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SUMMARY

The Hopping Rotochute is a promising micro vehialgh the capability of
exploring rough and complex terrains with minimumergy consumption. While it is
able to fly over obstacles via thrust producedtbyoaxial rotor, its physical architecture,
inspired from a “Weebles Wooble,” provides re-ot&ion wherever it hits the ground.
Therefore, this aerial and ground vehicle represarpotential hybrid vehicle capable of
reconnaissance and surveillance missions in congslekonments.

The most recent version of the Hopping Rotochstenanually controlled to
follow a trajectory. The control commands, listedaifile prior to the particular mission,
are executed exactly as defined, like a “batch”jodgardless of the uncertain external
events. This control scheme is likely to cause tgrdeviations from the route.
Consequently, the vehicle may finish the missiony\var away from the desired end
point. However, if a vehicle is capable of recegvithe control commands during a
mission, “interactive processing” can be realized &fficient path tracking would be
achieved. Hence, the development of the Hoppingdtatte that follows a trajectory
autonomously reveals the foundation of this thesis.

Two control approaches inspired the proposed naellogy for developing an
autonomous trajectory-following algorithm. The fiegoproach is rule-based control that
enables decision making through conditional stateémen this thesis, rule-based control
is used to select a target point for a particut@y based on the existence of an obstacle
and/or wind in the environment. The second approacimodel predictive control
employed to predict future outputs framp performance models. In other words, this

technique approaches the problem by providing ligegice pertaining to how a

Xii



particular hop will end up before being attemptédence, the optimum control
commands are selected based on the predicted parioe of a particular hop.

This research demonstrates that the autonomougiktp@Rotochute can be
realized by rule-based control embedded with soredopmance models. In the
assumption of known boundaries such as wall adohgenformation, this study has two
aims: (1) to avoid obstacles by creating a smallgerational volume inside the real
boundaries so that the vehicle is restricted fromirg the operational volume and no
violation occurs within the real boundaries; (2)e&iimate the wind by previous hops to
select the next hopping point with respect to teneated wind information. Based on
the developed methodology, simulations are condulctefour different scenarios in the
existence of obstacles and/or wind, and the rexfltthe simulations are analyzed.
Finally, based on the statistics of simulation hssuhe effectiveness of the proposed

methodology is discussed.
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CHAPTER 1

INTRODUCTION

Today, the satellites and the unmanned air veh{t)éd/s) like Global Hawk [1]
are playing an important role for acquiring maawdl intelligence from high altitudes.
However, they are not very efficient at urban amdbior environments in order to obtain
micro level intelligence. In contrast to the satted and the UAVs, the micro vehicles
have the potential to provide the local reconnaissafor an individual soldier in the
field. Thus, they are proposed to keep personnebbharms way by providing novel
situational awareness, which was emphasized inQteiense Science Board's 1996
Summer Study on "Tactics and Technologies for 20Lentury Warfighting” [3].
Therefore, due to their capability of providing &dnformation, the micro vehicles are
potentially more capable concepts for the urbaniaddor environments.

Recently, many micro vehicle studies are presenhénliterature. There are the
fixed wing micro vehicles, the rotary wing microhieles, the flapping wing micro
vehicles, micro ground vehicles...etc. Among thenerehis especially one with a very
unique design called the Hopping Rotochute. Thibridymicro vehicle is capable of
flying over the obstacles, and sustains its uprmgition on the ground. Hence, it poses
an efficient concept for the missions in complexa®s such as inside of caves and
damaged buildings.

Like the other flying micro vehicles, the HoppingtBchute is also susceptible to
the external events during its operation. It temolsdeviate from its route when it
encounters wind or any uncertainty from the enwvitent, which leads to hop to an
undesired position. Unfortunately, hopping to theesired position induces more crucial
problems since the most recent Hopping Rotochuterabps with some control
commands planned prior to mission without considgnincertainty. From a mission

point of view, this situation can lead to failureedto diverging from the route at each



hop. Hence, the Hopping Rotochute should be deediop terms of autonomous
trajectory-following in which each control commaridr a particular hop will be
calculated right before the hop is conducted.

This chapter starts with an overview of variousnmieehicle concepts existing in
the literature. Then the essential problems ofdhmfmiature vehicles are discussed in
terms of guidance and control. Finally, the redeabjectives are introduced, and the

outline of the thesis is presented including thersbummaries of each chapter.

1.1 Micro Vehicle Concepts

The world of micro vehicle concepts contains dieetgpes of configurations
under varying stages of design, development anthgeft]. This section will discuss
specific characteristics of fixed wing, rotary wjnitapping wing and ground vehicles.

Finally, a new concept called hybrid vehicle wid imtroduced.

Figure 1: Micro vehicle families [2]

Recently, the most common types of micro vehiclkesthe fixed wing, rotary
wing, flapping wing and ground vehicles. Figurer@nfi reference [2] illustrates some
examples from each family. The configuration sétectfor a specific mission, either

civilian or military, is based on the capabilitiesthe vehicles. Therefore, the following



paragraphs will briefly explain the properties atlk configuration. Before starting to the
explanations of each configuration, Table 1 frorenence [6] is introduced. This table
displays a qualitative comparison among variouscepts. In this qualitative mapping,
while scale of 1 indicates a bad performance, sch® represents a good performance.
For instance, when a micro helicopter and a miamgdame are compared with respect to
stationary flight, a micro helicopter exhibits atke performance than a micro airplane.
On the other hand, if the same vehicles are cordparth respect to payload/volume,
then a micro airplane displays a better performaticean a micro helicopter.
Consequently, the aim of Table 1 is to present alilgtive comparison of various
vehicles with respect to different criterion. Qtetive scores are added up at the end, and

the total scores are displayed in the last rowadslé 1.

Table 1: Qualitative comparison of miniaturization of various concepts [6]

FLYING PRINCIPLES COMPARISON FOCUSED ON ABILITY TO
MINIATURIZATION. (1=BAD, 3=GooD)

Airplane | Helicopter | Bird | Autogiro | Blimp
Power cost 2 1 1 2 3
Control cost 2 1 1 2 3
Payload/volume 3 2 2 2 1
Maneuverability 2 3 3 2 1
DOF 1 3 3 2 1
Stationary flight 1 3 2 1 3
Low speed fly 1 3 2 2 3
Vulnerability 2 2 3 2 2
VTOL 1 3 2 1 3
Endurance 2 1 2 1 3
Mindaturization 2 3 3 2 1
Indoor usage 1 3 2 1 2
Total 20 28 26 20 26

The fixed wing micro vehicles tend to have largglpad capabilities observed
from “payload/volume” criteria of Table 1 with tiseale of 3. Their mission ranges vary
from 500 m to 1 km while their endurance is at i@k minutes [5]. Moreover, they are
more capable to operate in gusty weathers whenategompared with the other flying
micro vehicles. Thus, they have wide applicatioeaar However, they are generally

incapable of operating in narrow halls. In additibeside some particular kinds, they are



usually not efficient for low speed flight or housg, which is represented as the scale of
1 in “low speed fly” and “stationary flight” critean of Table 1.

The rotary wing micro vehicles can hover and flyoat speeds. Compared with
the fixed wing micro vehicles, they have less paglloand endurance capabilities.
However, they still exhibit various benefits digmd in Table 1. Based on the qualitative
comparison of criterion shown in this table, a midnelicopter presents the best
performance with a total score of 28. (Recall tiéd score depends on listed criterion
with equal weightings. For instance, if endurancga@wer cost has more priority in a
mission, then a micro helicopter will most likelisplay a worse total score since it has
the score of “1” for both of the criterion.)

The flapping wing micro vehicles are biologicalhyspired, which increases their
stealth due to their more natural look. Like th&arg wing micro vehicles, they have the
capability of vertical, stationary and low speedjHt. Nonetheless, they are not as
efficient as the fixed wing micro vehicles in terofsange and endurance.

Unlike the micro aerial vehicles, the micro grounehicles have longer
endurances and larger payload capacities. Theysae for wider range of missions such
as surveillance, inspection, manipulation, etc. éttheless, when they encounter a large
obstacle or a hole, they may get trapped.

As seen, each family of the micro vehicles hasi@der advantages and
disadvantages. In order to increase the capabildfemicro vehicle concepts, another
family is introduced as the “hybrid micro vehicle#fi this family, the concepts exhibit
the combination of one or more physical phenomanglying the improved capabilities
as well as some weaknesses due to the combindttao @r more vehicle concepts.

One of the popular hybrid vehicles is a “hopperheTdesign of a “hopper”
concept emerges from the disability of ground viesion rough surfaces, which dictate
to operate flying vehicles for better mobility [Th this manner, flying capable vehicles

can fly over the obstacles without interacting withe obstacles. Note that the



continuously flying vehicles are very sensitivestalden gust, wind or other atmospheric
events due to being airborne through the missioorelver, being airborne throughout
the mission causes more energy consumption. Henca,complex environment, one
would prefer to operate a vehicle that can fly, lees exposed to atmospheric
disturbances, and consume less energy. Therefadydpping vehicles are proposed as
more applicable vehicles for rough landscapes dubéir flying and ground capabilities
in consideration of less energy consumption. Ttexdture presents various operational
environments for these vehicles. For instance,etha@e hopper vehicle designs for
exploring Martian surface, which is assumed asughicsurface. The hopper concept has
been particularly preferred in this environmentflyoover the obstacles when required
[7]. Furthermore, the Hopping Rotochute is propoasdnother type of hybrid vehicle,
which is capable to explore rough and complex iesrawith minimum energy

consumption [8].

1.2 Guidance and Control Challenges Facing Micro Vehigs

There are several unique challenges that a midnheecan encounter during its
guidance and control. Particularly, flying capabiero vehicles pose more challenges
than the other micro vehicle types due to the dpmeraat low Reynolds numbers,
implying a very high sensitivity to the flight coitidns and atmospheric disturbances.
Especially the atmospheric disturbances cause suiddesase in the drag and decrease
in the lift. Hence, flying capable micro vehiclese @&xtremely susceptible to trajectory
deviations and controllability loss as emphasizedeference [9]. From a more general
perspective, some of the operational challenge® hmeen listed in reference [10] as
below:

1) Flight in lowest altitudes, near or between obstscl

2) Operation out of line of sight.

3) Operation in gusts of wind.



4) Safe control for urban operations and indoor missieven in the case of
collision with walls.
5) High precision navigation for urban operations artbor missions.

6) Obstacle detection and avoidance.

In the presence of these challenges, “trajectowyatien” is not desirable since it
leads to failure in the mission even with some dgema the vehicle. For instance, when
a micro vehicle operates in an environment witlrovarhalls, it is not acceptable to have
trajectory deviations since it can hit the walls)fartunately, the trajectory deviation is
very common in the presence of uncertainty. Hentsegffect should be minimized
during the mission, which can only be achieved Ioy aglaptive control technique
implying the decision of control commands during thission. In this way, if a trajectory
deviation exists, the next control command attertgptorrect it.

If a vehicle performs the commands given prior tanssion, the trajectory
deviation becomes more significant. In this sittithe vehicle can not determine
whether the control command is convenient for gpacific position. It just applies the
given command. This becomes critical if the dewiatirom the route is high because this
situation leads to diverge from the desired trajgctdue to the induced effects of
unsuccessfully selected control commands. Consdéguehe trajectory deviation is a
critical issue for a micro vehicle. It is partictiamore critical, if a vehicle performs pre-

planned commands throughout the mission.

1.3Research Objectives

The previous sections summarized various microckehionfigurations and the
challenges that they can encounter during a missf@neover “trajectory deviation” has
been emphasized as a critical problem especiallg feehicle controlled by pre-planned

commands.



The most recent version of Hopping Rotochute, ohiced as a promising hybrid
micro vehicle for complex environments, performs ontrol commands designed prior
to mission. Therefore, the trajectory deviationdraes inevitable for this vehicle in the
presence of uncertainty. In order to minimize tlagettory deviation, this thesis proposes
to develop “Autonomous Hopping Rotochute”, whichncdecide on the control

commands during the mission. Thus, the objectivhisfthesis is as following:

To develop a trajectory following algorithm that allows the
Hopping Rotochute to follow any pre-planned trajecory
autonomously

Furthermore, this thesis aims to experiment thedtary-following algorithm in various

simulation environments including obstacles andlets of wind.

1.4 Thesis Outline

The organization of the thesis is presented aheansatic diagram in Figure 2 in
which the triangle represents how the fundamertaike thesis are narrowed down. The

brief descriptions of each chapter are presentddllasving.

Conclusion Chapter 6

[ Implementation & Results ] | Chapter 4,q

Pl:oposed Methodology ‘.
: Hypothesis : Chapter 3
[ Probl‘em Definition ] ...
[ Research Objectives ]

. Chapter 1

[ Motivation ] ...
[ Literature Survey ] Chapter 2 ‘

)\

Figure 2: Thesis organization




Chapter 2 — Background: This chapter describes the past work and the retesantrol
methodologies in the literature. It presents ndy ahe details of a Hopping Rotochute

but also a review for online and offline contratheiques.

Chapter 3 — Methodology: This chapter constructs the research questions and

hypotheses along with the methodology developethswer the research questions.

Chapter 4 — Implementation of the Proposed Methodalgy: This chapter focuses on
the details ofhop performance models. First the goodness of model fits is mentioned.
Subsequently, the trends of the models are disdusseally, some example simulations

and statistical results of the proposed methododrgypresented.

Chapter 5 — Testing the Trajectory Following Algorthm: In the presence of gust
and/or obstacles, the performance of the trajedtigwing algorithm varies. Therefore,
this chapter presents the simulation results oatgerithm in various scenarios involving

gust and/or obstacles in the environment.

Chapter 6 — Conclusion and Future Work:This chapter reviews the research questions
and hypotheses, and derives conclusion from theepted results leading suggestions for

future research.



