HORTZONTAL PIPES

A THESIS
Presented to the Faculty of the Graduate Division
by

Henderson Crawford Ward

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
in the School of Chemjcal Engineering

Georgia Institute of Technology
September 1952

CO-CURRENT TURBULENT-TURBULENT FLOW OF ATR AND WATER-CLAY SUSPENSIONS \mathbb{N} v HORIZONTAL PIPES

Approved:

To 叫 wife

Rebekah Candler Wara
whose love, patience and understanding have made this work possible

The author wishes to make the following acknowledgements: to Doctor J. M. Dallavalle for his invaluable aid and assistance, to Doctor Paul Weber for his interest and assistance, to Mr. Harold G. Blocker for making the specific gravity, particle-size distribution, and capillary insturment (viscosity) measurements, to Professor LeRoy A. Woodward for making the electron-microscope photographs, to Mr. P.T. Bankston for his assistance in the preparation of the preliminary manuscript, to Dr. Karl M. Murphy for carefully editing the final manuscript, and to the Georgia Kaolin Company of Dry Branch, Georgia for kindly donating the clay used in this study.

The author also wishes to express his appreciation to the Shell Oil Company for making this work possible through the award of the Shell Fellowship in Chemical Engineering during the academic years of 1949-50 and 1950-51.

TABLE OF CONTENTS

Page
ACKNOWLETGEMENT iv
SUMMARY ∇
Chapter
I INTRODUCTION 1
II THEORETICAL BACKGROUND 5
III EXPRRIIENTAL EQUIFMENT 35
IV MATERIAL 39
V EXPERIMENTAL PROCEDJRE 40
VI DISCUSSION OF RESULTS. 44
VII CONCLUSIONS 58
NOMENCLATURE 59
REFERENCES 66
LIST OF TABLES. 69
LIST OF FIGURES 106
APPENDICES. 143

CO-CURRENT TURBULENT-TURBULENT FLOW OF ATR AND WATER-CLAY SUSPENSIONS IN HORIZONTAL PIPES

Henderson Crawford Ward

SUMMARY

Although progress has been made recently in the fields of cos current gas-Newtonian liquid flow and turbulent flow of non-Newtonian materials, relatively little is known theoretically about these complex types of flow. For this reason, results of studies in these fields cano not be applied with certainity to the co-current flow of a gas and a non-Newtonian material, a type of flow which occurs in many industrial operations and for which no data are available. An investigation of this type of flow was therefore considered advisable.

In the present study, air was used as the gas phase and four concentrations of kaolin clay in water were used as the nonoNewtonian materials. Two of these suspensions behaved as pseudoplastics, while the other two exhibited Bingham plastic properties. Viscosity determinations were made with a Brookfield Synchromlectric and a capillary tube viscometer.

Pressure-drop measurements were made in $3 / 4,1$ and $11 / 2$ inch horizontal pipes for each of these suspensions flowing alone and cocurrently with air. Suspension flow rates were varied from 0.15 to 16 pounds per second, while air flow rates were varied from 0.0015 to 0.025 pounds per second. The majority of the tests were conducted in the
turbulent flow region. The characteristics of the main centrifugal pump used to circulate the suspensions through the system were determined at each solids concentration.

From the data obtained on each of the suspensions in the capillary tube viscometer and the three test sections, the flow curves of each were determined in both the laminar and turbulent flow regions. In the turbulent flow region, the usual Newtonian friction factor-Reynolds number relationship was found to be valid, confirming the work of previous investigators in this field. However, no significance could be found for the "turbulent viscosity" which results from using this relationship.

The pressure-drop data obtained on the co-current flow of air and these suspensions in the turbulent-turbulent region was correlated within the range of ± 20 percent by the $\mathbf{T} \mathbf{X}$ method of Lockhart and Martinelli。

CHAPTER I

INTRODUCTION

Although investigations of the characteristics of two fluid phases flowing with a common interface were begun a century ago, it has been only recently that progress has been made in this field. This progress has been the result of the more intensified research of the past ten years necessitated by the increasing degree in which industry is using the medium of two-phase flow for chemical reactions and for the transfer of heat or mass between the phases. That progress has been slow in this field is readily understandable when one considers that the number of variables involved is more than twice those in singlephase flow, a field itself which still presents many unanswered problems. An excellent sumary of recent progress in gas-liquid flow is presented by Bergelin (1).

In all the investigations to date, air has been used as the gas phase, and Newtonian fluids such as water, benzene and hydrocarbon oils used as the liquid phase. Most of the data available (2, 3, 4, 5, 6, 7, 8) are for co-current flow of the two phases in horizontal and vertical cylindrical ducts, ranging in size from capillary tubes to 2 inch pipes, without mass exchange between the phases. However, some data are available (1) for the case when mass exchange occurs between the phases.

There are four possible combinations of viscous-turbulent conditions in gas-liquid flow, and a mobile boundary exists between the phases
which may vary, causing the flow channel of each phase to change as well as the channel roughness to vary as interfacial waves form. If gas is added in increasing amounts to a horizontal pipe running full of liquid, the five distinct types of flow which occur successively are: 1) bubble flow in which the gas flows along the top of the pipe in the form of bubbles at approximately the same velocity as the liquid, 2) stratified flow in which the gas flows along the top of the pipe and the liquid along the bottom with a smooth interface between, 3) wave flow which is similar to stratified flow except that the interface is disturbed by waves, 4) slugging flow in which occasional frothy slugs pass rapidly through the pipe, and 5) annular flow in which the liquid flows in a film around the pipe wall and the gas flows through the central core at a high velocity.

The transition from one type to another is not abrupt and the point of wave formation is influenced by pipe length, entrance effects and external vibrations and pulsations. At the point of wave formation, rapid periodic fluctuations in pressure occur which decrease in frequency and increase in amplitude when slugging flow begine. As the gas velocity is further increased, the slugging type of flow gradually changes to annular with the pressure fluctuations increasing in frequency and decreasing in amplitude. In the regions of slugging and annular flow, quantities of liquid are carried by the gas phase. The effect of this entrainment on the pressure drop is now under investigation at the University of Delaware.

During upward co-current motion in vertical tubes, bubble, slugging and annular flow occur while during downward flow only
slugging and annular flow are possible. Since countercurrent flow is governed by the available hydraulic gradient, the types of flow in this case are rather limited and few data are available.

The only general correlation available at the present time for the determination of the pressure drop during co-current twophase flow is that of Lockhart and Martinelli (8), the accuracy being within the range of ± 40 per cent. However, Bergelin and Gazely (9) have shown that this correlation is not applicable to stratified flow and that it predicts pressure drops up to 100 percent above the experimentally determined ones.

In many cases of industrial importance, particularly in chemical reactors, the co-current flow of a gas and a non-Newtonian material occurs, and at the present time no data are available for such a system. Most non-Newtonian materials are generally made up of two or more phases and their flow properties are therefore influenced by a number of factors such as particle shape, size, weight, distribution, and surface properties of the different phases. Much progress has been made recently in the study of non-Newtonians and excellent reviews of this progress are presented by Alves (10) and Alves, Boucher and Pigford (11).

Investigations by Babbitt and Caldwell on clay and sewage suspensions (12), by Filhelm, Wroughton and Loeffel on cement rockwater suspensions (13), by Alves, Boucher and Pigford on lime-water and titanium dioxide-water slurries (11), by Binder and Busher on grainwater suspensions (14), by Hinding, Baumann and Kranich on ($\mathrm{FR}-\mathrm{S}$ latices (15), and others have indicated that in general non-Newtonians in
the turbulent flow region behave as Newtonians, that is they exhibit a relatively constant viscosity.

Thus, one might suspect that in the turbulent flow region, the correlation of Lockhart and Martinelli would apply to the co-current flow of a gas and a non-Newtonian material, unless the introduction of a gas phase would so alter the flow properties of the non-Newtonian material that its viscosity would no longer remain constant or would cause other changes not accounted for in the correlation. Since the theories of neither field are far enough developed to provide a quantitative answer, the only recourse is to experiment. Therefore, is was felt that an investigation of the flow properties of a gas and nonm N ewtonian material in the turbulent flow region would not only extend the range of Lockhart and Martinelli's correlation, if applicable to this case, but would also provide additional information on the turbulent flow of a non-Newtonzan material.

For these reasons, the present investigation was undertaken on the system air and water-clay suspensions, the latter being a typical non-Newtonian material and readily available. The experimental Work consisted of the pressure-drop measurements in three different size pipes of air and water-clay suspensions of various concentrations and the determination of the viscosity and various physical properties of the suspensions. A centrifugal pump was chosen to circulate the material through the system and tests were conducted on its performance to determine the effect of solids concentration on its characteristics.

I Viscosity

Flow curves.-0The basis for the determination of the flow properties of a given material is its behavior when subjected to various shearing rates and shearing stresses in the laminar region. A plot of this behavior is termed the flow curve, and the type of flow curve exhibited serves as the criterion for classifying the material as a Newtonian or a nonNewtonian. The flow curve of a Newtonian material is a straight line passing through the origin, as illustrated by curve I in figure la, and the inverse slope of this line multiplied by the conversion factor g_{c} is defined as the coefficient of viscosity by the following rheological equation:

$$
\begin{equation*}
\mu=g_{c} \frac{s}{R_{s}} \tag{1}
\end{equation*}
$$

where S is the shearing stress and \dot{R}_{s} is the shearing rate, the dot denoting differentiation with respect to time. The conversion factor g_{c} appears since engineering units (pounds-feet-seconds) are used throughout this discussion. It should be noted that in this case the viscosity is independent of the shearing rate and shearing stress and is therefore a constant, this discussion being limited to constant temperature and pressure conditions.

The flow curves of non-Newtonian materials, limited in this discussion to solid-liquid suspensions and to soft plastic solids, neither exhibiting elastic properties, are not straight lines passing through the origin. of the infinite number of types of curves remaining, only that of a straight line with a positive slope and a positive intercept on the shearing stress axis has been found by rheologists to characterize in true rheological properties an ideal material which some actual materials closely approximate. Such an ideal material is called a Bingham body (after its founder E.C.Bingham) or plastic and is represented by curve II in figure la. The intercept on the shearing stress axis is termed the gield value, δ, since the material will not start to flow until the applied stress exceeds this value. The product of g_{c} and the inverse slope of the line is defined as the coefficient of ridigity by the following rheological equation:

$$
\begin{equation*}
\eta=g_{c} \frac{S-\delta}{\dot{R}_{s}} . \tag{2}
\end{equation*}
$$

At this point it should be emphasized that equations (1) and (2) are true rheological equations and, in order to convert them to instrumental equations, appropriate substitutions must be made for the shearing rate and stress. Since, as will be shown later, many materials are neither Newtonians or Bingham plastics, our definition of a Plow curve must be generalized so that the laboratory data of all materials may be compared on a similar basis when obtained in the same sort of apparatus. Naturally it would be desirable to be able to reduce the data obtained in all different sorts of apparatuses to the same basis.

However, as this is not possible at the present time, it is necessary to accept the former procedure and introduce the concept of consistency which is, quoting Reiner (16), "that property of a material by which it resists a permanent change of shape and is defined by the complete force-flow relation." This force-flow relation is given by the cone sistency curve of the material under consideration and is determined by plotting the laboratory data in such a way that the dimensions of the apparatus are not a factor. The quantities M and N will be termed "consistency variables" and the consistency curve will be referred to as the "flow curve" in the following discussion.

In addition to Bingham plastics, the following general types of non-Newtonian suspensions are known to exist: (1) pseudoplastic, (2) generalized Bingham plastic, (3) dilatant and (4) thixotropic. A brief description of each type follows:
(1) A typical flow curve of a pseudoplastic material is given by curve I in figure $\mathbf{l b}$, and curve II of the same figure represents what Reiner (16) calls a generalized Newtonian liquid. Both curves begin at the origin and are identical up to the point (x, y) where curve I. approaches an asymptote having a positive slope and intercept on the x axis while curve II, after passing through a point of inflection, approaches an asymptote which commences at the origin. Both curves have a tangent line at the origin whose inverse slope multiplied by the conversion factor g_{c} represents the viscosity at zero rate of shear, μ_{o}, and gives the lower boundary of the apparent viscosity. The product of g_{c} and the inverse slope of the asymptote of curve I has been called by Alves (10, 11), Williamson (17) and Winding, Baumann,
and Kranich (15) the limiting viscosity at infinite rate of shear, μ, ∞, although it would seem more in keeping with the assumed analogy to a Bingham plastic to use the term "rigidity" instead of "viscosity." The product of g_{c} and the inverse slope of the asymptote to curve II is truly the limiting viscosity at infinite rate of shear, μ_{∞}. Whether curves I and II are identical, with curve I not determined at high enough rates of shear, is not certain, but this appears to be the case for surely the apparent viscosity cannot decrease below that of the dispersion liquid or become zero.
(2) Curve II in figure 2a, typical of a generalized Bingham plastic material, begins at some point on the x axis, denoted by δ and called the yield value, increases monotonically and approaches an asymptote of positive slope and intercept on the x axis. The inverse slope of this asymptote multiplied by g_{c} gives the coefficient of rigidity at infinite rate of shear.
(3) Referring to curve I in figure 2a, typical of a dilatant material, it can be observed that the apparent viscosity increases with increasing rates of shear.
(4) The curves in figure 2b are typical of a thjxotropic material as obtained in a rotational type viscometer. The curve $A B$ is the "upcurve" and the curve CA is the "downcurve" and the area of the loop ABC, termed the "hysteresis" loop, indicates the amount of thixotroy.

As Alves, Boucher and Pigford (11) point out, most solutions and suspensions behave as Newtonians at low concentrations but change to one of the non-Newtonian types when the concentration reaches a certain critical value. Further increases in coneentration may cause
additional changes in the type of non-Newtonian properties exhibited. Nature of viscosity.--Viscosity has long been recognized as one of the most Pundamental properties of a fluid, being that property by which the layers of the fluid resist motion either relative to themselves or to the walls of a containing vessel. Although none of the many theories and explanations (16--22) advanced for viscosity have been completely successful, the following factors are known to have an effect: particle size, shape, density, distribution, surface properties of the phases, temperature, and pressure. In the case of a simple liquid, the particles are the molecules themselves and the following simplified picture (22) offers an explanation of the viscosity. Due to the short mean free paths between molecules in a liquid, the frequency of collisions is high as the molecules move with their translational energy of $3 / 2 \mathrm{RT}$. As these collisions occur between molecules in neighboring filaments of flow in streamline motion, there is a net dissipation of directed energy into undirected energy which is the friction of viscous flow. If strong interlocking fields of force exist between the molecules, that is they are polar, there is a tendency toward "sticking" on collision and consequently a greater slipping frictional loss between the filaments.

With increase in molecular weight occurs a corresponding increase in molecular surface and attractive forces, the intensity of the surface forces per unit area being approximately constant, and thus an increase in viscosity results. However, since the attractive forces are not great enough to produce a connected structure, the layers of the liquid are able to move relative to each other without
causing any internal rupture in the system and, as the molecules are not elongated enough to become orientated or aligned during flow, it is reasonable to assume that the rate of shear is proportional to the stress. Thus all simple liquids should be Newtonians which, according to Reiner (16), is the case. This picture, if correct, offers a simple explanation for the change of viscosity with temperature at constant pressure. As the temperature is increased at constant pressure, the slight increase in the volume of the liquid greatly reduces its internal pressure because of the influence of molecular distance on the attractive forces and this effect being greater than the effect of increased translational energy thereby produces a decrease in viscosity. By the same reasoning one would expect the viscosity to increase with increase in pressure although more slowly than with temperature. of the many empirical equations developed to relate the variation of the viscosity of pure liquids with temperature and pressure, Lewis, Squires and Broughton (22) recommend the following equation proposed by Andrade as probably being the best available:

$$
\begin{equation*}
\mu(v)^{1 / 3}=\mathrm{Be}^{\mathrm{c} / \mathrm{vT}} \tag{3}
\end{equation*}
$$

where v is the specific volume at the absolute temperature $\mathrm{T} ; \mathrm{B}$ and C are constants characteristic of each liquid, and μ is the viscosity in poise.

When suspensions of either solid or liquid particles in a simple liquid are considered, it is found that by picturing the particles as being arranged in various kinds of aggregates and thereby giving to the system a structure, many of the various types of behavior of these
materials can be explained. At low concentrations of suspended matter, one would expect approximate Newtonian behavior since the particles or flocculates (particles held together by surface forces) are separated by relatively large distances and shear can take place mainly in the clear Newtonian spaces. However, unless the particles are spherical, some departure from Newtonian behavior would be expected since the particles disturb the streamlines of flow, the effect being greater at low rates of shear. In practice many dilute suspensions do exhibit approximate Newtonian behavior and their viscosity can be determined by Einstein's equation derived for spherical particles:

$$
\begin{equation*}
\mu_{\text {soln. }}=\mu_{\text {solv. }}\left(1+2.5 c_{v}\right) \tag{4}
\end{equation*}
$$

where C_{v} is the volume concentration of the dispersed phase. Defining the terms "relative viscosity," "specific viscosity" and "intrinsic viscosity" as did Reiner, Staudinger and Kraemer respectively (16):

$$
\begin{gather*}
\mu_{\text {rel. }}-\frac{\mu_{\text {soln }}}{\mu_{\text {solvo }}} \tag{5}\\
\mu_{\text {spec. }} \frac{\mu_{\text {soln }}-\mu_{\text {solvo }}}{\mu_{\text {solvo }}}=\mu_{\text {rel. }}-1 \tag{6}\\
\mu_{I}=\frac{\mu_{\text {spec }}}{c_{v}} \tag{7}
\end{gather*}
$$

a second approximation is given by Mark's equation

$$
\begin{equation*}
\mu_{I}=2.5+14.1 c_{v} \tag{8}
\end{equation*}
$$

At higher concentrations of suspended matter, the system may behave as any one of the types of non-Newtonians discussed earlier.

Pseudoplastics are usually composed of particles of submicroscopic size which may be flocculated to some extent and which undergo Brownian motion. At increasing shearing rates, the particles tend to become orientated in the direction of flow causing, if the particles are not spherical, a decrease in viscosity. However, this orientation is lessened or possibly exceeded by the Brownian motion in which case the viscosity remains constant, although in general an equilibrium is set up between these actions with a decrease in viscosity resulting. Stresses are set up in the particles through reaction forces occurring because of their interference with the deformation of the liquid which may tend to break up the flocculates, elongate the particles, actually break the particles and set the particles in vibration if they are elastic, effects which, except the last, tend to decrease the viscosity. If the particles are such that adsorption of the liquid has occurred, this layer may become progressively sheared off at increasing rates of shear causing the viscosity to decrease. Another factor of importance is that of steric immobilization as discussed by Kraemer and Williamson (16), who picture the particles as forming either large molecules with the liquid immobilized in its branches and rings, micelles, ordered groups of micelles, or aggregates of particles. These may become deformed or ruptured at increasing rates of shear thereby reducing the viscosity by releasing the entrapped liquid and permitting orientation of the particles in the line of flow. As pointed out earlier, there are conflicting ideas about what happens at very high rates of shear. of course if the particles actually break or steric immobilization occurs, the flow curve up and flow curve down will be different.

Dilatant materials were first observed and explained by Reynolds (16, 19) in 1885 and are loose suspensions which, on standing, settle into a minimum of voids. As the shearing rate is increased, the volume of voids begins to dilate or expand and the result is that, due to an insufficiency of liquid to fill them, the viscosity increases. As soon as the shearing action is stopped, the material reverts to its original state。

Bingham plastics are usually composed of microscopically visible particles suspended in a liquid medium, the particles being highly flocculated and giving a continuous structure to the system. The material undergoes an elastic deformation under increasing stress until the yield value is exceeded and then begins to flow with a solid plug, whose radius depends on factors to be discussed later, at the center of the tube. If the structure is such that it is not broken down or orientated during flow, the material is a true Binoham plastic, whereas if these effects as well as some of those mentioned in the discussion of pseudoplastics occur, the material exhibits a changing coefficient of rigidity and is a generalized Bingham plastic.

The term "thixotropy" is unfortunately interpreted in many different ways. To avoid any possible confusion it will be defined according to Green (19) as being the property possessed by some materials of becoming fluid when agitated but returning reversibly to their original state on standing. Thixotropic materials possess flocculated structures whose breakdown is a function of time as well as rate of shear, and the rotational type of viscometer is ideal for studying this type of material. When up and down curves of these materials are
obtained from this type of instrument, an indication of the amount of thixotropy is given by the area of the "hysteresis" loop, no loop indicating no thixotropy and a large loop indicating a considerable amount. The limited data available on the effect of temperature and pressure on the viscosity of non-Newtonians appear to indicate that their effect is qualitatively the same as on the viscosity of the dispersing phase.

Methods of Measurement

Tube instrument.--One type of apparatus used to determine the flow curves of Newtonian and non-Newtonian materials is the pipe-line vis. cometer, which consists of a known length of pipe, ranging in size from capillaries to plant-scale pipes, over which the pressure drop is determined at various flow rates. Common means of forcing the material through the system are constant liquid heads, pumps, and controlled gas pressures. The rate of shear, in this case, is given by the velocity gradient

$$
\begin{equation*}
R_{s}=-\left(\frac{d u}{d r}\right) . \tag{9}
\end{equation*}
$$

The steady laminar flow of Newtonian fluids in this type of apparatus was first investigated by Hagen (1839) and Poiseuille (1840) and the results of their work are given by this equation, known as the HagenoPoiseuille law:

$$
\begin{equation*}
\Delta P_{F}=\frac{128 \mu Q L}{g_{c} \pi D^{4}} \tag{10}
\end{equation*}
$$

If

$$
\begin{equation*}
y=\frac{32 Q}{\pi D^{3}} \tag{11}
\end{equation*}
$$

is plotted against

$$
\begin{equation*}
x=\frac{D \Delta P_{F}}{L I}, \tag{12}
\end{equation*}
$$

the dimensions of the apparatus do not enter and the inverse slope of the resulting straight line passing through the origin is numerically equal to the coefficient of viscosity divided by the conversion factor g_{c}. As mentioned earlier, for this reason the variables x and y are called consistency variables. Thus, data obtained on the same fluid in tubes of different length and diameter will fall on the same line.

In this case, y and x represent the shearing rate and stress respectively at the tube wall.

For the steady laminar flow of Bingham plastics in cylindrical tubes, the following equation derived by Buckingham (1921) and independently by Reiner (1926) and known as the Buckingham-Reiner equation is applicable if no slippage occurs at the tube wall

$$
\begin{equation*}
Q=\frac{m^{4} \Delta \mathrm{P}_{\mathrm{F}} \mathrm{~g}_{\mathrm{c}}}{128 \mathrm{n}}\left[1-\frac{4}{3}\left(\frac{\delta 4 L}{D \Delta P_{F}}\right)+\frac{1}{3}\left(\frac{\delta 4 L}{D \Delta P_{F}}\right)^{4}\right], \frac{D P_{\mathrm{F}}}{4 L} \geq \delta \tag{13}
\end{equation*}
$$

This becomes, in the same consistency variables y and x of equations (11) and (12),

$$
\begin{equation*}
y=\frac{g_{c} x}{\eta}\left[1-\frac{4}{3}\left(\frac{\delta}{x}\right)+\frac{1}{3}\left(\frac{\delta}{x}\right)^{4}\right], x \geqq \delta \tag{14}
\end{equation*}
$$

The radius b and the velocity U_{b} of the central "plug" are respectively

$$
\begin{equation*}
b=\frac{2 L \delta}{\Delta \mathrm{P}_{\mathrm{F}}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{U}_{\mathrm{b}}=\frac{\Delta \mathrm{P}_{\mathrm{F}} \mathrm{~g}_{\mathrm{c}}}{4 \mathbb{T}(\mathrm{R}}(\mathrm{b})^{2} \tag{16}
\end{equation*}
$$

In this case x represents the shearing stress at the tube wall and y , though not representing the rate of shear at any point in the tube, is of ten referred to as "the rate of shear" or the "mean rate of shear" in analogy to its significance in Newtonian flow. A plot of equation (14) is shown in figure 3a where it is graphically illustrated that the curve has no truly linear portion. However, for large values of δ / x, the curve may be approximated by its asymptote

$$
\begin{equation*}
y=\frac{e_{c}}{n}\left(x-\frac{4}{3} \delta\right) \tag{17}
\end{equation*}
$$

which has a slope of g_{c} / η and a x intercept of $4 / 3 \delta$. Babbitt and Caldwell (23) have shown that the resulting error is 5.9 percent when $\delta / x=0.5$ and 1.8 percent when $\delta / x=0.4$. For cases where an approximation is not desirable, recourse must be made to equation (1 $1 L_{1}$). By introducing several dimensionless quantities, McMillen (24) in his very thorough analysis of this equation has shown how the calculations may be greatly simplified. He presents these dimensionless quantities in graphical form, and has demonstrated by experiment that entrance and contraction losses for plastic materials are much greater than for
ordinary liquids. Hedström (25) has presented some of McMillen's dimensionless quantities in nomogram form for increased accuracy in computations.

For the steady laminar flow of pseudoplastics in cylindrical tubes, no true rheological equation exists at present, although many have been proposed. Rejner (16), assuming that

$$
\begin{equation*}
\phi=F\left(S^{2}\right) \tag{18}
\end{equation*}
$$

where \varnothing is the coefficient of fluidity as defined by

$$
\begin{equation*}
\phi=\frac{\dot{\mathrm{R}}_{s}}{\mathrm{~g}_{\mathrm{c}} S} \tag{19}
\end{equation*}
$$

has, by a power series development, arrived at

$$
\begin{equation*}
\not \emptyset=\varnothing_{0}+\sum_{n=1}^{n} \gamma_{2 n} s^{2 n} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{2 n}=\frac{F^{(n)}(0)}{n!} \tag{21}
\end{equation*}
$$

Introducing the consistency variables y and x of equations (11) and (12), the final result is

$$
\begin{equation*}
\frac{y}{g_{c}}=\emptyset_{0} x+\sum_{n=1}^{n} \frac{2}{n+2} \gamma_{2 n} x^{2 n+1} \tag{22}
\end{equation*}
$$

Proceeding along more theoretical lines, Reiner defines a coefficient of structural stability by

$$
\begin{equation*}
\chi=\frac{\emptyset_{\infty}-\emptyset}{\frac{d \varnothing}{d\left(s^{2}\right)}} \tag{23}
\end{equation*}
$$

which leads to the rheological equation

$$
\begin{equation*}
\phi=\phi_{\infty}-\left(\phi_{\infty}-\phi_{0}\right) e^{-\frac{s^{2}}{x}} \tag{2}
\end{equation*}
$$

which upon integration and introducing y and x from equations (11) and (12) gives

$$
\begin{equation*}
\frac{y}{g_{c}}=x \phi_{\infty}-\frac{2 y^{2}}{x^{3}}\left(\phi_{\infty}-\phi_{0}\right)\left[1-\frac{x^{2}}{x} e^{-\frac{x^{2}}{\psi}}-e^{-\frac{x^{2}}{\psi}}\right] . \tag{25}
\end{equation*}
$$

Williamson (17), considering part of the power as being necessary to maintain laminar flow and the remainder as deforming and disintegrating the aggregrates of particles, derived an equation for flow between parallel plates. However, the form of this equation has been found to fit the consistency curves of many materials (15) flowing in cylindrical tubes and is therefore presented here as an empirical equation

$$
\begin{equation*}
x=\frac{\delta^{\prime}}{d+y} y+\frac{\mu_{\infty}^{\prime} y}{g_{c}} \tag{26}
\end{equation*}
$$

where δ^{\prime} and μ_{∞}^{\prime} are the intercept and inverse slope respectively of the asymptote of curve I in figure 1 b 。

For the steady laminar flow of a generalized Bingham plastic in a cylindrical tube, Reiner (16) assumes that the coefficient of rigidity η as defined by

$$
\begin{equation*}
\eta=g_{c} \frac{(S-\delta)}{R_{s}} \tag{27}
\end{equation*}
$$

can be expressed as

$$
\begin{equation*}
\frac{1}{n}=F\left[(S-\delta)^{2}\right] \tag{28}
\end{equation*}
$$

This equation, when developed into a power series, gives

$$
\begin{equation*}
\frac{1}{n}=\sum_{n=0}^{n} \gamma_{2 n}(s-\delta)^{2 n+1} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{2 n}=\frac{F^{(n)}(0)}{n!} \tag{30}
\end{equation*}
$$

and becomes in terms of our same consistency variables

$$
\begin{gather*}
\frac{y}{g_{c}}=\sum_{n=0}^{n} \frac{2 \gamma_{2 n}}{n+1} x^{2 n+1}\left(1-\frac{\delta}{x}\right)^{3 n+2} \tag{31}\\
{\left[1-2 \frac{1-\frac{\delta}{x}}{2 n+3}+2 \frac{\left(1-\frac{\delta}{x}\right)^{2}}{(2 n+3)(2 n+4)}\right], x \geq \delta .}
\end{gather*}
$$

Typical flow curves of a thixotropic material flowing laminarly in different size pipes of different lengths are shown in figure 3b and the effect of varying length and diameter are indicated on the figure.

Schofield and Scott Blair (26) point out that y should be a function of x only if the following conditions prevail: 1) that each particle of the material moves in a straight line, at a constant
velocity, parallel to the axis of the tube; 2) there is no slip at the wall; 3) the velocity gradient, at any point, is a function only of the shearing stress at that point. They have developed, using these cono ditions, the equation

$$
\begin{equation*}
y=\frac{8 g_{c}}{x^{3}} \int_{0}^{x} S \int_{S}^{x} F(S) d S . d S \tag{3}
\end{equation*}
$$

This equation, then, tends to summarize the results presented thus far, for they have all been based on the above three assumptions.

