be used as sacrificial templates for the fabrication of 
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microporous films of metals simply by chemically reducing metals onto the bubble 

arrays.6 Films of bubble arrays can also be used in photonic band gap applications as the 

pore size can be made comparable to the wavelength of visible light and the refractive 

index of the scaffolding material can be fine-tuned.21,22 

 

1.2 Experimental Parameters 

 

Bubble array formation is dependent upon a number of parameters, including 

polymer structure, polymer molecular weight, solvents, concentration, relative humidity, 

and the speed of airflow. Moreover, it is somewhat an unresolved matter when it comes 

to the question of what really determine the bubble size and the size distribution of 

bubbles in the arrays, as well as whether or not the bubbles are multilayered and mutually 

connected. The variables will now be discussed. 

1.2.1 Polymer Structures 

It was found that polymers of varying structures formed BFAs. As mentioned 

above, early studies23-24 claimed that only star-shaped polystyrenes or block polymers of 

polystyrenes could form BFAs of decent quality. Lately, however, there have been 

reports on the formation of bubble arrays from linear polystyrenes,7-9 a variety of star-

shaped polymers such as 3-5 25-27, polyionic polymers 6 and 7,28 and conjugated polymers 

(which will be discussed in the next section). It is clear that the polymer structures are not 

the only factor that determines whether or not BFAs will form. For example, linear non-

functionalized PS forms bubble arrays when cast from chloroform and toluene but not 

from CS2 while carboxy-terminated PS does so when CS2 is used as solvent.7-8 It is 
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intriguing that PS with glucose or carboxylate terminating groups form BFAs but ester-

terminated PS does not.29 Similarly, breath figure formation in block copolymer of PS-

polyacrylate was found to be dependent on the ratio of the two blocks.30 

 

 

Polymer molecular weight also plays an important role in the formation of BFA. 

It was claimed that linear PS in toluene formed bubble arrays of better quality with higher 

molecular weight.8 In another report, PS-grafted fullerene C60(PS)6 3 was observed to 

form well-ordered bubble arrays only when the number-average molecular weight Mn of 

each PS branch was in the range of 3500-35000 g/mol.31 It will be shown in chapter 4 

that there is an inverse relation between polymer molecular weight and concentration in 

order to form BFAs. 

1.2.2 Solvent 

For many polymer and nanoparticle systems, carbon disulfide has been the 

solvent of choice. There are exceptions, however, as in the case of regular PS prepared 

from CHCl3 mentioned above. Other solvents that have been successfully used for the 
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preparation of BFAs include toluene, benzene, and xylene.29 Amyl acetate has also been 

used to prepare bubble arrays of nitrocellulose7,32-34 while Freon-type solvents have been 

found to be more suitable for surfactant-stabilized nanoparticles and fluorinated 

polymers.35,36 BFAs of conjugated polymers in solvents such as methylene chloride and 

CS2/pentane mixtures have been reported by Srinivasarao, Bunz, and co-workers.37 

Interestingly, tetrahydrofuran (THF) is not a good solvent for the preparation of breath 

figures although BFAs of good quality of poly(methyl methacrylate) as well as 

carboxylate-terminated PS have been prepared in dry air from THF that contains a small 

amount of water.38  

1.2.3 Concentration 

So far the preparation of BFAs followed a trial-and error process where the 

concentration of a polymer or a nanoparticle system was changed systematically until 

ordered bubble arrays were observed. A review of published data indicates a 

concentration range of 0.1-100 mg/L although a range of 0.1-10 mg/L is more 

common.7,9,29 However, experiments done with polymer concentration as high as 40 g/L 

have been reported.26 Again, it does not make much sense to talk about polymer 

concentration without taking into account the polymer molecular weight as the formation 

of breath figures depends on the viscosity of the polymer, and this will be discussed 

further in the section on the mechanism of BFA formation below. 

1.2.4 Relative Humidity and Airflow Speed 

Because the formation of BFAs necessitates water condensation into droplets, one 

may think that high humidity would facilitate the development of bubble arrays. 

However, experiments showed that a relative humidity between 70% and 85% works 
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best.9,29 Lower humidity does not lead to water condensation while higher humidity 

causes coagulation of the rapidly growing water droplets and results in disorders.9 

Similarly, too high or too low an airspeed disrupts the bubble-forming process. 

Generally, an airflow of 150-300 m/min gives the best results37 although successful 

preparation of BFAs at air speed of 30 m/min has been reported.7 

1.2.5 Factors Influencing Bubble Size 

There is still not a clear answer on what parameters really determine the size of 

the bubbles in BFAs. Srinivasarao and others found that bubble size decreased from 6 µm 

to 0.5 µm when airflow velocity was increased from 30 m/min to 300 m/min.7 Smaller 

bubble size was also observed to correlate with high polymer concentration28,38 and low 

humidity23,24. The dimensions of the air cavities, moreover, seem to depend on the 

materials being used. Stenzel and co-workers obtained BFAs with pore diameter of 250 

nm from PS-grafted cyclodextrin 4.23,24,26,30 However, identical conditions gave pore size 

of 750 nm in the case of polymer 5. Furthermore, when the end groups in 5 were changed 

to –O-C8H2F17 groups, the size of the air bubbles was reduced to 450 nm. Thus more data 

are needed in order to find a relationship between air bubble diameter and the 

experimental factors. 

 

1.3 Bubble Arrays of Conjugated Polymers 

 

Conjugated polymers hold great promise for numerous potential applications in 

optoelectronics. Thus it is of no surprise that a number of research groups have attempted 

to prepare BFAs of this class of materials.29 Bubble arrays of modest to excellent quality 
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of some conjugated polymers were fabricated and studied. Monolayered arrays of 

interconnected air bubbles in polymers 8-11 were prepared from CS2, dichloromethane, 

and CS2/pentane mixtures. These interconnected pores may be used to study the sieving 

process of infiltrated DNA and other materials as demonstrated by Hoagland and co-

workers.39 Air bubbles could also be prepared to be isolated from one  

 

 

 

another12, which may find applications as picoliter wells for analysis of small quantities 

of analytes. As these studies can attest, BFAs can be prepared not only in PS and PS-

derivatized star polymers but also in rigid conjugated polymers having no polar 

functional groups. 

 

1.4 Current Opinions on the Mechanism of the Formation of  

Polymeric Bubble Arrays. 

 

The seemingly simple process of the breath figure formation contains intricate 

details that are not yet well understood and an exact mechanism is still being sought. 

Nevertheless, some explanations based on temperature gradient effects have been put 

forth. Using microscopy to observe the bubble-forming process and temperature 

measurements, Srinivasarao proposed a mechanism (Figure 1.2) according to which the 
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flow of moist air causes evaporative cooling that reduces the temperature on the surface 

of the polymer solution to near 0oC, which brings about the condensation of water from 

the air into small droplets or nuclei that grow with time. When these non-interacting 

water droplets attain certain size, they organize and crystallize into highly mobile 

hexagonally ordered arrays as driven by the air flow and the convection currents (due to 

evaporation of solvent) on the solution surface (Figure 1.4). When the temperature 

between the surface and the droplets approaches similarity, the water droplets sink into 

the polymer. The whole process may repeat to form multilayered bubble arrays. In 

 

Figure 1. 2 Bubble array formation mechanism proposed by Srinivasarao.  

(Figure taken from Ref. 7). 
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this model, the bubbles are not in contact with the polymer solution but rather levitate on 

the polymer surface. This levitation and the non-coalescence behavior are explained by a 

combination of a thermocapillary effect and Marangoni convection,40-42 both being 

involved by virtue of the presence of temperature gradient between water droplets and the 

surface of the polymer solution.7 

Another mechanism proposed by Pitois and Francois suggests that the water 

droplets do not hover above the solution surface but come in contact with it.43,44 The 

authors maintain that the water droplets are each encapsulated by a thin film of the 

polymer they come in contact with and thereby can avoid coalescence. In this case, too, 

thermocapillary and Marangori convections are invoked to explain the non-coalescence 

behavior of the water droplets. 

 

 

Figure 1.3 Bubble array formation mechanism proposed by Shimomura. 

(Figure copied from Ref. 29). 

 

Yet another idea28 held by Shimomura asserts that the Marangori and 

thermocapillary convections cause the initial water droplets to submerge in polymer 
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solutions and subsequently rearrange themselves into hexagonally packed arrays (Figure 

1.3). However, microscopy data taken during the bubble-array formation process by 

Srinivasarao and others show rather convincing evidence that the water droplets move 

about and collide elastically on the surface of the polymer solution (Figure 1.4). 

 

 

Figure 1.4 Real-time micrographs showing the dynamics of the bubble array formation 

process. (Figure copied from Ref. 32). 
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CHAPTER 2 

 

INTRODUCTION TO ENERGY TRANSFER (ET) 

 

2.1 Historical Background 

 

 Since the discovery of the electroluminescence (EL) of poly(p-

phenylenevinylene) (PPV)in 1990,1 intensive research has been focused on light-emitting 

π-conjugated polymers due to their enormous potential applications in color displays2, 

white-light electroluminescence devices3, sensors4, and organic lasers.5 Fundamental to 

these applications are the energy transfer (ET) processes in host-guess or donor-acceptor 

systems comprised of polymer-polymer, polymer-dye, and dye-dye blends. Blending 

enables different colors to be achieved without having to synthesize new materials.6 

Moreover, the quantum yield is often enhanced in a blend because self-absorption (by the 

donor) is minimized due to the red shift in the emission (from the acceptor) as a result of 

ET. The emission spectra of conjugated polymers usually have large full width at half 

maximum due to inhomogeneous broadening and vibronic couplings while many highly 

fluorescing dyes display narrower emission bands. Thus another advantage offered by 

blending, especially in polymer (donor)-dye (acceptor) blends, is the production of fine 

narrow emission peaks that are essential to full-color displays and lasers. 

 Energy transfer is also being exploited for controlling energy flow, which is 

critical in photosynthesis and photovoltaic applications. Directional energy flow is 

generally achieved by stacking chromophores in thin film heterostructures7 or by linking 
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chromophores with continually decreasing band gaps along polymer chains.8 A recent 

study by Tolbert and others based on a composite made by grafting MEH-PPV, an 

orange-red light-emitting polymer, to pre-oriented hexagonally arrayed pores of silica 

glass shows that excitation energy is transported preferentially parallel to the pore 

direction (Figure 2.1). 9 

 

Figure 2.1 Directional energy flow in MEH-PPV/silica composite.  

Figure copied from Ref. 9. 

 

Energy transfer from a donor to an acceptor may involve electron exchange in a 

process known as Dexter ET or it may be induced by dipole-dipole interactions. The 

latter process, known as Coulombic or Förster ET, has received tremendous attention 

from both theoretical and experimental view points as this mode of ET, besides playing a 
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key role in photosynthesis, is often observed in donor-acceptor blends of light-emitting 

materials and is relevant to advanced optoelectronic technology. Concerning the 

processes involving resonant dipole-dipole interaction (RDDI), excitation energy transfer 

depends on the donor-acceptor separation, d. When the donor and acceptor are far apart 

with d > λ/10, the coupling is mediated by a real photon and the transfer is radiative. On 

the other hand, when donor and acceptor are close, the coupling is mediated by a virtual 

photon and the (Förster) transfer is nonradiative. 

 The study of fluorescence (Förster) resonance energy transfer (FRET) has a long 

history and may be said to begin with Perry who in 1918 proposed a mechanism based on 

resonance.10 Dipole-dipole interactions were not mentioned in the proposed mechanism. 

Nevertheless, the theory gained support when Cario and Frank reported their finding in 

1922 according to which a mixture of mercury and thallium atomic vapors exhibit an 

emission peak at 535 nm, which is characteristic of thallium, when it was excited with 

254 nm light, which corresponds to the mercury resonance line. The involvement of 

dipole interactions was implicated in a study by Gaviola and Pringsham in 1924 in which 

progressive depolarization of the emission was observed to correlate with increasing the 

concentration of a fluorescing species in a viscous solvent. Based on these results, a 

quantum theory of resonance energy transfer was formulated two years later by Kallmann 

and London. This theory was based on the Coulombic interactions between the donor and 

acceptor and introduced a parameter Ro, which is the intermolecular separation at which 

energy transfer process competes equally with all other decay processes. The relationship 

between Ro and the spectral overlap between the emission spectrum of the donor and the 

absorption spectrum of the acceptor was qualitatively proposed in 1932 by Perrin who 
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worked out a quantum mechanical theory of energy transfer between molecules of the 

same species in solutions. The first quantitative theory of resonance energy transfer was 

formulated by Förster in the later 1940’s.11 According to this theory, the criterion for a 

FRET is a spectral overlap between the donor emission spectrum and the acceptor 

absorption spectrum, and the spectral overlap is proportional to the parameter Ro, which 

is now generally known as the Förster transfer radius. Furthermore, the rate of energy 

transfer is inversely proportional to the sixth power of the intermolecular separation of 

the donor and acceptor. 

 Since then, numerous experiments have been performed to check the validity of 

Förster theory and satisfactory results have been obtained in binary blend systems 

comprised of small molecules. However, recent studies on polymer-polymer and 

polymer-dye blends have found the energy transfer behavior in significant disagreement 

with the theory (see below). The deviations mainly come from assumptions in the theory 

wherein the molecules are treated as hard spheres and the distribution of the donor and 

acceptor are uniform. Experimentally, these assumptions are rarely met in the solid-state 

structures of polymer-polymer and polymer-dye blends because of the non-spherical 

nature of polymer molecules and the inhomogeneity of the structures caused by phase 

separation. These recent findings will be discussed further after some theoretical 

considerations concerning the processes involved in energy transfer are presented. 
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2.2 Theoretical Considerations 

 

 The relaxation of a molecule from its electronically excited state to the ground 

state is a complex process and dependent upon the nature of the molecule, its 

thermodynamic state, and the environment surrounding it. Some materials relax by giving 

off light in a process called fluorescence. When an excited fluorophore is surrounded by 

other molecules either of the same or different species, fluorescence accompanying the 

relaxation may be quenched by energy transfer to nearby molecules. If the fluorophore is 

a conjugated polymer, the excited state may have a longer-than-expected lifetime as the 

exciton may migrate along the polymer chain before the condition is right for energy 

transfer to take place. In order to understand better the dynamics of energy transfer and 

fluorescence quenching, the different processes involved in the relaxation of an excited 

molecule are now reviewed. 

2.2.1 Relaxation of an electronically excited molecule.12 

 When a molecule is electronically excited by radiation or electric discharge, an 

electron in one of the occupied molecular orbitals is promoted to one of the unoccupied 

molecular orbitals, depending on the excitation energy. Associated with these electronic 

energy levels are the vibrational energy levels. After the molecule is brought to its 

electronically excited state, it may relax to lower excited state or the ground state 

following different paths as shown in the Jablonski diagram (Figure 2.2). (For simplicity, 

only relaxation to the ground electronic state or the LUMO is discussed). First, the 

excited molecule undergoes vibrational relaxation to the ground vibrational state of the 

electronically excited state. From there, it may emit radiation and relax to one of the 
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vibrational states of the ground electronic state. The emission of radiation is referred to as 

fluorescence. In this process, the multiplicity does not change and the relaxation is from a 

singlet to a singlet state. However, the excited molecule may undergo a change of 

multiplicity from a singlet to a triplet excited state in a process called intersystem 

crossing, which occurs at a point where the two potential-energy curves of the excited 

singlet state S1 and the excited triplet state T intersect. The relaxation, thus, involves a 

triplet to singlet transition. This radiative process, termed phosphorescence, is a slow 

process (greater than 100 ns as compared to 1-10 ns for fluorescence) and is formally 

forbidden due to the change of multiplicity in the transition. Phosphorescence is more 

commonly found in materials that have heavy atoms, where considerable spin-orbit 
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Figure 2.2 Jablonski diagram. (Dotted arrows indicate non-radiative relaxations). 
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coupling takes place. The phosphorescence is lower in energy than the fluorescence 

emission, which in turn is of longer wavelength than observed in the absorption. The shift 

to longer wavelengths in a fluorescence process is called the Stokes shift and comes from 

the fact that absorption generally occurs from the ground vibrational state whereas 

fluorescent emissions often end up in excited vibrational states (Figure 2.2).  

