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SUMMARY

Consider a two node queueing network where each node has a single server
with an infinite capacity waiting area. Each node has a dedicated stream of arrivals
and, in addition, there is a stream of arrivals that may join either queue. For the
custdmer that may join either queue, we investigate several different policies. For
each policy, we first determine the stability conditions for the queueing network. We
then find asymptotic expressions for the probability of a large deviation of the queue
length. As in McDonald [10], the emphasis here is on ezact asymptotics, not rough

asymptotics as in the traditional large deviation theory.

ix



CHAPTER I

PROBLEM DESCRIPTION

Consider a queueing network with two servers, each having its own queue. Each of
these servers also has its own dedicated stream of custoiners; that is, a set of customers
'tHat can only join that particular server’s queue. In addition, there is a stream of
customers that may join either queue. These discretionary customers join the queue
‘containing the smaller number of customers, with ties being broken arbitrarily. In
using this join-the-shortest-queue policy (hereafter referred to as JSQ), a system with
similarly paced servers will app.ear to be fairly efficient. However, once the service
rates between the servers begin to differ significantly, the shortest queue may not be
the best to join. In this case, a more natural policy may involve joining the queue
with the shortest expected waiting time. Such a system will be referred to as a JSEW
queueing system, and the corresponding discretionary customers will be called JSEW

customers.

Closely related to the JSSEW po‘jlic‘y is the “shortest expected delay routing”jpol-
icy, abbreviated JSED. The differeﬁce between the two policies is that the JSED

policy takes into consideration the customers currently being served, while JSEW

only considers the expected service times of the customers that are queued.

The primary objective of this research is to describe the overload characteristics



of the aforementioned JSEW queueing system. We will apply the methodology pre-
viously developed in [10] (and already applied to the JSQ system in [6]) in order to
characterize the asymptotic behavior of the system described above. Precise defini-
tions and explanations of the desired exact asymptotic expressions and other results

will be described in the Summary of Main Results section.

1.1 The Model and Policies

Our network consists of two nodes. Each node has a single server and an infinite
capacity waiting area. Customers arrive to the network according to a Poisson process
with rate A > 0. Each customer has an associated type, and the type defines how
a customer decides whether to enter node 1 or node 2. The decision is allowed to
depend upon the joint queue length at the time of the customer’s arrival and to be
‘randomized. After deciding which node to enter, the customer joins the endi of the
line at that node, waits for service, is serviced, aﬁd then departs from the system.
The arrivals of a particular type form a Poisson process with a rate depending upon

the type. Poisson processes for different customer types are mutually independent.

" There are an unlimited number of types or decision rules, but we will be particu-
larly interested in thé following-four rules. The two customer types with the simplest
decision rules are thosé of the dédicatéd cusﬁomers. Customers of type 1 always join
node 1, and we let \; denote the arrival rate of the customers dedicated to queue 1.
Similarly, customers of type 2 always join node 2 at a rate A,. The third customer
type is the customer that joins the shorter queue, breaking ties at random (JSQ), and
we let A\g denote rate of JSQ customers. The fourth customer type joins the queue

with the shorter expected waiting time, breaking ties at random (JSEW), and we let -



Ae denote the arrival rate of the JSEW customers.

If A = A, + Ay + Ag, then we know that there are only three customer types in

this system since A represents the total arrival rate. |

The total service rate in the. network is denoted by p. Just as the arrival rate is
split between the two nodes, so is the service rate. We let u; denote the service rate
always dedicated to node 1. Similarly, u, denotes the service rate always dedicated
to node 2. Most of our results assume p = p; + po implying that the service times at
node 2 ére eprnentially distributed with parametér u; for i = 1.,- 2. However; in one
section, we allow p = p; + po + pf, where pp, 'is allocated to the node With the longer

queue and split equally between the two nodes in the case of a tie.

Under the above assumptions, the joint queue length process will be a continuous-
time Markov process. If we know the components of ), their associated rules, and the
components of u, we can construct the generator of the joint queue length process.

.For example, if A = A} + A2 and p = py + po, then the network consists of two
independent M/M/1 queues. If we say that the system is a JSQ system, then we are
assuming that A = A; + A2 + Ag and p = py + po. A JSEW system is quite similar

‘except that »_)\ = M+ A2+ Az. A JSQ/SLQ (join shorter queue/serve longer queue)

systemi allows \ = A1+ A2+ Ag and p= py + p2 + pr.

Let Q(t) = (@:1(2), Qgiy.(t))'denb'teé }th%a ‘IQueu;a :’lengths at time ¢. For the policies
being considered within this disserfta"tio‘n, 'Q(+) being an irreducible Markov process"
on the state.space Z3 follows from fhé'assumption that A — Ay — Ag, 7 and py are all
nonzero. Our rare event of interest \\"z‘ill be the event that we reach any state in the
set Fy = {(:r, y) € Zi | z+y > E},‘f flwhere z and y are the queue lengths at nodes

1 and 2, respectively. In other words, we are analyzing large deviations of the total



number of customers in the system.

