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NOMENCLATURE 

Forces anei Koment s. 

Qoc Qy Resultant shearing forces per unit le: th of 
plate, normal to the middle surface. 

M^t M w Resultant bending moments per unit length of 
plat e. 

H X M Resultant twisting moment per unit length of 
-* plate. 

O*;>c . e n s i l e s t r e s s , normal t o t h e yz p l a n e . 

^ x w Shear s t r e s s . 

P o Dummy l o a d and t w i s t i n g c o u p l e . 

C o o r d i n a t e s and D i m e n s i o n s . 

X'M Z E i g h t handed r e c t a n g u l a r c o o r d i n a t e s y s t e m . 

-U~ ' l a s t i c d i s p l a c e m e n t i n t h e d i r e c t i o n of z . 

Q An^le of sweep . 

S Semi - span of wing o r p l a t e , measured a t r i g h t -
a n g l e s t o t h e c a n t i l e v e r e d g e , 

C L'hord, measured i n t h e d i r e c t i o n , of y . 

0 D i s t a n c e of p o i n t of conve rgence of l e a d i n g and 
t r a i l i n g edges from r o o t or c a n t i l e v e r e d g e . 

/£ During v a r i a b l e , p a r t i c u l a r v a l u e o 

J^- Dummy v a r i a b l e of v a l u e (€-l) 

n F r a c t i o n of chord c . 

^ F r a c t i o n of s e m i - s p a n s . 

t" T h i c k n e s s of p l a t e . 

^ Tape* Rat"1-0 

p 



Material Properties. 

E_ Young's Modulus of Elasticity. 

J) Flexural rigidity of plate *• E- h 

iza-v1) 
y Poisson's latio. 

Subscripts and Special Combinations. 

T Tip of plate or wing. 

f̂  Root of plate or wins. 

-U^-0 Reflection at the 50;".' chord line. 

-u-̂ -e_ Deflection at the trailing ed^e. 

-urL.E_ Deflection at the leading edge. 
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DEFLECTION liT,U.-VICN3 .'-.I'D LOCATION OF LOCI 

ON FLEXURAL CNNTJE3 NCR 3W3PT PLATES 

I SUMNARY 

This paper is devoted to the investigation of the 

deflections occurirr; in snept plates under normal loading 

conditions. Tt presents a simplified analysis which may 

"be used for an approximate solution of the deflection at 

points a Ion:-;, the span of a given flat plate, rectangular 

in plan and swept from a cantilever edge. 

.-. new concept, that of a locus of flexural centers, 

is defined and discussed. sing the "basic energy equation, 

developed in Section I, the locus of flexural centers is 

located for swept rectangular plates of constant thickness, 

swept plates tap*red in width "but. constant in thickness, 

and swept plates tapered in both width and. thickness. 

/Experimental work: has been carried out at the 

Guggenheim . .eronautical Laboratories of California Institute 
1 

of Technology , on the deflections of a flat swept plate 

"1 
H.N.DeG-roff, Experimental Investigation of the Effect 

of Sweep "pen the Stress and Deflection. distribution in 
Cantilever plates of Constant Chord, and Thickness. Air Force 
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under various leadings, and these results are used to 

compare with the theory developed heroin. 
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II INTRODUCTION:: 

The analysis of the unawept wing is a relatively 

simple matter, loads on the flexural axis cause bending 

relative to the wing axis without twisting, and loads offset 

fro i the flexural axis cause "bending and twisting. Tile 

method of analysis is familiar and straightforward, 

In the case of swept "in ̂ s, however, the picture is 

more complex In view of the fact that no point exists where 

a load may be elacec to cause bending without twisting at 

some other 'point in the structure. This phenoraenan is 

fully discussed, with respect to a two spar wing, by G-. T. 
o 

R. Hill. 

The modern swept Wing is usually, though not exclusively, 

used on high speed aircraft employing airfoil sections of 

1OTV thickness ratio. This fact, coupled with other aerodynamic 

reguii regents of the wing (su.ch as rigid conformity to a 

specifier section contour) has resulted in tV|in, high density 

wing structures. The idealized case of such a structure is 

the thin flat plate, • and it is therefore justifiable to onon 

the investigation of the deflections in swept wings by an 

analysis of the deflection of the thin flat plate under 

various standard loadings, 

. g 
a. T. Hill, "The Mature of the Distortion of 

Swept Pack Wings". Journal of the Rojal Aeronautical Society. 
London, March 1948. 
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Slassioal plate theory/ girts the equilibrium 