Besides radiative relaxations, an electronically excited species can also undergo 

non-radiative transitions leading to repopulation of the ground state through a process 

called internal conversion. An extreme case is where the absorption energy is so high that 

the molecule dissociates upon vibration, although for polyatomic molecules vibrational 

redistribution of the energy takes precedent. In addition, vibrational energy can be 

dissipated by collision of the excited molecule with other molecules which allows 

relaxation to the ground vibrational state within the same electronic state. Another 

process involving collisions between molecules is appropriately called collisional 

quenching, where the excited molecule passes to the electronic ground state and the 

energy is converted to translational and internal energy, which is eventually dissipated as 

heat. Since these processes involve collisions, their rates depend on the frequency of 

collisions and, therefore, are very high in solid state. Non-radiative relaxation can also 

occur by conversion of the electronic energy into vibrational energy within the molecule 

itself. However, this mode of relaxation is observed more frequently in the gas phase 

where the chance of molecular collisions is small. 

2.2.2 Fluorescence quenching and FRET10 

 When an electronically excited molecule undergoes collisions with other 

molecules, it may make a transition to the ground state by converting the energy into heat 
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as discussed above. The transition is non-radiative and, therefore, no fluorescence is 

observed. This is not the only process that reduces the fluorescence intensity of a 

material; other quenching routes include energy transfer, charge transfer, photoreaction, 

including photobleaching, and the formation of complexes (static quenching). In the 

simplest case of collisional (dynamic) quenching (Figure 2.3), the reduction of 

fluorescence is a function of the quencher concentration as shown by the Stern-Volmer 

equation 

][1 QK
F
F

sv
o +=        (2.1) 

where Fo and F are the fluorescence intensities in the absence and presence of quencher, 

respectively, Ksv is known as the Stern-Volmer quenching constant, and [Q] is the 

concentration of the quencher. Thus a plot of Fo/F versus [Q] should yield a straight line 

with a slope of Ksv and is often called a Stern-Volmer plot. The Ksv is directly 

proportional to the excited-state lifetime τo of the fluorescing species in the absence of a 

 

 

Figure 2.3 Dynamic quenching. 
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quencher according to the relation 

Ksv = kqτo        (2.2) 

where kq is the bimolecular quenching rate constant and proportional to the sum of the 

diffusion coefficients of the fluorophore and the quencher. For dynamic quenching, the 

reduction in the excited-state lifetime of a fluorophore is also related to the quencher 

concentration, or Fo/F = τo/τ, where τ is the excited-state lifetime of the fluorophore in 

the presence of a quencher. Thus,  

][1 Qk oq
o τ
τ
τ

+=        (2.3) 

and a plot of τo/τ versus [Q] should also be linear. However, the behavior of collisional 

quenching will be significantly affected if static quenching is involved. 

 There are situations where some molecules of a fluorophore form stable 

complexes with molecules of either the same or different species, and the resulted 

complexes do not fluoresce. For this static quenching process, the Ksv is replaced by an 

association constant of the complex Ka in the Stern-Volmer equation. However, the 

excited-state lifetime of the system is not affected because the quenching does not affect 

the uncomplexed molecules and therefore τo = τ. Consequently, if a system involves both 

dynamic and static quenching processes, the Stern-Volmer equation will become 

])[1])([1( QKQk
F
F

aoq
o ++= τ      (2.4) 

and a plot of Fo/F versus [Q] will have an upward curvature as schematically illustrated 

in Figure 2.4a. However, as the excited-state lifetime of the sample is unaffected by 

static quenching, the plot of τo/τ versus [Q] retains its linearity. The Stern-Volmer plot 

may take the form of a curve as shown in Figure 2.4b when the system undergoes only 
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Figure 2.4 Non-linear Stern-Volmer plots. (See text for explanation). 

 

collisional quenching. This behavior happens when some of the fluorophores are 

inaccessible to the quencher. 

 The quenching processes just discussed all reduce the fluorescence intensity. 

However, if the quencher is a fluorophore whose excitation energy is comparable to the 

emission energy of the quenched then the system fluorescence is not quenched but shifted 

to longer wavelengths because the quencher now emits fluorescence as it relaxes from an 

excited state where the excitation is induced by the energy transfer from the initial 

fluorophore (the donor). If the donor and the acceptor are far apart, the ET process is 

mediated by emission by the donor and reabsorption by the acceptor. When the donor and 

acceptor are close, i.e., close to the Förster radius, however, the energy is transferred 

without emission from the donor. This ET process may be mediated by a virtual photon 

or it may involve electron exchange. 

 24



The electron-exchange interaction in Dexter ET process requires the donor and 

the acceptor to be within 15-20 Ǻ of each other and it is schematically represented in 

Figure 2.5a. The rate of Dexter-type ET process is13 

∫
∞

==
0

2 )()(2 dvvAvEZP
dt
dk adnET

h

π
   (2.5) 

where Pn represents the population of excitons in electronic state n, Ed (v) stands for the 

donor emission spectrum, Aa(v) represents the acceptor absorption spectrum, and Z2 is a 

parameter related to orbital interactions and can be expressed as  

L
r

eZ
2

2
−

∝         (2.6) 

where r being the donor-acceptor distant and L is the sum of the van der Waals radii of 

the donor and acceptor molecules. The integral represents the normalized spectral 

overlap. Thus the energy transfer rate decreases rapidly with small increase in the donor-

acceptor distance and it varies as e-2r/L. 

a) b)

 

Figure 2.5 Dexter (a) and Förster (b) ET processes. 
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 Förster-type energy transfer can occur at a much larger donor-acceptor distance 

(up to 10 nm) than Dexter process. This is because the transfer is mediated by dipole-

dipole interactions and does not involve electron exchange (Figure 2.5b). The process is 

enabled by resonance (Figure 2.6) and depends on the orientation of dipoles as well as 

sufficient spectra overlap. Since it has to compete with other radiative and non-radiative 

relaxation modes, its quantum yield is defined as 
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    (2.7)  

where Fd(v) represents the donor emission spectrum, kET, knr, and kr are the rates of 

energy transfer, non-radiative transitions, and radiative transitions, respectively, and τ*
d is 

the excited-state life of the donor and defined as τ*
d = 1/(kET + knr + kr) whereas the donor 

lifetime in the absence of ET is τd = 1/(knr + kr). Equation 2.7 can be simplified to  
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where F*
d and Fd represent the fluorescence intensity of the donor in the presence and 

absence of FRET, respectively. Thus the Förster ET efficiency is directly related to the 

energy transfer rate (equation 2.7), which was first derived by Förster in the following 

expression. 
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where κ2 represents an orientation factor, n the refractive index of the material, Na the 

Avogadro number, r the donor-acceptor separation distance, Fd(v) and εa(v) are the donor 

emission and acceptor absorption spectrum expressed as functions of wavelength, 
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respectively. The integral represents the degree of spectral overlap. Thus in contrast to 

Dexter ET, the rate of energy transfer in Förster process is inversely proportional to the 

sixth power of the donor-acceptor separation. When this distance is such that the 

probability of energy transfer equals that of direct donor decay (without ET), it is 

generally known as the Förster radius and defined as 
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Equations 2.9 and 2.10 can be combined to give the well-known Förster transfer rate 

expression, 

61
⎟
⎠
⎞

⎜
⎝
⎛=

r
R

k o

d
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Energy transfer is essentially a dynamic quenching process, and when equation 2.11 is 

combined with equation 2.3, the energy transfer efficiency is revealed to be reduced in 

half when Ro = r. Thus the Förster radius can also be viewed as a donor-acceptor 

separation at which 50% of the excitation energy is transferred to the acceptor. 

 

Figure 2.6 Resonance-coupled transitions. 
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 Experimentally, a fluorescence quenching process is generally accepted to come 

from Förster energy transfer if the Förster critical radius extracted from lifetime 

measurements (equations 2.3 and 2.11) matches the figure obtained from the spectral 

overlap (equation 2.10). However, since molecules are treated as hard spheres in the 

theory while polymer molecules can have many different conformations, significant 

deviations have been found recently in systems containing fluorescent polymers as will 

now be discussed. 

 

2.3 Energy Transfer in Polymer-Polymer and Polymer-Dye Blends 

 

 Resonance-coupled energy transfer has been attracting a great deal of attention 

and the Förster model has enjoyed tremendous success in systems of small molecules in 

solution or in self-assembled monolayer structures. An excellent example comes from a 

recent report by Andrew and Barnes of the effect of optical cavity on the rate of energy 

transfer.14 The study was performed on a donor-acceptor pair comprised of a europium 

(III) complex and a cyanine derivative with the donor-acceptor separation being 

controlled by layers of 22-tricosenoic acid using Langmuir-Blodgett (LB) technique. The 

system not only allows the calculation of the Förster critical radius to be about 14 nm but 

also shows a direct dependence of the energy transfer rate on the photonic mode density 

as afforded by the optical cavity formed by sandwiching the donor-acceptor layers 

between two thermally evaporated silver mirrors (Figure 2.7). It is to be noted that 

energy transfer between planes such as presented in LB structures follows a rate law that 

is proportional to R-4 instead of R-6 in systems having isotropic dipole distribution.15 
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 While the Förster radius can be calculated with accuracy for energy transfer 

between small molecules, it often involves some uncertainty when energy transfer is to or 

from a polymer because of the possibility of exciton migration along the polymer chains. 

For example, a value of Ro = 3.3 nm was calculated by Shoustikov and others for the 

energy transfer from tris(8-hydroxyquinoline)aluminum (Alq3) to meso-

tetraphenylporphyrin(TPP).16 Yet, when Alq3 is replaced by poly(9,9-dioctylfluorene)  

 

Figure 2.7 Energy transfer in optical cavity. Left from top to bottom: weak, half, and full 

cavities. Top right: Excited-state decays of the donor. Middle right: Förster radius 

predicted (dashed line) and measured (open circles) from the cavities. Bottom right: 

Dependence of energy transfer rate on donor emission rate in absence of acceptor with 

the donor and acceptor separated by four layers (O), six layers (∆), and eight layers (V) 

of 22-tricosonic acids. Figure copied from Ref. 14. 
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(TPP), a value of Ro = 4.8 nm is obtained from spectral overlap calculations whereas 

excited-state lifetime measurements give a slightly smaller figure of 4.2 nm.17 Although 

the greater Ro values observed in the PFO case was attributed to a greater spectral overlap 

between PFO and TPP as compared to that between Alq3 and TPP, the discrepancy calls 

for some modifications in the approach to the model as applied to energy transfer in 

polymer blends. 

In a number of publications, Bradley and co-workers addressed the deviations of 

experimental results from the Förster theory and suggested models based on point-surface 

and surface-surface dipole interactions for dye-polymer and polymer-polymer blends, 

respectively, instead of the point-point dipole interactions assumed in the theory.18 From 

a study of the energy transfer in PFO-Nile Red blends, the measured data suggested an 

ET rate that is proportional to R-3 instead of R-6 as predicted by the Förster theory (Figure 

2.8a).18a A modified rate expression based on point-surface dipole interaction was 

suggested (Figure 2.8b). 

3
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r
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o
ET τ

=       (2.12) 
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6

6
3 o
o

R
R

πρ
=       (2.13) 

where oR  is the Förster radius for molecule-surface interaction and ρ is the donor 

chromophore density. When ρ is taken to be 0.14 nm-3 for PFO (estimated from monomer 

density), the modified Förster radius oR  was found to be 4.2 nm, which yields an Ro 

value of 3.2 nm. This figure is comparable to the number (3.6 nm) obtained from the 

spectral overlap integral, which confirms the observation of kET ∝  3R . 
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a)

b)

Figure 2.8 Deviation from Förster ET model (a) and representation of point-surface 

dipole interaction in dye-polymer blend (b). Figures copied from Ref. 18a. 

 

 Evidence of excitation energy migration before transfer is also observed by 

Bradley and co-workers in a study of the donor-acceptor blends composed of PFO and 

poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT).18b Excited-state decay 

measurements at low temperature (12 K) revealed a two-step process that was reasoned 

to be an exciton migration step (~20 ps) followed by a Förster energy transfer step (~12 

ps). The energy transfer behavior of this blend system was investigated further in LB 

structures (Figure 2.9) and the excited-state lifetimes measured at different spacer 

lengths pointed to an ET process with kET ∝  2−R , where R being the separation distance 

between the donor layer and the acceptor.18d This is, again, contradictory to the predicted 

behavior of kET ∝  6−R  by Förster for pointlike dipole interactions and kET ∝  4−R  by 

Kuhn for energy transfer between two planes. 
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Figure 2.9 BL structured PFO-F8BT film. Figure copied from Ref. 18d. 

 

 In all these studies, a discrepancy between experimental data and theory caused 

by phase separation of the blend components was suspected. However, taking phase 

separation problem into an expression for energy transfer rate presents a great challenge, 

since the inhomogeneity of phase separation does not permit theoretical treatment from a 

viewpoint of density distribution. Likewise, a proper model for the rate of energy transfer 

in polymer-polymer blends has to take into account the distribution of the dipole 

moments of the donor and acceptor and their orientation with respect to one another. 
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CHAPTER 3 

 

INTRODUCTION TO PHASE SEPARATION IN FILMS OF  

CONJUGATED POLYMER BLENDS 

 

3.1 Overview 

 

 Conjugated polymers, especially those containing aromatic or heterocyclic 

moieties, possess useful electronic, optoelectronic, and photonic properties that are being 

applied in various devices, including light-emitting diodes (LEDs),1-3 photovoltaic cells 

(PVs),4-5 thin film transistors,6 and electrochromic cells.7 Novel phenomena that arise 

from intermolecular interactions, self-organization, and confinement effects in blends of 

conjugated polymers are of fundamental and technological interest.8 Moreover, changing 

the physical and optoelectronic properties of a system by blending different polymers is 

more economical in terms of chemical synthesis and material process. Recently, LEDs 

and PVs based on blends of conjugated polymers have been found to be more efficient 

compared to layer-by-layer deposition of homopolymers because the phase separation in 

thin films of the blends created nanosized self-assembled heterojunctions where exciton 

dissociation (in PVs) or charge recombination (in LEDs) were facilitated.9 In order for 

blends of conjugated polymers to be developed into useful technological materials for 

electronics and photonics, a better understanding of the interactions in conjugated 

polymer blends such as ground-state charge transfer,10 photoinduced charge transfer,4 

exciplex formation,11 energy transfer,9,12 enhanced charge transport,13 and exciton 
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confinement14 is necessary. Such an understanding in turn requires knowledge in the 

control of thin film morphology of conjugated polymer blends. 

 It is a well known phenomenon in polymer science that mixtures of dissimilar 

polymers often result in phase separation of the blended components due to the low 

entropy of mixing between different polymers.8 While conjugated polymers are relatively 

novel materials and our understanding of the phase behavior in their blended films is still 

very poor,8,12b phase separation in films of “conventional” polymer blends, on the other 

hand, has been extensively studied in the past three decades from both theoretical and 

experimental viewpoints.17-20 The morphology of thin films of polymer blends is 

determined by a host of competing non-equilibrium processes that include solvent 

evaporation, demixing, phase coarsening, local ordering, and, especially, surface 

dewetting.8,12b Since the first finding of a complete-partial wetting transition near a 

critical point of a linear mixture by Cahn in 1977,21 the effect of wetting on phase 

separation has been intensively studied22-25 as it was realized that an understanding of 

thin-film morphology of polymer blends would be of great important not only in 

fundamental areas of interest such as material transport, hydrodynamics, wetting and 

dewetting of material on a surface, surface segregation, and others, but also in practical 

applications of material processing, including thin-film coating, morphological control of 

nanomaterials, and composite materials.  

