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SUMMARY

Governments around the world are slated to pass legislations that progressively

decrease automobile CO2 and NOx emissions. Automotive manufacturers are thus

looking for cost effective means to reduce tailpipe emissions while retaining existing

powertrain components and reducing the number of component changes. Hybrid

electric vehicles are hence an attractive solution. The presence of at least two power

converters gives an additional degree of freedom compared to conventional vehicles.

In order to optimize fuel consumption, an appropriate control strategy needs to be

developed.

The objective of this thesis is to develop an energy control strategy that addresses

the additional degree of freedom, but is also causal and computationally efficient so

that it can be implemented on a real vehicle.

First a detailed plant model that best represents the vehicle is developed in Simulink.

Then a simple heuristic supervisory controller is developed to understand and get

familiar with the various hybrid operating modes.

As a third step, an optimal control strategy using Pontryagin’s minimum principle

presented in [16] is considered. The author of [16] derives an explicit control law by

considering a simplified powertrain model. This results in the identification of power

threshold limits that separate the different modes of operation. The optimal power

that needs to be delivered by the internal combustion engine and the electric machine

are also obtained as equations for each operating mode. Hence the optimization is

done at design time and is computationally inexpensive. Evaluation of this strategy

xiv



shows that it achieves good performance in terms of fuel consumption. The fuel

consumption differs slightly when considering driving cycles with elevation profiles.

To achieve better fuel consumption in environments with changing elevation profiles,

the control strategy is extended to consider some knowledge about future driving

conditions. An algorithm that generates a reference trajectory for the future state-

of-charge of the battery considering the future elevation and speed profiles is used

along with the previously proposed strategy [16]. The average speeds and elevation

change data for a planned trip are provided by a navigation device. The predictive

strategy is computationally efficient and the resulting fuel consumption are improved

compared to the non-predictive strategy.
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CHAPTER I

INTRODUCTION

Legislations around the world are tending towards low tailpipe emission limits and

hence hybrid electric vehicles are an attractive choice for automakers without having

to make significant changes to existing powertrain components in general. The fuels

used in conventional vehicles provide the advantage of high energy density but suffer

from poor operating efficiency. Hybridization of the powertrain helps reduce fuel

consumption in many ways. The presence of an electric machine (EM) allows for

reduction in the size of internal combustion engines (ICEs). During deceleration,

energy normally lost in the form of heat from brakes can be recuperated by operating

the EM (EM) in generation mode. The ICE can be shut off during times of coasting

to avoid overrun and idling losses. The operating point of the ICE can be maintained

in high efficiency regions during part-load conditions by further loading the engine

with the EM operated in generation mode. During low-load conditions the ICE can

be shut off and the vehicle can be operated in a pure electric mode.

The key to achieving the best possible efficiency is to set the most optimal power split

ratio between the ICE and the EM to meet the driver demand. The algorithms used

to determine this ratio are called energy management strategies [1]. These strategies

can be heuristic or optimal in nature.

Heuristic approaches are rule-based approaches that are very sensitive to calibration

parameters [2, 3, 4]. The calibration used to reduce fuel consumption for standard

drive cycles need not always work for real-time driving conditions. Hence there is

1



always room to improve the fuel efficiency further.

Optimal energy management strategies are based on theories of optimal control and

are derived for a model that represents the vehicle. These strategies minimize a local

cost function at every operating condition to find an input control signal for the plant.

Such a cost function is typically an equivalent fuel consumption that represents the

energy consumed by using fuel and electric power. These approaches are introduced

by the authors in [5, 6, 7] and improved in [8, 9]. These strategies need a model of the

powertrain and are hence scalable, but require a lot of computational power since an

optimization of the cost function needs to be carried out in real-time. Pontryagin’s

minimum principle can be used to derive strategies that minimize a local cost function

with lower computational power [10, 11].

Any energy management strategy can be truly fuel optimal only if the driving condi-

tions and the entire drive cycle are accurately known beforehand [12]. The resulting

strategies derived from methods such as Dynamic Programing are not causal and can-

not be used in real-time applications. An acausal supervisory control that optimizes

the fuel consumption of a hybrid electric bus for repeatedly driven routes is presented

in [13].

1.1 Motivation

EcoCAR3 is a collegiate automotive engineering competition organized by the US

Department of Energy, that challenges 16 North American university teams to re-

design a Chevrolet Camaro as a hybrid electric vehicle to reduce its environmental

impact, while maintaining the performance of the car. The students are given the

stock Camaro by GM. They need to retrofit the vehicle with hybrid components and

develop a control strategy to meet performance and emission criteria. This thesis is a

2



result of the development of a control strategy for the parallel hybrid vehicle designed

by the team at Georgia Institute of Technology.

The control strategy presented in this thesis only considers the optimization of the

power delivered by the ICE and EM for a given driver demand. The gear shift strategy

described in Appendix A is used for all the energy managament strategies presented.

The control strategies presented were only evaluated in a simulation environment and

have not been implemented in real-time.

1.2 Structure of the Thesis

In Chapter 2, a representation of the hybrid vehicle is modeled in Simulink. To sim-

ulate the vehicle in real-world driving conditions, real-world routes are selected and

the corresponding road gradient profiles are extracted in Chapter 3. To understand

the operation and the various operating modes of the vehicle, a simple supervisory

controller based on heuristics is developed in Chapter 4. An optimal control strategy

developed using Pontryagin’s minimum principle is studied in Chapter 5. This strat-

egy is further extended in Chapter 6 to take into account future driving conditions

such as road elevation profiles and expected average traveling speed obtained from

a navigation device. The main findings of the thesis are summarized in Chapter 7.

The optimal and predictive control strategies presented in this thesis are based on

[14, 15, 16].
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CHAPTER II

VEHICLE MODEL FOR A PARALLEL HEV

The vehicle modeled in this thesis is a 2016 Chevrolet Camaro that was converted to a

P3 parallel hybrid electric vehicle (HEV) by the EcoCAR3 team at Georgia Institute

of Technology. If the EM is coupled to the drivetrain between the gearbox and the

differential, it is called a P3 hybrid. In a parallel hybrid vehicle, the ICE and the EM

both provide torque to the wheels. The stock 3.6 liter Camaro engine was replaced by

a 2 liter engine. The ICE is coupled to the Chevrolet 8-speed automatic transmission

(8L45) through a torque converter. The transmission is in turn coupled by means

of a prop shaft to a differential that drives the rear wheels. The EM (Parker-GVM

210-150P) is coupled to the prop shaft through a Borg Warner transfer case.

The ICE can be decoupled from the wheels by remotely shifting the transmission to

neutral through a command from the supervisory controller. This allows the vehicle

to be operated in a pure electric mode where the wheels are powered by just the EM

without dragging the ICE and the transmission. The vehicle architecture is illustrated

in Figure 1.

The vehicle is modeled in Simulink [17]. Effects caused by changes in temperatures

of the battery, the EM, and the ICE are neglected throughout this work. The com-

ponents shown in Figure 1 are discussed in the following sections.
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Figure 1: GT EcoCAR3 Vehicle Architecture

2.1 Chassis Model

The vehicle body, tires, brakes and differential are modeled using configurable blocks

from the Simulink Driveline library.

The vehicle body block models a two-axle vehicle body in longitudinal motion. The

block accounts for body mass, aerodynamic drag, road incline, and weight distribution

between axles due to acceleration and road profile. The block has physical ports for

horizontal motion of the vehicle, and also for front and rear normal wheel forces. The

model also takes headwind speed and road inclination angle as physical inputs.

The tire block models the longitudinal behavior of a highway tire characterized by the

tire Magic Formula. Connection A is the mechanical rotational conserving port for

the wheel axle. Connection H is the mechanical translational conserving port for the

wheel hub through which the thrust developed by the tire is applied to the vehicle.

Connection N is a physical signal input port that applies the normal force acting on

the tire. The force is considered positive if it acts downwards. The parameters used

to calibrate the tires are given in Table 1.
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Figure 2: Model for Tires and Brakes

Table 1: Tire Parameters

Parameter Value Unit
Tire Radius 0.341 m
Tire Pressure 35 psi
Tire Alpha -0.473601 -
Tire Beta 1.01360 -
Tire A Coefficient 0.0684 -
Tire B Coefficient 1.65 ×10−4 -
Tire C Coefficient 4.12 ×10−7 -

The ’Double-Shoe Brake’ block is used to model the brakes on the wheels. This block

models a brake arranged as two pivoted rigid shoes symmetrically installed inside or

outside a drum and operated by one actuator. The actuator force causes the shoes

to exert a friction torque on a shaft connected to the drum. The block has physical

ports representing the conserving rotational terminal associated with the drum shaft

and force input to the actuator. Positive force creates friction torque that resists

shaft rotation. The Simulink implementation of the tires and their interface with the

brakes is shown in Figure 2.

The differential is modeled as a planetary bevel gear train equipped with an additional

bevel gear transmission between the driveshaft and the carrier. The pinion gear of
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this transmission is attached to the driveshaft while the large bevel crown gear is

affixed to the carrier.

The front and rear wheels are connected to the vehicle body block as shown in Fig-

ure 3. The rear wheels are connected to the output of the differential with inertia

blocks that model the driveshaft inertias.

Figure 3: Chassis Model

2.2 Transmission and Torque Converter

The 8-speed transmission is modeled as shown in Figure 4. Simple gears are used

to model the different gear ratios of the transmission. These gears are engaged or

disengaged between the input and output shafts using 4 double-sided synchronizers.

Each synchronizer is modeled as two back-to-back dog clutches, two back-to-back

cone clutches, and a detent. As the shift linkage translates in the negative direction,

the clutches engage the ring with hub A. This engages the odd gear. When the

linkage translates in the positive direction, the clutches engage the ring with hub B.

This engages the even gear. When the magnitude of the shift linkage translation is

less than the cone clutch ring-hub gap, the synchronizer is in neutral and does not

transmit torque.
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Table 2: Gearbox Ratios

Parameter Value
Gear 1 4.62
Gear 2 3.04
Gear 3 2.07
Gear 4 1.66
Gear 5 1.26
Gear 6 1.00
Gear 7 0.85
Gear 8 0.66
Final Drive Ratio 3.27

Table 3: Gearbox Inertias

Parameter Value Unit
Engine Clutch Inertia 0.08 kgm2

Transmission Clutch Inertia 0.01 kgm2

Input Shaft Inertia 0.028 kgm2

Output Shaft Inertia 0.01 kgm2

The synchronizer linkages are usually powered by hydraulics, but here they are rep-

resented by a simplified model as shown in Figure 4. The shift linkages are operated

based on gear selection control input received from the transmission control mod-

ule (TCM). A description of the strategy used in the TCM to determine transmission

gear position is given in Appendix A.

The input and output shaft inertias are modeled using inertia blocks. The torque

converter is modeled as a three-part torque converter consisting of impeller, turbine,

and stator. The block was configured using the speed ratio, torque ratio and capacity

factor data provided by GM. The torque converter is connected between the trans-

mission and ICE. The gear ratios of the gearbox are given in Table 2. The inertias

considered while modeling the gearbox are given in Table 3.

8



Figure 4: Transmission Model

2.3 Internal Combustion Engine

The ICE block models the core engine along with the throttle body and the air intake

manifold.
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The air flow through the throttle body is modeled as the flow rate of an ideal gas

through a sharp-edged variable-area orifice as shown in Figure 5. The throttle delay

is modeled using a first-order filter whose input is the throttle position command

from the supervisory control. The orifice area is obtained using a look-up table that

uses the output of the first-order filter as the input. A constant volume pneumatic

chamber is used to model the air intake manifold. This is shown in Figure 6.

Figure 5: Throttle Body

Figure 6: Air Intake Manifold

The ICE volumetric efficiency is determined from a map that uses ICE speed and

manifold air pressure as inputs. The engine intake port flow is computed from the

volumetric effciency using the ideal gas equation. The maps are calibrated using

data provided by GM. The physical air flow through the engine is modeled using
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a controlled pneumatic flow rate source connected to the throttle body and intake

manifold. The block uses the calculated intake port flow value as the input. The core

engine model is shown in Figure 7.

Figure 7: Core Engine Model

The brake torque developed by the engine at the crankshaft is calculated as a function

of the engine speed and intake port flow using a map. The physical torque developed

by the engine is modeled using an ideal torque source that uses this value as an input.

The fuel flow rate is calculated using a map which is a function of engine speed and

crankshaft torque. The starter motor is modeled simply as an ideal torque source and

is connected to the engine crankshaft. This is shown in Figure 8. The starter motor

torque request and the engine throttle request used by the throttle body are set by

the engine control module as explained in Appendix B.