equation, for an infinitesimal element of thin flat plate, 
3 

in either of the following forms: 

a*M* + a 2Mj _ 2 aaHxy 
d**f a ^ a^.a^ 
j V +. ^ r + 2 a+w-
dx+ a ^ axz-.av

i 

Except for a few isolated cases, that integral of 

this ecuation, which also satisfies the condition at the 

boundary of the plate, is mathematically intractable. The 

problems of the circular and rectangular plates with simply 

supported ec>:es, and the rectangular plate with clamped 

edges were solved in the 19th "Jentury. 

Other cases, in particular those of the cantilever 

rectangular -elate and the shew plate, have been solved 
4 5 

approximately by loll and Jensen, respectively, by the use 
of finite difference equations. Finite difference eouations 

3 
Lagrange, 1811, is largely responsible for this 

equation. It first appears in his "::ote Communique aux 
Commissaires Pour le :-rix de la Surface ~31astique" . 

4 
D. I-I. I-Ioll, "Cantilever Plate with Concentrated 

Edge Load". Journal of Applie:' Mechanics, Vol. 4, Ho, 1, 
7~arch 1937. 

5 
V. P. Jensen, "Analysis of She- Slabs", University 

of Illinois, iJn-ineerin-;-'; Experiment Stat i on,_ Bullet in Series 
Ho. 332, Vol. XXXIX, ITo. 3, September, 1941, 

» - 1 

D 
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for the analysis of thin rectangular plates witb combinations 
6 

of fixed and free edges have also hoen set up by barton. 

I.Iore recently, the Structures G-roup at the 

Guggenheim aeronautical Laboratories of California Institute 

of Technology nas carried out a program of v;ork on the 

problem of the deflections in swept plates. A resume of this 

work uas presented by 2. E. Sechler, ;.:. L. Williams, and 

Y. C. Fting to the Institute of the Aeronautical Sciences in 
7 

194-9. Various approximations have been made to the stress 

distribution in the swept plate and electrical analogies 

obtained. .11 of the r/ork carrier! out by this group gives 

results which are very approximate and involve tedious 

mathematical computation. In certain cnses empiricisms 

have been used which are based on one set of experimental 

data and consequently there is little justification for 

t he i r us e je ne ra 1 ly. 

"his paper sets out to present a simplified analysis 

of the problem by disregarding the variation of the moments 

and twisting couples in a chordwise direction. Due to the 

5 ~ ~ 
M. V. Barton, Finite Difference Equations for the 

Analysis of Thin Rectangular Plates with Combinations of 
Fixed and Free Edges, Defense research Laboratory, DHL-175, 
August 1948, 

7 
E. E. Sechler, :.!. L. Williams and Y. 0. Fung, "An 

Initial Approach to the Overall Structural Problems of 
Swept Wings Under Static Loads. Institute of the Aeronautical 
sciences. Preprint o. 257, December, 1949. 
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nature of this approximation it is not to "be expected that 

the theoretical results will have ^reat practical value, but 

"/ill give a clear picture of tho types of deflection patterns 

obtained under different loadings. ~n this respect also, the 

location of the loci of flexural centers for various types 

of plate configuration is felt to be useful. 
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I I I PAVTT I . ANALYSIS OF T^ DEFLECTIONS 

IN 3Wii]?T PLACES 

F i g u r e 3 . r e D r e s e n t s an e l emen t of t h i n f l a t p la t f l 
8 

for which the equilibrium equations are• 

dx dx. 

^ + l i k j - Q* = 0 

4*bn- A i ^ . Q 0 ^y ^ J 

Equation group (2) consists of three equations in 

five unknowns, and hence has an infinitude of solutions. 

