
TRAFFIC LIGHT PREDICTION USING CONNECTED VEHICLES 
 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Christopher McArthur 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Mechanical Engineering  

 

 

 

 

 

 

 

 

 

Georgia Institute of Technology 

May 2019 

 

 

COPYRIGHT © 2019 BY CHRISTOPHER MCARTHUR 

  



TRAFFIC LIGHT PREDICTION USING CONNECTED VEHICLES 

 

 
 

 

Approved by: 

 

Dr. Bert Bras, Advisor 

School of Mechanical Engineering 

Georgia Institute of Technology 

 

Dr. Roger Jiao 

School of Mechanical Engineering 

Georgia Institute of Technology 

 

Dr. Richard Simmons 

Strategic Energy Institute 

Georgia Institute of Technology 

 

 

 

Date Approved:4/12/2018 

 

 



iii 

 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Bert Bras for his advice and guidance through my work and 

thesis. 

I would like to thank Ford Motor Company who funded much of this work, and 

specifically Ford team members Jacob Mathews, Anne Marie Graham-Hudak, and John 

Snider without whom this would not be possible.  

I would like to thank everyone in the Sustainable, Design, and Manufacturing lab at 

Georgia Tech for their support and feedback. 

Finally, I would like to thank my friends and family for their support throughout my time 

in school, and especially Darby Mokry for her continuous support for me throughout my 

time in graduate school. 

 



iv 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

LIST OF SYMBOLS AND ABBREVIATIONS ix 

SUMMARY x 

CHAPTER 1. Introduction 1 

1.1 Opportunities and Potential for Driver Led Fuel Improvements 1 
1.2 Challenges for Driver Coaching 3 
1.3 Proposed Solution – External Vehicle Coaching 3 

CHAPTER 2. Background 6 
2.1 Traffic Light Technology 6 

2.1.1 Fixed Time Traffic Light Control 7 

2.1.2 Coordinated and Adaptive Traffic Light Control 7 
2.1.3 Traffic Light to Vehicle Communications 8 

2.2 Eco Driver Coaching 9 
2.3 Traffic Light Coaching 12 

2.4 Vehicle to Vehicle communication 15 

2.5 Review of Industry 17 

2.6 Conclusion 18 

CHAPTER 3. Methods 19 

3.1 Introduction of Methods 19 
3.2 Traffic Light Prediction Opportunities, Challenges, and Design 19 
3.3 Leader-Follower Traffic Light Prediction Coaching 20 

3.3.1 Learning Phase 22 
3.3.2 Leading Phase 23 

3.3.3 Following Phase 23 

3.4 Leader-Follower Traffic Light Prediction Coaching Prototype 26 
3.5 Conclusion of Methods 28 

CHAPTER 4. Results and discussion 29 
4.1 Testing Methods for the Leader-Follower Traffic Light Coaching 29 

4.1.1 Test Vehicle 29 
4.1.2 Test Route 29 

4.1.3 Test Run Steps 32 

4.2 Results 33 
4.3 Driver 1 Test Observations 33 



v 

 

4.4 Driver 1 Results and Discussion 34 

4.5 Driver 2 Test Observations 44 

4.6 Driver 2 Results and Discussion 44 
4.7 Driver 3 Test Observations 55 
4.8 Driver 3 Results and Conclusions 55 
4.9 Driver 4 Test Observations 67 
4.10 Driver 4 Results and Discussion 67 

4.11 All 4 Drivers Combined Results 75 

CHAPTER 5. Conclusions and Future Work 78 
5.1 Conclusion 78 
5.2 Future Work 79 

Appendix                  81 

References                  91 

 

  



vi 

 

LIST OF TABLES 

Table 4-1: Traffic Light Timings for Route in Figure 3-5 ................................................ 32 

Table 4-2: Driver 1 Performance ...................................................................................... 34 
Table 4-3: Driver 2 Performance ...................................................................................... 45 
Table 4-4: Driver 3 Performance ...................................................................................... 55 
Table 4-5: Driver 4 Performance ...................................................................................... 67 

  



vii 

 

LIST OF FIGURES 

Figure 1-1: Effects of factors on vehicle fuel Economy(Sivak and Schoettle 2012) .......... 2 

Figure 2-1: Audi Traffic Light Information System(Koons 2018) ..................................... 9 
Figure 2-2: Fuel Savings vs Traffic Light Coaching Penetration Rate(Xia, 

Boriboonsomsin et al. 2012) ............................................................................................. 14 
Figure 2-3: Penetration Rates Vs Energy Consumption(Giovanni De Nuzio 2016) ........ 15 
Figure 3-1: Leader-Follower Method Diagram ................................................................ 22 

Figure 3-2: Traffic Light Prediction Algorithm ................................................................ 25 
Figure 3-3: Traffic Light Coaching ................................................................................... 27 
Figure 3-4: Leader-Flower Traffic Light Predicition Coaching Flow Chart .................... 28 

Figure 4-1: Test Route Google Maps Image of Midtown Atlanta, GA ............................ 31 
Figure 4-2 Driver 1 Fuel Consumption ............................................................................. 35 
Figure 4-3: Driver 1 Fuel Consumption Average per Day ............................................... 36 

Figure 4-4: Driver 1 Length of Time per Test Run .......................................................... 36 
Figure 4-5: Driver 1 Average Energy Recovered ............................................................. 38 
Figure 4-6: Driver 1 Normalized Average Energy Recovered ......................................... 39 

Figure 4-7: Driver 1 Day 3 Un-coached Run 2 and Coached Run 3 Throttle and Brake 

Perfromacne ...................................................................................................................... 41 

Figure 4-8:Driver 1 Day 3 Un-coached run 2 and Coached run 3 Power Train 

Performance ...................................................................................................................... 42 
Figure 4-9: Driver 1 Accelerator Histogram ..................................................................... 43 

Figure 4-10: Driver 1 Brake Histogram ............................................................................ 43 
Figure 4-11: Driver 2 Fuel Consumption.......................................................................... 45 

Figure 4-12: Driver 2 Average Daily Fuel Consumption ................................................. 46 
Figure 4-13: Driver 2 Length of Time per Test Run ........................................................ 47 

Figure 4-14: Driver 2 Averge Length of Time per Day .................................................... 48 
Figure 4-15: Driver 2 Average Energy Recovered per Day ............................................. 49 

Figure 4-16: Driver 2 Normalized Average Energy Recovered per Day ......................... 49 
Figure 4-17: Driver 2 Day 5 Un-Coached Run 1 and Coached Run 1 Throttle and Brake 

Performance ...................................................................................................................... 52 
Figure 4-18: Driver 2 Day 5 Un-Coached Run 1 and Coached Run 1 Powertrain 

Performance ...................................................................................................................... 53 
Figure 4-19: Driver 2 Brake Histogram ............................................................................ 54 
Figure 4-20: Driver 2 Deceleration Histogram ................................................................. 54 
Figure 4-21: Driver 3 Fuel Consumption.......................................................................... 56 

Figure 4-22: Driver 3 Average Fuel Consumption per day .............................................. 56 
Figure 4-23: Driver 3 Day 4 Coached Run 1 .................................................................... 58 
Figure 4-24: Driver 3 Average Energy Recovered per day .............................................. 59 

Figure 4-25: Driver 3 Normalized average Energy Recovered per day ........................... 60 
Figure 4-26: Driver 3 Average Run Length of Time per day ........................................... 61 
Figure 4-27: Driver 3 Run Length of Time ...................................................................... 61 
Figure 4-28: Driver 3 Day 4 Un-Coached Run 2 and Coached Run 2 Throttle and Brake

........................................................................................................................................... 64 



viii 

 

Figure 4-29: Driver 3 Day 4 Un-Coached Run 2 and Coached Run 2 Powertrain Fuel Use

........................................................................................................................................... 65 
Figure 4-30: Driver 3 Throttle Histogram ........................................................................ 66 

Figure 4-31: Driver 3 Acceleration Histogram ................................................................. 66 
Figure 4-32: Driver 4 Fuel Consumption.......................................................................... 68 
Figure 4-33: Driver 4 Average Fuel Consumption per day .............................................. 68 
Figure 4-34: Driver 4 Average Energy Recovered per day .............................................. 69 
Figure 4-35: Driver 4 Normalized average Energy Recovered per day ........................... 70 

Figure 4-36: Driver 4 Run Length of Time ...................................................................... 71 
Figure 4-37: Driver 4 Average Run Length of Time per day ........................................... 71 
Figure 4-38: Driver 4 Day 2 Un-Coached run 2 and Day 4 Coached run 2 Throttle and 

Brake Performance............................................................................................................ 73 
Figure 4-39: Driver 4 Day 2 Un-Coached run 2 and Day 4 Coached run 2 Throttle and 

Brake Performance............................................................................................................ 74 
Figure 4-40: Driver 4 Throttle Ussage .............................................................................. 75 

Figure 4-42: Drivers 1-4 Fuel Consumption with Error Bars ........................................... 77 
Figure 4-43: Drivers 1-4 Time per Run with Error Bars .................................................. 77 

  



ix 

 

LIST OF SYMBOLS AND ABBREVIATIONS 



x 

 

SUMMARY 

As vehicles contain more and more sensors is there a way these sensors can provide useful 

information to the driver? Currently drivers receive feedback on the speed of the vehicle, 

the RPM of the engine, and a few other signals. Because of these new sensors it is now 

possible to advise the driver on factors that are external to the vehicle. Studies have shown 

that it is possible to improve a driver’s fuel economy through various driver coaching 

techniques. This paper proposes and tests a new form of driver coaching by proving a new 

form of driver feedback.  

Traditional driver coaching focuses on having the driver use less throttle, use less brake, 

drive slower, and turning off the engine while idling. These approaches have seen fuel 

economy improvements by as much as 20% depending how aggressive the driver is. 

Research has also shown that with ideal approaches and future knowledge of traffic lights 

fuel economy improvements of up to 30% can be observed. Studies involving Traffic Light 

coaching and optimizations have been done using simulations. There is evidence that 

proving useful feedbacks to the driver can improve the fuel economy. 

A multi vehicle approach called leader-follower traffic light prediction method is 

developed to advise drivers on the future behavior of the route. The leader-follower method 

works for static traffic lights. This approach has 3 steps: learning, leading, and following. 

The learning phase learns relatively static traffic light properties. The leader portion is 

performed as frequently as possible and captures traffic light properties that expire. This 

approach uses multiple vehicles to share information between them. Any vehicle can be a 
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follower and receive the traffic light prediction information, but only vehicles with 

advanced vision systems can act as a learner or leader.  

The leader-follower method is tested on a public road using four drivers. The drivers 

perform 120 miles worth of testing. The route has 10 total traffic lights and is 1 mile long. 

9 of these are coachable traffic lights. Road conditions and variables are reduced by driving 

at the same time every day. Recording devices are used to capture the information during 

testing. 

