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Abstract

In this paper, we address the problem of adaptively enriching motion description languages for multi-modal control by
systematically enlarging the set of available modes. This problem is formulated as an optimal control problem, where new
modes are designed by combining recurring mode string fragments into smooth, new “meta-modes” and variational arguments
are employed to derive optimality conditions for this construction.
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1 Introduction

A multi-modal system is a system that switches between
different modes of operation. These switches can be time-
driven, or occur in response to changes in the envi-
ronment (i.e. event-driven). The dynamics during each
mode are typically given by differential equations. Since
these systems combine continuous dynamics with dis-
crete switching dynamics, they belong to the wider class
of hybrid systems.

In the case of controlled switching, the original sys-
tem dynamics do not naturally change between different
modes. Rather, a multi-modal control strategy is em-
ployed to break up the control task into a sequence of
simpler tasks. The main idea is to design different con-
trollers with respect to a particular control task, oper-
ating point, or system configuration, and then combine
these controllers using supervisory logic to obtain the de-
sired overall behavior. A prime example of this paradigm
is behavior-based robotics, in which the overall behavior
is obtained through a combination of simpler behaviors
(or controllers) such as avoiding obstacles and approach-
ing landmarks [1,5].

In this paper, we define a mode as consiting of a feedback
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control law together with a condition for its termina-
tion (referred to as an interrupt condition), as is the case
within the Motion Description Language (MDL) frame-
work [4,10]. Using this representation for the mode, the
control task involves designing a set of feedback laws and
interrupt conditions pertinent to the control task, and
then sequencing them in order to achieve the desired,
overall behavior.

Assume that we are given a set of feedback laws (denoted
byK) and interrupts (denoted by Ξ), a control program
(mode string) is a concatenation of pairs (κ, ξ) ∈ K×Ξ.
Such control programs can be thought of as having an
information theoretic content [9] in that we can let the
complexity of the control program be given by the num-
ber of bits required to encode it. This is given by the
description length: |σ̄| log2(card(K × Ξ)), where |σ̄| de-
notes the length of the control program σ̄, and card(·) de-
notes the cardinality. Moreover, one can think of expres-
siveness as a measure of what overall behaviors are pro-
ducible from the set modes, characterized by the reach-
able set. (In fact, the reachable set has been thoroughly
studied and there is an abundance of literature pertain-
ing to its estimation, e.g. [3,17].) One can thus ask the
question of whether or not it is worth adding new modes
to the mode set, i.e. try to weigh the increase in complex-
ity against the potential increase in expressiveness and
the overall performance. In this paper, we extend our
preliminary work along these lines on motion alphabet
augmentation [13,15]. In particular, previous methods
neglected the interrupt conditions and focused solely on
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designing new feedback laws. These feedback laws were
designed to replace individual occurrences of recurring
mode fragments with the hope that it would also be use-
ful as a replacement of other occurrences of the mode
fragments, although no such guarantees were provided.
In this paper, we remedy this shortcoming by optimiz-
ing over the entire mode string instead of a single occur-
rence of the mode fragment. Moreover, we also directly
tackle the issue of how to design the interrupt conditions
in the event-driven setting.

2 Problem Description

Formally, we define a mode σ as a pair (κ, ξ), where
κ : X → U corresponds to a particular feedback law,
the interrupt ξ : X → {0, 1} encodes conditions for its
termination, and where X and U denote the state and
input space respectively. (Time-driven interrupts can be
facilitated by including time in the state space.) Given a
finite set of feedback mappings K and interrupts Ξ, we
let Σ = K × Ξ denote the set of all modes, or control-
interrupt pairs, and by Σ⋆ we understand the set of all
finite length strings over Σ.

Assume that we are given a mode string σ̄ ∈ Σ⋆ for
solving a particular control task. What we address in this
paper is the question: What new modes, if any, should
be added in order to improve the performance? By this,
we understand not only a reduction in performance cost,
but also a reduction in the specification complexity of
the control program. Moreover, the new modes should
be added in a structured manner so that this procedure
can be automated.