CHAPTER 2

BACKGROUND

The aim of this thesis is to develop a trajectaliewing algorithm that allows a
Hopping Rotochute to follow any pre-planned trajegtautonomously. To achieve this
goal, first of all, this study must analyze the dyncs and the current control technique
of Hopping Rotochute, and examines several contngthodologies that enable
autonomous trajectory-following. Therefore, thisapter aims to introduce the Hopping
Rotochute and some control techniques applicabkdeitmnomous trajectory-following.

The first section presents the Hopping Rotochutkiclke with its associated
physical specifications and addresses past wogteetlto the dynamics and the most
recent control technique of the vehicle. The sdcsaction introduces control techniques
applicable to the development of the trajectoryefming algorithm. Among the
presented control techniques, rule-based contral arodel predictive control are
particularly useful for developing the autonomoumteool algorithm of the Hopping

Rotochute.

2.1 Hopping Rotochute

The Hopping Rotochute is a hybrid micro vehiclengisting of a coaxial rotor
surrounded by a spherical cage. The vehicle insliadsmall electrical motor driving the
rotor system and rotates an internal mass for timeal control. Operation of the vehicle
is sustained by thrust produced by the rotor sysi&ocording to the direction of the
internal mass, the thrust vector is inclined, amel vehicle flies at an inclination. Since
the motor is not powered during the entire missiba,vehicle first begins to ascend, and
then it descends. In other words, it exhibits ggmtiie motion. One of the important

properties of the Hopping Rotochute is its physiaathitecture, which enables the



vehicle to re-orientate itself with the same positiwherever it impacts to the ground.

Figure 3 displays the current prototype of the gkehi

Figure 3: The Hopping Rotochutes)

2.1.1 System Specifications

Some physical specifications of recent Hopping Rlotiee are illustrated in Table

Table 2: Hopping Rotochute specifications

Body Specifications
Overall Height (cm) 25.4
Max Horizontal Cage Diameter (cm) 24.8
Rotor Blade Specifications
Radius of the Rotor Blades (cm) 10.2
Aerodynamic Mean Chord (cm) 2
Rotor Blade Pitch (deg) 30
Maximum Rotor Speed (RPM) 4000
Mass Specifications
Body Mass (@) 64.4
Internal Mass (g) 6
Battery Mass - 300 mAh (g) 19.8
Total Mass (g) 90.2

Further explanations of other components includg: [1
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- The internal mass is operated by a micro servavalig it to rotate £180 deg
around the interior perimeter of the body.

- The spherical cage not only locates and prote@sctimponents inside the
vehicle but also provides the vehicle to sustaingin position on the ground.

- The foam cushion damps the motion when the velmapacts to the ground
in order to prevent the electronic damage.

The properties in Table 2 will be used in acquirihg simulation results in

subsequent sections.

2.1.2 Equations of Motion

The dynamic model of Hopping Rotochute has beeeldped with a six degree
of freedom model consisting of the inertial posiBoof the total mass center and three
Euler orientation angles [8]. Figure 4 shows theesponding free body diagram of a
Hopping Rotochute with the relevant reference franmecluding the rotor reference
frame, the internal mass reference frame, the hefisrence frame, and the inertial

reference frame represented respectively by thecsih letters as R, P, B and I.

Figure 4: Free body diagram of a Hopping Rotochutg8]

11



The kinematic equations of motion are describeceguations (2.1) and (2.2) as in

reference [8].

yt=[Tekv (2.1)
7 w

o [1 st, ¢ty |[p
ol=l0 ¢ -s, [ q (2.2)
W

0 sw/wc(,7 C,/Co LT
In equations (2.1) and (2.2); x, y and z are thatigpcoordinates in inertial reference
frame; u, v and w are the velocity components enlibdy reference frame; 6 andy are
Euler angles; p, g and r are the rotational veyoctmponents in the body reference
frame. Furthermore, the trigonometric functions @mgresented with shorthand notation
such as: cosj=c, , sin@)=s, , tang)=t, . The transformation matrix from the body

reference frame to the inertial reference framee@mesented by d shown in equation

(2.3) as:
CsC, S,S,C, —C,S, C,S,C, +S,S,
Ts =|CeS, S,5S, +C,C, C,8;S, —S,C, (2.3)
-S, S,Co C,Cy

Preceding equations are employed in existing dyoasimulation code of a
Hopping Rotochute. The simulations conducted bg tode aim to imitate the real
experiments of the vehicle. The main inputs of ttwele include detailed vehicle
properties such as the geometry of each componetiteothrust mapping of the rotor
system as well as the environment properties aadantrol commands. The goal of the
simulations is to observe the motion of HoppingdRbute for various input conditions.

Figure 5 summarizes the simulation code in termapmit and output.

12



INPUT

*Atmospheric properties: Wind magnitude & angle

*Body properties: Weight, inertia, cg location etc.

*Body aerodynamic properties: Aerodynamic coefficients
eInternal mass properties: Mass, dimensions, cg location
*Rotor properties: Rotor thrust mapping

*Spring-damper properties: Spring damper coefficients for
simulating impact with the ground

*Control commands: Pre-planned commands to complete a
mission (including desired rotor RPM, pulse width and internal
mass arm rotation)

Figure 5: Summary of existing simulation code

2.1.3 Dynamic Model Validation

The preceding section explained that the simulatiade has been developed for
representing the motion of a Hopping Rotochute.ohlder to use this code with
confidence, the validation results are presentegoast work as in reference [8]. Briefly,
the dynamic models employed in the simulation doalee been validated by the motion
capture system, which is able to record an exaimgte The validation has been done by

comparing the results of the simulation with respecthe records from the motion

capture system.

Examples of the validation charts are displayedrigure 6 through 9. In these
charts, the experimental data from the motion aapsystem is represented as a solid
line, and the theoretical data from the computerusation is represented as a dashed
line. For instance, Figure 6 illustrates a 3D plaft a particular hop conducted

experimentally and theoretically. As it can be obed, the motions of the vehicle

v

CODE

represented by solid and dashed lines exhibit dasitnend.
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Figure 6: Flight test altitude vs. range vs. crosgange [8]

In order to quantitatively compare the theoretiaatl experimental data of a
particular hop, Figure 7 through 9 display the sphatoordinates of the vehicle with
respect to time for the same hop. Thus, Figuregurgé 8 and Figure 9 show theoretical
and experimental displacements in the x, the y,thadz axes, respectively. In Figure 7

and Figure 8, maximum distances between the sntiddashed line are respectively 0.02

m and 0.15 m at 2 sec.
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Figure 7: Flight test range vs. time [8]
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Cross Range, y (m)

Time (s)
Figure 8: Flight test cross range vs. time [8]
In Figure 9, the theoretical and experimental datestly coincide, which indicates that
the simulation model is consistent with the expental data. Reference [8] mentioned

that the vehicle reached a maximum altitude of @i7&t 1.6 sec. while achieving a total

range of 1.73 m associated with the experimentlasid m for the simulation model.
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Figure 9: Flight test altitude vs. time [8]
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Validation charts show that computer simulatiomdsurate when the results are
compared with the experimental data. Hence, compsaimulation can be used

confidently to conduct further research about tlgping Rotochute.

2.1.4 Control Technique for Path Tracking

The most recent version of Hopping Rotochute saakpath by performing
particular commands that are given prior to thesmis These commands include the
following:

* RPM, which indicates the desired rotational speetierotor.

» Pulse width, which indicates the operation timéhef rotor system.

* Angular position of internal mass (IM) arm, whigidicates the inclination of the
vehicle or the hop direction.

These commands are written down in a file, and Hopping Rotochute is
expected to perform all commands sequentially. Nb&t because the recent Hopping
Rotochute implements pre-planned commands givear i mission, given commands

cannot be modified during the mission.

2.2 Control Techniques for Trajectory-Following

Vehicles can track a path using two control techegy One of them is offline
control, and the other one is online control. Thedamental difference between these
two techniques is in their approach to producingticd commands. Therefore, as online
control is more applicable to autonomous trajectolpwing, this section starts with an
overview of both online and offline control, buethprovides further details about online
control. Finally, rule-based control and model jpcgde control techniques are reviewed
since these methodologies have inspired the dewelopof this algorithm.

In offline control, commands, which are given priorthe mission, are performed

exactly as given regardless of any external evBnis process can be referred to as a
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“batch job”, in which all commands are saved tal@ dnd executed in a sequence. The
most recent version of Hopping Rotochute employilinef path tracking, which is
satisfied by pre-planned control commands of RPMse@ width, and internal mass arm
position. This technique is practical if there is oncertainty; however, real world
applications consist of many uncertainties drivgrelther a system or the environment.
Hence, offline control in the presence of uncetiamay cause divergence from a route
since control commands may require correction @uaimission.

In online control, commands are produced duringission, and an individual
command is performed whenever it is obtained. lmeotwords, this can be called
“interactive processing”, in which a particular t@mh command is immediately
processed. For efficient trajectory-following, thpping Rotochute must be able to
implement online control for path tracking. In timeanner, it will be able to modify the
control commands when required to prevent deviatfoom the route.

Recently, many studies have examined online patkimg for an unmanned
vehicle. The most well known correspond to linead aonlinear feedback controllers.
These traditional techniques require accurate dynamodels, and their designs are too
complex, especially for MIMO (Multi Input Multi Oput) systems with unequal number
of inputs and outputs. Furthermore, they are nasictered robust against uncertainty as
mentioned in reference [19]. Other techniques faoiline path tracking employ
conditional inference. The advantage of employingditional inference is that these
techniques do not require accurate mathematicaketaodhey achieve path tracking by
defined rules, and they are efficient in genericisien making.

From a general point of view, path tracking regaivehicle and environmental
information. In some cases with strong nonlineesitiobtaining accurate mathematical
models for either the vehicle or its interactionthwihe environment may become

challenging leading to the need for conditionakmehce, which eliminates the need for
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mathematical models. Hence, the literature pressomse studies that use conditional
inference as rule-based control.

The previous section of this thesis depicted arurate dynamic model for a
Hopping Rotochute. However, the interaction of #revironment with the Hopping
Rotochute is uncertain. The implementation of tradal control techniques in the
existence of vehicle’s mathematical model and emwirental uncertainty may cause
deviations in the path tracking. Hence, this sitiratnduces the use of conditional rules
in the control algorithm of a Hopping Rotochute.

The major disadvantage of rule-based control i;éfficiency in generalization,
suggesting a control algorithm governs situatianw/hich the rules exist. However, it is
still applicable to many nonlinear problems for idem making. (More details are given
in subsequent sections.)

Decision making based on conditional inferencehis major property of rule-
based control, which can be a practical methodfdine path tracking. The important
guestion arises as to what information is usedomditional statements. A conventional
approach is to utilize sensor information in coiotial statements. However, the most
recent version of the Hopping Rotochute does nopleynany onboard sensors.
Therefore, embedding some prediction models imatgerithm is a goal of this research.
In this manner, conditional statements are aimadvatving a desired condition and its
predicted control inputs. For instance, a condélastatement could be “Ik is desired
target point, THENv is required control input.” Thus, this idea wiad to creation of
models that will be used to predict control inpids desired hopping performance. Use
of these prediction models resembles the populatraiotechnique of model predictive
control.

Due to the existence of uncertainty pertainingneinment-vehicle interaction,

rule-based control, embedded with some model irddion (similar to model predictive

18



control), will be employed in the control algorithidence, the following sections briefly

explain the main ideas of these techniques.

2.2.1 Rule-Based Control

Rule-based control is a control technique applealbd systems lacking
mathematical models for decision making. Based rewipus knowledge or experience,
some conditional statements are created, and tiérotoalgorithm employs these
conditional statements in order to make infererad®aut a situation. In the literature, one
of the popular rule-based control techniques ikeddluzzy logic controller (FLC), which
employs fuzzy inference. Fuzzy logic control is dihson set theory, in which the
boundaries of the sets are fuzzy. The aim is toemndécision through conditional
statements based on fuzzy sets. For instance, &t which illustrates a fuzzy set
example, indicates a pure occurrence of an outpufi'aand the non-occurrence of an
output as “0”. As it is seen from the figure, theftthand side of thex interval
corresponds to the pure occurrence of output lenthe right-hand side of theinterval
(in the absence of output 3 occurrence) corresptmdse pure occurrence of output 2.
However, intervak represents a fuzzy condition in which the occureeof both outputs
1 and 2 are observed. Hence, when the input islensitervalx, a fuzzy inference is
implemented for outputs 1 and 2, such as “outpist dbservedairly while output 2 is
observeddlightly,” or vice versa. Note that the same approach candeed by outputs

2 and 3.

Cutput 1 Qutput 2 Cutput 3

)

Figure 10: Fuzzy set example
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In addition to applying pure FLC, researchers ce@ many variations of FLC to
enhance decision making so that it is more gerzatale. Note that decision making with
conditional statements as in pure FLC cannot bermgdimed since only existing rules can
be applied. Therefore, the authors of referencg gb@nbine fuzzy logic with neural
networks (FNN). In this study, they claim that vehipath tracking is achieved by
classical fuzzy rules, neural networks can provaystems capable of learning, and
nonlinear expressing. Hence, the combination ode¢htechniques increases the decision
making capability of a vehicle in order to copehwinknown environments. Nonetheless,
it is challenging to construct a neural networkisture. Another reference, [20], presents
a derivative of fuzzy logic, namely adaptive fuzegntrol. This technique has been
implemented in a wheeled ground vehicle that inetud sonar sensor. The main idea is
that the vehicle creates a line between the stadlt the target points. When sensor
information indicates an obstacle at the vicinifythee line, the method modifies the line
in order to prevent possible impact, as shown guié 11. In this figurd,is a function of
the robot-obstacle distance with respect to seimdormation. Based on thievalue, the
line pointingXxy, the target point in the absence of the obstaslejodified to the line
pointing x;, the pseudo-target point in the presence of tletagke. In this manner, until

the vehicle approachesxg the route is modified as described above.
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Figure 11: Adaptive fuzzy logic control [20]
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Moreover, the method that has been described esmpdolaptive control for
minimizing tracking errors. In order to visualizgetbenefits of adaptive control, Figure
12 illustrates a comparison between adaptive amdadiaptive path tracking. The figure
shows that when the tracking error is minimizedyve path tracking is more likely to

converge to the desired path than non-adaptivetpatking.
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Figure 12: Adaptive fuzzy logic path tracking [20]

This thesis may not necessitate the creation ayfgets, as in FLC. For instance,
the existence of wind will be estimated by a thotédhvalue determined from statistical
results. An error that is smaller than the thredhwill indicate the absence of wind while
an error that is equal to or larger than the thokstvill indicate the presence of wind. In
this manner, since the decision-making techniqeembles a switch mechanism, the
boundaries of the sets are not fuzzy. Thus, Fig@rpresents a non-fuzzy set in which a
condition represented as an intersection of twenore sets is not observed. (Note that
Figure 13 consists of two sets, namely “Wind” amb“wind” sets.) (In addition, the
existence of wind can also be represented as & fsizwhen the error is close to the

threshold. However, because of the lack of knowdedgd practicality, this study will
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employ non-fuzzy sets, as shown in Figure 13. Maetails will be explained in the

following chapters.)