That these assumptions are not alwyys met is evidenced by the experimental facts that many soft plastic materials begin to flow in small tubes before their yield value is exceeded and many substances flow relatively faster in small tubes than in large ones, the effect becoming greater at higher rates of shear. In order to account for the first discrepancy, Buckingham (20) reasoned that the flow of a plastic material at stresses less than the yield stress was caused by a thin fluid lubricating envelope next to the tube wall which permitted the material to slide through the tube as a plug and proposed that equation (13) be modified in the following way

$$
\begin{gather*}
y=\frac{8 \varepsilon x g_{c}}{\mu_{W}^{D}}, \quad x \leqq \delta \\
y=\frac{x g_{c}}{\eta}\left[1-\frac{4}{3} \frac{\delta}{x}+\frac{1}{3}\left(\frac{\delta}{x}\right)^{4}\right]+\frac{8 \varepsilon x g_{c}}{\mu_{W}^{D}}, \quad x \geq \delta \tag{33~b}
\end{gather*}
$$

where ε is the mean thickness of the fluid film and μ_{W} is its viscosityo This type of slippage is illustrated in figure La. Howevor, Scott Blair and Crowther (27) found that for clays and soil pastes it was necessamg,
to explain their data over a fairly wide range, to introduce a yield value for the fluid film since it was not completely free and therefore not a true fluid. They proposed that

$$
\begin{gather*}
y=\frac{8 \varepsilon\left(x-\delta^{\prime}\right) g_{c}}{\mu_{W}}, \quad x \leq \delta \tag{34a}\\
y=\frac{x g_{c}}{\eta}\left[1-\frac{4}{3} \frac{\delta}{x}+\frac{1}{3}\left(\frac{\delta}{x}\right)^{4}\right]+\frac{8 \varepsilon\left(x-\delta^{\prime}\right) g_{c}}{\mu_{W} D}, \quad x \geq \delta \tag{34b}
\end{gather*}
$$

Referring to figure $4 a$, it can be noted that this type of slippage would not occur until a definite stress δ^{\prime} was reached, where $\delta^{\prime}<\delta$.

The spread of the flow curves, as obtained in different size capillaries, at higher rates of shear has been termed the "sigma phenomenon ${ }^{n}$ by Schofield and Scott Blair (26) and it is illustrated in figure 4b. Although various explanations have been offered for this phenomenon ($20,21,26,28,29$), how to correct for it or to what it is due is not fully understood. If slippage is the cause of the spread, several methods of correction are available. Mooney (30), by assuming slippage to occur entirely at the wall and to be a function of the shearing stress only, has shown that

$$
\begin{equation*}
\frac{\partial\left(\frac{8 Q}{\pi D^{3}}\right)_{x}}{\partial\left(\frac{1}{R}\right)_{x}}=x \beta g_{c}=U_{a} \tag{35}
\end{equation*}
$$

where β is the coefficient of slip as defined by the second equation of (35) and that

$$
\begin{equation*}
\frac{8 Q_{\phi}}{\pi D^{3}}=\frac{y_{\phi}}{4}=\frac{g_{c}}{x^{3}} \int_{0}^{x} \phi S^{3} d S \tag{36}
\end{equation*}
$$

where Q_{\varnothing} is the efflux due to fluidity alone, \varnothing being the fluidity as defined by equation (19). Differentiation of equation (36) with respect to x yields

$$
\begin{equation*}
g_{c} x \emptyset_{W}=\left(\dot{R}_{s}\right)_{W}=\frac{3}{4} y_{\emptyset}+\frac{x}{4} \frac{d y_{\phi}}{d x} . \tag{37}
\end{equation*}
$$

Thus Mooney's method for correcting for slip in the tube instrument is to plot the data obtained in various diameter tubes as $8 Q / \pi D^{3}$, y of equation (11) divided by 4 , against $1 / R$ at constant values of x, the slopes of the resulting straight lines being, by equation (35), $x \beta g_{c}$ at those x values. From a plot of $x \beta g_{c}$ versus x, values of y_{ϕ} can be obtained by subtracting values of $x \beta g_{c} / R$ from corresponding values of y / h and a plot of y_{\emptyset} versus x constructed. From this plot, the values at the tube wall of the fluidity, \varnothing_{W}, and rate of shear, $\left(R_{s}\right)_{W}$, can be obtained by using equation (37). Reiner (16) has assumed that slippage occurs due to a thin layer of fluid existing at the wall and has presented formulas for Bingham plastics, generalized Newtonians and generalized Bingham plastics with wall effects, as he terms slippage, which combine the calculation of fluidity and wall effects. Due to their length and complication in use, they are not presented here。

Rotation viscometer:--Another type of instrument commonly used to determine the various rheological properties of botb Newtonian and nonNewtonian materials is the rotation viscometer. In this instrument the material is contained between two comaxial cylinders, one fixed and the other rotating, and the torque, T_{0}, that is required to maintain the angular velocity $\hat{\omega}$ of the rotating cylinder constant against the
viscous resistance of the material is measured. Since in steady laminar flow, the material between the cylinders is in equilibrium, the couples, produced by the shearing stresses, acting on the convex and concave surfaces of each lamina of the material are of equal magnitude but act in opposite directions. As the same couples act on every lamina, they are constants, and therefore the torque

$$
\begin{equation*}
T_{0}=2 \pi h r^{2} S=\text { constant } \tag{38}
\end{equation*}
$$

where h is the height of the cylinder which is jmmersed in the material. The rate of shear is given by

$$
\begin{equation*}
\dot{\mathrm{R}}_{s}=r \frac{d \delta}{d r} \tag{39}
\end{equation*}
$$

© being the angular velocity of the material. Equations (38) and (39) are true for all types of materials.

For the steady laminar flow of a Newtonian fluid in a rotation viscometer, the following equations apply

$$
\begin{gather*}
\delta=\frac{\dot{\omega}_{i} R_{i}^{2}\left(\frac{R_{E}^{2}}{r^{2}}-1\right)-\dot{\omega}_{E} R_{E}^{2}\left(\frac{R_{i}{ }^{2}}{r^{2}-1}\right)}{R_{E}^{2}-R_{i}{ }^{2}} \tag{40}\\
T_{0}=\frac{4 \pi h \mu R_{i}^{2}}{g_{c}} \frac{\left|\dot{\omega}_{i}-\dot{\omega}_{E}\right|}{1-a} \tag{4I}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathfrak{a}=\left(\frac{R_{i}}{R_{E}}\right)^{2} \tag{42}
\end{equation*}
$$

Consistency variables 2 and W are

$$
\begin{align*}
& Z=\frac{2\left|\dot{\omega}_{i}-\dot{\omega}_{E}\right|}{1-a} \tag{43}\\
& W=\frac{T_{o}}{2 R_{i}^{2} \pi h} \tag{44}
\end{align*}
$$

In this case Z and W represent, at the internal cylinder wall, the rate of shear and shearing stress respectively.

For the steady laminar flow of Bingham plastics in a rotation instrument, Reiner and Riwlin (16) have developed the following equation when slippage and end effects are absent:

$$
\begin{equation*}
\frac{n}{\mathrm{E}_{\mathrm{c}}} \dot{\omega}_{i}=\frac{\mathrm{T}_{0}}{4 \pi \mathrm{hr}_{i}^{2}}(1-a)+\frac{\delta}{2} \ln a, \quad T_{0} \geqq \mathrm{~T}_{1}=2 \pi \mathrm{hR}_{\mathrm{E}}^{2} \delta \tag{45}
\end{equation*}
$$

Expressed in the consistency variables, Z and W, this equation becomes

$$
\begin{equation*}
z=\frac{g_{c}}{\eta}\left(w+\frac{\delta \ln a}{1-a}\right), \quad w \geqq w_{1}=\frac{\delta}{a} . \tag{46}
\end{equation*}
$$

A plot of this equation is shown in figure 5a. It is noted that it is a straight line beginning at W_{1}, whose inverse slope is η / g_{c}. The portion of the curve between the intercept δ on the W axis and W_{1} is curved, but a knowledge of its equation is unnecessary since by extrapolating the straight line of equation (46) to the W axis and calling the intercept W_{o},

$$
\begin{equation*}
\delta=\frac{W_{0}(a-1)}{\ln a} . \tag{47}
\end{equation*}
$$

Because of this linear relationship between Z and W, the rotation instrument has a decided advantage over the tube instrument in the study of Bingham plastics. It is worth noting, as Green (19) points out, that the length of the curvilinear portion of the curve can be decreased by decreasing ($R_{E}-R_{i}$), h, or both.

In the case of the steady laminar flow of pseudoplastics and generalized Bingham plastics in rotation instruments, Reiner's proposed rheological equations (20) and (24) for pseudoplastics lead to

$$
\begin{equation*}
\frac{z}{g_{c}}=\phi_{o} w+\sum_{n=1}^{n} \frac{1-a^{2 n+1}}{(2 n+1)(1-a)} \gamma_{2 n} w^{2 n+1} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z}{\mathrm{~g}_{c}}=\phi_{\infty} W-\frac{\left(\phi_{\infty}-\phi_{0}\right)(\pi \psi)^{1 / 2}\left[F\left(\frac{W}{x^{1 / 2}}\right)-F\left(\frac{W a}{x^{1 / 2}}\right)\right]}{2(1-a)} \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
F(t)=\frac{2}{\pi^{1 / 2}} \int_{0}^{t} e^{-t^{2}} d t \quad \text { (Gauss' error integral) } \tag{50}
\end{equation*}
$$

respectively, while equation (29) for generalized Bingham plastics leads to

$$
\begin{align*}
& \frac{Z}{g_{c}}=\frac{1}{1-a} \sum_{n=0}^{n} \gamma_{2 n} \delta^{2 n+1}\left[\sum_{m=0}^{2 n} \frac{1}{2 n+1=m}\right. \tag{51.}\\
& \left.\binom{2 n+1}{m}\left(\frac{w}{\delta}\right)^{2 n+1-m}\left(1-a^{2 n+1=m}+\ln a\right)\right]
\end{align*}
$$

for $W \geqq \delta / a$ and

$$
\begin{align*}
\frac{z}{g_{c}}= & \frac{1}{1-a} \sum_{n=0}^{n} \gamma_{2 n} \delta^{2 n+1}\left\{\sum_{m=0}^{2 n} \frac{1}{2 n+1-m}\right. \tag{52}\\
& \left.\binom{2 n+1}{m}\left[\left(\frac{W}{\delta}\right)^{2 n+1-m}-1\right\}-\ln \left(\frac{W}{\delta}\right)\right\}
\end{align*}
$$

for $\delta<W \leqq \delta / a$.
The rotational viscometer is particularly suitable for the investigation of thixotropic materials since the up and down curves as illustrated in figure 2 b can be obtained quickly。 Extensive work has been done on those materials by Green and Weltman (19) and equations are available for the hysteresis loop and the effect of time.

End effects have been studied by various investigators (11, 19) and various methods and equations have been devised to correct for them. Mooney (30) and Reiner (16), proceeding along the same lines as were discussed earlier for the tube instrunent, have developed methods for correcting for slippage effects.

From an engineering viewpoint in particular, it is highly desirable to be able to convert data obtained in rotational viscometers into tube flow curves and Alves, Boucher and Pigford (ll) have proposed a method, applicable in many cases, for accomplishing this which is presented in Appendix III.

Turbulent flow.osRelatively little is known at present about the turbulent flow of non-Newtonian materials in terms of the basic flow curve. The limited data available indicate that the viscosity of these materials is relatively constant in this region and that the relation between the Fanning friction factor and Reynolds number given by Nikuradse's equation,

$$
\begin{equation*}
\frac{1}{\mathrm{f}^{1 / 2}}=2.0 \log _{10}\left(\operatorname{Re} \mathrm{f}^{1 / 2}\right)-0.8 \quad \text { (smooth pipes) } \tag{53}
\end{equation*}
$$

which is vaiid for Newtonians is also applicable for non-Newtonians, at least as a good approximation. The pressure drop due to friction is calculated by the usual Fanning equation

$$
\begin{equation*}
\left(\frac{d P}{d L}\right)_{F}=\frac{\mathrm{fU}^{2} P}{2 g_{c} D} \tag{54}
\end{equation*}
$$

The curves in figure 5b are typical of a non-Newtonian material flowing in cylindrical tubes with the solid curve representing laminar flow and the dotted curves representing turbulent flow, the transition point moving down the laminar curve with increasing diameter. The turbulent viscosity, μ_{T}, can be obtained from a point on a turbulent flow curve by calculating the corresponding friction factor, f, then obtaining the Reynolds number, Re, from equation (53) and from this μ_{T} follows. If the turbulent flow curve is not available, Alves, Boucher and Pigford (11) suggest the use of the limiting viscosity, μ_{∞}, for pseudoplastics and the coefficient of rigidity for Bingham plastics with a resulting accuracy of ± 25 percent in pressure-drop calculations. As the relationship between the transition point and the Reynolds number is unknown at present, the usual practice has been to assume that the Newtonian transition point, $\mathrm{Re}=2100$, is valid for these materials also. However, Hedström (25) recently has, by dimensional analysis, shown for Bingham plastics in laminar flow that

$$
\begin{equation*}
\left(\frac{d P}{d L}\right)_{F} \cdot \frac{\mathrm{Dg}_{\mathrm{c}}}{\rho U^{2}}=\frac{F\left(\frac{\delta D g_{c}}{\eta U}\right)}{R e}=\frac{F(G)}{R \theta} \tag{55}
\end{equation*}
$$

and in turbulent flow that

$$
\begin{equation*}
\left(\frac{d \mathrm{P}}{\mathrm{dL}}\right)_{F} \cdot \frac{\mathrm{Dg}_{\mathrm{c}}}{\rho \mathrm{U}^{2}}=\mathrm{F}_{1}(\mathrm{Re}, \mathrm{G}) \tag{56}
\end{equation*}
$$

By utilizing some of the data of Wilhelm, Wroughton, and Loeffel (13) on cement rock suspensions, which he shows are Bingham plastics, he concludes that the usual f-Re relation for Newtonians, equation (53), is valid, approximately, for these materials. He then proposes that the critical Reynolds number is a function of G only and presents this relationship graphically as obtained from equations (55) and (56). This relationship is reproduced in Appendix VII, figure VIJ A - 3 .

II Co-Current Gas-Liquid Flow in Cylindrical Conduits
The mechanics of gasoliquid flow in cylindrical conduits is far from being understood at present. All theoretical attempts to analyze this complex system have been based on the treatment of each phase separately and have involved many assumptions. For any fluid flowing in the steady state through a distance $d \mathrm{~L}$, the continuity equation

$$
\begin{equation*}
\frac{d(u A P)}{d L}=0 \tag{57}
\end{equation*}
$$

and the mechanical energy balance for a system containing no pump

[^0]\[

$$
\begin{equation*}
\frac{1}{\rho} \frac{d p}{d L}+\frac{u}{g_{c}} \frac{d u}{d L}+\frac{g}{g_{c}} \frac{d h}{d L}+\frac{D F}{d L}=0 \tag{58}
\end{equation*}
$$

\]

are applicable to any streamline in the fluid stream and are independent of the boundary shape. For flow channels which are not circular, the usual procedure is to replace the diameter by the hydraulic diameter defined as

$$
\begin{equation*}
\mathrm{D}_{\mathrm{H}}=\frac{4 \text { Cross-sectional area }}{\text { Wetted perimeter }}=\frac{4 \mathrm{~A}}{\mathrm{p}} . \tag{59}
\end{equation*}
$$

However, in attempting to apply these equations to the gas and liquid phase separately, complications such as the determination of the respective flow channels, the effect of interfacial roughness, entrainment, hydraulic gradients and others arise.

Martinelli, Lockhart and coworkers at the University of California ($6,7,8$) by utilizing the following two basic assumptions; 1) that the frictional pressure drop in the liquid phase is equal to the frictional pressure drop in the gas phase and 2) that the volume of the liquid plus the volume of the gas at any instant is equal to the volume of the pipe have shown that

$$
\begin{equation*}
\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{\mathrm{TP}}={\frac{\Phi_{L}}{2}}_{2}^{\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{\mathrm{LP}}={\Phi_{\mathrm{G}}}^{2}\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{\mathrm{GP}}} \tag{60}
\end{equation*}
$$

$\left(\frac{\Delta P}{\Delta L}\right)_{T P}$ is the two-phase frictional pressure drop per unit length,
$\left(\frac{\Delta P}{\Delta L}\right)_{L P}$ and $\left(\frac{\Delta P}{\Delta \bar{L}}\right)_{G P}$ are the frictional pressure drops per unjt length that would occur if the liquid and gas phases were flowing alone in the pipe respectively, and Φ is a function of the quantity X defined as

$$
\begin{equation*}
X=\left[\frac{\left(\frac{\Delta P}{\Delta \mathrm{~L}}\right)_{\mathrm{LP}}}{\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{\mathrm{GP}}}\right]^{1 / 2} \tag{61}
\end{equation*}
$$

and the flow condition, laminar or turbulent, of each phase. In addition the volume fraction of the liquid phase, R_{L}, and of the gas phase, R_{G}, are shown to be functions of X alone and tentative criteria for transition from laminar to turbulent flow are proposed as superficial Reynolds numbers of 1000 and 2000 , < 1000 for viscous and >2000 for turbulent. The four flow mechanisms possible are turbulent-turbulent, viscousturbulent, turbulent-viscous, and viscous-viscous, the condition of the liquid phase being referred to first. This correlation was based on data obtained in vertical and horizontal pipes ranging in diameter from 0.586 inches to 1.017 inches for the coscurrent flow of air and the Newtonian liquids water, benzene, kerosene and various oils. The accuracy of the correlation is within the range ± 40 percent.*

Bergelin and Gazely (31), at the University of Delaware, proceed. ing under the same assumptions as did Martinelli and Lockhart, have derived equations similar to those of the California investigators for the cases of stratified and annular flow which predict lower pressure drops and fit their data better in the case of stratified flow. However, they pointed out that the difference in the data might be due to the type of entrance sections used and also that, since a hydraulic gradient exist in stratified flow, assumption (1) above is questionable. Jenkins (32) was able to correlate data obtained in annular flow within ± 40

[^1]percent by Lockhart and Martinelli's correlation but found that his data fell within ± 5 percent of the best line through each liquid rate thus indicating that some factor is not accounted for in the correlation. He also found Bergelin and Gazely's equation not applicable. The Delaware investigators also pointed out that the transition between each type of flow was accompanied by a change in the slope of the curve relating the pressure drop and flow rates of the phases, best shown by a plot of the gas-phase pressure drop versus the actual gas velocity at constant liquid rates.

Gazely (33), in the most fundamental study to date, has investigated interfacial shear and stability in stratified flow and has definitely shown that Lockhart and Martinelli's correlation is not applicable to such flow configurations. He outlines a stepwise mothod for predicting the pressure drop. However, since Lockhart and Martinelif's correlation predicts pressure drops higher than actually occur, he concludes that it is safe for design purposes. The transition point of the gas phase was shown to occur at a superficial Reynolds number of 3000 independent of the liquid rate while the liquid transition point was shown to occur at a superficial Reynolds number of $\mathbf{1 7 0 0}$ to 2200 depending on the condition of the gas phase, occurring at the lower value if the gas phase is turbulent. By applying the mechanical energy balance between two sections of the tube essuming a uniform velocity distribution, incompressible flow and approximating the shearing stresses at the wall and interface, he obtained

$$
\begin{gather*}
\frac{\mathrm{U}_{\mathrm{L} 1}^{2}-U_{L 2}^{2}}{2 g_{c}^{\Delta L}}-\frac{1}{\rho_{L}}\left(\frac{d P}{d L}\right)_{T P}-\left(1-\frac{\rho_{G}}{\rho_{L}}\right) \frac{d h}{d L}= \tag{62}\\
\frac{f_{W L} U_{L}{ }^{2} p_{L}}{2 g_{c} A_{L}}-\frac{f_{I L} \rho_{G}\left(U_{G}-U_{L}\right)^{2} C_{I}}{2 g_{c} P_{L} A_{L}}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{U_{G I}^{2}-U_{G 2}^{2}}{2 g_{c} \Delta L}-\frac{1}{\rho_{G}}\left(\frac{d P}{d L}\right)_{T P}=\frac{f_{W G} U_{G}^{2} p_{G}}{2 g_{c} A_{G}}+\frac{f_{I G}\left(0_{G}-U_{L}\right)^{2} C_{I}}{2 g_{c} A_{G}} \tag{63}
\end{equation*}
$$

for the liquid and gas phases respectively. The dimensionless friction coefficients are defined by

$$
\begin{gather*}
f_{W L}=\frac{S_{W L} g_{c}}{\rho_{I} U_{L}^{2}} \tag{64}\\
f_{W G}=\frac{S_{W G}{ }^{2} g_{c}}{\rho_{G} U_{G}^{2}} \tag{65}\\
\mathbf{f}_{I L}=\frac{S_{I L} 2 g_{c}}{\rho_{G}\left(U_{G}-U_{L}\right)^{2}} \tag{66}\\
f_{I G}=\frac{S_{I G} 2 g_{c}}{\rho_{G}\left(U_{G}-U_{L}\right)^{2}} \tag{67}
\end{gather*}
$$

and are indicative of the energy losses occurring at the pipe wall, subscript W, and interface, subscript I, respectively. By assuming that the liquid acted as a solid wall to the gas and that the gas flow
did not affect the liquid, he was able to approximate $f_{W G}$ and $f_{W L}$ by

$$
\begin{equation*}
\frac{1}{f_{W G} l / 2}=4.0 \log _{10}\left(\operatorname{Re}_{G}{ }^{\prime} f_{W G}{ }^{1 / 2}\right)=0.40 \tag{68}
\end{equation*}
$$

where $R e_{G}{ }^{\prime}$ is based on

$$
\begin{equation*}
D_{G}^{\prime}=\frac{4 A_{G}}{p_{G}+C_{I}} \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{r_{W L}^{1 / 2}}=4.0 \log _{10}\left(\operatorname{Re}_{W L} f_{W L}^{1 / 2}\right)-0.40 \tag{70}
\end{equation*}
$$

where $R e_{W L}$ is based on the hydraulic diameter of equation (59). He confirmed equations (68) and (70) by experiment in the case of turbulent flow and pointed out that a shape factor was apparently necessary in laminar flow.

With these assumptions, Gazely was able to obtain $f_{I G}$ and $f_{\text {WG }}$ from experimental data and he showed that the energy lost by the gas and gained by the liquid are equal in the case of a smooth interface but that the energy lost by the gas is greater than that gained by the liquid for a wavy interface, with the energy losses and transfer rates increasing in the latter case. The point of interfacial instability (point of rapid wave formation) was shown to occur at a relative velocity of ten to fifteen feet per second, being slightly dependent on the liquid depth, and was shown, by comparison with data on packed columns, to be the cause of "loading" in packed columns with the
"flooding" point being occasioned by the breaking of the interfacial waves.

Bergelin, Kegel, Carpenter and Gazely (3), in summarizing the work on comcurrent gas-liquid flow in vertical tubes at the University of Delaware, found their data to fall within a range of ± 30 percent of the results predicted by Lockhart and Martinelli's correlation. They proposed a tentative correlation, applicable to vertical tube condensers, relating the superficial friction factor and superficial Reynolds number of the gas phase, with the dimensional quantity $t_{W} \Gamma / t \rho$ appearing as a parameter. By using this correlation, they were able to predict the pressure drops obtained by Carpenter (34) during the condensation of water, ethanol, methanol, toluene and trichloroethylene inside vertical tube condensers with an average deviation of 19 percent.

GHAPTER III

EXPERIMENTAL EQUIPMENT

The general arrangement of the experimental apparatus used in the present study is shown in the diagramatic sketch of figure 6 and the photograph of figure 7 .

As can be seen from figure 6, air from a storage tank was passed through a reducing valve and a rotameter before entering the test section. The air in the storage tank, having a capacity of approximately 8 cubic feet, was maintained at a pressure between 90 and 120 psig by a 50 CFM compressor, which furnishes these laboratories with compressed air. Before entering and leaving the storage tank, the air was passed through glass wool filters to eliminate foreign matter. The reducing valve used was a Klipfel $3 / 8$ inch diaphragn type valve operated pneumatically. The air flow rate was controlled by means of valves located upstream from the rotameter. This instrument was a Schutte-Koerting number 6 rotameter and its calibration curve, furnished by the manufacturer, is given in Appendix V. The static temperature and pressure of the air were measured at the rotameter.

Again referring to figure 6, it can be seen that the suspensions were circulated through the system from storage tanks by two pumps. Both of these were open-impeller centrifugal pumps, the large one being an Ingersoll-Rand 1 CORVNL pump having a capacity of 75 GPM against a head of 120 feet while the recycle one was a Goulds size 10 pump
with a capacity of 50 GPM against a head of 50 feet. Each pump was fitted with a recycle line, and the rate of flow of the suspension was controlled by means of gate valves and measured gravimetrically in a 55-gallon drum. The upstream and domstream ends of the apparatus are shown photographically in figures 8 and 9 respectively. Each of the tanks used had a capacity of approximately 125 gallons and was equipped with water lines. The suction and discharge pressures of the large pump were measured and the power input to its motor was determined by a polyphase wattmeter having a range of $0-12$ kilowatts with a stated accuracy of 0.5 percent of full scale reading. The temperature of the suspension was measured in the downstream tank.

In order to reduce vibrations, the pipes were insulated from the pipe rack by strips of hard rubber. The entire system was checked for leaks before using by pressurizing to 50 psig and painting all joints with a soap solution.

Entrance section.--As this investigation was concerned with turbulent flow, an entrance section was chosen that would introduce the air into the center of the liquid stream and at the same time be different from other types used in previous investigations in order to provide additional data on such devices. Consequently, the entrance section as shown in figure 10 was used.
fest section.--In order to study the effect of diameter on the pressure drop, three different size test sections were used and, as it was desirable to have a smooth surface and to prevent contamination of the fluids by rust and scale, these sections were made of copper. Pipes of $3 / 4,1$, and $11 / 2$ inch nominal size were used and were arranged in
parallel, being connected to the remainder of the system through suitable pipe crosses and gate valves. A 5-foot glass observation section was attached to the domstream end of the $11 / 2$ inch pipe. For singlephase flow, 15 pipe diameters are usually suficient to eliminate entrance effects so that accurate pressure-drop measurements may be made, while 40 to 50 diameters are required for complete establishment of the velocity distribution. However, the number of diameters necessary to eliminate entrance effects is not known for two-phase flow, but it is certainly more than required for single-phase flow according to previous investigators in this field (32, 33). In order to have test sections of suitable length and at the same time provide adequate calming distances, pipes 20 feet in length were used and the length of each section was chosen so that 30 and 10 diameters were available on the up and downstream ends respectively for the elimination of entrance and exit effects.

Pressure taps.--All pressure tap installations were made by drilling a hole through the pipe wall the size of the inside diameter of $1 / 4$ inch pipe, then countersinking a hole equal to the outside diameter in which $1 / 4$ inch nipples $11 / 2$ inches long were placed and brazed into position. Precaution was taken to insure that the taps were in the same horizontal plane and all burrs were removed from the inside of the pipes by a file. Smaller size pressure taps would have been preferable, of course, but were not used since they are more subject to clogging by the suspensions investigated.

Pressure measurement. -A Republic pneumatic differential pressure transmitter was used for measuring the pressure drops in the test sections.

Since over the entire range of this instrument, the displacement of the fluid in the pressure lines is negligible, the possibility of these lines becoming plugged by the suspensions is small. Water was used as the transmitting agent in the pressure lines and the output pressure of the instrument was read on a mercury filled U-tube manometer. The calibration curve for this instrument, as determined in these laboratories, is given in Appendix IV. All pressure lead lines were made of equal length to reduce pressure fluctuations caused by the centrifugal pump. Bourdon type gages, calibrated in these laboratories, were used for the static pressure measurements and were connected to the pressure taps through mud traps. The construction of these traps is show in figure 11 and one can be seen in the photograph of figure 8. Separating section.-The air and suspension were separated at the downstream end of the system by introducing the discharge off center of the tank, thereby producing a rotating effect. At the upstream end of the system, the recycled material was introduced below the surface of the material in that tank to prevent entrapment of air bubbles.

CHAPTER IV

MATERIAL

For the purposes of the present investigation it was desirable to have a non-Newtonian material, not exhibiting thixotropic properties, which would behave as several of the different types of these materials by suitable concentration changes and have particles of such size that rapid settling would not occur. Water-clay suspensions were chosen as meeting these requirements and a Georgia kaolin-type clay was used. This kaolin clay was mined in central Georgia (near Macon) and was kindly donated by the Georgia Kaolin Company.

Several shipments of this type of clay were received and specific gravity and particle-size distribution measurements (35) were made on representative saraples of the two lots used. The specific gravity at $25^{\circ} \mathrm{C}$. by ASTM procedure of lot 1 was 2.45 and that of lot 2 was 2.51 . The results of the particle-size distribution measurements are presented in figure 14. As the properties of these materials were reasonably close, they were mixed in equal proportions in making the various suspensions investigated. The average value of the specific gravities, 2.48, was used in determining the concentrations of these suspensions. The particle-size distribution may therefore be taken as the average of the curves in figure 14 .

As a matter of interest, electron-microscope photographs of typical kaolin clays mined in the same location as the ones used in this investigation are shown in figures $15 a$ and $15 b$.

GHAPTER V

EXPERIMENTAL PROCEDURE

The following five types of experimental tests were made in each test section:
(1) Pressure-drop measurements for the flow of water alone. These tests were made in order to check the accuracy of the instruments and to determine whether entrance and exit effects had been eliminated by comparing the results so obtained with those predicted by the usual methods of calculation.
(2) Pressure-drop measurements for the co-current flow of air and water. These tests were made to provide a check on the accuracy of the air system instruments, the entrance section, and the entrance and exit effects by comparing the results with those obtained by other investigators in this field.
(3) Pressure-drop measurements for the flow of water-clay suspensions alone. These tests were made to obtain data on the flow properties of these materials.
(4) Pressure-drop measurements for the co-current flow of air and water-clay suspensions. These tests were made in order to provide data on a type of system not previously investigated.
(5) Suction pressure, discharge pressure and power measurements were made on the main pumping unit in order to determine the pump characteristics while handling suspensions of various concentrations.

