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DEFLECTION EQUATTIONS AND LOCATION OF LOCI
OF FLEXURAL CENTERS FOR SWEPT PLATES

I SUMIARY

This paper 1g devoted to the investlpgation of the
deflections ocecuring in swept plates under normal loading
conditions. Tt presents a simplifled analysis which may

be used for an aporoximate sgolution of the deflection at

©

noints along the span of given flat plate, rectangular

in plan and swept from a cantilever edge.

new concept, that of a2 locus of flexural centers,
ig defined and discugsed. TUsing the basic energy equation,
develoned in Zection I, the locus of flexural centers is
located for swept rectansular plates of constant thickness,
gwept plates tapered in width but congtant in thickness,

and awept plates tapered in hoth width and thickness.

Experimental work hag been carried out at the

Guzgzenheim ‘eronautical Laboratories of Jalifornlia Institute
1
of Technology , on the deflections of a flat swent nlate

1
{._.Deqroff, Sxperimental Tnvegtigation of the Effect
of Sweep Upon the Stress and Deflection Distribution in
Cantilever Plates of Congtant Chord and Thickness. Ailr Force

Technical Report 5761-3. June 1949,




under various loadings, and these results are usged to
" & B ol 3
compare with the theory developed herein.




II INTRODUCTION

The analygls of the unswept wing is a relatively
simple matter, loads on the flexural axis cause bending
relative to the wing axls wilthout twisting, and loads offget
from the flexural axls cause bending and twisting., The

method of analysis 1s familiar and straicshtforward.

In the cage of gwept wings, however, the nicture ig
more complex 1in view of the fact that no point exists where
a load may be placed to cause bendin:s without twlstinz at
gsome other point in the structure. Thlis phenomenan 1s
fully discussed, with respect to a two gpar wing, by G, T.

2

R. H1l1,

The modern swept wing 1s usuvally, though not exclusivelry,
uged on high gpeed aircraft employing airfoil sgsections of
low thicknessg vatio. Thilg fact, coupled with other zerodynanmic
requirements of the wing (such as rigid conformity to a
gpecified gection contour} has resulted in thin, high density
wing struectures. The 1dealized case of guch a structure is
the thin flat plate,-and it is therefore justifiable to oven
the invegtigation of the deflections in awept wings by an

analysls of the deflection of the thin flat plate under

various standard loadin-s.

2

G, T, Hi1l, "The Nature of the Distortion of
Swept Rack Wings"., Journal of the Royal Aeronautical Society,
London, ITarch 1048,




Classical plate theory glves the equilibrium
equation, for an infinitesimal element of thin flat nlate,

3
in either of the Tollowing forms:

2 2
a?Mx + 9" My __zaH;.»_tI - - q

53“61 ajjl ()xaj
dtw |t L 20% o @
ox* 0 34 c)x".c)j1 D

Except for a few isgsolated cases, that integral of
this equation, which also gatisfies the condition at the
boundary of the plate, is mathematically intractable. The
problems of the clrcular and rectancsular plates with simply
supported edsesg, and the rectangular plate with clamved

edges were solved in the 19th “entury.

Cther cases, in particular those of the cantilever
rectangular plate and the skew plate, have been golved
4 5
apnroximately by Holl and Jensen, resgpectively, by the use

of finite difference equations. Tinite difference equationsg

3

Lagrange, 1811, 1s largely responsible for this
equation. It first appears in his "Note Communigue aux

Commissaires Pour le Prix de la Surface Tlasticue",.

4

D. H. Holl, "Gantilever Plate with Concentrated
“dge Load". Journsl of Applied llecheniecs, Vol., 4, Wo. 1,
Tarch 1937.

5

V. P. Jengen, "Analysis of Skew Slabs", University
of T1llinolig, Engineering Experiment Station, Bulletin Seriles
No. 332, Vol. XXXIX, No., 3, September, 1941.
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for the analysis of thin rectangular plates with combinations
6

of fixed and free edges have also been set up by Rarton,

More recently, the Structures Group at the
Guggenheim Aeronautical Laboratories of California Institute
of Technology hasg carried out a program of work on the
problem of the deflectiong in swept plates, A resume of this
work was presented by . E. Sechler, . L. Williams, and

Y. C. Pung to the Institute of the Aeronautical Sciences in

1949? Various approximatlions have been made to the stress
digtribution in the gwept plate and electrical analogles
obtained. All of the work carried out by this group gives
results which are very approximate and involve tedious
mathematlcal computation. In certaln cases emplricisms
have been uged which are bhased on one get of experimental

data and congequently there ig little jJjustification for

theilr use generally.

