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ABSTRACT

In this paper we present a gradient descent flow based on a novel energy functional that is capable of producing
robust and accurate segmentations of medical images. This flow is a hybridization of local geodesic active
contours and more global region-based active contours. The combination of these two methods allows curves
deforming under this energy to find only significant local minima and delineate object borders despite noise,
poor edge information, and heterogeneous intensity profiles. To accomplish this, we construct a cost function
that is evaluated along the evolving curve. In this cost, the value at each point on the curve is based on the
analysis of interior and exterior means in a local neighborhood around that point. We also demonstrate a novel
mathematical derivation used to implement this and other similar flows. Results for this algorithm are compared
to standard techniques using medical and synthetic images to demonstrate the proposed method’s robustness
and accuracy as compared to both edge-based and region-based alone.
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1. INTRODUCTION

Segmentation is an important tool in medical image processing. It allows clinicians to visualize organs and
structures in the body, analyze the shapes and sizes of these objects, and diagnose pathologies more quickly and
accurately. We originally developed this algorithm in order to segment sub-cortical structures in MRI images.!
Segmentation is required as a first step to shape analysis and other medical research objectives. Specifically, we
developed and tested this algorithm to segment MRI images of the putamen.

Curve initialization Region-based flow Edge-based flow Hybrid flow

Figure 1. A 2D slice of a 3D MRI image of the putamen being segmented by several methods. (a) The initial contour. (b)
Attempted segmentation using the Chan-Vese region-based active contour. (c¢) Attempted segmentation using edge-based
geodesic active contours. (d) Correct segmentation using the presented hybrid flow.

Sub-cortical structures such as the putamen seen in Figure 1 pose an interesting problem because they lack a
homogeneous intensity profile making it hard to characterize the statistics of the object globally. Furthermore,
their poor edge definition and close proximity to other brain structures with stronger edge gradients make these
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structures difficult to segment using standard active contour models. The purpose of this work was to develop
a novel segmentation technique that can accurately identify object boundaries with robustness to image noise,
and reduced dependence on initial curve placement.

In Section 2 we introduce and discuss geodesic and region based active contours to give a background on
the methods that our algorithm hybridizes. Section 3 reveals the proposed hybrid energy and explains how
and why it works. Information on numerical implementation and techniques used for efficient computation are
shown in Section 4. Section 5 includes results on synthetic and medical images and compares them with standard
geodesic and region based flows to show the improvements afforded by this algorithm. Finally, we offer concluding
remarks and discuss the benefits, drawbacks, and potential for future work in Section 6. Appendix A contains
the derivation of the curve flow from the proposed energy functional.

2. RELATED EVOLUTIONS

This section provides a brief introduction to two standard active contour segmentation techniques that the
presented method both draws from and improves upon. Active contour methods begin with an initial curve
and define some energy for that curve based on its geometric properties and the associated image data. Energy
based on the geometry is provided to keep the curve smooth, and energies based on the image data are intended
to attract the contour to object boundaries. This curve is then deformed in order to increase or decrease that
energy thus moving the curve toward a local maxima or minima. Presumably this occurs when the curve is
correctly situated on the object.

2.1. Geodesic Active Contours

Geodesic active contours take the standard active contour and reformulate the problem into finding local min-
imum cost curves on a conformally Euclidean metric.?3 The key assumption here is that on the boundary of
an object, there will be a strong image gradient. One benefit of this approach is that it introduces a parame-
terization of the curve based on its intrinsic geometric properties. By using the Euclidian arc length parameter
s to parameterize the evolving contour, the parameterization becomes intrinsic to the curve. The result is that
the energy is necessarily dependent on the length, and therefore smoothness of the curve without the need to
include an additional, separate regularizing term. In the classical definition, the energy of the curve F is given
by the following function where C represents the evolving curve, and I represents the image data

E = f(I)ds (1)
C(s)

Here, f is any positive, decreasing function of the image data. Its values form the metric over which the
minimum length geodesic will be found as the curve is deformed. One simple option for f used in this paper for
comparisons in Section 5 is the following where VI denotes the spatial gradient of a Gaussian smoothed version
of I.