Preparation of suspensions.-The water-clay suspensions were prepared in the two tanks at the downstream end of the apparatus shown in figure 9 , each having a capacity of approximately 125 gallons. A predetermined weight of water was added to one of the tanks, which was roughly calibrated, and the mixer and recycle pump started, the lines being so adjusted that the pump was recycling only the material from this tank. The required amount of clay was added to the water slowly. Any large lumps formed were broken up by hand and open steam was added to bring the temperature of the mixture up to several degrees below that of the room. About 200 gallons of suspension were required and when the capacity of this tank was reached, the lines were adjusted so that the other tank was introduced into the system and the mixing continued until 200 gallons were obtained. This mixing process required approximately $11 / 2$ hours and, to further insure complete mixing, the material was then circulated through the complete apparatus for an additional hour. Operating_procedure.--The operating procedure was practically the same in all of the various types of tests conducted and will be described in detail for the co-current flow of air and water-clay suspensions, type 4. The valving was arranged for the particular test section desired, the pressure lines were filled with water, the transmitter turned on and air bled out of the lines. The mud traps were then filled with water, and air was bled out of these lines. The main and recycle pumps were then adjusted to the desired liquid rate by means of gate valves, the pressure drop being used as indicative of this rate, and the pressure tap lines opened to the system. The pressure at the entrance section was recorded and the air bleed line opened. The air rate, as determined
by the rotameter, was set at the desired rate and pressure by means of the air control valves and the reducing valve. The air bleed line was then closed and the entrance valve opened simultaneously. Slight adJustments were usually necessary in the air control valves to produce the desired pressure and rate and to give fairly steady pressure drop readings. Naturally the liquid rate decreased slightly due to the increased head on the pump, but no changes were made in the main pump discharge valve since the liquid rate was so sensitive to small changes in this valve and the necessary change could not be predicted. In order to keep the pumps in equilibrium, adjustments were made on the recycle pump only. When equilibrium had been reached, as evidenced by the pres-sure-drop readings, the discharge was switched to the weighing tank and the time measured, by a Precision electric timer, for this tank to fill or the amount collected in approximately 2 minutes determined. During this time the following measurements were taken: pressure drop; rotameter pressure, reading, and temperature; air entrance pressure; pump discharge pressure, suction pressure and power; and temperature at discharge of system. At each liquid rate, three air rates were used and the liquid rate was varied from 0.15 to 16 pounds per second while the air rate was varied from 0.0015 to 0.025 pounds per second. Specific-gravity measurements were made several times during the series of these tests by a pycnometer, a calibrated gallon jug being used, and the average value of these measurements was determined. Samples of each concentration used were saved for viscosity determinations. Visual observations of the flow were made in the glass section during runs in the 1.60 inch tube.

After the series of runs was completed in each test section, the suspension was stored in the mixing tank and weighing drum, and the system was completely flushed out with water.

GHAPTER VI

DISCUSSION OF RESULTS

The data and calculated results are presented in tables I through VII and figures 16 through 33. The original data is on file in the School of Chemical Engineering of the Georgia Institute of Technology. All tests were made with the pipes in a horizontal position. The methods of calculation for the various types of tests conducted are shown in Appendix VII.

Flow of water only.--In order to check the general accuracy of the equipment and instruments, a series of runs was made in each of the test sections using water only. The results of these tests are shown in figure 16 in the form of the observed friction factor as a function of the Reynolds number and, by comparison with the accepted relationship between these variables given by equation (53), it is apparent that the agreement is good. The range of the variables in this plot indicates the limits of the experimental set-up. The temperature variation was rather large in these runs, 12 to $25^{\circ} \mathrm{C}$ 。g but it was found that this variation could be considerably reduced by preheating the water to a temperature several degrees below that of the room before the runs were started. This utilized the heat losses to the surroundings to compensate for the heat input by the pumps.

Flow of water clay suspenisons.--A series of runs was made in each of the test sections on water-clay suspensions of various concentrations in
order to determine the flow properties of these materials. These results are show in figures 17 through 23. In figure 17 the pressure drop in the 1.60 inch tube is shown as a function of the volumetric flow rate with the solids concentration as a parameter. Here the effect of increasing amounts of solids is clearly indicated. Whereas the curves for the two lower concentrations begin at the origin, the curves for the two higher concentrations begin at a point on the pressure axis, thus indicating the presence of a yield value in these cases. It is interesting to note that the increase in pressure drop at a fixed flow rate increases approximately linearly with increasing amounts of solids up to the higher concentrations. It then increases rapidly with small increases in solids concentration. This indicates that at the higher concentrations the flow properties of the suspensions are changing rapidly and is readily noticable when the materials are examined visually. At the lower concentrations, the particles are widely separated and tend to settle farily rapidly but at the higher concentrations, the settling tendency disappears and the suspensions act like pastes, becoming unpourable at a solids concentration of approximately 60 weight percent.

Due to the limitations of the experimental set-up, most of the data in the test sections on these materials was obtained in the turbulent flow region and in order to determine the types of materials being dealt with and their rheological properties, they were investigated in the laminar flow region in a rotational viscometer and a capillary tube viscometer. A Brookfield Synchro-lectric viscometer was used as the rotation instrument, the equations and dimensions being given in Appendix II, and the results obtained presented in figures 18 and 19,
where the logarithm of the angular velocity of the inner cylinder is shown as a function of the logarithm of the shearing stress at the inner cylinder wall. The data for the two lower concentrations, figure 18, give very good straight lines with positive slopes, thus indicating that in this range the data can be represented in each case by a power function. These functions were found to be

$$
\begin{gather*}
\dot{w}_{i}=2.038 \times 10^{10}(\mathrm{~W})^{3.869}, \quad 0.00192 \leqq \mathrm{~W} \leqq 0.00348 \tag{71}\\
12.1 \mathrm{WT} . \% \\
\mathrm{~T}=26.0^{\circ} \mathrm{C} .
\end{gather*}
$$

and

$$
\begin{gathered}
\mathrm{W}_{\mathrm{i}}=1.289 \times 10^{12}(\mathrm{~W})^{6.677}, \quad 0.0143 \leqq \mathrm{~W} \leqq 0.0202 \\
23.6 \mathrm{WT} . \% \\
\mathrm{~T}=26.8^{\circ} \mathrm{C} .
\end{gathered}
$$

In order to predict the behavior of these materials in cylindrical tubes, these equations were converted to the consistency variables y and x of equations (11) and (12) respectively by Alves' method as discussed in Appendix III. The final results are

$$
\begin{align*}
\underline{Y}=2.30 \times 10^{10}(x)^{3.87}, 0.00192 \leqq x \leqq 0.00348 \quad 12.1 \mathrm{WT} \% \tag{73}\\
0.708 \leqq \mathbb{T} \leqq 7.08 \quad \mathrm{~T}=26.0^{\circ} \mathrm{C}
\end{align*}
$$

and

$$
\begin{array}{rlrl}
\frac{y}{4}=1.78 \times 10^{12}(x)^{6.68}, 0.0143 \leqq x & 23.6 \mathrm{WT} \tag{74}\\
0.865 \leqq y & \leqq 8.0202 & & T=26.8^{\circ} \mathrm{C}
\end{array}
$$

These equations indicate that these suspensions behave as pseudoplastics, but the range of the variables covered is too small to be of any use in determining the properties of these materials. The data for the higher concentrations, presented in figure 19, appear to be too complicated for analysis and yield no information on the type or properties of these suspensions.

Thesefore, in order to obtain useable data on these suspensions, they were investigated in a capillary tube viscometer, shown diagramatically in figure 13, and these results are presented in figures 20 through 23 where $y / 4$ is presented as function of x. The data obtained on these materials in the three test sections is also included on these figures and they are considered to represent the flow properties of the various suspensions investigated in both the laminar and turbulent flow regions. As shown in figure 20, the 12.1 weight percent suspension behaved as a pseudoplastic and, as the data was not obtained at high enough rates of shear to indicate whether the curve approached an asymptote drawn through the orlgin as discussed under pseudoplastics in the Theoretical Background Chapter, the slope of the straight line section of the curve was taken as the limiting viscosity at infinite shear and was found to be $7.18 \times 10^{-4} \mathrm{lb} . \mathrm{m} / \mathrm{ft}$.sec. which is 1.335 times the viscosity of water at the same temperature $\left(30^{\circ} \mathrm{C}\right.$) . The range of the data obtained in the Brookfield viscometer, equation (73), is too small to permit a comparison between the two curves. Extrapolation of the curves for the turbulent flow region to their intersection with the viscous flow curve is too uncertain to give accurate values of the transition points.

Referring to figure 21 , it is seen that the 23.6 weight percent suspension also behaved as a pseudoplastic and its limiting viscosity at infinite shear was determined in the same manner as was that of the 12.1 weight percent suspension and was found to be $10.5 \times 10^{-4} \mathrm{lb} . \mathrm{m} . / \mathrm{ft} . \sec$. which is 1.952 times the viscosity of water at the same temperature $\left(30^{\circ} \mathrm{C}.\right)$. Again the range of the data obtained in the Brookfield viscometer is too small to permit a comparison of the two curves. In this case also the transition points could not be determined with any degree of accuracy.

In order to obtain the viscous flow curves of the 39.9 and 47.5 weight percent suspensions, shown in figures 22 and 23 respectively, use was made of the data obtained in both the capillary instrument and in the three test sections and certain assumptions were found necessary. As can be observed in figures 22 and 23, these materials began to flow in the capillary tube at stresses less than those necessary to produce flow in the larger test sections which indicates that in the former case slippage was occurring. While slippage can occur in large tubes, it is not as likely to as in small tubes since a proportionally smaller amount of fluid is affected by the tube wall as the diameter increases. The data obtained in the test sections, then, was assumed to be valid and a slippage correction was made for the data obtained in the capillary tube in the following manner. The points at the lowest rates of shear were connected by the best straight line through the origin, as indicated in each figure, and the values of the ordinates of this assumed slippage curve were subtracted from the ordinates of the points obtained in the capillary tube at the corresponding rates of shear. The final
laminar flow curve in each case was then constructed by joining these points and those obtained in the three test sections. This assumed slippage curve is of the Buckingham type, as shown in figure 4 a , and can be considered at best to be but a rough approximation. Due to the limitations of this instrument, appreciably smaller tubes could not be used and therefore the possible effect of radius could not be investigated.

In order to check the vaiidity of the assumptions made, the yield value and asymptote to each curve were determined and, using these values, points were calculated by equation (55) for Bingham plastics. These calculated values are indicated on each figure and it is apparent that the agreement is excellent. Therefore, these suspensions behaved approximately as Bingham plastics and the assumptions made appear to be fairly accurate. However, one further point should be mentioned and that cono cerns kinetic energy and contraction losses. In all cases, the capillary tube data was corrected for these losses by the accepted method for Newtonians, namely

$$
\begin{equation*}
\mathrm{P}_{\mathrm{KE} \text { and } \mathrm{C}}=\frac{1_{0} 12 \mathrm{U}^{2} \rho}{\mathrm{~g}_{\mathrm{c}}} \tag{75}
\end{equation*}
$$

and was found to be negligible in most cases. However, as pointed out by McMillen (24), contraction losses are much greater for Bingham plastics than for ordinary Newtonian Materials due to the necessity of reducing the plastic core upon reduction of the flow area. The data McMillen presents for these losses was not applicable in the cases of the materials investigated here, as they were determined for
materials of much higher yield values. Since the flow rates in this investigation were not too high, these corrections are probably not appreciable but until additional data are available, their effect must remain unknown. In view of the assumptions made, the laminar flow curves for the Bingham plastics must be considered approximate.

Because of the nature of the flow curves of the 39.9 and 47.5 weight percent suspensions thus obtained, it is interesting to study again the data obtained on these suspensions in the Brookfield viscometer as shown in figure 19. It is now obvious that the data resulting from that investigation were due to slippage occurring at the inner cylinder wall, as in each case all of the points were obtained at stresses below the yield stresses of the respective suspensions.

Turbulent viscosity.-oIn order to determine the applicability of the usual friction factor-Reynolds number relationship of Newtonians, equation (53), to the materials investigated here, the so-called turbulent viscosity of these materials was determined by plotting the calculated friction factors against the quantities (Dup) $\times 10^{3}$ of the suspensions as shown in figure 24. The best curve parallel to the curve of equation (53) was drawn through the points of each suspension and by determining the values of ($\mathrm{Du} \rho$) $\times 10^{3}$ of each curve and the Newtonian Reynolds number at the same friction factor value, the turbulent viscosity was calculated by

$$
\begin{equation*}
\mu_{\mathrm{T}} \times 10^{3}=\frac{(\operatorname{Dr} \rho)_{\mathrm{S}} \times 10^{3}}{\operatorname{Re}_{\mathrm{N}}} \tag{76}
\end{equation*}
$$

The values thus obtsined are indicated on the figure and on comparing
these with those obtained from the laminar flow curves at infinite shear (the small temperature differences being negligible in comparison to the accuracy of the determinations), it is observed that the turbulent viscosities are from 9 to 51 percent lower than those at infinite shear.

Realizing, of course, that the turbulent viscosity calculated in this manner has no recognized significance and is probably no more than a convenient method of representing data, it is still interesting to investigate the matter further since it has been widely used. In order to determine if this type of viscosity is constant or not, this quantity was calculated for ach of the runs made as accurately as possible and plotted against the shearing stress at the pipe wall as shown in figures 25 and 26. These figures appear to indicate that there is some dependence on the pipe diameter as well as the rate of shear, particularly at the higher concentrations. The dependence on the diameter probably can be explained and the accuracy of the calculation method shown by comparing the data for the suspensions with the viscosity of water calculated from the water runs in the same way. While the data for the water runs was within a range of ± 5 percent of the calculated data, the range of the turbulent viscosities is within a range of ± 24 percent of the true values, since small changes in the friction factor cause large changes in the Reynolds number in the turbulent region which appear directly in the calculated viscosity. The apparent dependence of the viscosity on the diameter in the case of water is due to the deviations of the observed values from the accepted values being for the most part for each pipe on one side or the other of the accepted curve as shown in figure $\mathbf{1 6}$. This effect then was probably the same in the case of the varjous
suspensions. While the turbulent viscosity of all the suspensions except the 47.5 weight percent slurry appeared to increase with increasing shearing stresses before apparently leveling out, the turbulent viscosity of the latter appeared to decrease with increasing shearing stresses before flattening out. This decrease is probably due to these data being obtained near the transition point as show in figure 23. In order to determine whether the difference in temperature of the different observations could account for any of the spread, this effect was approximated by calculating the ratio of the turbulent viscosity to that of water at the same temperature for each point and these results are presented in tables II $A-D$. They were not plotted since as can be observed, they offer no help at all. However, the data is insufficient to definitely establish whether or not the turbulent viscosity depends on the shearing stress and possibly pipe diameter. About all that can be said for the turbulent viscosity is that it indicates that the usual friction factor-Reynolds number relationship for Newtonians is applicable to non-Newtonians as an approximation when the limiting viscosity at infinite shear or the coefficient of rigidity is used in calculating the Reynolds number. Since the only way to determine the turbulent viscosity is to actually conduct tests on the material in question in turbulent flow, its use is limited to that of a convenience factor and possibly as a scale-up factor which as these data indicate is questionable.

Co-current flow of air and water. - In order to provide a general check on the air system and entrance section a series of runs was made using
air and water and whe data obtained was compared with the results predicted by the correlation of Lockhart and Martinelli (8). As shown in figure 30, these data lie within a range of ± 20 percent of the correlating curve with the large majority of the data lying on the low side of the curve. However, considering the fact that the overall accuracy of the correlation is only within the range of ± 40 percent this discrepenancy is probably not serious. During the runs in the 1.60 inch tube, visual observations were made in the glass section and although most of the observed flow types were rather ill-defined they could be classified roughly as either wave or semi-annular, the latter type not consisting of a true annulus through which the air was flowing but being characterized by rough waves on the water annulus and considerable entrainment of water in the air stream. These ill-defined flow types were probably due to the type of entrance section used and disturbing effects between this section and the test sections. However, considering the good agreement between the data and the correlation curve, these effects were probably not serious. At low air rates, the pressure drops were fairly steady, slight fluctuations being caused by the centrifugal pump, but as the air rate was increased the pressure fluctuations became violent as the slugging region was entered and at still higher air rates, the fluctuations decreased in amplitude and increased in frequency as the semi-annular flow region was approached. The slugging region was avoided during all runs and during the semj-annular flow, the average pressure drop was measured.

In order to illustrate the effect of the air rate on the pressure drop and to determine whether transitions in the flow types were occurr-

Ing, the total pressure drop in each test section was plotted against the air rate with the liquid rate as a parameter as shown in figures 27, 28, and 29. Since the liquid rate decreased slightly as the air rate increased, due to the increased head on the centrifugal pump, and since no means was available for accurately compensating for this effect, the liquid rates in each series of air runs were corrected to a constant rate in the following approximate manner by Lockhart and Martinelli's correlation (which has already been shown to be approximately valid):

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{TP} \text { corrected }}=\frac{\Phi_{\mathrm{LTP}}^{2} *\left(\frac{\Delta \mathrm{P}_{\mathrm{LP} \text { corr }}}{\Delta \mathrm{P}_{\mathrm{GP}}}\right) \Delta \mathrm{P}_{\mathrm{LP}} \text { corr }}{\Phi_{\mathrm{LTP}}^{2}}{ }^{*}\left(\frac{\Delta \mathrm{~L}_{\mathrm{LP}} \text { uncorr }}{\Delta \mathrm{P}_{\mathrm{GP}}}\right) \Delta \mathrm{P}_{\mathrm{LP} \text { uncorr }} \quad \Delta \mathrm{P}_{\mathrm{TP} \text { uncorr }} \tag{77}
\end{equation*}
$$

As can be observed by reference to these figures, the pressure drop increases with increasing air rates and liquid rates, with the slopes of the lines becoming greater with decreasing pipe diameter. The only transition point noted occurs in the 0.82 inch test section, but undoubtedly each of the other curves would pass through similar inflection points at higher air rates than were used in this investigation. Co-current flow of air and water-clay suspensions.-A series of tests was made on each of the four previously discussed water-clay suspensions and air in order to provide data on a type of system not previously investigated and to determine whether Lockhart and Martinelli's correlation was applicable to such a system. The results of these tests are presented in figure 30 and the agreement with the correlation curve is again within ± 20 percent, which is considered good. Visual observations in the glass section during runs in the 1.60 inch test section
*Functional notation: $\Phi_{\text {LTT }}^{2}$ determined at indicated X^{2} value.
showed that at very low air rates the air moved along the top of the pipe in the form of large bubbles which decreased in length as the air rate increased until the pipe appeared to be full of the clay suspension. At this point it was impossible to tell whether the air was dispersed throughout the suspension or whether an annular-type flow was occurring. Similar types of pressure fluctuations occurred during these runs as were encountered during the air-water runs and the slugging region was avoided. During runs in which the pressure fluctuations were rapid but of small amplitude, the average pressure drop was recorded. In order to deternine whether the air was being renoved from the suspensions between the runs, pressure-drop measurements were made at the same liquid rate before and after each series of air runs and specificgravity measurements were made several times during the series of runs on each suspension.

Figures 27, 28 and 29 show the total pressure drop in each test section as a function of the air rate with the suspension rate and weight percent of solids as parameters. The liquid rates were corrected to a constant value by the approximate method of equation (77). The general trend of these curves is the same as discussed in the case of air-water runs, with the slopes of the curves becoming greater with increasing air rates, liquid rates, solids concentration and decreasing pipe diameter. Again the only transition point observed occurred in the 0.82 inch test section with similar inflection points expected to appear in the other curves at higher air rates.

It is interesting to note that, in the cases of the 39.9 and 47.5 weight percent suspensions, while the suspension was flowing laminarly
the introduction of air into the syster saused a decrease in the pressure drop until very high air rates were reached. This effect can be seen by reference to tables VI C and D. The data was not further analyzed due to its very limited amount but certainly indicates a field for future study. The effect is no doubt caused by a change in viscosity and future study of it should prove interesting.

Pump characteristics
In order to determine the characteristics of the large centrifugal pump used in this investigation while handling the various suspensions studied, tests were conducted on this unit, simultaneously with the other types of tests made. The results of these tests are presented in figures 32 and 33 and the manufacturer's performance curves are given in figure 31. By comparing the predicted and observed head-capacity curves for water in figures 31 and 32 respectivelyg it is seen that the actual performance was considerably better than predicted. This is probably due to the fact that the observed curve was obtained at a higher motor speed than the predicted one since the pump was operated by an oversize motor, rated at 3450 RPM at 15 horsepower, which had been originally attached to a larger pump, now beyond repair. As can be seen in figure 32 , the head-capacity curves decrease with increase in solids concentration while the power input to the motor increases with increase in solids concentration as figure 33 shows. The expected increase in the power-capacity curves is not as rapid as expected and this discrepenancy is probably due to an increased motor efficiency at the higher concentrations. However, since the efficiency of the motor was not measured,
this effect could not be quantitatively predicted and the pump efficiency could not be determined.

The results presented here are in agreement with those of other investigators $(36,37)$ and are due mainly to the solids in the suspension instead of the increased viscosity, as comparison with the predicted performance curves of Stepanoff (38) for the effect of viscosity indicates.

Slight errors were probably made in the suction pressure determinations, as these values had to be estimated from the water performance data due to the fact that the suction pressure gage became fouled during the runs but the fouling was not detected until the runs were completed. This gage was connected directly to the suction side of the pump without the use of a mud trap since preliminary calculations indicated that at the higher flow rates, the suction pressure might be less than atmospheric. However, such was not the case for this pump as the investigations showed. Due to the small magnitude of the suction pressure in most cases, this error is believed to be small. The method of computation is shown in Appendix VI.

CHAPTER VII

CONCLUSIONS

The conclusions resulting from the present investigation may be sumarized as follows:

1. The experimental pressure-drop measurements of the cocurrent turbulent-turbulent flow of air and water-clay suspensions in $3 / 4$, 1 and $11 / 2$ inch horizontal pipes were correlated within the range of ± 20 percent of the calculated values by the correlation of Lockhart and Martinelli.
2. The usual Newtonian friction factor-Reynolds number relationship is approximately true for water-clay suspensions but the turbulent viscosity computed from this relationship has no valid significance.

NOMENCLATTRE

A	cross-sectional flow area, $\mathrm{ft}^{2}{ }^{2}$
A_{G}	cross-sectional gas flow area, $\mathrm{fft}^{2}{ }^{2}$
${ }^{\text {L }}$	cross-sectional liquid flow area, $\mathrm{ft}{ }^{2}$
a	square of ratio of internal cylinder tedius to external cylinder radius, dimensionless
B	constant used in equation (3)
b	plug radius defined by equation (15), ft.
C	constant used in equation (3)
C_{I}	interfacial cord length, ft.
C_{G}	constant in Blasius equation for friction factor for gas phase, dimensionless
${ }^{c}$ L	constant in Blasius equation for friction factor for liquid phase, dimensionless
C_{V}	volume concentration, grm. mass/cm ${ }_{0}{ }^{3}$
D	inside pipe diameter, ft.
D_{H}	hydraulic dianeter, defined by equation (59), ft.
D_{G}	hydraulic diameter of gas cross-sectional flow area, defined by equation ($\mathrm{I}-4$) . ft.
$\mathrm{D}_{\mathrm{G}}{ }^{\prime}$	hydraulic diameter of gas cross-sectional flow area, defined by equation (69), ft.
D_{L}	hydraulic diameter of liquid cross-sectional flow area, defined by equation (I-3). ft.,
D_{P}	inside pipe diameter (used for emphasis), ft.
d	constant used in equation (26), $1 / \mathrm{sec}$.
$\stackrel{\square}{\square}$	denotes a function, or frictional energy joss ${ }_{4}$ ft. 1 b . force/lb. mass
$\mathrm{F}^{(\mathrm{n})}$	$\mathrm{n}^{\text {th }}$ derivative of the function F

friction factor defined by equation (53), dimensionless
friction facton for gas phase calculated from heynolds number Ke_{G}, dmensionlses
friction factor for liquid phase calculated from heynolds number Re_{L}, dimensionless
superficial friction factor for gas phase calculated from Reynolds number Re Gp , činensionless
superficial friction factor for liqui phase calculated from Keynolds number $\mathrm{Ke}_{\text {LP }}$, dimensionless
friction factor indicative of energy lost by gas phase at interface, defined by equation (67), dimensionless
friction factor indicative of energy ained by liquid phase at interface, defined by equation (65), dimensionless
friction factor indicative of energy lost by gas phase at pipe wall, defined by equation (65), dimensionless
friction factor indicative of energy lost by iiquid phase at pipe wall, defined by equation (64), dimensionless
dimensionless group $\delta \mathrm{Dg}_{\mathrm{c}} / \eta \mathrm{U}$
acceleration due to gravity, $\mathrm{ft} / \mathrm{sec} \mathrm{s}^{2}$
conversion factor, 32.17 ft . 1 b . inass./sec. ${ }^{2} 1 \mathrm{~b}$. force
net head delivered by pump ft. lb . force/ib. nass
height, ft.
length, ft.
general consistency variable, or molecular weight lb. mass/lb. mol.
an integer or a constant
general ronsistency variable
an integer or a constant
pressure, 2 b 。force/it. ${ }^{2}$ abs.
pump discharge pressure, 1 b 。 force/in. ${ }^{2}$ gage
pump suction pressure, 1 lb . force/in. ${ }^{2}$ agat

p	wetted perimeter of flow cross section，f＇t．
$\mathrm{p}_{\mathbf{G}}$	pipe－wall perimeter wetted by gas，ft．
${ }^{\mathrm{p}} \mathrm{L}$	pipe－wall perimeter wetted by liquid，fto
Q	total volumetric flow rate， $\mathrm{ft}^{3} / \mathrm{sec}$ 。
θ	volunetric flow rate due to fluidity，ft．${ }^{3} / \mathrm{sec}$ ．
R	gas constant， 10.74 lb 。force／in．${ }^{2} \mathrm{ft} \mathrm{f}^{3} / \mathrm{lb}$ ．mol．${ }^{0} \mathrm{R}$ ，or tube radius， $\mathrm{ft}^{\text {．}}$
r	radius，ft．
R_{E}	radius of external cylinder， $\mathrm{ft}^{\text {c }}$
R_{1}	radius of internal cylinders f f．
R_{G}	volume fraction of pipe filled by gas phase，dimensionless
R_{L}	volume fraction of pipe filled by liquid phase，dimensionless
Re	Reynolds number， $\operatorname{DU} \rho / \mu$ ，dimensionless
Re_{G}	Reynolds number of gas phase based on hydraulic diameter， D_{G} ，of equation（ $\mathrm{I}-4$ ），dimensionless
$\operatorname{Re}_{\mathrm{G}}{ }^{\prime}$	Reynolds number of gas phase based on hydraulic diameter， D_{G} ，of equation（69），dimensionless
Re_{L}	Reynolds number of liquid phase based on hydraulic diameter， D_{L} ，of equation（ $I-3$ ），dimensionless
$\mathrm{Re}_{G P}$	superficial Reynolds number of gas phase based on inside pipe diameter，dimensionless
$\operatorname{Re}_{\mathrm{LP}}$	superficial Reynolds number of liquid phase based on inside pipe diameter，dimensionless
$\mathrm{Re}_{W L}$	Reynolds number of liquid phase based on hydraulic diameter， D_{H} ，of equation（59），dimensionless
$\mathrm{H}_{\mathbf{S}}$	rate of shear at radius $r, 1 / s e c$ 。
$\left(\dot{R}_{s}\right)$	rate of shear at tube or cylinder wall．1／seco
S	shearing stress at radius r，lb，force／ft．${ }^{2}$
S_{E}	shearing stress at external cylinder wall，lb．force／ft．${ }^{2}$

S_{i}

To torque，defined by equation（38），ft．Ib．force

U mean velocity，fto／sec．
u
U_{L} mean liquid velocity based on actual liquid flow area，ft．／sec．

W consistency variable for rotation instrument，defined by equation（44），lb．force／ft．${ }^{2}$
gas flow rate， 2 l 。 mass／sec．
liquid or suspension flow rate，lb。mass／sec。
net shaft work，ft．lb．force／lb．mass
square root of the ratio of the pressure drop for the flow of liquid alone to the pressure drop for the flow of gas alone， dimensionless

x	consistency variable for tube instrument, defined by equation (12), lb. force/ft. ${ }^{2}$
y	consistency variable for tube instrument, defined by equation (11), $1 / \mathrm{sec}$.
Z	consistency variable for rotation instrument, defined by equation (43), radians/sec.
α	parameter used by Lockhart and Martinelli (8), defined by equation ($1-3$), dimensionless
β	parameter used by Lockhart and Martinelli (8), defined by equation (1 - 4), dimensionless, or coefficient of slip, defined by equation (35), ft. ${ }^{2} \mathrm{sec} . / 1 \mathrm{~b}$ 。 mass
Γ	condensate rate per unit periphery, lb. mass/hr.ft.
γ	a constant
δ	yield value, lb, force/ft. ${ }^{2}$
δ^{\prime}	yield value of wall layer or intercept of asymptote to pseudoplastic curve, lb. force/ft. ${ }^{2}$
ε	thickness of wall layer, ft.
n	coefficient of rigidity, lb. mass/ft. sec.
$\stackrel{\circ}{\theta}$	angular velocity of fluid, radians/sec.
μ	coefficient of viscosity, lb . mass/ft. sec.
$\mu_{\text {E }}$	Brookfield viscosity reading, lb. mass/ft. sec.
μ_{L}	viscosity of liquid, lb. mass/ft. sec.
μ_{0}	viscosity at zero shear, defined on page 7, lb. mass/ft. sec.
μ_{W}	viscosity of wall layer, lb . mass/ft. sec.
μ_{∞}	viscosity at infinite shear, defined on page 8, lb. mass/ft. sec.
μ_{∞}^{\prime}	viscosity at infinite shear, defined on page 8, lb. mass/ft. sec.
$\mu \mathrm{G}$	viscosity of gas, lbo mass/ft. sec.
μ_{T}	turbulent viscosity, lb 。 mass/ft. sec.