Mo wing Winct

l Etrar fcrm
threshold

Figure 13: Example to a non-fuzzy set

Hence, the algorithm developed in this thesis imeslnon-fuzzy sets with some
thresholds, implying that it is not possible to elve two or more conditions at the same
time. Thus, pure rule-based control without fuzzfgrence is employed in the algorithm
on the basis of comparing some values with respecdome thresholds. Therefore,
conditional statements represented by a set ofuiktig descriptions such as the

followings are created.

IF track condition 1 AND avoid condition 1, THENmmand 1.
IF track condition 2 AND avoid condition 2, THENmoand 2.

(
O

IF track condition n AND avoid condition m, THENmmand nm.

We can observe rule-based control at a wide varétypplication areas, listed as

follows:
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Automated Highway Systems: Automatic steering, braking and throttle contrbl o

vehicles, and automatic train operation systemg [12

Autonomous Vehicles: Ground and underwater vehicles.

Manufacturing Systems. Scheduling and deposition process control.

Robotics: Position control and path planning.

Rule-based control is a practical technique whethamatical relations cannot be
modeled in terms of input-output, and strong naednity is present in the system. Instead
of employing analytical equations, rule-based anprovides decision making by
conditional statements. Recall that the major demkbis that creating the algorithm

requires many rules, which need a lot of prior infation.

2.2.2 Model Predictive Control

In recent years, model predictive control (MPC) lh@&some one of the most
popular process control methodologies. It differsnf other methodologies such as
optimal control, adaptive control, or robust cohtoy employing a prediction in the
controller. Prediction is a very important conceptdecision making. For instance,
Rossiter claims that “prediction is invaluable &moiding unforeseen disasters” [13]. He
gives an example about a human who crosses the staihg that it is not sufficient to
cross a road if there are no cars between the parst the other side. It is also important
to predict whether there are cars, some distanagy,athat will cross in front of the
person soon. Based on these conditions, the petsoides whether he can cross. In
addition, while one is crossing the road, he ca@mto update the predictions. If it is
required, the trajectory may change based on thaated predictions. Hence, this
example implies that the prediction informationyslaan important role in controlling a

process.
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In MPC, a model is used to generate system prediti This model is not
required to be a physical model. As long as theltegive enough accuracy, the simplest
model, which is called “fit for purpose”, can beeds[13]. However, it is important to
note that the precision of control always dependthe precision of the model.

Since the late seventies, many variations of MP@ehbheen developed by
researchers who have focused on linear model pieslicontrol (LMPC) and nonlinear
model predictive control (NMPC). A survey in refece [14] includes more details about
variations of MPC. Moreover, Bemporad [15] has deped an adaptive model
predictive control for the path tracking of a fixedng unmanned aerial vehicle. He
achieved more accurate path tracking by employingagable control horizon that
depicts the future. Based on the tracking condstidong- or short-term prediction is
obtained.

While investigating the main structure of the vasdMPC algorithms, one can
observe that the common elements of the algoritdosnot change. Hence, the
derivatives of MPC are obtained by employing déf@r options for these elements.

Camocha and Bordons state the major elements of MP&erence [16] as follows:

» Prediction Model:This model represents the dynamic behavior ofpiueess.

The aim of the model is to calculate the predictetputs for future instances.

* Objective FunctionThis is the cost function that will be used inabing the

control law.

» Obtaining the control lawThis algorithm produces the control commands by

minimizing the cost function, defined in the fornséep.

In this research, MPC prompted the use of predictitvodels in the control

algorithm. Hencehop performance models are created for control command calculation.
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In this manner, as in MPC, a control based on madetliction is employed in the

proposed methodology.

2.3 Summary

Chapter 2 introduced the Hopping Rotochute andraéwentrol techniques for
path tracking, specifically, rule-based control amoldel predictive control. The Hopping
Rotochute is a hybrid micro vehicle capable of expg rough and complex terrains
with minimum energy consumption. Flying and groutitaracteristics of a Hopping
Rotochute provide the unique dynamics of the vehiétrevious work presents the
validated studies pertaining to the dynamic behawiothe vehicle. One of the weak
properties of the Hopping Rotochute is that it usifi;ne control for path tracking.

For efficient path tracking, online control techués are convenient because they
allow control command corrections during the missiOne of the most practical online
control techniques in the absence of accurate madelule-based control. This control
technique employs some conditional rules for denisnaking. An example rule is “IF a
condition exists, THEN a consequence occurs.” Helfiae determining the control
command, a differential equation representing tipei/output behavior is not required.

A process control technique that employs a preafictnodel in the control
algorithm is model predictive control. This methm@dmpted the use diop performance
models for the prediction of the most likely control corands in achieving a desired hop.
Thus, the models create rules for deciding efficamtrol commands. An example rule
is “IF x is the target, THEN is the required control command to achieveWith the
models, the algorithm can calculate the requiredrobcommandy, to achieve a desired

hop,x. Consequently, the models help to predict therobnbmmand of a hop candidate.
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CHAPTER 3
METHODOLOGY

The foundation of this research is based on thepkhgpRotochute, which lacks
autonomous trajectory-following. Chapter 2 statedt tthe current prototype of the
Hopping Rotochute executes control commands uptbg@dier to a particular mission.
This control scheme is most likely to cause trajgctdeviations in the existence of
uncertainty. In order to achieve efficient pattckiag, a methodology is proposed for the
development of an autonomous Hopping Rotochute.alimeof this chapter is to create
the research questions, to construct hypotheseésioapropose a methodology. Hence,
the first section describes the research quesaonisthe hypotheses while the second

section presents the proposed methodology.

3.1 Research Questions and Hypothesis

Information in the literature survey was used ttedmine observations that
would be made in this study. The observations wesed to create a set of research
guestions, and the answers to the research questiere used to construct hypothesis
pertaining to the methodology for autonomous ttapefollowing. The literature
revealed three observations. The first observatenmains to the motion of the Hopping
Rotochute, which can be represented as the integrat consecutive discrete events.
Here, the “discrete event” corresponds to an iundigl hop controlled by pre-
programmed commands. The only connection betwezhdps is that the beginning of a
particular hop can be expressed as the end ofrthaops hop. The second pertains to
uncertainties encountered by a Hopping Rotochétithough all sources of uncertainty

are unknown, some of them can be stated as ttwniol):
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(1) Position knowledge: The Hopping Rotochute may maivk its exact position.

(2) Mechanical uncertainties: The Hopping Rotochute mmt rotate its
components precisely due to the inefficiency ofrgea other mechanical
systems.

(3) Environmental conditions such as temperature, hiynidr day/night
experiments: The Hopping Rotochute may not retleetsame behavior in all
environmental conditions. For instance, mechanpaakts may not operate
consistently at different temperatures.

(4) Atmospheric events: The Hopping Rotochute may noikthe exact instance

of exposure to gusts of wind that occur suddenlyatrat all.

Hence, it is important to assess uncertainty ireotd represent the real world
effects.

Finally, the third observation pertains to the gpien environment of a Hopping
Rotochute, which is designed to perform indoor roiss. In such missions, it is possible
to encounter narrow halls with limited ceilings.uBh the Hopping Rotochute needs to
follow a trajectory without hitting the boundaridgloreover, these environments may
include openings such as windows or doors thatdcaillbw gusts of wind inside the
room. Hence, path tracking becomes a challengeafdidopping Rotochute in the
existence of wind, which causes deviations fromraste based on its direction and
magnitude. As a review, Figure 14 outlines the olz®ns and the corresponding

research questions.
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Observation #1:

The motion of Hopping Rotochute is an
example of a combination of discrete
eventsin terms of its hops. The starting
of a particular hop is exactly the end of
the former hop.

Kesearch Area #1: Trajectory Following \

*How are the next hopping point and its
corresponding controlinputs selected?

Sub-Research Area 1.1: Obstacle Avoidance
*What is the impact of the control
volume surrounding the pre-planned
trajectory in terms of mission
accomplishment and controller
design?

Sub-Research Area 1.2: Operation in Gust
*What is the effect of gusts of wind in
the selection of the next hopping
point?

ﬂ)bservation #2: \

The Hopping Rotochute may
encounter many uncertainties
pertainingto (1) position knowledge,
(2) mechanical uncertainties, (3)
environmental conditions, (4)
atmospheric events. It is important to
add uncertainties to the simulations in
order to obtain realistic results.

-

Observation #3:

It is likely to observe openings and
narrow halls with limited ceilings in
indoor environments.

- J
Figure 14: Observations and research questions

Research Area #2: Uncertainty Analysis

J

*What is the impact of uncertainty while the
Hopping Rotochute is performing autonomous path
tracking?

After introducing the observations mentioned in firevious section, the thesis
determines the research areas. The first pertaitigettrajectory following, which focuses
on the selection of the next hopping point at wasioonditions. The second research area
involves an uncertainty analysis that investigaies impact of uncertainty while a
Hopping Rotochute is operating. The following sexs will describe the research
guestions and their prospective answers (the hgges). The first research question
relates to the trajectory following. Hence, it qumss the selection technique of next

hopping point. In this manner, the first researabggion is as follows:

Research Question 1:How are the next hopping point and its correspamdin

control inputs selected?

Based on the first observation, which mentionedomhlination of discrete events, a
discrete control can be applied to a Hopping Rattehsuggesting that each hop can be

controlled individually. The second observation ea¢ uncertainty pertaining to the
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atmospheric events in the environment. Traditiarmaltrol techniques such as linear or
nonlinear feedback controllers do not allow thiscemainty to be employed in the
algorithm. Thus, conditional inferences are implated in the controller design, leading
to conditional statements for the control inputisien.

The control input decision requires the calculataincontrol commands for a
particular hop. This calculation can be providedbag as the hop performance is known.
Since the calculated control command will corregptma future hop, hop performance
needs to be predicted before it is attempted. Towexea regression model is created from
the results of previously conducted experimentghis manner, the experiments provide
data, related to hopping performance under envisottah concerns. These data provide
the hopping performance models in this thesis. The aim of these models is to iptetie
required control commands for a desired hop. Tlkosditional inferences as in rule-
based control, and prediction models as in modediptive control, are employed in the

algorithm of the next hopping point selection. Hentypothesis 1 states the following:

Hypothesis 1: Assuming a known trajectory and boundary cond#jahe next
hopping point can be selected at the end of aqodati hop by conditional
statements in which thaopping performance models are embedded for hop

predictions.

Hypothesis 1 can be proven by analyzing the ehat is the distance between the target
point and actual landing point at the end of eagp. lif the error is reasonable, it will
imply that the algorithm presents good control caanthcalculation to achieve a desired
hop. In addition, the model fits dbpping performance models address the accuracy of
the hop prediction. In order to achieve an accutade prediction, implying the

knowledge of at which position a particular hoplwihd, the model fits need to be good.
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Note that a good model fit corresponds to a regressodel capable of reflecting the
actual hop performance.

Based on the third observation, the Hopping Raitefs likely to observe narrow
halls with ceiling limitations in its operationahwronment. In these environments,
accomplishing a mission by staying certain distaas&y from the known boundary
conditions becomes a major goal. In order to a&hins goal, this thesis proposes to
define a 3D volume, like a notional tunnel withdéweight and less width than the actual

room, around the pre-planned trajectory. Hencenéxt research question is as follows:

Research Question 1.1What is the impact of the control volume surrougdin
the pre-planned trajectory in terms of mission aggiishment and controller

design?

In the absence of uncertainty, it is theoreticaipossible for the Hopping Rotochute to
impact the boundaries if a notional volume is dadinnside the actual room, and any
control inputs are computed with respect to thikume. In this manner, hypothesis 2

states the following:

Hypothesis 1.1:1f a volume surrounding the pre-planned trajectsrydefined
inside the given boundary conditions such as tbe wialls and the ceiling, the
Hopping Rotochute does not interact with the bouedaunless it exits this

volume.

Hypothesis 1.1 can be proven by repeated simukatiorihe presence of uncertainty to

establish whether any violation exists with the riaries.
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Although the Hopping Rotochute is expected to dgeraside buildings, it is
likely to observe gusts of wind in the environmérdm openings such as doors or

windows. Hence, the next research question stagefliowing:

Research Question 1.2What is the effect of gusts of wind in the selectas the

next hopping point?

In a gusty environment, if the control algorithmesgs the next hopping point
regardless of wind, the Hopping Rotochute will stardiverge from the route based on
the direction and the magnitude of the wind. Ineortb prevent this situation, if the
vehicle aims to hop to a specific pob&yond the trajectory, the wind drift can allow it to
land on the trajectory. Hence, before the vehicle condagbarticular hop, an estimation

of wind drift is required. As a result, hypothe%i& proposes the following:

Hypothesis 1.2:The effect of gusts of wind will be used to estienétte wind
drift, which will determine the selection of thexménopping point beyond the

trajectory.