1

T=q + || V1|2

Despite the nice properties of this method, there are some drawbacks. The energy only examines image data
immediately on the curve, i.e., it is very local. This means that unless the curve is initialized very close to
the desired boundary, it is likely that some insignificant local minima will be found before reaching the desired
segmentation result. Additionally, the external portion of this energy depends only on the gradient of I which
is prone to noise. In order to keep VI somewhat regular, I must be smoothed a great deal. This intensive
smoothing of the image means that some image information is thrown out during the segmentation process and
fine detail is lost.
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2.2. Region Based Active Contours

Another approach to defining contour energies is to look at regional properties. The key assumption here is that
when the curve is placed on the object border the image will be partitioned into two or more distinctive regions
whose properties are easily characterized. These types of contours includes famous flows such those based on the
Mumford-Shah paradigm,* e.g., Chan-Vese.? Specifically, the energy to be minimized in the Chan-Vese model is
as follows where Q and Q represent the interior and exterior of the curve, and u and v represent the mean image
intensities over 2 and Q respectively:

Q

_ _ )2 Y-
Ef/Q(I )dA+/(I 12dA @)

This energy is minimized when the mean image intensities in € and § are the most accurately approximated
by u and v. This energy remains robust to image noise with no image smoothing because it looks at integrals
of image data rather than image derivatives. It is also robust to initial curve placement because although the
curve moves locally, it inspects global image statistics rather than just looking along the curve. As a result, the
curve can move very far from its initialization to find a energy minima. While these are fantastic properties for
a flow to posses, they can also be a hindrance. For instance it is often the case that the object to be segmented,
the background, or both are not described accurately by mean intensities. This can lead to poor or incorrect
segmentations.

3. HYBRID EVOLUTION

The hybrid energy in this paper aims to blend the benefits of the geodesic active contours and the region based
active contours. This is accomplished by forming a geodesic energy from local regions around the curve. The
resulting flow is more robust to initial curve placement and image noise like region-based flows, but also capable
of finding significant local minima and partitioning the image without making global assumptions about its
makeup. The key assumption that we make about objects to be segmented by this technique is this: At each
point on the true edge of an object, nearby points inside and outside the object will be modeled well by the mean
intensities of the local regions. The result is an energy that is more global in nature than edge-based flows.

3.1. Energy Definition

We begin with the geodesic energy presented in Equation (1). However, in this formulation we must choose our
f such that it will be smallest when our key assumption is met. The f we choose makes use of image data over
local regions thus making it similar to the region-based flows described above. Here again, Q and € represent
the region on the interior and exterior of the curve respectively.

E= j{C(S) /zGQ(IX(x,s) —ue(s))” + /IE(IX(x,s) —w(s))? ds (3)

Q

Recall that s parameterizes the curve and hence specifies every point along it as the contour integral is
evaluated. In this hybrid energy, us(s) and wvy(s) are the arithmetic means of points in local neighborhoods
around the point C(s). These neighborhoods are defined by a characteristic function y and the position of the
curve. The y function evaluates as 1 in a local neighborhood defined by a small radius and 0O elsewhere. The
contour then divides the region selected by x into interior local points and exterior local points. These local
neighborhoods are illustrated in Figure 2. The local means are specified in terms of Sy, (s), Sg,(s), 4r,(s), and
Ag,(s) which represent the local interior and exterior sums of image intensities, and the area of local interior
and exterior regions.

CChS ol CR e @
Sr,(s) = /EQ Ix(z,s)dA Sg,(s) = /e5 Ix(z,s)dA (5)

Proc. of SPIE Vol. 6510 65104U-3



(a) (b)

Figure 2. Diagrams showing local regions. Here, the circle represents the x neighborhood. (a) Shows the region specified
by €N x(z,s) as the shaded part of the circle. (b) Shows the region specified by 2 N x(z,s) as the shaded part of the
circle. These local regions are analyzed for every point along the curve.

Ap,(s) = /EQ x(z, s)dA Ag,(s) =/ _ x(x,s)dA (6)

€N

The x(z, s) function is a characteristic that evaluates as 1 when a point z is inside of a ball B(C(s)) centered
about the point on the curve C specified by s and 0 otherwise. A third parameter of the x function is the radius
of the ball represented by B(C(s)). This is omitted in notation as it remains constant in this implementation,
and is unrelated to any parameterization of the curve.