This paper gets out to present a simplified analysis
of the problem by disregarding the variation of the moments

and twisting couples in a chordwise direction. Due to the

6
M. V. Barton, Finite Difference Equations for the

Analysishof Thin Rectangular Plates with Combinations of
Fixed and Free Edges. Defense Research Laboratory, DRL-175,

August 1948.

F

E. BE. Sechler, M, L. Williams and ¥, C. Fung,
Initlal Approach to the Cverall Structural Problems of
Swept Wings Under Static Loads. Institute of the Aeronautical
Sciences. Preprint o. 257, December, 1942,

".Leﬂ'l




nature of this approximation it ig not to be expected that
the theoretical regults will have zreat practical valuve, but
will glve a clear picture of the types of deflectlion patterns
obtained under different loadings. In thig respect also, the
location of the loel of flexural centers for various tvpes

of plate configuration is felt to be ugseful.



III PART I. ANALYSIS OF THE DEFLECTIONS
IN SWEPT PLATES

Filgure 3. represents an element of thin flat plate
[o]

bl

for which the equlllbrium equations are:

90~ . 2Q, -
o x aj’ 1

0
élhﬂf-+ J Pbﬁ - (]x.:: @)
O

J x 33
3M o .C_)...H.E.’."_ = Q =
EPIM el

Equation group (2) consists of three eguations in
five unknowns, and hence has an infinltuvde of solutions.
Only one of these, that which satlsfies the boundary
conditions and the conditions of compatibility, i1s an admissible
golution. In order to arrive at a simplified solution, the

equations (2) will be modified,

Let fizure 4. represent an element of the swept plate,
unit chordwise length by dx elemental distance measured
along the span. The element is skew by an amount dy taken
in the chordwlise direction. Further as a simplification,
we will assume that there 1s no chordwise variation of

bending moment, twisting moment or gshear. In other wordg

&

S, Timoshenkoz Theory of Plates and 3hells. (New
York: MeGraw-111ll, 1940), ». 86.




the element of plate 1ls conslidered as being subjected to
the straight beam moments and foreceg only. Under such

conditions the equationsg of equilibrium are:

o gy
T+

O

QIVL‘ - (lx.:; ()

Jx

T s (O T
3 .d Q .dj O

(3)

It will be seen that equation group (2) has been
reduced to give a group of three equations in three unknowns

and is therefore solvable.

.El J.1

In terms of the stresses:

Pley

P

-

[ 2.0cdz ; Qx= Jt d= ; Hx3= [:Lz.ﬁj.dz(é)

If the normal stresses are distributed linearly
over the thickness of the plate, then the maximum bending
and shear stresges at the surface of the plate are given

by :

Ox = ég_'x ; Tay = G H:J (5)



The straln enerzy for a plate of thlcknegs t is
Q

riven by:

\V = —lE_JJJi{O-iL‘P cr.JL— 20)03;0’5 1—2(|+N)I’x}} dx.d:’.dz (6)

ralﬁ

R

Substituting the exprescions (5) and integrating we
ocbtain:

a e Lo

Since, by the aporoximation, there is no variation

of the moments or twisting coupnles with resnect

first integration may be carried out immeadiately by

multiplying by the local chord cy.

to y, the

v - _Llji:-‘__%ﬁ-j{MQW-Z(lf—ﬁH%Jd«

(8)
e ——‘I { H;;HEEi}cimL
('-v‘)y I-25) D
Applying Castigliesno's First Theorem, the deflection

, at a point (x,y), 1g obtained from the first derivative

of the strain energy with respect

at (8,7,

e}
-

3. Timoshenko, Theory of Plates and Shells. (llew
York: MeGraw-7111) p. 152.

to a virtual load P, placed


Casti3lie.no'

10

x x 9 Hx
--I—J Mx(%_g. S 2Hx‘!(dl-fl:j)Cx dx
*Do{(l"-’.v") (1=-2) } (9)

0y
|

A number of examples for various loading cases will
be worked, to show the general method of approach by use
of equationg (3) and (9). The results will be used for
comparison with the experimental regults referred to on

pasge 1.

Txample. GCantilever Rectanrular Swept Plate with

Uniform Shear I.oad along the Tip,

Figure 5., shows a virtval load P placed at 2 point
with coordinates (x,v). For convenience in the handlins
of the algebra of the derivatlion, the coordinate y will be
replaced by nc, the digtance from the center line of the
plate, measured pogitive in the posgitive direction of y.