Hypothesis 1.2 can be proven by repeated simukatiororder to establish the
average deviation from the route in the presencewwmfd. If the various windy
simulations present reasonable deviations fromd#sred trajectory, it implies that the
wind drift is estimated correctly, and autonomaagettory-following is accomplished in
a gusty environment. Moreover, because the grapheoiternal mass (IM) arm position
involves the target IM and the actual hop angulsitpns, this graph proves that the
Hopping Rotochute is hopping beyond the trajectorgl landing close to the trajectory.

In the existence of wind, these angular positiaesexpected to be significantly different
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since the target IM position extends linearly beaydhe trajectory and the actual hop
angular position extends linearly towards the ttayjgy.

Real world applications involve many uncertaintiésm unknown sources.
Therefore, modeling these uncertainties is notamsy @rocess. However, counting them
in the simulations is crucial to the analysis ofetfter the controller is working well

under the effect of uncertainty. Therefore, thalfiesearch question is as follows:

Research Question 2:What is the impact of uncertainty while the Hopping

Rotochute is performing autonomous path tracking?

Since each uncertainty cannot be modeled, theysamglified in two main
categories, namely mechanical/instrumental and renwiental uncertainties. In this
thesis, they will be called “noise” and “bias”, pestively. These uncertainties are
assumed to mainly affect positioning, RPM, and @uwisdth. Hence, hypothesis 2 states

the following:

Hypothesis 2: Accuracy of the trajectory-following algorithm cdre assessed
from uncertainty analysis in which the statistipalformance of the algorithm is

examined along with the confidence interval study.

Hypothesis 2 can be proven by investigating theuktion results under the
effect of uncertainty for repeatable accuracy, wehesistence will indicate an acceptable
error with less variability. Hence, the repeateduaacy can indicate the accuracy of the

trajectory-following algorithm.
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3.2 Proposed Methodology

The proposed methodology for autonomous trajedimitgwing combines the
rule-based control with some prediction models. Weaknesses of the traditional
control techniques (such as their complex desighrent being robust under uncertainty)
impose to apply rule-based control to this problemd the need of hop performance
prediction leads to create some regression modelsstimate the required control
commands. Hence, the proposed methodology comdistnditional statements in which
the control commands are calculated from the regresmodels. Figure 15 presents the
general view of the methodology steps. Brieflypstecorresponds to the creation of the
regression models; step 2 calculates the target pmi a particular hop; step 3 employs

the calculation of control commands, and step 4laots an uncertainty analysis.

Create Regression Models

for:
Step 1 *Hop Range
*Hop Altitude
il ettt ==
i t
I
i v :
Step 2 : : *Scenario 1: No Obstacle/No Wind
Zp 1 Select the proper Pulse : *Scenario 2: Obstacle / No Wind
Sten3 : Width : *Scenario 3: No Obstacle/ Wind
ep : : *Scenario 4: Obstacle / Wind
l :
! I
! I
! I
H I
: Create the circle with :
: respect to the computed :
Step2 | Pulse Width !
i I
1
E Find the Target Point : Step4
I
l !
! 1
! I
H I
H Calculate the Rotation |
: angle of the Internal Mass : Conductthe
Step3 : Arm for directing to the H HOP
: Target Point !
I i
! I

Figure 15: The steps of proposed methodology
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3.2.1 Step 1: Create the Model

The main reason to create the regression modeis establish a relationship
between the control commands and the hop perforengacameters referring as the
maximum altitude and displacement. From the funddaie of physics, the displacement
and altitude are directly related with the mass, dpplied force, and the force duration.
In the Hopping Rotochute case, the distance tragtelh horizontal plane and the
maximum altitude gained are functions of a HoppRagtochute’s weight, the thrust
produced by the rotor system, and the duratioh@totor system operation.

In the assumption of a specific Hopping Rotochsteassigned to a particular
mission, the weight becomes a constant parametethé displacement and altitude.
Recall that a Hopping Rotochute is not fuel-powefddreover, it is not dropping any
payload throughout the mission. Thus, a weight iss®t observed during its operation.

Since the Hopping Rotochute is powered with a reystem, the thrust produced
by the rotor can be expressed as a function oflugea per minute (RPM). Hence, RPM
of the rotor system becomes the first key parametierencing the hopping performance.
The second key parameter is the duration of ther otstem operation, referred @dse
width (tapp Of a Hopping Rotochute. While the pulse widthinsreasing, the distance
travelled is also increased since the rotor sysseproducing thrust for a longer amount
of time. Hence, the regression models of hoppistadce and maximum hopping height
will be created with respect to RPM and pulse widthhe rotor system. The details of

the models will be presented in Chapter 4.

3.2.2 Step 2: Calculate the Target Point

The fundamental step for autonomous trajectoryefaihg is the computation of
the target hopping point. Therefore, step 2 intoas$ua practical method for selecting the
next hopping point by combining the information abed in step 1. Note that step 1 is

the section in which the regression models aretedetor hopping distance and height.
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Hopping distance is specifically emphasized in stegince the distance traveled in the
horizontal plane is counted in the calculationtwd target point, demonstrated in Figure
16. In this figure, the center of the circle reprds the position of the Hopping

Rotochute; the circle represents the vehicle rdaga specific hop; and the curved line

represents the desired trajectory with start amdpamnts.

Figure 16: Trajectory-following algorithm

The trajectory-following algorithm calculates theiqt at which the circle and the
trajectory intersect. In cases such as case gurd-16, in which multiple intersection
points are present, the algorithm selects the mbosest to the final point. Furthermore,
the algorithm is capable of determining whethandgéds to shrink the circle in order to
hop smaller distances. An example of this situaitorase 3 in Figure 16. Finally, the last
scenario represents the condition in which thdecmad the trajectory do not intersect. In
this situation, the algorithm selects the pointloa circle that is closest to the trajectory.

Thus, the vehicle attempts to approach the nepoast on the trajectory.
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Figure 17: Algorithm for the selection of the targe point

Based on the demonstration explained in FigureaX@le-based control algorithm
is created as in Figure 17. The algorithm starth whe initial pulse width and RPM
information. From the regression models createstep 1, the corresponding hop range is
computed, and the computed value becomes the raflihg circle introduced in Figure
16. Finally, the intersection points of the ciraled the trajectory are investigated to apply

the suitable case rule in the algorithm.

3.2.3 Step 3: Decide the Optimum Control Commands

The preceding sections presented the existen@e pk-planned trajectory, the
hop performance models created in step 1, and the algorithm developestep 2 for the
selection of the next hopping point. After obtamithe information introduced in the
former sections, the proposed methodology contimiés step 3, in which a decision

about the optimum control commands is made.
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Figure 18: Schematic diagram of step 3

As in Figure 18, step 3 consists of two phaseshichvthe control commands are
computed. In the former sections, RPM and pulsethviglere introduced as the key
parameters of the hopping distance and height. ’Asgl the efficiency of the rotor
system, varying pulse width to change the hop perdoce is preferred against varying
RPM throughout the mission. Hence, RPM becomesatant parameter determined by
the user for efficient operation, and pulse wid#cdmes the first control command
pertaining to hopping performance.

The second control command, the IM arm locationtaies to the directional
control. Because the directional control of the piag Rotochute is sustained by the IM
arm, which inclines towards its position, the positof the IM arm needs to be located
accurately for hopping to the desired point. Thusstep 3, control commands are
calculated; phase | of step 3 computes the optirputee width and phase Il of step 3

computes the optimum IM arm location.
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Phase |

The aim of this section is to compute the firshtcol command, which is the
pulse width, @), for desired hopping performance. As mentionéd, user inputs the
desired RPM. The critical point in the calculatioh the pulse width arises in the
selection of the next hopping point. As anticipatéd@ next hopping point is not unique
for a mission. For a particular Hopping Rotochuke next hopping point differs based
on the environment. For instance, the next hoppigt is selected by avoiding impact
with the ceiling or side walls; or the next hoppppmnt is not selected on the trajectory in
the presence of wind. All of these variations ia 8nvironment result in the selection of
different hopping points leading to different puiselths.

Indoor environments are most likely to contain abks and/or gust. Although
the Hopping Rotochute knows the locations of thetadles, it does not know the
magnitude and direction of the wind. Hence, thessgbent sections will discuss the

details of the algorithm for calculating the pugith in various scenarios.

Scenario 1 — No Obstacle/ No Wind

This baseline scenario assumes no obstacle andnwimvthe environment. In
this case, the user is required to give the pulséhvas an input. Once the pulse width is
known, the algorithm is able to calculate how fa vehicle can hop. The target point is
computed by the algorithm as shown in Figure 1Tsdwidth is not calculated until the
last point since it is a user input. Only in theirity of the last point; a convenient pulse

width is computed in order to finalize the mission.

Scenario 2 — Obstacle/ No Wind
This scenario assumes narrow halls with a ceilimgtation. In Scenario 2, the
vehicle aims to propagate on the trajectory withaitting the side walls or the ceiling.

As mentioned before, the trajectory informationnglavith the boundaries is given as
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input prior to the mission. Trajectory informatiorcludes all discrete points forming the
trajectory, and the boundary information involvés dascrete points forming the side
walls and the ceiling. Hence, the given data endb& creation of a 3D volume

surrounding the trajectory.

=)

Figure 19: Pre-planned trajectory Figure 20: 3D volume created from a éjectory

In order to increase the accuracy of the trajeetollpwing, narrower volumes,
from which the Hopping Rotochute is restricted fréeaving, can be generated. For
instance, Figure 19 displays the notional wallsatzeé by assuming a clearance from the
actual trajectory, and Figure 20 illustrates théamal volume introduced as the region
accessible to the vehicle.

Based on creating a notional volume surrounding tilagectory, this thesis
proposes a rule-based control algorithm for catougathe pulse width in accordance

with obstacle avoidance. The algorithm, a flow tharpresented in Figure 21.
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Figure 21: Obstacle avoidance algorithm

The obstacle avoidance algorithm starts with tHeutation of the pulse width
with respect to the ceiling limitation determinitige maximum hopping height, which is
used in thehop altitude model to calculate the corresponding pulse width. Thitss@
width is used in thénop distance model to compute the hop range of a particular hop.
Then the target point as described in step 2 isut@tked. When the target point is
determined, a vector calledaget vector, extending linearly from the current position of
the Hopping Rotochute to the target point, is @@aOn the other handall vectors,
extending linearly from the current position of thi®pping Rotochute to the known
discrete points of the boundaries, are created. al¢parithm checks whether tharget
vector coincides with any of thevall vectors. In the absence of coincidence, the
calculated pulse width at the beginning of the athm is good to hop. However, in the
presence of coincidence, impact is expected. leraalavoid this situation, the algorithm

decides to hop smaller distances, and iterativety the target point to a closer point until
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it finds a collision-free path, indicating no coitence between tharget vector and any
wall vectors. Finally, based on the new target point, the neglipulse width is

calculated.

Scenario 3 — No obstacle/ Wind

In this scenario, an opening creates a gusty emviemt inside the room, and a
segment of the trajectory is subjected to the gobktwind as shown in Figure 22. The
figure depicts a curved line that indicates thgettory and the arrows that represent a
uniform wind generated from a particular openinghal¥ the vehicle enters the windy
zone, it may not end a specific hop at the targéettglue to the wind drift. This situation

demands a gust-tolerant trajectory-following.

Figure 22: Trajectory subjected to wind

The development of the algorithm assumes the fatigw

1. The magnitude and direction of the wind is not known. An estimation technique is
used to obtain this information. In this procesdeln is defined as erroe)(
representing the distance between the target pmidtthe actual landing point.
The estimation technique uses the error of theipuevhop to interpret the

direction and magnitude of the wind.

2. Maximum limit of the wind magnitude is known. The velocity of the wind in
indoor environments is in a range between 0 m/s amd/s [18]. Some trial

experiments were conducted to analyze the dunalofit Hopping Rotochute in
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the presence of wind. It was observed that if te&dhwind is larger than 1m/s, the
Hopping Rotochute is unable to approach its finainp Hence, this thesis

assumes that the maximum magnitude of the windcitgles 1 m/s.

3. The wind velocity is assumed to be uniform. Inside the windy zone, the wind
velocity does not vary in a spatial direction. Tlssumption eliminates the

complex analysis of wind.

This thesis proposes a rule-based algorithm fot-mlisrant trajectory-following.
The schematic diagram of the algorithm is presemtédgure 23. At the end of each hop,
the algorithm starts with the calculation of erfgr representing the distance between the

desired end point and actual landing point.

HOP ENDS
Calculate error ()
between desired end
pointand actual

position.
I
v v
Casel Case 2
If If
e <threshold, £ >threshold,
then then
gisdue to gis due to wind and
uncertainty uncertainty
| v
v ¥ *Estimate wind direction and
Case 1a Case 1b magnitude from previous hop
If If
obstacle avoidance is on, obstacle avoidance is off, *Select target point based on
then then wind drift
pulse width is computed pulse width is user input

with respect to boundary
conditions

*Compute pulse with respect

to new target point

Continue for the

NEXTHOP

Figure 23: Gust-tolerant algorithm
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Real-world applications cannot obtain exactly zeue to uncertainty. Thus,
will always be a nonzero number at the end of diquaar hop. Moreover, when the
vehicle is subjected to gusts of wind,s expected to be larger based on the wind
magnitude. Here, a question arises at which poinégins to indicate the presence of
wind. In order to answer this question, another eho@those development is similar to
that of thehop performance models explained in step 1, is created. The goal of iislel
is to observe with respect to the variations of wind and hojgwade. (More details about
this model will be given in Chapter 4.) Particwarihe observations obtained from this
model allow the determination of a threshold tisathe maximum possible value ©in
the absence of wind. Hence, two cases referrinbe@resence and the absence of wind
are created and illustrated in Figure 23.

If & is smaller than the threshold value, as in caskid jmplies that the vehicle is
not subjected to wind. In this condition, the altfon checks whether obstacle avoidance
is on. If obstacle avoidance takes place, therpthge width is computed by taking into
account the boundary conditions. If no obstacledamce occurs, the pulse width is the
user input. On the other hand,cifis larger than the threshold value, as in cas#hig,
implies that the vehicle is subjected to wind.Hrstcondition, the algorithm estimates the
wind direction and magnitude. Subsequently, it slethe next target point by
considering the wind drift, and calculates the resflipulse width to hop to the selected
target point. Finally, the next hop is conductethgghe calculated pulse width, and the

same procedure is applied at the end of each hop.