1.2 Summary of Main Results

Consider a two-node infinite capacity system with multiple types of customers and
total arrival rate A. The arrival rate of customers dedicated to node ¢ will be denoted
by A;, ¢ = 1,2, and all remaining customer types will arrive with combined rate
A=A — /\é. Let p, = %}, P2 = %ﬁ, p= %, and pmax = max{p, p1, p2}- Thé service
‘times at eaéh node are independent ahd identically distributed (iid) with parameters
| 11 and u2,> respectivély. Customer arrivals are also iid, and occur from infinite sources

with total rate A.

Given the above framework, the following theorem provides stability conditions for
‘Aa wide array of networks, including JSEW, JSQ, and combinations thereof. First note
‘that whenever either queue is “close” to being empty, if the discretionary customers
“of a given policy obey JSQ routing then the policy will be called boundary-a\}oidin'g.

This definition will be made precise 1n Section 2.2.

Theorem 1 Given the queueing model described above, if the generator is work-
conserving and boundary-avoiding with pmax < 1, then the joint queue length process

is positive recurrent.

By work-conserving we mean that each server will remain busy when there is work
to be déne by that server. With the assumption that these stability conditions hold,
we then move on to our exact asymptotic analysis. In using the methodology of [10] to
obtain our results, several technical éonditions have to be satisfied in order to utilize
the implied results discussed in [10]. We will give a full account of these procedures

in subsequent sections. Once these technical conditions are satisfied, we will be able



to make the results of [6] and [10] specific to our system and draw our conclusions.
Note that in this paper, as in [6] and [10], finding an exact asymptotic expression for
some function f(£) will mean determining not only the rate ¢, but also the constant

c such that f(£) ~ ca?; i.e.

It turns out that there are two distinét ways that the JSEW system can overload.

If one server is very fast, then that server will take all of the discretionary customers

: and will keep its queue small while the dedicated customérs at the other queue cause
the system to overload. This is called the unpooled case. On the other hand, if the
. proportion of discretionary customers is large enough, then the two queues will instead
overload in tandem and this is called the pooled case. For each case, the results for the
JSEW network with exponentially distributed service times and Poisson arrivals are
given below. Theorem 2 gives the results for a “large portion” of the parameter space
in the pooled case (we wiil make thi‘s :idea rigorous in Section 5.4), while Theorem 3
addresses the unpooled scenario. Define 4; = {k | % — X =k, z+y =j for some
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z,y € Z}. .When the ratio po/p; is rational, there will exist a p € Z, such that

Aj = A; for i = j mod p. Let Pr{-} denote the probability measure conditioned on

the process starting in A with respect to the stationary distribution of Q(z).

- Theorem 2 (Pooled Case) Let b = 2. Assume b is rational and let T; denote the
first time that there are £ or more customers in the system. If max{p;,p2} < p<1,

and In p; < v/blInp then
(1)
E[T; | Q0] = (0,0)] ~ fi™"p™*/(A+n) Y

where f is given in (52). Moreover, we also have



(1)

Pw{czl(t>+cz2(i)=z, Q;f) _—Q;f’ } ~ fir* So(k)p @
" (1) QT
Q:(Ty)  i(Ty) - _ o~
{ 09D _ k|c2[01—‘<o,o>} p (k) 3)

for k € A, where d = u— ), and the densitg“/ (k) and p will be discussed in Sections

4.1 and 5.2, respectively.

Theorem 3 (Unpooled Case) Suppose p < max(p1, p2) < 1. Without loss of gener-

ality, assume py > py. Then,

(i) . .
E[T: | Q[0] = (0,0)] ~ g7 p™/(A+ 1) (4)

where g, is given in (54). Moreover,
(i)

k
Po{@u(t) + Q:(t) = £,Q2(t) = k} ~ MJ_’}AIplz_k (1 _ /\2:2,\;;) (,\2 ;—2,\;3) )

(iii).
P{Qz(Te) =k I Q[ = (0 0)} ~ ¢ p*v(0, k), (6)

where ¢ and the dzstrzbutzon V are deﬁned in Section 5.3.

When analyzmg the JSQ system in [6], 1t -was found that there were (not 2 but) 3
dlstmct ways that the system could approach Fp depending on the traffic intensity
parameters p;, po and p. Just as in our JSEW network, if p; was the largest, then
queue 2 remained small while queue 1 gr’ex{zé large; This was again called the unpooled
case, and the most likely approach to Fj i‘n?this case bounced along the z-axis. Anal-

ogously, having p, as the largest in the JSQ system led to an approach along the



y-axis. However, when p > max(p;, p2) the classification of the network’s behavior

was more involved.

For the JSQ pooled case, an additional criterion was uncovered that divided the
pooled case into two subcases, weak and strong pooling. In cases when this additional
criterion held, the rﬁost likely approach to F, hugged the line z = y, and this was
called the strongly pooled case. However, if p was the largest and the criterion did
not hold trﬁe, then both queues still overloaded, but a large joint queue length could
potentially be achieved via a slope other than 1. This scenario was called the weakly

" pooled case.

As we will shortly discover, it turns out that such a dichotomy does not exist in
our JSEW network. Instead, in analyzing JSEW, the required condition developed
analogous to the one that presented the strong/weak pooling dichotomy in JSQ turns

out to be superfluous with respect to the pooling condition itself.