The testing results show an average fuel consumption reduction of 18.7% for the coached 

drivers. The fuel consumption reduction agrees with what has been shown in literature and 

is a valuable feedback to provide to drivers on routes with traffic lights. The fuel 

consumption reductions have been correlated with braking and throttle performance for 

each driver. 
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CHAPTER 1. INTRODUCTION 

1.1 Opportunities and Potential for Driver Led Fuel Improvements 

When drivers analyze their miles per gallon (mpg), they may notice differences between 

the Environment Protection Agency (EPA) mpg rating and the actual mpg. Because the 

user has control over the vehicle’s mpg, this is a possible opportunity for maximization. 

Oil is a resource that will run out eventually, but the exact year is up for debate. Oil is very 

inelastic, so when a user can save oil they are directly saving money and an expendable 

resource (Dale 2016). Eco driving is the practice of driving in a manner to increase fuel 

economy of the vehicle, while eco-coaching is the practice of instructing users how to 

increase the fuel economy by changing their driving habits. By practicing eco driving, 

literature shows gains of 5-30% fuel savings (Alam and McNabola 2014). Policy makers 

see these gains and target them as a way to reduce cash flow to the Middle East(Dale 2016). 

Figure 1 shows the impact of various factors on the vehicle fuel economy. Factors such as 

the tune of the engine, the road grade, speed, cruise control, and aggressive driving have 

impacts on fuel economy over 7% (Sivak and Schoettle 2012). The driver has more control 

over some of these elements than others. Some of these factors are easily solved with proper 

vehicle maintenance, while other factors are uncontrollable, such as the time of day to 

avoid high traffic levels. Some of the factors can be targets for optimization and 

improvements. Speed is a great parameter for optimizations because the driver has direct 

control over it with the accelerator and brake pedal. Speed is easily measured by the 

vehicle, so it is simple to report on. Aggressive driving is a parameter that is commonly 

associated with eco-coaching. It relates to high accelerations which wastes fuel. 
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Technology like adaptive cruise control is better optimized by the automotive manufactures 

because the driver has no control of how the technology functions besides what speed the 

user would like to travel.  

 

Figure 1-1: Effects of factors on vehicle fuel Economy(Sivak and Schoettle 2012) 

 

Users expect to get the EPA rated mpg but may be receiving lower mpg values. The 

variability in actual mpg is a target for improvement. Improvements will vary depending 

on the target chosen for optimization. Driver aggression accounts for 20% variance in fuel 

economy (Sivak and Schoettle 2012). Managing driver aggression focuses on maintaining 

a constant speed and lowering accelerations. When idling a passenger car consumes 18.11 

mg/s of fuel. The idling fuel use compares to 39.10 mg/s while cruising, and 62.62 mg/s 

under acceleration. Therefore idling uses 46% of fuel compared to cruising (Tong, Hung 

et al. 2011). Reducing idling time can save fuel by preventing a user from racing to a stop. 

Racing to a stop results in increased accelerations and idol time that consume more fuel. A 
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better approach to the stop is to start idling while the vehicle is cruising. An improved 

stopping approach reduces the use of the brakes. Maintaining a steady speed saves 7% fuel 

economy (Sivak and Schoettle 2012). These factors show that there are potential gains 

depending how the user is using the vehicle.  

1.2 Challenges for Driver Coaching 

Not all drivers will be willing to change their driving styles to accommodate better fuel 

economy. Cristea et al. shows that drivers were more willing to follow speed limits, but 

not time headway associated with eco driving practices. Time headway refers to the 

spacing or time between vehicles in a transit system. The speed limit is more associated 

with safety while time headway is associated with emissions and deemed less important by 

drivers (Cristea, Paran et al. 2012). While drivers are less likely to seek out an eco-coaching 

device, they would use it if it comes standard with the vehicle (Boriboonsomsin, Vu et al. 

2010). Driver’s lack of motivation is not the only problem with driver coaching. Many 

forms of coaching involve forms of driver feedback. If a feedback is too involved it can 

distract the driver and become dangerous. In a 100 car study nearly 80% of car accidents 

and 65% of near accidents found that the drivers had looked away from facing forward 

before the crash (Dingus, Klauer et al. 2006). Driver compliance with the device and device 

safety are two of the main challenges for any driver coaching systems. 

1.3 Proposed Solution – External Vehicle Coaching 

As previously discussed, the driver can reduce fuel economy by up to 55% through factors 

they can control (Sivak and Schoettle 2012). The large effect that a user can have over their 

vehicle presents an opportunity to maximize the fuel efficiency. In the future with 
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autonomous vehicles, coaching techniques will not exist because there will not be drivers. 

Autonomous vehicles using optimized driving profiles can achieve 22-31% less fuel in 

acceleration conditions than a traditional vehicle (Wu, Zhao et al. 2011). Autonomous 

vehicles are the best-case scenario for fuel efficient driving. Most vehicle coaching 

revolves around trying to improve control over the internal aspects of the vehicle, such as 

reducing harsh acceleration, maintaining speed within certain bounds, and turning off the 

engine when idling for certain periods of time. Implementing these strategies only shows 

big fuel economy improvements for drivers who are driving very aggressively (Gonder, 

Earleywine et al. 2012). There is opportunity for a modern approach to coaching.  

An approach that changes driver behavior only addresses part of the problem. Coaching a 

driver on external factors is the next opportunity for fuel improvements. Knowing how to 

advise drivers, not only on internal factors such as use of the throttle and brakes, but also 

on external factors such as the immediate vehicle in front, the average traffic flow at that 

time, and the traffic light timings provides more opportunities for unpursued coaching 

techniques. Traffic light prediction will be pursued in this paper for its ability to have big 

impacts on driver’s fuel consumption. Predicting traffic light timings remains difficult. 

There are a variety of different traffic systems that are available and implemented by 

different levels of government in the U.S. The different level of government 

implementation makes one single approach to predicting all traffic lights impossible due 

to the nature of how these different traffic light control systems work. The traffic light 

systems are explained more in depth in Chapter 2. However, a system is introduced in 

Chapter 3 that works for all two-cycle fixed time traffic lights. This system is called the 

leader-follower traffic light prediction method. The leader-follower method is a connected 
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vehicle approach to traffic light prediction. The coaching information can go beyond just 

a driver feedback and can be provided to an autonomous vehicle as another feedback in the 

future.   
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CHAPTER 2. BACKGROUND 

Chapter 2 provides an overview of the literature and previous work done in the areas of 

driver coaching, adaptive cruise control, traffic light technology, and traffic light research. 

An estimated 6 billion gallons of fuel are wasted every year by light and heavy-duty 

vehicle’s idling; the 6 billion gallons of wasted fuel during. Some local and state 

governments have even made unnecessary idling illegal in their jurisdiction (Center). One 

of the causes of idling occurs sitting at traffic lights. The techniques mentioned in Chapter 

1 aim to reduce idling and other forms of wasted energy such as excessive acceleration. To 

understand why the idling occurs the traffic conditions and traffic light technology needs 

to be understood. Driver coaching is discussed in Chapter 2 and improves the driver’s use 

of the vehicle. Chapter 2 reviews traffic light technology, eco driving coaching, traffic light 

coaching, vehicle to vehicle communication, and industry. 

2.1 Traffic Light Technology 

Traffic intersections are a source of idling for vehicles in the U.S. Several different 

technologies have been proposed for traffic lights such as fixed time control, coordinated 

control, adaptive control, and traffic light to vehicle communications. In 1998 there is a 

total of 330,000 traffic light intersections in the US. These traffic lights are controlled by 

different local, state, and federal governments. The non-unified source makes getting all 

these traffic lights all on to one unified system difficult (Baily 1998). Section 2.1.1 

discusses fixed time traffic light control, the most basic form of traffic light control. Section 

2.1.2 covers coordinated, and adaptive traffic light control. Coordinated, and adaptive 

traffic light control is a method that relies on a complete picture of the traffic light network. 
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Section 2.1.3 discusses traffic light to vehicle communications (TLVC); TLVC relies on 

direct communication between the vehicles and the intersection. The different traffic light 

control schemes affect the performance of a vehicle in that network. 

2.1.1 Fixed Time Traffic Light Control 

Fixed time cycle traffic lights are common; they account for 80% of the U.S. traffic 

lights. A fixed time cycle traffic light holds the green and red light times constant 

between cycles (Kerper, Wewetzer et al. 2012). Fixed time cycles do not vary based on 

the type of traffic being encountered at the intersection. Fixed time cycles have been well 

studied and many properties such as queue length and delay are predicable based on the 

cycle and level of traffic (van Leeuwaarden 2006). Presenting drivers with future 

knowledge of a fixed time traffic light can increase the fuel economy by 31% to 91% 

(Vahidi 2012). Expected real world results won’t reach the ideal situations of Vahidi’s 

simulation, but these fuel consumption decreases show potential for optimizing of fixed 

time traffic lights. An issue, predicting fixed time traffic light cycles, is how the clocks of 

the traffic lights are not synchronized in most cases and have significant amount of drift 

per day. The drift, or random walk, can range from 5 to 40 seconds per day. Random 

walk has been confirmed by tests conducted for the experiment in Chapter 4. Relative to 

the traffic light cycle the random walk is a large percentage of the cycle (P.-S. Lin 2010) 

(Vahidi 2012). The traffic light time cycles are not optimized for the amount of traffic 

being seen by the intersection. Other methods for traffic light control have been studied, 

designed, and implemented. 

2.1.2 Coordinated and Adaptive Traffic Light Control 
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Coordinated traffic systems often implement adaptive control, and it can be difficult to 

separate these two concepts. One example of a coordinated traffic system is the Sydney 

coordinated adaptive traffic system (SCAT) implemented in Sidney Australia. The purpose 

of a coordinated traffic system is to create a green wave between traffic lights. A green 

wave allows an increase in traffic flow and reduction of stoppage time. A green wave 

occurs when the traffic lights aim to improve the flow of traffic in one direction by 

managing the times where the lights turn green in order to keep traffic moving without 

stopping. A preliminary study for the SCAT system offers up to 14.5-39.5% reduction in 

journey time over measurements obtained for a fixed traffic light network(Baily 1998). 

While coordinated traffic lights offer many benefits, they require infrastructure 

investments from the government. 

2.1.3 Traffic Light to Vehicle Communications 

Traffic light to vehicle communications (TLVC) has existed in literature for decades, but 

implementation of such systems has been slow. As of May 2018, only 10 U.S. cites have 

implemented any TLVC systems that are compatible with the Audi traffic light information 

system. The Audi system tells the driver what when the traffic light will change. Figure 

2-1 shows an implementation of the Audi Traffic light information system. The Audi 

system includes 2,250 intersections (Koons 2018). TLVC allows the traffic lights to share 

information with the vehicle so that the traffic light and vehicle can make decisions based 

on that information. The amount of fuel saving based on TLVC varies from 7 to 8%. 

(Tielert, Killat et al. 2010, Katsaros, Kernchen et al. 2011). However, in single vehicle 

simulations fuel savings can be seen of up to 22% (Tielert, Killat et al. 2010). The distance 

to advise vehicles trying to improve fuel economy via TLVC is optimal at ranges from 
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300-600m (Tielert, Killat et al. 2010, Katsaros, Kernchen et al. 2011). In urban 

environments, 300-600m is a long distance to be advising, and distance between traffic 

lights can be shorter than this distance. The way the driver is informed of the traffic light 

information makes it one form of driver coaching.  