Scenario 4 — Obstacle/ Wind

This scenario is a combination of scenarios 2 andedice, it contains all of the
assumptions and logical rules pertaining to thgedtary-following algorithm. Even
though the environment consists of variable ceilggghts, the algorithm assumes the

minimum ceiling height, since unpredicted wind camnise deviations from the route. The
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disadvantage of this assumption leads to longesiariscompletion time, particularly for
situations in which the hop altitude is much snrallean the local ceiling height.
Nonetheless, obstacle avoidance along with the dowessible trajectory deviations is

achieved throughout the mission.

Phase Il

At the beginning of this section, the control coamds were introduced as the
pulse width and the rotation angle of the intemaks (IM) arm. In Phase I, the selection
criteria of the pulse width were described alonthwie target point of a particular hop.
At the end of Phase I, the target point informatias forwarded to Phase II. The goal of
Phase Il is to calculate the angular position eflt¥f arm so that the Hopping Rotochute
hops to the desired target point.

Chapter 2 introduced that the directional contrblaoHopping Rotochute is
established by rotating the IM arm aligned in theeation of the target point. In other
words, the IM vector, extending linearly from thenter of the vehicle along the internal
mass arm, must coincide with tteget vector, extending linearly from the center of the
vehicle towards the target point, as shown in Feg2#. Once the IM vector aligns with

thetarget vector, the Hopping Rotochute hops toward the targettpoin

Target Vector
IM Vector g

Figure 24: Directional control
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The critical issue in the calculation of the IMmarposition pertains to
implementing the relevant reference frames. HEnget vector displayed in Figure 24 is
defined in the inertial reference frame [17] in whithe equations (3.1) and (3.2)
correspond to the x- and y-components of the vector

AXI = XT arget - XCurrent (31)
Ayl = yT arget - yCurrent (32)
In order to relate this vector with the IM vectdrshould be transformed to the
body frame reference system [17]. The matrix rEpresents the transformation matrix

from inertial frame to the body frame, assumingva &axis system. In equation (3.3)js

the yaw angle of the Hopping Rotochute.

T, :{ cosy sinw} 3.3)

-sing cosy

Consequently, thtarget vector is defined in the body reference frame as follows:

=Tg (3.4)
Ayg Ay,

Finally, the angular position of the transformedtee is calculated as follows:

B
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Hence, buarger becomes the target angular position for the IM ,aponcluding the

calculation of the second control command pertainthe directional control.

3.2.4 Step 4: Assess the Uncertainty

The algorithm described in preceding sections am#semploy any uncertainty;
in other words each step assumes perfect knowlgggeining to the vehicle and
environment. This assumption does not representetigy. The uncertainty is generally
driven from the environment and/or the sub-systeinthie vehicle. This thesis assumes

the uncertainty included in the followings:

1. The position data: The sensors may not give aceumaasurements.

2. RPM of the rotor system: The mechanical componemy cause fluctuation
from the desired RPM.

3. Pulse width of the rotor system: The mechanical maments may not operate for

the desired duration.

Previous sections defined the noise and bias tasmsechanical/instrumental and
environmental uncertainty, respectively. The ndaesens emulate the uncertainty driven
per hop, and the bias terms emulate the uncertdimign per simulation. The lack of
knowledge about the noise/bias characteristicsireg|the use of random numbers with a
triangular distribution, which is used widely to d® unknown variables when
minimum, maximum and most likely values are kno®@onsequently, the position (x,y),
RPM, and the pulse width parameters with uncegtaamé described in equations (3.6)
through (3.9). In these equationg,v, ® are the random values modeled by triangular
distribution to represent the uncertainty. The adpe simulations will be carried out with
the defined uncertainty and the statistical reswit be obtained by Monte Carlo

simulations.
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X+,7noise +,7bias (36)

y+,7noise +,7bias (37)
RPM + Unoise + Ubias (38)
Lo T (3.9)

3.3 Summary

The most recent version of Hopping Rotochute laakgonomous trajectory-
following. This research gap establishes the fotiodaof this thesis. Due to the dynamic
behavior of a Hopping Rotochute and the presenaeoértainty driven by the vehicle
and/or the environment, this thesis proposes a adethgy that combines a rule-based
algorithm with some prediction models. The methodgl starts by creating the
regression models of hop distance and hop altitidlesed on the user input and
scenarios, the optimum pulse width is calculatedbsgquently, the target point is
decided and the second control command, whichdsatigular position of the internal

mass arm, is computed. Finally, the hop is condlicte

47



CHAPTER 4
IMPLEMENTATION OF THE PROPOSED METHODOLOGY

This chapter details the implementation of thgoppsed methodology described in
Chapter 3. The focus of this chapter is on theeggjon models mentioned in steps 1 and
3 of the proposed methodology. Moreover, this afaphvolves some example

simulations and the statistical results of variscesnarios.

4.1 Regression Models

Chapter 3 introduced the proposed methodology stingiof regression models
allowing the methodology to approach the problemmfra model predictive control

perspective. This thesis creates three modelsatbatxplained in the following sections.

4.1.1 Hop Distance Model

The hop distance model provides the information of how far the vehiclendeop
with a specific pulse width and RPM. Therefore, thedel requires the generation of
some data points that correspond to a single hogrige associated with its control
inputs. In the generation of the data points, #lecion of RPM and pulse width range is
crucial. As an initial implementation, the previowsrk [8] has been reviewed and a
range of 3000 to 4000 is selected for the RPM, @nd 1 second is selected for pulse
width. Based on the range selections, the datagane generated and the maximum hop
altitude of each data point is observed. The autiioeference [8] has emphasized that
the optimum hops for the maximum total range aeedhes with smaller altitudes. He
proves his claim by conducting some trade studies.instance, Figure 25 illustrates the
summary of a particular study in which the effetadtitude on the total range is
investigated. Figure 25 shows that the maximum tatage can be obtained by smaller
hops compared with larger hops. An altitude of Zsmarticularly the optimum altitude

for obtaining the maximum total range. Moreover tnternal mass (m) has been
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varied in the trade studies, and the same trends been observed as shown in Figure

25.
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Figure 25: Total range vs. maximum altitude [8]

Based on the results of the previous work, thisithassumes the maximum hop
altitude as 2 m that is a reasonable value in daanenvironment. Thus, the maximum
hop altitude of 2 m is accepted as a limit altitudethis thesis. As mentioned in the
former section, the generated data are obtainechbyng RPM from 3000 to 4000, and
the pulse width from O to 1 second. These datafihezed with respect to the limit
altitude of 2 m. Hence, the regression models erated from the filtered points having
RPM interval from 3000 to 3500, and the pulse widtterval from 0 to 0.6 second.
Finally, Figure 26 presents the 3D trend of"& @der polynomial model for the hop

distance, and Table 3 displays the propertiesehtbdel.
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Figure 26: The fit of the hop distance model

Table 3: Hop distance model properties

52
1

0

3000 — 3500

0.05-0.6
0.9940

Total Number of Model Points

Total Number of Validation Points

Range of RPM

Range of Pulse Width

R2

In order to analyze the goodness of the hop distanodel fit, some random

points are selected for the validation case. Tlgeession model is created by 52 points,

and 10 random points are generated for the modielatian. Figure 27 and Figure 28

illustrate the residuals of the model and the \aiah data points with respect to the

input parameters. The results show that the relsidua in the range between 13 and -28

cm, which correspond to a relative error with respge the hop distance as 6.7% and -

10.7%, respectively.
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The previous figures indicate that only one poiotresponds to the maximum
residual (approximately -30 cm) when RPM is 340@] the pulse width is 0.55 seconds.
The residuals associated with the remaining poarge from 15 cm to -10 cm implying
a relative error with respect to the hop distaneavben 10% and -10%, respectively.
Hence, the model fit is good. Moreover, one carlyaeathe characteristics of the hop
distance with respect to the control parameter®bling at the contour plot displayed in
Figure 29. The hop distance is linearly increasaith respect to the increase in pulse
width and/or RPM, seen from the similar widths dimdar edges of the contours in
Figure 29. This is a physically anticipated resuice the increase in RPM or pulse width
result in more thrust in the rotor system. Thus, \tkhicle travels more distance per hop

with higher thrust values.
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Figure 29: Contour plot of the hop distance model
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Furthermore, another interpretation of Figure 2@agmes to the sensitivity of the
hop distance to the control commands. In this ggtine hop distance tends to vary more
when the pulse width is changed with constant RRidesit is likely to observe different
contours, implying more change in the hop distaqe.the other hand, when the pulse
width is fixed and RPM is varied, the number offeliént contours observed is less than

the previous case. Hence, the hop distance is semrgtive to the pulse width than RPM.

4.1.2 Maximum Hop Altitude Model

The second important parameter of the hop perfocmas the maximum hop
altitude. Thehop altitude model presented in Figure 30 answers the question oftigtv
the vehicle can hop for particular control commardke thehop distance model, the
same procedure is implemented to decide on theesaogRPM and the pulse width. For
this analysis the same data points are used taectea model. The only difference is
using the hop altitudes and its corresponding obiiputs instead of the hop distance.
Hence, Figure 30 displays the 3D trend ofha2der polynomial fitting for the maximum

hop altitude, and Table 4 displays the propertidh@model.

Table 4: Maximum hop altitude model properties

Total Number of Model Points 52
Total Number of Validation Points 10
Range of RPM 3000 - 3500
Range of Pulse Width 0.05-0.6
R? 0.9996
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Figure 30: The fit of the maximum hop altitude modé

52 points are used for the model regression and 10

Like thehop distance model

random points are used for the model validationorder to analyze the goodness of

model fit, the residuals of the model and validataata points with respect to input

parameters are plotted in Figure 31 and FigurelB2.figures show that the model fit is

substantially good since the residuals are indimge between 4.6 cm and -4.5 cm, which

correspond to a relative error with respect to mmaxn hop altitude as 1.6% and -1.3%,

respectively.
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Furthermore, the characteristics of the hop alétade analyzed with respect to
the control commands, namely RPM and the pulsehwidthen the pulse width and
RPM are increased, the hop altitude increases appately following a linear trend.
This can be seen from Figure 33 in which the cantmeas indicate no significant

change.
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Figure 33: Contour plot of the maximum hop altitudemodel
Moreover, the hop altitude is more sensitive to pogse width than RPM. In
Figure 33, if the pulse width is varied when RPMix&d, various contours are observed.
On the contrary, if RPM is varied when the pulsdtwiis fixed, less numbers of contours
are observed than the previous case. Hence, thegeha pulse width results in more

significant changes in hop altitude.

4.1.3 Wind & Hop Altitude Effect Model

The two models discussed in sections 4.1.1 an@ 4rbvide information about

how far and how high a Hopping Rotochute can trageelhop on horizontal and vertical
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planes. Note that these models assume no windaiief thewind & hop altitude effect

model is to provide information about the error withpest to the hop altitude and the
wind velocity. In other words, this model analyzesv much the wind velocity and the
hop altitude are affecting the error of a single.hdere, it is important to define the term
error €), which is the distance between the target panct the actual landing point, as

depicted in equation 4.1:

&= \/(Xtarget - Xactual —landing )2 + (ytarget - yactual -landing )2 (41)

As mentioned before, one can expect to observenazem error at the end of
each hop due to uncertainty. If the Hopping Rotéesi subjected to wind, then the error
becomes larger with respect to the strength ofwilmel. Here, the critical information
pertains to the value of error (and the errorsdatban that value) ensuring the presence
of wind. Hence, the goal of theind & hop altitude effect model is to interpret a
threshold that can differentiate whether the HogpgRotochute is subjected to wind. This
goal enables the development of a gust-tolerajeciay-following algorithm.

A regression model is created for the eredmith respect to the hop altitude and
the wind velocity. In order to visualize the modethree dimensions, the wind directions
of 0 and 180 degrees are taken into account. Tphergments for data generation are
conducted in a horizontally pre-planned trajectorle wind directions of 0 and 180
degrees represent the tail and head winds respbgtand they imply the least and the
most challenging missions. Hence, the consequesfcesd directions other than 0 and
180 degrees are assumed to be included inside rtioe @ata. Furthermore, some
experiments with variable wind magnitudes were coted in a simulation environment.
In cases in which the head wind magnitude was afdum's, the simulation code must be

broken since a Hopping Rotochute could not apprdbehfinal point. Hence, the data
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generatiomssumes a wind magnitude between -0.5 and 0.59Miisl magnitudes larger
than 0.5 m/s and smaller than 1 m/s could be usadgver, the following sections will
emphasize that this model specifically investigatdeshreshold value indicating the
presence of wind. Therefore, the selected rangevahd magnitude of -0.5 to 0.5 m/s is
convenient for the threshold investigation.

Figure 34 displays thé%order polynomial fitting for the error with respeo the
wind velocity and maximum hop altitude, and Tabldl&strates the properties of the
model. A total of 40 simulations were carried ooitgenerate the data points, and the
wind magnitude was selected randomly in each sitiomlanside the range of -0.5 to 0.5

m/s.