 As mentioned above, our understanding of surface wetting and phase separation 

phenomena has come mainly from studies of mixtures of non-conjugated amorphous 

polymers. Blends of conjugated polymers present a greater challenge as these materials 

can self-organize into crystalline structures due to their π-π interaction ability. Therefore, 
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the following discussion focuses on classical polymers only. Some observations on the 

phase separation behavior in thin films of semiconductor polymers will be presented 

subsequently. 

 

3.2 Phase Separation Dynamics 

 

 Phase separation occurs because the materials (polymers or blends thereof) in a 

system (thin films) re-organize themselves in such a way as to minimize the overall free 

energy of the system. In the initial stage of phase separation, the surface layer formation 

process depends on how long it takes for the component with lower surface energy to 

diffuse to the surface (i.e., the substrate, which is assumed to be of a material different 

from those in the blends). The non-equilibrium mixture separates into phases having 

different energy of interaction with the surface in order to lower the total free energy. 

Thus at this stage, one is dealing with the surface wetting process where the growth of the 

wetting surface layer can be monitored by a depth-profiling technique, and the growth 

rate may be modeled as a function of diffusibility.26 However, there is not only the 

energy cost of the interactions between the polymer(s) with the surface but also of the 

inter-phase and polymer-solvent interactions. Accordingly, at the onset of phase 

separation, hydrodynamic transport of materials enables each phase to segregate to 

minimize its surface of contact. The dynamics is complex but can be categorized into two 

phase separation behaviors: nucleation and growth and spinodal decomposition.8, 27 In 

order to better follow these processes, a popular theory called the Flory-Huggins mean-

field theory28-31 is now presented. 
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 Polymer-polymer phase behavior in equilibrium was theoretically studied decades 

before experimentalists had the technological means to obtain data for comparison. 

Conventionally, the study of thermodynamics of phase separation in a blend of polymers 

A and B begins with an approximation of the energy of mixing, represented by the Flory-

Huggins segment-segment interaction parameter χ,32 
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where a segment is defined as a repeat unit or monomer, kB is the Boltzmann’s constant, 

and εij represents the contact energy between the i and j segments. From Eq. 1, a 

favorable mixing is expected when χ is negative, that is, interaction between A and B 

results in a lower energy of the system compared to the combined A-A and B-B 

interactions. On the other hand, the overall energy of the system is increased when χ is 

positive, that is, mixing A and B is unfavorable. For most non-polar classical polymers 

such as polyethylene and polystyrene where interactions are via van der Waals force, the 

contact energy is represented by32 
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where rij is the segment-segment separation, and α and I are the polarizability and 

ionization potential, respectively. In mixtures where the individual components are 
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arranged randomly with no preferred segment orientation, there is no volume change and 

Eqs. 1 and 2 can be rewritten as 
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In this equation, a cubic lattice is assumed with Ii = Ij = I and all contacts are neglected 

except for those from the z nearest-neighbor segments. The segment volume V is defined 

so that the number of segments per polymer molecule is N = ρVL/M, where ρ and M are 

the density and molecular weight of the polymer, and L is the Avogadro’s number.  

 The assumptions made in Eq. 3 cause significant deviations from experimental 

data because, in reality, most polymer mixtures have ∆V ≠ 0 due to some extent of 

anisotropic segment interactions. These effects are usually taken into account with an 

assumption that33-34 

 

βαχ += −1T       (4) 

 

where α and β stand for experimentally determined enthalpy and excess entropy 

coefficients for a particular component. It can seen from Eq. 4 that if α is positive and β is 

negative, then decreasing T will increase χ, resulting in an upper critical solution 

temperature (UCST). Conversely, a negative α and a positive β will give rise to a lower 

critical solution (see below) temperature (LCST). These most simplified scenarios are 

illustrated in Figure 3.1. Experimentally, these behaviors have recently been observed 
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with critical mixtures of poly(vinyl methyl ether) and polystyrene displaying a LCST and 

those of poly(ethylene-propylene) and polyisoprene showing a UCST.49,50 

  

 a)      b) 

             

Figure 3.1 Illustrations of UCST and LCST. 

 

 Macroscopically, the behavior of a phase separation system in equilibrium is 

thermodynamically governed both by enthalpy (H  = U + PV with U, P, and V being the 

system energy, pressure, and volume, respectively) and entropy S that together 

determines the Gibbs free energy of the system. 

 

TSHG −=        (5) 

 

We want to know how the free energy of the system is changed upon mixing two 

dissimilar polymers together. However, the analysis would be tremendously complicated 

if the system involves conjugated polymers which may crystallize or interact 
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anisotropically and thereby inhibit analysis by a mean-field approach. Thus Flory28,29 and 

Huggins30,31 dealt with the simplest case of polymer mixing—that of two classical linear 

homopolymers, and they independently estimated the change in free energy per segment 

∆Gm in mixing random walk polymer chains on an incompressible lattice to be 
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where φ refers to the overall volume fraction of a component. (In an incompressible 

lattice, φA + φB = 1). This equation is a mean-field theory35 with the first two and the 

third terms on the right represent the entropy ∆Sm and enthalpy ∆Hm of mixing, 

respectively. Under the assumed conditions, mixing tends to increase the entropy and so 

does the use of small N. The behavior of enthalpy depends on the sign of χ. 

 The dynamics of phase separation in a polymer blend system will be more easily 

studied with the help of a phase diagram, which can be constructed using the conditions 

at equilibrium, stability boundary, and critical point that are evaluated at constant 

temperature and pressure.32,36 
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Criticality: 03
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where the superscripts refer to different phases. In the case where NA = NB = N, the 

theroretical phase diagram is represented in Figure 3.2. 

 

 

Figure 3.2 Theoretical phase diagram for a symmetric binary mixture of 

linear homopolymers. (Figure copied form Ref. 27). 

 

The composition and segment-segment interaction at the critical point can be found by 

combining Eqs. 8 and 9 to yield 

 

 
 

42



2/12/1

2/1

BA

A
c NN

N
+

=φ       (10) 

and  

BA

BA
c NN

NN
2

)( 2/12/1 +
=χ       (11) 

 

 Using the theoretical phase diagram, the phase-separation dynamics can be 

predicted as follows. If a homogenous mixture is brought to the metastable region, such 

as from point B to B’ in Figure 3.2, a minority phase will develop via nucleation and 

growth (Figure 3.3) as predicted by classical nucleation theory.37 The initial small 

droplets grow larger from the diffusion of material from the supersaturated medium and, 

once the composition of the supernatant reaches equilibrium with , they continue to 

grow by coalescence as, at this stage, growth by diffusion is extremely limited by the 

viscosity of the polymers. In this mode of phase separation, the polymer mixture in the 

metastable region has to overcome the free energy barrier in order to form a new phase. 

''
Aφ

 In the second scenario where a homogenous mixture is brought into an unstable 

region such as from point A to A’ in the phase diagram, a free energy barrier is absent 

and the mixture spontaneously separates into a bicontinuous two-phase structure (Figure 

3.4) in a process termed spinodal decomposition.38 As in the case of phase separation by 

nucleation and growth where the initial droplets grow larger in order to reduce interfacial 

area (which in turn minimizes interfacial surface tension), the features resulted from 

spinodal phase separation continue to grow by coarsening in an effort to lower the 

interfacial area while maintaining the bicontinuous morphology.  
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Figure 3.3 AFM tapping mode topographic images of spin-coated thin films of 

PFO/P3HT blends showing phase separation by nucleation and growth mechanism. (the 

percents refer to PFO with respect to P3HT). Figure copied form Ref. 51.  
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 Ultimately in thin films of polymer blends, interfacial interaction energy plays a 

vital role in the stability of the films. From Young’s equation for the spreading 

coefficient,39 

 

)( AABBS γγγ +−=       (12) 

 

where γA, γB, and γAB stand for surface energies of the polymer film, substrate, and film-

substrate interface, respectively, it could be inferred that the film will be unstable if the 

coefficient S is negative. In terms of molecular interaction, polymer films break up in  

 

 

Figure 3.4 Optical micrograph of a freestanding PS film capped by evaporated 

SiO2 after annealing at 483 K for 3 hours showing spinodal phase separation. 

Figure copied from Ref. 52. 

 

spinodal decomposition because long-range van der Waals forces cause an amplification 

of film thickness fluctuations. This may sound counter-intuitive, but if the interaction 
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with the surrounding medium is greater from the substrate than from the film, the surface 

tension will destabilize the film.21,38 

 

3.3 Phase Separation in Films of Conjugated Polymer Blends 

 

 Theoretical and experimental studies of phase separation in thin films of polymer 

blends have focused mainly on simple polymers. However, progress is being made in the 

areas of conjugated polymers in solid state although the main interest lies in the device 

performance rather than on critical analysis of thin-film morphology.8,40 A  

 

Figure 3.5 Scanning force micrographs of PFB53/F8BT blend films spun from xylene (a) 

and chloroform (b). Scale bar for both images is 10 µm. Figure copied from Ref. 54. 
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technologically important blend is poly(styrene sulphonic acid) (PSS) and poly(3,4-

ethylene dioxythiophene) (PEDOT) has recently been studied with neutron reflectometry 

to obtain surface composition profile on thin-film structures.41 One of the efforts to 

correlate thin-film morphology with device performance was taken by Friend and co-

workers who fabricated photovoltaic cells with blends of the light-emitting alternating 

coplymers containing poly(9,9-dioctylfluorene) (PFO) and found the device performance   

 

Figure 3.6 SNOM images of the transmission and fluorescence from a PFO/P8BT 

blend. (Images taken from different areas of the same 1:1 blend ratio sample). 

Figure copied from Ref. 12. 
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to be better when the phase separation was in short length scale.42,43 These studies also 

show that thin films of the blends spun cast from different solvents display different 

phase-separation morphologies (Figure 3.5). 

Since many of the semiconducting polymers are emitters of visible light, a 

particularly useful technique to study thin-film morphology is scanning near-field optical 

microscopy (SNOM). Several groups have used SNOM to study the morphology of 

phase-separated thin films of light-emitting polymers by exciting different areas of the 

thin films with light of appropriate wavelength and observing the resulting fluorescence 

(Figure 3.6).44-48 An example of this approach is from a study by Jones and others who 

used SNOM to investigate component distribution a cross the surface of spun cast thin 

film of a polymer blend comprised of PFO and poly(9,9-dioctylfluorene-alt-

benzothiadiazole) (F8BT).12 The researchers also employed 3He nuclear-reaction analysis 

(NRA) to obtain a depth profile of the film and concluded that PFO preferentially formed 

a thin surface-wetting layer while F8BT diffused away from the substrate and phase 

separated via spinodal dewetting (Figure 3.7). It may be expected that the experimental 

data being accumulated in this area of intense research will soon enable the formulation 

of a theoretical model that can cope with such challenging problem as entropic 

fluctuations in thin films of conjugated polymers due to crystallization and local ordering. 
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Figure 3.7 Depth Profile by 3He NRA showing the distribution of PFO in 

PFO/P8BT blend film as a function of film depth. (Figure copied from Ref. 12). 
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CHAPTER 4 

 

BLENDS OF POLYDIOCTYLFLUORENE (PFO) WITH POLYMERIC AND 

MONOMERIC ENERGY ACCEPTORS: 

CORRELATION OF FLUORESCENCE ENERGY TRANSFER AND FILM 

MORPHOLOGY IN BREATH FIGURES AND FILMS 

 

4.1 Introduction 

 

 Light-emitting conjugated polymers are under intensive study for their potential 

applications in optoelectronics, printing, sensors, and other areas of advanced 

technology.1-6 The polymers that have been receiving most attention include derivatives 

of poly(9,9-dialkylfluorene) (PFs), soluble derivatives of poly(phenylene vinylene) 

(PPVs), and various poly(alkylthiophene) (PTs). These polymers, now commercially 

available, are highly soluble in common organic solvents and therefore are attractive for 

solution-processed fabrications of electronic and photonic devices.1-9 Moreover, most PFs 

and PPVs are efficient visible light emitters with high quantum yields (more than 50% for 

PFO and 15% for MEH-PPV) and being considered for photodiode and photovoltaic 

applications.10-15 Polythiophenes, although having low quantum yield, have been found to 

have high field-effect mobility of holes.16,17 

 This study investigated film morphology and energy transfer efficiency of three 

different systems of donor-acceptor blends: (1) poly(9,9-dioctylfluorene) (PFO) and 

poly(3-hexylthiophene) (P3HT), (2) PFO and poly(2-methoxy-5(2’-ethylhexyloxy)-1,4-
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phenylenevinylene) (MEH-PPV), and (3) PFO and meso-tetraphenylporphyrin (TPP). 

These materials were chosen for this study because their properties are well established, 

because significant overlap of PFO emission and each acceptor absorption facilitates 

energy transfer, emissions from the acceptors (i.e., red) are well resolved from that of the 

donor (i.e., blue), and because of their importance in potential technological applications. 

The chemical and physical properties, as well as photophysics, of the polymers 

PFO, MEH-PPV, P3HT, and the red dye TPP whose structures are shown in Figure 4.1 

are relatively well characterized.1,18-21 The blue-emitting PFO is currently attracting great 

attention due to its stability, high solid-state fluorescence quantum yield, and hole-

transport capability with hole mobility approaching 10-3 cm2/(V s) at room temperature.22 

However, applications based on PFO such as LEDs and PVs are somewhat discouraged 

by its solid-state behavior due to its different crystalline forms. Depending on processing 

parameters such as temperature and solvent, PFO has been found to display a 

mesomorphic β phase, a crystalline α phase, and a closely related low-temperature 

crystallization α’ phase.23 These assignments of PFO crystalline phases by Su and co-

workers are contradictory to those reported by many others who found the formation of a 

“crystalline” β phase when PFO was processed from toluene and an “amorphous” α phase 

in samples prepared from chloroform.24-30 Jenekhe and co-workers take advantage of the 

phase separation-by-crystallization behavior of PFO to prepare quite efficient white-light 

electroluminescence devices from blends with the orange-red emitter MEH-PPV. They 

find PFO forming phase-separated crystalline domains that retard energy transfer to 

MEH-PPV in blended samples having less than 30% MEH-PPV and resulting in an 

overall white-light emission whereas samples with higher percents of MEH-PPV are 
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more amorphous and homogeneous with efficient energy transfer from PFO to MEH-

PPV that leads to exclusive orange-red electroluminescence.31 Like PFO, MEH- 

 

Figure 4.1 Chemical structures of the polymers and dye. 

 

PPV is an efficient fluorescence emitter with higher than 15% quantum yield and soluble 

in many organic solvents. However, in the solid state, MEH-PPV tends to be amorphous, 

probably because of its more mobile alkoxy groups.  

Another setback to the use of PFO for optoelectronic applications is due to its 

significant green emission that is usually assumed to come from the formation of 

aggregates, interchain excimers, or keto defects due to oxidative degradation.32-35 Many 

attempts have been made to circumvent this problem by installing different end-groups36 

and/or attaching longer alkyl chains at the C-9 position of fluorene core.37,38  
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Regioregular P3HT attracts research interest mainly for its high hole mobility, 

comparable to α-Si.16 Thin-film transistors using semiconducting polymers as the 

electron/hole transport materials are of immense interest for industrial and academic 

research alike because these devices can be fabricated at a much lower processing cost 

than the silicon-based analogues. Moreover, the electronic and photonic properties of 

polymers can be tuned simply by synthesis. Despite the low quantum yield in their solid-

state fluorescence, P3HT and other polythiophenes have many interesting and useful 

photophysical properties.1 In the case of regioregular P3HT, analysis of its optical 

absorption and fluorescence is complicated by intrachain and interchain interactions that 

ultimately depend on how the polymer chains align with respect to each other in the solid 

state.39,40 Recently, blends of P3HT and PFO were employed to fabricate thin-film 

transistors and hole mobility of PFO was extrapolated from the measurements of the 

device performance.41 The authors also reported their observation of fluorescence energy 

transfer and phase separation but did not attempt to understand these processes. 