1.3 Literature Review

In this section, we first discuss the origin of the methodology used in this thesis to

obtain our asymptotic results, as well as previous applications of this methodology.

We then move on to consider other research contributions related to the JSEW policy

considered within this thesis.

The methodology used in this thesis was originally developed in McDonald [10].
In his paper, McDonald modeled a géneral network of queues as a Markov additive
chain, and proved three rare-event theorems. The first result in [10] provides an
asymptotic expression for the mean time until the specified additive component hits
a high level £. For the Markovian component of the queueing network, the remaining

two theorems provide both the limiting distribution at this hitting time, as well as



the steady state distribution when the specified additive component equals £. As
mentioned earlier, the emphasis in his work was on sharp asymptotics, not rough
asymptotics as in the more traditional approach to large deviation theory [the reader
is referred to the textbook of Shwartz and Weiss [15] for a treatment of this subject)].
Moreover, the limiting distributions were for the unscaled process, not for the fluid
limit as in the traditional large de?iatioh:theory. The proofs of the results in [10] were
constructed such that, given a particular queﬁeing network and policy, if the numerous
conditions ‘outlined in the paper could be established for the given network, then the
main theorems of [10] could be madev applicable to the desired netwofk._ In fact,
showing that these conditions are satisfied for a JSEW policy within our two-server

. queueing network is what we seek to do in this thesis.

An application of this methodology is gi{zen in Brown [1]. Ih her work, Brown
considers a systerﬁ with NN servers arranged in a circle, with NV arrival streams, each
having the discretion to choose between the shorter of two adjacent queues. In the case
of N = 3 with exponential servers and Poisson arrivals, Brown considers the approach
of McDonald [10] in ordér to characterize (Both qualitatively .and quantitatively) how
this system overloads. In Foley and McDonald [6], the methodology was extended to
cover periodicities, and also utilized to obtain the aforémentioned asymptotic results

~ for a two-server system under a JSQ policy.

The work most closely relat.ed to this thesis would be that of McDonald and Turner
[11] in which th'_ey‘ consider ‘analogous results for a “join the shorter actual waiting
time” policy (JSAW). In their paper, by using the results proven in this thesis as well
- as in [6] for the JSEW and JSQ policies, respectively, they compared both the rough
and sharp asymptotics of the three policies across different overflow events. In short,
for overflow events conceming the total amount of work in the system, McDonald

and Turner found that the performance of all three polices is roughly the same in the



sense that the probability of an overflow only differed by a sub-exponential factor.
However, when the overflow event concerned the waiting time in either queue, they
found that the three policies differed by an exponential factor, and in fact that JSAW

was substantially better.

With respect to the JSEW policy, there is an extensive literature detailing the
optimality of this and similar policies. In [17], Turner used the traditional large
deviation theory approach to find rough asymptotie expressions for the rare event
discnssed in this thesis. However, few others have considered the perspective of rare
events and large deviations as it pertains to this policy. Such rare event considera-
tions are particularly worthwhile when dealing wit}r networks where queueing space
is costly, or the dynamics of the queueing system change significantly after some
predetermined queue length threshold. For the works listed below, the performance
measure commonly used to consider optimality of a policy was the long run average
delay per customer. Also note that, unlike our work, most of the following papers
are limited to models with identically distributed servers and no dedicated customer
arrival streams. Moreover, many of the considerations involve the JSED policy, which
differs slightly from our JSEW policy. Nonetheless, we briefly detail some of the more

well-known results achieved in this area.

Consider a two node network w1th a s1ngle server at each node, no dedicated
customers, and service times for each server being identically distributed. For this
system, Weber {18] has shown that -JSED; is optimal for arbitrary arrival streams
. with respect to average delay per :cns‘t;omer. In [9], Houck has shoWn via simulation
results that with Poisson arrivals and rnultiple servers at each node with exponentially
distributed service times, the J SED,pjolioy results in a mean delay that is almost the
same as the delay resulting from a system in which the servers are combined at one

node. For single server nodes with general service times and multi-server nodes with



exponential service times, Whitt [19] has developed counterexamples showing that

JSED is not optimal.

In the heavy traffic case with one server at each of two nodes, identical service
times, and dedicated customers, Foschini & Salz [8] showed that the JSED system
behaves as if it were a two-server system with a single queue. In addition, a closed
. form expression is obtained for the average delay advantage of the dynamic JSED rule
over a static random policy where job.s are routed according to the appropriate fixed
probability. In [7], Foschini extended this result. t6 systems where the two servers
. have different service rates, and also to systems with more than two servers where
separate arrival streams have to choose from different sets of servers. He showed that
. in heavy traffic, all of these systems behave as if the servers were pooled into one
group of resources and able to serve any arriving customer. In [14], Reiman extended

. the work of Foschini and Salz to the iid setting.

1.4 Overview

The remainder of this dissertafion will ﬁroceed as follows. In Section 2.1, we will
obtain stability conditions for our JSEW system using a connection between our
stochastic network and theico‘nfespondi‘ng fluid model. In Section 2.2, we will use the
same approéch to derive a muéh more general result that gives the stability conditions

for a wide class of queueing networks.