In [13,15], we showed that it may be beneficial to re-
place recurring mode string fragments, if they exist, by
a smooth, new “meta-mode.” For example, consider the
mode sequence σ̄ = σ1σ2σ3σ1σ2σ4 ∈ Σ⋆, where we ob-
serve that σ1σ2 is a recurring mode string fragment. To
see how augmenting the mode set in this manner can re-
duce the complexity, assume that σ1, . . . , σr occurs (pos-
sibly repeatedly) in a control program. If p occurrences
of σ1, . . . , σr are replaced by a single “meta-mode” σ1r

in the original control program (σ̄old), then the com-
plexity of new mode string (σ̄new) is now (|σ̄old| − p(r−
1)) log2(card(Σold)+1) < |σ̄old| log2(card(Σold)) as long
as p ≥ 1 and r > 1. Thus, the complexity would be re-
duced if such a σ1r could be found. So the main problem
under consideration here is the construction of such a
σ1r. The construction of this new mode σ1r involves con-
structing a new feedback law κ1r and an interrupt ξ1r.

More specifically, we will construct the feedback law as
a linear combination of basis functions gi’s, where gi
is given by some combination of the previous feedback
laws, i.e. gi = ζ(κ1, . . . , κr). In this paper, we do not
concern ourselves with the particular choice of ζ(·) ex-
actly, but refer the reader to [15] for a discussion of this

topic. Once these basis functions have been selected,
the construction of the new feedback law can be cast in
terms of finding appropriate (possibly state-dependent)
weights of the basis functions in the linear combination
that best approximates the trajectory produced by the
mode string fragment we are trying to replace.

In fact, given the trajectory x(t) ∈ R
n, obtained using

the mode string fragment σ1σ2 · · ·σr that we are trying
to replace, the main idea behind this work is to introduce
an approximation function z(t) ∈ R

n. This function is
supposed to track x(t) and is defined through

ż = f(z, κ1r) until ξ1r(z) = 1, (1)

with z(0) = x(0). Hence, the problem is reduced to find-
ing the feedback mapping κ1r that best approximates
x(t). In [13], the feedback law κ1r was constrained to be
a static, linear combination of the basis functions gi’s,
which reduces the problem to finding appropriate coef-
ficients in order to minimize a particular cost function
that is designed to capture how well the original trajec-
tory is being approximated.

In this paper we generalize this idea by proposing to let
the feedback law κ1r be more general, using membership
functions, as proposed in [14],

κ1r(z(t)) =
N

∑

i=1

µi(z(t), αi)gi(z(t)), (2)

where µi : R
n × R

k → R. In (2), the weight of each
basis function gi is determined by a weighing function
µi, which is parameterized by vector αi ∈ R

k. We re-
fer to these weighing functions as membership functions
as they closely resemble membership functions in fuzzy-
logic control [8,16]. Here the control vector is the con-
catenation of the shaping vectors αis for each of the N
membership functions, and hence ~α = [α1, . . . , αN ]T ∈
R
Nk.

But, finding the feedback laws is not enough. We also
need to find the appropriate interrupt functions. And, in
this paper we will assume that the interrupts are param-
eterized by some control vector. In particular, we let the
interrupt ξi be shaped by a control parameter βi ∈ R

k,
e.g. ξi : R

n×R
k → {0, 1}. Now we can design ξ1r by ad-

justing βr, hence the optimization problem involves an
additional control vector β ∈ R

k.