Table 5: Properties of the error model

Total Number of Model Points 198
Range of Wind Magnitude (m/s) -0.5-0.5
R? 0.9677

Wyind & Hop Altitude Effect
®  FErrorvs. HopAltitude, Windvelocity

Error ()

0.4

0.2 m

Windvelocity (mis) Hopaltitude (m)

Figure 34: The fit of the wind and hop altitude eféct model
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The trends of Figure 34 are shown in more detathénext three figures. Figure
35 shows the error with respect to the wind veyocA parabolic trend is observed
between the error and the wind velocity. As an#itag, larger wind magnitudes lead to
more error. Hence, the smallest error magnitudebserved when the wind velocity is
zero. As shown in Figure 35, the error in the absesf wind, implying that the error is
due to pure uncertainty, is at most 18 cm. To iadiche presence of wind, this thesis
selects a stricter, more conservative thresholdevafl 14 cm instead of 18 cm. In other
words, the selection of this threshold value wilkere that whenever the error is larger
than 14 cm, the vehicle is exposed to wind. Fi@@eertains to the error with respect to
the hop altitude. As the figure shows, high al@ubps result in substantially more error,
indicating that the Hopping Rotochute stays indhlieand is exposed to wind for a longer
amount of time. Figure 37 pertains to the contdat pf thewind & hop altitude model.
This figure shows that high hop altitudes and langed velocities lead to maximum

error, seen at the top and bottom right of Figute 3

T T
Wind & Hop Altitude Effect
®  Errorvs. HopAltitude, Windvelocity
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Figure 35: Position error vs. wind velocity
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Figure 36: Position error vs. maximum hop altitude
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Figure 37: Contour plot of the wind & hop altitude effect model
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An interesting result occurs in Figure 37 when Hop altitude is reduced for a
particular wind velocity. In cases involving largend velocities, smaller errors can be
sustained by only decreasing the altitude of thpshd@hus, hopping small distances
implies small errors. This tradeoff representsgmificant compromise for the vehicle in

terms of accuracy and the mission completion temel, can be rephrased as follows:

If a Hopping Rotochute istraveling in a gusty environment, an accur ate trajectory-
following is satisfied by hopping small distances, lengthening the mission completion

time.

Thewind & hop altitude effect model provides two major pieces of information,
(1) the threshold value df4 cm, which is able to differentiate whether the vehicd
subjected to wind; and (2) the occurrence of smailteors, which can be maintained by
smaller hops in a gusty environment. The threshaldl smaller errors construct the basis

of the development of the gust-tolerant trajectimiiewing algorithm.

4.2 Example Simulations

The methodology discussed in this thesis proposesugonomous trajectory-
following algorithm for a Hopping Rotochute. Thetaies of the methodology have been
described until now. This section will present epsrsimulations in which the proposed
methodology has been implemented. The aim of teai@n is to test the proposed
methodology. If the results of the test simulatians reasonable, then more challenging
scenarios will be employed. Thus, a route is coe&be this section in which the pure
algorithm as described in step 2 of Chapter 3, thedobstacle avoidance algorithm are
tested. Note that the algorithm with obstacle aaoad takes into account the boundaries

surrounding the trajectory, and aims to follow tragectory inside théoundaries. On the
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other hand, the pure algorithm only aims to fineé thost optimum target point with
maximum range.

First, the results with the pure algorithm are préed as shown in Figure 38. In
this figure, the bold solid line pertains to thajéctory of the vehicle and the thin solid
line represents the desired trajectory. In addjttbe boundaries are shown by the dotted
lines surrounding the desired trajectory. Note thatboundaries shown in Figure 38 may
not necessarily be a physical boundary. The airshofving them is to observe whether
the Hopping Rotochute tends to violate any of tharlaries. As it is seen from Figure
38, the Hopping Rotochute is mostly travelling ofitthe boundaries. Hence, the pure
algorithm is not very successful in the presencbafndaries even though the Hopping

Rotochute completes the mission at the desiregeimd.

2.5¢

0.5

Cross Range, y (m)

0.5

—V\ehicle's trajectory |:
— Desired trajectory
- Boundary 1
|~ Boundary 2

| I |
-1 0 1 2 3 4 5 6
Range, x (m)

Figure 38: Trajectory-following with the pure algorithm
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Figure 39 illustrates the angular position of thkedrm and the actual hop angular
position. Note that the actual hop angular posiisocalculated with respect to the actual
landing and starting point of a particular hophe following equation:

tan_l[ ylanding - ystart J (42)

Xianding ~ Xstarts
In Figure 39, the solid line represents the desirepilan position of the IM arm,
and the dashed line represents the actual hop angpsd#ion. These terms explain that
the IM arm is positioned to a desired angle; howether vehicle is not exactly traveling
at the desired angle due to uncertainty, which caaseme fluctuations. At the beginning
of each simulation, the IM arm is initialized to O degg. Note that O degrees of the IM

arm position implies traveling on the x-axis in Fig@& For the first hop, the algorithm

computes the desired position of the IM arm as 45 @sgeeen from Figure 39.
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Figure 39: IM arm position with the pure algorithm

For the second hop, the proposed methodology comphtedarget IM arm
position as -15 degrees as shown in Figure 39. M@ethe IM arm position in this

figure provides information about which angle the IM amgeds to be positioned. In
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other words, it is not the required rotation of the IM aRor instance, the IM arm needs
to be rotated -60 degrees in order to switch its posftam 45 to -15 degrees.

As it can be seen from the second hop (second disgaeteof the solid line in
Figure 39), the actual hop angular position is atthiaeound -18 degrees due to
uncertainty. Figure 40 presents additional informatibout the altitudes of the hops. In
this particular simulation, the Hopping Rotochute ptates its mission with four hops.
The first is smaller than the others because the digortdhecks whether the vehicle is
exposed to wind. The small hop specifically prevéatge deviations at the beginning of

the mission.

25 T T

Altitude, -z (m)

0.5

Time (s)

Figure 40: Altitude plot with the pure algorithm

Secondly, the same route is implemented in the akgoriwith obstacle
avoidance, as in Figure 41. In this figure, the baliddine pertains to the trajectory of
the vehicle, and the thin solid line pertains to dlesired trajectory. Likewise, the dotted
lines represent the boundaries. As the figure shdvesalgorithm takes into account the

boundaries in the selection of the next hopping pdience, the vehicle stays inside the
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boundaries. Compared with Figure 38, Figure 41 present®re accurate trajectory-

following.

2.5

Cross Range, y (m)

——Vehicle's trajectory
—— Desired trajectory |
........ Boundary 1

; - Boundary 2
0 1 2 3 4 5 6 7

Figure 41: Trajectory-following with the algorithm that includes obstacle avoidance

Figure 42 shows the angular position of the IM arm sgweed by a solid line
and the actual hop angular position represented bgshed line. Once again, in these
positions small fluctuations are observed. Moreovenifei@3 illustrates the altitude plot
of this simulation, in which the Hopping Rotochutempletes its mission with eight
hops. (Recall that the first simulation ended the mmssfter four hops on the same
route). The first hop in Figure 43 is a small hop. Ifdvie present, the small hop creates
a small deviation at the beginning of the missiohiclv is preferable because it prevents
divergence from the route. Furthermore, the last hop Ieva altitude because only a
small distance remains for the last hop. The restehtips aim to go as far as possible

under the assumption of staying inside the boundaries.
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The results of the example simulations show that titagectory-following
algorithm advances a Hopping Rotochute to track aeypf@anned route autonomously,
implying the absence of human interaction for contrehe@nd calculation throughout
the mission. However, a tradeoff between the accurathyedrajectory-following and the

mission completion time occurs.

As the accuracy of the trajectory-following increases, the number of hops, or, the

mission completion time, also increases.

4.2.1 Statistical Results

The performance of the trajectory-following algorithm isleated via repeated
simulations in the existence of uncertainty. Thistieacpresents the simulation results
and depicts the statistical performance of the deeelogdgorithm. The uncertainty is
assumed to be present in the position data, RPHI,tla@ pulse width since the rotor
system and positioning sensor are some of the majotrilmoiors of uncertainty.
However, it is difficult to assess all sources of undetya Therefore, they are modeled
as independently identically distributed (i.i.d) randowariables with triangular
distribution. Triangular distribution is used in randomriable modeling when only
minimum, maximum, and most likely values are knoWrthe simulations, uncertainty is
modeled as shown in Table 6. For a particular systim, distribution parameters
proposed in Table 6 can be modified based on théaaniay of further information on

sensors and actuators.
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Table 6: Uncertainty parameters

UNCERTAINTY
UNIT | MINIMUM | MOST LIKELY |MAXIMUM
PARAMETER

Xnoise m -0.1 0 0.1

Xbias m -0.1 0 0.1

Ynoise m -0.1 0 0.1

Ybias m -0.1 0 0.1

RPMnoise - -25 0 25

RPMias - -25 0 25
tapp_noise sec -0.05 0 0.05

Figure 44 shows the distributions of the generategenand bias terms of position
data. For each term, minimum possible value is -0.themmost likely value is 0 m, and
the maximum possible value is 0.1 m. It is intenttedonduct the first experiments with
VICON motion capture system, which will emulate anboard position sensor by
recording motion of the vehicle in real time. This sysis accuracy is claimed to be at as
low as 0.001 m [21]. Therefore, the most likely vaisi&chosen around 0 m while the
maximum and minimum possible values are choseniff¥stlarger than the accuracy of
the motion capture system in order to include extreruatgns. This thesis assumes

“100” as a convenient number since -0.1 m to 0.1 @ ¢h to 10 cm) is a reasonable

interval for position error.
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Figure 44: Noise and bias distributions of positiordata

In addition, the noise terms shown in Figure 44 attar&zes the uncertainty that
vary at each hop whereas the bias terms change forsgaalation, and remain constant
throughout a particular simulation. In this schentg instrumental or mechanical
uncertainty caused by sensors or rotating componemisatégely are embedded in the
noise terms while the environmental conditions suckemperature, humidity, day/night
are included in the bias terms.

Similarly, Figure 45 illustrates the distributions ofngeated RPM noise, RPM
bias, and pulse width noise. For the RPM terms, thenmam possible value is -25, the
most likely value is 0, and the maximum possibleigds 25. This implies a total RPM
uncertainty in the range between -50 and 50, in wthehsummation of bias and noise

terms is taken into account. It is mentioned that itaximum RPM of the most recent
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Hopping Rotochute is 4000. This thesis assumesotiak uncertainty approximately 1%

of maximum RPM, which represents a reasonable value.
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Figure 45: Uncertainty distributions of RPM and pulse width

For pulse width noise, the minimum possible valueOif5 sec, the most likely
value is 0 sec, and the maximum possible value.05 8ec. Note that Figure 29 and
Figure 33 depict a maximum hop distance and hofudéiless than 50 cm with 0.05 sec
of pulse width. Moreover, the pulse width valuesIdgn 0.05 sec result in unsuccessful
hops since they provide insufficient lift for a Hoppingt&chute. Hence, the values less
than 0.05 sec are assumed as possible uncertaintypéotieular pulse width. Lastly, the
pulse width does not have a bias term since itssiraed independent of environmental
conditions.

Repeated simulations are performed to demonstrate bhowessful the vehicle
hops to the target point in the existence of uncedstafn evaluation criterion is created

as “simulation error” to estimate the statistical perfance of the algorithm. For a
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particular hop, the erroe)l was defined as the distance between the target anththe
actual landing position. For a single simulationhwithops, the simulation erro&() is

computed as the average of err@jsas shown in equation (4.3).

E =

S|

E (4.3)

n
I
i=1

As each error term is a random variable, the simulatioor is also a random
variable, and each simulation error is considered toabsample from the actual
simulation error distribution. The performance of the atpariis evaluated based on the
expected value of the simulation err&{ £ ]). An unbiased point estimator f&f £] is

the average of the simulation errors esimulations.

Ele]==YE (4.4)

3|+

Since the performance evaluation is based on themisgsestimator, the number
of simulations should be chosen properly to achiestesired confidence interval, which
is taken to be 95% in this thesis. This confidemterval form simulations is defined

with at distribution centered at the point estimate valud,iais given as following:

E[z]+h (4.5)

o.(€) (4.6)
m

h=1005m1

In equations (4.5) and (4.6),is the half width{p s m1 corresponds tocritical value, and

os is the sample standard deviation of A reliable estimation can be achieved by
keepingh as small as possible. Note th@s m1 iS @ monotonically decreasing function
with respect to the number of simulation. Thus, equat4.6) implies that an increase in
m leads to a decrease ln Moreover, asn goes to infinity,h goes to zero, as shown in

equation (4.7).

lim h = lim to%,m_lUS—(‘g) =0 (4.7)

e Jm
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However, a compromise occurs between the accuracy fenddmputational
expenses. In order to decide the optimum number odilatrons, some test studies are
conducted for the confidence interval. Figure 46 dispkhe relationship between the
number of simulations and critical values. While the number of simulations is
increasing, firstt critical value is decreasing dramatically. When thember of
simulation is greater than 20, the reduction @nitical value is becoming less significant.
This can be seen from the zoomed section shown uré&ig6. Consequently, when the
standard deviation is assumed constant, the halfhwimlt the simulationsm= 20 is

mostly dependent to the square root of the simulationber.
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Figure 46:t critical values vs. number of simulations

In order to achieve a desired half width, first, an a@hitialf width calculation is
conducted by 20, 40 and 60 simulations for varioudrenments such as no wind/no
obstacle, only wind, and only obstacle. The aim shg various environments is to find

out the optimum number of simulations for robust exain of the algorithm. The
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results of no wind/no obstacle simulations are preseint Table 7 in which the mean
error, the standard deviatiangritical value, and the half width are listed for eaemple
simulations. The mean error is observed approximatelycdi for each sample
simulation; however, the half widths are quite differieatn each other. The half widths
are computed as approximately 3 cm, 1.5 cm, and focr0, 40, and 60 simulations,
respectively. Based on the results, the half width Of sbmulations seems quite
reasonable since 1 cm is a physically acceptable érhmr.half width may have been
improved with more number of simulations; however, tn@rovement will be on the
basis of millimeters. Due to the consideration of cataponal expenses, the calculations

are stopped at 60 simulations.