The exhaust system is modeled using a constant area pneumatic orifice. The engine

inertia is accounted for by an inertia block connected to the crankshaft output. The

brake torque and power at engine crankshaft are shown in Figure 9.

11



Figure 8: Overall Engine Model

Figure 9: Engine Torque and Power

2.4 Electric Machine

The EM used is a Parker GVM 210-150P three phase permanent magnet synchronous

machine (PMSM). In reality the EM is driven by a three phase inverter connected to
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a DC source, which is the battery pack on the vehicle. Modeling the three phase oper-

ation of the EM and the inverter would introduce complexity and lengthen simulation

time as the semiconductor switching occurs at time steps in the order of microsec-

onds. Modeling these dynamics does not greatly affect the energy consumption of

the vehicle. Hence, without loss of generality, the currents, torque and power drawn

by the EM are calculated by simple mathematical relations. The inverter efficiency

is approximated to 0.9.

The peak torque the EM can generate is determined from a look-up table that uses

the EM speed as the input. The table is calibrated using data from the component

data sheet. This torque is multiplied with a normalized torque command request

determined by the supervisory controller to calculate the operating torque. The

physical torque generated by the EM is modeled by an ideal torque source that uses

the calculated operating torque as the input. The inertia of the EM is modeled using

an inertia element connected to the output of the torque source. This is shown in

Figure 10. The EM torque vs speed curve is shown in Figure 11. The operating

efficiency of the EM is calculated, as shown in Figure 12, by two maps depending on

whether the EM is in motoring or generating mode. Both maps use EM torque and

speed as input and are calibrated from the machine data sheet.

The mechanical power developed by the EM is calculated as the product of the EM

torque and speed. This value is then divided or multiplied by the EM efficiency

depending on the EM operating mode, to calculate the electric power developed by

the EM. The result is multiplied with the inverter efficiency to determine electrical

power drawn or delivered to the battery pack. This power is divided by the battery

voltage to determine the current drawn by the EM. These calculations are shown in

Figure 13.

The effects of temperature and heat exchange are neglected throughout this thesis.
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Figure 10: Calculation of EM Torque

Figure 11: EM Torque vs Speed

Figure 12: Calculation of EM Efficiency
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Figure 13: Calculation of EM Power and Current

2.5 High Voltage Battery Pack

The battery pack used in the vehicle was built by connecting 7 individual modules

from A123. Each module has a 15s2p configuration meaning that it has 2 strings

of cells connected in parallel and each string has 15 cells connected in series. The

open circuit voltage of the pack is approximately 324V at 300K and 50% state of

charge (SOC). The pack capacity is approximately 19.6 Ah1.

The charge available in the battery is calculated by integrating the current drawn by

the EM over time and adding this to the initial battery charge. The battery SOC

is the ratio between the available charge and the pack capacity. This calculation is

shown in Figure 14.

The open circuit voltage (OCV) for a single cell is determined from a map that uses

battery temperature and battery SOC as inputs. The map is calibrated with data

from the component datasheet provided by A123. The cell OCV is multiplied by the

number of cells in series to calculate the pack OCV. This is shown in Figure 15.

The internal resistance of the battery is determined from two maps depending on

1The distance traveled in the considered drive cycles is a maximum of 16 km. In this thesis the
pack capacity is assumed to be 8 Ah so that changes in SOC over a given drive cycle are appreciable
in the charge sustain mode.
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whether the battery is charging or discharging. Both maps use battery SOC and

battery temperature as inputs and are calibrated with data from the component

datasheet from A123. This is shown in Figure 16.

The product of current per parallel path and the battery internal resistance gives

the battery internal voltage drop. Depending on whether the battery is charging

or discharging, the voltage drop is added or subtracted from the battery OCV to

calculate the battery terminal voltage. This is shown in Figure 17.

Figure 14: Calculation of Battery SOC

Figure 15: Calculation of Battery OCV

Figure 16: Calculation of Battery Internal Resistance
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Figure 17: Calculation of Battery Voltage

To derive the SOC dynamics, a Thevenin equivalent circuit is used to model the

battery, neglecting electrochemical dynamics. This is shown in Figure 18. VOC is the

Figure 18: Thevenin’s Equivalent Circuit for Battery Model

open circuit voltage of the battery expressed as a function of SOC ξ. The internal

resistance Ri is expressed as a function of battery SOC and the direction of the battery

current IBT . The terminal voltage of the battery is thus given as:

VBT (ξ, IBT ) = VOC(ξ)−Ri(ξ, sign(IBT ))× IBT , (1)

where a discharging current is considered positive. Hence the battery power PBT can
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be expressed as:

PBT = VBT IBT = VOCIBT −RiI
2
BT (2)

This equation is solved for battery current expressed as a function of power that is

drawn from or supplied to the battery yielding:

IBT =
VOC −

√
V 2
OC − 4Ri · PBT
2Ri

(3)

The battery SOC is the only state variable. The state dynamics are given by:

dξ

dt
= −IBT

Q0
, (4)

where Q0 is the nominal battery capacity. The initial SOC is set to ξ0. The allowable

range of the SOC is set to:

ξ ∈ [ξmin, ξmax] (5)

Throughout this thesis, ξmin is set to 0.3 and ξmax is set to 0.8 to keep the battery

SOC in operating regions that ensure battery longevity.

2.6 Overall Vehicle Plant Model Overview

The vehicle subsystems described in the previous sections are connected to represent

the full vehicle model. The crankshaft output from the ICE is connected to the

torque converter input in the transmission and the transmission output is connected

to the differential input. The EM shaft is interfaced to the connection between the

transmission and differential with a simple gear that represents the transfer case. The

connected vehicle plant model is shown in Figure 19.

The inputs to the vehicle plant are the ICE throttle request, EM torque request and

the brake force command. These signals are generated by the supervisory controller.

The plant model generates outputs such as the ICE speed, ICE torque, battery SOC,

vehicle speed and also speed, torque and efficiency of the EM. These signals, along
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Figure 19: Overall Vehicle Plant Model

Table 4: Vehicle Parameters

Parameter Value unit
Vehicle Mass 1809 kg
Frontal Area 0.22 m2

Prop Shaft Inertia 0.0015 kgm2

Driveshaft Inertia 0.0012 kgm2

Transfer Case Ratio 1.686 -
Motor Shaft Inertia 0.03086 kgm2

Vehicle Drag Coefficient 0.344 -

with the driver torque request are used by the supervisory control to determine the

ICE torque, EM torque and brake force commands.

The parameters used to calibrate the vehicle model are given in Table 4.

2.7 Drive Cycle and Driver Torque Request

Different countries and organizations use standardized driving cycles, which are ba-

sically vehicle speed as a function of time, to assess vehicles on performance metrics

such as fuel consumption and tailpipe emissions. For actual vehicles these tests are

carried out on chassis dynamometers where the test driver tries to follow the drive

cycle speed within an allowed error limit of 2 miles per hour.

In this thesis, the US06 urban, US06 highway, highway fuel economy driving schedule
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(HWFET) and the US505 drive cycles are used to assess the performance of the

vehicle that is modeled. The plots of these drive cycles are shown in Appendix C.

The ’Drive Cycle Select’ block is configured to allow the user to choose the drive cycle

for the simulation. During run time, the block provides the target vehicle speed.

In reality the driver would use the accelerator pedal or the brake pedal to follow the

drive cycle. This behavior is modeled in Simulink using a PID controller. The error

input to the PID controller is the difference between target vehicle speed and the

actual vehicle speed. The output of the PID controller is viewed as a normalized

driver torque request. The value is limited between 1 and -6 where a positive value

represents a request for accelerating torque and a negative value represents a request

for braking. The braking limit is set at -6 to account for the fact that the maximum

braking torque of a vehicle is much more than its maximum acceleration torque.

The modeling of drive cycles and driver torque request is shown in Figure 20.

Figure 20: Drive Cycle and Driver Torque Request
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CHAPTER III

ROUTE SELECTION AND DERIVATION OF ROAD

GRADIENT

The vehicle plant model requires the road gradient as an input. To analyze the

performance of the supervisory control algorithms presented in this thesis, real-world

routes were chosen to consider changes in road gradient.

3.1 Route Selection

The following four routes were picked:

• Route 1: Zamenhofstrasse 42 to Wernerstrasse 51, Stuttgart Germany.

• Route 2: University of Washington to Space Needle in Seattle, USA.

• Route 3: Gatlinburg Hills, USA.

• Route 4: Route in Sausalito, California, USA.

The screenshots of the routes from Google Maps are shown in Figures 21 to 24.
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Figure 21: Route from Zamenhofstrasse to Wernerstrasse

Figure 22: Route from UW to Space Needle in Seattle
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Figure 23: Route in Gatlinburg

Figure 24: Route in Sausalito California
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3.2 Extraction of Road Gradient

Once the routes are chosen, the road gradient information needs to be extracted. The

steps taken to do this are detailed below:

• The route chosen on Google Maps is saved as a KML file. KML (Keyhole

Markup Language) is an XML based file format used to display geographic

data in an Earth browser such as Google Earth and Google Maps. The KML

file provides GPS coordinates in latitude and longitude for the entire route.

• A Matlab script file is written using a string search approach to extract num-

bers enclosed between the tags ’<cooridantes>’ and ’</cooridantes>’. These

numbers are the latitude and longitude for a point on the route. The latitude

and longitude values for all the points that represent the route are stored as

arrays.

• Google has developed a service called Google Maps API that provides elevation

data for all locations on the surface of the earth, including depth locations on

the ocean floor (which return negative values) [18]. An API key needs to be

obtained to use the service. The free version of the service allows 2,500 free

requests per day, 512 locations per request and 10 requests per second. The

elevation at a particular point, for example the location of the GT EcoCAR3

workshop with coordinates (33.787489, -84.406474), can be obtained by typing

the string

https://maps.googleapis.com/maps/api/elevation/xml?locations=

33.787489,-84.4\\06474\&key=YOUR\_API\_KEY

in the address bar of a web browser. The string ’YOUR_API_KEY’ is replaced
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with a valid API key. The result returned by the browser is shown in Figure 25.

The elevation at this location is 276.7092590 meters above sea level. To obtain

Figure 25: Result for Elevation Request to Google Maps Elevation API

the elevation at each point in the route chosen, a Matlab script was written

to ping the API with the coordinates extracted. The elevation values returned

were stored as an array.

• The elevation data is needed as a function of distance traveled from the starting

point. Hence, the latitude and longitude coordinates need to be converted

to distances. This is done by using the Haversine formula [19] which gives

great-circle distances between two points on a sphere from their longitudes and

latitudes. For any two points on a sphere, the haversine of the central angle

between the points is given by:

hav

(
d

r

)
= hav(φ2 − φ1) + cos(φ1)cos(φ2)hav(λ2 − λ1) (6)

where the haversine function hav is given by:

hav(θ) = sin2
(
θ

2

)
= 1− cos(θ)

2 (7)

In the above equations, d is the distance between the two points, r is the radius

of the sphere. φ1 and φ2 are the latitudes in radians of points 1 and 2 respec-

tively. λ1 and λ2 are the longitudes in radians of points 1 and 2 respectively.
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The solution to d is obtained using the inverse haversine or arcsine function:

d = r · hav−1(h) = 2r · arcsin(
√
h) (8)

where h is hav(d/r). More explicitly,

d = 2r · arcsin
(√

hav(φ2 − φ1) + cos(φ1)cos(φ2)hav(λ2 − λ1)
)

(9)

or

d = 2r · arcsin

√√√√sin2

(
φ2 − φ1

2

)
+ cos(φ1)cos(φ2)sin2

(
λ2 − λ1

2

) (10)

The elevation profiles obtained for the four selected routes are shown in Figures

26 to 29.

Figure 26: Elevation for Stuttgart Route

Figure 27: Elevation for Seattle Route
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Figure 28: Elevation for Gatlinburg Route

Figure 29: Elevation for Sausalito Route

• Finite differences method is used to calculate the road gradient for each discrete

segment using the elevation and distance data:

γi = tan−1

 ei − ei−1

di − di−1

 (11)

where γi is the road gradient angle, ei is the road elevation at point i and di is

the distance at point i from the start of the route. The road gradient angle is

held constant for that segment.
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CHAPTER IV

BASIC SUPERVISORY CONTROLLER

The supervisory control uses inputs from the vehicle plant such as ICE speed, EM

speed, vehicle speed, battery SOC and gear position, to calculate the ICE torque,

EM torque and mechanical braking torque to meet the driver torque request. Many

methods exist to perform this calculation. In this section a basic hybrid control

strategy based on heuristics is presented.