In light of the preceding discussion, in this paper we will
propose a systematic construction for finding the new
control laws and interrupt conditions. Before detailing
this construction, we will first examine a simple exam-
ple to make the key concepts more concrete. Suppose we
have a mode string σ̄ = σ1σ2σ3σ1σ2σ4, and note that
σ1σ2 is a recurring mode string in σ̄. The new mode
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Fig. 1. Depicted is the original trajectory x(t) and the ap-
proximation trajectory z(t).

would be constructed using an approximation trajectory
z(t) as shown in Figure 1. In particular, the approxima-
tion trajectory is given by

ż =



























f(z, κ12(z)) until ξ12(z) = 1

f(z, κ3(z)) until ξ3(z) = 1

f(z, κ12(z)) until ξ12(z) = 1

f(z, κ4(z)) until ξ4(z) = 1,

(3)

with z(0) = x(0). In equation (3) above, κ12 is shaped
by the control vector ~α as shown in equation (2) and ξ12
is ξ2 reshaped by the control vector β12.

3 A Variational Problem

To summarize: What we need to do is simultaneously
shape the new, meta-mode as well as the interrupt con-
dition for its termination, as a function of the state of
the system. In fact, without the interrupts, a number of
approaches to solving similar problems have been pro-
posed, including [6,7,12], and a similar derivation is also
given in [11].

For this, it will be advantageous to introduce an identifier
p(i), taking values in a finite set, denoting the mode of
operation during the time interval [τi−1, τi), where we
will use τ to denote the time instances at which the
system switches between different modes of operation.

Using this terminology, the approximation trajectory
z(t) is given by

ż(t) =



















f(z, κp(1)(z)) until ξp(1)(z, βp(1)) = 1
...

...

f(z, κp(M)(z)) until ξp(M)(z, βp(M)) = 1,

(4)

with z(0) = x(0). Observe that f(z, κp(i)(z)) is a func-
tion of z and the control vector ~α when p(i) = 1r and

just a function of z otherwise. Thus, for ease of notation,
we introduce a new indexing function f̃i(z, ~α) defined as

f̃i(z, ~α) =

{

f(z,
∑N
j=1 µj(z, αj)gj(z)) if p(i) = 1r

f(z, κp(i)) otherwise.
(5)

Similarly, since we are only reshaping ξ1r, we can treat
βp(i) as a fixed constant when p(i) 6= 1r. Hence our

control parameter for the interrupt shaping is ~β = β1r ∈

R
k. Again, for ease of notation, we introduce ξ̃i(z, ~β)

defined as follows:

ξ̃i(z, ~β) =

{

ξ1r(z, ~β) if p(i) = 1r

ξp(i)(z, βp(i)) otherwise.
(6)

Moreover, we assume that the ”first” switching instant
τ0 = 0 is fixed, and the other switching instants are given
by the interrupts as

τi = {t > τi−1 | ξp(i)(z(t), βp(i)) = 1}, (7)

for i = 1, . . . ,M .

Now our problem involves finding the control vectors ~α

and ~β such that the cost

J =

∫ τM

τ0

L(x(t), z(t))dt + ψ(xf , z(τM )) (8)

is minimized, where L and ψ are continuously differen-
tiable in their second argument. We also assume that the
basis functions gi’s and membership functions µi’s are
continuously differentiable. In addition to these assump-
tions, we must make one more assumption to ensure that
the approximation function z does not approach any of
the switching surfaces tangentially. Namely, we assume
that

∂ξ̃i

∂z
f̃i 6= 0

for i = 1, . . . ,M . In other words, we assume that the Lie
derivative of ξ̃i with respect to z along the flow f̃i does
not equal 0.