Table 7: Confidence interval of sample simulationsvithout wind and obstacle

Unit 20 Simulations 40 Simulations 60 Simulations
Mean (m) 0.1778 0.1702 0.1647
Std. Dev. (m) 0.0587 0.0454 0.0412
to.os 2.093 2.023 2.001
h (m) 0.0275 0.0145 0.0106

The second case analysis of the half width includesagle in the environment.
The results of this case are depicted in Table 8 iiclwthe mean error, the standard
deviation,t critical value, and the half width are illustrated faclk sample simulation.
The results show that a sample with 20 simulatisnst good enough for predicting the
mean error. While the samples with more simulation lzaverror mean trend around 17
cm, the sample with 20 simulations correspond torasr @bout 15 cm. Moreover, the
half widths calculated from the samples with 20, A@ &0 simulations are 1.6 cm, 1.4
cm and 1.2 cm, respectively. Like the previous casesample with 60 simulations

presents the best estimation of mean error with a sntalfgidence interval.
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Table 8: Confidence interval of sample simulationsvith obstacle

Unit 20 Simulations 40 Simulations 60 Simulations
Mean (m) 0.1521 0.1709 0.1762
Std. Dev. (m) 0.0337 0.0425 0.0456
to.os 2.093 2.023 2.001
h (m) 0.0158 0.0136 0.0118

Finally, the last case for computing the half widthtgi@s to the simulations in a
gusty environment. While the trajectory is subjededust with unknown direction and
magnitude, the samples with 20, 40, and 60 simaratiare carried out. The results are
presented in Table 9 in which the mean error, thedatahdeviationt critical value, and
the half width are illustrated for each sample simaoia The results show that the mean
error in a windy environment is around 22 cm. The hdtiths for 20, 40 and 60
simulations are computed as 3 cm, 2 cm, and 1.5respectively. Like the previous
cases, the best result is obtained from a sample 6@iteimulations in which the mean

error of 22 cm is estimated in the range between 20.&mh23.5 cm.

Table 9: Confidence interval of sample simulationsvith wind

Unit 20 Simulations 40 Simulations 60 Simulations
Mean (m) 0.2369 0.2081 0.2161
Std. Dev. (m) 0.0684 0.0699 0.0605
to.os 2.093 2.023 2.001
h (m) 0.0320 0.0224 0.0156

Consequently, the optimum number of simulations lscted at 60 implying a
desired half width less than 1.5 cm in any environmemntioned above. More
simulations will result in smaller confidence interydi®wever, it is also important to
take into account the computational expenses. Fstarnice, a particular simulation
consisting of 10 hops with 1 m hop altitude and noeautainty runs for approximately 15
minutes. Based on uncertainty, the environments diretuwind and/or obstacles, and the

total distance of desired path, more hops to accaempliparticular mission are expected.
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In other words, if the number of simulations is more tié@n it is likely to observe
computer execution times on the day basis. Furthernadier, 60 simulations, the half
width is expected to become smaller than 1 cm. Wil is a numerically significant
improvement, it is not practical to increase the cotagon expenses for obtaining better
accuracy on the millimeter basis. Hence, the samplds 60 simulations are good at
evaluating the performance of the trajectory-followiatgorithm with reasonable

confidence intervals in various scenarios.

Table 10: Summary of the statistical studies

MEAN ERROR | STANDARD DEVIATION

No Wind/ No Obstacle 16.4+1.0cm 4 cm
With Obstacle 176+1.1cm 5cm
With Wind 21.6+15cm 6 cm

The proposed methodology shows repeatable accuracyHopping Rotochute
to track a path autonomously. The mean errors, whiphesent the average deviation
from the route in each environment, are presented ireTblIThe maximum deviation is
observed in simulations including wind. However, tHepping Rotochute is still
successful to follow the trajectory with an averageidtion of 21 cm over a mission

range of 6.5 m.

4.3Summary

The proposed methodology was developed by condltgintements based on the
performance models. The results show that the regressiodels created for the
prediction of a particular hop have good model fittingéus, the vehicle has the
capability to predict the control commands of a desivep. Moreover, the same models

help to understand some major points stated as tloaviol
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1. Obstacle Avoidance: From the trajectory data, the minimum ceiling vakiselected

to become the height limitation of the mission. Uowgiling values could have been
considered; however, the gust is not predictable dutiegmission. Hence, smaller
hops have less risk to be affected by the unpredecgst. As a result, the minimum

ceiling limitation determines how big a hop can betfat specific mission.

2. Gusty Environment: Based on the results of Figure 35 and Figurel36em is a

threshold that can ensure whether the vehicle issegto wind in the previous hop.
Consequently, the algorithm checks the error at theodérehch hop. If the error is
larger thanl4 cm, then the algorithm deems that a Hopping Rotochwaeald be

exposed to wind in the next hop. Hence, the nexiphmy point is selected by

considering the wind drift, computed from the previoap.h
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CHAPTER 5

TESTING THE TRAJECTORY-FOLLOWING ALGORITHM

In Chapter 4, some example simulations were presantenider to show the
applicability of the proposed methodology. This cleagtarticularly focuses on more
challenging missions to understand the success ofatgerithm. The most likely
environment is an indoor mission containing the atlss and the gusts of wind. Hence,
this chapter specifically takes into account four aces including the obstacles and/or
gust. The developed algorithm will be tested in eafcthe scenarios, and the statistical
results will be presented to infer about the succésleoalgorithm. In this manner, the

results of this chapter attempt to answer particul&wyresearch questions 1.1 and 1.2.

5.1Scenario 1: No Obstacle/No Wind

This basic scenario assumes no obstacle and no wirlde environment. A
closed large room that has a length of 8.5 m anddéhvaif 4 m is used, and the trajectory
is located as shown in Figure 47. The performance oHiby@ping Rotochute will be

investigated and summarized at the end of this siena

Figure 47: Environment of scenario 1
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As mentioned before, 60 simulations are conducted Hisr gcenario and one,
including a total of 6 hops, is presented in Figurah#® represents the desired trajectory
as the solid line and the Hopping Rotochute’s ttajgcas the dashed line. The figure
shows that these lines mostly coincide with eatlemtindicating that the vehicle travels
on the trajectory most of the time. Note that theettry-following algorithm in this
scenario assumes a fixed hop range determined by ¢én€3tep 3 of chapter 3 depicted
the details). Hence, when the vehicle comes to therdinates of (1.5, 0.65), the
algorithm decides to hop (3.75, 0.45) instead of () Gue to the user preferences. At
the end, the Hopping Rotochute accomplishes thsiomsy approaching close enough

to the end point (7, 1.15).

—==-Vehicle's trajectory

—Desired trajectory

Cross Range, vy (m)

Range, x (m)

Figure 48: Trajectory of a Hopping Rotochute at sceario 1

One can observe that the vehicle is not exposedrad, wnterpreted from Figure
49. This figure shows the target IM position, represeériy a solid line, and the actual
hop angular position, represented by a dashed lingée that the target IM position
corresponds to the desired angular alignment of ther, calculated with respect to
desired target point; whereas the actual hop angudaition pertains to the achieved

angular displacement, calculated with respect toahdtunding position at the end of a
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particular hop. In environments with no wind, the &rtM position and the actual hop
angular position should be close enough. In this magnFigure 49 implies that the
vehicle has not been exposed to wind during its ionissince the solid and the dashed

lines are very close to each other. Note that snesdiations seen in Figure 49 should be

due to uncertainty.
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Figure 49: Angular position of the IM arm at scenaro 1

In order to visualize the mission in 3D, Figure 5@iissented. As it is seen, the
Hopping Rotochute finalizes this specific missionhwBt hops that are represented by the
dashed line. At the end of"Hhop, the algorithm realizes that it has gone awam frioe
final point. Therefore, B hop is a small hop with an opposite direction ineortb
approach to the final point. Moreover, Figure 51 tHates the altitude-time graph of this
particular mission. As it is seen, each peak represamtindividual hop. There are two
small hops observed during the mission. The first mnemall due to conceive the
environment whether a local wind is present. TheHagtis small because of being close

enough, meaning smaller than 0.2 m, to the finahtpoi
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Figure 50: 3D Trajectory of a Hopping Rotochute atscenario 1
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Figure 51: Altitude plot at scenario 1

80



In order to analyze the average deviation from the réatehis scenario, 60
simulations were conducted in the existence of unogytaand average errors were
calculated. Note that (error) was defined as the distance between the taajailated
by the developed algorithm and the actual landingt@d the end of a particular hop. On
the other hand,g (average error) was defined as the mean error for a particular
simulation (each error is summed up and divided byntimaber of hops). As a result,
Figure 52 illustrates thaverage error distribution of scenario 1 based on 60 simulations
in the presence of uncertainty. The maximawerage error is 0.38 m, and the minimum
average error is around 0.05 m. Thus, the meanavérage errors is 0.18 m with a
standard deviation of 0.07. Furthermore, a confidenesviak study is conducted, and the
results show that the half width is 0.02 m indicgtihe estimatedverage error, 0.18 m,
can vary between 0.16m and 0.20 m. Hence, scenaram be reliably represented with
anaverage error of 0.18 m. Although this scenario assumes no wirtremobstacle, the
results indicate a highverage error (0.18 m). The hops performed in this mission are
high altitude hops because of no obstacle limitatidence, the hops with high altitudes

have a tendency to result in more deviation from thigero

T T T
0 0.05 0.1 0.1560.20.25 0.3 0.35 04

Figure 52: Error distribution of scenario 1
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5.2Scenario 2: Obstacle/No Wind

Scenario 2 is one of the challenging missions for pgditay Rotochute. It contains
two rooms connected by a low ceiling hall. The firsbmopresented in Figure 53 has
dimensions of 3 m of length, 2.6 m of width, and 3 ihnheight. The second room has
dimensions of 3 m of length, 2.4 m of width, and 2 inh@ight. Finally, the connection
hall has 1.8 m of length, 0.8 m of width, and 1.®Mmeight. The aim for this scenario is

to follow the trajectory without hitting the side Wwsabnd the ceiling.

Figure 53: Environment of scenario 2

From the trajectory and boundary information, the sesalvidth is observed as
0.8 m. Thus, the trajectory-following algorithm decdde create a notional volume by
considering a clearance of 0.4 m from right and left eftthjectory. Moreover, 1.5 m is
observed as the smallest altitude determining thengdimitation of this scenario. The
notional boundaries surrounding the trajectory aeated as seen in Figure 54. Like the
previous scenario, Figure 54 shows the solid linthaslesired trajectory, the dotted lines
as the notional boundaries, and the bold solid #sdhe trajectory of the vehicle. The

results of the simulation show that the Hopping Rotwe follows the path accurately
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without violating the boundaries, interpreted from tieseness of vehicle’s trajectory

(bold solid line) and desired trajectory (thin soliak).

1.6

1.4k R S——— . — T SRS o R T —

Cross Range, y (m)

. —\/ehicle's trajectory
-0.21 — Desired trajectory
e Boundary 1
, ‘ | | | I Boundary 2
o4 0 1 2 3 4 5 6 7 8

Range, x {m)

Figure 54: Trajectory of a Hopping Rotochute at sceario 2

As mentioned in the beginning of the scenario, thidrenment does not include
any wind. Hence, the target IM position and theialchop angular position are expected
to be close enough. Figure 55 illustrates the amgudsition diagram showing significant
differences between the target IM position, represenyesbhd line, and the actual hop
angular position, represented by dashed line. Howedvguyre 55 indicates that this
difference is less than 10 degrees at each hop. Hémedluctuation should be due to
uncertainty. Furthermore, Figure 56 displays the vizatbn of this scenario in 3D. As it
is seen, the Hopping Rotochute is inside the bouesland finalizes the mission by 10

hops shown as the bold solid line in the figure.
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Figure 55: Angular position of the IM arm at scenaio 2
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Figure 56: 3D Trajectory of a Hopping Rotochute atscenario 2
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Previous graphs show that the Hopping Rotochute doesnpact the side walls.
In order to see whether any violation exists for thénggithe altitude plot is presented in
Figure 57. As the figure shows, the maximum altitob&ined in this particular mission
is 1.2 m corresponding to th& @op. Since the ceiling limitation 1.5 m, no cailiimpact

is observed.
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Figure 57: Altitude plot at scenario 2

Finally, in order to analyze the average deviatiomftbe route in scenario 2, the
average error was calculated for 60 simulations employing uncetyaiifhe average
error distribution of 60 simulations is plotted in Figur@. 3he maximunaverage error
is around 0.17 m, and the minimuaverage error is around 0.05 m. The mearerage
error is 0.11 m with a standard deviation of 0.03. Moreothex,confidence interval study
shows that the half width is 0.01 m implying a releestimation. Hence, the estimated
average error (0.11 m) of scenario 2 can vary between 0.10 m ad@ é. If the
estimatedaverage errors are compared with each other, the results show that th
accuracy of scenario 2 is better than the scenaridis. groves that small altitude hops

result in less error.
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Figure 58: Error distribution of scenario 2

5.3Scenario 3: No Obstacle/Wind

This scenario contains a single room with an opetfiad creates gusts of wind
inside the room. The room of the representative enviemllustrated in Figure 59, has
the same dimensions as that in scenario 1. The &ithiooscenario is to analyze the
performance of a Hopping Rotochute while it is subpkdte unpredictable wind on an
unknown segment of the trajectory. The aim of anatyzhis scenario is specifically to

answer the research question 1.2.