 

Figure 2-1: Audi Traffic Light Information System(Koons 2018) 

2.2 Eco Driver Coaching  

Driver coaching is providing information to a driver on how to drive to decrease the fuel 

consumption. Eco-coaching is broken up into 5 levels. Level 1 is traditional eco-coaching 

using offline advice. Level 2 is providing feed back to the driver using the OBD-II port. 

Level 3 involves an integrated system that uses predictive models. Level 4 uses advice 
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from other external sources. Level 5 uses external source information and will make 

changes to the power train according to the external information. Most hybrid and electric 

vehicles have implemented solutions between levels 1 and 3 (Ivens, Spronkmans et al. 

2013). The approaches implemented Chapter 3 focus on levels 1 through 4. The proposed 

solution is a level 4 solution.  

Automobiles waste fuel through the factors listed in figure 1. Not all the factors are 

coachable. One factor that affects fuel economy and is coachable is excessive acceleration 

(Hooker 1988). Excessive acceleration is targeted by most driver coaching methods; 

however, it is not the only parameter that is targeted. Studies of how to coach a driver have 

different methods. Gains from driver coaching depends on how aggressive the current user 

drives the vehicle. An aggressive driver can see up to 20% fuel savings by implementing 

driver eco-coaching techniques. A more moderate drivers will see fuel savings around 5-

10% by implementing driver eco-coaching techniques. Gonder et al. recommends driving 

between 25 and 55 mph, slow down by using the engine, when above 10 mph accelerate at 

a rate of 3 seconds for every 10mph, turn off the engine when parked or idling, and avoid 

speed fluctuations. Time to collisions (TTC) is closely related to high accelerations, and 

increased fuel consumption (Gonder, Earleywine et al. 2012). 

A completely different approach to coaching focused simply an analyzing the fuel savings 

and time effects of lowering the maximum travel speed. A reduction in speed by 20 km/h 

resulted in a fuel savings of 14% and a speed reduction of 10km/h resulted in a fuel savings 

of 5 percent (McLeod 2017).  



11 

 

Yanzhi Xu focuses on a power train approach to driver coaching (Xu, Li et al. 2017). As 

opposed to just focusing on general concepts such as low accelerations, Yanzhi Xu takes a 

different approach focusing on scaled tractive power (STP). STP is: 

𝑆𝑇𝑃 = (
𝐴

𝑀
)𝑣 + (

𝐵

𝑀
)𝑣2 + (

𝐶

𝑀
)𝑣3 + (

𝑚

𝑀
) (𝑎𝑐𝑐 + 𝑠𝑖𝑛𝜃)𝑣 

where a is rolling resistance in kW s/m, B is rotating resistance kw s2/m2, C is aerodynamic 

drag in kW s3/m3, m is the vehicle mass in metric tons, acc is acceleration second by 

second in m/s2, v is velocity second by second in m/s, M is fixed mass factor, and 𝜃 is road 

grade. STP can then be limited to a certain factor and will advise the driver when they have 

exceeded the factor. The STP method sees fuel reduction of 5 percent for local transit and 

7 percent for express bus service (Xu, Li et al. 2017). The STP approach focuses only on 

the power use of the vehicle and not external factors. Keeping a consistent speed is 

approached through use of cruise control. Modern approaches of driving coaching involve 

user feedback through either the dashboard or through a smartphone app. One approach is 

to take data from the OBD-II port of the car, and offer feedback hints such as “switch off 

engine” or “acceleration is too high” (Araújo, Â et al. 2012). 

Another study using driver feedback reporting on gear shifting, maintaining steady speed, 

accelerating and decelerating softly, and turning off your engine, found a 6% fuel savings 

on the highway and 1% on the interstate. Boriboonsomsin et al. study was conducted using 

a data logger with access to the OBD-II port and 20 drivers (Boriboonsomsin, Vu et al. 

2010). Instantaneous feedback allows the user to change their driving habits in real time. 

Understanding these topics allows for attempts at improving fuel economy that have not 

been attempted in a real world setting before, such as fixed time traffic light coaching.  
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Xu has a comprehensive overview of drive coaching techniques. His literature review 

shows fuel economy improvements of 5 percent all the way up to 37%. However he 

specifies the vehicle type and the real world and simulated results. Real world results peak 

around 13 percent, but simulations so fuel improvements up to 37%. The type of vehicle 

also changes the fuel savings. However, most of the results lie between 5% and 13% fuel 

economy improves with driver coaching (Xu, Li et al. 2017). 

2.3 Traffic Light Coaching  

Approaches to inform the user on traffic light information have been studied but have been 

slow to be implemented. There are several challenges involved in traffic light prediction. 

The random walk in timing of traditional fixed time traffic lights makes distant prediction 

difficult (Sivak and Schoettle 2012). To achieve a high-accuracy prediction the system 

must have near real-time traffic light information (V. Protschky 2014). The need for recent 

data makes building prototypes for a traffic light prediction system more challenging given 

that older data becomes useless in a few hours. However, for more modern or coordinated 

traffic lights with time synchronization and have fixed cycles, there may be an opportunity 

for distant prediction with the knowledge of the first state change, and the traffic light 

cycle’s timing. Miguel Sanchez et al. studies a traditional traffic light approach using the 

IDM which is a “car-following model” and his IDMP model that takes traffic light 

information into account. The IDM model has two basic behaviors. The first behavior is 

that the car has a target speed and tries to vary from that as little as possible, and the second 

behavior is that the driver will keep a safe distance between vehicles by adjusting its speed. 

The IDMP model has the same two behaviors with the addition of a third behavior. The 

third behavior is that the traffic light information is known, and the vehicle will change its 
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speed to make it through the intersection. The car will make the necessary speed changes 

try to make the traffic light. The results of the simulation shows 18% less fuel used by the 

first car using IDMP and 30% less fuel used by all the trailing cars using IDM (J. Miguel 

Sanchez 2006). Sanchez et al. study shows that if one lead car can react to the traffic 

condition, all the following cars can benefit.  

A method of feedback control for predicting traffic lights for adaptive traffic lights has 

been proposed and simulated. The feedback prediction system uses data called signal phase 

and timing information (SPaT) that is broadcast near the intersection. SPaT data comes 

from the infrastructure and makes prediction of how the traffic lights will change possible. 

Their complicated approach relies on historical data of the total range of traffic light 

lengths. The model creates a prediction that is good for a limited time. The previous 

prediction is compared to the new prediction. The accuracy between the new and old 

prediction is sent the manipulated variables database, the prediction is manipulated if the 

set point accuracy is less than 95%. The system resulted in predictions that 65% of the time 

had an accuracy of 90 to 98% for 80% of the traffic lights in the system. While the approach 

is successful it might not provide the user with trust in the system as only 65% of the time 

the prediction is accurate above 90% (V. Protschky 2014). 

Xia et al. work shows fuel improvements in simulation having an ideal intersection 

approach. The traffic light information is known 300m in advanced of the intersection and 

comes from SCaT. The simulation investigated performance with different levels of 

adoption for the optimized intersection approach, and the different levels of traffic. The 

velocity planning algorithm improves fuel economy by 12% for a standalone vehicle. The 

overall traffic benefited from the system more than just the car equipped with the system. 
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The benefit for traffic holds for low adoption rates. The fuel saving for all vehicles was 

3.39% and only 1.57% for equipped vehicles with a penetration rate of 20%. Cases with 

100% adoption, and low traffic start to approach the 12% gains seen by a standalone base 

line vehicle (Xia, Boriboonsomsin et al. 2012). Depending on the traffic scenario traffic 

light prediction can result in a few percent fuel economy reduction to 30% fuel economy 

reduction. Xia et al. results are shown in Figure 2-2.  

 

Figure 2-2: Fuel Savings vs Traffic Light Coaching Penetration Rate(Xia, 

Boriboonsomsin et al. 2012) 

Is there bigger gains to be seen if multiple traffic light optimizations are simulated? A 5 

traffic light optimization study results agree closely with Xia et al. work with traffic light 

optimization. Nuzio’s work does not indicate that multiple traffic light optimizations will 

offer more fuel savings when compared to Xia et al. work. The fuel saving varied from a 

few percent with a few percent adoption to a 30% with 100% adoption of the system. These 

results are shown in Figure 2-3 (Giovanni De Nuzio 2016). However, the literature is 

lacking in real world examples of implemented traffic light prediction systems and results. 
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Figure 2-3: Penetration Rates Vs Energy Consumption(Giovanni De Nuzio 2016) 

2.4 Vehicle to Vehicle communication  

Vehicle to Vehicle communication (V2V) has been researched for purposes of improving 

road safety and improving fuel economy. V2V is normally implemented through 

cooperative adaptive cruise control (CACC) or platooning. CACC further improves 

Adaptive cruise control (ACC) especially in bottle neck scenarios where users normally 

come to a complete stop. Platooning is a group of many vehicles that are communicating 

on how they are driving. Platooning offers many benefits. A few of these benefits include 

reduced air resistance, higher traffic density, and decrease in vehicle accidents (Dianati 

2012). A look into two different implantations of CACC shows that there are many ways 

to implement these systems, and the performance of these different implementations will 

vary. One method is a feedback method of CACC, and the other is a predictive method 

called rolling horizon optimal control (RHOC) coordinated cruise control (CCC). Figure 

2-3 shows the effect of the preview horizon on the RHOC CCC system. While the 
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feedback method has a fixed 20% efficiency improvement over a standard heavy-duty 

truck, the performance of the RHOC CCC system varies depending on the accuracy of 

the information and the amount of time horizon that can be provided. Time horizon is the 

predicted position and speed of the vehicle directly ahead by taking information from 

other platooning cars. When a 5 or more second time horizon can be provided the RHOC 

method, it can outperform a feedback method. However, if the information used to base 

the time horizon is inaccurate, the performance is always worse than a feedback method 

(Orosz 2017). 

 

V2V communications can be shown to reduce crashes. Out of three crash scenarios a 

combination of V2V and ADAS-ACC is able to stop all crashes with a 40% penetration 

rate (Aso Validi 2017). Having V2V and I2V provides not only the ability to react to the 

other cars around, but also predict the environment around you. Knowing that these 

possibilities exist Barik et al. simulated what happens if the driver optimizes its speed as 

it travels across two real world routes. The information comes from V2V 

communications. The result shows a 3.5% fuel economy improvement over the base line. 
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The vehicle was a Chevy volt gen II (Barik, Krishna Bhat et al. 2018). The Chevy volt 

gen II has the benefit of regenerative braking over an IC vehicle, and still managed 3.5% 

fuel improvement. 3.5% is a modest gain, but over a long distance with significant road 

grade changes, traffic, and intersections. V2V communications can improve fuel 

economy and is one of many opportunities that the automotive industry is looking into.  