1 z € B(C(s))
0 otherwise

) = )

3.2. Curve Flow

In order to deform a surface along a gradient descent such that this energy is minimized we employ variational
calculus to compute the time derivative of Equation (3).5 Computation of this derivative is not straight forward
because our energy equation consists of a line integral over several region integrals. Special care was taken to
ensure that all parameterizations were evaluated correctly to lead to a working curve evolution. The details of
this derivation can be found in Appendix A. The resulting curve evolution is shown below.

ct) = ([0 =)+ [ (1xts) = ulo)?) o -

zeQ

7(0( ) (ue(r) — ve(r)) (2Ix(z,7) — we(r) — w(r))drﬁ (8)

The first thing to notice is that there are two parameters at work here: s and r. These are both arc length
parameters and r, s € [0 L(C)] where L(C) is the length of the curve C. The first parameter, s is shown as the
argument to C¢(s). To compute the derivative along C, the curve is evaluated at each point C(s). At each of
these points, C' is traversed again by a separate parameter, r. As r traverses the curve for each point C(s), the
presence of thex function centered about C(r) ensures that only points in a neighborhood of C(s) contribute to
derivative.

The curve flow has two main terms. The first term is merely a regularizer. This is present by definition
because geodesic curves will have a lower energy when they are shorter and therefore smoother. Hence, the curve
moves at each point in its normal direction with a velocity proportional to its Gaussian curvature, x at that
point. It can be shown that this is the optimal way to reduce the length of the curve as quickly as possible.”
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Additionally, x is scaled by our energy evaluated at the point C'(s). This means that the scale is larger when the
curve is not near an intensity boundary and smaller when it is. Thus as the curve approaches a boundary, the
smoothing term will become less pronounced.

Now, lets look carefully at the second term. This can be positive or negative depending on the image data.
This provides the direction for the curve to travel along the normal. It also becomes smaller as the curve
approaches a boundary. The result is a slowing of the curve as it approaches its optimal position, and a speeding
up of the curve when it is far from an optimal position. This term appears to be very similar to the derivative
of the related region-based flow shown earlier in Equation( 2).

This is because the key component of both flows is the separation of regions into parts that can be modeled
by their means. In Equation (2) the energy is minimized when the entire interior and exterior regions are best
approximated by their means. In the presented energy in Equation (3) the energy is smallest when local regions
around each point are best approximated by their means. This imposes much weaker assumptions about the
composition of the image, and allows the flow to be more useful in some real-world applications.

4. IMPLEMENTATION

We chose to implement the minimization flow of this energy in a level-set framework in the standard way.®?
This is a well established tool for active contour implementations in which a signed distance function ) is used to
embed the contour C' by storing the curve as the zero level set of v. This was chosen because it uses an intrinsic
representation with no dependence on the parameterization of the curve, and allows for changes in topology
automatically.

One drawback of the hybrid flow is that it is decidedly slower than most purely edge-based or region-based
flows. This is because in its simplest formulation two local averages are computed for every point C'(r) on the
curve for every point C(s). Thus, 2n? local averages to be computed at every iteration where n is the number
of points on the curve. By making some observations it is possible to greatly reduce the computational cost.

Recall from Equation (8) that at each point C(s) along the curve we must traverse all points C(r) and
compute averages of the nearby image intensities both in and outside of C. Because the curve is not moving as
these traversals occur, we can equivalently traverse C' by r once and store the values at each point. Therefore,
when they are needed during the traversal by s they are all readily available. This reduces the number of needed
averaging operations to only 2n.

Another speed up to this algorithm is to pre-compute as much information as possible regarding the local
averages so that the actual averaging operation can be performed very quickly. We accomplish this by first
initializing each pixel within a narrow band of the zero level set by computing Sj;, Sg;, Ay, and Ag; from
Equations (5) and (6) and storing them in memory. With these values stored, uy and v, can be computed with
a single divide operation regardless of the size of the x neighborhood. Then, as ¢ moves and the curve moves
such that a pixel shifts from the one side of the curve to another we can quickly update only the affected points.
Updating points is fast because the value of the pixel that crossed the contour is added to the interior count
and subtracted from the exterior count or vice versa for all neighboring pixels within x. As the curve moves and
new points enter the narrow band, these points are initialized exactly as before. In this way, we make as few
computations as possible when computing local averages.