Besides polymer-polymer blends, this study also included the red dye TPP as an 

energy acceptor. There have been a few reports on the use of PFO-TPP blends for LEDs 

that show promising device performance.19,21 Although the absorption of TPP at the 

emission wavelengths of PFO is rather small, energy transfer in the blended thin films 

shifts the blue emission of PFO to a structured  red emission peak of TPP with enhanced 

photoluminescence of the latter. Moreover, unlike the case of polymer-polymer blends, 

for which Förster-type analysis is almost impossible due to complications in dipole-

dipole interactions, the Förster radius can be calculated in polymer-dye blends. However, 

deviations still occur due to the assumptions made in the distribution of the polarity of the 
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polymer chains with respect to the point-like dipole of TPP.19,21 Since macromolecular 

dyes such as TPP are potentially useful in photosensitized solar cell applications, their 

deployment as a dopant in a polymer matrix with high surface area such as in the 

microstructured surfaces prepared by the breath figure method may be relevant to the 

technological advances in the near future. 

It would be interesting to observe the phase separation behavior of polymer-

polymer and polymer-dye blends when they are cast into microstructured films by the 

breath figure (BF) method. This study was designed to do just that. As shown later in this 

chapter, the fast solvent evaporation rate in the bubble-forming process coupled with 

hydrodynamics and surface segregation42 significantly alters the phase separation 

morphology of the films with surface bubble arrays compared to the films prepared by 

drop casting (DC). The film morphology is found to be dependent not only on the film-

forming process but also on the solvents used to prepare them. A correlation of film 

morphology and energy transfer efficiency is investigated to reveal the distribution of 

components in different film structures of the blends. 

 

4.2 Experimental 

 

The breath figure method (see Chapter 1) was used to prepare bubble arrays of 

blends of PFO:MEH-PPV, PFO-P3HT, and PFO-TPP from CS2 and CHCl3 solutions as 

these solvents were found to facilitate the formation of the breath figure arrays (BFAs). 

Drop-coated films (DCFs) of these blends were also prepared from the same solvents. 



 59

The two sets of samples were studied for their morphology and fluorescence energy 

transfer. 

4.2.1 Materials: 

Phenyl-capped PFO of varying molecular weights were synthesized and kindly 

provided as a gift by the group of Professor Ulrich Scherf of Bergische Universität 

Wuppertal in Germany. Unless stated otherwise, the PFO employed in this study had Mn 

of 12,900 g/mol and Mw of 29,600 g/mol. MEH-PPV (average Mn 40,000-70,000 g/mol) 

and TPP (greater than 99.0% purity) were obtained from Aldrich. Regioregular P3HT 

(average Mw 87,000 g/mol, mp 230oC) was purchased from Aldrich. These materials 

were stored in the dark and used without further purification. The synthesis of these 

chemicals are well known and widely reported in the literature.43-46 Anhydrous carbon 

disulfide (Aldrich) and chloroform (Fisher Scientific) were used as received. 

4.2.2 Sample preparation: 

Samples of breath figures and drop-coated films were prepared in triplicates. For 

the preparation of polymeric bubble arrays, individual solutions of PFO, MEH-PPV, 

P3HT, and TPP in CS2 and CHCl3 were prepared. All concentrations were in weight 

percent with PFO in 0.4% solutions and the acceptors in 0.02% solutions. For polymer-

polymer blends, samples were prepared and diluted with the same solvent in order to 

obtain similar overall final polymer concentrations, which depend on the molecular 

weight of PFO as discussed later. In the case of PFO-TPP blends, the final concentrations 

of the mixtures in each run all had the same PFO concentration. Each blend sample was 

prepared immediately before the production of breath figure structures, which involved 

the placement of a cover glass that contained a 30-µl drop of a mixture in a humidity-
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controlled chamber and the solvent was allowed to evaporate under a flow of moist air. 

Housed in Professor Mohan Srinivasarao’s laboratory at Georgia Institute of Technology, 

the humidity chamber is attached to a Caron 5037 airflow-circulator and a Dayton Speed 

control. After the solvent had evaporated (usually in about 10 seconds for CS2 and 30 

seconds for CHCl3), the cover glass was removed from the chamber and allowed to dry 

under ambient conditions. All samples were prepared at room temperature (25 oC) with a 

relative humidity of 85% and an airflow speed set at 50 on the Dayton airflow controller.  

Drop-coated samples were prepared from the same solutions that were used in the 

preparation of the BFAs above. Thus in a glovebox with limited air circulation current, a 

50-µl drop of each mixture was placed on a cover glass and allowed to dry over several 

minutes.  

4.2.3 Methods of characterization 

The surface morphology of the drop-coated films and the breath-figure structured 

films were studied with an Olympus BX60 microscope equipped with a CRAIC-

upgraded SEE 1000 spectrophotometer in Professor Mohan Srinivasarao’s laboratory at 

Georgia Institute of Technology. This fluorescence microscope allows the observation of 

the fluorescence from the samples as they are excited with light from a laser source.  

Surface morphology was further characterized with atomic force microscopy 

(AFM) and scanning electron microscopy (SEM). A Veeco AFM, located in 

Microelectronic Research Center (MiRC) at Georgia Institute of Technology, was 

employed in tapping mode with µmasch-produced NSC 16 tips. A Zeiss Ultra 60 SEM, 

also located in the MiRC, was used to observe the morphology of the breath-figure 

structured films that had been coated with a thin layer of gold prior to measurements. 
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The morphological properties of the blended samples were also investigated with 

X-ray diffractometry (XRD) using a Scintag X1 Advanced Diffraction System in 

Professor Angus Wilkinson’s laboratory (Georgia Institute of Technology) with CuKa 

radiation (l = 1.54056 Å). Samples were placed in aluminum plates (2x2 cm) and data 

were collected in an angular range of 2θ = 1o to 30o, where θ represents the angle of 

incidence. 

The absorption spectra of the blended films were recorded using a Perkin-Elmer 

Lambda 19 UV/VIS/NIR spectrometer using transmission mode while the fluorescence 

emissions of the samples were measured with Spex Fluorolog 2 series 

spectrofluorometer. The excitation light source of the fluorometer came from a xenon 

lamp whose absorption maximum is at 467 nm. The fluorometer was also equipped with 

an RCA C 31034 photomultiplier detector. The fluorescence emissions from the prepared 

films were measured at an angle with respect to the incident beam and all slits were 

maintained at 0.5 mm. For each sample, two to four measurements were made at different 

areas of the sample. Each fluorescence spectrum is presented as an average of a triplicate. 

Excited-state fluorescence lifetimes of the samples were studied with a Lifespec-

ps manufactured by Edinburgh Instruments. This instrument, located in Professor Robert 

Dickson’s laboratory at Georgia Institute of Technology, operates with a Hamamatsu’s 

MCP-PMT detector and a 372 nm PicoQuant GmbH pulsed diode laser as light source 

(model # LDH-P-C-375). The laser source was controlled with a PDL 800-B driver and 

the repetition frequency was kept at 20 MHz. Decay rates were monitored in 0.50 nm 

increment at 466 nm, which corresponds to the second emission peak of PFO. 
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4.3 Breath figures of PFO and polymer-polymer and polymer-dye blends 

 

As mentioned in Chapter 1, successful formation of polymeric surfaces decorated 

with ordered open air bubble arrays depends on a number of factors, and viscosity seems 

to play a major role. As shown in Figure 4.2, when a PFO polymer with Mn of 12,900 

g/mol was used, a PFO concentration of 1.0 wt% in CS2 enabled the production of close-

packed hexagonally ordered arrays of air bubbles while samples cast from more 

concentrated solutions resulted in disordered bubble arrays or no bubbles at all. Samples 

of high molecular weight had to be diluted in order to prepare bubble arrays of acceptable 

quality. For example, breath figure arrays (BFAs) of good quality were fabricated from a 

0.7 wt% solution of PFO with Mn of 23,000 g/mol in CS2. Similarly, when Mn was 

increased to 65,400 g/mol, the concentration had to be lowered to 0.2 wt% to facilitate 

the formation of BFAs. The relationship between PFO molecular weight and the 

formation of BFAs is not always straightforward as bubble arrays of excellent quality 

were successfully prepared from 1.0% and 0.2% solutions of PFO with Mn of 12,900 

g/mol in CS2 as shown in Figure 4.2a&b. It is noteworthy that well-ordered BFAs were 

not formed on an entire film surface but came in patches that are separated by regions of 

disordered bubble arrays. Perhaps, the dynamics of bubble formation redistributes the 

polymer concentration and results in regions having a viscosity that enables the breath 

figure formation as well as areas where the polymer concentrations do not support the 

creation of BFAs. 
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Figure 4.2 Dependence of breath figure bubble array formation on PFO molecular 

weight and concentration. Mn and [PFO] are: 12.9 kg/mol, 1.0% in CS2 (a), 12.9 kg/mol, 

0.2% in CS2 (b), 23.0 kg/mol, 0.7% in CS2 (c) 65.4 kg/mol, 0.2% in CS2 (d), 12.9 kg/mol, 

0.2% in CHCl3 (e). (Optical micrographs with false colors). 

 

 Bubble arrays of PFO were not only generated from solutions in CS2 but also 

from those prepared in CHCl3 (Figure 4.2e). However, the films prepared from 

chloroform solutions often fractured visibly during the solvent evaporation process. The 

reason for the film rupture is not clear although the slower rate of evaporation of CHCl3 

appears to exert an impact. Observations made during the breath figure formation process 

reveal that, in areas where ordered water droplets have formed and little solvent has 

evaporated, the film that sustains the water droplets appears to swell up but subsequently 
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relax as more solvent evaporates. It is likely that the strain experienced by the film during 

the “swell and relax” process is greater when the solvent is chloroform as little of it has 

evaporated during the formation of the water droplets, causing the relaxation of the film 

to place strain on the film when all of the solvent eventually evaporates. The effect is 

expected to be less dramatic when the solvent is carbon disulfide as a significant fraction 

of this solvent has already evaporated during the formation of ordered water droplets. 

There may be other factors involved in the rupture of the breath figure structured films 

cast from CHCl3 solutions and more data are needed to identify the cause. 

 

10 µm 10 µm

10 µm

a b

c

 

Figure 4.3 Dependence of bubble size on polymer concentration. (a and b are 

fluorescence micrographs taken from two different areas of the same sample cast from a 

1.0% solution of PFO (Mn 12.9 kg/mol) in CS2 and c is from a sample of 0.06% PFO (Mn 

126 kg/mol) in CHCl3 containing 12 wt% MEH-PPV with respect to PFO. The dark 

square in the center of each image is from the shadow of a fluorescence probe). 
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An interesting observation was made on the dependence of bubble size on the 

polymer concentration. For samples prepared from PFO with an average number 

molecular weight of 12,900 g/mol, the pore sizes change from 3 µm in samples prepared 

from a 1.0% PFO solution to 2 µm in those cast from a 0.2% solution as shown in Figure 

4.2 (a, b, e). Moreover, each sample may display regions of bubble arrays having 

different pore diameters as indicated in Figure 4.3. (Approximately, the bubble diameters 

are 3 µm, 1 µm, and 0.5 µm in a, b, and c, respectively). The bubble size can be greatly 

reduced if the breath figure structured films are prepared from a dilute polymer solution, 

provided that the average molecular weight of the polymer is relatively high in order to 

enable the formation of the BFAs at low concentration (Figure 4.3c). 

The morphology of the BFAs as obtained in Figure 4.2d was further studied with 

SEM. The cross-section view of the sample shows an overall film thickness of about 20-

21 µm with the bubble arrays forming a 3 µm-thick monolayer on the surface of the film. 

Thus looking down from the surface, each bubble is actually a hollow hemisphere of 

approximately 6 µm in diameter (Figure 4.4). These observations were confirmed by 

AFM although this technique is incapable of measuring thickness of more than 6.4 µm 

and the overall film thickness was not revealed by AFM. As shown in Figure 4.5, the 

surface of the sample is imprinted with not only well-ordered large bubbles (~6 µm) but 

also smaller spherical cavities with diameters ranging from about 2 µm to a few hundred 

nanometers. This type of breath figure structures has also been observed by others.47 

Blending of PFO with another polymer does not seem to interfere much with the 

breath figure formation process although a lowering of overall quality is generally 

observed. However, blends of PFO with a dye such as TPP do have a negative impact on 
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Figure 4.4 SEM images of PFO BFAs (Mn 65.4 kg/mol, 0.2% in CS2). a) Top view with 

excessive charging, b) cross-section view. 

 

 

Figure 4.5 AFM image (tapping mode) of PFO BFAs (Mn 65.4 kg/mol, 0.2 wt% in CS2). 

 

the formation of bubble arrays as shown in Figure 4.6. This effect was also observed 

when we attempted to prepare BFAs of mixtures of PFO with rhodamine B (data not 

shown). The most likely explanation for this behavior is that the dye molecules, being 

more soluble in the solvent and having a much greater diffusibility, migrate to the surface 
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of the solution, which is being concentrated during the formation of the water droplets, 

and thereby disrupts the temperature gradient between the surface and the water droplets, 

resulting in localized coalescence of the droplets. This migration to the surface of the dye 

will be more in evidence when phase separation is discussed in the next sections. 

 

10 µm

a b

c

 

Figure 4.6 Optical micrographs of BFAs of the blends PFO-P3HT (a), PFO:MEH-PPV 

(b), and PFO-TPP (c) cast from 0.2 wt% PFO-in-CS2 solutions containing 4.0 wt% of the 

respective blend components. (Scale bar applies to all images). 

 

4.4 Photophysical properties of the polymers and dye 

 

The absorption and emission spectra of PFO, MEH-PPV, P3HT, and TPP are 

presented in Figure 4.7. The absorption spectrum of PFO in chloroform consists of a 

sharp peak at 380 nm while that of the PFO film cast from chloroform displays a broad 
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absorption maximum in the range of 350-410 nm and a minor but well-resolved peak at 

433 nm. This latter absorption peak has been considered to be characteristic of the β 

phase in the literature.30 In another report, it is also found in the α and α’ phase of PFO23 

and was reasoned to be a result of an improved conjugation of PFO chains due to better 

backbone coplanarity in crystal structures. However, as shown in Figure 4.8, this 

absorption around 433 nm is found in both drop-coated and breath figure structured films 

of PFO regardless of whether the solvent used in the casting is CS2 or CHCl3. Moreover, 

the morphology of PFO in the breath figure arrays is amorphous in nature as will be 

shown later. Thus it is more likely that this long-wavelength absorption arises from 

general chain aggregation. 
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Figure 4.7 Absorption and emission spectra of the energy donor and acceptors. a) PFO, 

b) P3HT, c) MEH-PPV, and d) TPP [Notes: absorption from chloroform solutions (dark 

blue), absorption of thin films (pink), fluorescence of chloroform solutions (yellow), and 

fluorescence of thin films (light blue)]. 
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Absorption Spectra of PFO
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Figure 4.8 Absorption spectra of PFO samples (FPFO: drop-coated film of PFO; 

BFPFO: breath-figure structured PFO. Indicated in the parentheses are the solvents used 

for casting). 

 

The fluorescence emission spectrum of PFO in chloroform displays three maxima 

near 430, 455, and 490 nm which correspond to the vibronic modes (1300-1500 cm-1). 

The relative intensities of the three maxima have not been explainable using Frank-

Condon analysis and the vibronic couplings (455 and 490 nm) to the electronic transition 

at 430 nm are assumed to involve several phonon modes.27,48-49 These emission peaks are 

red-shifted up to 36 nm in chloroform-cast thin films of PFO (Figure 4.7). Moreover, the 

relative intensities of the three maxima are different from breath figure samples to drop-

coated films. Whereas the emission spectra of PFO breath figures display three peaks in 

the range of 440-500 nm and a shoulder centered at 535 nm, the 0-0 peak is often missing 

in the emission spectra of PFO drop-coated films (Figure 4.9). This behavior points to a 

possibility of different PFO solid-state structures in the two film systems with the result 
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of a reduced probability of excited-state relaxation to the low-lying vibration levels of the 

electronic ground state in the drop-coated films. As will be discussed later, the change in 

the emission profiles of PFO in the two film systems leads to complications in spectral 

normalization and Stern-Volmer analysis. 
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Figure 4.9 Emission Spectra of PFO as BF-structured films and DC-films cast from CS2 

and CHCl3 solutions. (Excitation at 360 nm). 