Figure 59: Environment of scenario 3
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An example mission in this scenario is presentedguarg 60. Like the graphs of
the previous scenarios, the trajectory of the vehglgrésented as a dashed line, and the
desired trajectory is presented as a solid line. As,sthe deviation from the route
increases dramatically beyond 4 m on the x-axis dubecaxistence of an opening that
creates gusts of wind inside the room approximatelyn & magnitude of 1m/s in —y
direction. (Recall that the magnitude and the directad wind is random in each
simulation). In these situations, this thesis proposstimating the wind from the
previous hop and implementing the wind estimatiothi selection of the next hopping
point. In this scheme, the vehicle starts to conedogthe desired trajectory after 6 m on
the x-axis. Finally, the mission is finalized whewe tHopping Rotochute has reached the

final point within a distance of less than 0.15 rusirated in Figure 60.
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Figure 60: Trajectory of a Hopping Rotochute at sceario 3

The effect of wind can be analyzed in more detail frbm M and actual hop
position graph, displayed in Figure 61. In this figutee solid line represents the target
IM position, and the dashed line represents the hbtya angular position. Due to the

presence of wind, these lines should exhibit a drasffierence, and specifically at about
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13 seconds, as shown in Figure 61. When the algorithalizes that the vehicle is
exposed to wind, it selects the target pdmsyond the trajectory instead odn the
trajectory. For instance, in Figure 61 between 17 2ihdeconds, the vehicle selects the
IM position of the next hopping point of 45 degrebswever, the achieved angular
displacement is 15 degrees, suggesting that thagstomponent of wind is on the —y
direction (wind blowing top to bottom in Figure 60),daeven though the control
command positions the IM arm at 45 degrees, the HigpRDtochute stops at 15 degrees
due to the wind drift. (Recall that the magnitude ohdavis properly selected such as
between 0 and 1 m/s, implying that it is possibleetorientate the IM arm to converge to

the trajectory when the vehicle is exposed to wind.)
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Figure 61: Angular position of the IM arm at scenafo 3

In order to visualize the mission of scenario 3 in Byure 62, in which the
dashed line represents the hops of the vehicle anddhd line represents the desired
trajectory, is presented. As mentioned, the vehiolerdes from the route after 4 m of
the x-axis. However, it attempts to converge to treettory by using the wind
estimation in the next hopping point selectiontHis way, two more hops are conducted

after 6 m of the x-axis, and the mission is finalize&ewkhe Hopping Rotochute reaches
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the final point within an acceptable range of 20 s particular simulation in scenario
3 ends after six hops, which can be seen from thespeakigure 63. Since there is no

ceiling limitation, the hop altitudes are obtainexytnd 2 m.
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Figure 62: 3D Trajectory of a Hopping Rotochute atscenario 3
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Figure 63: Altitude plot at scenario 3
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In order to evaluate the average deviation from the yélibesameverage error
calculation is done as described in the former sectiéigsire 64 illustrates thaverage
error distribution of scenario 3 based on 60 simulatiora thclude uncertainty. The
maximumaverage error is 0.42 m, and the minimuaverage error is 0.11 m. Thus, the
meanaverage error is around 0.21 m with a standard deviation of OT0% confidence
interval studies computed the half width as 0.02 rhiclwv yields a reliable estimated
average error of 0.21 m for scenario 3. If these results are comparigial those of
scenario 1, one will realize that wind leads to hrgtieviations from the route. (Recall

that the magnitude and direction of wind are unceitain

T T
0.1 015 0.2 025 0.3 0.35 0.4 045

Figure 64: Error distribution of scenario 3

5.4 Scenario 4: Obstacle/ Wind

Of the studied scenarios, the most challenging isasoe 4. This scenario is the
combination of scenarios 2 and 3 since the environmeamiains some obstacles as well
as an opening that creates unpredictable gusts of Whal environment of scenario 4 is
illustrated in Figure 65 in which the dimensions ofnoare the same as in scenario 2,

and the opening is present in the second room.
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Figure 65: Environment of scenario 4

Like the other scenarios, 60 simulations have beewlacted for scenario 4. One
is shown in Figure 66. In this figure, the bold sdiite corresponds to the trajectory of
the vehicle, the thin solid line corresponds to theimd trajectory, and the dotted lines
surrounding the trajectory correspond to the boundaiiée figure shows that the
Hopping Rotochute deviates from the route in the teke#gment of the trajectory, which
corresponds to the second room. The first segment dfdfextory represents the first
room and the second the connection hall. The dewiafiom the route in the third
segment implies that the vehicle is subjected todwn the second room. Even though
wind is present, the Hopping Rotochute successfidinpletes the mission by reaching

the final point with an acceptable range of 20 cm.
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Figure 66: Trajectory of a Hopping Rotochute at sceario 4

As stated, in windy zones, the algorithm selectsniévet hopping pointdeyond
the trajectory, observed from Figure 67, which showggaificant difference between the
target IM arm position and the actual hop angulartwsiln the figure, the solid line
represents the target IM position, and the dashedrépresents the actual hop angular
position. While the Hopping Rotochute is not sutgdcto wind, which corresponds to
the hops at the first and second segments of the rihwgt@arget IM and the actual hop
angular positions are close to each other. In othedsyahe algorithm selects a point on
the trajectory (the IM is aligned at that positicaid the vehicle hops to the desired point
with acceptable accuracy. Hence, small angle dewiatioccur until the vehicle is
exposed to wind. Whenever the Hopping Rotochuteugested to wind, the vehicle
deviates from the desired hopping position due to whed drift. This deviation is

observed from the significant difference, around 20 degieetween the target IM and
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the actual hop positions shown in Figure 67. Ins¢heituations, the wind drift is
estimated by the algorithm, and the next hoppingtpisi selectedeyond the trajectory
in order to finalize the hopn the trajectory. Hence, Figure 66 shows that the Happ
Rotochute attempts to converge to the route aftegleiposed to the wind in the second

room (or the third segment of the trajectory).
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Figure 67: Angular position of the IM arm at scenaio 4

In order to illustrate the mission in 3D, Figure 68 repres the vehicle trajectory
by the bold solid line, the desired trajectory by then solid line, and the abstract
boundaries surrounding the trajectory by the dotteesli In order to realize accurate path
tracking, the Hopping Rotochute should be insidelibendaries. Figure 68 shows that
even though the Hopping Rotochute closely approadmedof the boundaries when it

first encountered wind, it stayed inside the boundamed followed the desired

trajectory.
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Figure 68: 3D Trajectory of a Hopping Rotochute atscenario 4

The representative mission of scenario 4 was accameplivy ten hops that

correspond to the peaks in Figure 69. Each peak,shovhange in altitude by time, has

a maximum altitude of less than 1.4 m. Recall thatlowest altitude in scenario 4 was

1.5 m. Hence, the Hopping Rotochute did not vioéatg ceiling limitation.
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Figure 69: Altitude plot at scenario 4
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Finally, the error distribution of scenario 4 is dispkhyea Figure 70. Like the
other scenarios, 60 simulations with uncertainty weneied out in order to obtain the
average error of each simulation. Once again, the wind magnitadd direction are
uncertain. Based on these assumptions, the resolisaimearaverage error of 0.124 m
with a standard deviation of 0.03. The maximanerage error is 0.21 m, and the
minimum average error is around 0.07 m. Furthermore, the confidence internalys
shows that the estimateaerage error, 0.12 m, can vary between 0.11 and 0.13 m.

Hence, the estimateaverage error represents a reliable result for scenario 4.

! }
0.05 0.1 0.15 0.2

Figure 70: Error distribution of scenario 4

5.5Summary

This chapter presented four scenarios that include \amdfor obstacles. The
results of each scenario in which the simulations aropned 60 times with uncertainty

are illustrated Table 11. The following presents resofithe study:

1. The missions with high altitude hops can be accahell with fewer hops; however,
high altitude hops create more deviations throughmeitmission, proven by the data
in Table 11. The missions without obstacle avoigamssult in fewer hops in contrast
to higher mean errors and standard deviations, indgairtradeoff between the

mission completion time (total number of hops) and dbeuracy of the trajectory-

following.
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2. The trajectory-following can be satisfied in gusty eonments by wind estimation.
When a particular hop ends with errors larger than 0.14vimd is estimated with
respect to the previous hop, and the next hoppingt g@icomputed based on wind
drift. In this manner, the next hopping point is seddbeyond the trajectory, and the
actual hop is expected to end the trajectory. The results show that this approach
leads to a successful gust-tolerant algorithm sincentd@n errors in scenarios 3 and

4, seen in Table 11, are closely in an acceptablgeraf 0.20 m.

Table 11: Summary of the scenario results

AVG AVERAGE OBSTACLE | SUBJECTED | AVERAGE | STANDARD
TOTAL # MAX AVOIDANCE TO WIND MEAN DEVIATION
OF HOPS| ALTITUDE ERROR
Scenario 1 5 21m NO NO 0.18 m 0.07
Scenario 2 10 12m YES NO 0.11m 0.03
Scenario 3 5 22m NO YES 0.21m 0.07
Scenario 4 11 1.3 m YES YES 0.12m 0.03
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The goal of this research was to develop an autooentkajectory-following
algorithm for a Hopping Rotochute. Past studies shothatlthe control commands of
the most recent Hopping Rotochute were given pri@r maission. This control scheme is
unsuccessful since real world applications involveetiainty driven by the environment
or the subsystems of a vehicle. Consequently, thé&ralocommands given prior to a
mission may not satisfy a desired path tracking. Thege an algorithm is required to
make decisions throughout a mission while a Hopfiogochute is propagating on its
trajectory. As a result, the objective of this reseaddfjned in Chapter 1, was the

following:

To develop a trajectory-following algorithm that allows the Hopping Rotochute to follow

any pre-planned trajectory autonomously.

This research objective determined the scope of tbik and entailed a literature
survey that refined the scope. Chapter 2 presentedgpéeeifications of the Hopping
Rotochute and some control techniques applicabteajectory-following. Subsequently,
Chapter 3 presented hypotheses formulated to answeesbarch questions. Chapter 4
and 5 explained the proposed methodology and impitedeit in various scenarios to
analyze the effectiveness of the methodology. Finéllyapter 6 presents a summary of

the work, revisiting the hypotheses first and thenmeoending future research.
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6.1 Hypothesis Review

This thesis involves two major research questiong, @inwhich includes two
more related sub-questions. Thus, four research questimthsfour hypotheses were
defined in Chapter 3. Then chapters 4 and 5 attentptethswer these questions and

prove the hypothesis. The following reviews the reseguestions and hypotheses.

Research Question: How are the next hopping point and its correspondiagtrol

inputs selected?

Hypothesis 1

Assuming a known trajectory and boundary conditions, the next hopping point can be
selected at the end of a particular hop by conditional statements in which the hopping

performance models are embedded for hop predictions.

An online control technique is required for autonomtragectory-following in order to
achieve accurate path tracking. Due to the ineffmyenf traditional control techniques
such as feedback controllers incapable of handlingerg@iaty, the selection of the
control commands is achieved by rule-based contrah tale-based control algorithm,
conditional statements are required, so this thesiategeconditional statements by
embeddinghop performance models that enable the algorithm to predict the robnt
commands of a desired hop. The properties of regrdegederformance models show
that they have good model fits implying accurate mteshs within the assumed model
boundaries. In this manner, the selected control camdmaased on the predictions are
convenient. Thus, this hypothesis allows a HopgRaogochute to achieve accurate path

tracking by successfully selecting the next hoppioigtp

Research Question 1.XWhat is the impact of the control volume surroundireyphe-

planned trajectory in terms of mission accomplishnaent the controller design?
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Hypothesis 1.1

If a volume surrounding the pre-planned trajectory is defined inside the given boundary
conditions such as the side walls and the ceiling, the Hopping Rotochute does not

interact with the boundaries unless it exits this volume.

Creating a notional volume inside the real boundatesretically enables a Hopping
Rotochute to avoid obstacles unless it exits thiggore The simulation results showed
that the Hopping Rotochute never interacted withrda boundaries if hypothesis 1.1 is
implemented. Hence, obstacle avoidance is satidfigdcreating a notional volume

surrounding the trajectory in consideration of the disi@ms of real boundaries.

Research Question 1.¥hat is the effect of gusts of wind in the selectidrthe next

hopping point?
Hypothesis 1.2
The effect of gusts of wind will be used to estimate the wind drift, which will determine

the selection of the next hopping point beyond the trajectory.

Estimating wind and employing this estimation i thext hopping point are the major
goals of the gust-tolerant trajectory-following algorithAs mentioned, the presence of
wind is decided if the distance between the targentpand actual landing point is
significant. Thus, since a hopping point seleaedhe trajectory cannot be achieved by a
Hopping Rotochute in the presence of wind, the nepping point is selecteokyond the
trajectory by taking into account the estimated waminputed from the previous hop.
The simulation results showed that the implemematib hypothesis 1.2 achieves the
development of a gust-tolerant trajectory-following foHapping Rotochute within an

acceptable range of error.
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Research Question ¥Vhat is the impact of uncertainty while the Hoppingtéthute is

performing autonomous path tracking?

Hypothesis 2

Accuracy of the trajectory-following algorithm can be assessed from uncertainty analysis
in which the statistical performance of the algorithm is examined along with the

confidence interval study.

Statistical performance of the proposed methodologghseaed by uncertainty analysis,
whose results pertain to the accuracy of the trajgdtdlowing algorithm. This thesis
assumes that uncertainty, created as random valués tMangular distributions, is
present in position data, RPM, and pulse width. idep to determine the sufficient
number of simulations to yield conclusions, a confaemterval study is conducted and
its results showed that 60 simulations are sufficiergstimate the meaaverage error
with less variability. Hence, this thesis assumeat the estimated meaaverage error

was indicative of the accuracy of the algorithm.

6.2 Future Research

Although the trajectory-following algorithm proposed this thesis showed
success in the computer simulations, it should bplamented in the real Hopping
Rotochute in order to prove its effectiveness. Theéhowology presented in this work
assumes that the position data are known by thecleelit the end of each hop.
Unfortunately, the current prototype of the Hopping Rbtde does not employ any
position sensors. As a first step recommendation, expets could be conducted with a
VICON motion capture system, a computer combined with motion capture system,
and a transmitter for sending the computed commandshisgnmanner, the VICON
system would become the position sensor of the HgpBptochute, the computer

combined with the motion capture system would deteenthe control commands with
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respect to the algorithm, and the transmitter wouldd ge control commands to the

vehicle.

R4 &

» ®

HOPPING
ROTOCHUTE

Figure 71: Recommended future experiment

In addition to the future work pertaining to the expemts, a couple of
recommendations are presented for the development of trijectory-following
algorithm. As emphasized in the methodology, a disco®ntrol technique has been
employed, which implies the implementation of contmmmand at the end of each hop.
In order to achieve more accurate trajectory-followihg, orientation of the IM arm can
be changed during the flight. In that way, the contmhmand calculation would not be
discretized with respect to the end of hops. A cowtus feedback loop can be employed
for the re-orientation of the IM arm. Moreover, the error datewd at the end of each hop
can be used for a robust analysis by creating a neataiork that can use the errors to

improve the accuracy of the trajectory-following.
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