5. EXPERIMENTS

In the following experiments, we show results on synthetic images in Figure 3 and MRI images of the putamen in
Figure 4. In these results, the hybrid flow will be directly compared with the standard geodesic flow described in
Section 2.1 and the standard Chan-Vese flow described in Section 2.2. The synthetic images show a special case
in which these standard segmentation techniques don’t work, but the proposed method works well. The medical
images of the putamen demonstrate the flow’s real-world applicability to medical imaging problems. In Figures 3
and 4 the same image is shown with three different curve initializations and the resulting segmentations from
the different methods are compared.
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(i) 8) (k) U]

Figure 3. A synthetic image chosen to show the advantage of the hybrid flow being segmented by several methods. (a,e,i)
The initial contours. (b,f,j) Attempted segmentations using the Chan-Vese region-based active contour. (c,g,k) Attempted
segmentation using edge-based geodesic active contours. (d,h,l) Correct segmentation using the presented hybrid flow.

Notice that in Figure 3 the region-based flow is hindered by its global assumption about image composition.
It finds an incorrect solution because the correct segmentation needs to be aware of local image characteristics
only. The geodesic flow fails because it overemphasizes smoothness due to the Gaussian filter applied to I, and it
misses edge information entirely if initialized too far away from the true boundary. The hybrid flow can overcome
both of these problems.

Again in the medical image examples in Figure 4 we see that the Chan-Vese region-based flow finds a
solution that satisfies its energy. However, because this energy isn’t suited to the image, the result is not correct.
Depending on the specific initialization this method finds incorrect segmentations that are either homogenous
and dark or homogenous and bright. The edge-based flow is hindered by the noise in the image, and the lack
of well defined edge gradients. As a result, the curve either passes the true edge without stopping, or fails to
grow to find the true edge. As before, the presented hybrid flow is able to overcome these problems and achieve
accurate segmentations despite the varying initialization.

6. DISCUSSION

The presented technique hybridizes the ideas of geodesic and region-based active contours and as a result produces
a segmentation algorithm which has benefits of both. Like other geodesic models, our approach is capable of
looking locally for correct solutions while only making weak assumptions about global image properties. Also, as
with region based models, our method has increased robustness to noise and reduced dependence on initial curve
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Figure 4. An MRI image of the putamen being segmented by several methods. (a,e,i) The initial contours. (b,f,j)
Attempted segmentations using the Chan-Vese region-based active contour. (c,g,k) Attempted segmentation using edge-
based geodesic active contours. (d,h,l) Correct segmentation using the presented hybrid flow.

placement as a result of taking image data from local regions. The algorithm has proven to be more versatile
than either of the two standard techniques presented, even in its simplest form.

Despite its benefits, this method still has some drawbacks. As with all geometric-based energies, initial
curve placement is still important. Although this algorithm is less dependent than some, it is still necessary to
initialize the contour nearby the object to be segmented or risk that the final segmentation result will converge at
an incorrect local minima. Additionally, the key assumption made about image makeup is not ideal for all images.
There are cases where the ideal border of an object is not characterized by a separation of image intensities at
that border. In these cases, our algorithm breaks down. Finally, the hidden parameter which is the size of the
neighborhood defined by x can have a significant impact on the final result. Currently this parameter must be
tuned to work optimally with the types of images being used. With additional work, we hope to improve this
technique and continue to explore its possibilities.

The method presented here is merely the first application of a new class of energy functionals based around
combining local and global flows. The ability to define a geodesic energy with respect to local regions of image
data has many possible applications. Extension of the implementation to accommodate higher order statistics,
vector valued images, and images of higher dimensionality will improve performance and open the door to other
potential applications.
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APPENDIX A. DERIVATION OF CURVE FLOW

In this section we will derive the curvature flow that minimizes the energy presented in Equation (3). Let us
begin by recalling the energy, and re-defining it in terms of several other functions, f(I,s), g(I,s), and h(I,s).
This will make it easier to break down the derivation into simpler steps.