Plug-in hybrid electric vehicles (PHEVs) typically have two modes of operation based

on the battery SOC, namely, charge depletion (CD) and charge sustain (CS) modes.

CD mode refers to a mode of vehicle operation that is dependent primarily on energy

from the battery pack. The vehicle operates in CD mode at high SOC, and switches

to CS mode after the battery has reached a preset lower SOC threshold, exhausting

the vehicle’s all-electric range. The strategy described in this section uses a blended

mode where the ICE supplements the EM during medium and heavy loads.

In CS mode, the vehicle operation is dependent primarily on the ICE and the EM

supplements the ICE during heavy loads. In part-load or low-load conditions, when

the battery SOC is below the CS set point, the EM is operated in the generating

region to recharge the battery. Hence the ICE provides the generating torque in

addition to the driver torque request.
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4.1 Axle Torque Request

The supervisory control receives a normalized driver torque request TDnrm where a

value of 1 represents maximum acceleration and value of -6 represents maximum

braking. This is converted to actual axle torque using the maximum ICE and EM

torque capabilities.

The maximum ICE torque TICEmax and maximum EM torque TEMmax are determined

using a look-up table each, where the inputs are ICE speed and EM speed respectively.

This is shown in Figure 30.

Figure 30: ICE and EM Maximum Torque

The EM torque is further limited based on battery SOC. The maximum EM torque

is multiplied by a factor that is linearly faded out from 1 to 0 between 35% and 30%

battery SOC. The result is the EM maximum torque limit TEMMaxLim
. This is done

to avoid over-depleting the battery.

The maximum generating torque for the EM is the negative of the maximum EM

torque as determined from the look-up table. This value is multiplied by a factor

that is linearly faded out from 1 to 0 between 75% and 80% battery SOC. The result

is the EM minimum torque limit TEMMinLim
. This is done to avoid over-charging the

battery.

These calculations are shown in Figure 31. A plot of the fade-off factors is shown in

Figure 32.
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Figure 31: EM Torque Limits

Figure 32: EM Fade Off Factors

The maximum axle torque, TAxlMax
, is given by:

TAxlMax
= (ζTICEMax

+ µTEMMaxLim
)σ (12)

In the above equation, ζ is the gear ratio of the current gear, µ is the transfer case

ratio and σ is the differential ratio.

The axle torque requested, TAxlReq , is given by:

TAxlReq = TAxlMax
× TDnrm (13)
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4.2 Plant Input

The input u that the supervisory controller provides to the plant is the portion of the

axle torque request that the EM provides:

u =
TEMAxlReq

TAxlReq
(14)

This means that the EM component of the axle torque request, TEMAxlReq
, is given

by:

TEMAxlReq
= u× TAxlReq (15)

The ICE component of the axle torque request TICEAxlReq is given by:

TICEAxlReq =


(1− u)TAxlReq if TAxlReq > 0

0 otherwise
(16)

The brake torque component of the axle torque request, TBrkAxlReq , is given by:

TBrkAxlReq =


(1− u)TAxlReq if TAxlReq < 0

0 otherwise
(17)

4.3 Charge Depletion Mode

The individual contributions of the maximum torque available at the axle at a given

wheel speed are calculated using the gear ratio of each gear in the transmission, the

transfer case gear ratio and the differential gear ratio along with the torque vs speed

characteristics of the ICE and the EM.

The ICE component of the maximum axle torque is given by:

TICEAxlMax
= ζσTICEMax

(18)
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The EM component of the maximum axle torque is given by:

TEMAxlMax
= µσTEMMaxLim

(19)

A plot of ICE and EM components of the maximum axle torque is shown in Figure

33.

Figure 33: ICE and EM Components of Max Axle Torque

As mentioned earlier, in the CD mode, the battery is the primary source of power and

additional power is provided by the ICE during medium and heavy loads. When the

driver requests an accelerating torque, i.e., when TAxlReq > 0, two cases are possible:

• Case 1: When TAxlReq < TEMAxlMax
, the torque request is fulfilled by just the

EM and the ICE is turned off. This mode is hence called Electric Mode. In

this mode, u is set to 1. The ICE torque request, TICEReq , is set to 0 and the

EM torque request is set to :

TEMReq
=
TAxlReq
µσ

(20)
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• Case 2: When TAxlReq > TEMAxlMax
, the ICE needs to provide additional torque

to satisfy the driver torque request. This mode is hence called Dual mode. The

EM torque request, TEMReq
, is set to TEMMaxLim

and u is given by:

u = µσTEMMaxLim

TAxlReq
(21)

The ICE torque request TICEReq is set to :

TICEReq =
TAxlReq − µσTEMMaxLim

ζσ
(22)

When the driver requests a braking torque, i.e., when TAxlReq < 0, again two cases

are possible:

• Case 1: When TAxlReq > TEMAxlMin
, the torque request is fulfilled by regenera-

tive braking and hydraulic brakes are not used. This mode is called Regenera-

tion. Hence u is set to 1, the axle brake torque request TBrakeReq is set to 0 and

EM torque request is given by:

TEMReq
=
TAxlReq
µσ

(23)

• Case 2: When TAxlReq < TEMAxlMin
, the hydraulic brakes are also used. This

mode is just called Braking. Hence, the EM torque request, TEMReq
, is set to

TEMMinLim
and u is given by:

u = µσTEMMinLim

TAxlReq
(24)

The brake torque request is given by:

TBrakeReq = −(TAxlReq − µσTEMMinLim
) (25)

In a convetional vehicle, braking is achieved only through the hydraulic brake

system which is actuated when the driver presses the brake pedal. Parallel HEVs
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also have the capabiltiy for regenerative braking. The progressive regenerative

braking described above can be implemented independent of the hydralic brakes

by the position of the accelerator pedal instead of the brake pedal. Such an

algorithm is called one-pedal-driving algorithm and is described in [26].

The ICE and EM expect normalized torque requests, i.e., a value between 0 and 1

for the ICE and a value between -1 and 1 for the EM. The normalized ICE torque

request is given by:

TICEReqNrm =


TAxlReq−µσTEMMaxLim

ζσTICEMaxLim

if TAxlReq > TEMAxlMax

0 otherwise
(26)

The normalized EM torque request is given by:

TEMReqNrm
=



TAxlReq
µσTEMMaxLim

if TEMAxlMax
> TAxlReq > TEMAxlMin

1 if TAxlReq > TEMAxlMax

−1 if TAxlReq < TEMAxlMin

(27)

In this section, the conditions mentioned for the different cases to be active are purely

analytical and do not include hysteresis to avoid any unrealistic frequent switching

between modes. This is done in a later section where the actual state machine is

developed.

4.4 Charge Sustain Mode

In the CS mode, the ICE is the primary source of power and additional power is

provided by the EM during medium and heavy loads. When the driver requests an

accelerating torque, i.e. when TAxlReq > 0, three cases are possible:

• Case 1: Consider a case where the battery SOC is less than the reference SOC

that the controller tries to maintain and the ICE operates in low-load condition

(in this case, TAxlReq < 0.75× TICEAxlMax
). The operating efficiency of the ICE
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is poor in low-load conditions. The EM is operated in the generating region to

move the ICE close to full-load regions where the ICE efficiency is better. This

mode is hence called Generation. Here u is given by:

u = 1− 0.9× TICEAxlMax

TAxlReq
(28)

The EM torque request, TEMReq
, is given by:

TEMReq
=
TAxlReq − 0.9× ζσTICEAxlMax

µσ
(29)

TICEReq is set to :

TICEReq =
TAxlReq − µσTEMReq

ζσ
(30)

• Case 2: When TAxlReq > TICEAxlMax
, the EM needs to provide additional torque

to satisfy the driver torque request. So this mode is called Boost. Hence TICEReq
is set to TICEMax

and u is given by:

u = 1− ζσTICEMax

TAxlReq
(31)

Consequently, TEMReq
is set to:

TEMReq
=
TAxlReq − ζσTICEMax

µσ
(32)

• Case 3: When 0.9×TICEAxlMax
> TAxlReq > 0.65×TICEAxlMax

, the driver torque

demand is satisfied just by the ICE. This mode is called ICE. Here u and TEMReq

are set to 0. TICEReq is set to:

TICEReq =
TAxlReq
ζσ

(33)

Braking torque requests from the driver are handled the same way as in CD mode.
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In summary, the normalized ICE torque request is given by:

TICEReqNrm =



TAxlReq
ζσTICEMax

if TAxlReq < TICEAxlMax

0.9 if TAxlReq < 0.65× TICEAxlMax
and ξ < ξref

1 if TAxlReq > TICEAxlMax

0 otherwise

(34)

The normalized EM torque request is given by:

TEMReqNrm
=



TAxlReq−ζσTICEMax

µσTEMMaxLim

if TAxlReq > TICEAxlMax

TAxlReq−0.9×ζσTICEAxlMax

µσTEMMaxLim

if TAxlReq < 0.65× TICEAxlMax
and ξ < ξref

TAxlReq
µσTEMMaxLim

if 0 > TAxlReq > TEMAxlMin

−1 if TAxlReq < TEMAxlMin

0 otherwise
(35)

In this section too, the conditions mentioned for the different cases to be active are

purely analytical and do not include any hysteresis to avoid any unrealistic frequent

switching between modes. This is done in the next section where the actual state

machine is developed.

4.5 Development of State Machine

A Stateflow chart is used to implement the CD and CS modes. The chart uses the

following inputs:

• Driver Torque Request

• Battery SOC

• Minimum EM Axle Torque

• Maximum EM Axle Torque
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• Maximum ICE Axle Torque

• Vehicle Speed

• Engine Speed

• SOC threshold for CD mode

• SOC threshold for CS mode

• Reference SOC to maintain in CS mode

The SOC threshold for CD mode is set to 0.6 and that for the CS mode is set to 0.55.

The reference SOC that the controller tries to maintain in the CS mode is set to 0.55.

When the supervisory controller is in CD mode, i.e. when the SOC > 0.6, the con-

troller transitions to CS mode only when the SOC falls down to 0.55. Once the

controller is in CS mode, it can go back to CD mode only when the SOC rises again

to 0.6. This is an incorporation of hysteresis to prevent the controller from constantly

switching between CD and CS modes when a single threshold value is used to switch

between the modes.

Apart from all the modes listed in the previous two sections, a ground state called

Coasting is defined where the ICE and Brake torques are set to 0. The EM meets

small values of driver torque requests (50Nm). Hence the supervisory controller has

eight main states, namely:

• Coasting

• Electric

• Dual
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• ICE

• Boost

• Generation

• Regeneration

• Braking

When operating in Coasting, Electric, Regeneration and Braking modes, the gearbox

is switched to neutral to prevent dragging the inertia of the gearbox and the ICE.

Also, the ICE is switched off in these modes to conserve fuel.

When transitioning from these modes to the other modes that require ICE operation,

the ICE needs to be started and the gearbox needs to be engaged again. This takes

a finite amount of time and hence transition states are introduced to initiate these

actions and to ensure that they are complete before moving to the main states. Only

the axle torque component requests of ICE, EM and brake torques are calculated in

the chart. The conversion to individual normalized torque requests is done outside the

chart. Each state also generates the gearbox and ICE enable flag values as outputs,

where ’1’ corresponds to an enable request and a value ’0’ corresponds to a disable

request.

The main states and the transition states used to implement CD strategy is shown

in Figure 34.

When the vehicle is at rest on a level road, the controller is in Coasting mode. When

the vehicle operates in CD mode and the driver torque request is greater than 0, the

controller transitions into the Electric mode.

When the driver torque request is greater than the maximum EM axle torque, the
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Figure 34: Coasting and CD states

controller needs to be in the Dual mode so that the ICE can supplement the EM. As

the engine needs to be started and the gearbox needs to be enabled, the controller

enters a transition mode called Dual Transition when the driver torque request ex-

ceeds 85% of the EM maximum axle torque. The values of the outputs calculated in

this state are exactly the same as that of the Electric mode. If the condition that

the driver torque request exceeds 85% of the EM maximum axle torque persists for

more than 0.5 seconds, or if the driver torque request exceeds the EM maximum

axle torque, the controller enters the Pre-dual Transition state. If the driver torque

request falls below 75% of the EM maximum axle torque, the controller returns to

the Electric mode.