Only one of these, that ^hich satisfies the boundary 

conditions and the conditions of compatibility, is an admissible 

solution. In order to strive at a simplified solution, the 

equations 2) will be modified. 

Let figure 4. represent an element of the swept plate, 

unit chordwise length by dx elemental distance measured 

along the span. One element is shew by an amount dy taken 

in the chordwise direction. Further as a simplification, 

we will assume that there is no chordwise variation of 

bending moment, twisting moment or shear. In other worc's 

3. T imo she nko, :he orv of Plates and Shells. (Hew 
York: KeSraw-Hlll, 1940},'p. 86. 
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the element of plate is considered as be in:: subjected to 

the straight beam moments and forces only. Under such 

conditions the equations of equilibrium are « 

iS* * ^ =o 

^M* - Qx-, O ,,, 

4^-cU - Qx.dv-0 
3x J 

It will be seen that equation group [2) has been 

reduced to ;̂ ive a group of three equations in three unknowns 

and is therefore solvable. 

In t e rm a of the stresses: 

* r t 

J 12. Ok. <** i Q* ~- J_t T^ J* ; H*j- j \ tyj ' '*- ""f7 f 7S "\ 

If the nomal s t resses are d i s t r ibu ted l i n e a r l y 

over the thich.iess of the p l a t e , then the maximum bending 

anc1 shear s t resses at the surface of the pla te are givem 

by: 

Ox - LM± i %*. ^ k H - f (5) 
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The strain energy for a plate of thickness t is 
9 

piven by: 

\/ = ^jjj^c^VcT^-^^c^a^^^t^^tJjcix.atj.az (6) 

Substituting; the expressions :'5) and integrating we 

obtain: 

v -iJip^l^-^^>M%)a*.A, (7) 

Since, by the approximation, there is no variation 

of the moments or twisting couples with respect to y, the 

first integration may be carried out imrneadiately by 

multiplying "oy the local chord cx. 

v- H-^?^20"^]^ 
(8) 

•1 f 1 M & * -t- 2H4-S^) <A: 
•jj> ( l - ^ ) 3 > J 

Applying Casti3lie.no's First Theorem, the deflection 

, at a point (x,y), is obtained from the first derivative 

of the strain energy with respect to a virtual load P, placed 

at (x,y). 

Q 
S. Tirnoshenko, Theory of P l a t e s and g h e l l s . (lTew 

York: HcG-raw-Hill) p . 152. ' 

Casti3lie.no'
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c-r, 

(I 

*>" UPi-o""fJid-^>> ' (r-^y j (9) - «*L * iff Mxijr/c . 2MJ?iap7cc1 

A number of examples for various loading causes will 

be worked, to show the general method, of approach by use 

of equations (33 &&& 19) • The results will be used for 

comparison with the experimental results referred to on 

page 1. 

Example, Cantilever hectan :;ular Swept Plate with 

Uniform Shear Load alony the Tip. 

Figure 5. shows a virtual load P placed at a point 

with coordinates (x,y). For convenience in the handling 

of the algebra of the derivation, the coordinate y will be 

replaced by nc, the distance from the center line of the 

plate, measured positive in the positive direction of y. 

Then using the relations (3) of page 8: 

Qoc =* Q. for the range :>c 4 t 4 S 

* Q- "*" "c~ for the range 0 ^ - ^ ^ ^ 
X. 5 

M^ » j Q +• -r ok + f Q â c 
o 

= f u-z) +-au-<?) + Q ( J - * ) 

£M* - l ^ r j j 
^P c 
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5HxH rs d 

P 

7 

^ Hjĉ  _ (x-^Jtra*© -*- r\ c 

^ c 

Substituting in equation .9) and. letting P =• 0» 

•ur- =,-L f( Qis-^u-gj 2a -̂*z)frner(pc )̂tdne-̂ nci)a? 
>̂L I ( i - ^ v o ^ I J) L 

Integrating and simplifying: 

= CL ( S * X - . X ? \ + 2atan&f/jx'L, .̂Mfdne 

n c s x — n o c M +• 

and w r i t i n g x =• ms : 

t J ^ m i / f i c ^TTzryy-r TJ ya-v) i^ ^J 

+- cnnc — w1nc "! (10) 

5. J 

Equation (10) gives the deflection at a point 

(ms, nc) on the plate loaded as specified, where ra is the 

fraction of the semi-span s, outboard of the cantilever 

edge, and n Is the fraction of the chord c from the center 

line of the nlate* 
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Example . Pantileve r Swept Pla te y/ith "Jnif ormly 

Distr ibuted oafllng. 