$\Delta P_{L P} \quad$ superficial frictional pressure drop of liquid or suspension $\Delta P_{T P} \quad$ pressure drop for two phase flow, lb. force/ft. ${ }^{2}$ or in. Hg
$\Delta \mathrm{P}_{\text {TP }}$ MART pressure drop for two phase flow calculated by correlation of Lockhart and Martinelli (8), in. Hg

REFERENCES

（1）Bergeiin，Olaf Po，＂Flow of GasoLiquid Mixtures，＂Chemo Engos May 1949，104－6．
（2）Bergelin，Olaf P_{0} and Carl Gazely，Jro，＂ComCurrent Gas－Liquid Flow I．Flow in Horizontal Tubes，＂Heat Transfer and Fluid Mechanics Institute，1949，5－18．
（3）Bergelin，Olaf Pog Po Ko Kegel，Fo Go Carpenter，and Carl Gazely， Jro，＂CooCurrent GasoLiquid Flow II．Flow in Vertical Tubes，＂Heat Transfer and Fluid Mechanics Institute，1949，19．．28．
（4）Gazely，Carl，Jro，＂CooCurrent Gas Liquid Flow III。 Interfacial Shear and Stability，＂Heat Transfer and Fluid Mechanics Institute， 1949， $29-40$
（5）Boelter，$L_{0} M_{0} K_{\text {o }}$ and $R_{0} H_{0}$ Kepner，${ }^{n}$ Pressure Drop Accompanying Twow Component Flow Through Pipes，＂Industrial and Engineering Chemistry， 31 （2939），426．34．
 and E．H．Morrin，＂Isothermal Pressure Drop for Two．Phase Twoo Component flow in a Horizontal Pipes＂Transo Ao So Mo Eo， 66 （1944）， 139－51．
（7）Martinelli，R。Co，Jo A。Putnam，and RoW。Lockhart，＂TwooPhase， Two Component Flow in the Viscous Flegion，＂Trans．Ao Io Cho Eos 42 （1947），681－705．
（8）Lockhart，R．W．and R．C．Martinellis＂Proposed Correlation of Data for Isothermal Two Phase，TwocComponent Flow in Pipes，＂Chemo Eng． Progress， 45 （1949），39－48．
（9）Gasely，Carl，Jr．and Olaf P。Bergelin，Discussion of MProposed Correlation of Data for Isothermal Two Phase，TwomComponent Flow in Pipes，＂by R．W．Lockhart and R。C．Martinelli，Chemo Eng。 Progress， 45 （1949），39．48．
（10）Alves，George E_{o} ，＂Flow of NoneNewtonian Suspensions，＂Chem．Eng．， May 1949，107：09．
（11）Alves，Gcorge E_{0}, D_{0} F．Boucher，and Ro Lo Pigford，＂Pipe Line Design for Non＝Newtonian Solutjons and Suspensione，＂Paper pres． sented at Atlenta，Ga．Metting，Am．Inst。Chem。 Angrs．March 17－19．1952．
（12）Babbitt，Harold E．and David H．Caldwell，＂Turbulent Flow of Sludges in Pipes，＂Univ．Ill。Eng。Exper．Sta，Bullo，Series No．323，Vol． 38，No．13， 1940.
（13）Wilhelm，Richard H_{\circ} ，Donald M_{\circ} Wroughton and Willis F_{0} Loeffel， ＂Flow of Suspensions Through Pipes，＂Ind．Eng．Chemo， 31 （1939），622－29．
（14）Binder，R．C．and J．E．Busher，＂A Study of Flow of Plastics Through Pipes，＂J．Applied Mech．， 13 （June 1946），A－101－05．
（15）Winding，\because ．C．，G．P：Baumann and W。L。Kranich，＂Flow Properties of Pseudoplastic Fluids－－Part I。Viscosities of Gi－S Latices，＂Chem． Eng．Progress， 43 （1947），527－36 and＂Flow Properties of Pseudoplastic Fluids－－Part II。 Flow of GR－S Latices in Commercial Tubing，＂613－622．
（16）Reiner，Markus，＂Deformation and Flow，＂London：Interscience Publishers，Inc． 1949.
（17）Williamson，$R_{0} V_{0}$ ，＂The Flow of Pseudoplastic Materials，＂Ind． Eng．Chem：， 21 （1929），1108－11．
（18）da C．Andrade，E．No，NViscosity and Plasticity，＂New York： Chemical Publishing Company，Inc．， 1951.
（19）Green，Henry，＂Industrial Rheology and Rheological Structures，＂ New York：John Wiley and Sons，Inc．，1949．
（20）Scott Blair，G．W．，＂An Introduction to Industrial Rheology，＂ Philadelphia：P．Blakiston＇s Son and Co．Inc．，1938．
（21）Scott Blair，Go Wo，＂A Survey of General and Applied Rheology，＂ New York and Chicago：Pitman Publishing Corpo， 1944.
（22）Lewis，Warren Ko，Lombard Squires，and Geoffrey Broughton， ＂Industrial Chemistry of Colloidal and Amorphous Miterials，＂ New York：The MacMillan Co．， 1942.
（23）Babbitt，Harold E．and David H．Caldwells＂Laminar Flow of Sludges in Pipes with Special Reference to Sewage Sludge，＂Univo Ill．Eng． Exper．Sta．Bull．，Series No．319，Vol．37，No．12， 1939.
（24）KcMillen，Elliott L_{0} ，＂Simplified Pressure－Loss Calculations for Plastic Flow，＂Chem．Eng．Progress，44，（1948），537－46．
（25）Hedström，Bengt O．A．，WFlow of Plastics Haterials in Pipes，＂ Ind．Eng．Chemo， 44 （1952），651－56．
（26）Schofield，R．K．and G。W．Scott Blair，＂The Influence of the Proximity of a Solid Wall on the Consistency of Viscous and Plastic Materials，＂Jochem．Physo， 34 （1930），248－62．
（27）Scott Blair，G。W．and E．M．Crowther，＂The Flow of Clay Pastes Through Narrow Tubes，＂J．Phys，Chem．， 33 （1929），321－33．
（28）Scott Blair，G。Wo，＂A Futher Study of the Influence of the Proximi－ ty of a Solid Wall on the Consistency of Viscous and Plastic Materials＂ J Chem．Phys： 34 （1930），1505－08．
（29）Schofield，$R_{0} K_{\text {s }}$ and Scott Blair，$G_{0} W_{0}$ ，＂The Influence of the Proximity of a Solid Wall on the Consistency of Viscous and Plastic Waterials III，＂Jo Chem．Phys．， 35 （1931），1212－15；＂The Influence of the Proximity of a Solid Wall on the Consistency of Viscous and Plastic Materials＂IV， 39 （1935），973－31．
（30）Mooney，Melvin，＂Explicit Formulas for Slip and Fluidity，＂ J．Rheology，2（1931），210－22．
（31）Gazely，Carl，Jr．，and Olaf P。Bergelin，＂A Preliminary Investigation of Two－Phase Flow，＂Univ．of Del．Keport TPF－1，May 1947.
（32）Jenkins，Rodman，WTwo－Phase Two－Component Flow of Water and Air，＂ MoCh．E．Thesis，Univo of Delo， 1947.
（33）Gazely，Carl，Jro，＂Interfacial Shear and Stability in Two－Phase Flow，＂Ph。D．Thesis，Univ．of Del．， 1948.
（34）Carpenter， $\mathrm{F}_{0} \mathrm{G}_{0}$＂Condensation Rates at High Vapor Velocities，＂ PH．D．Thesis，Univ．of Del．， 1948.
（35）Bauer，Edward E．，＂Hydrometer Computations in Soil Studies Simplified，＂Eng。News Record， 118 （1937），662－64．
（36）Gregory，W。Bo，＂Pumping Clay Slurry Through a Fourminch Pipe＂， Mech。Eng＂， 49 （1927），609－16．
（37）O＇Brien，Morrough P。 and Richard Go Folsom，＂The Transportation of Sand in Pipe Lines，＂Univ，of Calif．Pub．in Engo，Vol．3，No．7， 1937，369－73．
（38）Stepanoff，A．Jo．g＂Centrifugal and Axial flow Fumps，${ }^{18}$ New York： John Wiley and Sons，Inc．， 1948.
（39）Perry，John Hos＂Chemical Engineers＂Handbooks＂3rd Edition，New York：McGraw－Hill Book Co．Inc．，1950，374．
（40）Keenan，Joseph H．and Frederick G．Keyes，＂Thermodynamic Properties of Steams＂New York：John Wiley and Sons，Inc． 1947.
（41）Lange，Norbert Aog＂Handbook of Chemistry，＂6th Editions Sandusky， Ohio：Handbook Publishers，Inc．，1946，1576．
（42）Brown，G．Go（editor），＂Unit Operations，＂New York：John Willey and Sons，Inc．，1950， 140.No.Page
I Data and Results for the Flow of Water in a 1.60 inch, a 1.06 inch and a 0.82 inch Pipe 73
II Data and Results for the Flow of Various Water-Clay Suspen-sions in a 1.60 inch, a 1.06 inch and a 0.82 inch PipeA. Specific Gravity 1.078 , 12.1 Weight (5.27 Volume)Percent Solids74
B. Specific Gravity 1.164, 23.6 Weight (11.1 Volume)
Percent Solids 75
C. Specific Gravity $1.313,39.9$ Weight (21.2 Volume)
Percent Solids 76
D. Specific Gravity $1.396,47.5$ Weight (26.8 Volune)
Percent Solids 77
III Data and Results of Flow Properties of Various Water-Clay
Suspensions in a Brookỉield Viscometer
A. Specific Gravity 1.078, 12.1 Weight (5.27 Volume)
Percent Solids 78
B. Specific Gravity $1.164,23.6$ Weight (11.1 Volume)
Percent Solids 79
C. Specific Gravity 1.313, 39.9 Weight (21.2 Volume)
Percent Solids 80
D. Specific Gravity $1.396,47.5$ Weight (26.8 Volume)
Percent Solids 81

LIST OF TABLES (continued)

No. Page
IV Data and Results of Flow Properties of Various Water-Clay
Suspensions in a Capillary Tube Viscometer
A. Specific Gravity 1.078 , 12.1 Weight (5.27 Volume)
Percent Solids. 82
B. Specific Gravity 1.164, 23.6 Weight (11.1 Volume)
Percent Solids. 83
C. Specific Gravity $1.313,39.9$ Weight (21.2 Volume)
Percent Solids 84
D. Specific Gravity $1.396,47.5$ Weight (26.8 Volume)
Percent Solids. 85
V Data and Results for the ComCurrent Flow of Air and Water
A. Flow in a 1.60 inch Pipe. 86
B. Flow in a 1.06 inch Pipe. 87
C. Flow in a 0.82 inch Pipe. 88
VI Data and Results for the Co-Current Flow of Air and Various Water-Clay Suspensions
A. Specific Gravity 1.078, 12.1 Weight (5.27 Volume)
Percent Solids

1. Flow in a 1.60 inch Pipe. 89
2. Flow in a 1.06 inch Pipe. 90
3. Flow in a 0.82 inch Pipe。 91

LIST OF TABLES (continued)

No.Page
B. Specific Gravity 1.164, 23.6 Weight (11.1 Volume)
Percent Solids

1. Flow in a 1.60 inch Pipe. 92
2. Flow in a 1.06 inch Pipe. 93
3. Flow in a 0.82 inch Pipe 94
C. Specific Gravity $1.313,39.9$ Weight (21.2 Volume)
Percent Solids
4. Flow in a 1.60 inch Pipe. 95
5. Flow in a 1.06 inch Pipe. 96
6. Flow in a 0.82 inch Pipe. 97
D. Specific Gravity $1.396,47.5$ Weight (26.8 Volume)
Percent Solids
7. Flow in a 1.60 inch Pipe. 98
8. Flow in a 1.06 inch Pipe. 99
9. Flow in a 0.82 inch Pipe. 100
VII Pump Characteristics: Data and Results for an Ingersoll-Rand
1 COR'NL Open-Impeller Centrifugal Pump Handling Water and
Water-Clay Suspensions
A. Water 101
B. Specific Gravity 1.078 , 12.1 Weight (5.27 Volume)
Percent Solids. 102
C. Specific Gravity 1.164, 23.6 Weight (11.1 Volume)
Percent Solids 103

LIST OF TABLES (continued)

No.
Page
D. Specific Gravity 1.313, 39.9 Weight (21.2 Volume)
Percent Solids. 104
E. Specific Gravity $1.396,47.5$ Weight (26.8 Volume)
Percent Solids. 105

Datia and Results for Rlow of Water in a 1.60 Inch, a 2.06 Inch and a 0.82 Inch Pipe

	In.	Ft.	\#/SEC	In. Hg	${ }^{\circ} \mathrm{C}$	$\text { Hft } s$	$\times 10^{-4}$		$\mathrm{In}_{\mathrm{o}} \mathrm{Hg}$		$x=0^{-4}$	趗/t.s.	M/ft.	- $/$ ¢ ${ }^{2}$
1	1.60	15.0	9.15	3.15	16.4	7.40	11.8	0.0176	3.00	0.0185	8.90	87.4	9.81	0.493
2	1.60	15.0	11.98	4.74	17.2	7.24	15.8	0.0165	4.82	0.01622	16.5	114.3	6.93	0.743
3	1.60	35.0	7.18	1.85	18.0	7.10	9.66	0.0181	1.90	0.01762	11.0	68.5	6.23	0.290
4	1.60	15.0	4.65	0.83	19.0	7.00	6.35	0.0197	0.868	0.01885	8.10	44.4	5.49	0.130
14	1.60	15.0	11.95	4062	16.0	7.47	15.3	0.0166	4.83	0.01590	18.4	114.1	6.20	0.723
1.5	1.60	15.0	4.56	0.78	16.5	7.18	6.06	0.0200	0.846	0.01841	9.15	43.5	4.76	0.122
5	1.36	16.5	9.66	24.2	20.6	6.66	20.9	0.0156	25.7	0.01486	25.7	139.3	5.42	2.28
6	1.06	16.5	8.01	17.82	21.7	6.47	17.9	0.0160	16.10	0.01573	19.3	115.5	5.98	1.68
7	1.06	16.5	5.91	10.37	22.0	6.44	13.3	0.0170	10.48	0.01681	13.8	85.3	6.18	0.976
8	1.06	16.5	3.10	3.21	22.5	6.36	7.05	0.0194	3.28	0.01896	7.85	44.7	5.69	0.302
9	2.06	16.5	1.375	0.70	23.9	6.16	3.22	0.0231	0.769	0.0210	4.89	19.82	4.06	0.066
16	1.06	16.5	1.501	0.00	18.0	7.10	3.06	0.0233	0.925	0.0227	3.48	21.7	6.24	0.085
10	0.82	17.25	1.366	2.71	24.7	6.05	4.11	0.0218	2.70	0.0219	4.08	25.4	6.23	0.189
11	0.82	17.25	2.78	10.02	25.1	5.99	8.64	0.0186	9.57	0.0195	6.85	51.8	7.56	0.700
12	0.82	27.25	3.63	16.10	25.6	5.92	11.4	0.0178	15.60	0.01838	9.20	67.6	7.35	1.122
13	0.82	17.25	4.30	21.9	26.0	5.87	13.6	0.0170	20.9	0.01781	10.5	80.1	7.63	1.527
17	0.82	17.25	1.332	2.70	17.0	7.28	3.41	0.0229	2.70	0.0229	3.35	24.8	7.41	0.188
18	0.82	17.25	2.65	9.42	18.0	7.10	6.95	0.0194	9.06	0.0202	5.80	49.4	8.52	0.656

Data and Results for Flow of a Water-Clay Suspension of Specific Gravity 1.078 Containing 12.1 Weight Per Cent (5.27 Volume Per Cent)Solids in a 1.60 Inch, a 1.06 Inch and a 0.82 Inch Pipe

Fun No.	Pipe I.D. In	Pipe Lgth。 Ft.		$\begin{aligned} & \Delta \dot{P}_{0 B S} \\ & \mathrm{In}_{\mathrm{c}} \mathrm{Hg}_{2} \end{aligned}$	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & { }^{H} \mathrm{H}_{2} \mathrm{O}^{\mathrm{x}} 10^{4} \\ & \#_{\mathrm{miI}} / \mathrm{Ft} . \mathrm{Sec} \end{aligned}$	$\begin{gathered} 8 Q / \pi D^{3} \\ 1 / \mathrm{Sec} \end{gathered}$	$\begin{aligned} & \mathrm{D} \Delta \mathrm{P} / 4 \mathrm{~L} \\ & H_{\mathrm{F}} / \mathrm{Ft} \mathrm{t}^{2} \end{aligned}$	$\begin{gathered} \mathrm{DuP} \\ \overline{\mathrm{~F}}_{\mathrm{m}} / \mathrm{Ft}-\mathrm{Sec} \\ \hline \end{gathered}$	f_{L}	$\mathrm{Re}_{\mathbf{L}} \times 10^{-4}$	$\begin{gathered} \mu_{\mathrm{T}} \times 10^{4} \\ { }^{3} / \mathrm{Ft} / \mathrm{Sec} \end{gathered}$	${ }^{\mu} \mathrm{T} /{ }^{\mu} \mathrm{H}_{2} \mathrm{O}$
57	1.60	15.0	12.25	4.62	22.8	6.32	195.9	0.724	117.0	0.01629	16.0	7.32	1.16
58	1.60	15.0	15.79	7.42	23.4	6.23	252	1.164	150.8	0.01580	18.5	8.15	1.31
59	1.60	15.0	9.27	2.80	24.2	6.12	148.2	0.439	88.5	0.01722	12.5	7.08	1.16
60	1.60	15.0	7.36	1.75	24.8	6.03	117.8	0.274	70.3	0.01708	12.8	5.49	0.910
61	1.60	15.0	4.83	0.80	25.0	6.01	77.2	0.1255	46.1	0.01817	9.8	4.71	0.783
71	1.60	15.0	4.77	0.79	23. 2	6.26	76.3	0.1240	45.6	0.01835	9.1	5.01	0.800
74	1.60	15.0	4.52	0.79	25.0	6.01	72.3	0.1240	43.2	0.0204	5.55	7.78	1.29
78	1.60	15.0	8.15	2.01	26.1	5.86	130.3	0.315	77.8	0.01600	17.6	4.42	0.755
82	1.60	15.0	13.70	5.61	27.2	5.72	21.9	0.880	130.9	0.01581	18.6	7.04	1.23
62	1.06	16.5	1.582	0.91	25.4	5.95	87.2	0.0857	22.8	0.0222	3.8	6.00	1.01
63	1.06	16.5	3.35	3.57	25.7	5.91	184.7	0.336	48.3	0.01942	7.0	6.90	1.17
64	1.06	16.5	5.68	9.18	25.9	5.88	313	0.865	82.0	0.01737	11.9	6.90	1.17
65	1.06	16.5	7.97	17.01	26.3	5.83	439	1.602	115.1	0.01633	16.0	7.19	1.23
66	1.06	16.5	9.56	22.98	26.5	5.80	527	2.165	138.0	0.01533	22.0	6.27	1.08
86	1.06	16.5	2. 727	1.04	28.3	5.58	95.1	0.0981	24.9	0.0213	4.55	5.47	0.981
90	1.06	16.5	4.08	5.07	29.1	5.48	225	0.478	58.9	0.01857	8.7	6.77	1.23
94	1.06	16.5	6.31	10.77	29.9	5.39	348	1.014	91.1	0.01648	15.3	5.95	1.10
67	0.82	17. 25	$1,416$	2.85	26.9	5.75	168.3	0.1986	26.4	0.0230	3.3	8.00	1.39
68	0.82	17. 25	2.81	9.64	27.2	5.72	334	0.672	52.4	0.01977	6.4	8.18	1.43
69	0.82	17.25	3.75	15.95	27.3	5.70	446	1.112	69.9	0.01837	9.15	7.64	1.34
70	0.82	17.25	4.62	22.98	27.4	5.69	550	1.602	86.2	0.01740	11.7	7.37	1.30
98	0.82	17.25	1.525	3.16	30.6	5.31	181.5	0.220	28.4	0.0220	4.0	7.10	1.34
102	0.82	17.25	2.61	8.20	31.1	5.26	311	0.571	48.6	0.01946	7.0	6.95	1.32
106	0.82	17.25	3.53	14.03	31.4	5.22	420	0.978	65.8	0.01822	9.7	6.79	1.30

TABLE JI B

Data and Results for Flow of a Watermelay Suspension of Specific Gravity 1． 164 Containing 23.6 Weight Per Cent（11．1 Volume Per Cent）Solids in a 1.60 Inch；a 1.06 Inch and a 0.82 Inch Pipe

Run No		pe Lgth Ft。	$\begin{gathered} W_{\mathrm{L}} \\ \# / \mathrm{Sec} \\ \hline \end{gathered}$	$\begin{aligned} & \Delta \mathrm{P}_{\mathrm{OBS}} \\ & \mathrm{In} \text { 。Hg。 } \end{aligned}$	Temp． ${ }^{\circ} \mathrm{C}$		$\begin{gathered} 8 Q / \mu_{D}{ }^{3} \\ 1 / \mathrm{Sec} \end{gathered}$	$\begin{aligned} & D A P / 4 L \\ & F_{F} / F t^{2} \end{aligned}$	$\begin{gathered} \mathrm{Du} \rho \\ Z_{\mathrm{m}} / \mathrm{Ft}-\mathrm{Sec} \\ \hline \end{gathered}$	${ }^{f}$ L	$\mathrm{Re}_{\mathrm{L}} \times 10^{-4}$	$\begin{gathered} \mu_{\mathrm{T}} \times 10^{4} \\ H_{\mathrm{m}} / \mathrm{Ft}-\mathrm{Sec} \\ \hline \end{gathered}$	${ }^{\mu} \mathrm{T} /{ }^{+} \mathrm{H}_{2} \mathrm{O}$
110	1.60	15.0	5.50	0.97	26.5	5.81	81.4	0.1522	52.5	0.01837	9.2	5.70	0.981
114	1.60	15.0	8.12	3.99	28.5	5.56	120．2	0.312	77.5	0.01725	12.2	6.35	1.14
118	1.50	3.5 .0	14．10	5.72	29.1	5.48	209	0.897	134.8	0.01650	15.1	8.92	1.63
123	1.06	16.5	3.23	3.20	$30_{\text {c }} 2$	5.36	164.9	0.302	46.6	0.0202	5.8	8.03	1.50
127	1.06	16.5	4.94	7.04	30.6	5.31	252	0.663	71.3	0.0190	7.75	9.20	1.73
131	1.06	16.5	7.38	14.22	30.6	5.31	376	1.340	106.5	0.01722	12.4	8.59	1.62
135	0.82	2＇7． 25	1.268	2.15	31.1	5.26	139．7	0.150	23.6	0.0234	3.07	7.69	1.46
139	0.82	17.25	2.19	5.95	31.0	5.27	241	0.415	40.8	0.0217	4.25	9.60	1.82
143	0.82	17.25	3.31	12.46	31.3	5.23	365	0.869	61.7	0.01987	6.3	9.80	1.87

Data and Results fo: Plow of a Water-Clay Suspension of Specific Gravity 1. 313 Containing 39.9 Weight Per Cent (21.2 Volume Per Cent) Solids in a 1.60 Inch, a 1.06 Inch and a 0.32 Inch Pipe

Run No	ipe I.D. In_{n}	Pipe Lgth. Ft。	$\begin{gathered} W_{L} \\ \# / S e c \end{gathered}$	$\begin{aligned} & \Delta P_{\text {OBS }} \\ & \text { In。Hg. } \end{aligned}$	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mu_{\mathrm{H}_{2} \mathrm{C} \times 10^{4}} \\ & { }^{\#_{\mathrm{HIn}} / \mathrm{Ft} . \mathrm{Sec}} \\ & \hline \end{aligned}$	$\begin{gathered} 8 Q / \pi D^{3} \\ 1 / \mathrm{Sec} \end{gathered}$	$\begin{aligned} & \mathrm{D} \Delta \mathrm{P} / \mathrm{LL} \\ & \mathrm{~F} / \mathrm{Ft}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{Du}^{\rho} \\ & { }_{\mathrm{m}}^{\mathrm{m}} / \mathrm{Ft}-\mathrm{Sec} \end{aligned}$	$\mathrm{f}_{\text {L }}$	$\operatorname{Re}_{L} \times 10^{-4}$	$\begin{gathered} \mu_{\mathrm{T}} \times 10^{4} \\ { }_{\mathrm{m}} / \mathrm{Ft}-\mathrm{Sec} \\ \hline \end{gathered}$	${ }^{\mu} \mathrm{T} /{ }^{\mu} \mathrm{H}_{2} \mathrm{O}$
147	1.60	15.0	0.9778	1.10	28.3		12.83	0.1725	9.34	0.0742			
151	1.60	15.0	0.848	1.00	28.6		11.1 .2	0.1568	8.10	0.0897			
152	. 1.60	15.0	10.48	3.05	28.8	5. 52	137.5	0.478	100.0	0.01792	10.3	9.71	1.76
156	1. 60	15.0	10.63	3.03	29.6	5.42	139.7	0.475	101.6	0.01730	12.0	8.47	1.56
157	1.60	15.0	13.85	5.21	29.7	5.41	181.8	0.817	132.2	0.01753	11.4	11.60	2.14
161	1.60	15,0	13.83	5.20	30.4	5.33	181.4	0.815	132.0	0.01753	11.4	11.58	2.17
162	1.06	16.5	0.580	2.10	31.3		26.2	0.198	8.37	0.0465			
166	1.06	16.5	0.367	1.90	31.5		16.6	0.179	5.30	0.1047			
167	1.06	16.5	4.47	5.41	31.7	5.19	202	0.510	64.5	0.0202	5.8	11.11	2.14
171	1.06	16.5	4.33	5.20	32.3	5.13	196	0.490	62.5	0.0206	5.3	21.80	2.30
172	1.06	16.5	6.22	10.28	32.4	5.12	282	0.969	89.9	0.01968	6.7	13.41	2.62
176	1.06	16.5	5.89	9.20	32.9	5.06	266	0.867	85.0	0.01976	6.5	13.09	2.58
177	0.82	17.25	0.252	2.77	33.0		24.6	0.193	4.70	0.0860			
181	0.82	17.25	0.1431	2.58	34.0		13.98	0.180	2.67	0.248			
182	0.82	17.25	2.42	6.65	34.0	4.95	236	0.463	45.1	0.0224	3.7	12.20	2.46
186	0.82	17.25	2.01	4.52	34.0	4.95	196.1	0.315	37.5	0.0221	3.9	9.62	1.94
187	0.82	17.25	3.18	10.80	34.0	4.95	310	0.753	59.3	0.0211	4.8	12.35	2.50
191	0.82	17.25	3.09	10.38	34.0	4095	302	0.724	57.6	0.0214	4.5	12.80	2.58

Data and Results for Flow of a Nater－Clay Suspension of Specific Gravity 1.396 Containing 47.5 Height Per Cent（ 26.8 Volume Fer Cent）Solids in a 1.60 Inch，a 1.06 Inch and a 0.82 Inch Pipe

Run No．	$\begin{gathered} \text { Pipe I.D。 } \\ \text { In。 } \end{gathered}$	$\begin{gathered} \text { Pipe Lgth. } \\ \mathrm{Ft} . \end{gathered}$	$\begin{gathered} \mathrm{W}_{\mathrm{L}} \\ \mathrm{H} / \mathrm{Sec} \end{gathered}$	$\begin{aligned} & \Delta \mathrm{F}_{\mathrm{OBS}} \\ & \mathrm{In} \text { 。 } \mathrm{Hg} . \end{aligned}$	Temp． ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \cdot \mathrm{H}_{2} \mathrm{C}^{\times 10^{4}} \\ & \text { Hm }_{\text {m }} / \mathrm{Ft}-\mathrm{Sec} . \end{aligned}$	$\begin{array}{r} 8 Q / \pi D^{3} \\ -\quad 1 / S \theta c \end{array}$	$\begin{aligned} & \mathrm{D} \Delta \mathrm{P} / 4 \mathrm{~L} \\ & \mathrm{H}_{\mathrm{F}} / \mathrm{Ft}{ }^{2} \end{aligned}$	$\begin{gathered} \text { Du } \rho \\ z_{\mathrm{m}} / \mathrm{Ft}-\mathrm{Sec} \end{gathered}$	$\boldsymbol{f}_{\mathrm{L}}$	$\mathrm{Re}_{\mathrm{L}} \mathrm{x} \times 0^{-4}$	$\begin{gathered} \mu_{\mathrm{T}_{\mathrm{x}} \mathrm{x} 0^{4}} \\ z_{\mathrm{m}} / \mathrm{Ft-Sec} \\ \hline \end{gathered}$	${ }^{+} \mathrm{T}_{4}{ }^{+\mathrm{H}_{2} \mathrm{O}}$
192	1.60	15.0	0.927	2.95	25.0		11.43	0.462	8.85	0.235			
196	1.60	15.0	0.482	2.60	27.5		5.94	0.408	4.60	0.769			
197	1.60	15.0	13.17	5.00	27.5	5.68	162.2	0.784	125.8	0.0198	6.35	19.80	3.48
201	1.60	15.0	13.20	5.02	30.0	5.38	162.8	0.787	126.0	0.0198	6.35	19.83	3.68
202	1．60	15.0	15.71	6.51	30.0	5.38	193.9	1.022	150.0	0.01812	9.8	15.30	2.84
206	1.60	15.0	15.60	6.51	30.0	5.38	191.1	1.022	149.0	0.01851	8.9	16.73	3.11
207	1.06	26.5	0.732	5.32	31.0		31.1	0.501	10.58	0.785			
211	1.06	15.5	0.595	5.07	31.5		25.3	0.478	8.59	1.133			
212	1.06	16.5	5.13	7.65	31.5	5.21	218	0.720	74.1	0.0229	3.35	22.1	4.24
216	1.06	16.5	4098	7.31	31.5	5.21	212	0.689	71.9	0.0233	3.1	23.2	4.45
21.7	1.06	16.5	6.21	10.26	31.5	5.21	264	0.966	89.7	0.0210	4.9	18.30	3.51
221	1.06	16.5	6.09	9.90	31.5	5.21	259	0.933	87.9	0.0211	4.8	18.30	3.51
222	0.82	27.25	0.390	6.65	31.5		35.8	0.463	7.27	0.916			
226	0.82	17.25	0.154	5.90	32.0		14.13	0.411	2.87	5.15			
227	0.82	17.25	2.98	10.38	32.0	5.16	273	0.724	55.5	0.0246	2.45	22.6	4.38
231	0.82	17．25	2.84	10.02	32.0	5.16	261	0.699	53.0	0.0260	1.95	27.2	5.27
232	0.82	17.25	3.99	16.63	32.0	5.16	366	1.160	74.4	0.0220	4.0	18.60	3.60
235	0.82	17． 25	3.96	16.17	32.0	5.16	363	1.127	73.9	0.0226	4.3	17．20	3.33