The outputs of the Pre-dual Transition state are exactly the same as the Electric

mode except that the ICE enable flag is set to 1. This value is used by the engine

control unit (ECM) to start the ICE using the starter motor. When the engine speed

exceeds 850 rpm, i.e., when the engine is idling, the controller moves to the Dual

mode. The gearbox enable flag is set to 1. The controller remains in the Dual mode

until the driver torque request falls below 75% of the EM maximum axle torque.
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Sometimes when the controller is still in the Dual state even when the driver torque

request is less than the EM maximum axle torque, the ICE will only be idling and

the driver torque request is met only by the EM.

When the driver torque request falls below 75% of the EM maximum axle torque, the

controller moves from the Dual mode to the Electric Transition state. The outputs of

the Electric Transition state are exactly the same as the Dual mode. If the condition

that the driver torque request falls below 75% of the EM maximum axle torque

persists for more than a second, the controller moves to the Electric mode where the

ICE and the gearbox are disabled. Else if the driver torque request exceeds 85% of

the EM maximum axle torque, the control moves back to the Dual mode. This is

done to reduce the number of engine start and stop events.

When in the Electric, Electric Transition or Dual modes, if the vehicle operation

switches to CS mode, the controller moves to the Coasting mode from where the CS

states can be reached.

The main states and the transition states used to implement CS strategy are shown

in Figure 35.

When the vehicle is at rest on a level road, the controller is in Coasting mode. When

the vehicle operates in CS mode and the driver torque request is greater than 50 Nm,

the ICE needs to be turned on and the controller moves to the ICE Transition mode.

The driver torque request in this mode is met by the EM as the ICE is not yet turned

on. If the condition that the driver torque request is greater than 50 Nm persists

for 0.5 seconds, or if the driver torque request exceeds 50% of the EM maximum

axle torque, the controller enters the Pre-ICE Transition state. If the drive torque

request falls below 0, the controller moves back to the Coasting mode. In the Pre-ICE

Transition state, outputs are exactly the same as ICE Transition state except that
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Figure 35: Coasting and CS States

the engine enable flag is set to 1. When the engine speed exceeds 850 RPM, i.e., when

the engine is idling, the controller enters the ICE mode. In this mode, the gearbox is

enabled. The driver torque request is met by the ICE and the EM torque is set to 0.

When the controller is in the ICE mode and the driver torque request exceeds the

ICE maximum axle torque, the controller moves to the Boost mode. When Boost

mode is active, the controller moves back to the ICE mode only when the driver

torque request falls below 80% of the ICE maximum axle torque. Also, when Boost

mode is active, the EM assists the ICE only when the driver torque request exceeds

the ICE maximum axle torque

When the controller is operating in ICE mode, it moves to the Generation mode
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when the vehicle speed is greater than 20 MPH, the SOC is less than the reference

SOC and the driver torque request falls below 75% of the ICE maximum axle torque.

The goal here is to move the ICE close to a full-load condition so that it operates in

a more efficient region. This is done by operating the EM in the generating region.

The controller moves from the Generation mode to ICE mode if one of the following

conditions is satisfied:

• Vehicle speed is less than 15 MPH

• The driver torque request exceeds 90% of the ICE maximum axle torque

• The SOC exceeds the reference SOC

• The driver torque request falls below 0

When the controller is in Generation mode, the EM torque is set such that the ICE

load is 90%. If the driver torque request falls below 0, the controller moves to the

Coasting Transition state. The outputs of the Coasting Transition state are set such

that an accelerating driver torque request is met by the ICE and any decelerating

torque request is met by the EM. If the condition that the driver torque request falls

below 0 persists for 1 sec or if the driver torque request falls below 50% of the EM

axle minimum torque, then the control moves to Coasting mode. Else if the driver

torque demand exceeds 0, the controller moves back to the ICE mode.

The states that control the braking of the vehicle are shown in Figure 36.

Figure 36: Coasting and Braking states
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Table 5: Basic Powertrain Controller Powertrain States

PT_st State
-2 Braking
-1 Regeneration
0 Coasting
1 Electric
2 Dual
3 ICE
4 Generation
5 Boost

When the controller is in Coasting mode and the driver torque request falls below

-50 Nm, the controller moves to Regeneration mode where the decelerating driver

torque request is met completely by the EM. If the driver torque request becomes

positive, the controller moves back to Coasting mode. When in Regeneration mode,

if the driver torque request falls below the EM minimum axle torque, the controller

moves to Braking mode. If the driver torque request exceeds the EM minimum axle

torque, the controller moves back to the Regeneration mode. In the Braking mode,

the EM provides maximum generating torque and the brakes are used to meet the

driver torque demand.

The operation of the TCM and the gear shift strategy are as described in Appendix

A. The different values of PT_st correspond to the powertrain states as given in

Table 5. The transition states take the state numbers of the main states they emerge

from.

4.6 Charge Depletion Mode Simulation

The graphs for the simulation where the vehicle is driven in CD mode for the US06

driving cycle are shown below. The vehicle speed is shown in Figure 37. The ICE

and EM speeds are shown in Figure 38. ICE and EM torques are shown in Figure
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39. The powertrain state, battery SOC and gear number are shown in Figure 40.

Figure 37: CD Mode Desired Speed and Vehicle Speed

Figure 38: CD Mode Engine and Motor Speed

4.7 Charge Sustain Mode Simulation

The graphs for the simulation where the vehicle is driven in CS mode for the US06

driving cycle are shown below. The vehicle speed is shown in Figure 41. The ICE

and EM speeds are shown in Figure 42. ICE and EM torques are shown in Figure

43. The powertrain state, battery SOC and gear number are shown in Figure 44.
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Figure 39: CD Mode Engine and Motor Torque

Figure 40: CD Mode Powertrain State, Battery SOC and Gear Number

Figure 41: CS Mode Desired Speed and Vehicle Speed
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Figure 42: CS Mode Engine and Motor Speed

Figure 43: CS Mode Engine and Motor Torque

Figure 44: CS Mode Powertrain State, Battery SOC and Gear Number
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It can be seen that the vehicle moves from CS mode to CD mode at 213 seconds,

when the SOC reaches 0.6.
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CHAPTER V

EQUIVALENT CONSUMPTION MINIMIZATION

STRATEGY

Equivalent consumption minimization strategy is an optimal control strategy for a

hybrid electric vehicle developed using Pontryagin’s minimum principle. The goal is

to minimize the total fuel energy consumption, which is given by the product of the

lower heating value of the fuel Hl and the fuel mass flow ṁf integrated over the total

time of vehicle operation. Hence, the total fuel energy consumption is taken as the

cost function J(u(t)) and is expressed as:

J =
∫ tf

0
Hlṁf dt (36)

The only state variable considered is the battery SOC and the state dynamics are

given by:

ξ̇ = −IBT
Q0
≈ −Pb − βP 2

b (37)

where Pb is the battery power delivered to the electric motor and β = Ri/V
2
OC . Hence

a Hamiltonian can be developed using the cost function and considering the state

dynamics as the constraint. The costate associated with the battery dynamics is scalar

and is substituted by a dimensionless value called the equivalence factor to convert the

state dynamics into total electric power consumption. This substitution results in the

Hamiltonian being equal to the sum of total fuel power and a weighted electric power

as shown in [16]. Hence the Hamiltonian can be viewed as the equivalent vehicle power

consumption, thus lending the name equivalent consumption minimization strategy to

this method.
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The optimal EM power that minimizes the Hamitonian for a given driver power

demand is taken as the plant input. The ICE power is calculated as the difference

between the driver power demand and the optimal EM power. Implementation of the

control strategy in this form requires the real-time minimization of the Hamiltonian at

every time step. This is computationally expensive and renders the control strategy

inapplicable for application in real vehicles.

The author of [16] presents an explicit control law that is derived from the above

strategy. The control law is just a function of the vehicle parameters and the equiva-

lence factor. This does not require any real-time minimization or optimization. This

strategy is thus computationally inexpensive and implementable in real vehicles. In

this chapter, this control law is applied to the P3 parallel hybrid vehicle developed in

Chapter 2 and the vehicle performance is evaluated. The gear selection strategy as

described in Appendix A is retained for the ECMS simulations.

5.1 ECMS Overview

5.1.1 Equivalence Factor

The block diagram of the equivalent consumption minimization strategy (ECMS)

structure is shown in Figure 45. The control law presented in [16] also penalizes

and considers the deviation of the battery SOC ξ from a reference SOC ξref in the

Hamiltonian. The fuel energy required to return the final battery SOC at the end

of the drive cycle, to the reference SOC is viewed as the cost-to-go. The equivalence

factor s is calculated as:

s(ξ(t)) = s0 +
∫ t

0

ξref − ξ(τ)
Ti

dτ + α̃

Q0VOC(ξ(t)) · (ξref − ξ(t))
2q−1 (38)

where

α̃ = 2qαTh
(1 + 2q)∆ξ2q

nrm

(39)
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Figure 45: ECMS Structure

Here, α is a weighting parameter, ∆ξnrm normalizes the SOC deviation and q ∈ N

gives the order of the penalty. In the cost-to-go, Th is the time period considered to

return the SOC at the end of the drive cycle to the reference SOC. The equivalence

factor is initialized with the value s0. An integrator with integration time Ti is used

to account for the changes in conversion effciency over time.

5.1.2 Control Strategy

The author of [16] uses a simplified powertrain model as shown in Figure 46, to derive

an explicit control law from Pontryagin’s Minimum Principle. For this simplified

model, PICE is the ICE power, PEM is the EM power, Pf is the fuel power and Pd

is the drive power demand. Initially, the inputs are assumed to be unconstrained

and the component efficiencies are assumed to be constant. The Hamiltonian for this
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Figure 46: Simplified Vehicle Plant Model

model is discontinuous and each piece-wise continuous region represents a different

hybrid operating mode. The Hamiltonian for this model is given by:

H = Pf − λ · (Pb + βP 2
b ) (40a)

= Pd − PEM + P0

e
·B + s(PEM · η−sign(PEM ) + βP 2

EM · η−2sign(PEM )) (40b)

where e is the ICE internal efficiency, P0 is the ICE friction power, η is the EM

efficiency and B is a binary value that represents engine on/off state. The costate

λ in Equation 40a is replaced by −s in Equation 40b. The Hamiltonian is explicitly

minimized in each region by differentiating the piece-continuous function by the EM

power. This gives explicit expressions for the optimal EM power in each operating

region (Appendix D). Evaluation of the Hamiltonian at the points of discontinuity

gives the expressions for the boundaries of each operating mode (given in Appendix

D). The expressions for the optimal EM power and the boundaries for the operating

modes do not change when considering input constraints and dynamic component ef-

ficiencies. A reader interested in the complete derivation of the control law is directed

to Chapter 5 of [16].

The control strategy thus obtained has seven operating modes: Electric, ICE, Boost,

Generation, ICE Max, Regenerative Braking and Mechanical Braking. Similar to the

Basic Supervisory Controller, in the Electric mode, the vehicle is powered only by

the EM and the ICE is turned off. In the ICE mode, the vehicle is powered only by

the ICE. In Boost mode, the EM and the ICE both provide torque to the wheels. In
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Generation mode, the EM is operated in the generating region to recharge the battery

and the ICE supplies the driver power demand plus the EM power. In the ICE Max

mode, the ICE operates at maximum power and the EM is either in motoring mode

or generating mode depending on the value of equivalence factor.

The control law identifies two values of the equivalence factor: sBoost and sGen. The

equations used to determine these values are given in the Appendix D. The vehicle is

allowed to operate in Boost mode only when the equivalence factor is less than sBoost

and the vehicle is allowed to operate in Generation mode only if the equivalence factor

is greater than sGen. The control law also prescribes certain power threshold values

which are used along with sBoost and sGen to determine the boundaries of operating

modes.

• When s > sGen, the vehicle operates in Electric mode if the driver power demand

Pd is less than the threshold P re
lim.

• When s > sGen, the vehicle transitions from Electric mode to Generation mode

if Pd is greater than the threshold P re
lim.

• When s > sGen, the vehicle transitions from Generation mode to ICE Max

mode if Pd is greater than PICEMax
+ P re

EM .

• When s < sBoost, the vehicle operates in Electric mode if Pd is less than the

threshold calculated as the minimum of P bo
lim and PEMMax

.

• When s < sBoost, the vehicle transitions from Electric mode to Boost mode if

Pd is greater than the threshold calculated as the minimum of P bo
lim and PEMMax

.

• When s < sBoost, the vehicle transitions from Boost mode to ICE Max mode if

Pd is greater than PICEMax
+ P bo

EM .
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• When sGen < s < sBoost, the vehicle operates in Electric mode if Pd is less than

the threshold P th
lim.

• When sGen < s < sBoost, the vehicle transitions from Electric mode to ICE

mode if Pd is greater than the threshold P th
lim.