Figure 6. shows a v i r t u a l load ? placed at a point 

with coordinates (x, nc) as in the previous example. 

Using re la t ions (3): 

L for the range (J^-^**-*-

1̂M* _ (^ - -0 
ZP c 

Hxv ~ j $* fr'3'1 e d-x 

= (\(i-x)t an 6 1-J±dx +- |<j($-x)dx+i.(ic. 

= tLe[f (i-«ft^(x^)j^{nc 
^ Hx^ ( x - t ) tan 6 -t-oc 
^P c 

Subst i tu t ing in equation (9) : 

, r - ! f7<* (S-R^CX-^ +_ o e ^ n ^ C s - ^ O x ^ l r a n e + r i c l l d o 
*%nc ; D M £ ( i - ^ V (i-v; I ^J \ 

In tegra t ing and simplifying as in the previous 

example: 

9Al— I Jn^^Jn2 -^-mM (n) 

. QjuinGjL \ [&x^x*> +.rr^\ stinG*- n c / r v ! ^ V m 3 ) l 
> U-*^ l ^ T ft/ [ * V 
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Equation (11) ^ives the deflection at a noint 

(as, nc) on the plate loader as specified, where m is the 

fraction of the semi-span s outcoard of the cantilever edge 

and n is the fraction of the chord c from the center line 

of the plate. 
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IV GCrPARISO?! 0? rr.^ORJ]TiaAL AID aXPICRIT'^TAL 

RESULTS. 

The Guggenheim .-.eronautical Laboratories of the 

California Institute of Technology has tested a number of 
10 

specimens of thin flat plates. A rectangular plate, l"thick 

10" chord and 40" length, made of 24-st aluminum alloy was 

used for these experiments. It was swept at various angles 

from a cantilever edge and subjected to a number of different-

loadings. 

Pour sets of these results are used for comparison 

wit- the theory developed in part I« They are: 

(a) 20 sweep, wit1: a load of 600 lbs. uniformly 

distributed along the chord at 100, semi-span. 

(b) 40 sweep, loaded as in (a). 

(c) 20 sweep, load of 1200 lbs. uniformly 

distributed over the plate, 3 lbs. per square inch. 

(d) 40 sweep, loaded as in (c). 

Specimen calculations are given in Appendix II, 

and the theoretical curves together with the experimental 

10 
a , :.:. DeG-roff, , , i r F'orce Technica l : epor t 5761-3. 

See re f . 1 . 
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results are plotted in figures 7, 8, 9 and 10. the 

comparison Bhowi that there is fairly good agreement between 

the theory and the experimental results. In all cases the 

theory giYea high deflection values on the trailing edge and 

low values on the leading edge. This may he accounted for, 

in part, by the fact that the theory does not alien for the 

chordwise variation of stress and the consequent warping 

of the section. 

As would be expected, from the nature of the 

approximation, there is slightly better agreement between 

the theory and experiment for the smaller angles of sweep. 

The theory shows a slight negative Reflection along the 

leading edge up to 20_ in the case of the 20 sweet plate, 

and up to %$% in the case of the 40 swept plate. r"he 

experimental results record only one point with a negative 

deflection at the leading edge. 