Defining the Hamiltonian as

Hi(x, z, λi, ~αi) = L(x, z) + λif̃i(z, ~α), (9)

the augmented (but unaltered from an evaluation point
of view) unperturbed cost is given by

J̃0 =

M
∑

i=1

∫ τi

τi−1

[

Hi(x, z, λi, ~α) − λiż
]

dt+

+

M
∑

i=1

ν
(

ξ̃i(z(τi), ~β)
)

+ ψ(xf , z(τM )). (10)
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Note here that the continuous co-state λ(t) is corre-
sponds to the constraints of the continuous dynamics,
while the co-state ν corresponds to the discrete switch-
ing dynamics. Now we perturb (10) in such a way that
~α → ~α+ ǫ~γlr , where ~γlr = [0, . . . , γlr , . . . , 0]T (note the
(kl+r)th entry is γlr and all other entries are 0’s, e.g. we
are perturbing the rth entry of shaping vector αl) and
~β = ~β+ ǫ~δ, and ǫ << 1, then z → z+ ǫη is the resulting
variation in z(t) and τi → τi + ǫθi for i = 1, . . . ,M is
the resulting variation in the switching times.

It can now be shown that the first order variation in J̃ is

δJ̃ = lim
ǫ→0

J̃ǫ − J̃0

ǫ

=

M
∑

i=1

∫ τi

τi−1+ǫθi−1

[∂Hi

∂z
η +

∂Hi

∂αlr
γlr − λiη̇

]

dt+

+

M−1
∑

i=1

θi

[

λi+1(τi+)
(

fi(τi−) − fi+1(τi+)
)

]

+

+θML(x(τM ), z(τM )) +

+

M
∑

i=1

νi

[∂ξ̃i

∂z
f̃iθi +

∂ξ̃i

∂z
η +

∂ξ̃i

∂~β
δ
]

t=τi
+

+
[∂ψ

∂z
f̃M+1θM +

∂ψ

∂z
η
]

t=τM

, (11)

where J̃ǫ denotes the perturbed cost.

The integral terms in (11), denoted by δχ, can be further
reduced by integrating λiη̇ by parts to obtain

δχ =

M
∑

i=1

∫ τi

τi−1+ǫθi−1

[∂Hi

∂z
+ λ̇i

]

ηdt+

+

M
∑

i=1

γlr

∫ τi

τi−1+ǫθi−1

∂H

∂αlr
dt−

M
∑

i=1

[

λiη
]τi

τi−1+ǫθi−1

(12)

Recall that θ0 = 0 since τ0 = 0 is fixed, and note that
η(0) = 0 since z(0) = x(0) = x0. Using the fact that η(t)
is continuous, (12) is reduced to

δχ =

M
∑

i=1

∫ τi

τi−1+ǫθi−1

[∂Hi

∂z
+ λ̇i

]

ηdt+

+

M
∑

i=1

γlr

∫ τi

τi−1+ǫθi−1

∂f̃i

∂αlr
dt−

−

M−1
∑

i=1

[

λi(τi−) − λi+1(τi+)
]

η(τi) −

−λM (τM−)η(τM−). (13)

Substituting δχ back into δJ̃ , we want to select the co-
states λis and νis so that we avoid having to calculate

the variations η and θis. For the evolution of λ(t), we get
the expected (standard) result:

λ̇i = −
∂Hi

∂z
= −

∂L

∂z
− λi

∂f̃i

∂z
. (14)

The boundary conditions are, however, very different.
It turns out that the co-state λ(t) is discontinuous at
the switching instants. To see this, lets first look at the
variation η(τM−):

η(τM−)
[

− λM (τM−) + νM
∂ξ̃M

∂z
(τM−) +

+
∂ψ

∂z
(τM−)

]

≡ 0

=⇒ λM (τM ) =
∂ψ

∂z
(τM−) + νM

∂ξ̃

∂z
(τM−). (15)

Similarly looking at the variation η(τi−) for i =
1, . . . ,M − 1, the boundary conditions at the switching
instants τi’s are

λi(τi−) = λi+1(τi+) + νi
∂ξ̃i

∂z
(τi−), (16)

for i = 1, . . . ,M − 1.