• When sGen < s < sBoost, the vehicle transitions from ICE mode to ICE Max

mode if Pd is greater than PICEMax
.

The equations used to calculate P re
lim, P bo

lim, P th
lim, P re

EM and P bo
EM are given in Appendix

D. The Regenerative Braking and Mechanical Braking modes are implemented as

done in the Basic Supervisory Controller. For this causal non-predictive ECMS, the

reference SOC is kept at a constant value of 0.55. This value is chosen as it is the mean

between minimum and maximum SOC values, which are 0.3 and 0.8 respectively.

As the control strategy is also a function of the vehicle speed, the power thresholds

are converted to torque thresholds to easily visualize the control strategy. As the total

axle torque available is also dependent on the gear as shown in Figure 33, the regions

that define the optimal control also differ for each gear. As examples, the optimal

control regions for gear 1 when the equivalence factor is 3.5 and 4.05 are shown in

Figures 47 and 48 respectively. The Y-axis is the driver torque demand calculated as

the quotient of the driver power demand Pd and the axle speed waxl.
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Figure 47: Optimal Control Regions at Gear 1 when Equivalence Factor is 3.5

Figure 48: Optimal Control Regions at Gear 1 when Equivalence Factor is 4.05

A block diagram of the controller is given in Figure 49. The Causal Feedback Con-

troller (CFC) block is used to calculate the equivalence factor s using Equation 38.

Using the equivalence factor and the driver power demand, a Selective Hamiltonian
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Minimization (SHM) is done to choose the appropriate control candidates enumer-

ated in Equation 42 given in Appendix D. The parameters used for the feedback law

are given in Table 6.

Figure 49: Causal Feedback Controller

Table 6: Parameters for Causal Feedback Control

Parameter Value Unit
s0 3.1 -
Ti 100 s
ξref 0.55 -

∆ξnrm 0.1 -
q 2 -
Th 500 s
α 2000 W
Q0 8 Ah
VOC 324 V

The value for s0 that ensures charge sustenance within a tolerance of 0.002 (ξ0 =

ξf = 0.55) was iteratively obtained by testing the controller for different values of s0.

The charge sustaining values for the US06 City, US06 Highway, HWFET and US505

drive cycles were found to be 3.075, 2.97, 3.017 and 3.087 respectively. Prioritizing

city driving and rounding off, a value of 3.1 for s0 was chosen for all drive cycles.

5.2 Simulink Structure for ECMS Supervisory Control

The component limits are calculated just as they were in the Basic Supervisory Con-

troller. Here, apart from the torque limits, the power limits are also calculated.

This is shown in Figures 50 and 51. The implementations for the determination of

component efficiencies and ICE friction power are shown in Figure 52.
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Figure 50: Component Limits Block

Figure 51: Component Limits Calculations

The average ICE, EM and the engine friction power are calculated as a function

of ICE and EM speeds using look-up tables. The equivalence factor is calculated

as given in Equation 38. This is shown in Figure 53. The power threshold values

for mode transitions P re
EM , P

bo
EM , P

bo
lim, P

th
lim and P re

lim are done according to equations

56



given in Appendix D. Only an overview of the block where the calculations are done

is shown in Figure 54. The detailed implementations of these calculations are shown

in Appendix E. Values of sBoost and sGen are calculated in Figure 54. These values

are then used to select the power limits applicable to the current operating mode.

Figure 52: Component Efficiencies

Figure 53: Calculation of Equivalence Factor
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Figure 54: Overview of Power Threshold Calculations for Mode Transitions

If the driver power demand is lower than Plowthresh, the controller transitions into

Electric mode. Hence

• If s < sBoost, Plowthresh is min(P bo
lim, PEMmax).

• If sBoost < s < sGen, Plowthresh is P th
lim.

• If sGen < s, Plowthresh is P re
lim.

If the driver power demand is higher than Pupthresh, the controller transitions into

ICE Max mode. Hence

• If s < sBoost, Pupthresh is min(P bo
EM + PICEmax , PEMmax + PICEmax).

• If sBoost < s < sGen, Pupthresh is PICEmax .

• If sGen < s, Pupthresh is PICEmax + P re
EM .

The inputs and outputs to the subsystem where these calculations are done are shown

in Figure 55. The implementation of the calculations is shown in Figure 56.
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Figure 55: Overview of Power Threshold Selection for Current Mode

Figure 56: Calculations of Power Threshold Selection for Current Mode

A truth table is used to evaluate the conditions to transition into any state. This is

shown in Figures 57, 58 and 59.
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Figure 57: Truth Table Ports

Figure 58: Truth Table Conditions
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Figure 59: Truth Table Actions

The realization of the various operating modes of the ECMS strategy is done using

a Stateflow chart. The chart takes the transition conditions generated by the truth

table, the speed dependent component efficiencies and the component power limits

as inputs. The outputs of the state machine are the powertrain state, the ICE power

request, EM request, mechanical brake power request and the enable flags for the

gearbox and ICE. The state model is split into three Figures 60, 61 and 62 due to

the size of the structure.
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Figure 60: ECMS State Machine Part 1

Figure 61: ECMS State Machine Part 2

The optimal motor power in each state is calculated according to Equation 43 given

in Appendix D. The ICE needs to be started and the gearbox needs to be engaged

when transitioning from Electric mode to Boost, Thermal (ICE), Generation or ICE

Max modes. Hence, whenever the control is in Electric mode and the conditions

to transition to any of these states are true, the control first moves to the Electric

Transition state. If any one of the conditions persists for more than a second, the
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Figure 62: ECMS State Machine Part 3

Figure 63: ECMS Power to Torque Conversion

control moves to Engine Start where the ICE enable flag is set. Once the ICE reaches

idling speed, the control moves to Boost, Thermal, Generation or ICE Max mode

depending on which transition condition is true. A direct transition from ICE Max

mode to Electric mode is not allowed. The control needs to go through either Boost,

Thermal or Generation mode.

When the control needs to move from Boost, Thermal or Generation modes back
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to the Electric mode, the ICE needs to be turned off and the gearbox needs to be

disengaged. Hence a transition state is introduced between each of these states and

the Electric mode to prevent the ICE from turning on and off too often. The control

moves to the Electric mode only if the condition persists for 1 second.

Regenerative braking and mechanical braking are handled just like the Basic Super-

visory Controller. The conversion of the individual component power requests to

normalized torque requests is shown in Figure 63.

5.3 Simulation Results

5.3.1 Comparison of ECMS to Basic Supervisory Controller

Simulations for the ECMS were done for the US06 City, US06 Highway, US505 and

HWFET drive cycles without considering changes in road gradient. The simulations

are done setting the initial and reference SOC to 0.55. The minimum and maximum

allowed SOC limits are set to 0.3 and 0.8 respectively. The equivalence factor is

computed with parameters given in Table 6. The values that PT_st takes correspond

to states in the ECMS as given in Table 7.

To compare the performance of the ECMS with the Basic Supervisory Controller,

simulations of the Basic Supervisory Controller were also carried out with the same

conditions as that for the ECMS, for all the drive cycles.

A plot of the battery SOC for the US505 drive cycle is shown in Figure 64. A plot

of the corresponding powertrain state is shown in Figure 65. The SOC plots for the

Basic Supervisory Controller and the ECMS are shown in Figures 66 to 69.
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Table 7: ECMS Powertrain States

PT_st State
-2 Braking
-1 Regenerative Braking
0 Electric
1 Engine Start
2 Boost
3 ICE
4 Generation
5 ICE Max

Figure 64: SOC Plot for ECMS Simulation for US505 Drive Cycle
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Figure 65: Powertrain State Plot for ECMS Simulation for US505 Drive Cycle

Figure 66: SOC Plots for BSC and ECMS when Simulated for US06 City Drive Cycle
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Figure 67: SOC Plots for BSC and ECMS when Simulated for US06 Highway Drive

Cycle

Figure 68: SOC Plots for BSC and ECMS when Simulated for HWFET Drive Cycle
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Figure 69: SOC Plots for BSC and ECMS when Simulated for US505 Drive Cycle

The E85 fuel consumed and change in SOC2 for the Basic Supervisory Controller

and ECMS are given in Tables 8 and 9. At a first glance, the difference in raw fuel

consumption seems quite large but the change in SOC needs to be accounted for in

terms of equivalent fuel. The procedure for converting raw fuel consumption and

change in SOC to equivalent fuel consumption is done in Appendix F. This method

was developed by Argonne National Labs and is used in the EcoCAR competition

to convert raw fuel consumption and SOC change to equivalent miles per gallon in

gasoline equivalent. The weighted fuel consumption in (kg/km) of E85 and (L/km) of

E85 is given in Tables 10 and 11 respectively. The equivalent gasoline fuel consump-

tion in (L/km) and miles per gallon is given in Tables 12 and 13 respectively. The

percentage improvement in fuel economy of the ECMS over the Basic Supervisory

Controller (BSC) is given in Table 14.

2The final SOC in all cases are slightly higher than the initial SOC as the choice of s0 is higher
than the charge sustaining value for each cycle.
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Table 8: E85 Fuel Consumption Comparison between Basic Supervisory Controller

and ECMS for US06 City and US06 Highway Drive Cycles

US06 City US06 Highway

Fuel (g) ∆ SOC(%) Fuel (g) ∆ SOC(%)

BSC 325.46 2.16 983.26 4.58

ECMS 286.31 0.18 871.2 1.3

Table 9: E85 Fuel Consumption Comparison between Basic Supervisory Controller

and ECMS for HWFET and US505 Drive Cycles

HWFET US505

Fuel (g) ∆ SOC(%) Fuel (g) ∆ SOC(%)

BSC 1068.4 6.8 575.6 2.3

ECMS 926.1 1.2 501.3 0.08

Table 10: Weighted E85 Fuel Consumption (kg/100km) Comparison for Basic Super-

visory Controller and ECMS

Weighted Fuel Consumption (kg/100km) E85

US06 City US06 Highway HWFET US505

BSC 10.43 9.26 5.93 9.44

ECMS 9.96 8.56 5.51 8.65
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Table 11: Weighted E85 Fuel Consumption (L/100km) Comparison for Basic Super-

visory Controller and ECMS

Weighted Fuel Consumption (L/100km) E85

US06 City US06 Highway HWFET US505

BSC 13.03 11.57 7.42 11.80

ECMS 12.45 10.70 6.91 10.81

Table 12: Equivalent Gasoline Fuel Consumption (kg/100km) Comparison for Basic

Supervisory Controller and ECMS

Equivalent Fuel Consumption (L/100km) Gasoline

US06 City US06 Highway HWFET US505

BSC 9.81 8.15 5.22 8.31

ECMS 8.76 7.53 4.86 7.62

Table 13: Fuel Economy (miles/gallon) Gasoline Comparison for Basic Supervisory

Controller and ECMS

Fuel Economy (miles/gallon) Gasoline

US06 City US06 Highway HWFET US505

BSC 25.62 28.86 45 28.29

ECMS 26.82 31.21 48.44 30.88

Table 14: Percentage Improvement in Fuel Economy for ECMS over Basic Supervisory

Controller

US06 City US06 Highway HWFET US505

ECMS Improvement 4.69% 8.13% 7.63% 9.13%
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It can be seen that the fuel economy for ECMS is better than the Basic Supervisory

Controller in all cases. This is due to the fact that the Basic Supervisory Controller

was developed based on heuristics and notions of efficient ICE operating regions,

whereas in the ECMS, a mathematical model for the fuel consumption that was de-

veloped in [16] was used to minimize fuel consumption. This provided definite regions

of optimal control modes and explicit equations to calculate the optimal EM power.

The Basic Supervisory Controller can be augmented further to achieve a performance

close to that of the ECMS but this would involve a great deal of calibration effort

and would not be scalable to other powertrain configurations.

5.3.2 Consideration of Real World Routes

In the previous subsection, the performance of the ECMS on flat roads was presented.

In this section, simulations of the ECMS are done considering elevation changes in

real world routes extracted in Chapter 3. The US06 City cycle is simulated for the

Stuttgart Route3, the US06 Highway cycle is simulated for the Sausalito Route, the

HWFET cycle is simulated for the Gatlinburg Route and the US505 cycle is simulated

for the Seattle Route. The SOC plots of the simulations for the various drive cycles

are shown in Figures 70 to 73.