 

The absorption spectrum of MEH-PPV in chloroform solution shows a maximum 

at 515 nm. This peak is slightly blue-shifted and broadened when MEH-PPV is prepared 

as a drop-coated film as shown in Figure 4.7. The fluorescence profile of this polymer in 

chloroform consists of a maximum at 581 nm and a second vibronic transition at 625 nm. 

These two peaks are red-shifted to 597 and 633 nm, respectively, in the emission 

spectrum of thin films. Unlike PFO, the relative intensities of the two emission peaks of 
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MEH-PPV follow similar trend in both solution and solid state and have been found to be 

consistent with Frank-Condon analysis.50 

 Regioregular P3HT in chloroform solution displays a single absorption peak at 

548 nm. However, its thin film absorbs in a broad range from 420 to 610 nm due to π-π 

stacking. The solution of the polymer in chloroform shows an emission peak at 600 nm 

and a shoulder at 643 nm. However, thin films of P3HT do not fluoresce at these 

wavelengths and instead emit very weakly above 700 nm. This behavior of P3HT has 

been well observed.39,40 

 The red dye TPP in solution and as thin film displays several peaks in its 

absorption spectrum. In chloroform solution, the spectrum shows peaks at 409, 434, 495 

and 642 nm while in thin film it consists of peaks at 431, 519, and 554 nm. The peaks at 

409, 434 (in solution), and 431 (in film) are typical of porphyrin Soret band absorption 

while the peaks at longer wavelengths have traditionally been assigned to the porphyrin 

Q-band absorption.21 The fluorescence spectrum of TPP in solution shows two sharp 

transitions at 658 and 724 nm. In thin films, the first emission peak is slightly red-shifted 

(667 nm) while the second peak is somewhat blue-shifted (720 nm) and the relative 

intensities of the two peaks are reversed in the two systems with the first peak being the 

dominant emission in the solution case and much weaker in thin film. The emission 

profile of the TPP film is probably complicated by the interactions between the porphyrin 

systems because the relative intensities of the two emission peaks of TPP in blended 

systems, where TPP is diluted, more closely resemble those of the TPP in solution. 
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4.5 Fluorescence energy transfer and phase separation 

 

From the absorption and emission spectra of the polymers and dye, it could be 

seen that the absorption of each energy acceptor component sufficiently overlaps the 

emission of the donor PFO and efficient energy transfer is expected according to Förster 

energy transfer criteria.51 For clarity, these features are presented in Figure 4.10. In all 

cases, the absorption of the acceptor in the absorption region of the donor (i.e., 340-440 

nm with maximum at 380 nm) is very limited, and the emissions of the acceptors in 

mixtures with the donor are expected to come mainly from energy transfer. However, to 

ensure that the fluorescence of the acceptors does not come from direct excitation, a 

study of the blends of polystyrene (PS)-P3HT was performed and the results are shown in  

 

PFO & TPP

PFO &
MEH-PPV

PFO &
P3HT

 

Figure 4.10 Spectral overlap of donor and acceptors. (Solid blue: absorption of PFO film, 

dotted blue: emission of PFO film, solid red: absorption of acceptor film, dotted red: 

emission of acceptor in chloroform solution). 
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Figure 4.11. Clearly, P3HT only fluoresces significantly when it is in solution and 

excited at its absorption wavelengths, which in this case is chosen to be at the 0-1 

emission peak of PFO (i.e., 466 nm). When PS-P3HT solutions or thin films are excited 

at 360 nm, which is the energy used to excite PFO in the blends, almost no fluorescence 

of P3HT in the range of 590-600 nm is observed. Thus if fluorescence emission is 

observed in PFO-P3HT blends, it must come from the energy transfer from PFO to P3HT  
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Figure 4.11 Emission spectra of PS-P3HT blends. (Notes: BF stands for breath figures, 

thin films are prepared by drop coating). 

 

and not from direct excitation of P3HT with light of 360 nm. Moreover, thin films of PS-

P3HT blends do not show any significant fluorescence upon excitation with light of 466 

nm and, therefore, the fluorescence in the region of 590-600 nm from PFO-P3HT blends, 

as shown later, is not just a result of dilution of P3HT but must be the result of energy 

transfer from PFO in the blends. Having shown that the blend systems chosen have 
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spectral overlaps that facilitate efficient energy transfer, the relationship between energy 

transfer and phase separation in the blend systems will now be discussed. 

4.5.1 PFO-P3HT 

In this section, the correlation of fluorescence energy transfer and morphology of 

the BFAs and DCFs of PFO-P3HT blends are discussed, first the samples cast from CS2 

then those produced from CHCl3 solutions. 

4.5.1.1 PFO-P3HT samples cast from CS2 solutions 

The fluorescence spectra of the BFAs and DCFs of PFO-P3HT blends as prepared 

from CS2 solutions are presented in Figure 4.12. For all three blend systems, the samples 

were irradiated with 360 nm light to ensure that only PFO was excited and, to be 

consistent, all fluorescence spectra were normalized at the 0-0 emission peak of PFO. 

This spectral normalization enables better observation of the quenching of PFO 

fluorescence in the polymer-polymer blends due to the fact that the absorption maxima of 

both P3HT and MEH-PPV overlap more with the 0-1 and 0-2 emission peaks of PFO. 

However, its drawback is twofold. First, the absorption maximum of the dye TPP 

overlaps better with the 0-0 emission peak of PFO and a spectral normalization at this  
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Figure 4.12 Fluorescence spectra of PFO-P3HT samples: BFAs (a) and DCFs (b). 
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peak coupled with a Stern-Volmer analysis performed at the 0-1 PFO emission peak 

tends to underestimate the quenching effects of TPP as will be shown later. Second, the 

fluorescence spectra of the DCFs sometimes do not display the PFO’s 0-0 emission peak 

as mentioned before (Figure 4.9). Not withstanding these difficulties, the spectra were 

normalized at the maximum in the wavelength range of 400-450 nm because Stern-

Volmer analysis is best carried out at the well-behaved 0-1 emission peak. 

As evidenced from Figure 4.12, the reduction in the PFO fluorescence is 

accompanied by an enhancement of the emission of P3HT as the concentration of the 

latter is increased, indicating efficient energy transfer (ET) from the donor to the 

acceptor. Moreover, it is clear that the ET efficiency is higher in the DCFs than the BFAs 

(Figure 4.13) and that, in both cases, the emission peak of the acceptor is progressively 

red-shifted as its concentration in the blends is increased, suggesting a higher probability 

of acceptor-acceptor intermolecular interactions. To learn more about the emission near 

640 nm, which resembles the fluorescence of an unblended P3HT film, the samples were  
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Figure 4.13 Ratios of acceptor-donor emission intensities. 
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Figure 4.14 Fluorescence of PFO-P3HT samples excited at 540 nm. 

 

excited with 540 nm light where P3HT absorbs strongly but PFO absorption is non-

existent. It was found that the emission profiles (Figure 4.14) matched closely with those 

in Figure 4.12. Since little fluorescence is observed from unblended P3HT films 

regardless of the excitation energy, the behavior observed here suggests that somehow  
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Figure 4.15 Relative positions of P3HT maximum emission peaks versus changes in 

concentration. (Calculations are relative to the 0.5% P3HT samples).  
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P3HT aggregates are effectively excited by energy transfer from PFO and their 

fluorescence is significantly enhanced. The nature of energy transfer from PFO to the 

P3HT aggregates is still unclear and difficult to understand particularly in the case of 

DCFs where the formation of PFO crystals (to be shown later) was observed and the 

extent of P3HT aggregation is greater (Figure 4.15). 

 The steady-state fluorescence data pose a question of why drop-coated films 

exhibit higher ET efficiency than the BF-structured films even though P3HT aggregation 

is more pronounced (i.e., more phase separated) in the former than the latter. A 

comparison of the Stern-Volmer plots and the excited-state decay profiles points to a 

possible answer. The excited-state lifetimes of PFO become shorter as P3HT 

concentration is increased, confirming the presence of energy transfer (Figure 4.16). 

Moreover, the rate of quenching of PFO fluorescence is slower in the DCFs as indicated 

by the extracted lifetimes (Table 4.1). Interestingly, the excited-state lifetimes of PFO 

drop-coated films are longer than those of BF-structured PFO films. Consequently, the  
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Figure 4.16 Excited-state decay profiles of PFO-P3HT BFAs (a) and DCFs (b).  

(λpump 372 nm, λprobe 466 nm). 
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Table 4.1 Excited-state lifetimes of PFO-P3HT samples. 

P3HT 
(wt%) 

τ (ps) 
BFAs 

τ (ps) 
DCFs 

0 306.6 405.2 
0.5 172.2 205.3 
1.0 114.6 152.3 
2.0 94.9 121.8 
3.0 77.4 94.1 
4.0 49.6 80.6 

 

τo/τ plots, where τo represents the lifetime of the excited state of  PFO in the unblended 

sample and τ is the fluorescence lifetime of PFO in the blended samples, for BFAs and 

DCFs of PFO-P3HT blends are highly comparable (Figure 4.17). The Stern-Volmer 

plots, on the other hand, clearly show that the fluorescence of PFO is more effectively 

quenched by P3HT in the drop-coated films. The discrepancy in the two types of analysis 

points to at least two possibilities: either the steady-state fluorescence data do not allow 

for a more accurate representation of the quenching behavior by Stern-Volmer analysis or 

the τo/τ plots misrepresent the underlying process by not having sufficient data points. 

The reliability of the excited-state lifetime data was investigated by making 

measurements at different segments of each sample. The averaged lifetimes of PFO in the  
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Figure 4.17 Stern-Volmer plots and τo/τ plots for PFO-P3HT samples. 
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Figure 4.18 Ratios of excited-state lifetimes of PFO-P3HT BFAs. 

 

PFO-P3HT BFAs from two sets of samples were used in the τo/τ plot shown in Figure 

4.18, which closely resembles the corresponding plot in Figure 4.17. The reliability of 

the Stern-Volmer analysis, on the other hand, is more questionable due to the far-from-

constant relative intensities of the three PFO vibration-coupled emission maxima as 

discussed before (Figure 4.9). All in all, the fluorescence energy transfer data show a 

slightly higher ET efficiency in PFO-P3HT DCFs than in BFAs, suggesting a more 

uniform distribution of the blend components in the former, and imply phase separation 

by P3HT aggregation in both systems. Moreover, since significant PFO fluorescence is 

still observed at high P3HT concentration, the morphology in both cases is expected to be 

highly inhomogeneous and contains PFO-rich domains inaccessible to P3HT molecules. 

The findings will now be compared to the morphological study using fluorescence 

microscopy. 

 The conditions involved in the preparation of the polymeric bubble arrays resulted 

in some intriguing observations of the phase separation behavior. Although the phase-

separated morphology is not obvious when studied with AFM, it is clearly seen in  
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Figure 4.19 Phase separation in PFO-P3HT samples observed under a fluorescence 

microscope: BFAs (first row) and DCFs (second row). (Samples were excited at 365 nm). 

 

the fluorescence micrographs as shown in Figures 4.19 thanks to the light-emitting 

nature of the polymers. In the breath figures, phase separation is hard to discern in areas 

where well-ordered bubbles are formed. However, in regions of disordered bubbles, the 

surface features scattered P3HT-rich domains as revealed by the red-colored zones where 

air bubbles are absent. To confirm that the red areas are rich in P3HT and the blue 

regions consist mainly of PFO, the fluorescence spectra obtained from these spots, 

indicated by the dark squares in the images, were obtained and presented in Figures 4.20 

for a sample prepared from a 0.23 wt% solution of PFO with an average Mn of 65.4 

kg/mol in CS2 containing 0.86% P3HT with respect to PFO. Clearly, the emission near 

590 nm is higher in areas more saturated with the red color while the fluorescence of PFO 

is dominant in the blue regions. It can be inferred from the fluorescence micrographs of 

the BFAs that the phase separation behavior is dictated mainly by a redistribution of the  
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Figure 4.20 Fluorescence micrographs and spectra taken at different areas of a BF-

structured sample of PFO-P3HT blend. (0.86% P3HT, λex = 365 nm, scale bar = 12 µm). 

 

blend composition that is resulted from the material transport dynamics during the 

bubble-forming process. The hydrodynamic flow is unquestionably accelerated by the 

flow of moist air and the resultant non-uniform evaporative cooling effect. Consequently, 

the partition of the blend solution during the BF-forming process into domains of varying 

polymer concentrations gives rise to segments of film where (i) breath figures are not 

formed, or (ii) well ordered bubbles develop, or (iii) ordered bubbles of smaller size are 

created, and (iv) PFO or P3HT is more concentrated. Furthermore, the images in Figure 

4.20 is seen to suggest that P3HT prefers to diffuse to the surface (i.e., away from the 

substrate) because its absence on the rims of the bubbles implies that PFO forms a thick 

wetting layer which is covered with a P3HT layer. Nevertheless, a depth profile analysis 

is needed to determine whether such a phase separation behavior does occur. The low ET 
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efficiency of PFO-P3HT BFAs as observed in Figure 4.12a is thus a result of phase 

separation into PFO-rich and P3HT-rich domains brought about by the material transport 

dynamics during the BF-forming process. The aggregation of P3HT as seen in the red-

colored bubble-absent domains also explains the observation of the red-shift in the 

emission peaks of the P3HT in the blend samples. However, no signs of crystallization of 

the blend components are observed. This is far from being true for the drop-coated film 

samples. 

 The reasons the study was concerned with drop-coated films (DCFs) instead of 

spin-coated films are twofold. First, this study was designed to investigate the effects of 

solvent evaporation rates on the phase separation behavior and the process of drop 

coating allows the solvents to evaporate slowly. This is in contrast to the fast evaporation 

rates in the breath figure formation process and enables better comparison of the data 

obtained from the two methods. Second, the drop-coating procedure was done in an 

environment deficient of moist air circulation, which provides another contrasting 

criterion to the bubble-forming process that involves the flow of moist air on the surfaces 

of the polymer solutions. 

 The fluorescence micrographs of typical PFO-P3HT DCFs as shown in Figure 

4.19 reveal contrasting phase separation patterns to those of the breath figure analogues. 

In samples of low P3HT concentration, phase separation of the components as indicated 

by the spots of red and blue colors occurs at a rather small scale and, as a result, the 

distribution of the blend composition is relatively uniform throughout large areas of the 

films. When P3HT concentration is increased, phase separation is progressively more 

extensive and sizable PFO-rich and P3HT-rich domains are well defined. Moreover, the   
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Figure 4.21 Fluorescence micrographs and spectra of PFO-P3HT DCFs. (Samples were 

cast from 0.23 wt% PFO-P3HT solutions in CS2. Mn of PFO is 65.4 kg/mol ). 

 

films display dark-red features that have a crystalline texture, suggesting a more crystal-

like aggregation of P3HT component that accounts for the considerable red-shift in the 

fluorescence of the films (Figures 4.12 & 4.15). Although actual crystals of P3HT are 

not observed in these films since a well defined emission peak at 650 nm is absent, the 

tendency of P3HT to form crystals in DCFs is implicated in samples cast from more 

concentrated blend solutions as shown in Figure 4.21. Due probably to the low content of 

P3HT crystals, their presence is not confirmed by XRD which, however, reveals the 

existence of PFO crystals in DCFs cast from either CS2 or CHCl3 blend solutions but not 

in BFAs (Figure 4.22). The diffraction patterns resemble those reported for the α-phase 

of PFO crystals.23 Although XRD was not performed on the samples presented in Figure 

4.19, the yellow clusters observed in the DCFs most likely represent PFO crystals or  
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Figure 4.22 Fluorescence micrographs and the corresponding X-ray diffraction patterns 

of PFO-P3HT BFAs and DCFs cast from 0.23 wt% blend solutions in CS2 and CHCl3. 