As mentioned earlier, this paper will follow the methodology developed in [10] for
analyzing the exact asymptotics of a-queueing network. To facilitate easier reading,
Chapter 3 contains an outline of this methodology suitable for discrete-state queueing -

systems. In Chapter 4, we will apply this methodology to our JSEW system and

10



provide the necessary proofs.

Upon completing the proofs for the JSEW system, the remainder of the disser-
tation can be outlined as follows. In Section 5.1, we will discuss our results for the
JSEW policy as they relate to the qualitative behavior of the system as it approaches
our rare event of interest. In particular, we will compare these findings with those ob-
tained for the JSQ policy in [6]. In Secfion 5.2, we address the problem of periodicity
within the JSEW policy, and then move on to give our main results in Section 5.3.
In Section 5.4, we discuss an additional assumption that was necessary to complete
a proof in Chapter 4. In Section 5.5, we use simulation results to briefly illustrate
the usefulness of the exact asymptotic expressions derived in Chapter 4. In the final
- section of the thesis, we will consider a variation of the JSQ system that includes
the addition of a third discretionary server that serves the longest of the two queues

(hereafter referred to as a JSQ/SLQ policy).
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CHAPTER II

STABILITY

Let {Q(t),t > 0} be a Markov process describing a queueing network; i.e., such
that the joint queue length at time ¢ can be determined from Q(¢). We say that -
the queueing network is stable if Q(¢) is positive Harris recurrent, which we will
define below. In [3] and [4], Dai explores the connection between the stability of -
the fluid model and that of the network itself. He uses piecewise-linear Lyapunov
functions to show stability of some fluid models, which in turn guarantees positive
Harris recurrence for the corresponding stochastic networks. We will use such an

approach in order to derive stability conditions for our JSEW network.

In the following paragraphs, we outline the steps required for our stability proofs.
In Section 2.1, we follow these steps in order to obtain stability conditions for our
JSEW system. Finally, in Section 2.2, we derive a more general result which gives

the stability conditions for an entire claSs of queueing networks.

There are three major steps to considér in our proof of stability. Given the Markov
Process Q(t) defined by our JSEW netizivork, first we must define the corresponding
fluid model. The equations that define tiliS fluid model will be formulated to parallel
the properties of our JSEW stochastic vrjnodeL Once this is done, our next step will

be to prove that each fluid limit of the.stochastic model is a solution to the set of

12



equations that define our fluid model. This will ensure that we have correctly defined
the fluid model corresponding to our stochastic network. Lastly, we must prove that
this fluid model (under the associated queueing discipline) is stable. According to
Theorem 4.2 of [3], the fluid model being stable will imply that the corresponding
queueing network under the same queueing discipline is positive Harris recurrent;
thus our proof for stability will be completed. By Theorem 10.2.1 in [13], the positive
Harris recurrence of our Markov process implies the existence of a unique stationary
distribution. This will be important in our characterization of the system’s asymptotic

behavior.

Let X = {X(t),t > 0} be a Markov process that evolves on a state space X with
Borel o-field By. For any set A € By, also define 74 = inf{t > 0: X; € A}. The

following is the definition of positive Harris recurrence.

Definition 1 The process X is Harris recurrent if there ezists some o-finite measure

- poon (X, ]ij, such that whenever u(A) > 0 and A € By,
PAra<oo}=1.-

If p is finite, then it may be normalized to a probability measure; in this case X is

called positive Harris recurrent.

The next two definitions w111 also be helpful during our discussion of fluid models

, .

and the derlvatlon of our stablhty condltlons

P

Definition 2 A sequence of functzons fal ) R+ — R is said to be convergent to f(-)

“uniformly on compact sets (u.o. c) szor every > 0

w120 ol

0<s<t

SN .
! i

Definition 3 A set {X, :r € R} is said to be relatjvely compact if for all sequences

{rn} C R there ezists a subsequence {rn,} such that X,, converges u.o.c.

13



Consider a two-nodeb infinite capacity system with J types of customers. For such
a system, we define the following two cumulative processes. Let S = {Sk(n),n =
1,2,...}, where Si(n) is the total service requirement for the first n customers at
node k = 1,2. Let E = {E;(t),t > 0}, where E;(t) is the number of arrivals of type
j customers by time ¢. For the networks considered in this chapter, we assume that
. the strong law of large numbers holds for these cumulative processes. That is, with

probability one, we must have

. E5(t) _

i 20 = o
lim S(n) _ 1 (8)
nsoo 1 7

for some A;, pr > 0.

When coﬁsidering the JSEW network, we will have J = 3. Cumulative processes
E; and E, (with respective limits of A; and Ap) will corréspond to dedicated cus-
tomers at nodes 1 and 2, respectively. Type 3 customers will be the discretionary
JSEW customers, and the corresponding limit will instead be denoted by Agz. For the
more general system considered in Section 2.2, the cumulative processes for any ad-
ditional customer types can be assigned analogously. As done throughout the thesis,

we will let A and p denote the total arrival and service rates of the system.