3It is worthy to note that the actual distance covered during one US06 City drive cycle is just
2.89 kilometers. The Stuttgart route is 9.1 kilometers long and hence the drive cycle was cascaded
three times to simulate US06 City cycle on the Stuttgart route.
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Figure 70: SOC Plot for ECMS Simulation for US06 City Drive Cycle and for

Stuttgart Route

Figure 71: SOC Plot for ECMS Simulation for US06 Highway Drive Cycle and for

Sausalito Route
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Figure 72: SOC Plot for ECMS Simulation for HWFET Drive Cycle and for Gatlin-

burg Route

Figure 73: SOC Plot for ECMS Simulation for US505 Drive Cycle and for Seattle

Route

The E85 fuel consumed and change in SOC for the ECMS simulations considering

73



road elevation profiles are given in Tables 15 and 16. The weighted fuel consumption

in (kg/km) of E85 and (L/km) of E85 are given in Table 17. The equivalent gasoline

fuel consumption in (L/km) and miles per gallon is given in Table 18.

Table 15: E85 Fuel Consumption and Change in SOC for US06 City and US06

Highway Drive Cycles for ECMS

US06 City US06 Highway

Fuel (g) ∆ SOC(%) Fuel (g) ∆ SOC(%)

ECMS 1113.9 4 1031.8 3

Table 16: E85 Fuel Consumption and Change in SOC for HWFET and US505 Drive

Cycles for ECMS

HWFET US505

Fuel (g) ∆ SOC(%) Fuel (g) ∆ SOC(%)

ECMS 1231.2 7.6 506.4 4.34

Table 17: Weighted E85 Fuel Consumption for ECMS

Weighted Fuel Consumption E85

US06 City US06 Highway HWFET US505

(kg/100km) 11.603 9.95 6.858 7.783

(L/100km) 14.097 9.628 6.826 9.235
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Table 18: Equivalent Gasoline Fuel Consumption for ECMS

Equivalent Fuel Consumption Gasoline

US06 City US06 Highway HWFET US505

L/100km 10.216 8.760 6.038 6.852

mpg 23.024 26.850 38.951 34.323

These results show that the ECMS achieves good fuel consumption for most flat

standard cycles. The performance is affected when elevation profiles is considered.

In all simulation cases the final SOC is higher than the reference SOC4 of 55%. Use

of this excess energy during the drive cycle would have reduced fuel consumption

in some part of the drive cycle as the electric path is more efficient than the fuel

path. If information of these driving conditions were known in advance then the cost

associated with using electrical power in the segment leading up to a recuperation

phase can be lowered considering that the electrical energy would be regained in the

recuperation phase. This can be done only by using predictive strategies [12].

5.4 Conclusion

In this chapter an overview of the explicit causal control law derived from ECMS

presented in [16] was given. The ECMS strategy was then implemented in Simulink.

Simulations were carried out for the US06 City, US06 Highway, HWFET and US505

drive cycles without considering road gradient. The fuel economy of the ECMS was

consistently better than the Basic Supervisory Controller in all test cases. Simulations

were then carried out considering road gradient for all drive cycles. It was observed

4This is due to the fact that all the routes selected have a long downward slope following an
upward slope. The SOC gradually increases over the downward slope depending on the drive cycle.
Only in the case of the HWFET cycle, the SOC falls in the end because the simulation ends on an
upward slope.
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that consideration of road gradient noticably changes the performance of the ECMS.
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CHAPTER VI

PREDICTIVE CONTROL

The ECMS presented in the previous chapter is causal and uses only the present and

past states of the powertrain to optimize fuel consumption. This is done by penalizing

the use of electric power based on the deviation of the current battery SOC and a

constant reference SOC.

Consider a situation where the vehicle is being driven in a hilly region and the vehicle

needs to traverse a segment with an upward slope followed by a segment with a

downward slope. If the battery SOC is below the set reference SOC, the output of

the ECMS would be to traverse the upward slope with a torque split ratio that has

a higher ICE torque component. This is due to the fact that the controller has no

information about the upcoming downward slope where a possible recuperation would

result in the increase of the battery SOC.

If the information about the upcoming segment with a downward slope is known a

priori, the corresponding recuperation potential can be used to modify the ECMS

to decrease the penalty associated with electric power delivery and further decrease

fuel consumption. This would require the controller to be acausal and predictive to

a certain degree.

State of the art navigation systems can provide data such as average traveling speeds

and elevation profile of upcoming road segments. The control strategy presented in

this chapter takes advantage of the availability of this information to improve the

performance of the ECMS by generating a time-varying reference SOC trajectory.
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This algorithm is called predictive reference signal generator (pRSG) and is presented

in [14, 16]. The algorithm uses the elevation profile information for the upcoming

road segment, although it can be extended to use information such as road curvature,

upcoming intersections etc. As the problem can be formulated as a quadratic program

(QP), the underlying algorithm is computationally attractive. Figure 74 shows the

extension of ECMS with pRSG [14, 16].

Figure 74: Block Diagram of pRSG - ECMS Algorithm

6.1 Method

The operation of an HEV can be classified into two main types. The first type is

where the supervisory control can explicitly control the SOC by favoring or penalizing

the use of the electrical path. These intervals are referred to as free segments. In

the case when the powertrain is in recuperation mode, the use of electric power is

determined purely by the driver or the drive cycle. These intervals are referred to as

fixed segments. The prior prediction of these fixed segments is what can be used to

further optimize fuel consumption in the preceding free segments. This is achieved

by computing a time-varying reference trajectory for the SOC. The prediction of

recuperation is done as follows:

• Only the information about the road elevation profile and the average traveling

speed provided by the navigation system is used. These data points are specified

at the discrete distances.
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• The two sets of data are mapped to a common grid. As a result each road

segment is characterized by its gradient and its average speed.

• The estimated force acting on the vehicle over each segment is calculated. This

force takes into account the air drag, rolling resistance and acceleration due to

gravity.

• During some braking events, the power required can exceed the regenerating

power capability of the electric path which includes the electric motor, the in-

verter and the battery. The negative force is thus limited by quotient of electric

regenerating power adjusted with the recuperation efficiency, and average ve-

locity.

• The estimated energy recuperated over each segment is calculated as the prod-

uct of the negative force, the length of the segment and the recuperation effi-

ciency, if the force is negative. The energy recuperated is set to 0 if the force is

positive.

• The equivalent SOC change is calculated as the quotient of the recuperated

energies and the pack capacity expressed in Joules.

• All successive recuperation segments are lumped into one segment of recupera-

tion. Each of these aggregated recuperation segments is then saved as a triplet

containing its future starting time, its duration and the expected SOC change.

The triplet that has the data about the future expected recuperation is used to

generate the SOC reference trajectory. A piece-wise affine SOC reference trajectory

needs to be computed such that it does not violate the SOC boundaries. This consists

of fixed segments that lie between two fixed segments. The starting time, the duration,

and the change in SOC, represents the fixed segments. If the starting value of the
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SOC for each fixed segment is known, it means that the entire trajectory is defined.

Hence, the SOC values are the unknowns and need to be determined in order to fully

define the trajectory. The following conditions need to be satisfied by the reference

trajectory [14, 16]:

• The reference SOC, ξref , must remain within the interval Ω = [ξref,min, ξref,max]

at all times.

• The final SOC of the reference trajectory must remain within the target interval

Ωf = [ξset−δξf , ξset+δξf ], where ξset is the SOC setpoint for charge sustenance5.

• The rate of SOC change during the free elements of the reference trajectory

must be minimized.

These constraints can be formulated and solved as a quadratic programming problem

as shown in Appendix G. The pRSG is implemented using a Matlab function in

Simulink. It uses the vectors of future road gradient and average speed along with

the corresponding distance offset vector to produce a reference signal for the battery

SOC. The code is given in Appendix H.

The predictive strategy is combined with the non-predictive ECMS strategy as shown

in Figure 75. The pRSG generates a position dependent reference SOC signal that

is used by the ECMS. Before a recuperation phase, the reference signal is lowered to

improve fuel efficiency.

5For the simulations done in this thesis, ξset = ξ0 = 0.55.
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Figure 75: Structure of pRSG-ECMS

6.2 Simulation of Navigation Device

To compare the performance of the proposed method, simulations for all three control

strategies (Basic Supervisory Controller, ECMS and ECMS-pRSG) must be carried

out. The pRSG-ECMS requires the road gradient and average speed data from the

navigation system to compute the reference SOC trajectory. The elevation data

extracted in Chapter 3 is assumed to be exact and is used for simulation and for

prediction. This data is made available to the control strategy as a vector of road

gradient points given at 100 meter intervals.

The speed profile cannot be accurately predicted by the navigation device. Using

the driving profile prescribed by the standardized driving cycles, an average speed

profile for each drive cycle is computed and is used to simulate the output from

the navigation system [14, 16]. This approximation is very rough on purpose. It is

assumed that the navigation device only recognizes urban, extra-urban and highway

driving with corresponding speed limits of 30, 50 and 70 miles per hour respectively.
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The average traveling speeds assigned to each of these zones are assumed to be 20, 40

and 60 miles per hour respectively. The algorithm to determine the average driving

speed profile from the drive cycle is as follows:

• Step 1: The speed signal is converted into an indexed signal i(t) using threshold

values of 35 and 55 miles per hour. Urban, extra-urban and highway driving

are represented by indices 1, 2 and 3 respectively.

• Step 2: The index signal is filtered using a non-causal zero-phase low-pass filter

with a time constant of 30 seconds.

• Step 3: The filtered index signal is rounded back to integers.

• Step 4: The index signals are converted back to average speeds of 20, 40 or 60

miles per hour.

• Step 5: The average speed signal is mapped from a time base to a distance

base.

6.3 Simulation Results

Simulations for the pRSG-ECMS were done for the US06 City, US06 Highway, US505

and HWFET drive cycles considering changes in road gradient.

The plots of the reference SOC6 generated by the pRSG for the various drive cycles

are shown along with the route elevations in Figures 76 to 79. The simulations are

done setting the initial and reference SOC to 0.55. The minimum and maximum

allowed SOC limits are set to 0.3 and 0.8 respectively. The equivalence factor is

computed with parameters given in Table 6.

6The final value of the reference SOC does not always match the intital SOC due to the choice
of values for the softening paramters.
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To compare the performance of the pRSG-ECMS with the ECMS and Basic Supervi-

sory Controller, simulations of the ECMS and Basic Supervisory Controller were also

carried out with the same conditions as that for the pRSG-ECMS for all the drive

cycles.

Plots of the reference SOC generated by the pRSG and the elevation of the road as

a function of distance for all routes are shown in Figures 76 to 79.

Figure 76: Reference SOC and Road Elevation for Stuttgart Route
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Figure 77: Reference SOC and Road Elevation for Seattle Route

Figure 78: Reference SOC and Road Elevation for Sausalito Route
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Figure 79: Reference SOC and Road Elevation for Gatlinburg Route

A comparison of the SOC plots for the Basic Supervisory Controller, the ECMS and

the pRSG-based ECMS is shown in Figures 80 to 83.

Figure 80: SOC Plots for Simulation of US505 Cycle in Seattle Route
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Figure 81: SOC Plots for Simulation of US06 City Cycle in Stuttgart Route

Figure 82: SOC Plots for Simulation of US06 Highway Cycle in Sausalito Route
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Table 19: E85 Fuel Consumption Comparison for US06 City and US06 Highway Drive
Cycles for Basic Supervisory Controller, ECMS and pRSG

US06 City US06 Highway
Fuel (g) ∆ SOC(%) Fuel (g) ∆ SOC(%)

BSC 1472.8 1.2 1156.2 5
ECMS 1113.9 4 1031.8 3

pRSG-ECMS 1024.4 0.5 959.41 -0.4

Figure 83: SOC Plots for Simulation of HWFET Cycle in Gatlinburg Route

The E85 fuel consumed and the change in SOC for the Basic Supervisory Controller,

ECMS and pRSG-ECMS is given in Tables 19 and 20. The weighted fuel consumption

of E85 in (kg/km) and (L/km) is given in Tables 21 and 22. The equivalent gasoline

fuel consumption in (L/km) and miles per gallon7 is given in Tables 23 and 24. The

percentage improvement in fuel economy of the pRSG-ECMS over ECMS is given in

Table 25.