Using Equations (14),(15), and (16), λ(t) can be solved
by integrating backwards in time. However, the bound-
ary conditions at τi depend on the costate νi. To see how
we should select νi, let’s first examine the variation θi,
for i = 1, . . . ,M − 1:

θi

[

λi+1(τi+)
(

fi(τi−) − fi+1(τi+)
)

+ νi
∂ξ̃i

∂z
f̃i(τi−)

]

≡ 0

=⇒ νi = −
λi+1(τi+)

(

fi(τi−) − fi+1(τi+)
)

Lf̃i

∂ξ̃i

∂z
(τi−)

, (17)

where Lf̃i

∂ξ̃i

∂z
= ∂ξ̃i

∂z
f̃i denotes the Lie derivative of ξ̃i

with respect to z along the flow f̃i. Similarly looking at
θM , we select νM as

νM = −
[L(xf , z) + Lf̃M

∂ψ
∂z

Lf̃M

∂ξ̃M

∂z

]

t=τM−
. (18)

Note that all of the expressions derived above are well

defined as long asLf̃i

∂ξ̃i

∂z
(τi) 6= 0 for i = 1, . . . ,M . Recall

that this condition simply means that the trajectory of
z does not approach the interrupt (or switching) surface
tangentially.

With this choice of the co-states, (11) is reduced to

δJ̃ =

M
∑

i=1

γlr

∫ τi

τi−1

∂f̃i

∂αlr
dt+

M
∑

i=1

νi
∂ξ̃i

∂~β
~δ. (19)

4



Since the αlr s and ~β are independent, the necessary con-
ditions are optimality (e.g. δJ = 0) are

∂J

∂~β
=

M
∑

i=1

νi
∂ξ̃i

∂~β
(τi−) ≡ 0, and (20)

∂J

∂αlr
=

M
∑

i=1

∫ τi

τi−1

λi
∂f̃i

∂αlr
dt ≡ 0,

for l = 1, . . . , N , and r = 1, . . . , k. (21)

Relating this back to our original problem formulation,

the partial derivative ∂f̃i

∂z
is

∂f̃i

∂z
=







∂f
∂z

+ ∂f
∂u

[

∑N
j=1

[

gj
∂µj

∂z
+ µj

∂gj

∂z

]

]

if p(i) = 1r

∂f
∂z

otherwise.
(22)

The partial derivative of f̃i with respect to the shaping
vector is

∂f̃i

∂αlr
=
∂f

∂u

∂µl

∂αlr
gl (23)

if p(i) = 1r, and 0 otherwise. Also, the partial derivative

of ξ̃ are

∂ξ̃i

∂z
=
∂ξp(i)

∂z
, (24)

∂ξ̃i

∂~β
=
∂ξ12

∂β
if p(i) = 1r, and (25)

∂ξ̃i

∂~β
= 0 if p(i) 6= 1r. (26)

Hence, the necessary conditions for can be further re-
duced to

∂J

∂~β
=

∑

{i | p(i)=1r}

νi
∂ξ1r

∂β
(τi−) ≡ 0, and (27)

∂J

∂αlr
=

∑

{i | p(i)=1r}

∫ τi

τi−1

λi
∂f

∂u

∂µl

∂αlr
gl dt ≡ 0,

for l = 1, . . . , N , and r = 1, . . . , k. (28)

These results are summarized in a theorem below:

Theorem 1 Given a function x(t) ∈ R
n and a set of

continuously differentiable functions gi : R
n → R

m and
µi : R

n × R
k → R for i = 1, 2, . . . , N , with z(t) ∈ R

n

given by (4) and (2), an extremum to the cost function

J =

∫ T

0

L(x(t), z(t))dt + ψ(xf , z(T ))

is attained when the control vectors ~α = [α1, α2, . . . , αN ]T ∈

R
Nk and ~β =∈ R

k are chosen as follows:
Euler-Lagrange Equations:

λ̇(t) = −
∂Hi

∂z
= −

∂L

∂z
(x, z) − λ(t)