2.5 Review of Industry 

The automotive industry has been faced with regulations to push the fuel economy of the 

vehicle up, and big fuel economy gains have been seen for light duty vehicles over the last 

50 years. Industry has not widely adopted eco-coaching tools in every vehicle, but some 

tools have become wide spread. Tools such as mpg reporting inside the vehicle have 

become standard in vehicles. Automakers such as Ford have introduced a braking coach 

into hybrid or electric vehicles that attempt to maximize the energy recovered through 

regenerative braking. Ford’s braking coach provides feedback as a percentage after each 

braking attempt. Mercedes has implemented the ECO display. The tool uses is a display 

that claimed by Mercedes to raise fuel economy by up to 30%. The tool focuses on threes 

aspects of driving: coasting, acceleration, and steady state . Audi has implemented the 

traffic light information system. The traffic light information system informs the user when 

traffic lights will change as discussed in section 2.3. The cars receive these updates through 

integrated 4G LTE hot spot. The traffic light information comes from a centralized Audi 

system (Koons 2018). With automakers adding more sensors to the vehicles, especially 

external facing sensors pose an opportunity to use these sensors typically implemented for 

safety purposes for other purposes that have never been available before.  



18 

 

2.6 Conclusion 

When looking at the literature review, there is a great volume of research focusing on 

improving driver fuel economy through steady driving, with less accelerations. The 

traditional approach shows fuel economy gain of up to 20% depending how aggressive the 

driver was to begin with(Alam and McNabola 2014). There are many studies in this field 

with real world tests and results, but when it comes to coaching traffic light information 

there is no research that goes beyond simulations. Results from traffic light coaching shows 

fuel economy improvements of around 3% to 30%. These improvements required hundreds 

of meters of space to optimize the approach to the intersections. Larger improvements can 

be seen from the intersection optimizations when they are able to provide distant 

predictions at least 300m in advance or perform multiple traffic light pathing optimizations, 

but these vehicle traffic light optimization paths have not been tested in real world 

scenarios with live traffic. Many other variables that are difficult to plan for and model 

such as differences in time of day, or construction dynamically affecting traffic flow. Since 

fixed time traffic lights are a large portion of the traffic lights in the U.S. They serve an 

excellent starting point for a real-world traffic light coaching implementation. 
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CHAPTER 3. METHODS 

3.1 Introduction of Methods 

Literature shows that coaching a driver can measurably improve a driver’s fuel economy. 

In the past, eco-coaching techniques focus on internal factors, such as having the driver use 

less throttle, use less braking, and drive between certain efficient speeds (Gonder, 

Earleywine et al. 2012). The approach in Chapter 3 coaches on external factors that cause 

the driver to use the brake or to use the throttle. Traffic light prediction coaching is another 

external factor that has been shown to improve fuel economy. After a traffic light prediction 

method has been developed, the coaching application will be provided to the driver in real 

time while the driver is operating the vehicle. The results from the desired traffic light 

feedback, led to the development of the leader-follower traffic light prediction coaching.  

3.2 Traffic Light Prediction Opportunities, Challenges, and Design 

Coaching a driver on traffic light timing has shown fuel economy improvements by up to 

30% based on the research previously mentioned in chapter 2. There are challenges to 

implanting traffic light coaching. The biggest challenge is showing a correct prediction of 

when the traffic light will change in the future. Showing the future timings for a traffic 

light are difficult for two reasons. The first reason is because of the variety of traffic lights: 

fixed time traffic lights and adaptive traffic lights. Adaptive traffic lights have complex 

computer algorithms that have many inputs that effect their output. Coaching the user on 

these kinds of traffic lights requires the infrastructure to send a signal to the vehicle 

regarding the traffic light timings. The requirement for the infrastructure to send a signal 



20 

 

to the vehicle increases the cost of the system. Fixed time traffic lights make up 80% of the 

traffic lights in the U.S. (Kerper, Wewetzer et al. 2012). Fixed time traffic lights are the 

focus of the traffic light prediction system, because fixed time traffic lights have been 

widely implemented.  The second problem with traffic light timing prediction is the random 

walk associated with fixed time traffic lights. Random walk has been discussed by Cristea 

et al., and has been directly observed during method development (Cristea, Paran et al. 

2012). Traffic light cycles can vary by a few seconds to forty seconds per day depending 

on the traffic light because of the random walk. A traffic light prediction algorithm needs 

to compensate for the random walk the lights can have. 

To predict two-cycle fixed time traffic lights four parameters are required. Two-cycle fixed 

time traffic lights have a constant length of green and red times for a given time of day. 

The length of time that a light is green or red can change depending on the time of day 

according to a set schedule. The four required parameters for accurate prediction for a two-

cycle fixed time traffic light are the length of the green time, the length of the red time, the 

absolute time of change for the traffic light, and the state that is associated with the time of 

change. From these 4 inputs, 2 outputs are produced: the current state of the traffic light 

and the time until the traffic light changes state. The leader-follower traffic light prediction 

coaching is a method that obtains these 4 inputs and outputs the 2 outputs. 

3.3 Leader-Follower Traffic Light Prediction Coaching 

Advanced driver assists systems, such as autonomous vehicles, require the development 

of traffic light vision systems. These vision systems are intended to guide an autonomous 

vehicle on how to approach the intersection. These sensors and systems provide the 
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required data, allowing the ability to make predictions of how the traffic lights will 

behave in the future. The leader-follower method has 3 phases: learning, leading, and 

following. The three-phase approach is required because the random walk of fixed time 

traffic lights is large enough that accurate predictions are impossible for extended periods 

of time. The traffic light random walk is discussed by Cristea et al., and has been directly 

observed during method development (Cristea, Paran et al. 2012). The leader-follower 

method focuses on maximizing performance of two-cycle fixed time traffic lights, where 

a two-cycle fixed time traffic light has one length of time for the red part of the cycle and 

one length of time for green part of the cycle. A similar approached could be used for 

four-cycle fixed time traffic lights or any type of fixed time traffic light; The leader-

follower method implementation focuses on two-cycle fixed time traffic lights. A four-

cycle fixed time traffic light has two red and two green timings contained in one 

complete cycle. Vehicles that have advanced driver assist systems can acquire the 

information required for the learning and leading phases, while any vehicle can 

participate in the following phase. Figure 3-1 shows a visual depiction of the leader-

follower method. As a leader vehicle approaches the traffic light it gathers the required 

data. Then a follower can predict the traffic light. A leader vehicle can also be a follower 

at the same time, but would have to be using previously acquired data from another 

leader for its predicitons. The following sections explain all the phases of the traffic light 

prediction algorithm. 
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1 is the traffic light and the input to the leader. “A” shows the traffic light signal. 2 is the leader with a 

vision system. “B” contains the time of change and the traffic light state. 3 is the learner that stores the 

traffic light data. “C” contains the 4 inputs to the follower phase. 4 is the follower who receives the traffic 

light coaching. “D” is the output of the coaching. 

Figure 3-1: Leader-Follower Method Diagram 

3.3.1 Learning Phase 

The learning phase estimates the length of the red and green portions of the fixed-

time traffic light cycle, with the yellow cycle included in the length of the green. The 

inclusion is a small, but important detail; treating yellow as green simplifies the amount of 

information that must be captured and requires less input from the data acquisition system. 

The learning phase is ideally performed with machine learning on the data overtime that is 

provided by the leading portion of the algorithm. The length of the cycle for a given traffic 

light is learned from the recorded data of the traffic lights’ time of change and 
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corresponding state. A minimum of 3 traffic light changes need to be recorded continuously 

to learn the traffic light in that direction. Three traffic lights are required to have confidence 

that the traffic light is indeed a fixed time traffic light, and that the correct cycle lengths 

have been determined. More than 3 traffic light changes are desirable to compare how the 

cycle is performing over time. The leader-follower method requires a static traffic light for 

a given time of day, meaning that the red and green lengths of the cycle are constant for a 

set amount of time. Once the red and green cycle times are known for the light, the learning 

phase is complete for that intersection, and the leading phase can begin. Advanced traffic 

light systems, such as adaptive traffic lights, will not be predicted by the leader-follower 

system because of the varying length of red and green parts of the cycle. Some of these 

advanced systems can currently broadcast the signal information to vehicles; however, for 

this coaching method, advanced traffic light systems will not be utilized (Koons 2018).  

3.3.2 Leading Phase 

The leading phase obtains the last time of change and the traffic light state associated with 

that time of change. This data expires because of the random walk of the traffic light. The 

data needs to be updated as frequency as possible because of the random walk of fixed time 

traffic lights that do not contain advanced time keeping equipment. The system works best 

if updated more than once an hour. The time of change and state are recorded when the 

leader observes the traffic light change states. The two pieces of information will be used 

in the following phase. The leading phase is implemented with forward looking cameras 

and a traffic light state vision system. Now, the following phase can begin. 

3.3.3 Following Phase 
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The following phase requires data from the two previous phases and can be performed by 

any vehicle with access to the 4 pieces of data. The 4 pieces of data needed are the length 

of the green, the length of the red, the last traffic light state, and the last traffic light time 

of change. From these 4 parameters the current state of the traffic light and time of change 

can be extrapolated from the last recorded state and last recorded time of change. The 

determination of the time until the traffic light changes is done in equation 1.  

(𝑇𝑐 − 𝑇𝑟)%(𝑇𝑟𝑒𝑑 + 𝑇𝑔𝑟𝑒𝑒𝑛) = 𝑇𝐿𝑟𝑒𝑚 

Where Tc is current time. Tr is the absolute time that the traffic light changed. Tred is the 

length of time of the red part of the cycle. Tgreen is the length of time of the green part of 

the cycle. TLrem is the length of time remaining in the current cycle. Figure 3-2 shows the 

traffic light prediction algorithm for two-cycle fixed time traffic lights. TLstate is the last 

recorded state of the traffic light; it must be red or green. Delta T is the time until the traffic 

light will change, and CTLstate is the current state of the traffic light. The leader-follower 

method is effective when implemented in real time and requires the minimal amount of 

information about the traffic light. Now the CTLstate and Delta T can be displayed to the 

driver.

1 
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Figure 3-2: Traffic Light Prediction Algorithm 
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3.4 Leader-Follower Traffic Light Prediction Coaching Prototype 

Traffic light prediction coaching is implemented in real time with an Android tablet. The tablet 

runs on Android O.S. 6.0.1. The traffic light prediction application GUI is shown in Figure 3-3. 