Then using the relations (3) of page 8:

Qx = Q for the range 3 <'L 45
=Q “&P— for the range O SR&X
X p S
Mo = ‘L.CQ +rcdx + Jj Q dx

2K

” ?_E—(x—-‘z) + Q(x-fz) + Q(s-x)
: £ (x-2) + Qs-n)

(x-¢)
C

(P
3
!

Qv
-
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3'3. 5 Q)c. %’L = Q?ctal’\.
ij = J (Q+L)L'an6clx. -!-j Qteneclx _,_%. nc
= p()t'.. R)Ean® + Q(s-7)tan +__ HE

d Hxy _ (gc, R) Eean® + nc
e C

Substituting in equation (9) and letting P= O:

5, e —_J{Q(i‘-z)(x 2l 2@(5 !z)tane (;e.-q)rdneﬂcjj dy

Integrating and simplifying:

B e T Ui ORI ey (P20 &) PP

+ nCSx — ng;»cz
i

and writing x=ms:

W

Wms,ne = Q s’ e 2 2QEtan 65* ‘m3)sban©
gl Yl omotie

- m*n (10)
+ mnc m cJ

Equation (10) gives the deflection at a point

(ms, nc) on the plate loaded as specified, where m is the

fraction of the seml-span s, outboard of the cantlilever

edge, and n ig the fraction of the chord ¢ from the center

line of the plate.
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Example. Cantilever Swept Plate with Uniformly

Distributed lLoading.

Figure 6., shows a virtual load P placed at a point

with coordinates (x, ne) as in the previous example,

Using relations (3):

Qx=c((5"°) " for the range 2S4S
=CL(5~K) < for the range osn&Xx
Ma = J ‘L(S"‘-) L C‘" *“J e d
M - (9"___'1)
P -
H)(‘IJ = JQ,;_ taﬂed-x

& j ‘1(5 -x) Ean® +.Ec{3c 1—1({(5 x)d3c+Pnc_

tane[ (s-r)* + P(x ?_)J+Bnc.

_ (x-p)Ean€ +nc

]

3 Hay
a P
Substituting in equation (9):

L )J {_‘L (s—r)(x-nr) + Q(_ﬁ%? (S“Iz)z‘[tx-lz) tanB +ncJ} c{?

(1-2%)

Integrating and simplifying as in the previous

example:

‘54‘ b 3 4 1%
Wms,nc & X (% 3 +--.C'_1) )
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EBauation (11) gives the deflection at a point
(ms, ne) on the plate loaded as specified, where m ig the
fraction of the semi-gpan s outboard of the cantilever edge
and n 1s the fraction of the chord ¢ from the center line

of the nlate,.
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IV _COVPARISON OF THEORETICAL AND EXPERTVENTAL

The Guggenheim rAeronautical Laboratorieg of the
California Institute of Technology has tested a number of
specimens of thin flat plates%o A rectangular plate, 1"thiek
10" chord and 40" length, made of 24-st aluminum alloy was
uged for these experiments., It was swept at various angles

from a cantilever edge and subjected to a number of different

loadings.

Four sets of these results are used for comparison

with the theory developed in part I, They are:

(a) 20 sweep, with a load of 600 1lbs. uniformly

distributed along the chord at 100 semi-span.
(b) 40 sweep, loaded as in (a).

(¢) 20 sweep, load of 1200 1bhg. uniformly

distributed over the plate, 3 1lba. per sguare inch.
(a) 40 sgweep, loaded as in (c).

Specimen calculations are glven in Apnendix TI,

and the theoretical curves together with the experimental

10
H., M, DeGroff, Air Force Technliecal Report 5761-3.

See ref., 1.




results are plotted in filgures 7, 8, 9 and 10. the
comparison shows that there is fairly good agreement between
the theory and the exnerimental results. Tn all cases the
theory gives high deflection values on the trailing edge and
low values on the leading edge. This may be accounted for,
in part, by the fact that the theory doeg not allow for the
chordwise variation of gtress and the consequent warning

of the section,

Ag would be expected, Tfrom the nature of the
anproximation, there ig glichtly better agreement hetween
the theory and experiment for the smaller ancles of sween.
The theory shows & slight negative deflection along the
leading edge up to 20% in the case of the 20 swept plate,
and up to 25% 1n the case of the 40 gwept plate, The
experimental regults record only one point with a negative

deflectlion at the leadinz edze,

The effect of the approximation hag already been
noted, and with regpect to the negative deflection on the
leading edze, it must be berne in nind that in addition
the experimental cantilever edge is not of the type which
the theory assumes, l.e. no provision 1s made for the

linear variation of stress across the thickness of the plate.
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V_PART II THE 1LOCUS OF FLEXURAL CENTZRS

The locug of flexural centers will be defined as
the locus of all points p, such that when a vertical locad
of any magnitude (congistent with small deflections), is
placed at that point, then the section of the plate,
parallel to the root section and containing the point p,

wilill deflect without twisting relative to the root section.
Three sgspecial cases of plate will be considered:

(a) Rectangular plate of constant thickness.
{b) Plate of constant thickness tanered in width.