The pRSG generates a reference SOC signal based on the average traveling speed and

7The mileage of the 2016 Camaro SS with a 3.6 liter engine and 8-speed gearbox is reported to
be 19 miles per gallon in the city and 28 miles per gallon in the highway.
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Table 20: E85 Fuel Consumption and SOC Change Comparison for HWFET and
US505 Drive Cycles for Basic Supervisory Controller, ECMS and pRSG

HWFET US505
Fuel (g) ∆ SOC(%) Fuel (g) ∆ SOC(%)

BSC 1319.5 3 624.4 1.4
ECMS 1231.2 7.6 506.4 4.34

pRSG-ECMS 1106.5 0.4 441.5 0.3

Table 21: Weighted E85 Fuel Consumption (kg/100km) Comparison for Basic Super-
visory Controller, ECMS and pRSG

Weighted Fuel Consumption (kg/100km) E85
US06 City US06 Highway HWFET US505

BSC 16.012 10.935 7.753 10.489
ECMS 11.603 9.95 6.858 7.783

pRSG-ECMS 11.185 9.668 6.671 7.549

Table 22: Weighted E85 Fuel Consumption (L/100km) Comparison for Basic Super-
visory Controller, ECMS and pRSG

Weighted Fuel Consumption (L/100km) E85
US06 City US06 Highway HWFET US505

BSC 20.016 13.669 9.69 13.11
ECMS 14.504 12.437 8.573 9.729

pRSG-ECMS 13.982 12.085 8.339 9.436

Table 23: Equivalent Gasoline Fuel Consumption (L/100km) Comparison for Basic
Supervisory Controller, ECMS and pRSG

Equivalent Fuel Consumption (L/100km) Gasoline
US06 City US06 Highway HWFET US505

BSC 14.097 9.628 6.826 9.235
ECMS 10.216 8.760 6.038 6.852

pRSG-ECMS 9.847 8.512 5.873 6.646

Table 24: Fuel Economy (miles/gallon) Gasoline Comparison for Basic Supervisory
Controller, ECMS and pRSG

Fuel Economy (miles/gallon) Gasoline
US06 City US06 Highway HWFET US505

BSC 16.684 24.43 34.456 25.469
ECMS 23.024 26.850 38.951 34.323

pRSG-ECMS 23.884 27.632 40.045 35.389
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Table 25: Percentage Improvement in Fuel Economy for pRSG-ECMS over ECMS

US06 City US06 Highway HWFET US505
pRSG Improvement 3.73% 2.91% 2.81% 3.1%

the road gradient. In each case the reference SOC is lowered in the region before an

upcoming downward slope or braking event. This reduces the cost associated with

using electric power. This allows higher power delivery from the EM during this

segment, thus reducing fuel consumption. The battery SOC curve does not follow

the reference SOC trajectory accurately as only average traveling speed is used to

make the prediction and also because vehicle stop events cannot be predicted by

the navigation device. It can be seen that in all cases, the pRSG-ECMS shows a

consistent improvement in fuel efficiency over the non-predictive ECMS.

6.4 Conclusion

The non-predictive control strategy developed in the previous chapter is extended

with the pRSG algorithm that generates a reference SOC trajectory based on future

road profiles. The reference trajectory developed is computationally effective and

relies on data only from the navigation device which makes it applicable on a real

vehicle. Simulation results have shown that the fuel consumption can be reduced

when compared to the non-predictive strategy for driving cycles with topographic

profiles.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

The aim of this thesis was to develop control strategies for the Georgia Tech EcoCAR3

P3 parallel hybrid electric vehicle. The vehicle model was developed in Simulink and

a Basic Supervisory Controller based on heuristics was first developed to understand

the working of a parallel hybrid electric vehicle. To improve the fuel efficiency of the

vehicle, an optimal control strategy based on Pontryagin’s Minimum Principle was

developed. A causal, nonpredictive controller called equivalent consumption mini-

mization strategy was used. The algorithm minimizes an equivalent fuel cost calcu-

lated as the sum of the fuel consumed by the engine and the weighted electric energy

consumed from the battery. A simplified plant model was used to obtain an explicit

control law [16]. The control law is a simple rule-based algorithm dependent only on

vehicle parameters and is computationally inexpensive.

The ECMS achieved a fuel consumption that was better than the Basic Supervisory

Controller. When the road gradient changes were considered, the performance of

the ECMS changed slightly. Given that there is an upcoming recuperation phase, the

fuel consumption in the ECMS can be reduced further by lowering the cost associated

with the use of electric power in the segment leading up to the recuperation phase.

This can only be achieved if some information regarding the upcoming road segments

is available.

This thesis uses an algorithm called predictive reference signal generator (pRSG) de-

veloped in [16]. This algorithm uses data such as road gradient and average speed
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from a navigation for a planned trip and produces a reference state of charge tra-

jectory that the controller tries to follow till the end of the trip. The pRSG and

ECMS together form a predictive energy management system. As a result, good

performance in terms of fuel consumption was achieved even in driving cycles with

changing elevation profiles.
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APPENDIX A

TRANSMISSION CONTROL MODULE

The GM 8-speed 8L45 transmission has a dedicated transmission control module

that controls the gear shifts. The shifts are decided based on up-shift and down-shift

maps that are flashed into the controller. The up-shift map prescribes a vehicle speed

threshold for each gear position and accelerator pedal position. If the vehicle speed

exceeds this threshold, the TCM initiates an up-shift action. Similarly the down-

shift map prescribes a lower vehicle speed threshold. If the vehicle speed is below this

threshold, the TCM initiates a down-shift action. These curves are shown in Figure

84.

Figure 84: Transmission Up-shift and Down-shift Threshold Curves
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In the vehicle model, the TCM is implemented as a state machine. This is shown in

Figure 85.

Figure 85: TCM State Machine

This implementation uses two parallel state machines. The first one called Gear

State, has 8 states that represent each gear position. Each of these states simply

outputs the corresponding gear number that is used by the transmission plant model

to engage the right gear. There are two transition events that are defined: UP and

DOWN , that are initiated by the other state machine, Selection State. When UP

is initiated, the gear state moves up by one. Similarly the gear state moves down by

one when DOWN is initiated.

The state machine Selection State uses vehicle speed and engine throttle request8

as input to calculate the upshift and downshift thresholds for the current gear posi-

tion using the two Simulink functions. The state machine has three states: Steady

State, Upshifting and Downshifting. When the control is in Steady State and the

8In a conventional vehicle, the transmission shift maps use the accelerator pedal position as the
input. In essence this is also the engine throttle request since no other power source exists. In the
hybrid vehicle considered, since the EM is coupled after the transmission, the engine throttle request
is used as the input for the shift maps and not accelerator pedal position.
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vehicle speed is greater than the calculated upshift threshold, the control moves to

Upshifting state. If the condition that the vehicle speed is greater than the calculated

upshift threshold persists for 0.5 seconds, the UP transition event for Gear State is

initiated and the control returns to Steady State. If the vehicle speed is greater than

the upshift threshold when in Upshifting state, the control returns to Steady State

without any action. Similarly, if the vehicle speed is less than the downshift thresh-

old, the control moves to Downshifting. If this condition persists for more than 0.5

seconds, the DOWN action is initiated and the control moves back to Steady State.

If the vehicle speed exceeds the downshift threshold when in Downshifting state,

the control moves back to Steady State without any action.

This implementation of the TCM and the gear shift strategy is used for the Basic

Supervisory Controller, ECMS and the pRSG-ECMS strategies.
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APPENDIX B

ENGINE CONTROL MODULE

In this thesis the engine control module is modeled such that it controls starting and

stalling action of the engine. It also sets an engine throttle request based on the

normalized torque request commanded by the supervisory controller and the engine

state. This is implemented as a state machine using a Stateflow chart in Simulink as

shown in Figure 86.

Figure 86: Engine Control State Machine

The state machine uses normalized ICE torque request and the ICE enable state

ICE_en (from the supervisory controller) and the ICE speed as inputs. It produces

the ICE_Tq_out, the throttle request set for the throttle body and starter motor

torque request Tq_starter as outputs. The ground state is called Not Running. In

this state, the ICE throttle request and the starter motor torque request are set to

0 and the ICE is turned off. When an ICE enable request is set by the supervisory

controller, the control moves to Start mode where the starter motor torque request is

set to a positive value to start the ICE. Once the ICE speed reaches idling speed (850

RPM in this case), the control moves to Idle mode, where the starter motor torque
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request is set to 0 and the ICE throttle request is set using a proportional controller

to maintain idling speed. If the normalized ICE torque request is greater than 0,

the control moves to Motoring mode. Here the ICE throttle request is set equal

to the normalized torque request commanded by the supervisory controller. When

operating in Motoring mode, if the normalized ICE torque request is 0, the control

moves to Overrun mode where the ICE throttle request is set to 0 and the engine is

dragged by the powertrain. When operating in Overrun mode, if the normalized ICE

torque request is 0 and the engine speed is less than 900 RPM, the control moves to

Idling mode. Else when operating in Overrun mode, if the normalized ICE torque

request is greater than 0, the control moves back to Motoring mode. When in idling

mode, if the ICE enable flag is set to 0, the control moves to Not Running state.

96



APPENDIX C

DRIVE CYCLES

A plot of the US06 City drive cycle is shown in Figure 87.

Figure 87: US06 City Drive Cycle

A plot of the US06 Highway drive cycle is shown in Figure 88.
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Figure 88: US06 Highway Drive Cycle

.

A plot of the HWFET drive cycle is shown in Figure 89.

Figure 89: HWFET DriveCycle

A plot of the US505 drive cycle is shown in Figure 90.
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Figure 90: US505 Drive Cycle
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APPENDIX D

EQUIVALENCE FACTOR AND POWER THRESHOLD

CALCULATIONS FOR ECMS

The optimal EM power for the simplified plant model when not considering the EM

and ICE power limits is given by [16]:

P o
EM(Pd, s) =



η

(
η
e

−s
)

2sβ if (Pd > 0) and (s < η
e
) and (Pd > P bo

lim(s))

0 if (Pd > 0) and (η
e
< s < 1

ηe
) and (Pd > P th

lim(s))

− s− 1
ηe

2sβη if (Pd > 0) and (s > 1
ηe

) and (Pd > P re
lim(s))

− s− 1
ηe

2sβη if (Pd < 0) and (Pd > P re−
lim )

Pd otherwise

(41)

When considering the limits of the EM to be PEMMax
and PEMMin

, and ICE power

limit to be PICEMax
, the optimal EM power candidates are given by:

P(Pd, s) = {0, Pd, P bo
EM(s), P re

EM(s), PMax
EM (s), PMin

EM (s), Pd − PMax
ICE (s)} (42)

where P o
EM is the optimal EM power, Pd is the driver power demand, η is the EM

efficiency, e is the ICE efficiency and β is the electric path efficiency. When applying

the component power limits to Equation 41, the explicit optimal control law is given
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by:

P o
EM(Pd, s) =



η

(
η
e

−s
)

2sβ if (Pd > 0) and (s < η
e
) and (Pd > P bo

lim)

Pd − PICEMax
if (Pd > PICEMax

+ P bo
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e
)
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e
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ηe
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)
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if (η

e
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ηe
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ηe
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Pd − PICEMax
if (s > 1

ηe
) and (Pd > PICEMax

+ P re
EM)

− s− 1
ηe

2sβη if (Pd < 0) and (Pd > P re−
lim )

Pd otherwise
(43)

sBoost = η

e
(44)
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ηe

(45)
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EM = −
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η
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+

√√√√( s
η
− 1

e

)2

−
(
s
η
− 1

eη2

)2

+ 4 sβP0
η2e

2 sβ
η2

(50)

P re−
lim =

−
(
sη − 1

e

)
+
√

4 sβη2P0
e

2sβη2 (51)

where P0 is the engine friction power.
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APPENDIX E

SIMULINK IMPLEMENTATION FOR ECMS POWER

LIMIT CALCULATIONS

This appendix shows the Simulink implementation for the power limits used in ECMS

for mode transitions. The power threshold values for mode transitions P re
EM , P bo

EM ,

P bo
lim, P th

lim and P re
lim are done according to the equations in Appendix D and the

corresponding Simulink implementations are shown in Figures 91 to 96.