2.1 Stability Conditions for the JSEW Network

In this section, we will derive the stability conditions for a two-server queueing net-

" work which implements a JSEW queueing policy. To specify the dynamics of our

14



network, we first define the following descriptive processes. The number of arrivals
to node k by time ¢ will be denoted as A(t), and likewise the number of departures
as Di(t), k = 1,2. Let Q = {Q(t),t > 0} denote the two-dimensional queue length
process. The other three processes, W = {W(t),t > 0}, Y = {Y(¢),¢ > 0} and
T = {T(t),t > 0} are also two-dimensional. As done for the arrival and departure
processes, we will often use the subscript “k” to denote the k** component of a multi-
dimensional vector. W, the workload process, is used to denote the expected amount
of work for each server (measured in units of remaining service time). We will let Y
denote the total amount of time that the servers have been idle in the time interval .
[0,%]. And finally, T' denotes the amount of time that the servers have spent serving
their customers. For any function f, we will use f(t) to denote the derivative of f at

t when it exists.

Let us now consider the formal deterministic analog of our JSEW queueing net-
work. In giving our fluid model description of the JSEW queueing network, we 'will
follow [3] with the intentional reuse of the symbols defined in the previous paragraph.
This will be done in order to emphasize the parallel between the stochastic queueing
network and its corresponding deterministic continuous fluid model. For example,
as in the stochastic model, the queue length process in the fluid model will also be
denoted as ), and may instead_be referred to as the fluid level. The components of -

our fluid model must satisfy:théifollowing criteria:

Ay() + As(t) = M, 9)

Dy (t) = Tk (2), (10)

Qult) = Qu(0) + Ax(t) — Du(2), (1)
Wilt) = —-(Qu(0) + Ault) = T(), (12)

15



T(t) +Y(t) = et, (13)

Y (2) can only increase when Wy(t) =0, (14)
(%)Ql(t) > (-}2)@2@) — Ai(t) =, (15)
(i)Qz(t) > (%)th) — Ag(t) = Do, (16)

for all £ > 0 and k = 1,2, where e denotes a vector of ones. These criteria together

define our ﬂuid model; and their solutions, written as
X = (A(), D(t), T(), W(2), Y(2), Q(2)), ¢ 2 0,

will be referred to as the fluid model solutions. Throughout our analysis, we will
operate under the assumptions that A(0) = D(0) = T'(0) = Y (0) = 0, and that all
components are nonnegative. We also assume that the components A, T', and Y are

nondecreasing.

Definition 4 A function f is Lipschitz continuous if for some M > 0,

|f(t2) - f(tl)l S_ M(tz - tl) fOT‘ all 0 S 121 S to.
Proposition 1 Each component of X is Lipschitz continuous.

Proof Suppose 0 < s < t. Consider the following inequalities:

Ti(t) — Ti(s) = (¢ — s) — (Vi(t) — Ya(s)) St —s.

Yi(t) = Yi(s) = (¢ = 8) = (Te(t) — Tk(s)) <t — s

Ar(t) = Ap(s) < (t = 8) (A + Ap) for k=1,2.

Di(t) — Dr(s) < (t — s)uy, for k =1,2.
Here the first two statements follow from the nondecreasing property of the respective
| components, and the fourth from equation (10). Lastly, note that Qx(¢) and Wi(2),

for £k = 1,2, are linear combinations of the aforementioned components and hence
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are also Lipschitz continuous. Hence, using (9) - (13), we have shown that each

component of X is Lipschitz continuous.

Definition 5 A function f is absolutely continuous if for each s,t > 0 and ¢ > 0

there ezists § > 0 such that for each collection0 < s < 8; <t < $9 <ty <...<t, <t

with > (t; — s;) < 6, we have Y_ |f(t:) — f(si)| < e

For a given Lipschitz continuous function f, choose é = ¢/M, where M is as

defined in Definition 4. Thus for any € > 0, if some disjoint intervals (s, tl),...;(sn, tn)
are such that Y (¢ — s;) < d, then Y |f(t;) — f(s:)] < Y. M(t; — s;) < €. Hence,
as a result of Proposition 1, each component of X is also absolutely continuous,
and therefore differentiable almost everywhere with respect to Lebesgue measure on
[0,00). Thus, whenever we are discussing the derivative of any component of X for a -

given time ¢, our assumption that the component is differentiable is justified.

Let Q"(¢) = 1Q(rt) denote the fluid scaling of the queue length process [in this
context, Q(rt) is the stochastic network queue length]. The set of limit points obtained
by letting r go to infinity is called the fluid limit, and will be denoted by Q(t). Similar
notation will be used for the fluid limits of each component of X. As alluded to
earlier, when we say that a fluid model corrésponds to a particular queueing network,
we mean that each fluid limit of the queueing network is a solution to the fluid
model. Hence, for this notion to make sense, we must be assured the existence of
at least one limit point for the queueing network. This requirement is satisfied by
Theorem 4.1 in [3] which tells us that, for any work-conserving queueing discipline,
the scaled components of the qﬁeueing network are indeed relatively compact. By

work-conserving, we simply mean that each server in the network works continuously -
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whenever there is work to be done by that server. In the following proposition, we

establish the validity of our fluid model.

Proposition 2 Each fluid limit of the original stochastic network is a solution to the

fluid model defined by (9)-(16).