∂f̃i

∂z
(z, αi),

when t ∈ (τi−1, τi),

νM = −
[L(xf , z) + Lf̃M

∂ψ
∂z

Lf̃M

∂ξ̃M

∂z

]

t=τM−
,

νi =
λi+1(τi+)

(

fi(τi−) − fi+1(τi+)
)

Lf̃i

∂ξ̃i

∂z
(τi−)

,

for i = 1, . . . ,M − 1,

Boundary Conditions:

λM (τM ) =
∂ψ

∂z
(τM−) + νM

∂ξ̃

∂z
(τM−),

λi(τi−) = λi+1(τi+) + νi
∂ξ̃i

∂z
(τi−),

for i = 1, . . . ,M − 1,

Optimality Conditions:

∂J

∂~β
=

∑

{i | p(i)=1r}

νi
∂ξ1r

∂β
(τi−) ≡ 0, and

∂J

∂αlr
=

∑

{i | p(i)=1r}

∫ τi

τi−1

λi
∂f

∂u

∂µl

∂αlr
gl dt ≡ 0,

for l = 1, . . . , N , and r = 1, . . . , k.

4 Numerics

In the previous sections, we derived the necessary con-
ditions for the extremum of the performance index J .
Particulary, the control parameters included the shaping
vectors αi parameterizing membership function µi and
the switching times τi, defined through the control vec-
tor β for parameterizing the interrupt ξi. In this section,
we present a numerical algorithm that utilizes these op-
timality conditions to converge to a stationary solution.
This algorithm employs a gradient descent method, in
which, the control parameters are updated in the neg-
ative gradient direction until a stationary solution has
been reached.
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- Initialize with a guess of the control variables

~α
(0)
i and ~τ (0), and let p := 0.

- while p < 2 or |J (p) − J (p−1)| > ǫ
- Compute the approximation function z(t)

and cost J (p) forward in time from τ0 to τ
(p)
M .

- Compute the co-state λ(t) backward in time

from τ
(p)
M to τ0.

- Compute the gradients ∇J(~τ (p)), and

∇J(~α
(p)
i ).

- Update the control variables as follow :

~τ (p+1) := ~τ (p) − γ(p)∇J(~τ (p)),

~α(p+1) := ~α(p) − γ(p)∇J(~α(p)).

- p := p+ 1.
- end while

In the algorithm above, the control vectors are
~τ = [τ1, . . . , τM ]T and ~α = [α1, . . . , αM ]T . The
gradients ∇J(~τ ) = [ ∂J

∂τ1
, . . . , ∂J

∂τM
]T and ∇J(~α) =

[ ∂J
∂α1

, . . . , ∂J
∂αN

]T .

Note that the choice of the step-size γ(p) can be critical
for the method to converge. An efficient method among
others is the use of Armijo’s algorithm presented in [2].
Because of the non-convex nature of the cost function
J , this gradient descent algorithm will only converge to
a local minimum. Hence the attainment of a “good” lo-
cal minimum can be quite dependent on the choice of a
“good” initial guess for the control variables. The associ-
ation of such a local method with heuristic strategies in
order to find a global minimum is not investigated here.

5 Conclusions

When humans acquire new motor skills, they are typi-
cally obtained from a combination of previously estab-
lished skills. This observation constituted the starting
point for this work that addressed the problem of adap-
tively augmenting the motion alphabet to improve the
overall performance of the system. New modes are sys-
tematically constructed to replace recurring mode frag-
ments, thus resulting in a possible reduction in the com-
plexity of the control programs while increasing the ex-
pressiveness of the motion alphabet. The construction
of the new modes involved designing a feedback con-
trol law, which was designed as a combination of the
already established control laws, and the design of an
interrupt. We explicitly addressed the design of the in-
terrupt for both time-driven and event-driven systems,
and designed the new interrupt by incrementally adapt-
ing a previously established interrupt. In particular, the
mode augmentation problem was casted as an optimal
control problem and solved using variational arguments.
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