The application has 4 user inputs: next, previous, TLG, and TLR. The “next” and “previous” 

buttons select the traffic light along the route, and the “TLG” and “TLR” buttons serve the leader 

functionality. This prototype implements the following portion of the algorithm. The learning 

portion needs to be performed manually before the experiment. This is not a problem because the 

time of the cycle remain constant for years in some cases.Instead of the leader portion being 

performed by a vision system, this portion will be performed by a human operator. When the 

“previous” or “next” button is pressed, the system obtains the traffic light’s 4 properties from the 

local traffic light file or from the traffic light server. “TLG” and “TLR” record the time of the 

button push and assign the state of the traffic light. Then the time of the traffic light change is 

written to the local traffic light file and uploads that file to the server. The system can be improved 

by automation of the systems that require user input. The performance and effectiveness of the 

system needs to be determined before future work goes into automation of these 4 inputs. 
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Figure 3-3: Traffic Light Coaching 

Figure 3-4 shows the code flowchart for the traffic light coaching app. If the “next” or “previous” 

button is pushed, the next intersection is selected. The JavaScript Object notation (JSON) file is 

searched for that intersection and the appropriate traffic light properties are retrieved. The leader-

follower traffic light prediction algorithm is then implemented and the answer is displayed in the 

“Time to Change” block and the “Current Traffic Light State” block. If the “TLG” or “TLR” button 

is pushed, it rewrites the time of change and traffic light state properties for that traffic light inside 

of the JSON file. With the prototypes built, the testing methodology can be discussed in the next 

section. This prototype does not implement the learning portion since the traffic light length of 

green and length of red times must be manually implemented into the JSON file.  
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Figure 3-4: Leader-Flower Traffic Light Predicition Coaching Flow Chart 

3.5 Conclusion of Methods 

The leader-follower traffic light prediction coaching is successful. The leader-follower traffic light 

prediction method is a multi-vehicle approach to coaching on traffic lights changes in front of the 

vehicle. While the system is not fully automated, it does work with a human operator and is at the 

point where the functionality of the follower portion can be tested. The fuel consumption 

performance will be tested in Midtown Atlanta, Georgia. The test route is 1 mile long with 10 

traffic lights. The results of the experiment are shown in Chapter 4. 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Testing Methods for the Leader-Follower Traffic Light Coaching 

The leader-follower traffic light coaching system will be tested by having drivers utilize the 

application on a public road. The velocity and fuel consumption will be monitored while the 

vehicle is on the predetermined route. The route will contain 10 total traffic lights of which 9 are 

fixed time traffic lights where the cycle of the light is known. The control variables are the time of 

day, the vehicle, and the driver. The vehicle, route, and test steps are core components of the 

experiment and will be discussed in section 3.5. 

4.1.1 Test Vehicle 

The vehicle used in this experiment is a 2016 Ford Fusion Energi. The Ford Fusion is a plug-in 

hybrid vehicle. The curb weight is 3913 lb. The vehicle has a 2.0L inline 4-cylinder internal 

combustion engine mounted to a continuously variable transmission. The EPA rating for the Ford 

Fusion is 40 mpg in the city and 36 mpg on the highway. The vehicle has a 20 mile all-electric 

range but running in pure electric will be disabled for this experiment; the electric battery will be 

drained and unable to drive in all-electric mode. The combined powertrain is rated for 195 

horsepower at 6000 RMP (2016). The vehicle will be functioning as a hybrid vehicle during this 

experiment.  

4.1.2 Test Route 

The route contains a total of 10 traffic lights. The driver will be coached on 9 of the 10 fixed time 

traffic lights during driving. The 6th traffic light is not a two-cycle fixed time traffic light therefore 
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the user will not be informed about it. The next traffic light on the route will be displayed to the 

driver. The route is shown in Figure 4-1. The total length of the test is 1.0 mile and takes about 7 

minutes to complete each run. The 10 traffic light timings are in Table 4-1. The traffic levels are 

an uncontrolled variable but will be mitigated by driving at the same time of day. The driver will 

drive 3 un-coached runs and 3 coached runs each day. The first 3 runs will be un-coached runs, 

and the next 3 runs will be coached. The first 3 un-coached runs provide the observer the 

opportunity to perform the leading portion of the traffic light prediction algorithm. In a full-scale 

implementation, the leading portion could be completed by a vision system and a network of 

connected vehicles through a traffic light database. The route is designed to test the fuel 

consumption performance of the follower phase. The learning data will already be taken before 

the test begins and leading data will be taken during the un-coached laps. The accelerator pedal, 

brake force, regenerative energy, velocity, and fuel will be recorded during the test through the 

OBD-II port, from the controller area network (CAN) bus. The regenerative energy will be 

expressed as microliters of fuel with a conversation factor of 32.05MJ/L from the EPA’s labelling 

guidelines. SAE specifies how drive cycles should be tested for hybrid and electric vehicles. Over 

the course of a test, the stored electrical energy needs to be credited back to the fuel consumption 

numbers. For the specified drive cycle testing the net energy stored over the test should be less 

than 1 percent or up to 5 percent if corrected. (International 2010) because this test is conducted 

on a public roach, and with a variety of driving styles this is not achieved, but the corrected fuel 

consumption and IC fuel consumption numbers will be provided. Corrected fuel consumption will 

be specified clearly when referring to fuel economy numbers that take into account the sored 

energy of the battery. The test steps are shown in the next section.  
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Figure 4-1: Test Route Google Maps Image of Midtown Atlanta, GA 
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Table 4-1: Traffic Light Timings for Route in Figure 3-5 

Traffic Light Timings (seconds) 

Intersection Green Length Red Length 

1 28 32 

2 25 35 

3 28 32 

4 45 75 

5 60 60 

6 N/A N/A 

7 28 32 

8 25 35 

9 45 75 

10 70 50 

4.1.3 Test Run Steps 

The test is performed identically for all 4 drivers. The vehicle starts in a parking lot 0.5 miles away 

from the start of the run. The driver is instructed to drive the route as he/she normally would drive 

for the first three control runs each day starting at 10:00 am. While the three control runs are being 

performed, the other 9 traffic lights are being scouted for the leader portion of the leader-follower 

method. Specifically, the traffic lights are being scouted for the time of change and the state that 

corresponds to that change. After the three control runs are completed, the three coached runs start. 

The coaching is performed by displaying the traffic light prediction coaching to the driver. At the 

start of the coached run the driver is given two guidelines. The first guideline is to let off the 

throttle if the driver does not believe that the intersection will be cleared in the amount of time 
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remaining. The second guideline is to accelerate or maintain speed if the driver believes that the 

intersection will be cleared in the amount of time remaining. Once the driver clears an intersection, 

the coaching displays the next traffic light information via the operator in the passenger seat. The 

operator has two tasks. The first task is to operate the leader-follower application. The second task 

is recording the data off the CAN bus. The results for the tests are shown in Chapter 4. The test is 

performed with 4 drivers with a combined 120 runs.  

4.2 Results  

The results in this chapter are from 4 drivers. Each driver is given the same information on the 

same test route. The first three runs each day are un-coached runs followed by three coached runs 

using the leader-follower traffic light prediction coaching. Given that the experiment is performed 

on a public road, there are runs that are going to be outliers because of the events happening that 

day. These variables were mitigated by driving at the same time each day and doing as many runs 

as possible. A threshold for statistical significance of 5% and a threshold for highly statistically 

significant of 0.1% is used in Chapter 4. The following sections start with an overview of each 

driver, then is proceeded by their results.  

4.3 Driver 1 Test Observations 

Driver 1 is a 22-year-old male. Driver 1 has a smooth driving style. He has comfortable 

accelerations and decelerated leaving plenty of space between vehicles for both coached and 

control runs. Driver 1 exceled at taking his foot off the accelerator as soon as he determined he is 

unable to make the intersection. On day 4, traffic light 2 was being worked on by the city and was 

not coachable. Driver 1 had a consistent and moderate driving style for both coached and un-

coached runs. Driver 1 results are in the next section.  
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4.4 Driver 1 Results and Discussion 

Table 4-1 shows Driver 1’s statistics. Driver 1 fuel consumption for all 30 test runs are shown in 

Figure 4-1. Figure 4-1 shows the test day on the x-axis and the microliters of fuel consumed during 

each run on the y-axis. The blue points are the control runs and the red runs are the coached runs. 

Figure 4-2 shows the average fuel use per day for the coached and un-coached runs. The x-axis is 

the test day and the y-axis has the fuel consumed in microliters of gasoline. Driver 1’s average fuel 

consumption reduction across all the runs is 19.6%. The corrected fuel consumption reduction is 

16.1%. The fuel consumption reduction average is statistically significant with two-tail p value of 

0.70%. The driver's standard of deviation for control runs is 17167 microliters and 7822 microliters 

for the coached runs. The margin of error for a 5% confidence interval is 9507 and 4332 microliters 

for un-coached and coached runs respectively. When Driver 1 is coached he is more consistent as 

shown by the 54% decrease for the coached runs standard of deviation over the control run.  

Table 4-2: Driver 1 Performance 

  Un-Coached Coached 
Percent 
Improvement Two Tail P Value 

Avg. Fuel Consumption (microliters) 74,795 60,161 19.6 7.01E-03 

Corrected Fuel Consumption 
(microliters) 74,905 62,877 16.1 1.10E-02 

Avg. Run Time(seconds) 336 371 -10.2 3.23E-02 

Normalized Avg. Fuel Recovery 
(microliters) 17.2 18.7 1.08   
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Figure 4-2 Driver 1 Fuel Consumption 
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Figure 4-3: Driver 1 Fuel Consumption Average per Day  

Figure 4-4 shows the length of time that each of the runs took to complete. The x-axis is the test 

day and the y-axis is the time in seconds that the run took to complete. The coached run on average 

took 10% longer to complete than the control runs. The standard of deviation for the coached runs 

with respect to time is 27 seconds and the standard of deviation with respect to time for the control 

runs is 51 seconds. Again, the coached runs show more consistency. This result is also statistically 

significant with a p-value of 0.03. For all of Driver 1’s plots, the variance between runs is due to 

difficulty in perfectly controlling variables. Variables that cannot be controlled range from a 

vehicle slamming on their brakes to construction closing lanes, and emergency vehicles blocking 

intersections.  