The effect of the approximation has already been 

noted, and with respect to the negative deflection on the 

leading ed,e, it ûst be borne in nincl that in addition 

the experiment?1 cantilever eetge is not of the type which 

the theory assumes, i.e. no provision is made for the 

linear variation of stress across the thickness of the plpte. 
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V PART I I TK<£ LOQITS OF FLSXURAL CSKT.2R5 

The l o c u s of f l e x u r a l c e n t o r s " ' i l l be d e f i n e d a s 

t h e l o c u s of a l l p o i n t s p , s u c h t h a t when a v e r t i c a l l o a d 

of any magn i tude ( c o n s i s t e n t w i t h s m a l l d e f l e c t i o n s ) , i s 

p l a c e d a t t h a t p o i n t , t h e n t h e s e c t i o n of t h e p l a t e , 

p a r a l l e l t o t h e r o o t s e c t i o n and c o n t a i n i n g t h e p o i n t p , 

w i l l d e f l e c t w i t h o u t t w i s t i n g r e l a t i v e t o t h e r o o t s e c t i o n . 

Three s p e c i a l c a s e s of p l a t e w i l l be c o n s i d e r e d : 

(a) Rectangular p la te of constant th ickness . 

(b) Plate of constant thickness tapered in width. 

(c) Plate tapered in thickness and width. 

:a) Rectangular p la te of constant th ickness . 

A point load P i s placed at p with coordinates 

(x, nc) and a du::r:iy to rs iona l couple q i s placed at the same 

sect ion. The values of Mxand H^are the same as those ;orked 

out on page 10 with the exception that there i s now a zero 

load at the t i p and the taaiay to rs iona l couple o_ must be 

ad ed to the expression for H**j. 

This ^ ives: 
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For the condition of no twist at the section x, me) 

,&) = o - ' ( ( r f - ^JofeK 

Subst i tu t ing the values obtained: 

x_ 
0 ^ <Jfc>)j L^eu- i ) ^cjc^ 

'o 

Integrating; and simplifying: 

ae - - ^ < ^ 9 (12) 

Equation (12) i s the locus of f lexura l centers in 

terms ot n, the f rac t ion of the chord from the center l ine 

of the p l a t e , and x, the d is t -nee from the root of the 

sv^e^t p l a t e . ..his equation represents a s ta ight l i n e , 

forward of the center l ine and f a l l i ng mid-way between the 

normal to the can t i l ever edge and the center l i n e . 

ih) Pla te of constant th ickness , tapered in width. 

Referring to figure 2. 

Taner r a t i o = ^ £ =* A 
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l_ _ JL-b 
< * C-r 

\ - 4=4 • ^ FvT 

Loading in the same manner as in case (a) , the 

expressions for the bending moment and twis t ing moment are 

the same, with the exception tha t they are now ?vera^ed out 

over the local chord c^ . n i s now the f rac t ion of the root 

chord c^ . 

H, 

M 
•3 

^ taad-r (x-<?) +• cr+-
PC 

£ n c R 

c, (*-l) 

3y the srme condition for no twis t cat (x, no ) : 

0 * 

c 

.^fM^Ht^j") 
I 

O 

A 
H-x. 

u> Ive^e. 2 = -£. 

- U^(^^-j^)^ 
Whleh gimnlifiea to: 

-e 
n c _ _ C(*-g;-^-»-xj u e (i3) 

Equation (13) i s the locus of f lexura l centers in terms 

of n, the f rac t ion of the root chord cft from the center 

l ine of the p l a t e , and x the distance from the root of the 

swept p l a t e . 
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(c) Plate tapered in thickness and in width. 

In both of the foregoing cases, D, the flexural 

rigidity of the plate, has been a constant. :ince D is 

proportional to the cube of the plate thickness, it follows 

that for a plate which is tapered in thickness in the same 

ratio as the width that; 

A - (£i) 
"D„ V CaJ 

D^ "beinr; the root r i g i d i t y and D„ bein3 the local r i g i d i t y . 
t 

Then using the sarae loading and plpn dimension^ as 

were usee! in the l a s t case, and applying the condition for 

zero twist at (x, nc ) : 

o-c^fii^*-^^ 
- ZPck fx i f tan& ( x - y ) *~nc«) jj0 

(\-*)Vkl ~C\ I c^ J <-
Makiag the same substitution as in the last case : 

O - 2.9^ f ~KJ±<Ca*eU^-Jl) i-nCiA^ 

u~»)%c2u ^ l ^ y^ 
which s implif ies t o : 

a c A * _ 2(l£^~ 3£c-xL) (lZ|) 

Equation (14) i s the locu. of fle: :ural centers for 
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case (c) in terras of n, the f rac t ion of the root chord c , 

from the center l ine of the p l a t e , and x, the clistance from 

the root of the swept p l a t e . 