TABIE III A

Data and Results of Flow Properties in a Brookfield Viscometer of a Water-Clay Suspension of Specific Gravity 1.078 Containing 12.1 Weight Per Cent (5.27 Volume Per Cent) Solids.

$$
\left(\frac{\text { Inner Cylinder Radius }}{\text { External Cylinder Radius }}\right)^{2}=\left(\frac{\mathrm{Ri}}{\mathrm{R}_{\mathrm{E}}}\right)^{2}=\left(\frac{0.742 / 2}{3.25 / 2}\right)^{2}=0.0521
$$

Angular Velocity of Inner Cylinder ($\omega 1$) radians/second	Brookfield Viscosity (μ_{B}) Centipoises	Shearing Stress at Inner Cylinder Wall (W) H_{F} / Ft^{2}	Temperature ${ }^{\circ} \mathrm{C}$
$\pi / 5$	69.5	0.00192	26.0
$2 \pi / 5$	40.8	0.00226	
π	21.0	0.00290	
2π	12.6	0.00348	25.9

Data and Results of Flow Properties in a Brookfield Viscometer of a Water-Clay Suspension of Specific Gravity 1.164 Gontaining 23.6 Weight Per Cent (11.1 Volum Per Cent) Solids.

$$
\left(\frac{\text { Inner Cylinder Radius }}{\text { External Cylinder Radius }}\right)^{2}=\left(\frac{R i}{F_{E}}\right)^{2}=\left(\frac{0.742 / 2}{3.25 / 2}\right)^{2}=0.0521
$$

Angular Velocity of Inner Cylinder ($\omega \mathrm{i}$) radians 'second	Brookfield Viscosity (μ_{B}) Centipoises	Shearing Stress at Inner Cylinder Wall (W) $\mathrm{F}_{\mathrm{F}} / \mathrm{Ft}^{2}$	Temperature ${ }^{\circ} \mathrm{C}$
$\pi / 5$	520	0.01433	26.9
$2^{\pi / 5}$	287	0.01588	
π	133.1	0.0184	

table III C

Data and Results of Flow Properties in a Brookfield Viscometer of a Water-clay Suspension of Specific Gravity 1.313 Containing 39.9 Weight Per Cent (21.2 Volume Per Cent) Solids.

$$
\left(\frac{\text { Inner Cylinder Radius }}{\text { External Cylinder Radius }}\right)^{2}=\left(\frac{R i}{R_{\mathrm{E}}}\right)^{2}=\left(\frac{0.1254 / 2}{3.25 / 2}\right)^{2}=0.00149
$$

Angular Velocity of Inner Gylinder (${ }^{\omega} \mathrm{i}$) radians,'second	Brookfield Viscosity (μ_{B})	Shearing Stress at Inner Cylinder Tall(w) $H_{\mathrm{F}} / \mathrm{Ft}^{2}$	Temperature ${ }^{\circ} \mathrm{C}$
$\pi / 5$	500	0.0131	2.67
$2 \pi / 5$	400	0.0210	
π	1100	0.144	
2π	580	0.152	27.0

TABLE III D

Data and Results of Flow Properties in a Brookfield Viscometer of a Water-Clay Suspension of Specific Gravity 1. 396 Containing 47.5 Weight Per Cent (26.8 Volume Per Cent) Solids

$$
\left(\frac{\text { Inner Cylinder Radius }}{\text { External Cylinder Radius }}\right)^{2}=\left(\frac{\mathrm{Ri}}{\mathrm{R}_{\mathrm{E}}}\right)^{2}=\left(\frac{0.1254 / 2}{3.25 / 2}\right)=0.00149
$$

Angular Velocity of Inner Cylinder (c 1) radians; second	Brookfield Viscosity (μ_{B}) Centipoises	Shearing Stress at Inner Cylinder Wall (W) $F_{\mathrm{F}} / \mathrm{F} t^{2}$	Temperature ${ }^{\circ} \mathrm{C}$
-1/5	1500	0.0393	27.0
$2 \pi / 5$	900	0.0472	
π	1120	0.147	
2π	1195	0.314	27.5

Data and Results of Flow Properties in a Capillary Tube Viscometer of a Water-Clay Suspension of Specific Gravity 1.078 Containing 12.1 Weight Per Cent (5.27 Volume Per Cent) Solids
Tube Diameter $=0.1339 \mathrm{~cm}$.
Tube Length $=64.37 \mathrm{~cm}$.
Temperature $\quad=30.0^{\circ} \mathrm{C}$

Measured Pressure Drop $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	$\begin{gathered} \text { Volune } \\ \text { Collected } \\ \mathrm{cm}^{3} \end{gathered}$	Time Seconds	Average Velocity $\mathrm{cm} / \mathrm{sec}$	Kinetic Energy and Contraction Loss $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	Frictional Pressure Drop $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	$\frac{\mathrm{D} \mathrm{\Delta P}_{F}}{4 \mathrm{~L}}$	$\begin{aligned} & \frac{8 Q}{\pi \cdot D^{3}} \\ & 1 / \mathrm{sec} \end{aligned}$
73.5	53.58	76.6	49.69	3.04	70.46	0.0751	742
39.1	53.58	145.0	26.24	0.848	38.3	0.0408	392
123.4	53.58	43.8	86.92	9.31	114.1	0.1215	1299
168.6	53.58	32.2	118.1	17.18	151.4	0.1612	1764

TABLE IV B

Data and Results of Flow Properties in a Capillary Tube Viscometer of a Water-Clay Suspension of Specific Gravity 1.164 Containing 23.6 weight Per Cent (11.1 Volume Per Cent) Solids

Tube Diameter ${ }^{=} 0.1339 \mathrm{~cm}$.
Tube Length $=64.37 \mathrm{~cm}$ 。
Temperature $\quad-30.0^{\circ} \mathrm{C}$

Measured Pressure Drop $\mathrm{gm}_{\mathrm{E}} / \mathrm{cm}^{2}$	$\begin{aligned} & \text { Volume } \\ & \text { Collected } \\ & \mathrm{cm}^{3} \end{aligned}$	Time Seconds	Average Velocity $\mathrm{cm} / \mathrm{sec}$	Kinetic Energy and Contraction Loss $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	Frictional Pressure Drop $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	$\frac{\mathrm{D} \Delta \mathrm{P}_{\mathrm{F}}}{4 \mathrm{~L}}$	$\begin{aligned} & \frac{8 Q}{\pi D^{3}} \\ & 1 / \mathrm{sec} \end{aligned}$
79.5	53.58	171.8	22.16	0.65	78.8	0.0839	331
158.6	53.58	61.0	62.37	5.17	153.4	0.163	932
231.6	53.58	37.6	101.2	13.62	218.0	0.232	1512
306	53.58	27.8	136.8	24.89	281.1	0.299	2043

TABLE IV C

Data and Results of Flow Properties in a Capillary Tube Viscometer of a Water-Clay Suspension
of Specific Gravity 1.313 Containing 39.9 Weight Per Cent (21.2 Volume Per Gent) Solids

$$
\begin{aligned}
\text { Tube Diameter } & =0.1339 \mathrm{~cm} \\
\text { Tube Length } & =64.37 \mathrm{~cm} \\
\text { Temperature } & =30.0^{\circ} \mathrm{C} .
\end{aligned}
$$

Measured Pressure Drop $\mathrm{sm}_{\mathrm{F}} / \mathrm{cm}^{2}$.	Volume Collected $\pm \mathrm{m}^{3}$	Time Seconds	Average Velocity $\mathrm{cm} / \mathrm{sec}$	Kinetic Energy \& Contraction Loss $\mathrm{gn}_{\mathrm{E}} / \mathrm{cm}^{2}$	Frictional Pressure Drop $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	$\begin{gathered} \frac{\mathrm{D} \Delta \dot{r}_{\mathrm{F}}}{4 \mathrm{I}_{1}} \\ \frac{\pi}{\mathrm{~F}}_{\mathrm{f}}^{\mathrm{f}} \mathrm{t}^{2} \end{gathered}$	$8 Q / \pi D^{3}$ $1 / \mathrm{Sec}$	$\begin{gathered} \text { Slippage } \\ 1 / \mathrm{sec} \end{gathered}$	$\frac{8 Q_{p}}{i^{\pi} p_{\text {Sec }}^{3}}$
89.7	53.58	2762	1.378	0.0029	89.7	0.0955	20.6		
172.5	53.58	415.6	9.151	0.126	172.4	0.184	136.7	40	96.7
276.3	53.58	137.4	27.68	1.15	275.1	0.293	414	67	347
385.4	53.58	69.4	54.81	4.51	380.9	0.406	819	86	733
500	53.58	44.0	86.59	11.25	488.8	0.521	1294	111	1183

TABLE IV D

Data and Results of Flow Properties in a Capillary Tube Viscometer of a Water-Clay Suspension of Specific Gravity 1.396 Containing 47.5 Weight Per Cent (26.8 Volume Per Cent) Solids

$\begin{aligned} \text { Tube Diameter } & =0.1339 \mathrm{~cm} \\ \text { Tube Jength } & =64.37 \mathrm{~cm}_{\mathrm{o}} \\ \text { Temperature } & =30.0^{\circ} \mathrm{C} . \end{aligned}$									
Measured Pressure Drop $\mathrm{gm}_{\mathrm{F}} / \mathrm{cmi}^{2}$.	Volume Collected cm	Time Seconds	Average Velocity $\mathrm{cm} / \mathrm{sec}$	Kinetic Energy \& Contraction Loss $\mathrm{gm}_{\mathrm{F}} / \mathrm{cm}^{2}$	Frictional Pressure Drop $\mathrm{gn}_{\mathrm{F}} / \mathrm{cm}^{2}$	$\begin{gathered} \frac{\mathrm{DAP}}{4 \mathrm{P}} \mathrm{~F} \\ \frac{\#_{\mathrm{F}} / \mathrm{F} \mathrm{t}^{2}}{} \end{gathered}$	$\begin{aligned} & 8 \mathrm{~g} / \pi \mathrm{D}^{3} \\ & 1 / \mathrm{Sec} \end{aligned}$	$\begin{gathered} \text { Slippage } \\ \text { 1/Sec } \end{gathered}$	$\frac{8 Q_{4}}{i^{\pi} / R^{3}}$
234.6	53.58	2338	1.627	0.0042	234.6	0.250	24.3		
337.4	27.33	1160	2.671	0.0045	337.4	0.359	25.0		
560	27.33	130.6	14.86	0.352	559.6	0.596	222	51	171
773	27.33	55.6	34.93	1.95	771	0.821	522	70	452
244	27.33	1059	1.832	0.0054	244	0.260	27.4		
374	27.33	343	5.658	0.051	374	0.398	84.5	34	50.5
919	27.33	32.8	59.04	5.56	913.4	0.974	885	82	803
$\begin{aligned} \text { Tube Diameter } & =0.1074 \mathrm{~cm} \\ \text { Tube Length } & =64.16 \mathrm{~cm} . \\ \text { Temperature } & =30.4^{\circ} \mathrm{C} . \end{aligned}$									
856	27.33	151.0	19.99	0.637	855.4	0.733	372	62	310
663	27.33	306.0	9.86	0.155	662.8	0.568	183.6	48	135.6

Data and Results for Co-Current Flow of Air and Water in a 1.60 Inch Pipe 15.0 Feet Long

Data and Results for Co－Current Flow of Air and Water in a 1.06 Inch Pipe 16.5 Feet Long

Run No．		35	36	37	38	39	40	41	－42	43	44	45
$\boldsymbol{W}_{\text {L }}$	\＃／Sec	2.24	2.21	2.14	2.11	6.14	5.81	5.45	5.16	7.36	6.26	6.00
W_{G}	f／Sec	0	0.00319	0.00968	0.01671	0	0.006575	0.00980	0.01659	0	0.00839	0.01355
$\triangle P_{\text {OBS }} \quad I$	In．Hg，	1.70	3.53	5.68	6.65	11.02	15.02	16.82	18.82	14.43	18.43	20.40
$\mathrm{T}_{\text {Avg }}$	${ }^{\circ} \mathrm{C}$	20.0	20.7	20.9	21.0	21.3	21.7	22.3	22.6	22.9	23.0	23.2
$\mathrm{P}_{\text {AVG }}$	PSIA	16.0	17.8	20.2	22.3	24.6	31.3	33.5	36.8	29.2	36.5	39.0
$\mathrm{Re}_{\mathrm{LP}} \times 10^{-4}$		4.79	4.30	4.67	4.63	13.5	13.0	12.3	11.7	16.9	1.404	13.8
$\mathrm{f}_{\text {LP CALC }}$		0.0212	0.0212	0.0213	0.0213	0.0170	0.0171	0.0174	0.0176	0.0163	0.0168	0.0169
$\mathrm{f}_{\text {IP }}$ OBS		0.0192				0.01658				0.01512		
$\Delta \mathrm{P}_{\mathrm{LP}}$	In 。Hg。	1.875	1.825	1.720	1.672	11.30	10.18	9.12	8.27	15.57	11.61	10.72
$\operatorname{Re}_{G P} \times 10^{-3}$			3.79	11.5	19．9		7.77	11.6	19.5		9.86	15.9
$f_{G P}$			0.0409	0.0295	0.0259		0.0329	0.0295	0.0260		0.0308	0.0273
$\triangle P_{G P} \quad I$	In 。 Hg 。		0.00503	0.0294	0.0699		0.00981	0.01842	0.0420		0.01288	0.0279
x^{2}			363	58.5	24.0		1037	495	197		902	384
T^{2} LTT OBS			1.933	3.30	3.97		1.478	1.844	2.28		1.588	1.902
$\mathbf{T}^{2} \text { LTT MART }$			2.23	3.62	4.89		1．81	2.09	2.56		1.85	2.21
$\mathrm{R}_{\mathrm{G} \text { MART }}$			0.350	0.508	0.570		0.271	0.324	0.403		0.280	0.345
$\Delta_{\text {TP MART }}$	In．Hg．		4.07	6.22	8.18		18．40	19.10	21.2		21.50	23.70
DEviATION	$\%$	－9．34	－13．3	－8．67	－18．7	－2．48	－18．4	－11．9	－11．2	－7．33	-14.3	－13．9

Data and Results for Co－Current Flow of Air and Water in a 0.82 Inch Pipe 17.25 Feet Long

Run $\mathrm{No}_{\text {。 }}$		$\underline{6}$	47	48	49	50	51	52	53	54.	55	56
W_{L}	\＃／$/ \mathrm{Sec}$	1.191	2.170	1.137	1.086	2.60	2.395	2.21	2.12	3.535	3.05	2.90
W_{G}	F／Sec．	0	0.00321	0.00654	0.01269	0	0.00558	0.01138	0.01468	0	0.00688	0.00983
$\triangle P_{\text {OBS }} \quad I$	In．Hg．	2.30	5.70	7.22	10.57	9.03	17.21	19.40	20.80	15.00	23.58	24.78
$\mathrm{T}_{\text {aVG }}$	${ }^{\circ} \mathrm{C}$	12.5	13.6	14.0	14.8	16.1	17.2	18.0	18.8	19.0	19.5	20.0
${ }^{\text {P }}$ AVG	PSIA	16.1	18.5	20.2	22.5	20.2	27.7	32.7	33.5	25.0	34.1	35.8
$\mathrm{He}_{\text {LP }} \times 10^{-4}$		2.70	2.74	2.69	2.62	6.50	6.16	5.79	5.67	9.50	8.30	7.98
$\mathrm{f}_{\text {IP CALC }}$		0.0240	0.0240	0.0240	0.0241	0.0198	0.0200	0.0203	0.0204	0.0182	0.0187	0.0189
$\mathrm{f}_{\text {IP }}$ OBS		0.0244				0.0201				0.01808		
$\triangle P_{L P}$ I	In ${ }^{\text {Hg，}}$	2.26	2.18	2.06	1.89	8.89	7.63	6.60	6.10	15.1	11.6	10.6
$\mathrm{Re}_{G P} \times 10^{-3}$			5.02	10.2	19.7		8.64	17.6	22.6		10，6	15.0
$f_{G P}$			0.0372	0.0302	0.0260		0.0318	0.0266	0.0250		0.0300	0.0277
$\Delta \mathrm{P}_{\text {GP }}$	In 。 Hg 。		0.0164	0.0506	0.1479		0.0286	0.0871	0.1298		0.0336	0.0604
x^{2}			133	40．7	12.8		267	75.8	47.1		344	175
T^{2} ITT OBS			2.61	3.51	5.59		2.26	2.94	3.41		2.04	2.34
t^{2} LTT Mart			2.83	4.09	6.13		2.39	3.33	3.88		2.26	2.64
$\mathrm{R}_{\mathrm{G} \text { M }} \mathrm{maRT}^{\text {a }}$			0.441	0.533	0.616		0.377	0.489	0.522		0.355	0.415
$\triangle P_{\text {TP Mart }} \mathrm{I}$	In．Hg．		6.17	\＄5．43	11.60		18.23	22.0	23.7		26.1	27.9
DEvIATION	\％	＋1．77	－7．62	-14.4	－8．38	＋1．46	－5．60	－11．8	－12．2	－0．73	－9．65	－11．2

Data and Results for Co－Current Flow of Air and a Fater－Clay Suspension of Specific Gravity 1.078 Containing 12．1 Feight Per Cent（5．27 Volume Per Cent）Solids in a 1． 60 Inch Pipe 15.0 Feet Long

Run No		71	72	74	75	76	77	78	79	80	82	83	84	85
${ }^{\text {W }}$ L	\％／Sec	4.77	4.51	4.52	4.47	4.43	4.34	8.15	8.03	7.91	13.70	13.11	12．71	12.36
W_{G}	\％／Sec	0	0.001741	0	0.001606	0.00421	0.01975	0	0.00412	0.01155	0	0.00836	0.01603	0.0231
$\triangle P_{\text {OBS }}$	In． Hg 。	0.79	1.01	0.79	0.97	1.41	2.20	2.01	3.08	3.75	5.61	7.41	8.45	9.00
TAVG	${ }^{\circ} \mathrm{C}$	23.2	24.0	25.0	25.1	25.6	26.0	26.1	26.7	27.0	27.2	27.7	28.0	28.0
$P_{\text {AVG }}$	PSIA	15.7	16.5	15．7	16．2	16.5	19.5	17.9	20.3	22.3	24.4	29.6	32.8	34.9
$8 Q / \pi D^{3}$	$1 / \mathrm{Sec}$	76.3	72.1.	72.3	＇71． 5	70.8	69.4	130.3	128.4	126．7	219	210	203	197.5
$\mathrm{DSP}_{\mathrm{LP}} / 4 \mathrm{~L}$	$\mathrm{AF}^{1 / \mathrm{t}}{ }^{2}$	0.1240	0.174	0.1240	0.112	0.110	0.108	0.315	0.330	0.320	0.880	0.820	0.768	0.729
${ }^{\Delta P_{\text {L }} P}$	In。 Ig_{g} ，		0.727		0.775	0.702	0.689		2.10	2.04		5.13	4.90	4.65
$\mathrm{Re}_{\text {GP }} \times 10^{-2}$			1.36		7.025	3.29	15.4		3.22	9.01		6.52	12.5	18.0
$\mathbf{f}_{\text {GP }}$			0.0567		0.0580	0.0425	0.0276		0.0430	0.0315		0.0345	0.0289	0.0264
$\Delta P_{\text {GP }}$	In。 Hg 。		0.000262		0.000233	0.001153	0.01395		0.000911	0.00477		0.00207	0.00576	0.01030
X^{2}			2780		3070	609	49.4		2300	427		2480	850	452
${ }^{2}$ LTT OBS			1.39		1.356	2.01	3.19		1.467	1.84		1.445	1.725	1.935
\mathbf{T}^{2} LTT MART			1.50		1.47	2.01	3.81		1.56	2.16		1.53	1.88	2.13
R_{G} MART			0.201		0.193	0.308	0.519		0.215	0.337		0.209	0.285	0.331
$\Delta \mathrm{P}_{\text {TP M }}$ MART	In。 FL		1.09		1.05	1.41	2.62		3.28	4040		7.85	9.21	9.91
DEVIATIOA	\％		-7.34		－7．62	0	－16．0		－6．10	－14．8		-5.60	－8．25	－9．19

inth and Resulta soch Comrrent Flow of tir and a Fater-Glay Suspension of Specific Gravity 1.078
Contuaning 12.1 foe tht Per Cert (5.27 Volume Per Cent) Solids in a 1.06 Inch Pipe 26.5 Feet Leng

Run No.	86	87	S8	89	90	91	92	93	94	95	96	97
WL \quad \#/Sec	2.727	1.68 ?	1.625	1.002	4.08	4.00	3.86	3.68	6.31	5.85	5.50	5.19
$\mathrm{W}_{\mathrm{G}} \quad \frac{4}{\text { / }}$ Sec	0	0.00257	0.0188	0,0232	0	0.00332	0.0105	0.0223	0	0.0057%	0.01215	0.01853
$\triangle P_{\text {OBS }} \quad \mathrm{In}, \mathrm{Hg}^{\text {d }}$	1.04	1.97	5.90	7.24	5.07	8.41	11.91	14.43	10.77	25.02	18.43	19.90
$\mathrm{T}_{\text {AVG }}{ }^{\circ} \mathrm{C}$	2E, 3	28.9	29.0	29.1	29.1	29.5	29.6	29.7	29.9	30.0	30.2	30.2
$\mathrm{F}_{\text {AVG }}$ PSIA	15.4.4	16.5	20.9	21.8	18.7	22:4	27.0	32.2	23.9	31.0	35.4	37.8
$80 / \pi D^{3} \quad 1 / \mathrm{Sec}$	95.7	93.0	99.6	80, 4	225	220	213	203	348	322	303	286
	0.0981	0.97	0.90	0.38	0.478	0.455	0.43	0.395	1.014	0.91	0.82	.735
$\triangle P_{\text {LP }} \quad$ InoHg		0.971	0.955	0.934		4.83	4.56	4×19		9.66	8.70	7.80
$\mathrm{Re}_{G P} \times 10^{-3}$		1.84	20.1	27.2		3.90	12.2	26.2		$6.7{ }^{\text {m }}$	14.3	21.8
$f_{\text {GP }}$		0,0507	6.0251	0.0220		0.0402	0.0290	0.0242		0.0340	0.0279	0.0253
$\triangle P_{G P} \quad \mathrm{In}$, Hg 。		000677	0.0938	0.13		0.00438	0.0262	0.0829		0.00810	0.0258	0.0510
x^{2}		580	10.18	7.12		110?	274	50.5		1193	337	153
$\mathrm{T}^{2} \mathrm{LITT}$ OBS		2.968	6.18	7.75		1.742	2.62	3.45		2.554	2.12	2.55
5^{2} EITT MAFIT		2.03	6.70	9.65		1.78	2.64	3.79		1.76	2.27	2.73
$\mathrm{R}_{\mathrm{S}} \mathrm{MART}$		0.311	0.634	0.658		0.266	0.477	0.518		0,260	0.357	0.1429
$\triangle \mathrm{P}_{\text {TP MART }} \mathrm{In}$. Hg 。		2.97	6.40	7.14		8.60	22.03	15.90		17.0	19.75	21.3
deviartc \% \%		-3.05	-7.81	-3.40		-2.21	-1.0	-9.25		-11.6	-6.68	-6.57

Data and Results fice Comurxent Flow of Air and a Water－Clay Suspension of Specific Gravity 1.078 Containing 12.1 Weight Per Cent（5．27 Volume Per Cent）Solids in a 0.82 Inch Pipe 17.25 Feet Long

Run No．	98	99	300	101	102	103	104	105	106	107	208	109
$W_{L} \quad \# / \mathrm{Sec}$	1.525	1.459	1.345	1.197	2.61	2.55	2.36	2.09	3.53	3.41	2.96	2.74
$\mathrm{F}_{\mathrm{G}} \quad \# / \mathrm{Sec}$	0	0.00175	0.01218	0.02338	0	0.00197	0.00869	0.01919	0	0.00236	0.01012	0.01527
$\Delta \mathrm{P}_{\text {OBS }} \mathrm{In}^{\text {d }}$ ． Hg 。	3.15	5.80	13.04	17.82	8．20	12.35	18.42	22.38	14.03	18.33	25.33	26.74
$\mathrm{T}_{\text {AVG }} \quad{ }^{\circ} \mathrm{C}$	30.6	31.0	32.0	31.0	37.2	31.2	31.3	31.3	31.4	31.8	31.8	31.8
$\mathrm{P}_{\text {AVG }}{ }^{\text {P PSIA }}$	16.7	18.7	24.7	29.0	19.7	23.5	30.1	35.2	23.9	28.6	36.4	38.8
$8 Q / \pi D^{3} \quad 1 / \mathrm{Sec}$	181.5	273.5	160	142．4	311	304	281	249	420	406	352	326
$D \Delta P_{L P} / 4 \mathrm{~L} \quad \mathrm{~F}_{\mathrm{F}} / \mathrm{Ft}^{2}$	0.220	0.212	0.187	0.155	0.572	0.555	0.481	0，390	0.978	0.940	0.724	0.630
$\Delta \mathrm{P}_{\mathrm{LP}} \quad \mathrm{In}$ 。 Hg 。		3.04	2.68	2.22		7.96	6.90	5.60		13.49	10.39	9.04
$\mathrm{Re}_{G P} \times 10^{-3}$		2.64	16.9	36.0		2.98	13.1	29.0		3.57	15.3	23.1
$f_{O P}$		0.046	0.0270	0.0226		0.0440	0.0288	0.0237		0.0476	0.0277	0.0248
$\triangle \mathrm{P}_{\mathrm{GP}} \quad \mathrm{In}$ 。Hg．		0.0063%	0.1146	0.356		0.00610	0.0605	0.209		0.00681	0.0656	0.1253
x^{2}		481	23.4	6.23		1305	114	26.8		1980	158．2	72.0
$\mathrm{T}^{2} \mathrm{LITP}$ OBS		1.91	4.37	8.03		1.551	2.67	4.00		1.36	2.44	2.96
$\Phi^{2}{ }_{\text {LTT }}$ Matit		2.10	4.92	8.03		1.73	2.94	4.69		1，59	2.70	3.39
$\mathrm{R}_{\mathrm{G}} \mathrm{MART}$		0.326	0.572	0.662		0.255	0.457	0.562		0.225	0.425	0.492
$\triangle \mathrm{P}_{\text {TP }} \mathrm{MART}$ IN． Hg ．		6.38	13.20	17.82		13.78	20.3	26.3		21.4	28.0	30.6
deviation \％		－9．10	－1．21	0		－10．4	－9．26	－14．9		－14．3	－9．54	－12．6

TABLE VI B1

Data and Results For Co-Gurrent Flow of Air and a Water-Clay Suspension of Specific Gravity 1.164 Containing 23.6 Fijeight Per Cent (11.1 Volume Per Cent) Solids in a 1.60 Inch Pipe 15.0 Feet Long

Run N		110	111	112	113	114	115	116	117	118	119	120	121	122
W_{L}	\%/Sec	5.50	5.12	5.44	5.24	3.12	8.05	7.99	7.71	14.10	13.76	13.11	13.22	5.04
W_{G}	\#/Sec	0	0.00153	0.00434	0.0263	0	0.00202	0.00462	0.0257	0	0.00315	0.0115	0.0231	0.00455
$\triangle \mathrm{F}_{\text {OBS }}$	In. Hg.	0.97	1.24	1.80	3.37	1.99	2.57	3.30	4.74	5.72	6.53	8.04.	8.60	1.80
$\mathrm{T}_{\text {AVG }}$	${ }^{\circ} \mathrm{C}$	26.5	26.6	23.0	28.0	28.5	29.0	29.0	28.8	29.1	29.4	29.9	29.8	30.2
$\mathrm{P}_{\text {AVG }}$	PSIA	16.1	16.8	17.4	21.3	17.9	19.0	20.3	25.8	23.9	27.2	31.2	34.8	17.4
$8 Q / \pi \mathrm{B}^{3}$	1/Sec	82.4	80.3	80.5	77.5	120.2	119.2	118.3	114.2	209	204	194	195.8	74.5
$\mathrm{DAP}_{\text {LP }} / 4 \mathrm{~L}$.	g_{3} / ct^{2}	0.1522	0.1520	0.152	0.1443	0.312	0.310	0.307	0.287	0.397	0.860	0.775	0.787	0.132
	In. Hig.		0.970	0.970	0.921		1.98	1.96	1.83		5.48	4094	5.02	0.842
Re $\mathrm{GP} \times 10^{-3}$			1.19	3.39	20.5		1.57	3.59	20.0		2.45	8.95	13.0	3.54
$f_{\text {GP }}$			0.0595	0.0422	0.0257		0.0535	0.0413	0.0258		0.0470	0.0317	0.0265	0.0417
$\mathrm{AP}_{\text {P }}$	In. Hg.		0.000209	0.001162	0.2213		0.000293	0.001109	0.31686		0.000438	0.00344	0.01040	0.001270
x^{2}			4620	334	43.2		6750	1768	108.5		12,500	1437	483	663
$\mathrm{T}^{2} \mathrm{LTT} 0 \mathrm{OB}$			3.279	1.856	3.66		1.30	1.684	2.59		1.192	1.628	1.712	2.14
$\mathrm{d}^{2} \mathrm{LTT}$ Mast			2.38	1.98	3.99		1.30	1.63	2.97		1.18	1.69	2.10	1.97
${ }^{\text {G MART }}$			0.164	0.286	0.529		0.134	0.233	0.462		0.080	0.248	0.326	0.302
dP TP MAPM	In. Hig.		1.34	1.22	3.67		2.57	3.20	5.44		6.47	8.35	10.54	1.66
Deviatio:	㫛		-7.47	-1.10	-0.23		0	+3.13	-12.9		+0.62	-3.71	-18.4	+8.44