(PFO of Mn 56.4 kg/mol was used. Figure in b shows XRD profiles of PFO in different 

phases and is copied from reference 23). 

 

semi-crystals. Thus, the slower rate of solvent evaporation involved in the preparation of 

DCFs enables the blend components to phase separate by crystallization. This process is, 

however, limited by the rapid evaporation of such a volatile solvent as CS2 and 

consequently the extent of phase separation is restricted, resulting in a slightly higher ET 

efficiency than in the BFAs. 

 The phase separation dynamics in both BFAs and DCFs systems resembles 

neither spinodal decomposition nor nucleation and growth mechanisms as presented in 

Chapter 3. This is most likely due to the non-equilibrium processes occurring in these 

two systems as driven by rapid solvent evaporation. If the rate of solvent evaporation 
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plays such a major role in the morphology of BF-structured and drop-coated films, one 

would expect phase separation to be more extensive when the samples are prepared from 

chloroform solutions, which evaporate slower than carbon disulfide. For comparison, the 

data obtained for PFO-P3HT BFAs and DCFs cast from CHCl3 solutions will now be 

presented and discussed. 

4.5.1.2 PFO-P3HT samples cast from CHCl3 solutions 

Steady-state fluorescence measurements of the PFO-P3HT samples prepared from 

chloroform solutions show little fluorescence from the energy acceptor component in the 

DCFs as compared to the BFAs even though significant quenching of the energy donor 

fluorescence is observed in both cases (Figure 4.23). The higher ET efficiency in the 

BFAs as compared to the DCFs is more clearly seen from the plots of acceptor-donor 

emission intensity ratios as shown in Figure 4.24 where the slope of the linear fit to the 

data points of the BF-structured samples is much higher than that of the drop-coated 

samples. This is in contrast to the trends observed in samples cast from CS2 solutions as 
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Figure 4.23 Fluorescence spectra of PFO-P3HT samples cast from CHCl3 solutions: 

BFAs (a) and DCFs (b). 
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Figure 4.24 Ratios of acceptor-donor emission intensities. 

 

discussed above. However, similar to the fluorescence profiles of the samples cast from 

CS2 solutions, the emissions of the P3HT in the blend samples prepared from CHCl3 are 

red-shifted as the P3HT concentration is increased. Again, such behavior points to a 

possibility of P3HT forming aggregates. Moreover, the extent of P3HT aggregation is  
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Figure 4.25 Relative positions of P3HT maximum emission peaks versus changes in 

concentration. (Calculations are relative to the 0.5% P3HT samples). 
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expected to be higher in the DCFs than in the BFAs as the emission peaks of P3HT are 

more red-shifted in the former than the latter (Figure 4.25). 

 The energy transfer efficiency relationship between the BFAs and DCFs as 

observed in the steady-state fluorescence measurements is consistent with the excited-

state decay profiles as shown in Figure 4.26. Here, the rate of reduction in the excited-

state lifetime of the energy donor as a function of acceptor concentration is slower for 

DCFs than BFAs. This is more obvious from the τo/τ plots (Figure 4.27) where the slope 

of the linear fit to the data of the BFAs is greater than that of DCFs. However, the trend is 

reverse in the Stern-Volmer plots which show the quenching of PFO fluorescence by 

P3HT to be more effective in the DCFs than BFAs. Again, the reliability of the Stern-

Volmer analysis is hampered by the inconsistency in the relative intensities of the three 

vibration-coupled emission peaks of PFO, especially as the ratio of the 0-1 to 0-0 

intensities is so much larger in the DCFs than in the BFAs (Figure 4.23). 
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Figure 4.26 Excited-state decay profiles of PFO-P3HT BFAs (a) and DCFs (b) prepared 

from CHCl3 solutions. (λpump 372 nm, λprobe 466 nm). 
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Table 4.2 Excited-state lifetimes of PFO-P3HT samples cast from CHCl3. 

P3HT 
(wt%) 

τ (ps) 
BFAs 

τ (ps) 
DCFs 

0 351.7 248.7 
0.5 161.5 177.4 
1.0 99.7 170.8 
2.0 89.5 118.6 
3.0 76.7 101.5 
4.0 67.1 51.6 
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Figure 4.27 Stern-Volmer plots and τo/τ plots for PFO-P3HT samples cast from CHCl3. 

 

 The spectroscopic data thus reveal a much higher ET efficiency in the BFAs than 

in the DCFs of PFO-P3HT blends prepared from CHCl3 solutions. Additionally, the 

emission from the energy acceptor is significantly red-shifted in both systems as the 

acceptor concentration is increased. It is also noteworthy that the average excited-state 

lifetime of the unblended PFO films drop-cast from CHCl3 is much shorter (c.a. 248.7 ps) 

than that of the BF-structured PFO films (c.a. 351.7 ps for CHCl3 and 306.6 ps for CS2) 

as well as of PFO films drop-cast from CS2 (c.a. 405.2 ps). These findings suggest an 

underlying morphology where phase separation is more extensive in the DCFs cast from 

CHCl3 solutions than in the BFAs. 
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Figure 4.28 Fluorescence microscopy images of PFO-P3HT samples cast from CHCl3. 

 

The morphology of the BFAs and DCFs of PFO-P3HT blends as observed under 

a fluorescence microscopy is given in Figure 4.28. Phase separation is observed in both 

systems. Whereas phase behavior in the BFAs seems to be determined by the 

redistribution of the blend composition as similarly observed in the counterparts prepared 

from CS2 solutions, film morphology in the DCFs may be characterized as resulted from 

the aggregation of each blend component. Evidently, changing the solvent from CS2 to 

CHCl3 does not change the factors that govern the phase separation mechanisms. What 

has been changed is that the slower solvent evaporation rate of CHCl3 enables the blend 

components in the drop-coated films to de-mix to a greater extent and, as a result, donor-

acceptor interactions are reduced. Previous studies of PFO-P3HT films spin-cast from 

CHCl3 solutions claimed a phase separation mechanism of nucleation and growth.41 

Although a hint of that is observed in these drop-coated films, the morphology can only 

be classified as a segregation of the blend components.  



 90

Fluorescence (Ex 365 nm) of Thin Films of PFO:P3HT 
Blends Prepared from CHCl3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

400 450 500 550 600 650 700

Wavelength (nm)

In
te

ns
ity

 (a
.u

.)

PFO

0.86% P3HT

2.86% P3HT

PFO

0.86% P3HT

2.86% P3HT3µm

 

Figure 4.29 Fluorescence micrographs and spectra of PFO-P3HT DFCs cast from CHCl3 

solutions. (PFO with Mn of 65.4 kg/mol, polymer concentrations were 0.23 wt%). 

 

The surface texture and the low ET efficiency of the films drop-cast from CHCl3 

suggest some extent of PFO crystallization. In fact, similar blend samples prepared from 

PFO with an average Mn of 65.4 kg/mol show extensive crystallization of PFO (Figure 

4.29) as confirmed by XRD (Figure 4.22). A lack of a well-resolved emission peak at 

650 nm in the fluorescence spectra (Figure 4.23b) rules out the possibility of P3HT 

crystallization although higher concentration of P3HT results in greater aggregation and 

the emission peak is red-shifted further toward 650 nm. While other factors such as 

solvent polarity and polymer solubility may play a role in the phase-separate morphology 

of the BFAs and DCFs, it is shown here that, the parameters involved in the preparation 

of breath figures (e.g., moisture and airflow velocity) and the rate of solvent evaporation 
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have a determining impact on the morphology and the resulting energy transfer efficiency 

of films of polymer blends. To learn whether the phase behavior and the spectroscopic 

properties of the PFO-P3HT samples apply only to this blend system, the results obtained 

for another polymer-polymer blend system, namely PFO:MEH-PPV, will now be 

presented and discussed. 

4.5.2 PFO:MEH-PPV 

Due to its higher quantum yield, the fluorescence of MEH-PPV as a result of 

energy transfer from PFO is expectedly observed to be much greater than that of the 

PFO-P3HT samples. Moreover, since the solubility in CS2 and CHCl3 as well as the 

“mixability” with PFO of MEH-PPV and P3HT are not the same, the phase separation 

behavior is found to be slightly different between the two blend systems. 

4.5.2.1 PFO:MEH-PPV samples cast from CS2 solutions 

Steady-state fluorescence measurements reveal energy transfer to be somewhat 

more effective in the BFAs than DCFs of the PFO:MEH-PPV blends prepared from CS2 

solutions as shown in Figure 4.30. Yet, the quenching of PFO fluorescence by MEH- 
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Figure 4.30 Fluorescence spectra of BFAs (a) and DCFs (b) of PFO:MEH-PPV samples 

prepared from CS2 solutions. 
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Figure 4.31 Acceptor-donor emission intensity ratios (a) and relative changes in the 

wavelengths at MEH-PPV emission maxima (b) of PFO:MEH-PPV samples. 

 

PPV as indicated by the reduction in the intensity of the emission peak at 466 nm appears 

to be more efficient in the DCFs than BFAs. As a result, the slopes of the linear fits to the 

acceptor-donor emission intensity ratio plots (Figure 4.31a) and the Stern Volmer plots 

(Figure 4.33a) are greater for DCFs than BFAs. Why is the reduced fluorescence of the 

energy acceptor associated with an enhanced quenching of the donor fluorescence? This 

question can not simply be explained by the changes in the relative intensities of the three 

vibronic couplings of PFO because the effective quenching of the donor emission by the 

acceptor in the DCFs is further confirmed by the excited-state lifetime measurements 

(Table 4.3 & Figures 4.32b & 4.33b). Such behavior seems to suggest additional modes 

of quenching, such as PFO self-quench by interchain exciton migration.19 This process, 

however, implies some extent of PFO crystallization in the DCFs. In fact, although the 

red-shifts in the emission peaks of MEH-PPV are similar in BFAs and DCFs (Figure 

4.31b) and therefore MEH-PPV is expected to form aggregates but not crystals, the 

crystallization of PFO is observed in the DCFs of the blends. This will be shown after the  
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Figure 4.32 Excited-state decay profiles of BFAs (a) and DCFs (b) of PFO:MEH-PPV 

samples cast from CS2. (λpump 372 nm, λprobe 466 nm). 

 

Table 4.3 Excited-state lifetimes of PFO:MEH-PPV samples cast from CS2. 

MEH-PPV 
(wt%) 

τ (ps) 
BFAs 

τ (ps) 
DCFs 

0 306.6 405.2 
0.5 121.3 146.2 
1.0 74.3 56.1 
2.0 62.5 52.9 
3.0 44.2 42.9 
4.0 20.5 16.6 
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Figure 4.33 Stern-Volmer and τo/τ plots for PFO:MEH-PPV samples. 
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morphology of the BFAs is discussed. 

Similar to the phase behavior observed in the BFAs of PFO-P3HT blends, the 

morphology of the breath figures of the PFO:MEH-PPV blends seems to be determined 

by the material transport dynamics during the breath figure formation process. The  
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Figure 4.34 Fluorescence micrographs and spectra of BFAs of PFO:MEH-PPV cast from 

CS2 solutions. (BPPV21 and BPPV22 stand for 0.5% and 1.0% MEH-PPV samples, 

respectively. The other four images were taken from different areas of the same 4.0% 

MEH-PPV sample. Scale bar = 12 µm). 
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fluorescence microscopy images presented in Figure 4.34 indicate a low MEH-PPV 

content in areas where uniform bubble arrays are formed. Yet, in regions of disordered 

bubbles, MEH-PPV is concentrated in patches and the “film” appears to be composed of 

more than one layer of bubbles. In fact, in areas of high MEH-PPV density, a layer of air 

bubbles of large size (c.a. 7-20 µm) is formed on top of a layer of bubbles of smaller 

dimension (c.a. 2 µm) as evidenced from the microscopy images in Figure 4.35. Thus the 

redistribution of the blend composition caused by hydrodynamic flow, which, in turn, is a 

result of airflow and evaporative cooling of the surface of the blend solution, has the 

following effects. First, in areas where the blend concentration sustains an appropriate 

viscosity, well-ordered bubble arrays are formed with little phase separation. However, 

even in these areas, a significant fraction of MEH-PPV has been driven away by  

 

BPPV5
(top)

BPPV5
(middle)

BPPV5
(bottom)

 

Figure 4.35 Fluorescence microscopy images of a BF-structured sample of PFO:MEH-

PPV at different depths. (4.0% MEH-PPV. Scale bar = 12 µm). 
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hydrodynamic flow prior to the formation of the polymeric bubble arrays, resulting in 

little fluorescence of MEH-PPV as shown in Figure 4.34 (sample BPPV25). Second, the 

flow dynamics concentrates MEH-PPV in areas where a layer of bubble arrays has been 

established. The excess material, being more concentrated, either does not facilitate the 

formation of a layer of bubble arrays (Figure 4.34, second row) or enables the production 

of large and disordered bubbles (Figure 4.35). Ultimately, phase separation in the BFAs 

of PFO:MEH-PPV blends is dictated by non-uniform redistribution of the blend 

components as driven by airflow, solvent evaporation, and surface cooling. However, the 

effects of these factors on phase separation are limited by the non-equilibrium state of the 

system resulted from rapid solvent evaporation and, consequently, a significant fraction 

of donor and acceptor molecules in close proximity is maintained and the overall energy 

transfer efficiency is relatively high. 

 The morphology of the PFO:MEH-PPV films drop-coated from CS2, on the other 

hand, appears to be determined by the segregation of the blend components and partial 

crystallization of PFO (Figure 4.36). The phase behavior is thus similar to what has been 

observed in the PFO-P3HT films prepared from the same solvent. An absence of MEH-

PPV crystals can be safely assumed as the emissions from the films are not red-shifted 

enough to even resemble the emission peak of an unblended MEH-PPV film, let alone 

the emission from a crystalline film. However, the crystallization of PFO is expected 

since it is observed in a separately prepared set of drop-coated films of PFO:MEH-PPV 

blends and confirmed by XRD measurements (Figures 4.37 & 4.38).  

 Previous study on spin-coated films of PFO:MEH-PPV from chloroform solutions 

claimed a phase separation by spinodal decomposition,31 which is not observed in the 
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Figure 4.36 Fluorescence micrographs and spectra of PFO:MEH-PPV DFCs cast from 

CS2 solutions. (Images FPPV21 and FPPV21B were taken from a 0.5% MEH-PPV film. 

The other four images were taken from a 4.0% MEH-PPV film. Image FPPV25 was 

taken under transmission mode. Scale bar = 12 µm). 

 

films drop-coated from CS2 solutions being reported here. However, a pattern resembling 

spinodal dewetting is observed in films of FPO:MEH-PPV under optical microscopy 

using transmission mode as shown in Figure 4.36. With that said, it is rather difficult to 

observe the complete dynamics of phase separation in non-equilibrium systems such as 

the drop-coated films here where the rapid evaporation of CS2 does not allow a single  
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Figure 4.37 AFM images of PFO:MEH-PPV DCFs. MEH-PPV (a), PFO (b), 4.0% 

MEH-PPV in blend with PFO (c). Height images (left) and phase images (right). Samples 

were prepared from 0.23 wt% polymer solutions in CS2. Mn of PFO is 56.4 kg/mol. 

 

phase separation mechanism such as spinodal decomposition or nucleation and growth to 

exert its full effects. Whatever the mechanism may be, the PFO:MEH-PPV films drop-

coated from CS2 solutions are found to be phase separated by the segregation of the blend 

components with certain degree of crystallization by the PFO component. Such film 

morphology accounts for the slightly lower ET efficiency compared to the breath figure 

counterparts. Moreover, the formation of PFO crystals suggests that the fluorescence of  

a)

b)

c)
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Figure 4.38 Fluorescence micrographs and the corresponding X-ray diffraction patterns 

of PFO:MEH-PPV BFAs and DCFs cast from 0.23 wt% blend solutions in CS2 and 

CHCl3. (PFO of Mn 56.4 kg/mol was used. Figure in b shows XRD profiles of PFO in 

different phases and is copied from reference 23). Scale bar = 12 µm. 