 

Figure 4-4: Driver 1 Length of Time per Test Run 
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As Driver 1 uses coaching on the route, learning effects are observed in his un-coached 

performance. Driver 1 starts predicting which lights would turn red before he got to the intersection 

because he had seen the coaching on previous days. This behavior is shown in Figure 4-2 by the 

un-coached runs fuel used start to approach the coached runs fuel used. The first three days show 

a distinct difference between the coached and un-coached fuel usage. The last two days show less 

of a fuel difference between the coached and control runs, as the driver has familiarized himself 

with traffic lights’ predicted behavior. This behavior is shown on day 5 in Figure 4-3, where the 

un-coached runs are more fuel efficient than the coached runs. The average fuel consumed on both 

the un-coached and coached was approximately 60,000 microliters. 60,000 microliters is a low 

amount of fuel used for either coached or un-coached run. The inversion of the coached and un-

coached average fuel consumption on day 5 does not mean that coaching is hurting the driver’s 

average fuel economy because day 5’s average is within margin of error. Figure 4-5 shows the 

average energy recovered using the hybrid powertrain during the run. The amount of energy 

recovered at first can be a misleading, because whenever the Internal Combustion (IC) engine is 

running excess energy is being stored, but energy is also being stored during regenerative braking.  
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Figure 4-5: Driver 1 Average Energy Recovered 
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Figure 4-6: Driver 1 Normalized Average Energy Recovered 
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stepping on the brakes for both coached and un-coached runs. There are more braking events with 

the un-coached runs, and larger braking events for un-coached runs. The information helps link 

the fuel economy results shown above. Figure 4-8 shows the powertrain performance for the same 

two runs in Figure 4-7. Driver 1 makes good use of the hybrid powertrain whether being coached 

or un-coached. Figure 4-9 shows a histogram of the throttle use. Driver 1 coached throttle use is 

centered around 14% and the un-coached throttle use is centered around 16-17%. The coached run 

contains less events after 19%. Figure 4-10 contains a histogram of the braking events for all of 

driver 1 runs. When coached driver 1 uses most brake force of 500nm. The un-coached runs use 

750 to 850 nm braking torque. The increase in throttle use and braking force contribute to the 

increased fuel consumption when un-coached. When un-coached Driver 1 demonstrates that 

drivers with a moderate driving style can see fuel consumption reductions while being coached.  
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Figure 4-7: Driver 1 Day 3 Un-coached Run 2 and Coached Run 3 Throttle and Brake Perfromacne  
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Figure 4-8:Driver 1 Day 3 Un-coached run 2 and Coached run 3 Power Train Performance 
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Figure 4-9: Driver 1 Accelerator Histogram 

 

Figure 4-10: Driver 1 Brake Histogram 
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4.5 Driver 2 Test Observations 

Driver 2 is a 20-year-old male. Driver 2 has had a driver's license for less than a month prior to 

starting the study. The lack of experience provides the unique opportunity to analyze ways in which 

a new driver might react to coaching. Driver 2 does not demonstrate advanced control over the 

vehicle in terms of predicting future events that seemed obvious to the observer in the passenger 

seat. Driver 2 struggled to leave large stopping distances when traffic in front of the vehicle is 

dense. The lack of time headway increased frequency and magnitude of braking events. Driver 2 

did not react as soon to the traffic light coaching application as Driver 1 had been able to react to 

the coaching. For example, the Driver 2 continued accelerating when the traffic light was a few 

seconds from changing, and the intersection is not going to be cleared as shown on the leader-

follower traffic light prediction coaching. On day 1 of testing, during the un-coached runs there 

was a field trip at the Fox Theatre and busses blocked intersections a few times during un-coached 

run 1 and un-coached run 2. Driver 2 did not noticeably change the driving style between coached 

and un-coached runs, providing an opportunity to view how the coaching affects the driver with 

little adaptation to driving style. Driver 2 results are in the next section. 

4.6 Driver 2 Results and Discussion 

Table 4-3 shows Driver 2’s statistics. Driver 2’s 30 test run’s fuel consumption are shown in Figure 

4-11. The average fuel consumption for Driver 2 is 90850 microliters for un-coached, and 78752 

microliters for coached runs. The average fuel consumption per day is shown in Figure 4-12.  
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Table 4-3: Driver 2 Performance 

  Un-Coached Coached Percent Improvement Two Tail P Value 

Avg. Fuel Consumption (microliters) 90,850 78,752 13.3 1.33E-01 

Corrected Fuel Consumption 
(microliters) 90,338 77,487 14.2 6.60E-02 

Avg. Run Time(seconds) 396 384 3.2 5.34E-01 

Normalized Avg. Fuel Recovery 
(microliters) 18.0 23.2 22.5   

  

Figure 4-11: Driver 2 Fuel Consumption 
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Figure 4-12: Driver 2 Average Daily Fuel Consumption 

The average fuel consumption reduction is a 13.3% fuel reduction while being coached. The two-

tail p value for Driver 2 is 0.133 resulting in Driver 2’s fuel consumption not being statistically 

significant. The corrected fuel consumption reduction is 14.2%. A possible reason for the lack of 

statistical significance is because Driver 2 is a new driver and is not as consistent as drivers who 

have driven for longer. Driver 2’s un-coached standard of deviation is 24276 microliters and the 

coached standard of deviation is 18006. As with Driver 1, Driver 2 shows more consistency while 

being coached. The reduction is not over a factor of 2, as with Driver 1, but the standard of 

deviation is 25.8% smaller with the coached runs. Figure 4-13 shows the time that each run took 

to complete in seconds.  
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Figure 4-13: Driver 2 Length of Time per Test Run 

There are two outliers on day 1. Un-coached run 1 and 3 had times of 438 and 661 respectively.  

Un-coached run 1, traffic light 2 was not able to be traversed because of busses blocking the 

intersection for one cycle. On un-coached run 3, traffic light 2 was again blocked for multiple 

cycles by busses. Driver 2 is 3.06% faster while being coached when the outliers are used. When 

run 3 is removed the coached runs are 1.79% percent slower than the control runs. Figure 4-14 

shows the average time per day for un-coached and coached performance.  
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Figure 4-14: Driver 2 Averge Length of Time per Day 

The average is consistent and equal on almost every day, but the first day for the reasons already 

mentioned. The traffic lights dictate the time required to complete the run not the drivers driving 
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Figure 4-15: Driver 2 Average Energy Recovered per Day 

 

Figure 4-16: Driver 2 Normalized Average Energy Recovered per Day 

The normalized energy recovered during each run shows how well each driver uses the hybrid 
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shows how Driver 2 used the vehicle on day 5. Figure 4-17 shows the 1st coached and un-coached 

run on that day. Both of those runs were consistent with the coached and un-coached average fuel 

consumption. Driver 2’s driving style is confirmed to be much more oscillatory than Driver 1’s 

driving style, but Driver 2 accelerated and decelerated with authority when being coached. Driver 

2 uses more throttle frequency when un-coached. The throttle is rapidly cycled between 0 and high 

throttle positions when un-coached, even when the vehicle is up to speed. These accelerations 

events are quickly followed by braking events when un-coached. When Driver 2 is coached, his 

use of the brake and throttle changes. The throttle is used largely toward the beginning of 

accelerations events, and then it is followed by long pauses of not braking or accelerating. The 

length of time between using the throttle followed by the brake increases with the coached runs. 

The length of time is important for hybrid electric vehicles as it leaves more time for regenerative 

braking, instead of using the friction braking system. As with Driver 1, the throttle and braking 

performance shows the link between coaching the driver and the driver using the throttle and brake 

in more productive ways. Figure 4-18 shows the hybrid and IC performance during the same two 

runs as Figure 4-17. The first two plots are the same as Figure 4-17. The third plot is the combined 

hybrid and IC powertrain fuel consumption through the run in seconds. The fourth plot is the 

hybrid powertrain performance. It is important to note that the y-axis on the hybrid powertrain plot 

is an order of magnitude less than the IC powertrain performed plot. The fifth plot shows the IC 

powertrain performance. The hybrid powertrain shows the user being unable to use all of the 

recovered energy through the un-coached run. When driving on the road, a user accelerates to a 

certain speed limit and then begins to coast or maintain speed. If the IC powertrain is providing a 

large percentage of that acceleration, there is less opportunity for the hybrid powertrain to use its 

stored energy to accelerate the vehicle. The un-coached run had an excess of 2888 microliters of 
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gasoline recovered and the coached run ended with a deficit of 1788 microliters of fuel. The un-

coached run is not able to spend its stored energy fast enough. Figure 4-19 contains a brake 

histogram for driver 2. Driver 2 shows consistence in his braking histogram, but has an increase 

in number of braking events when un-coached. Figure 4-20 shows a deceleration histogram fro 

driver 2. Driver 2 has an increase of -0.9 rad/s^2 when un-coached. When coached driver 2 has 

more braking events at -0.6 rad/s^2. Lower accelerations allow for more regenerative braking to 

occur and more energy to be recovered. This shows an impact the presence of coaching has on the 

drivers operation of the vehicle.  
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Figure 4-17: Driver 2 Day 5 Un-Coached Run 1 and Coached Run 1 Throttle and Brake Performance  
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Figure 4-18: Driver 2 Day 5 Un-Coached Run 1 and Coached Run 1 Powertrain Performance 
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Figure 4-19: Driver 2 Brake Histogram 

 

Figure 4-20: Driver 2 Deceleration Histogram 
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4.7 Driver 3 Test Observations 

Driver 3 is a 23-year-old male. Driver 3 is an aggressive driver that uses the full acceleration and 

deceleration ability of the vehicle. When Driver 3 is coached he tries to take his foot off the 

accelerator as soon as he determines he will not clear the intersection. Coaching causes the most 

dramatic change in driving style. The driving style change should result in the most extreme fuel 

economy numbers between un-coached and coached. On day 2 of testing, he informed the operator 

in the passenger seat that he had memorized the traffic lights from day 1. The driver prediction 

shows in the results on day 2. However, Driver 3 resumed his normal un-coached driving style for 

the other un-coached runs on later days. Driver 3 results are in the next section.  

4.8 Driver 3 Results and Conclusions 

Table 4-4 shows Driver 3’s statistics. Driver 3’s 30 test runs’ fuel consumption is shown in Figure 

4-21. The test day is shown on the x-axis and the y-axis shows the fuel usage in microliter of fuel. 

Figure 4-22 shows the average fuel consumption per day for coached and un-coached runs.  

Table 4-4: Driver 3 Performance 

  Un-Coached Coached percent improvement Two Tail P Value 

Avg. Fuel Consumption (microliters) 97,970 64,357 34.3 1.38E-04 

Corrected Fuel Consumption (microliters) 95,142 66,928 29.7 2.53E-05 

Avg. Run Time(seconds) 373 375 -0.6 4.71E-01 

Normalized Avg. Fuel Recovery (microliters) 16.3 16.0 -1.5   
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Figure 4-21: Driver 3 Fuel Consumption 

  

Figure 4-22: Driver 3 Average Fuel Consumption per day 
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In Figure 4-22, the axis is labelled the same way as Figure 4-21. Day 2 is particularly interesting 

as the driver said he could remember which lights would be green or red based on the previous 

day’s coaching. Driver 3 has similar results to the coaching on day 2 because of his knowledge 

from the previous day. Driver 2’s prediction shows that understanding what the traffic lights will 

do can have a big impact of fuel economy. However, he continued to drive normally for the other 

days. Driver 3 averages 34.3% less fuel then being coached. Driver 3’s fuel consumption 

improvement is highly statistically significant with a two-tail p-value of .00014. The standard of 

deviation is 21,500 microliters for un-coached runs and 20,197 microliters. The standard of 

deviations between un-coached and coached runs is small. The standard of deviation from Driver 

1 differed where his coached runs had a difference of more than a factor of two. The corrected fuel 

consumption reduction is 29.7%. The first coaching run on day 4 showed approximately 10,000 

microliters of fuel being used, but the hybrid powertrain did another 20,000 microliters of work 

resulting in a total hybrid plus IC powertrain fuel consumption of 30,000 microliters of fuel 

consumption. 30,000 microliters is still a very low amount of energy for a 1-mile run, but realistic. 

The run resulted in a 33 mpg effective fuel economy but averages 100 mpg when just looking at 

the gasoline used during the test. Figure 4-23 shows the outlier run gasoline usage.  
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Figure 4-23: Driver 3 Day 4 Coached Run 1 
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Figure 4-23 shows there are very few stopping events. The length of time the vehicle is stopped 

does not matter as much as the frequency of the stops, because the vehicle has start-stop technology 

where the IC engine turns off while not moving. The vehicle’s IC engine only turns on while the 

vehicle is accelerating through lights 4 through 9, which has a green wave associated with it. An 

average energy recovered un-coached and coached run is shown in Figure 4-24 for Driver 3. The 

normalized energy recovered shown in Figure 4-25. The normalized energy refers to the energy 

recovered over the fuel used during the run. 