TABLE VI B2

Data and Results for Co－Current Flow of Air and a Water－Clay Suspension of Specific Gravity 1.164 Containing 23．6 Weight Per Cent（ 21.1 Volume Per Cent）Solids in a 1.06 Inch Pipe 16.5 Feet Long

Run No．	123	124	125	126	127	128	129	130	131	132	133	134
$W_{L} \quad$ I／Sec	3.23	3.19	3.05	2.97	4094	4.89	4.67	4.51	7.38	6.96	6.61	6.14
$\mathrm{T}_{\mathrm{G}} \quad \# / \mathrm{Sec}$	0	0.00221	0.01396	0.0240	0	0.00256	0.01213	0.0200	0	0.00416	0.00852	0.01589
$\triangle P_{\text {OBS }} \quad \mathrm{In} . \mathrm{Hg}$ 。	3.20	5.31	9.60	12.90	7.04	9.81	15.87	18.02	14.22	17.01	19.83	22.14
$\mathrm{T}_{\text {AVG }}{ }^{\circ} \mathrm{C}$	30.2	30.0	30.5	30.3	30.6	30.6	30.6	30.4	30.6	30.8	30.9	30.9
${ }^{\text {aVg }}$ ，PSIA	17.3	19.1	25.4	29.8	20.2	23.6	31.0	35.1	26.8	32.6	36.6	40.2
$8 Q / \pi 0^{3} \quad 1 / \mathrm{Sec}$	164.9	162.8	155.6	151.4	252	249	238	230	376	355	337	313
${ }_{D S P_{L P}} / 4 \mathrm{~L} \quad \#_{\mathrm{F}} / \mathrm{F}^{2}$	0.302	0.301	0.278	0.265	0.663	0.64	0.59	0.553	1.340	1.216	1.11	0.97
$\triangle_{\text {LP }} \quad \mathrm{In}$ 。 Hg 。		3.19	2.95	2.81		6.79	6.26	5.87		12.90	11.78	10.30
$\operatorname{Re}_{G P} \times 10^{-3}$		2.59	16.4	29.1		3.00	14.2	23.4		4087	9.98	18.6
f_{GP}		0.0460	0.0273	0.0238		0.0440	0.0269	0.0248		0.0375	0.0307	0.0264
$\triangle P_{\text {GP }} \quad \mathrm{In}$ 。Hg		0.00261	0.0465	0.1020		0.00271	0.0284	0.0628		0.00443	0.01354	0.0369
X^{2}		1222	63.5	27.5		2510	220	92.0		2910	870	279
$\mathrm{S}_{2}^{2} \mathrm{LTT} \mathrm{OBS}$		1.665	3.26	4.59		1.445	2.53	3.07		1.32	1.685	2.15
		1.75	3.52	4.66		1.53	2.50	3.13		1.49	1.87	2.36
$\mathrm{R}_{\mathrm{G} \text { MART }}$		0.259	0.501	0.560		0.208	0.394	0.474		0.198	0.283	0.373
$\triangle P_{\text {TP M M }}$ MART In．Hg．		5.58	10.39	13.10		10.40	15.65	18.40		19.20	22.0	24.3
deviation \％		－4．84	－7．61	-1.53		－5．67	＋1．47	－2．06		－21．4	－9．87	－8．89

TABLE VI B3

Data and Results for Co－Current Flow of Air and a Water－Clay Suspension of Specific Gravity 1.164 Containing 23．6 Weight Per Gent（11．1 Volume Per Cent）Solids in a 0.82 Inch Pipe 17.25 Feet Long

Run No．	135	136	137	138	139	140	142	142	143	144	145	146
$W_{L} \quad$／$/ \mathrm{Sec}$	3.268	1.177	1.098	1.029	2.19	2.12	1.985	1.811	3.31	3.17	2.86	2.64
WG \quad \＃／sec	0	0.001684	0.01208	0.0244	0	0.00244	0.00943	0.0209	0	0.00286	0.01003	0.01618
$\Delta P_{\text {OBS }} \quad$ In．${ }^{\text {ag }}$ ，	2.15	4.33	11.52	16.45	5.95	10.56	16.02	22.38	12.46	18.44	23.38	25.94
$\mathrm{T}_{\text {aVG }} \quad{ }^{\circ} \mathrm{C}$	31.1	31.0	31.2	31.0	31.0	31.2	31.2	31.3	31.3	31.3	31.4	31.4
$\mathrm{P}_{\text {AVG }} 3$ PSIA	16.1	17.6	22.8	27.6	18.3	22.1	27.5	33.1	22.6	28.1	34.4	38.1
$8 Q / \boldsymbol{H}^{\text {D }}{ }^{3} \quad 1 / \mathrm{Sec}$	139.7	129.7	121	113.3	241	234	219	200	365	349	315	291
	0.150	0.13	0.12	0.10	0.415	0.397	0.352	0.30	0.869	0.80	0.668	0.58
$\Delta P_{L P} \quad \mathrm{In}$ 。 Hg 。		1.865	1.72	1.435		5.70	5.05	4.30		11.49	9.59	8.32
$\mathrm{Re}_{\mathrm{GP}} \times 10^{-3}$		2.55	18.3	36.9		3.69	14.3	31.6		4.32	15.2	24.4
$\mathbf{f}_{G P}$		0.0462	0.0263	0.0224		0.0410	0.0280	0.0233		0.0390	0.0277	0.0246
$\triangle \mathrm{P}_{\mathrm{GP}} \quad \mathrm{In}$ 。 Hg ．		0.00625	0.1412	0.405		0.00926	0.0760	0.259		0.00954	0.0682	0.142
x^{2}		298	12.2	3.54		615	66.5	16.6		1204	140.5	58.6
$\delta^{2}{ }_{0 L T T} \text { OBS }$		2.32	6.70	11.47		1.851	3.17	5.20		1.650	2.44	3.12
$\Phi^{2^{2}}{ }_{\text {LTT M MART }} \text { In。Hg。 }$		2.33	6.25	10.2		2.00	3.46	5.58		1.75	2.78	3.61
${ }^{R_{G} \text { MART }}$		0.368	0.620	0.700		0.307	0.498	0.598		0.260	0.437	0.507
$\triangle \mathrm{P}_{\text {TP MART }} \mathrm{In}$ 。Hg。		4.35	10.76	14.63		11.40	17.48	24.0		20.1	26.7	30.0
DEVIATION \％		－0．46	＋7．06	＋12．4		－7．55	－8．35	-6.75		－8．26	－12．8	－13．5

TABLE VI CI

Data and Results for Co－Current Flow of Air and a Water－Clay Suspension of Specific Gravity 1.313 Containing 39．9 Nexght Per Cent（21．2 Volume Per Cent）Solids in a 1.60 Inch Pipe 15.0 Feet Long

Run No		147	148	149	150	152	253	154	155	157	158	159	160
W_{L}	7／Sec	0.978	1.464	0.888	0.832	10.48	10．31	10.24	10.89	13.85	13.70	13.46	12.84
W_{G}	\＃／Sec	0	0.001954	0.00483	0.0220	0	0.00236	0.00611	0.0246	0	0.00249	0.00671	0.0225
$\Delta P_{\text {OBS }} \quad I$	In。 Hg 。	1.10	0.47	0.40	1.82	3.05	3.97	4.94	7.65	5.21	6.00	7.40	9.60
$\mathrm{T}_{\text {AVG }}$	${ }^{\circ} \mathrm{C}$	28.3			28.5		29.0				29.9		30.4
${ }^{\text {a }}$ AVG	PSIA	15.8	15.2	15.1	15.9	19.5	20.1	23.1	29.0	22.8	21.1	28.2	34.6
$80^{8} / r^{3}$	1／See	12.83	19.2	11.65	10.92	137.5	135.3	134.4	142.9	181.8	179.8	176.5	168.3
$D \triangle P_{\text {LP }} / 4 \mathrm{~L}$	$\#_{F} /{ }^{\text {F }}{ }^{2}$	0.1725	0.182	0.168	0.165	0.478	0.460	0.456	0.508	0.817	0.783	0.760	0.690
$\Delta P_{L P}$	In． Hg 。		1.16	1.07	1.05		2.93	2.91	3.24		4.99	4.85	4.40
$\mathrm{Re}_{\mathrm{GP}} \times 10^{-3}$			1.52	3.76	17.1		1.84	4.75	19.1		1.93	5.22	17.5
$\mathrm{f}_{\text {GP }}$			0.0421	0.0409	0.0269		0.0507	0.0378	0.0261		0.0501	0.0367	0.0267
$\triangle \mathrm{P}_{\mathrm{GP}}$	In ${ }_{\text {，}} \mathrm{Hg}$ ．		0.000269	0.00161	0.208		0.000358	0.001561	0.0139		0.000378	0.001501	0.01002
x^{2}							8190	1863	233		13，200	3230	439
Φ^{2} LTTT OBS							1.355	1.698	2.36		1.202	1.526	2.18
Φ^{2} LTT MART							1.27	1.62	2.47		1.18	1.46	2.15
$\mathrm{R}_{\mathrm{GMART}}$							0.118	0.229	0.389		0.075	0.189	0.336
$\Delta \mathrm{P}_{\text {TP }} \mathrm{MART}$	In． Hg 。						3.72	4.71	8.00		5.89	7.08	9.46
deviation	\％						＋6．72	＋4．88	－4．37		＋1．87	＋4．52	＋1．48

Data and Results for Co－Current Flow of Air and a Water－Clay Suspension of Specific Gravity 1.313 Containing 39.9 Weight Per Cent（21． 2 Volume Per Cent）Solids in a 1.06 Inch Pipe l6． 5 Feet Long

Run No．		1．6is	163	164	165	167	168	169	170	172	173	174	175
W_{L}	\＃／Sec	0.580	0.515	0.407	0．390	4.47	4.35	4.26	4.03	6.22	6.07	5.75	5.42
W_{0}	\％／Sec	0	0.00186	0.00541	0.0216	0	0.00243	0.00685	0.0211	0	0.00278	0.00790	0．01782
$\triangle \mathrm{P}_{\text {OBS }} \quad \mathrm{I}$	In。 Hg 。	2.10	1.00	1.22	2.77	5.47	8.84	12.10	17.42	10.28	13.76	18.20	22.38
$\mathrm{T}_{\text {AVG }}$	${ }^{\circ} \mathrm{C}$	31.3		31.5			31.8		32.1	32.4		32.7	
$P_{\text {AVG }}$	PSIA	16.0	15.7	15.5	27.2	18.8	22.0	25.5	34.0	23.0	26.9	32.5	38.2
$8 \mathrm{Q} /{ }^{\sim} \mathrm{D}^{3}$	i／Sec．	26.2	23．3	18.4	17.62	202	196.6	192.6	182.2	282	274	260	245
$\mathrm{DSP}_{\mathrm{LP}} / 4 \mathrm{~L}$		0.248	0.193	0.181	0.179	0.510	0.491	0.470	0.428	0：969	0.917	0.825	0.735
$\Delta P_{\text {LP }}$	In 0 Hg 。		2.03	1.92	1.90		5.21	4.99	4.54		9.74	8.76	7.80
$\mathrm{Re}_{\mathrm{GP}} \times 10^{-3}$			2.18	6.32	25.3		2.84	8.01	24.7		3.25	9.24	20.8
$f_{G P}$			0.049	0.0349	0.0244		0.0447	0.0325	0.0245		0.043	0.0313	c0257
$\Delta \mathrm{P}_{G \mathrm{GP}}$	In．Hg		0.00241	0.01444	0.1478		0.00268	0.01338	0.0718		0.00276	0.01343	0.0478
x^{2}							1945	373	63.3		3530	652	163.1
${ }^{\Phi^{2}} \mathrm{LTT} 0 \mathrm{OB}$							1.695	2.43	3.84		1.403	2.08	2.87
LIT MART							1.60	2． 22	3.52		1.44	1.98	2.68
$\mathrm{R}_{\mathrm{G}} \mathrm{MART}$							0.226	0.348	0.502		0.184	0.304 17.35	0.422
$\triangle \mathrm{P}_{\text {TP MART }} \mathrm{I}$	In． Hg 。						8.34	11.09	16.08		14.03	17.35	20.9
DEVIATIO：	$\%$						$+6.00$	$+11.0$	＋12．0		－2．56	$+4.90$	＋7．08

Data and Results for Co－Gurrent Flow of Air and a Water－Clay Suspension of Specific Gravity 1.313 Containing 39.9 Weight Per Cent（21． 2 Volume Per Cent）Solids in a 0.82 Inch Pipe 17.25 Feet Long

Run No．		177	178	179	120	182	183	134	185	187	158	189	190
W_{L}	\＃／5ec	0.252	0.191	0.1423	0.080	2.42	2.35	2.23	1.884	3.18	3.05	2.91	2.68
W_{G}	\＃／Sec	0	0.00147	0.00528	0.0164	0	0.00253	0.00800	0.0188	0	0.00281	0.00896	0.01344
$\triangle \mathrm{P}_{\text {OBS }}$	In．Hg．	2.77	0.81	1.60	2.77	6.65	12.28	19.00	22.38	10.80	18.02	23.38	27.35
T ${ }_{\text {AVG }}$	${ }^{\circ} \mathrm{C}$	33.0		33.1			34.0		34.0	34.0		34.0	
$\mathrm{P}_{\text {AVG }}$	PSIA	16.2	15.2	15.5	16.5	18.6	23.0	29.3	35.2	21.3	27.3	32.3	38.4
$8 Q / \pi D^{3}$	1／Sec	24.6	18.64	13.9	7.81	236	229	218	184	310	298	284	262
${ }^{D S} \mathrm{P}_{\text {IPP }} / 4 \mathrm{~L}$	$H_{\mathrm{F}} / \mathrm{Ft}^{2}$	0.1930	0，181	0.173	0.158	0.463	0.426	0.39	0.283	0.753	0.702	0.640	0.548
	In 。Hg。		2.60	2.48	2.27		6.11	5.60	4.06		10.08	9.19	7.86
$\mathrm{Re}_{3 \mathrm{P}} \times 10^{-3}$			2.22	7.98	24.8		3.82	12.1	28.4		4.24	13.5	20.3
f_{GP}			0.0484	0.0324	0.0245		0.0405	0.0292	0.0237		0.0390	0.0285	0.0258
$\triangle \mathrm{F}_{G P}$	In． Hg ．		0.00581	0.0492	0.338		0.00955	0.0540	0.202		0.00957	0.0600	0.103
x^{2+}							640	103.8	20.1		1053	153	76.3
Φ^{2} LTT OBS							2，01	3.39	5.51		1.79	2.55	3.48
$\Phi^{2^{2}} \operatorname{LTT} \text { MAR }$							1.99	3.02	5.19		1.80	2.73	3.32
$\mathrm{R}_{\mathrm{a}} \mathrm{MART}$							0.305	0.467	0.584		0.269	0.429	0.489
$\triangle \mathrm{P}_{\text {TP }} \mathrm{MART}$ I	In．Hg。						12.17	17.00	21.1		18.13	25.1	26.1 +4.79
deviation	\％						＋0．91	$+11.8$	＋6．06		－0．61	－6．85	＋4．79

TABLE VI DI

Data and Results for Co－Current Flow of Air and Fater－Clay Suspension of Specific Gravity 1． 396 Containing 47.5 Weight Per Cent（ 26.8 Volume Per Cent）Solids in a 1.60 Inch Pipe 15.0 Feet Long

Run No：	192	193	194	195	197	198	199	200	202	203	204	205
$W_{L} \quad \quad f / \mathrm{Sec}$	0.927	0，839	0.655	0.522	13.17	12.97	12.80	12.52	15.71	15.50	15.02	14.64
$\mathrm{W}_{\mathrm{G}} \quad f / \mathrm{Sec}$	0	0.00207	0.00710	0.01748	0	0.00274	0.00618	0.01501	0	0.00261	0.00747	0.01476
$\Delta P_{\text {OBS }} \quad \mathrm{In}$ 。Hg。	2.95	1.00	0.40	0.23	5.00	6.36	7.31	8.85	6.51	7.43	9.10	10.37
$\mathrm{T}_{\text {AVG }}{ }^{\circ} \mathrm{C}$	25.0	25.0	25.0	25.0	27.5	27.5	27.5	27.5	30.0	30.0	30.0	30.0
$\mathrm{P}_{\text {AVG }} 3 \quad$ PSIA	16.7	15.7	14.6	14.56	22.1	24.7	26.6	30.4	25.0	27.3	31.1	34.2
$8 \mathrm{Q} / \pi \mathrm{D}^{3} \quad 1 / \mathrm{Sec}$	12.43	10.34	8.08	6.44	162.2	159.9	157.8	154.3	193.9	191.0	185	180.5
$\mathrm{D} \triangle \mathrm{P}_{\mathrm{LP}} / 4 \mathrm{~L} \quad \mathrm{~F}_{\mathrm{F}} / \mathrm{Ft}{ }^{2}$	0.462	0.450	0.430	0.413	0.784	0.761	0.750	0.719	1.022	1.02	0.970	0.930
$\Delta \mathrm{P}_{\text {LP }} \quad \mathrm{In}$ 。Hg		2.87	2.74	2.64		4.86	4.78	4.59		6.50	6.19	5.93
$\mathrm{Re}_{\mathrm{GP}} \times 10^{-3}$		1.62	5.54	13.6		2.14	4.82	11.7		2.03	5.80	11.5
$\mathrm{f}_{\text {GP }}$		0.0396	0.0360	0.0284		0.049	0.0375	0.0298		0.0495	0.0357	0.0299
		0.000272	0.00313	0.0150		0.000378	0.001368	0.00560		0.000317	0．001641	0.00487
$x^{2^{2}}$						12，860	3500	819		20，500	3770	1217
δ^{2} LTT OBS						1． 31	1.53	2.93		1.142	1.47	1.748
$\Phi^{2}{ }_{\mathrm{LTT}} \mathrm{MART}$						1.18	1.44	1.89		1.12	1.43	1.75
$\mathrm{R}_{\mathrm{G} \text { MART }}$						0.076	0.185	0.287		0.0375	0.180	0.259
$\triangle \mathrm{P}_{\text {TP MART }} \mathrm{In}$ 。 Hg 。						5.73	6.88	8.68		7.28	8.85	10.38
DEVIATION \％						＋11．0	＋6．25	＋1．96		＋2．06	＋2．83	－0．96

TABLE VI D2

Data and Results for Co－Current Flow of Air and a Water－Clay Suspension of Specific Gravity 1． 396 Containing 47．5 Weight Per Cent（ 26.8 Volume Per Cent）Solids in a 1.06 Inch Pipe 16.5 Feet Long

Iun No．	207	208	209	210	212	213	214	215	217	218	219	220
$W_{L} \quad \quad / / \mathrm{Sec}$	0.732	0.654	0.626	0.589	5.13	4.98	4.80	4.64	6.21	6.07	5.85	5.53
$\mathrm{W}_{\mathrm{G}} \quad \quad 7 / \mathrm{Sec}$	0	0.00216	0.00556	0.01840	0	0.00259	0.00764	0.01527	0	0.00284	0.00856	0.01737
$\Delta \mathrm{P}_{\text {OBS }} \quad \mathrm{In}_{\sim} \mathrm{Hg}$ 。	5.32	2，20	2.20	3.76	7.65	11.75	15.04	18.83	10． 26	14.34	19.40	22.38
$\mathrm{T}_{\text {aVg }} \quad{ }^{\circ} \mathrm{C}$	短。 0				31.5				31.5			
$\mathrm{P}_{\text {AVG }}$ PSIA	17.8	16.0	16.0	27.4	20.9	23.9	28.1	33.0	22.6	27.1	33.0	38.2
$8 Q / \sim D^{3} \quad 1 / S e c$	34.1	27.8	26.6	25.0	218	212	204	197	264	258	249	235
$\mathrm{DiP}_{\mathrm{LP}} / 4 \mathrm{~L}$（ S^{2}	if． 501	0.488	0.483	0.477	0.720	0.680	0.647	0.612	0.966	0.932	0.88	0.80
$\Delta P_{\text {LP }} \quad$ Inoilgo		5.18	5.13	5.07		7.22	6.87	6.50		9.89	9.34	8.49
$\mathrm{Re}_{\mathrm{GP}} \times 10^{-3}$		2.53	6.51	21.5		3.03	8.94	17.9		3.28	10.0	20.3
$f_{\text {GP }}$		0.0465	0.0346	0，0255		0.044	0.0317	0.0264		0.0427	0.0306	0.0258
$\Delta \mathrm{P} \mathrm{GPP}^{\text {In }}$ In Hg 。		0.00302	0.0149	0.1105		0.00276	0.01469	0.0416		0.00276	0.01517	0.0455
x^{2}						2620	468	156.3		3580	615	186.5
5^{2} LTT OBS						1.629	2.19	2.90		1.451	2.08	2.64
${ }^{2}$ LTT MART						1.52	2.12	2.71		1.44	2.00	2.60
$\mathrm{R}_{\mathrm{G}} \mathrm{MART}$						0.205	0.328	0.427		0.183	0.308	0.410
$\triangle \mathrm{P}_{\text {TP MAR＇}}$ In ${ }^{\text {fig．}}$						10.98	14.57	17.61		14.24	18.68	22.1
DEVIATIOR \％						＋7．01	＋3．23	＋6．93		＋0．70	＋3．86	＋1． 27

Data and Results for Co-Current Flow of Air and a Water-Clay Suspension of Specific ôravity 1.396 Containing 47.5 Weight Per Cent (26.8 Volume Per Cent) Solids in a 0.82 Inch Pipe $\mathbf{1 7 . 2 5}$ Feet Long

Run No.		222	223	224	225	227	-228	229	230	$\underline{232}$	233	234
$\mathrm{W}_{\text {L }}$	\#/Sec	0.390	0.312	0.307	0.273	2.98	2.84	2.62	2.31	3.99	3.94	3.67
W_{G}	\%/Sec.	0	0.001923	0.00559	0.01819	0	0.00276	0.00788	0.01654	0	0.00250	0.00440
$\triangle \mathrm{P}_{\text {OBS }}$	In . Hg.	6.65	2.05	2.77	6.68	10.38	17.66	22.38	26.75	16.63	23.38	26.92
$\mathrm{T}_{\text {AVG }}$	${ }^{\circ} \mathrm{C}$	31.5				32.0				32.0		
$\mathrm{P}_{\text {AVG }}$	PSIA	18.2	16.0	16.2	18.6	20.8	26.3	32.1	37.2	24.9	30.8	34.4
$88 / \pi D^{3}$	1/Sec	35.8	28.6	28.2	25.0	273	261	240	212	366	352	337
$\mathrm{DAP}_{\mathrm{IP}} / 4 \mathrm{~L}$	$\#_{F} /{ }^{\text {ct }}{ }^{2}$	0.463	0.448	0.447	0.440	0.724	0.678	0.602	0.513	1.160	1.08	1.007
$\Delta_{\text {LP }}{ }^{\text {P }}$	In. Hg.		6.43	6.42	6.31		9.73	8.64	7.36		15.50	14.43
$\mathrm{Fs}_{\mathrm{GP}} \times 10^{-3}$			2.91	8.45	27.5		4.17	11.9	25.0		3.78	6.65
f_{GP}			0.0443	0.0319	0.0240		0.0395	0.0292	0.0245		0.0406	0.0342
$\Delta F_{2 P}$	In. Hg 。		0.00861	0.0517	0.359		0.00964	0.0476	0.1519		0.00694	0.0162
$x^{2^{u x}}$							1010	181.5	48.5		2230	891
$\Phi^{2} \mathrm{LTT}$ OBS							1.815	2.59	3.64		1.51	1.863
${\frac{\Phi^{2}}{}{ }^{2 L I T} \text { LIT MART }}^{2}$.					1.82	2.61	3.84		1.56	1.86
$\mathrm{A}_{\mathrm{G} \text { Mart }}$							0.273	0.411	0.520		0.217	0.281
$\triangle F_{T P} \mathrm{MART}$	In 。 Hg .						17.70	22.5	28.3		24.2	26.8
deviatiof	$\%$						-0.23	-0.53	-5.48		-3.39	+0.45

TABLR VII A

Pump Characteristics

Data and Results for an Ingersoll-Rand 1 CORVNL Open Impeller Centrifugal Pump Handing Water

Run No.		$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V^{\prime} \\ & \text { Gals/Min } \end{aligned}$	$\begin{gathered} \text { Discharge } \\ \text { Pressure }\left(P_{D}\right) \\ \text { PSIG } \end{gathered}$	$\begin{aligned} & \text { Suction } \\ & \text { Pressure }\left(P_{S}\right) \\ & \text { PSIG } \end{aligned}$	$\frac{2.31\left(\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{S}}\right)}{\mathrm{Sp}_{\mathrm{G}}^{\mathrm{Gr}}}$	$\begin{aligned} & \frac{\mathrm{U}_{\mathrm{D}}^{2}-\mathrm{U}_{\mathrm{S}}^{2}}{2 \mathrm{gc}} \\ & \mathrm{Ft} \cdot \mathrm{H}_{\mathrm{H}} / \#_{\mathrm{W}} \end{aligned}$	$\begin{gathered} \text { Head }^{* \prime} \\ \mathrm{Ft}, \#_{\mathrm{F}} / \mathrm{I}_{\mathrm{M}} \end{gathered}$	Motor Power Input HP	Overall Efficiency $\%$
1	9.15	16.4	65.9	56.3	1.1	127.6	8.70	139.7	7.24	32.1
2	11.98	17.2	86.2	48.1	0.8	109.3	14.91	127.6	7.62	36.4
3	7.18	28.1	51.7	63.1	1.4	142.7	5.35	151.5	6.43	30.8
4	4.65	18.9	33.5	68.6	1.7	154.5	2.25	160.2	6.17	21.9
5	9.66	20.6	69.5	57.3	1.2	129.8	9.71	142.9	7.27	34.5
6	8.01	21.7	57.7	62.0	1.3	140.3	6.67	150.4	6.97	31.4
7	5.91	22.0	42.6	66.8	1.6	250.9	3.64	159.0	6.44	26.4
8	3.10	22.4	22.3	69.9	1.9	157.1	1.00	161.5	5.74	15.8
9	1.375	23.9	9.90	70.4	1.9	158.2	0.197	161.8	5.40	7.49
10	1.366	24.7	9.84	70.4	1.9	158.2	0.194	161.8	5.39	7.45
11	2.78	25.1	20.0	69.9	1.9	157.1	0.773	161.3	5.72	14.2
12	3.63	25.6	26.1	69.7	1.8	156.9	1.37	161.7	5.93	18.0
13	4.30	26.0	31.0	68.9	1.8	155.2	1.92	160.5	5.98	21.0
24	11.55	12.8	83.2	48.4	0.9	109.9	13.90	127.2	7.65	34.9
28	8.53	16.3	61.4	58.9	1.2	133.4	7.57	144.4	6.77	33.1
$\text { \# } \frac{U_{D}{ }^{2}}{2 g}$	$S^{2}=$	$0.104 \frac{W_{L}}{\operatorname{SpGr}}$	2							
${ }^{\prime \prime} \mathrm{HEA}$	$=2.3$	$\frac{1\left(P_{\mathrm{n}}-P_{\mathrm{S}}\right)}{\text { Sp. } \mathrm{Gr}}+$	$\frac{U_{D}^{2}-u_{S}^{2}}{2 g_{c}}$	3.42						

TABLE VII B

Pump Characteristics

Data and Results for an Ingersoll－Rand 1 convNL Open Impeller Centrifugal Pump Handling a Water－Clay Suspension of Specific Cravity 1.078 Containing 12.1 Weipht Per Cent（ 5.27 Volume Fer Cent）Solids