I t i s noted in cases ("b) and (c) that when A ~* ' 

i . e . a rectangular wing, tha t n c ^ -x tan 0 . This agrees 
2 

with the resu l t of case ( a ) . 

Curves of the non-dimensional fac tor -nc^c^anQ are 
s 

p lot ted in figures 11. and 12. Figure 11. i s for the case 

of e l a t e s of constant thickness and figure 12* i s for p la tes 

tapered in th ickness . In both families of curves, the value 

z\-\ .^ives a s t r a i ch t l i n e . 

At present there i s no experimental data which could 

"be used to check the r e su l t s of t h i s sec t ion . 
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CONCLUSION 

This paper has presented a simplified analysis 

for the deflections of swept plates, and a number of 

conclusions are to be drawn from tae results and comparison 

with experimental data. In the first place, the comparison 

with the experiments carried omt at the California Institute 

of Technology is fairly piood. "he agreement obtainer- is as 
11 

close as th .t obtained by uan-uhen Pun;; using a theory 

involving computations with matrix algebra. .he specimen 

calculations of Appendix I demonstrate the relative 

simplicity of the com;..stations necessary when the enuations 

developed in this paper are used. 

here is no apparent application for the locus of 

flexural centers since a load nlaeed on it i ill cause no 

twist at one section only, however, the location of this 

line, and a full understandin. of its meaniny, enables a 

rapid visualization of the resistance of a yiven swept 

plate to changes in anale of attack under load. ':̂he 

II 
Yuan-Chen F^uag/Stress and reflection Analysis of 

Swept Plates. Air, Force Technical Q-gort No. 5761-2, 
hebruary 1950. 
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greater the divergence of the locus of flexural centers from 

the line of loading, the greater will "be the twist of the 

plate comcared to its bending deflections. 

Due to the nature o^ the approximations introduced, 

it is considered that the method developed in this pa^er 

would "be especially useful in obtaining the deflections of 

wings in which the chordwise sections are kept rigid "by the 

action of wing ribs* 

Finally, it should he stated that there is a need 

for considerable experimentation on swept wlhg models of all 

types before a completely reliable theoretical or empirical 

method of analysis can be made for swept structures under 

load. 
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APPENDIX I 

SPECIMEN CALCULATIONS 

The following calculations are for the deflection 

pattern of the 20 swept plate, loaded with 600 lbs. across 

the tip, used by the Guggenheim .Aeronautical Laboratories 

of the California Institute of technology. The main 

dimensions of the plate were: 

Length, measured along; the center line....... 40" 

Chord, at right angles to the center line.... 10;' 

Thickne ss 1" 

Hate r i a l - 24 ;3T, aluminum a l l o y . 

E =. 1 0 . 4 A 10 l b s . per square i n c h . 

Poiseor - ' s Ra t io * 0.32 

In terms of the coord ina te system used i n t h i s 

p a p e r : 

3 = 4 0 * cos 20% 40 x .9397 = 37.588" 

£hnia c=. 1 0 * sec 20u=- 20 x '1 .064 - 10.640 

D , Et3 _̂ 10.4 x 10V l3 -. .988* 106 

" 1 2 T I - 1 P T * 1 2 ( 1 - . 103) 

Q-3P- 600.0 
c ^ 10.64 

Using equa t ion (10) , page 1 1 : 

-q«.g - 6 0 0 * (37.56)3
 t = 3 .38 

D ( l - ^ ) 10.64 A . 9 8 8 A 10V .580 

QtanQs* ^ 2 * 600 A (57.56)** .364 _ .0864 
( ! - •» ) 10.64 x . 9 8 8 A 10V .680 