 
Figure 4-24: Driver 3 Average Energy Recovered per day 
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Figure 4-25: Driver 3 Normalized average Energy Recovered per day 

The fuel that was recovered and stored is shown in Figure 4-24. Figure 4-24 shows more fuel was 

recovered in un-coached runs than the coached runs. However, Figure 4-25 shows that sometimes 

coached runs recover a higher percentage of the energy that was used during the run. The un-

coached runs recovered 15.9% of the fuel that was used, while the coached runs recovered 17.2% 

of the fuel that was used. The difference in fuel recovered shows that the coached driver is making 

better use of the hybrid powertrain. Figure 4-26 is related to the time that the run took to complete. 

Figure 4-26 shows the average time that a coached an un-coached run took to complete per day. 
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Figure 4-26: Driver 3 Average Run Length of Time per day 

  

Figure 4-27: Driver 3 Run Length of Time 
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the average length of time that the run took to complete. There is less time variation than fuel 

consumption variation. Figure 4-28 shows Driver 3’s use of the throttle and brake, and their 

relationship to vehicle speed and fuel consumption. The runs chosen closely corresponds to the 

average fuel consumption for Driver 3. Both runs come from day 4: un-coached run 2 and coached 

run 2. Driver 3’s aggressive driving style still shows in both of his coached and un-coached runs. 

However, Driver 3 is much more conservative with the throttle during the first 150 seconds of the 

coached run. The driver uses less than 20% throttle for much of the coached run, while the un-

coached runs use more than 20% throttle. The coached runs throttle reduction corresponds with 

coaching where the traffic lights encountered through traffic light 4 are red as the user drives up 

to them. The second half of the run corresponds to a green wave; Driver 3 still uses the acceleration 

of the car when he is confident of crossing the intersection. The un-coached runs show more 

percentage of the throttle being used, and large throttle use is followed by rapid decelerations. An 

example of this behaviour is shown at the 220 second point during the un-coached run. The large 

speed achieved at the 220 second point is unnecessary because the traffic light that caused the 

stoppage was predictable. Figure 4-29 shows the same runs as the Figure 4-28, but shows the 

hybrid powertrain performance. The first plot shows the wheel speed in radians per second. The 

second plot shows the throttle position. The third plot shows the combined hybrid and IC 

powertrain performance energy use in microliters of gasoline. The fourth plot shows hybrid 

powertrain energy use in microliters of gasoline. The last plot shows the IC engine energy use in 

microliters of gasoline. Figure 4-28 shows how Driver 3’s use of the throttle affects the hybrid 

powertrains ability to help in acceleration. A similar hybrid performance is shows with Driver 2. 

The driver ends the route with excess energy inside of the hybrid system, instead of trying to use 

all that is available. Plot 4 shows this behaviour because the un-coached run is not able to use about 
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9,075 microliters of fuel. However, the coached run uses an excess of 4,100 microliters of fuel 

from the battery. The difference in net energy use by the hybrid powertrains shows the difference 

in demand of the hybrid powertrain. The coached run makes more efficient use of the stored energy 

in the hybrid powertrain. Driver 3 is a more extreme case of what Driver 2 showed. Most of the 

energy is used during accelerations, and if the IC engine is providing that energy, there is less 

opportunity for the hybrid powertrain to accelerate the vehicle.Figure 4-30 contains a histogram 

of driver 3’s throttle use for both coached and un-coached runs. Driver 3 uses more throttle above 

30% when un-coached. The coached run throttle use is centred around 12% and the un-coached 

throttle use is centred around 17%. The presence of coaching changed how driver 3 operated the 

acceleration of the vehicle. Aggressive drivers can expect to see large fuel consumption 

improvements from coaching. 
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Figure 4-28: Driver 3 Day 4 Un-Coached Run 2 and Coached Run 2 Throttle and Brake 
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Figure 4-29: Driver 3 Day 4 Un-Coached Run 2 and Coached Run 2 Powertrain Fuel Use 
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Figure 4-30: Driver 3 Throttle Histogram 

 

Figure 4-31: Driver 3 Acceleration Histogram 
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4.9 Driver 4 Test Observations 

Driver 4 is a 23-year-old female. She has a conservative driving style leaving safe distances 

between vehicles and large stopping distances. Driver 4 is smooth with her use of the throttle and 

brake. The observer could not tell any differences in driving style between coached and un-coached 

runs. Because of her driving style, the results should show realistic fuel consumption reductions 

that should translate well to other drivers not contained in the study. On day 1, there was a power 

outage that affected traffic lights 2 and 3 on the route; the approach to traffic light 1 was shortened 

due to a detour for repairs. The beginning part of the run on Spring Street started about half of the 

distance between Ponce de Leon and 3rd Street. The start position started from a parking lot with 

an initial velocity of 0, whereas most other runs started with a running start. On day 2, a heavy 

rainstorm started on the last coaching run forcing more braking than usual through the run and 

lower travel speeds. Driver 4 results are in the next section. 

4.10 Driver 4 Results and Discussion 

Table 4-5 shows Driver 4’s statistics. Driver 4’s 30 test run fuel consumption results are shown in 

Figure 4-32. Driver 4’s average daily fuel consumption is shown in Figure 4-33. 

Table 4-5: Driver 4 Performance 

  Un-Coached Coached percent Improvement Two Tail P Value 

Avg. Fuel Consumption (microliters) 88,320 82,822 6.2 1.37E-01 

Corrected Fuel Consumption 
(microliters) 84,565 79,938 5.5 1.59E-01 

Avg. Run Time(seconds) 378 383 -1.3 5.54E-01 

Normalized Avg. Fuel Recovery 
(microliters) 14.1 13.8 -2.1   
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Figure 4-32: Driver 4 Fuel Consumption 

 

Figure 4-33: Driver 4 Average Fuel Consumption per day 
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 Driver 4’s average fuel consumption improvement from coaching is 6.22%. The average fuel 

consumption reduction has a p-value of 13.7% meaning it is not statistically significant on its own. 

The corrected fuel consumption reduction is 5.5%. Driver 4 is consistent with her driving style 

between coached and un-coached runs and does not have any outliers in Figure 4-32. Figure 4-34 

shows the fuel recovered by the hybrid powertrain on the vehicle. Driver 4 recovers more energy 

while un-coached except for day 3. Figure 4-35 shows the normalized performance of the energy 

recovered over the fuel used during the run.  

 

Figure 4-34: Driver 4 Average Energy Recovered per day 

 

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

M
ic

rl
Li

te
r 

o
f 

G
as

o
lin

e

Test Day

Driver 4 Average Energy Recovered

Un-Coached

Coached



70 

 

 

Figure 4-35: Driver 4 Normalized average Energy Recovered per day 
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Figure 4-36: Driver 4 Run Length of Time 

 

Figure 4-37: Driver 4 Average Run Length of Time per day 
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Driver 4 took 1.30% longer when coached to complete the runs. These runs are far from statically 

significant with a two-tail p-value of 55.4%. There is minimal time penalty observed for Driver 4 

when being coached. Figure 4-38 shows two of Driver 4’s runs. The two runs were chosen because 

they correspond to the fuel usage average for the coached and un-coached runs. The coached run 

consumed 88,175 microliters of gasoline and the un-coached run consumed 80,250 microliters of 

gasoline. The plot configuration is the same as Figure 4-28. The wheel speed plot shows a unique 

behavior to Driver 4. Driver 4’s un-coached runs tended to get stopped at traffic light 7. That stop 

is seen in the coached run at 225 seconds. Many of the other drivers were able to drive fast enough 

through this portion to get to traffic light 9 without stopping. Driver 4’s coached runs gave 

confidence and she drove fast enough to make traffic light 7 and 8 when not traffic limited. Driver 

4 uses the brake harsher and more often when not coached and leaves more time between letting 

off the throttle and stepping on the brake. Figure 4-39 shows the performance of the different 

powertrain systems with the same two runs as Figure 4-38. Figure 4-39 is organized the same way 

Figure 4-29 is organized. Unlike Driver 3, Driver 4 makes better use of the hybrid powertrain 

whether she is coached or un-coached. Plot 4 shows that Driver 4 recovers more of energy from 

regenerative braking when coached and un-coached. Figure 4-40 contains a histogram of driver 

4’s throttle use. Driver 4 is so consistent with throttle use. It is difficult to see exactly where the 5-

6% fuel consumption improvement is coming from. With little change in driving style, Driver 4 

shows that measurable fuel consumption improvements are possible for drivers with little change 

in driving style. 
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Figure 4-38: Driver 4 Day 2 Un-Coached run 2 and Day 4 Coached run 2 Throttle and Brake Performance 
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Figure 4-39: Driver 4 Day 2 Un-Coached run 2 and Day 4 Coached run 2 Throttle and Brake Performance 
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Figure 4-40: Driver 4 Throttle Ussage 

 

4.11 All 4 Drivers Combined Results 

Between all 4 drivers there was a total of 120 test runs. 60 runs are coached, and 60 runs are un-

coached. The combined fuel consumption reduction from coaching is 18.7%. The two-tail p-value 

is 5.6ppm. The p-value makes the total fuel consumption reduction for all 4 drivers highly 

statistically significant. The corrected fuel consumption reduction is 16.7%. Figure 4-41 shows all 

4 drivers’ fuel consumptions relative to each other with error bars. Driver 1 consumes the least 

fuel when coached and un-coached. Driver 3 consumes the most fuel when un-coached and 

consumes slightly more fuel than the most efficient driver when coached. Driver 4 shows small 
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error bars compared to the other drivers. The time required to complete a route is not statistically 

significant. The coached runs averaged 1.99% longer to complete, but the p-value is 41.5%. There 

is no strong correlation between the time required to complete the route and whether the driver is 

being coached. Figure 4-42 shows the average time each driver took to complete their coached and 

un-coached runs. The time is approximately the same between coaching and drivers unlike the fuel 

consumption results. These 4 drivers show that there are fuel economy improvements from the 

leader-follower traffic light prediction method.  
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Figure 4-41: Drivers 1-4 Fuel Consumption with Error Bars 

 

Figure 4-42: Drivers 1-4 Time per Run with Error Bars 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

This thesis set out to propose and develop a system for new driver coaching devices and methods. 