Run No．	$\begin{gathered} W_{\mathrm{L}} \\ =/ \text { Sec } \end{gathered}$	$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} V^{9} \\ \text { Gals/Min } \end{gathered}$	$\begin{gathered} \text { Discharge } \\ \text { Pressure }\left(P_{\mathrm{D}}\right) \\ \quad \text { PSIG } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Suction } \\ & \text { Pressure }\left(P_{S}\right) \\ & \text { PSIG } \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\mathrm{U}_{\mathrm{D}}{ }^{2}-\mathrm{JJ}_{\mathrm{S}}{ }^{2 *}}{2 \mathrm{~g}_{\mathrm{c}}} \\ & \mathrm{Ft} \cdot \mathrm{~g} / \mathrm{g}_{\mathrm{W}} \end{aligned}$		\qquad	Overall Efficiency \qquad
57	12．25	22.8	81.8	55.2	1.0	116.1	13.41	132.7	8.20	36.0
58	15．79	23.4	105.3	19.0	0.5	39.6	22.3	65.1	8.96	20.9
59	9.27	24．2	61.9	64.7	1.3	135.8	7.68	146.7	7.30	33.9
60	7.36	24.8	49.1	69.4	1.5	145.2	4.85	153.3	6.84	30：0
61	4.83	25.0	32.2	74.2	1.8	155.0	2.09	160.3	6.20	22.7
62	1.582	25.4	10.57	75.7	2.0	158.0	0，22	161.4	5.39	8.62
63	3.35	25.7	22.4	75.3	2.0	157.0	1.00	161.2	5.79	17.3
64	5.68	25.9	37.9	73.1	1.7	152.9	2.78	158.9	6.42	25.6
65	7.97	26.3	53.2	68.0	1.5	142.5	5.68	151.4	7.01	31.3
66	9.56	26.5	63.9	63.8	1.3	134.0	8.17	145.4	7.34	34.5
67	1.416	26.9	9.45	75.6	2.0	157.8	0.18	161.2	5.36	7.74
68	2.82	27.2	18.8	75.2	2.0	156.9	0.73	160.9	5.61	14.6
69	3.75	27.3	25.0	74.6	2.0	155.7	1.26	160.2	5.87	18.6
70	4.62	27.4	30.8	74.1	1.9	154.7	1.91	159.8	6.06	22.2
＊U	$\frac{2 v_{3}^{2}}{2 g_{c}}$	$=0.104\left(\frac{W}{5 p}\right.$	$)^{2}$							
	$=2$	$\frac{.31\left(p_{0} p_{S}\right)}{3 p \cdot a r .}$	$\frac{u^{2}-\mathrm{Tj}_{\mathrm{S}}^{2}}{\mathrm{x}_{\mathrm{c}}}$	$+3.17$						

TABLE VII C

Pump Characteristics
Data and Kesults for an Ingersoll-Rand 1 CORVNL Open Impeller Centrifugal Pump Handing a Water-clay Suspension of Specific Gravity 1.164 Containing 23.6 Weight Per Cent (ll.1 Volume Per Cent) Solids

Run No.	$\begin{aligned} & \mathbb{F}_{\mathrm{L}} \\ & \# / \mathrm{Sec} \end{aligned}$	$\begin{gathered} \text { Temperature } \\ \mathrm{O}_{\mathrm{C}} \\ \hline \end{gathered}$	$\begin{gathered} \nabla^{\mathrm{f}} \\ \text { Gals/Min } \end{gathered}$	$\begin{gathered} \text { Discharge } \\ \text { Pressure }\left(\mathrm{P}_{\mathrm{D}}\right) \\ \text { PSIG } \\ \hline \end{gathered}$	$\begin{gathered} \text { Suction } \\ \text { Pressure (} \mathrm{P}_{\mathrm{S}} \text {) } \\ \text { PSIG } \\ \hline \end{gathered}$	$\begin{aligned} & \frac{2.31\left(\mathrm{P}_{\mathrm{D}}-\mathrm{F}_{\mathrm{S}}\right)}{\mathrm{Sp} \cdot \mathrm{Gr}} \\ & \mathrm{Ft} \mathrm{H}_{\mathrm{H}}^{\mathrm{H} / \mathrm{Ha}} \end{aligned}$		$\begin{gathered} \text { Head }{ }^{{ }^{\prime \prime}} \\ \mathrm{Ft}_{\mathrm{o}} \mathrm{~F}: / \mathrm{Z} \end{gathered}$		Overall Efficiency \qquad $\%$
110	5.50	26.5	34.0	79.4	2.0	153.3	2.31	158.6	6.18	25.6
114	8.12	23.5	50.2	74.3	1.6	144.2	5.05	152.2	6.82	32.9
116	7.99	29.0	49.4	74.7	1.7	144.8	4.90	152.6	6.76	32.8
118	14.20	30.1	87.2	54.2	0.9	105.8	15.23	124.0	8.21	38.7
123	3.23	30.2	20.0	80.6	2.2	155.3	0.80	159.0	5.61	16.6
127	4.94	30.6	30.5	79.9	2.0	154.3	1.87	159.1	6.06	23.6
131	7.38	30.6	45.6	75.2	1.7	145.8	4.17	152.9	6.65	30.8
135	1. 268	31.1	7.84	81.3	2.2	157.0	0.12	160.1	5.15	7.15
139	2.19	31.0	13.5	81.1	2.2	156.4	0.37	159.7	5.36	11.9
143	3.31	32.3	20.5	80.4	2.2	155.2	0.84	159.0	5.61	17.1
$\frac{\mathrm{U}^{2}-\mathrm{H}^{2}}{2 \mathrm{~S}_{\mathrm{c}}}=0.104\left(\frac{\mathrm{~L}}{\mathrm{cmir}}\right)^{2}$										
	$=$	$2.31 \frac{F^{2}-E_{3}}{b_{0}}$	$+\frac{y^{2}-0}{2 g_{e}}$	$\frac{2}{x}+2.94$						

Pump Characteristics
Data and Results for an Ingersoll－Rand 1 CORVNL Open Impeller Centrifugal Pump Handling a Water－Clay Suspension of Specific Gravity 1.313 Containing 39.9 Weight Per Cent（21．2 Volume Per Cent）Solids

Run No．	$\begin{gathered} W_{\mathrm{L}} \\ { }^{H / S e c} \end{gathered}$	$\begin{gathered} \text { Temperature } \\ { }^{\circ}{ }_{\mathrm{C}} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} V^{\prime} \\ \text { Gals/ain } \end{gathered}$	$\begin{gathered} \text { Discharge } \\ \text { Pressure }\left(P_{D}\right) \\ \text { PSIG } \end{gathered}$	$\begin{aligned} & \text { Suction } \\ & \text { Pressure (} P_{S} \text {) } \\ & \text { PSIG } \\ & \hline \end{aligned}$	$\begin{gathered} \frac{2.31\left(\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{S}}\right)}{\mathrm{Sp} \cdot \mathrm{Gr}} \\ \mathrm{Ft} \cdot \mathrm{HF}_{\mathrm{F}} / \mathrm{H} \end{gathered}$	$\frac{\mathrm{U}_{\mathrm{D}}^{2}-\mathrm{U}_{\mathrm{S}} 2^{*}}{2 \mathrm{~g}_{\mathrm{c}}}$ Ft 。解／䖯	$\begin{aligned} & \text { Head }^{* 1} \\ & \text { Ft. 草/品 } \end{aligned}$	\qquad	Overall Efficiency —
147	0.978	28.3	5.36	90.4	2.5	154.3	0.06	157.0	5.47	5.10
152	10，48	28.8	57.4	80.9	1.7	139.2	6.60	148.4	7.81	36.2
157	13.85	29.7	75.9	69.4	1.3	119.8	11.53	133.9	8.60	39.2
162	0.580	31.3	3.18	92，0	2.5	157.2	0.02	159.8	5.27	3.20
167	4.47	31.6	24.5	90.9	2.4	155.6	1.20	159.4	6.21	20.9
172	6.22	32.4	34.1	89.3	2.2	153.1	2.33	158.0	6.61	27.1
177	0.252	33.0	1.38	92.0	2.5	157.2	0	159.8	5.15	1.42
182	2.42	34.0	13.3	92.0	2.5	157.2	0.35	160.2	5.67	12.4
187	3.18	34.0	17.4	90.9	2.5	155.2	0.60	158.4	5.81	15.7
$* \frac{\mathrm{u}_{\mathrm{p}}^{2}}{2}$	$s^{2}=$	$0.1 .04\left(\frac{W_{L}}{5 p .0}\right.$								
	$A D=$	$\frac{2.31\left(\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{S}}\right)}{\text { Sp. Gr. }}$	$+\frac{U_{D}^{2}-U_{S}}{2 \mathrm{gC}}$	$+2.61$						

Data and Results for an Ingersoll-Rand 1 CORVNL Open Impeller Centrifugal Pump Handling a Water-clay Suspension of Specific Gravity 1.396 Containing 47.5 Weight Per Cent (26.8 Volume Per Cent) Solids

Run No. $\begin{array}{r}W_{L} \\ \hline \text { Sec } \\ \hline\end{array}$	$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} V^{8} \\ \text { Gals//4in } \end{gathered}$	$\begin{gathered} \text { Discharge } \\ \text { Pressure }\left(P_{D}\right) \\ \text { PSIG } \\ \hline \end{gathered}$	$\begin{gathered} \text { Suction } \\ \text { Pressure (} P_{S} \text {) } \\ \text { PSIG } \\ \hline \end{gathered}$	$\begin{aligned} & \frac{2.31\left(\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{S}}\right)}{\mathrm{Sp} . \mathrm{Gr}} \\ & \mathrm{Ft} . \mathrm{H}_{\mathrm{s}} / \mathrm{Ha}_{\mathrm{m}} \\ & \hline \end{aligned}$			Motor Power Input HP	Overall Efficiency \qquad
1920.927	25.0	4077	95.1	2.7	152.4	0.05	154.9	5.89	4.43
19713.17	27.5	67.7	78.8	1.5	127.6	9.21	139.3	8.88	37.6
20012.52	27.5	64.5	79.9	1.6	129.2	8.32	140.0	8.65	36.8
20215.71	30.0	80.9	70.4	1.3	114.1	13.11	129.7	9.35	39.6
20514.64	30.0	75.4	74.1	1.4	120.0	11.40	133.9	9.08	39.2
$207 \quad 0.732$	31.0	3.77	95.1	2.7	152.4	0.03	154.9	5.68	3.63
212501.3	31.5	26.4	92.0	2.5	147.8	1.40	151.7	6.66	21.2
$217 \quad 6.21$	31.5	32.0	91.4	2.4	146.9	2.05	151.4	6.93	24.7
2220.390	31.5	2.01	96.7	2.7	155.1	0.01	157.6	5.52	2.02
$* \frac{\mathrm{U}_{\mathrm{D}}^{2}-\mathrm{v}_{\mathrm{S}}^{2}}{2 \mathrm{~g}_{\mathrm{c}}}=$	$0.104\left(\frac{W_{\mathrm{L}}}{\operatorname{SpGr}}\right)$								
$w^{8} \mathrm{HEAD}=2$	$\frac{2.31\left(P_{D}-P_{S}\right)}{\left.S_{p: O r}\right)}$	$\frac{\mathrm{U}_{\mathrm{D}}^{2}=\mathrm{U}_{\mathrm{S}}}{2 \mathrm{~g}_{\mathrm{C}}}$	$+2.46$						

LIST OF FJGURES
No. Page

1. a) Typical Flow Curves of Newtonian and Bingham Plastic
Materials 109
b) Typical Flow Curves of Pseudoplastic and Generalized Newtonian Materials 109
2. a) Typical Flow Curves of Dilatant and Generalized
Bingham Plastic Materials 110
b) Typical Flow Curves of a Thixotropic Material in
a Rotation Viscometer 110
3. a) Typical Flow Curves of a Bingham Plastic Material in a Cylindrical Tube。 111
b) Typical Flow Curves of a Thíxotropic Material in Cylindrical Tubes 111
4. a) Typical Flow Curve of a Bingham Plastic in a
Cylindrical Tube with Buckingham Slippage Occurring 112
b) Typical Flow Curves of Materials in Cylindrical Tubes Exhibiting "Sigma Phenomenon" 112
5. a) Typical Flow Curve of a Bingham Plastic in a Rotation
Viscometer 113
b) Typical Flow Curves of a NonoNewtonian Material in Cylindrical Tubes in the Laminar and Turbulent Regions. 113
6. Schematic Diagram of Experimental Apparatus 114
7. General View of Experimental Equipment (Photograph) 115

LIST OF FIGURES (continued)

No. Page
8. Upstream End of Experimental Equipment (Photograph) 116
9. Downstream End of Experimental Equipment (Photograph) 117
10. Schematic Diagram of Entrance Section 118
11. Schematic Diagram of Mud Trap 119
12. Instrument Panel (Photograph) 120
13. Schematic Diagram of Capillary Tube Viscometer. 121
14. Particle-Size Distribution Curves of Clays by Hydrometer Method 122
15. a) Electron Microscope Photograph of Kaolin Clay 123
b) Electron Microscope Photograph of Kaolin Clay 124
16. Friction Factor vs. Reynolds Number for Flow of Water Alone 125
17. Pressure Drop vs. Volumetric Flow Rate (Wateroclay Suspensions in a 1.60 inch Pipe 15.0 feet Long) 126
18. Flow Curves of WatermClay Suspensions in a Rotation Viscometer (Brookfield) 127
19. Flow Curves of Water-Clay Suspensions in a Rotation Viscometer (Brookfield) 128
20. Flow Curves of a 12.1 Weight Percent Suspension in Various
Size Tubes. 129
21. Flow Curves of a 23.6 Weight Percent Suspension in Various Size Tubes. 130
22. Flow Curves of a 39.9 Weight Percent Suspension in Various
Size Tubes. 131

LIST OF FIGURES (continued)

No. Page
23. Flow Curves of a 47.5 Weight Percent Suspension in Various Size Tubes. 132
24. Friction Factor vs。(DUP) Suspension 133
25. Turbulent Viscosity vs. Shearing Stress at Pipe Wail。 134
26. Turbulent Viscosity vs. Shearing Stress at Pipe Wall. 135
27. Total Pressure Drop vs. Air Rate (Co-Current Turbulent- Turbulent Flow of Air and Water-Clay Suspensions in a 1.60 inch Pipe 15.0 feet Long) 136
28. Total Pressure Drop vs. Air Rate (Co-Current Turbulent-
Turbulent Flow of Air and WatermClay Suspensions in a 1.06 inch Pipe 16.50 feet Long). 137
29. Total Pressure Drop vs. Air Rate (Co-Current Turbulent- Turbulent Flow of Air and Water-Clay Suspensions in a 0.82 inch Pipe 17.25 feet Long) 138
30. Comparison of Data for ComCurrent TurbulentoTurbulent
Flow of Air and Water-Clay Suspensions in $1.60,1.06$ and 0.82
inch Pipes with Correlation of Lockhart and Martinelli (8) 139
31. Predicted Pump Characteristic Curves 140
32. Head vs. Capacity Curves for Centrifugal Pump Handling
Water-Clay Suspensions. 141
33. Power vs. Capacity Curves for Centrifugal Pump Handling
Water-Clay Suspensions. 242

RATE OF SHEAR, R_{6}

A) TYPICAL FLOW CURVES OF NEWTONIAN AND BINGHAM PLASTIC MATERIALS

B) TYPICAL FLOW CURVES OF PSEUDOPLASTIC AND GENERALIZED NEWTONIAN MATERIALS

A) TYPICAL FLOW CURVES OF DILATANT AND generalized bingham plastic materials

B) TYPICAL FLOW CURVES OF A THIXOTROPIC MATERIAL IN A ROTATION VISCOMETER

FIGURE 2

A) TYPICAL FLOW CURVE OF A BINGHAM PLASTIC MATERIAL IN A CYLINDRICAL TUBE

$$
Y=\frac{320}{\pi D^{3}}
$$

B) TYPICAL FLOW CURVES OF A THIXOTROPIC MATERIAL IN CYLINDRICAL TUBES FIGURE 3

A) TYPICAL FLOW CURVE OF A BINGHAM PLASTIC IN A CYLINDRICAL TUBE WITH BUCKINGHAM SLIPPAGE OCCURRING

B) TYPICAL FLOW CURVES OF MATERIALS IN CYLINDRICAL TUBES EXHIBITING
"SIGMA PHENOMENON"
FIGURE 4

A) TYPICAL FLOW CURVE OF A BINGHAM PLASTIC IN A ROTATION VISCOMETER
$Y=\frac{32 Q}{T T D^{3}}$

B) TYPIGAL FLOW CURVES OF A NON-NEWTONIAN MATERIAL IN CYLINDRICAL TUBES IN THE LAMINAR AND TURBULENT REGIONS

FIGURE 5

Figure 7. General View of Experimental Equipment.

Figure 8. Upstream End of Experimental Equipment.

Figure 9. Downstream End of Experimental Equipment.

FIGURE II

Figure 12. Instrument Panel.

SCHEMATIC DIAGRAM OF CAPILLARY TUBE VISCOMETER
FIGURE 13

PARTICLE SIZE DISTRIBUTION CURVES OF CLAYS BY THE HYDROMETER METHOD

FIGURE 14

Figure 15. a) Electron Microscope Photograph of Kaolin Clay.

Figure 15. b) Electron Microscope Photograph of Kaolin Clay.

FRICTION FACTOR vs. REYNOLDS NUMBER FLOW OF WATER ALONE

FIGURE 16

FIGURE 17

FIGURE I8

FLOW CURVES OF WATER-CLAY SUSPENSIONS IN A ROTATION VISCOMETER (BROOKFIELD)

FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

figure 24

turbulent viscosity vs. Shearing stress at pipe wall FIGURE 26

TOTAL PRESSURE DROP VS. AIR RATE COCURRENT TURBULENT - TURBULENT FLOW OF AIR AND WATER-CLAY SUSPENSIONS IN A I.60IN. PIPE 15.0 FEET LONG

TOTAL PRESSURE DROP VS. AIR RATE CO-CURRENT TURBULENT-TURBULENT FLOW OF AIR AND WATER-CLAY SUSPENSIONS IN A 1.06 IN. PIPE 16.55 FT. LONG

TOTAL PRESSURE DROP VS. AIR RATE CO-CURRENT TURBULENT-TURBULENT FLOW OF AIR AND WATER-CLAY SUSPENSIONS IN A 0.82 iN . PIPE 17.25 FT . LONG

GOMPARISON OF DATA FOR CO-CURRENT TURBULENT-TURBULENT FLOW OF AIR AND WATER-CLAY SUSPENSIONS IN 1.60, 1.06 AND 0.82 IN. PIPES WITH CORRELATION OF LOCKHART AND MARTINELLI (8)

FIGURE 30

PREDICTED PUMP CHARACTERISTIC CURVES
FIGURE 31

POWER VS. CAPACITY CURVES FOR CENTRIFUGAL PUMP HANDLING WATER-CLAY SUSPENSIONS

FIGURE 33

APPENDICES

Page
I Derivation of Lockhart and Martinelli's Correlation (8). 144
II Brookfield Synchroslectric Viscometer. 150
III Comparison of Rotational and Cylindrical Tabe Instrument Data (11). 152
IV Pressure Transmitter Calibration 158
V Rotameter Calibration. 160
VI Development of Equations for Determining Pump Characteristics. 162
VII Sample Calculations
A. Curves Used in Calculations. 166
B. Flow of Water Alone in a 1.60 Inch Pipe 174
C. Flow of a 23.6 Weight Percent (Sp.Gr. 1.164) Water-Clay
Suspension in a 1.06 Inch Pipe 176
D. Co-Current Flow of Air and Water in a 0.82 Inch Pipe 17%
E. Co-Current Flow of Air and a WatercClay Suspension of
Specific Gravity 1. 313 Containing 39.9 Weight Percent
Solids in a 1.60 Inch Pipe 182

APPENDIX I

DERIVATION OF LOCKHART AND MARTINELLI'S CORRELATION (8)

The basic assumptions upon which this correlation for the cos current flow of a gas and a liquid in cylindrical pipes is based are: 1. That the frictional pressure drop in the liquid phase is equal to the frictional pressure drop in the gas phase.
2. That the volume of the liquid plus the volume of the gas at any instant is equal to the volume of the pipe.

These assumptions require that the flow pattern is steady with respect to both time and distance.

Utilizing the first assumption and expressing the frictional
pressure drops by the usual Fanning equation

$$
\begin{equation*}
\left(\frac{\Delta P}{\Delta L}\right)_{T P}=2 f_{L} \frac{P_{L} U_{L}^{2}}{D_{L} \mathrm{~B}_{\mathrm{c}}}=2 f_{G} \frac{P_{G} U_{G}^{2}}{D_{G} g_{c}} \tag{I-1}
\end{equation*}
$$

where D_{L} and D_{G} are the hydraulic diameters of the liquid and gas phases respectively. Since for a cylindrical flow area, the hydraulic diameter is given by

$$
\begin{equation*}
A=\frac{\pi}{4} D_{H}^{2} \tag{Im2}
\end{equation*}
$$

the respective flow areas of each phase may be written as

$$
\begin{align*}
& A_{L}=\alpha\left(\frac{\pi}{4} D_{L}^{2}\right) \\
& A_{G}=\beta\left(\frac{\pi}{4} D_{G}^{2}\right) \tag{1-4}
\end{align*}
$$

where the parameters α and β are introduced to permit the hydraulic diameters D_{L} and D_{G} to be defined by the simple equations above. Using
these equations, the respective velocities of each phase are given by

$$
\begin{gather*}
U_{L}=\frac{W_{L}}{\alpha\left(\frac{\pi}{4} D_{L}^{2}\right) \rho_{L}} \cdot \frac{D_{P}^{2}}{D_{P}^{2}}=\left(\frac{W_{L}}{\frac{\pi}{4} D_{P}^{2} \rho_{L}}\right)\left(\frac{1}{\alpha}\right)\left(\frac{D_{F}}{D_{L}}\right)^{2}=\frac{U_{L P}}{\alpha}\left(\frac{D_{P}}{D_{L}}\right)^{2} \tag{I-5}\\
U_{G}=\frac{W_{G}}{\beta\left(\frac{\pi_{L} D_{G}^{2}}{4}\right) \rho_{G}} \cdot \frac{D_{P}^{2}}{D_{P}^{2}}=\frac{U_{G P}}{\beta}\left(\frac{D_{P}}{D_{G}}\right)^{2} \tag{I-6}
\end{gather*}
$$

where I_{P} is the pipe diameter and U_{LP} and U_{GP} are the velocities of the liquid and gas phases respectively based on the cross-sectional area of the pipe. Expressing the friction factors in the generalized Blasius form, they become

$$
\begin{gather*}
f_{L}=\frac{c_{L}}{\left(R_{L}\right)^{n}}=\frac{c_{L}}{\left(\frac{D_{L} U_{L} \rho_{L}}{\mu_{L}}\right)^{n}}=\frac{c_{L} \alpha^{n}}{\left(R^{n} e_{L P}\right)^{n}\left(\frac{D_{L}}{D_{P}}\right)^{n}=f_{L P} \alpha^{n}\left(\frac{D_{L}}{D_{P}}\right)^{n}} \tag{I-7}\\
f_{G}=\frac{c_{G}}{\left(R_{c}\right)^{m}}=f_{G P}\left(\beta^{m}\binom{D_{G}}{\bar{D}_{P}}^{m}\right. \tag{I-8}
\end{gather*}
$$

where the subscripts LP and GP denote superficial quantities, that is based on the crossmsectional area of the pipe. Before substituting these equations into equation (I-1) it should be pointed out that the velocities in the equation (I-I) involve the relative velocities be. tween the fluids and the substitutions will not be exact. However, these investigators point out that since the quantities α and β are derived from experimental data, the error is not so serious as might first appear. Making these substitutions and simplying, the result is

$$
\begin{equation*}
\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{\mathrm{TP}}=\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{\mathrm{LP}} \alpha^{\mathrm{n}}-2\left(\frac{D_{P}}{D_{L}}\right)^{5-n}=\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{~L}}\right)_{G P} \beta^{m-2}\left(\frac{D_{P}}{D_{\mathrm{G}}}\right)^{5-m} \tag{I-9}
\end{equation*}
$$

where $(\Delta \mathrm{P} / \Delta \mathrm{L})_{L P}$ and $(\Delta \mathrm{P} / \Delta \mathrm{L})_{G P}$ are the pressure drops for the flow of the liquid and gas phases respectively alone in the pipe. The three equations of (I-9) can be written as

$$
\begin{align*}
& {\left[\left(\frac{\left(\frac{\Delta P}{\Delta L}\right)_{T P}}{\left(\frac{\Delta P}{\Delta \bar{L}}\right)_{L P}}\right)^{1 / 2} \equiv \Phi_{L}=\alpha^{\frac{n-2}{2}}\left(\frac{D_{P}}{D_{L}}\right)^{\frac{5-n}{2}}\right.} \tag{I-10}\\
& {\left[\left(\frac{\left(\frac{\Delta P}{\Delta L}\right)_{T P}}{\left(\frac{\Delta P}{\Delta L}\right)_{G P}}\right]^{1 / 2} \equiv \Phi_{L}=\beta^{\frac{m-2}{2}}\left(\frac{D_{P}}{D_{G}}\right)^{\frac{5-m}{2}}\right.} \tag{I_11}\\
& {\left[\left(\frac{\Delta P}{\Delta L}\right)_{L P}\left(\frac{\Delta P}{\Delta L}\right)_{G P}\right]^{2 / 2} \equiv X=\frac{\beta^{\frac{m-2}{2}}}{\alpha^{\frac{n}{2}-2}}\left(\frac{D_{P}}{D_{G}}\right)^{\frac{5-m}{2}}\left(\frac{D_{L}}{D_{P}}\right)^{\frac{5-n}{2}}} \tag{I-12}
\end{align*}
$$

where the quantities Ψ_{L}, Φ_{G} and X are introduced for simplicity. Application of the second assumption, that the volume of the liquid plus the volume of the gas equals the volume of the pipe, gives

$$
\begin{equation*}
\alpha D_{L}^{2}+\beta D_{G}^{2}=D_{P}^{2} \tag{I-13}
\end{equation*}
$$

The fractions of the pipe, R_{G} and R_{L}, occupied by the gas and liquid respectively are

$$
\begin{equation*}
R_{\mathrm{G}}=\frac{\beta D_{G}^{2}}{D_{P}^{2}}=1-\alpha\left(\frac{D_{L}}{D_{P}}\right)^{2} \quad \text { or } \quad \alpha=R_{L}\left(\frac{D_{P}}{D_{L}}\right)^{2} \tag{I-2L}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{L}=\frac{\alpha D_{L}^{2}}{D_{P}^{2}}=1-\beta\left(\frac{D_{G}}{D_{P}}\right)^{2} \quad \text { or } \quad \beta=R_{G}\left(\frac{D_{P}}{D_{G}}\right)^{2} . \tag{I-15}
\end{equation*}
$$

In all of the equations thus far, five variables have appeared

$$
\begin{equation*}
\mathrm{x}, \frac{\mathrm{D}_{\mathrm{L}}}{\mathrm{D}_{\mathrm{P}}}, \frac{\mathrm{D}_{\mathrm{G}}}{\mathrm{D}_{\mathrm{P}}}, \alpha, \text { and } \beta \tag{I-16}
\end{equation*}
$$

and the variables $D_{L} / D_{P}, D_{G} / D_{P}, \alpha$, and β can be expressed in terms of the experimentally determined variables $\Phi_{L}, \Phi_{G}, R_{L}$, and R_{G}. These investigators then postulated that these four variables were functions of the variable X alone and verified this postulate by experimental data over a wide range of the variables involved and flow types. These flow types are classified as turbulent-turbulent (TT), turbulent-viscous (TV), viscous-turbulent (VT), and viscous-viscous (VV) where the liquid condition is given first.

The final correlation curves give Φ_{L} or Φ_{G} as a function of the variable X with the flow types as parameters, and the variables R_{G} and R_{L} as functions of \bar{X} alone. These investigators proposed the following criteria, based on the superficial Reynolds number of each phase, to determine the flow type: the flow is considered to be turbulent if the Reynolds number is more than 2000 and viscous if less than 1000 , with the intermediate zone being the transition region. All of these curves are reproduced in figure $I-1$ while figure $I-2$ gives the $\Phi_{\text {LTT }}^{2}$ and R_{G} curves versus X^{2} on a larger scale as these were used in the present investigation.

CORRELATION CURVES OF LOCKHART AND MARTINELLI (8) FOR CO-CURRENT GAS-LIQUID FLOW IN CYLINDRICAL TUBES.

FIGURE I-I

CORRELATION CURVES OF LOCKHART AND MARTINELLI (8) FOR CO-CURRENT GAS-LIQUID FLOW IN GYLINDRICAL TUBES

FIGURE I-2

BROOKFIELD SYNCHRO-LECTRYC VISCOMETER

A model LVF four-speed, 60-30-12-6 RPM, instrument having four spindles giving a range of from $0=100,000$ centipoises was used in this investigation. In this type of rotation viscometer, the spindle rotates and the cup is any container with a diameter greater than $23 / 4$ inches. The instrument measures, by means of a beryllium copper spring, the torque required to rotate the spindle at a constant angular velocity and reads directly in centipoises on a calibrated scale. This scale reading is the viscosity that the material would have if it were a Newtonian liquid being sheared at the same speed.

To derive the equations for this instrument, in the basic viscosity equation

$$
\begin{equation*}
\dot{R}_{s}=\frac{g_{c} s}{\mu} \tag{II-I}
\end{equation*}
$$

the appropriate values of \dot{R}_{S} and S

$$
\begin{gather*}
\dot{R}_{s}=\operatorname{or} \frac{d \mathrm{~d} g}{\mathrm{dr}} \tag{II-2}\\
S=\frac{T_{0}}{2 \pi h r^{2}} \quad \text { (cylindrical spindle with no end effects) } \tag{II-3}
\end{gather*}
$$

are substituted giving

$$
\begin{equation*}
\mathrm{d} \Theta=-\frac{\mathrm{g}_{c} \mathrm{~T}^{2}}{2 \pi h r^{3} \mu} \mathrm{dr} \tag{II-4}
\end{equation*}
$$

Since in the case of the Brookfield instrument, the viscosity is that of
a Newtonian and therefore constant, designated μ_{B}, integration of (II-4) gives

$$
\begin{equation*}
\int_{0}^{\dot{u}_{i}} d \Theta=-\frac{g_{c} T_{o}}{2 \pi h \mu_{B}} \int_{R_{E}}^{R_{i}} \frac{d r}{r^{3}} \tag{II-5}
\end{equation*}
$$

where, as the integration limits indicate, it has been assumed that no slippage occurs at either boundary. Integration of equation (II-5) and simplification gives

$$
\begin{equation*}
\dot{\omega}_{i}=\frac{g_{c} T_{o}}{4 \pi h \mu_{B} R_{i}^{2}}\left[1-\left(\frac{R_{i}}{R_{E}}\right)^{2}\right] \tag{II-6}
\end{equation*}
$$

which, by using equation (II-3), can be written

$$
\begin{equation*}
\dot{\omega}_{j}=\frac{g_{c} S_{i}}{2 \mu_{B}}\left[1-\left(\frac{R_{i}}{S_{E}}\right)^{2}\right] \tag{II-7}
\end{equation*}
$$

Of the four spindles supplied with this instrument only numbers 1 and 4 have the required cylindrical shape and were therefore used. The dimensions of these spindles are

Spindle Number	Diameter (inches)	Height (inches)
	0.7420	2.562
4	0.2254	

In these investigations, a 600 ml , beaker, having an internal diameter of approximately 3.25 inches, was used as the cup. Therefore, since the term $\left(\frac{R_{i}}{R_{E}}\right)^{2}$ is very small in the case of the number 4 spindle it may be neglected in computations involving that spindle. However, in the case of the number 1 spindle it must ke retained.