&8 

U~ -

S u b s t i t u t i n g in equat ion ( 1 0 ) , fage 11 : 

Tow c o l l i n g the p a r t which i s dependent on n , w^and 

he remainder Wj-0 , so t h a t vr
ro-»~ w^ = w , then: 

w, ^ S.^eim1" - .761m3 

w r t *t (.460® - .̂ SOm2") 

the si^n of which depends on whether the value is required 

at the trailing or leading edge, i.e. a-t 1 

m 

. TAXUATIOB OF w fo 

n m ^.SPlm^ ,7 61m3 
Xo 

. 1 . 0 1 . 0 0 1 .0 2$ _ . 088 

,s ,04 . 008 .0 91 .006 .085 
. 4 . 1 6 . 064 .365 .049 .316 
. 6 . 3 6 . 216 . 8 2 1 .164 .657 
. 8 . 6 4 .51?, 1.460 .390 1.070 

1.0 1.00 1.000 2 . 2 8 1 . 7 6 1 1.5 SO 

EV/THAT I Of OF Wn. w rg. an^ wv 

m , 4 6 0 B 230m w n. 
W. 

T.6". 
V L £ , 

. 1 .046 .002 ,044 .0 67 _ 0 ^l 
g 

. '-•> 

P Q 9 • -- -' •-' . 009 ,083 .168 p p p 
. 4 . 184 .037 ,147 . 4 6 3 ,169 
. 6 . 276 .0 83 ,193 . 8 50 ,464 
. 8 . 368 . 147 ggi 1 . 8 9 1 ,849 

1.0 .460 . 230 , 230 1 .7 50 1 , 890 
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FIG. 1 COORDINATE SYSTEM OF THE 
RECTANGULAR SWEPT PLATE . 

) 
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a 

Q< 

H^+^clu 

* M , ^ M ax <)x 

* " > + ^T* d~ 

Ms+^l^ ^Qx+4^Jx 
O^J Ox: 

il ^ aru^ 
FIG. 3 CONVENTIONAL FLAT PLATE ELEMENT 

H xxy 

7a-
Mx + 4^ci 

c).X 
OH Hxv +• • 
O X 
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Ox 

:i a 

FIG. 4 MODIFIED FLAT PLATE ELEMENT 
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FIG. 5 CANTILEVER PLATE UNDER 
TIP LOAD Q • 

* < * — 

FIG. 6 CANTILEVER PLATE UNDER 
DISTRIBUTED LOAD q. 
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r.e. 

2 0 4 0 6 0 

% SEMI - SPAN 

SO /oo 

FIG. 7 DEFLECTION OF SWEPT PLATE 
( 6 = 2 0 ° , LOAD OF 6 0 0 LBS. DISTRIBUTED ALONG THE T I P ) 



3 1 
T.E. 

4 0 6 0 

% SEMI-SPAN 

FK5. 8 DEFLECTION OF SWEPT PLATE . 
6 = 4 0 ° , LOAD CF 6 0 0 LBS. D I S T R I C T E D ALONG H P ) 
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4-0 6 0 

% SEMI-SPAN. 

100 

FIG. 9 DEFLECTION OF SWEPT PLATE. 
( 6 = 2 0 ° , LOAD OF 1,200 LBS. DISTRIBUTED 3 LBS / SQU IN. ) 

{ 
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40 60 
% SEMI-SPAN 

FIG. 10 DEFLECTION OF SWEPT PLATE. 
( 6 « 4 0 # , LOAD OF 1,200 LBS. DISTRIBUTED 3 i_BS/SQU. IN. ) 
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zo 40 60 
% SEMI-SPAN. 

80 \oo 

FIG. II LOCI OF FLEXURAL CENTERS 
FOR PLATES OF CONSTANT THICKNESS. 
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20 *o 60 
% SEMI-SPAN 

8C 1 0 0 

FIG. 12 LOCI OF FLEXURAL CENTERS FOR 
PLATES TAPERED IN THICKNESS AND WIDTH. 