 

PFO can also be quenched by exciton migration and lattice relaxation.19 As in the case of 

PFO-P3HT blends, the longer solvent evaporation time involved in the preparation of the 

drop-coated films enables the blend components to phase separate by aggregation and 

crystallization. However, if solvent evaporation rate were the only factor determining 

film morphology, we would expect the ET efficiency to be much lower and phase 

separation to be more extensive in the films prepared from chloroform solutions. As the 

data presented in the next section will show, the situation is not so straightforward.  
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4.5.2.2   PFO:MEH-PPV samples cast from CHCl3 solutions 

The energy transfer efficiency as judged from the fluorescence spectra (Figure 

4.39) is higher in the BFAs than the DCFs cast from chloroform solutions, in similarity to 

the PFO-P3HT samples. Additionally, the intensity of the acceptor emission is generally 

greater in samples prepared from CHCl3 than those fabricated from CS2. Such a trend 

implies that the rate of solvent evaporation is not the only factor determining the 

underlying morphology since chloroform evaporates slower than CS2 and one would 

expect phase separation to be more extensive and energy transfer efficiency to be 

significantly reduced in the CHCl3-cast samples. Perhaps, the blend components are more 

soluble in CHCl3 and are not segregated to the extent observed in the CS2-cast samples. 

However, the solubility factor seems to be relevant only to the breath figure samples as it 

fails to explain the highly reduced acceptor fluorescence in the CHCl3-cast DCFs of PFO-

P3HT blends (Figure 4.23b). This matter will be discussed further when morphology is 

studied with fluorescence microscopy. 
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Figure 4.39 Fluorescence spectra of BFAs (a) and DCFs (b) of PFO:MEH-PPV blends 

cast from CHCl3 solutions. 
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Figure 4.40 Acceptor-donor emission intensity ratio plots (a) and relative redshifts in 

MEH-PPV emission maxima (b) of PFO:MEH-PPV samples prepared from CHCl3. 

 

Although energy transfer is more effective in the BFAs than the DCFs, the 

quenching of PFO fluorescence in the latter is quite significant as indicated by the 

acceptor-donor emission intensity ratio plots (Figure 4.40a) and the Stern-Volmer plots 

(Figure 4.42a). Again, errors from the PFO non-uniform emission intensity ratios 

(mostly resulted from a highly reduced intensity of the 0-0 peak in the drop-coated films)  

1 2 3 4 5 6 7 8 9 10
1

10

100

1000

10000

Lo
g(

co
un

t)

Time (ns)

 BF-PFO
 0.5% MEH-PPV
 1.0% MEH-PPV
 2.0% MEH-PPV
 3.0% MEH-PPV
 4.0% MEH-PPV

1 2 3 4 5 6 7 8 9 10
1

10

100

1000

10000

Lo
g(

co
un

t)

Time (ns)

 F-PFO
 0.5% MEH-PPV
 1.0% MEH-PPV
 2.0% MEH-PPV
 3.0% MEH-PPV
 4.0% MEH-PPV

(a) (b)

 

Figure 4.41 Excited-state decay profiles of BFAs (a) and DCFs (b) of PFO:MEH-PPV 

samples cast from CHCl3 solutions. 
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Table 4.4 Excited-state lifetimes of PFO:MEH-PPV samples prepared from CHCl3. 

MEH-PPV 
(wt%) 

τ (ps) 
BFAs 

τ (ps) 
DCFs 

0 351.7 248.7 
0.5 131.1 140.7 
1.0 99.7 87.6 
2.0 72.7 50.4 
3.0 62.7 37.5 
4.0 64.7 30.3 
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Figure 4.42 Stern-Volmer and τo/τ plots for PFO:MEH-PPV samples cast from CHCl3. 

 

may play a role in the observed quenching behavior. However, the effective quenching of 

PFO fluorescence in the DCFs is, in deed, revealed by excited-state lifetime 

measurements (Table 4.4 and Figures 4.41b & 4.42b). Similar to the samples prepared 

from CS2 solutions, the low ET efficiency coupled with a high rate of donor fluorescence 

quenching in the DCFs seemingly points to the existence of acceptor aggregation and 

donor crystallization where the latter process enables PFO to self-quench by exciton 

migration and lattice relaxation. In fact, the aggregation of MEH-PPV is suggested by its 

progressively red-shifted emissions (Figure 4.40b) and the presence of PFO crystals is 

confirmed by XRD (Figure 4.38). These findings from fluorescence measurements will 
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now be correlated with the morphology of the samples as observed under fluorescence 

microscope and AFM.  

 The microscopy images of the surfaces of the BFAs as shown in Figure 4.43 

display well defined donor-rich and acceptor-rich domains, which clearly indicate the 

prominent role of hydrodynamic flow in the phase separation of the blend components. 

Thus, during the breath figure formation, processes such as airflow, evaporative cooling 

of the polymer solution surface, and solvent evaporation redistribute the blend 

composition laterally. However, phase separation in the direction perpendicular to the 

film surface is minimal as the rims of the bubbles in the acceptor-rich domains display 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

400 450 500 550 600 650 700 750

Wavelength (nm)

In
te

ns
ity

 (a
.u

.)

2.0% MEH-PPV (1)

2.0% MEH-PPV (2)

4.0% MEH-PPV (1)

4.0% MEH-PPV (2)

2.0% MEH-PPV (1) 2.0% MEH-PPV (2) 4.0% MEH-PPV (1) 4.0% MEH-PPV (2)

 

Figure 4.43 Fluorescence micrographs and spectra of PFO:MEH-PPV BFAs cast from 

CHCl3 solutions. (The numbers in parentheses indicate different measurements on the 

same samples.) Scale bar = 12 µm. 
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2.0% MEH-PPV (CS2) 2.0% MEH-PPV (CHCl3)

 

Figure 4.44 Fluorescence micrographs of PFO:MEH-PPV BFAs. (Left image: 0.23% 

blend solution where Mn of PFO is 56.4 kg/mol). Scale bar = 12 µm. 

 

orange-red color, which comes from MEH-PPV fluorescence, but not the blue color that 

represents PFO (Figure 4.44, right). This is in contrast to the behavior observed in the 

BFAs cast from CS2 where the rims of the bubbles are mainly decorated with blue color, 

suggesting that most of MEH-PPV forms a layer on top of a PFO-rich substrate-adhering 

layer (Figure 4.44, left). The limited phase separation in the vertical direction in the 

breath BF-structured films of PFO:MEH-PPV cast from CHCl3 solutions not only 

explains the high efficiency in the energy transfer but also reveals the important impacts 

of solubility and solvent polarity on the film morphology. Since both PFO and MEH-PPV 

are more soluble in CHCl3 than CS2 and MEH-PPV is more soluble in CS2 than PFO 

does in the same solvent, it is more likely for MEH-PPV in a blend with PFO in CS2 to 

phase separate near the top of the becoming film due to the evaporative cooling effect. 

Moreover, carbon disulfide is non-polar while chloroform is polar and therefore the 

interaction of the latter with the hydrophilic substrate (glass) surface is expected to be 

stronger than that between CS2 and the substrate. Consequently, it is a likely scenario that 
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as CS2 is evaporating, PFO becomes more concentrated near the substrate surface while a 

considerable fraction of MEH-PPV is carried by CS2 away from the substrate and 

redistributed laterally by the hydrodynamics, which comes from the airflow and the 

temperature gradient on the surface of the blend solution. In the case of CHCl3 solution, 

the stronger solvent-substrate interaction and the higher solubility of the blend 

components in this solvent limit vertical phase separation as both factors minimize the 

partition of the blend components in the vertical direction. However, lateral phase 

separation is subjected to the same dynamics as in the case of CS2.  

 The rate of solvent evaporation seems to play a more prominent role in the drop-

coated films than in the breath figures as the blend components have more time to 

segregate and form aggregates as shown in Figure 4.45. However, while changing the 

solvent from CS2 to CHCl3 has a dramatic impact on the ET efficiency of the PFO-P3HT 

drop-cast films (Figures 4.12b & 4.23b), it exerts negligible effects on the fluorescence 

profiles of the PFO:MEH-PPV counterparts (Figures 4.30b & 4.39b). If anything, the 

energy transfer in the films of PFO:MEH-PPV cast from CHCl3 is slightly more effective 

than in those prepared from CS2. Perhaps, the compatibility of PFO and MEH-PPV is 

better in CHCl3 than in CS2, and that of PFO and P3HT is reduced in CHCl3. In other 

words, the same solvent effects as seen in the BFAs of PFO:MEH-PPV blends may also 

play a part in the drop-coated films and result in more vertical phase separation in the 

CS2-cast films than in the films prepared from CHCl3. Whether such phase behavior 

exists in the films remains to be confirmed by depth profile analysis. What is more 

certain is the partial crystallization of PFO in the CHCl3-cast films. This is not obvious 

from the images presented in Figure 4.45 but clearly seen from the atomic force  
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Figure 4.45 Fluorescence micrographs and spectra of PFO:MEH-PPV DCFs cast from 

CHCl3. (Numbers in parentheses indicate different measurements on the same samples. 

MEH-PPV is from a drop-coated film of unblended MEH-PPV). Scale bar = 12 µm. 

 

micrographs (Figure 4.46) and confirmed by XRD (Figure 4.38). The formation of PFO 

crystals may enable PFO relaxation from its excited state by interchain exciton migration 

and lattice relaxation and contribute to the effective quenching of PFO fluorescence as 

discussed above.  

 While it does not make much sense to classify the phase behavior in the 

PFO:MEH-PPV drop-coated films from CHCl3 solutions as either spinodal 

decomposition or nucleation and growth (Chapter 3) since the aggregation of the blend  
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4.0%
 

Figure 4.46 AFM images of unblended PFO film and 4.0% MEH-PPV blended film 

drop-coated from 0.23% polymer solutions in CHCl3. (Mn of PFO is 56.4 kg/mol). 

 

components does not follow any particular patterns, it is worth noting that the 

morphology of the unblended MEH-PPV film cast from CHCl3 displays features that 

resemble spinodal dewetting (Figure 4.45, bottom image). However, drop-coated films 

of MEH-PPV in blend with PFO do not display such features but, instead, show random 

segregation of MEH-PPV and small crystals of PFO. Since so much of energy transfer 

and phase behaviors depend on the compatibility of the blend components with one 

another and with the solvents, it would be interesting to study these properties when PFO 

is blended with a small molecule which possesses a viscosity that is negligible compared 

to that of P3HT or MEH-PPV and an extremely high solubility in both CS2 and CHCl3. 
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To this end, blends of PFO-TPP were prepared and studied, and the results will now be 

presented and discussed.  

4.5.3 PFO-TPP 

The use of a monomeric energy acceptor such as TPP instead of the polymeric 

ones was observed to have a negative impact on the formation of well-ordered breath 

figure arrays of the PFO-TPP blends as mentioned earlier in this chapter. Whether the 

effects come from the higher diffusibility of TPP or from the lower overall viscosity of 

the blend solutions are not clear. Prior studies of this blend system were mainly 

concerned with either device performance or using it as a model for an investigation into 

the Förster-type energy transfer process.19,21 However, phase separation behaviors of thin 

films of TPP blended with a conjugated polymer are poorly understood. Additionally, the 

energy transfer process and the morphology of TPP-doped polymer breath figures are not 

known. These issues will now be addressed for BFAs and DCFs of PFO-TPP blends 

prepared from CS2 and CHCl3 solutions. 
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Figure 4.47 Fluorescence spectra of PFO-TPP BFAs (a) and DCFs (b) prepared from 

CS2 solutions. (Excitation at 360 nm). 
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4.5.3.1 PFO-TPP samples cast from CS2 solutions 

The relative TPP fluorescence intensity and PFO fluorescence quenching 

efficiency are surprisingly similar between the BFAs and DCFs prepared from CS2 as 

evidenced from steady-state fluorescence measurements (Figures 4.47 & 4.48) and 

excited-state decay profiles (Figures 4.49 & 4.50b). From the ineffective quenching of 

PFO fluorescence by TPP, it may be inferred that energy transfer efficiency is quite low 

for both breath figure and drop-coated systems and significant phase separation is 

expected. Unlike the cases of P3HT and MEH-PPV where the aggregations of the energy 

acceptor components are revealed by the red-shifts of the emission peaks, the positions of 

the fluorescence maxima of TPP change little, regardless of its concentration.  
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Figure 4.48 A-D emission intensity ratio plots for PFO-TPP samples cast from CS2. 

 

Nevertheless, the considerable errors involved in the fluorescence measurements as 

indicated in the acceptor-donor emission intensity ratio plots and the Stern-Volmer plots 

(Figure 4.50a) imply a great inhomogeneity of the film structures. The errors observed in  
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Figure 4.49 Excited-state decay profiles of PFO-TPP BFAs (a) and DCFs (b) cast from 

CS2 solutions. (λpump 372 nm, λprobe 466 nm). 

 

Table 4.5 Excited-state lifetimes of PFO-TPP samples prepared from CS2 solutions. 

TPP 
(wt%) 

τ (ps) 
BFAs 

τ (ps) 
DCFs 

0 306.6 405.2 
0.5 142.3 125.2 
1.0 62.3 83.8 
2.0 59.4 46.2 
3.0 55.9 34.7 
4.0 24.1 27.1 
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Figure 4.50 Stern-Volmer and τo/τ plots of PFO-TPP samples cast from CS2. 



 111

the Stern-Volmer plots also come from the unpredictable behavior of the three PFO 

emission peaks. For some unknown reason, the inconsistency in the relative intensities of 

the PFO emission maxima is much greater from the PFO-TPP samples in contrast to the 

PFO-P3HT and PFO:MEH-PPV ones. Thus, while the quenching of PFO fluorescence by 

TPP in the DCFs is shown by the Stern-Volmer plots to be less efficient than that in the 

BFAs, the rate at which PFO decays from its excited state is faster in the films than in the 

breath figures (Figure 4.50b). In other words, according to the data from the pump-probe 

measurements, PFO fluorescence in the DCFs is heavily quenched while relatively little 

energy is transferred from the donor to the acceptor. This behavior, which has also been 

observed in the drop-coated films of PFO-P3HT and PFO:MEH-PPV blends, implies 

self-quenching. Partial crystallization of PFO is therefore expected in the DCFs. 

 The inhomogeneity in the structures of the BFAs as suggested by the fluorescence 

measurements is clearly revealed by optical microscopy, which displays well-defined 

PFO-rich and TPP-rich domains (Figure 4.51). These phase separation features have 

been observed repeatedly in different sets of PFO-TPP breath figures (Figure 4.52). The 

fluorescence spectra obtained at the red-colored domains or the blue-colored ones show 

significant fluorescence from PFO, indicating that even the TPP-rich domains (i.e., red-

colored areas) contain a considerable amount of the PFO component. It is also noted that, 

unlike the case of the polymer-polymer blends where the acceptor-rich domains are very 

often located in the sections where the bubbles are not formed, the formation of the TPP-

rich domains do not have a preference on the surface. These observations suggest a mode 

of phase separation where TPP may have diffused to the surface during the evaporation 

of CS2 and hydrodynamic flow breaks up the continuum of the TPP solution in CS2 into  
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Figure 4.51 Fluorescence micrographs and spectra of PFO-TPP BFAs cast from CS2. 

Scale bar = 15 µm. 

 

patches that eventually settle on top of a thick BF-structured PFO layer. During this 

process, even the rims of the bubbles in the TPP-rich regions are coated on the surface 

with a thin layer of TPP. Of course, only a fraction of TPP was carried by the solvent to 

the surface during the breath figure formation process because significant TPP 

fluorescence is observed in the PFO-rich domains. The relatively low energy transfer 

efficiency as observed in Figure 4.47a and the high standard deviations associated with 

fluorescence measurements are thus correlated with a morphology where large-scale 

lateral phase separation driven by TPP’s high diffusibility and hydrodynamic flow is 

extensive. Phase behavior in the DCFs is quite different, however. 