COMPARISON OF ROTATIONAL AND CYLINDRICAL TUBE INSTRUMENT DATA (ll)

According to Alves, Boucher and Pigford (11), a comparison of rotational and cylindrical tube viscometer data can be made by comparing the rate of shear and shear stress at the tube wall with the rate of shear and shear stress at the inner cylinder wall of the rotational viscometer.

In the case of the tube instrument, the rate of shear at the tube wall can be obtained from the flow curve, plotted as $y_{\phi} / 4$ versus x, by equation (37) derived by Mooney (30) and which is repeated here as

$$
\begin{equation*}
-\left(\frac{d u}{d r}\right)_{W}=3\left(\frac{8 Q_{\phi}}{\pi D^{3}}\right)+\left(\frac{D \Delta P_{F}}{4 L}\right) \frac{d\left(\frac{Q_{\phi}}{\pi D^{3}}\right)}{d\left(\frac{D \Delta P_{F}}{4 L}\right.}=3\left(\frac{y_{\phi}}{4}\right)+\frac{x}{4}\left(\frac{d y_{\phi}}{d x}\right) \tag{III_1}
\end{equation*}
$$

where $-\left(\frac{d u}{d r}\right)_{W}$ is the rate of shear and x is the shear stress, both at the tube wall.

In the case of the rotation instrument, the determination of these quantities is more difficult and involves several assumptions. Starting with the basic equation

$$
\begin{equation*}
{\stackrel{\circ}{R_{s}}}_{s}=\frac{g_{c} S}{\mu} \tag{III-2}
\end{equation*}
$$

where for this type of instrument

$$
\begin{equation*}
\dot{R}_{s}=-r \frac{d \dot{\theta}}{d r} \tag{III-3}
\end{equation*}
$$

$$
\begin{equation*}
S=\frac{T_{0}}{2 \pi h r^{2}} \tag{III-4}
\end{equation*}
$$

and assuming that the viscosity is a function of the shearing stress

$$
\begin{equation*}
\mu=F(S) \tag{III-5}
\end{equation*}
$$

equation (III-2) becomes by using (III-3) and (III-5)

$$
\begin{equation*}
-\mathbf{r} \frac{\mathrm{d} \Theta}{\mathrm{~d}} \mathbf{r}=\frac{\mathrm{g}_{\mathrm{c}} \mathrm{~S}}{\mathrm{~F}(\mathrm{~S})} \tag{III-6}
\end{equation*}
$$

Since the torque T_{0} is constant, differentiation of equation (III-4) gives

$$
\begin{equation*}
-\frac{d r}{r}=\frac{d S}{2 S} \tag{III-7}
\end{equation*}
$$

and substitution of this result into (III-6) yields

$$
\begin{equation*}
2 \frac{d \Theta}{d S}=\frac{g_{c}}{F(S)} \tag{III_8}
\end{equation*}
$$

Assuming no slippage at either boundary, integration of (III-8) gives

$$
\begin{equation*}
2 \int_{0}^{\dot{\omega}_{i}} \mathrm{~d} \dot{\theta}=2 \dot{\omega}_{i}=g_{c} \int_{S_{E}}^{S_{i}} \frac{d S}{F(S)} . \tag{III॰9}
\end{equation*}
$$

Differentiation of this equation with respect to S_{i} produces

$$
\begin{equation*}
\frac{2 d \hat{\omega}_{i}}{d S_{i}}=\frac{g_{c}}{F\left(S_{i}\right)}-\frac{g_{c}}{F\left(S_{E}\right)} \frac{d S_{E}}{d S_{i}} . \tag{III-10}
\end{equation*}
$$

But since, by (III-4)

$$
\begin{equation*}
\frac{d S_{E}}{d S_{i}}=\left(\frac{R_{i}}{R_{E}}\right)^{2} \tag{III..11}
\end{equation*}
$$

(III-JO) becomes, using (III-5)

$$
\begin{equation*}
\frac{2 \mathrm{~d}{\omega_{i}}_{i}}{d S_{i}}=\frac{g_{c}}{\mu_{i}}\left[1-\frac{\mu_{i}}{\mu_{E}}\left(\frac{R_{i}}{R_{E}}\right)^{2}\right] \tag{III-12}
\end{equation*}
$$

This relationship Alves et.al. call the general equation for rotational viscometers. In order to obtain the rate of shear at the inner cylinder wall Alves et.al. assume that

$$
\begin{equation*}
\mu=K_{1} S^{-n^{\prime}} \tag{III-13}
\end{equation*}
$$

and by using (III-4) obtain

$$
\begin{equation*}
\frac{\mu_{i}}{\mu_{E}}=\left(\frac{S_{E}}{S_{i}}\right)^{n^{\prime}}=\left(\frac{R_{i}}{R_{E}}\right)^{2 n^{\prime}} \tag{ITI-IL}
\end{equation*}
$$

Now letting

$$
\begin{equation*}
n=n^{\prime}+1 \tag{III_15}
\end{equation*}
$$

and substituting into (ITI-12), the result is

$$
\begin{equation*}
\frac{2 d \hat{\omega}_{i}}{d S_{i}}=\frac{g_{c}}{\mu_{i}}\left[1-\left(\frac{R_{i}}{R_{E}}\right)^{2 n}\right] \tag{ITI-16}
\end{equation*}
$$

Finally by substituting (III-2) into (IJI-16), the final result is obtained

$$
\begin{equation*}
\left(\dot{R}_{S}\right)_{i}=\frac{2 S_{i}\left(\frac{d \hat{\omega}_{i}}{d S_{i}}\right)}{1-\left(\frac{R_{i}}{T_{\mathrm{E}}}\right)^{2 \mathrm{n}}} \tag{III_-17}
\end{equation*}
$$

In order to obtain n, equation (III-13) is substituted into (III-9) and the integration carried out giving

$$
\begin{equation*}
2 \dot{\omega}_{i}=\frac{s_{i}{ }^{n} g_{c}}{K_{1} n}\left[1-\left(\frac{S_{E}}{S_{i}}\right)^{n}\right] \tag{III-18}
\end{equation*}
$$

This becomes, using (III-14) and rearranging,

$$
\begin{equation*}
S_{i}=\left[\frac{2 K_{1} \frac{n}{g_{c}}}{1-\left(\frac{R_{i}}{P_{E}}\right)^{2 n}} \dot{w}_{i}\right]^{1 / n} \tag{III-19}
\end{equation*}
$$

Thus n is given by

$$
\begin{equation*}
n=\frac{d \log \dot{\omega}_{i}}{d \log S_{i}} \tag{III.-20}
\end{equation*}
$$

which is the slope of the log-log plot of ω_{i} versus S_{i}.
Alves et.al. point out that n is constant for many materials and suggest that even if it is not, an approximation can be made by evaluating it at the point in question. How good such an approximation will be, though, is questionable.

In summary, then, to convert rotational viscometer data to the usual type of tube flow curve, a log-log plot of $\dot{\omega}_{i}$ versus S_{i} is constructed from which $\dot{\omega}_{1}$ can be obtained as a function of S_{i} and n determined. From this function, $\dot{\omega}_{i}=f\left(S_{i}\right)$, and equation (III-17), ($\left.\dot{R}_{s}\right)_{i}$ as a function of S_{i} can be obtained, say $\left(\dot{R}_{s}\right)_{i}=F\left(S_{i}\right)$. Then, since the rate of shear at the inner cylinder wall and at the tube wall are equivalent at equal shearing stresses,

$$
\begin{equation*}
\left(\dot{R}_{s}\right)_{i}=-\left(\frac{d u}{d r}\right)_{W} \tag{III-2la}
\end{equation*}
$$

$$
\begin{equation*}
S_{1}=x \tag{III-2lb}
\end{equation*}
$$

Substitution of these results into equation (III-1) gives

$$
\begin{equation*}
F(x)=\frac{3}{4} y_{\phi}+\frac{x}{4} \frac{d y}{d x} \tag{III-22}
\end{equation*}
$$

Integration of this equation gives y_{ϕ} as a function of x which is the desired result. Of course, the analytical methods described above may be replaced by graphical methods when more convenient.

Alves et.al. have obtained good correlations using this technique on data obtained on several different materials in different types of rotational viscometers and various sizes of cylindrical tubes.

However, it should be emphasized that equation (III-17) depends on the assumed viscosity function of equation (III-13) which is at best no more than an empirical relationship which, when applicable, often covers but a limited range of the data. For a more detailed discussion of the representation of $v i s c o s i t y$ by power functions, the reader is referred to the following references (16,21).

In conclusion, then, it can be said, that while the method is sound, the equation for the determination of the rate of shear at the inner cylinder wall as a function of the shearing stress at that point, (III-17), is approximate and, in order to make it exact, the viscosity function must be known. This in turn leads to the big problen in rheology today and, as pointed out in the Theoretical Background Chapter, no exact solution is known. In many cases, better approximations to the viscosity function can be made as indicated there and the use of these would lead to better equations for $\left(\dot{R}_{s}\right)_{i}$. However, these relationships
would no doubt be complicated and difficult to use. For these reasons, if equation (III-17) is found applicable, it should be used only in the range covered by the data since extrapolation outside of this range is not justified by present theory.

APPENDIX IV

PRESSURE TRANSMITTER CALIBRATION

A model PDP-12 Republic differential pressure transmitter, with a $31 / 8$ square-inch differential diaphragm and 1.25 square-inch reaction diaphragm, was used to measure the pressure drop across the test sections. Pressure lines were $3 / 8$ inch copper tubing and water was used as the transmitting agent. Suitable valving, $1 / 4$ inch needle valves being used for shut off purposes, permitted the transmitter to be connected across the desired test section.

The calibration of this instrument was made in these laboratories by applying known water pressures to the differential diaphragm and measuring the resulting output pressures as recorded on a 30 -inch mercury filled U-tube manometer. The resulting calibration curve is presented in figure IV $=1$.

TRANSMITTER CALIBRATION CURVE
FIGURE IV-I

APPENDIX V

ROTAMETER CALIBRATION

A Schutte-Koerting number 6 rotameter equipped with an aluminum float was used to measure the air flow rate. The original calibration scale was furnished by the manufacturers and the curve presented in figure V - 1 was derived therefrom.

081 OLI O91 OSI Obl OEI OZI Oll OOI O6 OB OL O9 OG Ot OE OZ OI O

APPENDIX VI

DEVELOPMENT OF EQUATIONS FOR DETERMTNING PUMP CHARACTERISTICS

Tests were conducted on an Ingersoll-Rand 1 CORVNL open-impeller centrifugal pump to determine its characteristics while handling various water-clay suspensions. This pump has a 2 inch suction and a 1 inch discharge and was driven by a 15 horsepower motor. Details of this pumping unit are show in figure VI-l.

The net head delivered by the pump can be determined by applying the mechanical energy balance, equation (58), between Sections 1 and 2 of figure VI-1. Application of this equation yields, assuming in. compressible flow and neglecting friction in the pipes

$$
-W_{S}=H=\frac{P_{2}-P_{1}}{\rho}+\frac{g}{g_{c}}\left(h_{2}-h_{1}\right)+\frac{U_{2}^{2}-U_{1}^{2}}{2 g_{c}}
$$

This equation becones, for the arrangement under consideration

$$
\begin{gathered}
H=\frac{144\left(P_{D}+\frac{g}{g_{C}} \frac{40}{12} P_{W}-P_{S}\right)}{P_{L}}+ \\
\frac{g}{g_{c}}\left(\frac{6.5-5.5}{12}\right)+\frac{W_{L}^{2}}{2 g_{c} f_{L}^{2}}\left(\frac{1}{A_{D}^{2}}-\frac{1}{A_{S}^{2}}\right)
\end{gathered}
$$

which simplifies to

$$
H=\frac{2.31\left(P_{D}-P_{S}\right)}{S p_{0} G r_{0}}+0.104\left(\frac{W_{L}}{S p_{0} G r_{0}}\right)^{2}+\frac{3.33}{S p_{0} G r_{0}}+0.083
$$

where $H=$ net head delivered by the pump, ft. $\mathrm{lb}_{\text {o (force) }} / \mathrm{lb}$.(mass)
$P_{D}=$ discharge pressure, psig
$P_{S}=$ suction pressure, psig
$W_{L}=$ weight rate of flow, 1 b 。/sec.
The volumetric rate of flow in gallons/min., V^{\prime}, is

$$
V^{\prime}=7.20\left(\frac{W_{L}}{S_{p .} \mathrm{Gr}_{0}}\right)
$$

and the overall efficiency is

$$
\text { overall eff. }=\frac{W_{L}{ }^{H}}{550(\text { Horse Power Input to Motor) }}
$$

As the suction pressure gage became fouled during the water-clay runs, it was necessary to estimate the suction pressure from the measurements made during the water runs. Figure VI-2 was used for this purpose.

SCHEMATIC DIAGRAM OF PUMP ARRANGEMENT FIGURE \#I-1

ESTIMATED SUCTION PRESSURE/SPECIFIC GRAVITY
VS. GAPACITY FOR CENTRIFUGAL PUMP
FIGURE II-2

APPENDIX VII - A
 CURVES USED IN CALCULATIONS

The various quantities used in the calculations of the present investigation are presented in figures VII - Al through VII - A7 and are as follows:

Figure VII o Al: Friction factor versus Reynolds Number for Newtonians (42)

Figure VII - A2: Curve of Hedström (25) for laminar pressure drop of Bingham plastics: $F(G)$ versus G

Figure VII - A3: Curve of Hedström (25) for transition point of Bingham plastics: $\mathrm{Re}_{\text {crit }}$ versus G
Figure VII - Al: Viscosity of water versus temperature (39)
Figure VII - A5: Density of water versus temperature (40)
Figure VII - A6: Viscosity of air versus temperature (41)
Figure VII - A7: Weight and volume percent solids versus specific gravity

Figure VII A-1. Friction Factor vs. Reynolds No. (42).

CURVE OF HEDSTRÖM (25) FOR PRESSURE OROP OF BINGHAM PLASTICS IN CYLINDRICAL TUBES
F(G) vs. G
FIGURE VIIA-2

> CURVE OF HEDSTROM (25) FOR CRITICAL REYNOLDS NUMBER OF BINGHAM PLASTICS ASA FUNCTION OF G

FIGURE VIII A-3

DENSITY OF WATER vs. TEMPERATURE (40)
FIGURE VII A-5

PERCENT SOLIDS vs. SPECIFIC GRAVITY
 FIGURE VII A-7

APPENDIX VII $=B$

SAMPLE CALCULATION

Flow of water alone in a 2.60 inch pipe: Run 3 (Table I)
The pressure drop over the 15.0 -foot length was read on the right side of the U tube manometer connected to the output side of the differential transmitter and was recorded as

$$
\Delta P_{\text {OUTPUT }}=1.52 \mathrm{in} . \mathrm{Hg}
$$

which, using the calibration curve for this instrument in figure IV - 1, corresponds to an observed pressure drop of

$$
\Delta \mathrm{P}_{\mathrm{OBS}}=1.85 \mathrm{in} . \mathrm{Hg}
$$

During this run, 297.1 pounds of water were collected in 41.4 seconds and the liquid rate was determined as

$$
W_{L}=\frac{297.1}{41.4}=7.18 \mathrm{lb} . / \mathrm{sec}
$$

The average liquid temperature was measured and found to be $18^{\circ} \mathrm{C}$. and from figures VII - A4 and VII - A5 the viscosity and density were determined as

$$
\begin{gathered}
\mu_{L}=7.10 \times 10^{-4} \mathrm{lb} \mathrm{~b}_{0} / \mathrm{mt} \text { 。 sec. } \\
\rho_{\mathrm{L}}=62.34 \mathrm{lb} \mathrm{~b}_{0} / \mathrm{m}_{0} / \mathrm{ft}_{0}^{3}
\end{gathered}
$$

Using these values the Reynolds number was computed as

$$
R e_{L}=\frac{4 W_{L}}{\pi D P_{L}}=\frac{4(7.18)}{\pi\left(\frac{1.60}{12}\right)\left(7.10 \times 10^{-4}\right)}=9.66 \times 10^{4}
$$

and the corresponding friction factor was found from figure VII - AI to be

$$
f_{\text {CALC }}=0.0181
$$

The calculated pressure drop was determined to be

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{CALC}}=\frac{\mathrm{f}_{\mathrm{CALC}} \mathrm{~W}_{\mathrm{L}}^{2} \mathrm{~L}}{2 g_{\mathrm{C}} \mathrm{DA}^{2} \rho_{\mathrm{L}}(0.4895)\left(144_{4}\right)}=2.037 \mathrm{f}_{\mathrm{CALC}} \mathrm{~W}^{2} \\
& 2.037(0.0181)(7.18)^{2}=1.90 \mathrm{in} . \mathrm{Hg}
\end{aligned}
$$

and the deviation between the observed and calculated pressure drops was computed as

$$
\begin{gathered}
Q_{\text {Deviation }}=\frac{\Delta P_{O B S}-\Delta^{P} \text { CALC }}{\Delta P_{C A L C}} \times 100= \\
\frac{1.85-1.90}{1.90} \times 100=-2.63
\end{gathered}
$$

APPENDIX VII＝C

SAMPLE CALCULATION

Flow of a 23.6 weight percent（SpoGr．$=1.164$ ）wateraclay suspension in a 1.06 inch tube：Run 123 （Table II－B）

The pressure drop over the $16.5-$ foot length was determined from the output pressure of the differential transmitter as in Appendix VII－B and found to be

$$
\Delta \mathrm{P}_{\text {OBS }}=3.20 \mathrm{in} . \mathrm{Hg}
$$

The rate of flow was determined from the time－weipht measurements as

$$
W_{L}=\frac{193.0 \mathrm{Ibso}}{59.7 \mathrm{sec}}=3.23 \mathrm{Ibo} / \mathrm{sec} .
$$

and the temperature measured as $30.2^{\circ} \mathrm{C}$ ．The specific gravity，referred to water at $25^{\circ} \mathrm{C}$ ．，was determined by a pycometer as 1.164 and the con－ centration of the suspension determined as

$$
\begin{aligned}
& W t . \%=\frac{\text { Sp. Gr.Clay }\left(\frac{\text { Sp。Gr。Suspension - 1 }}{\text { SpoGr。Suspension }}\right)}{\text { Sp. Gr. Clay }-1} \times 100= \\
& \left.\frac{2.48\left(\frac{1.164-1}{1.164}\right.}{2.4^{8}-1}\right) \times 100=23.6 \\
& \text { Vol. } \%=\left(\frac{\text { Sp. Gr. Suspension }-1}{\text { Sp. Gr.Clay }-1}\right) \times 100= \\
& \left(\frac{1.164}{2.48-1}\right) \times 100=11.1
\end{aligned}
$$

The quantity $8 Q / \pi D^{3}$ was computed as

$$
\frac{8 Q}{\pi D^{3}}=\frac{8 W_{L}}{\pi \rho_{L} D^{3}}=\frac{8(3.23)}{\pi(1.164 \times 62.25)\left(\frac{1.06}{12}\right)^{3}}=\frac{164.9}{\sec .}
$$

and the shearing stress at the pipe wall was found to be

$$
\frac{\mathrm{D} \Delta \mathrm{P}_{\mathrm{F}}}{4 \mathrm{~L}}=\frac{0.4895(1 \mathrm{ll4})\left(\frac{1.06}{12}\right)(3.20)}{4(16.5)}=0.302 \mathrm{lb} . \mathrm{F}_{0} / \mathrm{ft}{ }^{2}
$$

In order to determine the turbulent viscosity, the friction factor was computed as

$$
f_{L}=\frac{0.4895(144)(2) g_{c} D A^{2} P_{L} \Delta P_{F}}{W_{L}^{2} L}=
$$

$$
\begin{gathered}
0.480 .5(244)(2)(32.17)(0.0883)(0.006125)^{2}(1.164)(62.25)(3.20) \\
(3.23)^{2}(16.5) \\
\mathbf{f}_{L}=0.0202
\end{gathered}
$$

and the Reynolds number was determined from figure VII = Al to be

$$
R e_{L}=5.80 \times 10^{4}
$$

The turbulent viscosity was then found to be

$$
\mu_{T}=\frac{\left(\frac{4 W_{L}}{\pi D}\right)}{R_{L}}=\frac{\left[\frac{4(3.23)}{\pi(0.0883)}\right]}{5.80 \times 10^{4}}=8.03 \times 10^{-4} \mathrm{lb} . \mathrm{m}_{0} / \mathrm{ft} . \mathrm{sec}
$$

From figure VII - AL the viscosity of water at this temperature ($30.2^{\circ} \mathrm{C}$.) was determined as

$$
\mu_{\mathrm{H}_{2} \mathrm{O}}=5.36 \times 10^{-4} \mathrm{lb} . \mathrm{mo} / \mathrm{ft} . \mathrm{sec} .
$$

and the ratio of the turbulent viscosity to the water viscosity was found to be

$$
\frac{\mu_{\mathrm{T}}}{\mu_{\mathrm{H}_{2} \mathrm{O}}}=\frac{8.03 \times 10^{-4}}{5.36 \times 10^{-4}}=1.50
$$

APPENDIX VII - D

SAMPLE CALCULATION

Co-current flow of air and water in a 0.82 inch pipe: Run 48(Table V - C) The pressure drop over the $17.25-f 00 t$ length was determined from the output pressure of the differential transmitter as in Appendix VII - B and found to be

$$
\Delta \mathrm{P}_{\mathrm{OBS}}=7.22 \mathrm{in} . \mathrm{Hg}
$$

The rate of flow of the liquid was determined from the timeweight measurements as

$$
W_{L}=\frac{139.5 \mathrm{lbs} .}{122.8 \mathrm{sec}}=1.137 \mathrm{lb} . / \mathrm{sec} .
$$

and the temperature measured as $14^{\circ} \mathrm{C}$.
The superficial pressure drop of the water, that is the pressure drop that would occur if the water were flowing alone in the pipe, was computed exactly as in Appendix VII - B, and found to be

$$
\Delta P_{L P}=2.06 \mathrm{in} . \mathrm{Hg}
$$

The air flow rate was determined from the measurements taken at the rotameter

$$
\begin{aligned}
\text { Scale reading } & =55 \text { millimeters } \\
\text { Pressure } & =28.4 \mathrm{psia} \\
\text { Temperature } & =297^{\circ} \mathrm{K} .
\end{aligned}
$$

and the rotameter calibration curve of figure $V-1$ as

$$
\frac{\nabla}{\left[20\left(\frac{28.4}{297}\right)\right]^{1 / 2}}=3.79 \mathrm{ft.}^{3} / \mathrm{min} \text { 。at } 14.7 \mathrm{psia} \text { and } 21.1^{\circ} \mathrm{C} \text { 。 }
$$

The air flow rate in lbs./sec. was then determined by the perfect gas law as

$$
\begin{gathered}
W_{G}=\frac{M P V}{R T}=\frac{29\left(14_{.7}\right)(3.79)}{(10.74)(1.8)(294.3)}\left[20\left(\frac{28.4}{297}\right)\right]^{1 / 2}\left(\frac{1}{60}\right)= \\
0.006541 \mathrm{bo} / \mathrm{sec} .
\end{gathered}
$$

The pressure at the downstream pressure tap was measured on a Bourdon gage and found to be 18.4 psia and the average pressure in the test section was approximated as

$$
P_{A V G}=P_{D T}+\frac{0.48954 \mathrm{P}}{2}=18.4+\frac{0.4895}{2}(7.22)=20.2 \mathrm{psia}
$$

The viscosity of the air at the average temperature in the test section, $14^{\circ} \mathrm{C}$., was evaluated as

$$
\mu_{G}=0.1195 \times 10^{-4} \mathrm{lb} . \mathrm{m}_{0} / \mathrm{ft}
$$

from figure VII - A6 and the Reynolds number was then calculated as

$$
R e_{G P}=\frac{4 W_{G}}{\pi D P_{G}}=\frac{4(0.00654)}{\pi\left(\frac{0.82}{12}\right)\left(0.1195 \times 10^{-04}\right)}=10.2 \times 10^{3}
$$

The corresponding friction factor was found to be

$$
f_{G P}=0.0302
$$

from figure VII - Al.
The superficial pressure drop of the air was then calculated as

$$
\begin{gathered}
\Delta P_{G P}=\frac{f_{G P}^{U} U_{G P}^{2} \rho_{G} L}{2 g_{c} D(0.4895)(144)}=\frac{f_{G P} W_{G}^{2} L}{2 g_{c} D^{2} \rho_{G}(0.4895)(144)}= \\
1.468 \times 10^{-4}\left(\frac{L}{D}\right)\left(\frac{1}{A^{2}}\right)^{f_{G P} W_{G}^{2} T} \\
P
\end{gathered}=.
$$

Using the ratio of the superficial liquid pressure drop to the superficial air pressure drop

$$
\mathrm{x}^{2}=\frac{\Delta \mathrm{P}_{\mathrm{LP}}}{\Delta \mathrm{P}_{\mathrm{GP}}}=\frac{2.06}{0.0506}=40.7
$$

$\Phi_{\mathrm{L}, \mathrm{TY}}^{2}$ of Lockhart and Martinelli's correlation (8) was evaluated from figure I - 2 as

$$
\Phi_{\text {LTT MART }}^{2}=4.09
$$

The predicted pressure drop was then calculated as

$$
\Delta \mathrm{P}_{\mathrm{TP} \mathrm{MART}}=\Phi_{\mathrm{LTT}}^{2} \Delta \mathrm{P}_{\mathrm{LP}}=4.09(2.06)=8.43 \mathrm{in} . \mathrm{Hg}
$$

and the percent deviation from the actual pressure drop found to be

$$
\begin{gathered}
\% \mathrm{Dev}_{0}=\frac{\Delta \mathrm{P}_{\mathrm{OBS}}-\Delta \mathrm{P}_{\text {TP MART }}}{\Delta \mathrm{P}_{\mathrm{TP}} \mathrm{MART}} \times 100= \\
\frac{7.22-8.43}{8.43} \times 100=-14.4
\end{gathered}
$$

APPENDIX VII - E

SAMPLE CALCULATION

Co-current flow of air and a water-clay suspension of specific gravity 1.313 containing 39.9 weight percent (21.2 volume percent) solids in a 1.60 inch pipe: Run 160 (Table VI - CI)

The pressure drop over the 15.0 -foot length, the suspension rate, the temperature, and physical properties of the suspension were determined as in Appendix VII - C

$$
\begin{aligned}
& \Delta \mathrm{P}_{\text {OBS }}=9.60 \mathrm{in} . \mathrm{Hg} \\
& \mathrm{~W}_{\mathrm{L}}=12.84 \mathrm{lb} / \mathrm{sec} \\
& \mathrm{~T}_{\text {AVG }}=30.4^{\circ} \mathrm{C} \\
& \text { Sp. Gr. }=1.313 \\
& \text { Wt. } \&=39.9 \\
& \text { Vol. } \not \subset=21.2
\end{aligned}
$$

In order to determine the superficial suspension pressure drop, $8 Q / \pi D^{3}$ was determined as

$$
\frac{8 Q}{\pi D^{3}}=\frac{8 W_{L}}{\pi D^{3} P_{L}}=\frac{8(12.84)}{\pi\left(\frac{1.60}{12}\right)^{3}(1.313)(62.2)}=168.3 / \mathrm{sec}
$$

and the corresponding shearing stress at the pipe wall was evaluated from figure 22 as

$$
\frac{\mathrm{DAP}}{\mathrm{LP}} \mathrm{LL}^{2}=0.690 \mathrm{lb} \mathrm{~F}_{0} / \mathrm{ft}_{0}{ }^{2}
$$

from which

$$
\Delta P_{L P}=\frac{4 L}{D} \frac{(0.690)}{144(0.4895)}=\frac{4(15.0)}{\left(\frac{1.60}{12}\right)} \frac{(0.690)}{144(0.4895)}=4.40 \mathrm{in} . \mathrm{Hg}
$$

The air rate, average pressure in the test section, superficial air pressure drop, $X^{2}, \Phi_{\text {LTT MART, }}^{2}$, predicted pressure drop, and percent deviation were determined exactly as in Appendix VII = D

$$
\begin{aligned}
& W_{G}=0.0225 \mathrm{lb}_{\mathrm{o}} / \mathrm{sec} . \\
& P_{\text {AVG }}=34.6 \text { psia } \\
& R e_{G P}=17.5 \times 10^{3} \\
& f_{G P}=0.0267 \\
& \Delta P_{G P}=0.01002 \mathrm{in} . \mathrm{Hg} \\
& x^{2}=\frac{4040}{0.01002}=439 \\
& \bar{\Phi}_{\text {LTT MART }}^{2}=2.15 \\
& \Delta P_{\text {TP MART }}=2.15(4.40)=9.46 \mathrm{In} . \mathrm{Hg} \\
& \% \mathrm{Dev} \text { 。 }=\frac{9.60-9.46}{9.46} \times 100=+1.48
\end{aligned}
$$

[^0]: * This relationship is presented graphically in figure VII A - 2, Appendix VII.

[^1]: * A derivation of these relations is presented in Appendix I.