The developed coaching methods resulted in a method for accurate prediction of fixed-time traffic 

lights that can be implemented for a driver aid. Real world fuel consumption improvements are 

seen from coaching drivers on traffic light timings. A test is developed that is a 1 mile long with 

10 traffic lights on the route. Drivers 1 through 4 showed a coached fuel usage range from of 66% 

to 94%of the un-coached fuel usage. The average fuel consumption reduction is 18.7% for all the 

drivers runs combined. The corrected fuel consumption reduction is 16.7% for all drivers. Driver 

behaviour has a big impact on the performance from traffic light coaching. Driver 3 shows a fuel 

reduction of 34.3%. The fuel consumption reduction resulted in a large part from a massive change 

in driving style. However, drivers 1, 2, and 4 showed smaller changes in driving styles while being 

coached, and still showed 6% to 19% fuel economy improvement. The impact of the coaching on 

the time required to complete the route is small because the route is dominated by the traffic light 

timings. The route is very traffic light dense with 10 traffic lights in one mile. The coaching shows 

little to no time impact with coaching. While Driver 1 shows 10% longer to complete the runs 

when coached, Driver 2 shows completing the runs 1.79% faster while coached. The coaching 

application reduces fuel consumption by reduce the number of braking events and increasing the 

time between accelerating and braking events. Depending on the driver the coaching influenced 

driving behaviour to produce fuel consumption reduction of 34% in the case of Driver 2. For large 

fuel consumption reductions to occur, the driver must have started with an inefficient and 

aggressive driving style. These results are only possible with a route that contains traffic lights. If 
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the driver is on the interstate, there is no possibility for traffic light coaching because there are no 

traffic lights. The route is an extreme case of city driving that has 10 traffic lights in 1 mile. The 

fuel economy results would likely decrease with a decrease in traffic light density, but this is 

difficult to definitively conclude based on the experiment in Chapter 4. With a lower traffic light 

density, traffic lights could be coached with larger distances. Larger coaching distances could 

result in more gains per traffic light. To see fuel consumption reductions on roads with few or no 

traffic lights, other methods such as those discussed in Chapter 2. Fuel consumption is only one 

part of driver coaching. Fuel consumption might be a motivating factor for adoption of such 

coaching systems. Drivers expressed satisfaction during the testing of less anxiety and appreciation 

of being coached while stopped at a red light. It allowed the drivers to relax while waiting for a 

traffic light to change, yet still be ready when the traffic light does change. Driver feedback systems 

and driver coaching has more potential with the increase in sensors around the vehicles.  

5.2 Future Work 

For the coaching system to be implemented on a large scale there is is room for futher development. 

Automation of the leader-follower traffic light prediction method would allow the system to be 

implemented on a large scale. The test prototype focuses on the follower functionality. Leading 

and Lerning still needs more automation. Automation of the traffic light selection system, 

automation of the learning phase, and automation of the following phases would allow the system 

to function without an operator in the passenger seat. Automation could be done with a traffic light 

computer vision system. The learning data base needs to quickly estimate traffic light cycles with 

historical traffic light infromatoin. Prediction for other fixed time cycle traffic lights can be done 

with the leader-follower method with more inputs and more case statement in the following phase. 
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The leader-follower coaching needs to be tested with other types and classes of vehicles to see 

how its performance varies with traditional IC vehicles and larger semi-trucks.  
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APPENDIX 

A. Appendix A 

The data for all the driver’s tests runs is shown in Appendix A. For each driver the first table 

contains the fuel consumption results. The fuel consumption is the sum of the fuel that is measured 

being injected to the IC engine. The second table contains the run time results. The time is 

measured by taking the time stamp off of the last CAN bus signal and subtracting off the time of 

the first CAN bus signal. The third table contains the energy recovered through the run. The energy 

recovered is calculated by summing up any energy amount that decreases from the previous energy 

state for the hybrid powertrain. 

A.1 Driver 1 Test Results Data 

Table A-1: Driver 1 Fuel Consumption 

Day Run Un-Coached(microliters) Coached(microliters) 

1 1 113,225 70,975 

1 2 86,550 72,425 

1 3 56,950 63,625 

2 1 83,750 55,075 

2 2 79,375 51,050 

2 3 92,725 60,900 

3 1 72,525 51,525 

3 2 78,625 66,625 

3 3 88,800 62,025 

4 1 75,275 54,463 

4 2 58,575 64,000 

4 3 59,925 43,675 

5 1 71,350 58,475 

5 2 48,200 63,750 

5 3 56,075 63,825 

 



82 

 

Table A-2: Driver 1 Run Time 

Day Run Un-Coached(seconds) Coached(seconds) 

1 1 269 376 

1 2 337 384 

1 3 372 362 

2 1 360 380 

2 2 370 382 

2 3 386 382 

3 1 314 363 

3 2 363 378 

3 3 376 363 

4 1 418 276 

4 2 266 386 

4 3 271 378 

5 1 306 386 

5 2 375 386 

5 3 261 375 

Table A -3: Driver 1 Energy Recovered 

Day Run Un-Coached(microliters) Coached(microliters) 

1 1 11,544 11,226 

1 2 11,902 11,384 

1 3 16,554 11,659 

2 1 12,269 9,513 

2 2 12,498 10,499 

2 3 12,793 7,458 

3 1 6,300 9,513 

3 2 8,701 10,499 

3 3 13,516 7,458 

4 1 11,824 11,954 

4 2 12,658 12003 

4 3 13,634 13827 

5 1 10,664 10664 

5 2 9,989 9989 

5 3 12,031 12031 

A.2 Driver 2 data 
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Table A-4: Driver 2 Fuel Consumption 

Day Run Control(microliters) Coached(microliters) 

1 1 101,500 101,750 

1 2 86,000 78,700 

1 3 111,050 88,800 

2 1 73,850 87,625 

2 2 101,650 50,850 

2 3 85,750 100,775 

3 1 160,775 39,375 

3 2 69,075 80,525 

3 3 73,250 84,825 

4 1 95,200 79,575 

4 2 55,975 70,875 

4 3 79,575 68,075 

5 1 88,725 77,475 

5 2 100,975 67,425 

5 3 79,400 104,625 

Table A-5: Driver 2 Run Time in seconds 

Day Run Un-Coached(seconds) Coached(seconds) 

1 1 438 368 

1 2 390 366 

1 3 661 387 

2 1 342 382 

2 2 391 385 

2 3 380 396 

3 1 351 389 

3 2 396 393 

3 3 388 383 

4 1 325 363 

4 2 398 376 

4 3 389 399 

5 1 325 382 

5 2 398 390 

5 3 389 405 
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Table A-6: Driver 2 Energy Recovered 

Day Run Un-Coached(microliters) Coached(microliters) 

1 1 14,382 20,546 

1 2 16,412 16,718 

1 3 16,490 18,834 

2 1 11,269 20,994 

2 2 24,496 18,290 

2 3 20,340 20,275 

3 1 9,885 13,470 

3 2 14,805 18,513 

3 3 16,571 17,566 

4 1 15,782 20,774 

4 2 14,994 17,993 

4 3 19,621 19,556 

5 1 15,016 15,582 

5 2 17,008 14,575 

5 3 13,463 18,551 

A.3 Driver 3 data 

Table A-7: Driver 3 Fuel Consumption 

Day Run Un-Coached (microliters) Coached(microliters) 

1 1 112,150 53,600 

1 2 116,775 98,100 

1 3 119,800 92,000 

2 1 47,950 67,375 

2 2 80,025 65,050 

2 3 70,800 70,400 

3 1 106,900 48,800 

3 2 118,575 59,900 

3 3 80,775 52,075 

4 1 117,600 95,75 

4 2 106,825 68,875 

4 3 114,425 74,575 

5 1 88,175 72,500 

5 2 83,850 62,100 

5 3 104,925 70,425 
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Table A-8:Driver 3 Run Time 

Day Run Un-Coached(seconds) Coached(seconds) 

1 1 347 344 

1 2 369 371 

1 3 362 378 

2 1 328 376 

2 2 384 359 

2 3 383 379 

3 1 333 393 

3 2 370 383 

3 3 386 388 

4 1 361 381 

4 2 379 375 

4 3 405 356 

5 1 361 386 

5 2 379 379 

5 3 405 378 

Table A-9: Driver 3 Energy Recovered 

Day Run Un-Coached(microliters) Coached(microliters) 

1 1 16,560 16,704 

1 2 15,344 14,591 

1 3 19,289 14,088 

2 1 11,252 9,682 

2 2 9,637 9,425 

2 3 9,214 7,515 

3 1 21,756 8,616 

3 2 17,805 10,186 

3 3 15,603 7,922 

4 1 13,117 9,089 

4 2 20,144 14,152 

4 3 19,360 9,498 

5 1 13,140 12,705 

5 2 14,879 11,282 

5 3 17,081 8,916 

 

A.4 Driver 4 data 
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Table A-10: Driver 4 Fuel Consumption 

Day Run Un-Coached(microliters) Coached (microliters) 

1 1 94,575 80,325 

1 2 79,150 84,800 

1 3 94,500 78,525 

2 1 112,200 89,075 

2 2 88,175 86,150 

2 3 89,225 101,300 

3 1 86,800 78,700 

3 2 103,550 75,825 

3 3 78,425 84,050 

4 1 82,300 61,875 

4 2 74,200 80,250 

4 3 96,100 86,025 

5 1 83,150 89,800 

5 2 79,275 93,350 

5 3 83,175 72,275 

Table A-11: Driver 4 Run Time 

Day Run Un-Coached(seconds) Coached(seconds) 

1 1 395 251 

1 2 332 431 

1 3 385 417 

2 1 472 386 

2 2 384 378 

2 3 385 383 

3 1 328 381 

3 2 380 397 

3 3 399 397 

4 1 350 393 

4 2 376 383 

4 3 353 399 

5 1 350 378 

5 2 376 378 

5 3 353 388 
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Table A-12: Driver 4 Energy Recovered 

Table 0-13 

Day Run Un-Coached(microliters) Coached(microliters) 

1 1 12,125 11,091 

1 2 10,723 9,672 

1 3 12,843 13,130 

2 1 13,086 8,496 

2 2 10,228 9,452 

2 3 11,183 10,934 

3 1 9,610 13,611 

3 2 14,341 12,497 

3 3 13,875 13,365 

4 1 13,323 11,335 

4 2 13,068 11,132 

4 3 13,323 12,415 

5 1 11,924 10,039 

5 2 13,905 11,342 

5 3 11,797 11,889 
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B. Appendix B 

Appendix B shows the calculations used for the analysis of the data. Section B.1 contains the 

method for calculation of the two-tail p value, and the variance calculation. 

B.1 Two-tail p value with unequal variances, and variance calculation 

The analysis calculated the p value and variance to determine the statistical significance of results. 

This section shows how the p value and variance are calculated using excel. The Data Analysis 

Tool is used in excel for these calculations. Figure B-1 shows the Driver 2’s data set. Figure B-2 

shows the data analysis tool in excel. Figure B-3 shows the input into the t-test two sample 

assuming unequal variances window. Figure B-4 shows the output of the t-test two sample 

assuming unequal variances. The box in the variable 1 column and the 9th row shows the two-tail 

p value. If the p value is less than 0.05 this experiment is statically significant. The p value is 

13.3%. The square root of the variance is the standard of deviation.  
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Figure B-1: Driver 2 Fuel Consumption Data Excel 

 

Figure B-2: Data Analysis Tool Excel 
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Figure B-3: t-Test: Two-Sample Assuming Unequal Variance 

 

Figure B-4: t-Test: Two-Sample Assuming Unequal Variance Output 
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