Figure 91: ECMS Power Limit - Inputs
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Figure 92: ECMS Power Limit Calculations - sBoost, sGen and P bo
EM

Figure 93: ECMS Power Limit Calculations - P re
EM and s

η
− 1

e
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Figure 94: ECMS Power Limit Calculations - 4sβP0
η2e

and 2sβ
η2

Figure 95: ECMS Power Limit Calculations - P bo
lim and P th

lim
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Figure 96: ECMS Power Limit Calculations - P re
lim
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APPENDIX F

CALCULATION OF EQUIVALENT GASOLINE FUEL

CONSUMPTION

The raw fuel consumption and the net change in SOC between initial and final con-

ditions are derived for each simulation. The comparison of the performance of each

control algorithm cannot be done by just looking at the raw fuel consumption. A

correction of equivalent fuel corresponding to the net change in SOC needs to be

done first. The SOC corrected fuel consumption in kg/km is calculated as:

FCSOC−Corrected =
Massfuel + ECelectric

0.25·LHVfuel

Cycledistance
(52)

where Massfuel is the mass of fuel consumed in kg, ECelectric is the electric consump-

tion in kWh, LHVfuel is the lower heating value of the fuel, and Cycledistance is the

distance traveled in the drive cycle expressed in km. The lower heating value for E85

is 7.96 kWh/kg. Given that the battery pack used for the simulation is rated at 8Ah

at 324V, the energy consumption in kWh for ∆ξ net change in SOC is given by:

ECelectric = ∆ξ × 324× 8× 3600
3.6× 106 = 2.5848×∆ξ (53)

The fuel consumption in L/100km is given by:

FCE85 = FCSOC−Corrected ∗ 100
ρE85

(54)

where ρE85 is the density of E85. This value is taken to be 0.8 kg/L. The fuel

consumption in L/100km gasoline equivalent is given by:

FCgas = FCE85 ·
FEDE85

FEDgas

(55)
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where FEDE85 and FEDgas are the fuel energy density values in kWh/L for E85

and gasoline respectively. The values for FEDE85 and FEDgas are 6.265 kWh/L

and 8.895 kWh/L respectively. FCgas is converted to miles per gallon of gasoline

equivalent (mpgge) as:

FCmpgge = 0.621371
100× 0.264172× FCgas

(56)

107



APPENDIX G

PRSG PROBLEM FORMULATION

The reference trajectory ξref generated by the pRSG must:

• remain within the interval Ω = [ξref,min, ξref,max] at all times.

• keep the final SoC of the reference trajectory within a target interval Ω =

[ξset − δξf , ξset + δξf ]

• minimize the rate of change of the SoC during the free elements of the reference

trajectory. These constraints can be expressed mathematically as follows:

ξ̃i ≥ ξref,min − εi (57a)

ξ̃i + ∆ξ̃i ≤ ξref,max + εi (57b)

ξ̃N + ∆ξ̃N ≥ ξset − δξf − εf (57c)

ξ̃N + ∆ξ̃N ≤ ξset + δξf + εf (57d)

In the above equations, εi and εf are slackness variables used to guarantee the

feasibility by softening the state constraints. Equation 57a has to be fulfilled

for all i = 1, ..., N . The condition in Equation 57b has to be fulfilled only for

i = 1, ..., N − 1. For i = N , the condition given by Equation 57b is always

fulfilled when the condition given by Equation 57d is fulfilled. This gives a

total of 2N + 1 inequalities that need to be fulfilled.

The free segments and the penalties on slackness variables are minimized as:

min
z

{
αε,f · ε2

f +
N∑
i=1

(
∆ξ̂2

i

∆t̂2i
+ αε · ε2

i

)}
(58a)
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Table 26: Parameters for the pRSG-ECMS

Parameter Value Unit
ηrecup 0.8 -
ξmin 0.3 -
ξmax 0.8 -
δξf 0.02 -
αε 106 s−2

αε,f 105 s−2

where

∆ξ̂i = ξ̃i − (ξ̃i−1 + ∆ξ̃i−1) (58b)

∆ξ̃0 = 0 (58c)

∆t̂i = t̃i − (t̃i−1 + ∆t̃i−1) (58d)

t̃0 = 0 (58e)

∆t̃0 = 0 (58f)

The superscriptˆrepresents variables of the free segments. The unknown vector z of

length 2N + 1 is given by:

z = [ξ̃1, ..., ξ̃N , ε1, ..., εN , εf ]T , (59)

where ξ̃i represent the SOC at the beginning of each i-th segment. The slackness

variables are penalized using the positive weights αε and αε,f . The parameters for

the pRSG-ECMS is given in Table 26.

The problem can be formulated as a standard quadratic program [14, 16]:

min
z

zTQz + pT z (60a)

s.t.

Az ≤ b (60b)
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where

Qi,j =



1
∆t̂2i

+ 1
∆t̂2i+1

, if i = j = 1, ..., N − 1
1

∆t̂2N
, if i = j = N

αε, if i = j = N + 1, ..., 2N

αε,f , if i = j = 2N + 1

− 1
∆t̂2i

, if i = j − 1 = 2, ..., N

− 1
∆t̂2i

, if i = j + 1 = 1, ..., N − 1

0, otherwise

(61)

pi =



− 2ξ0
∆t̂2N

, if i = N and N = 1

− 2ξ0
∆t̂21

+ 2∆ξ̃1
∆t̂22

, if i = 1 and N > 1

−2∆ξ̃i−1
∆t̂2i

+ 2∆ξ̃i
∆t̂2i+1

, if i = 2, ..., N − 1 and N > 2

−2∆ξ̃N−1
∆t̂2N

, if i = N and N > 1

0, if i = N + 1, ..., 2N + 1

(62)

Ai,j =



−1, if i = 1, ..., 2N − 1 and j = i

−1, if i = 1, ..., N and j = i+N

1, if i = N + 1, ..., 2N − 1 and j = i−N

−1, if i = 2N and j = N

−1, if i = 2N and j = 2N + 1

1, if i = 2N + 1 and j = N

−1, if i = 2N + 1 and j = 2N + 1

0, otherwise

(63)

bi =



−ξref,min, if i = 1, ..., N

ξref,max −∆ξ̃i−N , if i = N + 1, ..., 2N − 1

−ξset + δξf + ∆ξ̃N , if i = 2N

ξset + δξf −∆ξ̃N , if i = 2N + 1

(64)
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APPENDIX H

MATLAB CODE FOR THE PRSG

function SOC_setpt = ...

pRSG_func(dt_offset,avg_spd,gamma_in,len,veh_offset)

persistent d SOC_ref offset_mem flag val_flag SOC_set_mem;

if isempty(d)

d = (-100:100:100000);

SOC_ref = 0.55*ones(size(d));

SOC_set_mem = 0.55;

offset_mem = -1;

flag = 1<0;

val_flag = 0>1;

end

if(len>1)

dist_offset = dt_offset(1:len);

avg_speed = avg_spd(1:len);

gamma = gamma_in(1:len);

if(dist_offset(1) 6= offset_mem)

offset_mem = dist_offset(1);

flag = 1>0;

end
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if flag

rho = 1.225;

Af = 2.2220;

cd = 0.3440;

mv = 1809;

g=9.81;

seg_len = 100;

alpha = -0.4736;

beta = 1.0316;

A_coeff = 0.0684;

B_coeff = 1.0316e-4;

C_coeff = 4.1258e-7;

P= 35; %psi;

NF = mv*g*cos(gamma);

cr = P^alpha.*(A_coeff+B_coeff*avg_speed + ...

C_coeff*avg_speed.^2).*sign(avg_speed);

F = mv*g*sin(gamma)+0.5*rho*Af*cd*avg_speed.^2 + ...

cr.*NF.^beta ;

idx = find(F<0);

E = zeros(size(F));

E(idx) = -F(idx)*seg_len*0.7;

dSOC = E/(6.2*3600*324);

dt_tilde_avg = seg_len./avg_speed;

t_tilde_avg = zeros(size(dt_tilde_avg));

for i = 1:length(dt_tilde_avg)-1

t_tilde_avg(i+1) = t_tilde_avg(i)+dt_tilde_avg(i);
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end

idx = find(E>0);

t_tilde = t_tilde_avg(idx);

dt_tilde = dt_tilde_avg(idx);

dist_tilde = dt_offset(idx);

dSOC_max = 0.01*dt_tilde;

dSOC_tilde = min(dSOC(idx),dSOC_max);

idx = 1;

x1 = zeros(100,1);

x2 = zeros(100,1);

x3 = zeros(100,1);

x4 = zeros(100,1);

x5 = zeros(100,1);

x1(idx)=0;

x2(idx)=0;

x3(idx)=t_tilde(1);

x4(idx)=dist_tilde(1);

x5(idx)=0;

for i = 1:length(dSOC_tilde)

x1(idx) = x1(idx) + dSOC_tilde(i);

x2(idx) = x2(idx) + dt_tilde(i);

x5(idx) = x5(idx) + seg_len;

if (i<length(dSOC_tilde))

if(t_tilde(i+1) 6=t_tilde(i)+dt_tilde(i))

idx = idx+1;

x3(idx)=t_tilde(1+i);

x4(idx)=dist_tilde(1+i);

x1(idx)=0;
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x2(idx)=0;

x5(idx)=0;

end

end

end

dSOC_tilde = x1(1:idx);

dt_tilde = x2(1:idx);

t_tilde = x3(1:idx);

dist_tilde = x4(1:idx);

del_dist_tilde = x5(1:idx);

SOC_min = 0.3

SOC_max = 0.8

SOC_set =0.55;

dSOC_f = 0.02;

alpha = 10^6;

alpha_f = 10^5;

N = idx;

if(N>1)

dt_hat = zeros(N,1);

for i = 1:N

if i >1

dt_hat(i) = t_tilde(i) - (t_tilde(i-1) + ...

dt_tilde(i-1));

else

dt_hat(i) = t_tilde(i);

end

end

Q = zeros(2*N+1);
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A = zeros(2*N+1);

b = zeros(2*N+1,1);

p = zeros(2*N+1,1);

for i = 1:2*N+1

for j = 1:2*N+1

if (i==j)

if (i<N-1)

Q(i,j) = 1/dt_hat(i)^2 + 1/dt_hat(i+1)^2;

elseif (i==N)

Q(i,j) = 1/dt_hat(i)^2;

elseif (i>N)&&(i≤2*N)

Q(i,j) = alpha;

elseif (i==2*N+1)

Q(i,j) = alpha_f;

end

elseif(i == j-1)&&(i<N)

Q(i,j) = -1/dt_hat(i+1)^2;

elseif(i == j+1)&&(i≤N)

Q(i,j) = -1/dt_hat(i)^2;

end

if(i==j) &&(i<2*N)

A(i,j) = -1;

elseif (j==i+N)&& (i≤N)

A(i,j) =-1;

elseif(j == i-N) && (i>N)&&(i<2*N)

A(i,j) = 1;

elseif(i==2*N) && (j ==N)

A(i,j) = -1;

elseif(i==2*N)&&(j==2*N+1)
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A(i,j) =-1;

elseif(i==2*N+1) && (j==N)

A(i,j) =1;

elseif(i==2*N+1)&& (j==2*N+1)

A(i,j) =-1;

end

end

if(i≤N)

b(i) = -SOC_min;

elseif(i>N)&&(i<2*N)

b(i) = SOC_max - dSOC_tilde(i-N);

elseif(i==2*N)

b(i) = -SOC_set + dSOC_tilde(N)+ dSOC_f;

elseif(i==2*N+1)

b(i) = SOC_set + dSOC_f - dSOC_tilde(N);

end

if(i==1)&&(N==1)

p(i) = - 2*SOC_set/dt_hat(N)^2;

elseif(i==1)&&(N>1)

p(i) = - 2*SOC_set/dt_hat(1)^2 + ...

2*dSOC_tilde(1)/dt_hat(2)^2 ;

elseif(i≥2)&&(i≤N-1)&&(N>2)

p(i) = -2*dSOC_tilde(i-1)/dt_hat(i)^2 + ...

2*dSOC_tilde(i)/dt_hat(i+1)^2;

elseif (i==N)&&(N>1)

p(i) = -2*dSOC_tilde(N-1)/dt_hat(N)^2;

end

end
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x = zeros((2*N+1),1,'double');

x = QP(2*Q,p,A,b);

t = zeros(2*N+1,1);

for j = 1:2*N+1

if j==1

SOC_ref(j) = SOC_set_mem;

t(j) = 0;

d(j) = veh_offset;

elseif(mod(j,2)==0)

SOC_ref(j) = x(j/2);

t(j) = t_tilde(j/2);

d(j) = dist_tilde(j/2);

elseif(mod(j,2)==1)

SOC_ref(j) = x((j-1)/2) + dSOC_tilde((j-1)/2);

t(j) = t_tilde((j-1)/2) + dt_tilde((j-1)/2);

d(j) = dist_tilde((j-1)/2) + ...

del_dist_tilde((j-1)/2);

end

end

c = 2*N+1;

d(c+1:end) =100*(1:1002-c)+d(c);

SOC_ref(c+1:end) = 0.55;

val_flag = 1>0;

else

val_flag = 1<0;

end

flag = 0>1;

end

end
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if(val_flag)

temp = interp1(d,SOC_ref,veh_offset,'linear','extrap');

SOC_setpt = temp(1);

else

SOC_setpt = 0.55;

end

SOC_set_mem = SOC_setpt;

end

function y = QP(H,F,A,b)

coder.extrinsic('quadprog');

y = quadprog(H,F,A,b);

end
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