Proof The first six equations, (9)-(14), are not speciﬁé to our particular fluid model,
but instead are descriptive for any generic head-of-line queueing network (i.e., a net-
work in which each queue is served in a FIFO manner, with each node having at most
one job being served at a time). As such, by Theorem 4.1 in [3] we already know
that each fluid limit of our stochastic model is a fluid model solution for these six
equations. What is left to consider are the last two criteria which are what make the
model specific to our particular queueing discipline. Thus to check whether this fluid
model accurately represents our JSEW network, we need only show that the fluid

limit of our stochastic model satisfies these two criteria, (15) and (16).

Assume that -Qa(t) > -Q1(?).
Therefore, by continuity, there exists 6 > 0 such that %Qg(s) — Q1(s) > 0 for

s € [t—4,t+0]. Let € = min (%;—Qg(s) - Ql(s)> over s € [t —6,t+6]. Clearly € > 0.

Suppose there exists {r,} — co such that (Q™(t),A"(¢)) — (Q(t), A(t)) as r,, — oo.
This would imply that £2Q7(s) — @1*(s) = 5:Q2(s) — Q1(s) uniformly on compact

sets. Hence, by the definition of convergence u.o.c., we would be ensured of the exis-

tence of an N > 0 such that

sup 14105 (5) = 05(9) - (L2a) _@1(5))‘ <

sE[t—a,t+8] | K2

(NN e

for n > N.

Therefore, ’;—;Q;"(s) —Q"(s) > £forn>N,s€[t—6,t+0;
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e, ZLQa(rns) > 2101 (rs) + 55
ie., “ing(s) > ;};Ql(s) + 55 for s € [ra(t - 5),rn(t + 9)).

Given the above inequality, our queueing discipline dictates that there are no discre-
tionary customer arrivals to queue 2 in this scenario. That is, Vs € [t — 6, + §], we
obtain Az (r,s) — Az(rn(t —6)) = Ea(rns) — Ea(rn(t —6)). By multiplying each side by
- and letting 7, go to infinity, we can rewrite this as Ay(s) = A (t—8) = Xa(s—t+6).

Hence,‘ A:Q(t) = ) as desired.
In the case when (ﬁ;)@l(t) > (-;—2)@2 (¢), we analogously obtain that A,(f) = \;.

a

As defined in [3], a fluid model is called stable if there exists a > 0 such that for
each fluid solution X with |Q(0)| < 1,Q(t) = 0 for ¢ > 8. Hence our goal is to show
that the fluid limit of the model corresponding to our JSEW system must eventually
reach zero and stay there regardless of the initial system configuration. This property

is stated and proved in the following proposition.

Proposition 3 The fluid model as defined by (9)-(16) is stable.

Proof Let X be a fluid model solutién of thé'model defined by equations (9)-(16).
Define the piecewise-linear Lyapunov: functio':r:; .f (1) = max(;-Q1(2), 5 Q2(t))- Let
e > 0. Our goal is to show that f(¢) > 0 => f(t) < —¢, which by Lemma 3 of [4]
would yield our desired result that f(z) = 0 for allt > f(0)/e.

Let t > 0 be such that f(t) > 0, f is differentiable at ¢, and Q is differentiable at 2.

Recall that, by the absolute continuity of Q, we only need to consider ¢ which satisfy
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this criterion.

Case 1. Suppose —I-Ql(t) > ng(t).
Then f(t) = ——Q (t) =22 —1<0iff gy > Ay

Case 2. Suppose 5-Qq(t) > in(t).
Then f(t) = —I-Qz(t) = —-1<0iff Ho > Ag.

Casev 3. Suppose —I-Ql(t) = %Qg(t).
Then f(t) = }4(EQu(t) + LQ:(t))
< (2min(p, p2)) (A — )

<0iff u> A

Define the traffic intensity parameters p, = 1, p2 = & and p = —. Let pmax =

max{py, p2, p}. Through Propositions 2 and 3, we have proved the following theorem.

Theorem 4 If pnax < 1, then the JSEW Markov Process Q(t) is positive Harris

recurrent.

"Observe that if we set u; = ug,:'thén the fluid model defined by équatio'ns 9) -
(16) also corresponds to the determiriisfcic analog of a general JSQ qugueing hetwork
(by general, we mean that the seririce'l rates néed not be equal at the two nodes).
Moreover, the ana]og of Proposition 1 for the JSQ system also follows from the
proof given for JSEW; and by settmg /11 = po in the proof of Prop051t10n 2 we also
obtain the proof of the analogous propos1t10n for the general JSQ queuelng network.

For the proof of the analog to Proposition 3, we instead use the Lyapunov function
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f(t) = max(Q(t), @2(t)), and the proof follows likewise. Hence, we have the following

Corollary.

Corollary 1 If pmax < 1, then the JSQ Markov Process Q(t) is positive Harris re-

current.

2.2 Stability er a General Two-Server Network

In this section, we will extend our stability results to a wide class of queueing systems.

The description of this general system is given as follows.

Consider a two-node system with the following types of customers: a customer -
arrival stream dedicated to each node and any number of discretionary customer
arrival streams that follow some predetermined well-defined queueing policies. The
exact behavior of the discretionary customers (e.g., JSEW, JSQ, or some combination

of the two) will purposely be left ambiguous.