(e) Plate tapered in thilckness and width.

(a) Rectangular plate of constant thickness.

A point load P 1s placed at p with coordinates
(x, nc) and a dummy torsional couple q is placed at the same
section. The values of M,and Hyyare the same as those worked
out on page 10 with the exXeceptlion that there ig now a zero
load at the tip and the dummy torsional couple g must be
adied to the expression for ij. °
This glves:
Mx = 7@ (JC_°Q)
i
f4xj - C



M - o
I

SHxy . L
d< il

17

For the condition of no twist at the section ‘x, nec):

Wy = 0= [ IMEE L 2Hxy F g
(-3?)1“3 JDJO{('*‘"}) " l?ev) ] t

Substituting the values obtained:

(=)
O = c.;-(l-v)j Ltane(x ) 1—nc.] c}.z

Integrating and simplifying:

—

_ — X n 6
nc 5% t.-a.

Equation (12) is the locus of flexural centers in

(12)

terms of n, the fraction of the chord from the center line

of the plate, and x, the distance from the root of the

swent plate. This equation renreesantz a staight line,

forward of the center line and fallinz mid-way betwesn the

normal to the cantllever edge and the center line.

(b) Plate of constant thickness, tapered in widt

Referring to figure 2.

Taper ratio = Sr = A
C
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loading in the same manner as in case (a), the
expressions for the bending moment and twisting moment are
the same, with the exception that they are now averaged out
over the local chord Cp « T ig now the fraction of the root
chord cg .

P P
ij = t&netz (x_-..(z)-]-—%'z_'_qnﬂp_
M = _E.PTz: (X""Q)

3y the same condition for no twist at (x, ne ):

x
0 = 57y L [tan® £ (=-2) + £nee] e
(-,l:/‘*(g L)lxef‘é’_/u_-f—2= L

Which gimplifies to:

[("1"2)"2‘“1%‘ -y—x] Esn ©
L%

(13)

NnNcg =

Equation (13) is the locus of flexural centers in terms
of n, the fraction of the root chord cq from the center
line of the plate, and x the distance from the root of the

swept plate.



(¢c) Plate tapered in thickness and in width.

In both of the foregoing caseg, D, the flexural
rigidity of the plate, has been a constant. “ince D 1s
proportional to the cube of the plate thickness, 1t follows
that for a nlate which is tapered in thickness in the same

ratio ag the width that:

b3l
1]
S
™| M
ks
S—
w

Dp being the root rigidity and D,Z being the loecal rigidity.

Then using the same loading and plan dimensions as

were used in the last cage, and applylnz the condition for

zero twist at (x, nc ):

- & ;u)J Lt‘ane(x 2) + nc«Jd(z

‘(.Za’f)cﬁaj [“’”’e’ (’Z,f) M"‘J dq

Taking the same substitution ag in the lagt case:

0- x

O = _.__2PC3..3 Can©{x+ -'-Q) +ncC c(
() hecd ), [ - a] dr

which slmplifies to:

Ncag = 2(3-2)&'— B_QZ_ 1) (14)

Equation (14) is the locus of flexural centers for
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case (e¢) in terms of n, the fraction of the root chord ¢ ,
from the center line of the plate, and x, the digtance from

the root of the swept plate.