E= ?i(s) fI,s)ds 9)

f(],s):/ Qg(I,s)dA—i—/ h(I,s)dA (10)

=9
g, s) = (Ix(z,8) —ue(s))*  h(l,s) = (Ix(z,s) - ve(s))? (11)
With these substitutions made, we can begin to take the time derivative of E. The first step will be to change
from our implicit parameterization by the arc length parameter s € [0 L(C)] to one that is not time dependent.

We will use p € [0 1] to denote a parameter on a fixed interval. To make this change correctly we recall the
definition of arc length:

1
L= Gl =§ s = Gl —ds
0 C(s)
Once the substitution from s to p parameters is made we can move derivatives through the contour integrals.

Hence, when we take the time derivative of E we can move the V; inside of the integral and obtain two terms
by applying the product rule to the integrand.

V.E = Vi jé(s)(f(.r, 5))ds

- 7( VL (F(Lp)IICy ) dp

1 1
7! S DICylldp + ;f VL F(L.p)|Cyldp (12)
0 0

Now we will look at these terms separately. The first term is manipulated such that it is parameterized once
again by s. As this is done, we see that this part of the derivative is dependent on curvature. This is a typical
part of the result for a geodesic active contour. In these equations T represents the unit tangent, N represents
the unit normal, and k represents the Gaussian curvature.

jgl F(I,s) <Cpt ,T> dp

jglf(l,s) <C’t ,—Tp>dp
f(I,s) <C’t , —Kﬁ>d$

C(s)

ji‘(s) <Ct , —f{, 5)ﬁﬁ> ds

f. (oo ([ oxea —ur+ [ s —u)) o) 3

The second term requires more work, because here the derivative is applied to f. First, we rewrite f in terms
of g and h. Then distributing the derivatives we see two expressions of the form fQ g dA and fﬁh dA. The
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derivatives of this type of functional are known provided g and h are only functions of the image. Thus, the
solution is immediately rewritten to reflect this and like terms are combined:

1
7§ Vi f(Lp) |G ldp

1
74 (vt / o(I.p) dA+ Y, / h(I,p) dA) IC, || dp
0 A=Y xreN

fgl (%C(s) <Ct(s),9(I,p)N)>dr+7{C(s) <Ct(s)’h(f7p)ﬁ> ds) I1C, |1 dp

yﬂl ]{C(S) (Culs), (9(1,p) + (L) N ) drl|Cylldp

Now that C; is isolated, we can return our outer integral to parameterization by arc length. However, because s
is being used in the interior integral we will use r to denote a second arc length parameter evaluated separately.

]{ ]{ <Ct(8),(g(l,r)+h(I,r))N>dsdr
C(r) JC(s)

At this point, we make a key observation. Because the only terms that depend on the parameter r are inside the
dot product, we can move the integral over r inside the dot product as well. Finally an algebraic manipulation
is performed to improve readability.

7{ Ct(s),j{ (g(I,7) + h(I,r))dr N Vds
C(s) c(r)
— up(r))? — z,7) —ve(r))?) dr s
I <ct<s>, $. () — ) = it r) — ) ﬁ>d
]{ Ci(s), jlé (we(r) —ve(r)) (2Ix (2, 1) — we(r) — ve(r))dr N Vds (14)
C(s) C(r)
Now the Equations (13) and (14) are in the same form, so we can recombine them to form the final expression
for VtE
= - x,5) — ug(s))? z,5) —ve(s))? | &
vie = f (o (0 - wwf e [ e - vo)?) o¥

72( : (we(r) — ve(r)) (2Ix(z,7) — we(r) — ve(r))dr ﬁ> ds (15)

Finally, from here we can read the expression for curvature flow.

Ci(s) = f(I,s)sN — » (g(I,7) — h(I,r))drN
ct) = ([0 =)+ [ (1xtms) w7 ) o -
72 " (ue(r) — ve(r)) (20 x (2, ) — wg(r) — ve(r))dr N (16)
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