Our claim is that the queueing system described above is stable for any work-
conserving, boundary-avoiding queueing policy. By boundary-avoiding, we mean that :
there exists a region “close” to each axis such that within that region the discretionary
customers are routed to the opposité gueué,.% More formally, consider a graph of our
system where the queue lengths ), and Q2 are represented respectively by the x and -
y coordinates. Furthermore, suppose that t;here exist wedges along the z and y axes
defined by the lines y = m;z + b;, and y = m2:v + by, respectively, where m; < mo. If

the discretionary customers of a given poliC)E{ obey JSQ routing whenever y < miz+b;

and y > mgm + bo, then the policy will be considered boundary-avoiding.

In considering the stability conditions for this general system, we will use the
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same fluid model framework defined for the JSEW scenario in Section 2.1, and make
changes where necessary. As done before, to show stability for the fluid model, the
first step is to define the fluid model corresponding to our stochastic network. This
is done in a similar féshion to what was presented for JSEW. In fact, the first six
equations used to define our fluid model, (9) - (14), remain unchanged. However, we
must now replace (15) and (16) with new equations that correspond to the queueing
discipline of our general system. Recaill we have only specified that our queueing
netwbrk obeys the JSQ policy within each of the wedges. For the fluid model, we

state this constraint as follows.

Q2(t) < miQi(t) + by = Ai(t) =\ (17)

Q2(t) > maQu(t) + by => Ao(t) = Xo (18)

Given these new equations, as with the JSEW model, we must next check whether
this fluid model accurately represents the network in question. As before, the first
six equations are already known to suffice, and we need only show that the fluid limit

of our stochastic model is a fluid model solution to (17) and (18). The proof of this

result is similar to that given in Proposition 2 for the JSEW network. However, for

the sake of completeness, we present it here.

Proposition 4 Fach fluid limit of the original stochastic network described above is

a solution to the fluid model equations (17) and (18).

Proof Assume that Q(t) > méQl(t) + bo.
Therefore, by continuity; there exists 6 > 0 such that Qu(s) — m2Q:(s) > by for

s€t—6,t+0] Lete= min (Q2(s) — rﬁzél(s) —by) over s € [t — 6,1+ 8]. Clearly
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€>0.

Suppose there exists {r,} — oo such that (Q™(t),A™(t)) — (Q(t), A(t)) as r, — co.
This would imply that Q5" (s) — m2QT"(s) — Qa(s) — m2Q:(s) uniformly on compact
sets. Hence, by the definition of convergence u.o.c., we would be ensured of the exis-

tence of an N > 0 such that

sup | Q5"(s) — ma@i"(s) — (@2(s) — mala(s))| <

s€[t—6,t+4}

[\CF e

for n > N.

Therefore, Q3" (s) — m2Qi"(s) — by > & for n > N,s € [t — 6,1+ 6);
Le., 7-Q3(rns) > 22Qy(rns) + by + §;

ie., Qa(s) = maQi(s) + barn + 57 for s € [ry(t — 6),mn(t + 6)].
Given the above inequality, our boundary avoiding policy dictates that there are no
discretionary cuétomer arrivals to queue 2 in this scenario. That is, Vs € [t — 6,1+ ¢],
we obtain Ay(r,s) — As(r,(t—0)) = Ea(rns) — Ex(rp(t—6)). By multiplying each side
by - and letting ,, go to infinity, we can rewrite this as Ay(s)—Aa(t—0) = Ap(s—t+0). -
Hence, fiz(t) = ), as desired. ’

In the case when Q2(¢) < m1Q1(¢) + b1, we analogously obtain that 21 () = A1

O

To complete the proof of Theorem 1 (stated in Section 1.2), we will need the
following lemma, which is presented as Lemma 2.2 in Dai and Weiss [5].
Lemma 1 Let g be an absolutely continuous nonnegative function, and let g denote

its derivative, whenever it ezists. If g(t) = 0 and §(t) emists, then §(t) = 0.
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Proof of Theorem 1
By Proposition 4 and the discussion that precedes it, we have shown that our fluid
model is properly defined. Accordingly, we must now show that all fluid limits of the
model eventually drain to zéro. ;I‘hat is, we must consider the drainage in the different
regions determined by the relationship between @, (¢) and Q(t). Define p = 2, and
let pmax and p; for ¢ € {1,2} remain as previously defined. Define the p1ecew1se-11near
Lyapunov function f (t) = Q1(t) + Q2(t). Once again, our goal is to show that having
F(t) > 0 implies f(t) < —¢ for some € > 0, which by Lemma 3 of [4] would yield our
desired result that f(¢) = 0 for all ¢ > f(0)/e. Again, for any such system, because
of the non-idling constraint, we are guaranteed that both servers will be working
anytime we are in the interior. Also, as usual, we assume that external arrivals are
independent of the system state for all ¢ > 0. As a result, for ¢ > 0 such that both
@1 (t) and Q(t) are nonzero, we obtain the condition (&) = Qi(t)+Qa(t) = \—p < 0.

This of course holds iff p < 1.