 The fluorescence microscopy images of PFO-TPP DCFs display features that are 
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Fluorescence of PFO-TPP Breath Figures Using 
Fluorescence Microscope (2.0%TPP, Excited at 365 nm)
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Figure 4.52 Fluorescence micrographs and spectra of PFO-TPP BFAs cast from CS2. 

(0.23% final polymer concentration. Mn of PFO is 56.4 kg/mol). 

 

shown by XRD to be PFO crystals (Figures 4.53-4.55). Although XRD does not validate 

the presence of TPP crystallization in the blend films due most likely to the low 

concentration of TPP crystals, this dye does form crystals in the unblended film cast from 

CS2 (Figure 4.54, TPP) and sometimes near the edges of the blend films (Figure 5.43, 

second from left). Clearly, the crystallization-induced phase separation in the DCFs 

accounts for the low energy transfer efficiency observed in Figure 4.47b. Moreover, the 

formation of the PFO crystals may enable PFO to relax from its excited state by  
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Figure 4.53 Fluorescence micrographs and spectra of PFO-TPP DCFs cast from CS2 

solutions. (The two images on the left were taken under transmission mode at different 

regions of the same sample). Scale bar = 15 µm. 

 

2.0% TPP 4.0% TPPTPP
 

Figure 4.54 Fluorescence micrographs of PFO-TPP DCFs cast from 0.23% blends in 

CS2. (The leftmost image is from an unblended DCF of TPP). Scale bar = 12 µm. 
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Figure 4.55 Fluorescence micrographs and the corresponding X-ray diffraction patterns 

of PFO:TPP BFAs and DCFs cast from 0.23 wt% blend solutions in CS2 and CHCl3. 

(PFO of Mn 56.4 kg/mol was used). Scale bar = 12 µm. 

 

interchain exciton migration and lattice relaxation. These processes are reflected in the 

rapid rate of decay of PFO excited state as indicated by the τo/τ plot. The crystallization 

of the blend components is undoubtedly facilitated by the slow solvent evaporation rate 

as afforded by the drop-coating process. Accordingly, phase separation by crystallization 

in films drop-coated from chloroform is expected to be more extensive as this solvent 

evaporates slower than CS2. However, the energy transfer behavior of the PFO-TPP 

BFAs and DCFs cast from CHCl3 reveals more than just the effects of solvent 

evaporation rate on phase separation and overall morphology. 
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4.5.3.2 PFO-TPP samples cast from CHCl3 solutions 

The fluorescence spectra of the CHCl3-cast breath figures and drop-coated films 

of PFO-TPP blends expose a number of intriguing features. First, the emission of TPP is 

much higher in the BFAs than DCFs even though the quenching of PFO fluorescence is 

quite similar between the two sets of samples (Figures 4.56 & 4.57). Second, the ET 

efficiency is significantly greater in the CHCl3-cast samples than the CS2 counterparts for  
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Figure 4.56 Fluorescence spectra of PFO-TPP BFAs and DCFs cast from CHCl3. 
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Figure 4.57 A-D emission intensity ratio plots for PFO-TPP samples cast from CHCl3. 
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Figure 4.58 Excited-state decay profiles of PFO-TPP BFAs (a) and DCFs (b) cast from 

CHCl3 solutions. (λpump 372 nm, λprobe 466 nm). 

 

the BFAs but is hardly affected in the DCFs by the change of solvents. The behavior 

shown in Figure 4.56b, where little energy transfer is observed in the DCFs despite the 

fact that PFO fluorescence is heavily quenched, can not be explained by the non-constant 

relative intensities of the PFO vibronic couplings because such efficient quenching is also 

confirmed by the excited-state lifetime measurements (Figures 4.58b & 4.59b). As seen 

in the DCFs of other blend systems as well as in the PFO-TPP DCFs prepared from CS2, 

such a behavior points to a possibility of self-quenching by PFO via interchain exciton 

migration and implies partial crystallization of PFO. In fact, the relevance of PFO 

crystallization in the films drop-coated from CHCl3 is supported by microscopy studies as 

will be shown momentarily.  

Why is energy transfer more efficient in the CHCl3-cast BFAs of PFO-TPP blends 

than in the CS2-cast analogues? The determining factor is definitely not the solvent 

evaporation rate because one would expect a reverse relationship due to the fact that 
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Table 4.6 Excited-state lifetimes of PFO-TPP samples prepared from CHCl3 solutions. 

TPP 
(wt%) 

τ (ps) 
BFAs 

τ (ps) 
DCFs 

0 328.4 248.7 
0.5 65.4 62.3 
1.0 63.8 50.2 
2.0 37.4 36.7 
3.0 32.3 32.4 
4.0 23.1 20.9 
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Figure 4.59 Stern-Volmer and τo/τ plots for PFO-TPP samples cast from CHCl3. 

  

CHCl3 evaporates slower than CS2 and, not withstanding other effects, enables material 

transport dynamics to exert a greater impact on phase separation. It is more likely that, 

whatever the morphology may be, a rather uniform distribution of the blend components 

is expected which results in greater donor-acceptor interactions. In fact, the phase 

separation behavior in the PFO-TPP BFAs is quite different as the solvent is changed 

from CS2 to CHCl3. 

 The features comprised of well-defined red and blue domains observed in the 

CS2-cast BFAs are absent from the CHCl3-cast samples as evidenced from the 

fluorescence microscopy images (Figure 4.60, top row). Instead, the distribution of the  
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Figure 4.60 Fluorescence micrographs and spectra of CHCl3-cast PFO-TPP samples. 

Scale bar = 12 µm. 

 

TPP component is relatively uniform across the breath figures prepared from CHCl3. The 

phase separation patterns suggest that the extent to which TPP diffuses to the surface and 

be affected by hydrodynamic flow during the formation of the bubble arrays is not as 

pronounced as it does in the samples cast from CS2. Perhaps, the higher solubility of PFO 

in CHCl3 (as apposed to CS2) limits the partition of the blend components under the 

evaporative cooling effects. Moreover, the stronger solvent-substrate interactions may 
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have the effect of minimizing the de-mixing of the blend components in the direction 

perpendicular to the BF-structured films. 

 Phase separation in the drop-coated films, in contrast, is more extensive as 

indicated by the isolated areas of deep red and blue colors (Figure 4.60, bottom row). 

These features, together with a low energy transfer efficiency, suggest extensive 

aggregation of the blend components. Additionally, phase separation across the film 

thickness (i.e., in the vertical direction) is expected to be considerable because relatively 

little TPP fluorescence is observed in the red domains although the significant PFO 

fluorescence indicates the presence of PFO in these areas. In other words, little energy  
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Figure 4.61 Fluorescence microscopy images of PFO-TPP films drop-coated from 

CHCl3 solutions. (All films were prepared from solutions of 0.23% final polymer 

concentration. The PFO and TPP images are from unblended samples. PFO with Mn of 

56.4 kg/mol was used). 
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transfer is effected in domains that are rich in both donor and acceptor contents. Clearly, 

the longer solvent evaporation time associated with the drop-coating process enables the 

blend components to separate and form aggregates in both vertical and lateral directions. 

The crystalline nature of these aggregates, although not implied in the microscopy images 

in Figure 4.60, is clearly seen in another set of samples prepared from 0.23% blend 

solutions in CHCl3 (Figure 4.61). It is still not clear why in all the three blend systems 

the crystallization of the blend components, especially PFO, is visibly extensive in the 

films drop-cast from 0.23% blend solutions that used PFO with an average Mn of 56.4 

kg/mol but not always observed in the films prepared from 0.2% blend solutions that 

employed PFO with an Mn of 12.9 kg/mol. Nevertheless, the phase separation by 

aggregation and crystallization of the blend components in the PFO-TPP films drop-

coated from CHCl3 not only accounts for the low ET efficiency but also explains the 

effective PFO fluorescence quenching which comes mainly from intrachain/interchain 

exciton migration and lattice relaxation, the two processes that are undoubtedly facilitated 

by the formation of PFO crystals. 

 

4.6 Summary 

 

 The fluorescence energy transfer efficiency in the films of polymer-polymer and 

polymer-dye blends is found to correlate with the underlying phase-separate film 

morphology, which in turn depends not only on the solvent system but also on the 

dynamics involved in the film preparation. For the polymer blends of PFO:MEH-PPV 

and PFO-P3HT, the rate of solvent evaporation seems to be the determining factor in the 



 122

fluorescence energy transfer efficiency and the morphology of the drop-coated films. For 

the breath figures, on the other hand, the phase separation is dictated less by solvent 

evaporation rate and more by hydrodynamic flow, the solubility of the blend components 

in the solvents, and the polarity of the solvents.  

During the bubble array formation process, the airflow causes the solvent to 

evaporate quickly and, as a result, the small difference between the evaporation times of 

CS2 and CHCl3 exerts little influence on the de-mixing of the blend components. 

However, the drop-coating process enables the solvents to evaporate more slowly and the 

blend components have time to phase separate by aggregation and crystallization in both 

vertical and lateral directions. Yet, even in these systems, the time scale of the drying 

process is too small for them to establish equilibrium, and the phase separation behavior 

resembles neither spinodal decomposition nor nucleation and growth, the two types of 

morphology often observed in the phase separation of systems at equilibrium. The 

formation of aggregates and crystals in the DCFs explains not only the low ET efficiency 

but also the effective quenching of the donor fluorescence, which is likely enhanced by 

exciton migration and lattice relaxation. Furthermore, the slower evaporation rate of 

CHCl3 as compared to CS2 results in more extensive phase separation in the CHCl3-cast 

films as revealed by a lower ET efficiency. This is especially true in the PFO-P3HT 

DCFs but not so obvious in the PFO:MEH-PPV blends where ET behavior is quite 

similar in the DCFs prepared from CS2 and CHCl3. Clearly, the solubility of the blend 

components in each solvent plays an important role in the morphology of the films but its 

influence is more evidenced in the breath figures. 
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The phase separation patterns observed in the BFAs of the polymer-polymer 

blends as well as the higher ET efficiency in the BFAs cast from CHCl3 than in those cast 

from CS2 reveal the factors that influence the morphology. Carbon disulfide is non-polar 

and its interaction with the hydrophilic substrate is relatively weak. Thus, its tendency to 

diffuse away from the substrate is higher than that of the more polar chloroform. When 

this driving force is combined with the higher solubility of PFO in CHCl3 than in CS2, a 

substrate-adhering layer rich in PFO tends to form in the BF-structured films cast from 

CS2 during the solvent evaporation process. On top of this layer, the blend composition 

becomes acceptor-rich and it is re-distributed laterally by hydrodynamic flow and 

evaporative cooling effects, resulting in domains with varying acceptor concentrations. 

The material transport dynamics may carry the acceptor-rich portions of the blend to an 

area where a layer of bubble arrays has been formed. Depending on the viscosity of the 

newly arrived solution, a new layer of disordered bubble arrays may form or no bubbles 

are formed at all. Consequently, when a blend solution in CS2 is used to prepare the 

polymeric breath figures, phase separation in both vertical and lateral directions is likely 

although it is limited by the short solvent evaporation time. 

When chloroform is employed, the solubility of the blend components in this 

solvent is more comparable. Moreover, the stronger interaction of CHCl3 with the 

substrate decelerates the rate at which the blend components de-mix in the direction 

perpendicular to the substrate surface. Nevertheless, lateral phase separation still occurs 

due to hydrodynamic flow and evaporative cooling, the two effects driven by the flow of 

moist air over the surface of the blend solution. Thus, although chloroform evaporates 

slower than carbon disulfide, the better mixability of the blend components in chloroform 
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and the stronger interaction of this solvent with the substrate produce less extensive phase 

separation and higher ET efficiency in the BFAs cast from CHCl3 than those prepared 

from CS2. It is to be stressed that for BF-structured samples prepared from either solvent, 

phase separation is ultimately limited by the non-equilibrium states of the systems as 

dictated by such factors as rapid solvent evaporation, flow of moist air, convection, and 

surface cooling. 

 The phase separation behavior in the drop-coated films of PFO-TPP is similar to 

the counterparts in the polymer-polymer blends. That is, the morphology of the DCFs is 

influenced mostly by the rates of solvent evaporation and phase separated by the 

aggregation and crystallization of the blend components in vertical and lateral directions. 

Since donor-acceptor interactions are minimal, energy transfer efficiency is low although 

the quenching of the donor fluorescence is significant as resulted from the self-quenching 

processes. In the BFAs, however, the rapid solvent evaporation and the dynamics 

involved in the bubble-forming process do not enable crystallization of the blend 

components. 

 The morphology of the breath figures of PFO-TPP blends is determined mostly by 

the higher rate of diffusion of the molecular dye TPP. When the high diffusibility of TPP 

is considered along with the solubility of the blend components and the solvent 

interactions with the substrate surface as discussed above, vertical phase separation is 

much more extensive in the BFAs cast from CS2 than those fabricated from CHCl3. 

Consequently, despite the observation of lateral phase separation in the BFAs cast from 

the two solvents, energy transfer efficiency is much higher in the samples obtained from 

CHCl3 solutions. 
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 This study shows that fluorescence measurements can serve as an effective means 

in the investigation of thin film morphology when the materials are light-emitting 

polymers and dyes. Since this class of materials holds great potential for many advanced 

applications in electronics and photonics, the task of preparing the solid-state surfaces of 

the polymer-polymer and polymer-dye blends as well as characterizing and controlling 

the resulted film morphology poses a real challenge. The results obtained from this study 

have shown that correlation of energy transfer behavior with film morphology is an 

effective method that will aid us in the search for an answer to that challenge. 

 

6.7 Future research direction 

 

 Phase separation in the breath figures and thin films of polymer-polymer and 

polymer-dye blends can not be properly studied without depth profile analysis. A major 

drawback in the use of the conventional depth profile analytical techniques such as XPS 

and nuclear reaction analysis (NRA) is the large cross-section area of the probe, which 

does not allow the analysis to be focused on small regions of a sample. For example, our 

understanding of phase separation of polymer blends in systems that are driven far from 

equilibrium such as in the breath figures will be greatly enhanced if a depth profile 

analysis can be done at the bubbles and at the inter-bubble areas. This can be achieved 

with either secondary ion mass spectrometry (SIMS) or confocal microscopy. State-of-

the-art secondary ion mass spectrometers may allow analysis to be done within a small 

section (i.e., proportional to the bubble diameters) of a sample. Confocal microscopy can 

be employed to view the fluorescence energy transfer at each specific depth of a sample. 
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However, high-resolution confocal microscopy requires the sample to be coated with a 

layer of oil, which tends to delaminate the BFAs and DCFs that are prepared and 

investigated in this study. Another issue with the use of confocal microscopy for 

morphological study of the PFO-polymer and PFO-dye BFAs and DCFs involves 

photobleaching that is caused by the intense UV-laser light used to excite the samples. 

 This study has shown that phase separation behavior in the BFAs is dictated 

significantly by hydrodynamics. Thus, in situ study of phase separation in the breath 

figure structured samples is to be pursued in the near future. For energy donor-acceptor 

blends of light-emitting polymers and dyes, such an analysis may be achieved by using a 

fluorescence microscope to monitor the fluorescence energy transfer on the surface of a 

sample while bubble arrays are being fabricated. New findings may be revealed if the 

results from such study are then compared to those obtained for the samples subjected to 

the same bubble-forming environment but without humidity. 

 The effects of the diffusion rates of the blend components on film morphology are 

far-reaching as shown in this study and further investigation on these effects is called for. 

Thus, future studies will employ oligomers instead of polymers as energy acceptors. By 

varying the chain length of an oligomer, the diffusibility of that component can be 

controlled and related to the final film morphology. 
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