It 1s noted in cases (b) and (e) that when A_%’l
i.e. a rectangular wing, that ng= -x tan 6 . This agrees
with the result of case (a). -

Curves of the non-dimensional factor -nceetan® are
plotted in figures 1ll. and 12, Figure 11. issfor the case
of nlates of constant thickness and ficgure 12, is for plates
tapered in thiclkness. In both families of curves, the value
A=l cives a straight line,

4t present there is no experimental data which could

be used to check the regults of this section.
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CONCLUSION

This paper has presented a simplified analysis
for the deflections of gwept plates, and a number of
conclusions ars to be drawn from the results and comparison
with experimental data. In the first place, the comnariason
with the experiments carried out at the California Institute
of Technology is falrly good. T“he agreeﬁint obtained ig as
close as that obtailned by Tuan-Chen Funzs using a theory
involving computations with matrix algebra. ~he specimen
calculations of Appendix I demonstrate the relative

simplicity of the computations necessary when the eguations

developed in this paper are usged.

here 1s no apparent application for the locus of
flexural centers since & load placed on it will cauge no
twist at one sgection only. Iowever, the location of this
line, and a full understanding of its meaninz, enables a
rapld visuallization of the resistance of a given swent

my

plate to changes in angle of attack under load., The

11
Yuan-Chen Fung,"Stress and Deflection Analysis of
Swept Plates. Alr Forece Technical  eport lo. 5761-2)
Tebruary 1950,




greater the divergence of the locus of flexural centers from
the line of loadlng, the greater will be the twist of the

plate compared to 1ts bending deflections.

Due to the nature of the approximations introduced,
it 1s considered that the method developed in thls paper
would be esgpecially useful in obtalining the deflections of
wings in which the chordwise sections are kept rigid by the

action of wing ribs.

Finally, it should be stated that there is a need
for considerable experimentation on swent wing models of all
tvoes before a completely reliable theoretleal or empirical
method of analysis can be made for swept struetures under

load.
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APPENDIX I

SPECTMEIl CALCULATIOIS

The following czlculations are for the deflection
nattern of the 20 swept nlate, loaded with €600 1lbhs, across
the tip, used by the Guggenhelm Aeronauvtical TLaboratories
of the Cglifornla Tngtitute of Technology. The main

dimensiong of the plate were:

Length, measured alons the center lin€e...... 40"
Chord, at right angles to the center line.... 10"
YPLEEHOER 4o arossvns & comSens § HEVORsN s EanpE g 58 B
Material - 24 ST, aluminum glloy.
2 = 10.4x 10°1bs. per gaquare inch.

Poisson's Ratio = 0.32

In terms of the coordinate gystem used in this

paper:
O
8=40x cos 20 = 40 x ,9397 = 37.588"

c= 10x seec 20°= 20x 1,064 = 10,640"

D_ Et3 10.4 x 105% 1% . .988x 10

" IBeyY - T12(1-.103)

Q — P- 600.0
¢ 10,64

Using eauation (10), page 11:

3
s? . 600 x (37.56) = 3.38
D(1-92) 10,64 x.988 x 10°x ,680

29tanos® , 2 x 600 x (37.56)7x .364 = .0864
D(1-4) 10.64 x 988 x 10% .680




Substituting in ecuation (1C), page 11:

W= 338 (G2) + 0864 ((F - BY)37.69 5. 364 + I064n (m- 5]

Yow calling the part which is devpendent on n, w,and
the remainder wg, , so that wg+w,=w , then:

mm=~2.°leL - ,761m3

an',t (.,46Cm - ,230m)

the siegn of which depends on whether the value is reruired

at the trailing or leading edge, i.e. n:j;%

EVATLUATION OF weo

O e e e MR e S e e e W EE e e e e G e S A e

m L460m . 230m W, | Y e
il 046 LO02 044 LO67 -.02]
W L0092 009 ,083 . 168 02
A 1e4 037 . 147 L463 .169
.5 . 26 083 + 193 . 850 .464
.8 . 368 ., 147 ol 1891 .549
140 L 460 . 220 LoD L1750 1. 290
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F1G. |

COORDINATE SYSTEM OF THE
RECTANGULAR SWEPT PLATE.

FIG. 2 DIMENSIONS OF THE TAPERED PLATE.
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dy
Mx + Q—Mﬁ'dx
QX
T 9 Hx
Qx-l- .ﬁi d;;c_
O x

|
'

FIG.4 MODIFIED FLAT PLATE ELEMENT.
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FIG. 5 CANTILEVER PLATE UNDER
TIP LOAD Q.

FIG. 6 CANTILEVER PLATE UNDER
DISTRIBUTED LOAD q.
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FIG, 7 DEFLECTION OF SWEPT PLATE
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FIG.9 DEFLECTION OF SWEPT PLATE.

(©&=20°, LOAD OF 1,200 LBS. DISTRIBUTED 3 LBS/SQU.IN.)
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FIG. Il LOCI OF FLEXURAL GENTERS
FOR PLATES OF CONSTANT THICKNESS.
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FIG. 12 LOCIL OF FLEXURAL CENTERS FOR
PLATES TAPERED IN THICKNESS AND WIDTH.