Now suppose that f(¢) > 0 and Q;(t) = 0. Then by Lemma 1 we obtain @, (t) =
0, and hence f(t) = Q2(t). Also, because of the wedge, we are ensured that the
di8cretionary customers will be routed away from the boundary. As a résult we
obtain the condition f(¢) = QQ(t) = X2 — pp < 0. This of course holds iff p, < 1.
Similarly, having f({) > 0 and Qg( ) = 0 Would imply the condltlon that p, < 1.
Hence we have shown stablhty is obtamed 11n‘ all regions of the state space if ppnax < 1.
Again, recall that according to Theoreﬁi 4. 2:0f [3], stability of the fluid model implies
that the corresponding queueing network 1s p051t1ve Harris recurrent. Thus we have

proved Theorem 1 as stated in Sectlon 1.2,

In
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This generalized system clearly éncompésses our particular systems of interest.

For the JSEW system, given u; < po, the required wedges would be obtained by
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setting m; = 1 and my = po/py. For JSQ, we would simply have m; = my = 1.

The need for the wedges becomes more evident if we consider unusual queueing dis-
ciplines such as JLQ (Join the Longest Queue). This policy is not boundary-avoiding,
and as a result would require additional constraints to ensure proper drainage of the

fluid model on either axis.

In Chapter 5, we will consider a variation of the aforementioned JSQ network
which includes an additional (moveable) server. This policy will operate such that
the third server will not be dedicated to either queue, but will instead serve the longer
of the two queues. In the case of a tie, the service rate of the additional server will
be split equally between the two nodes. Note that this policy may change the service
rate at either node for a given period of time, but it does not change the service
capacity. That is, each queue will still only be able to serve one customer at a tirhe
but may have added resources to do so. To extend our stability results to this system,
denote the service rate of this discretionary server as yj, and define p,; = —3— and

A
mtpr

Pa2 = pz—’_\ﬁt—L— We would like to show that stability is obtained in all regions of the

state space if all three traffic intensity parameters (p, p.1, and p,o) are less than 1. .

To show that all fluid limits Qf this model eventually drain to zero, we employ the
same steps used in the proof uof ;Theorem 1 to describe the system’s behavior in the
interior and on both axes. Again ﬁhe policy is assumed to be non-idling, and thus
we are guaranteed all three servers Will; be working anytime we are in the interior.
As a result, for all ¢ > 0 such that both @1 (t) and Q(t) are nonzero, using the
same piecewise-linear Lyapunov function as in the above proof, we easily obtain the

condition that f(¢) = Q;(t) +Q2:(t) = A—pu < 0. As expected, this will hold iff p < 1.

Now supposé that f(t) > 0 and Ql(t) = 0. Using Lemma 1 again, we obtain

f (t) = Qz(t). Given the JSQ routing policy, we are ensured that the discretionary
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customers will be routed away from the boundary, while the SLQ service policy
ensures that the movable server will be obligated to queue 2. As a result we obtain
the condition that f (t) = Qg(t) =Xy — g — g, <0. This of course holds iff P2 < 1.

Similarly, vhaving f(t) > 0 and Q2(¢) = 0 would require p,; < 1, and we are done.
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'CHAPTER III

OUTLINE OF APPROACH TO ASYMPTOTICS

As mentioned earlier, this paper will follow the methodology developed in [10] and ex-
tended in [6] for analyzing the exact asymptotics of a queueing network. To facilitate
reading, we first give an outline of the approach suitable for discrete-state queueing

systems.

A general overview of the analysis can be given as follows. We start with the -
continuous-time Markov process that corresponds to our network of interest, denoted
by Q(-), and uniformize it to allow us to work in a discrete time setting. From
this discrete time Markov chain, we will derive three other Markov chains that will
be used during the analysis. ‘The purpose of these transformations is to provide us
with a setting that is more favorable in performing calculations and analysis. Using
the final Markov chain, we WiH .derivcé Qiuffdesired results; and finally interpret these

results for our original Q(-) process. .

In the following six steps, we jwill det‘ail the construction of the four different
Markov chains that will be used in our exa(;t asymptotics analysis. In the subsequent
chapter we will present the analysis as“itj jp_ekrtains to the JSEW network described
in Section 1.1. Note that thrbughout thijs dissertation, we have attempted to remain

consistent with our usage of the terms “Markov process” (a continuous-time process)
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and “Markov chain” (a discrete-time process). However, in adopting the terminology
from [6] and [10], we will occasionally abuse this notation. For example, the final
chain that we will construct is often called a “twisted free process”, despite being a

Markov chain by the above definition.

Step 1. We start with the continuous-time, discrete state Markov process Q(t) which
describes the state of the queueing system. We assume that the elements on the-

diagonal of the generator of the Markov process are bounded. Since we prefer to

work in discrete-time, we uniformize the process. Before uniformizing, we measure

time in units such that the maximum diagonal element of the generator is equal to
one. After the uniformization, the state of the discrete-time Markov chain at time n -
_is denoted by Q[n] = (Q:[n], Q2[n]),n € Z; = {0,1,2,...}. Also, the Markov chain

must be irreducible and positive recurrent on a countable state space Sg C ZZ.

Step 2. Make a guess as to the direction taken when the total number of customers
reaches some large level £. If this guess is wrong, it will be impossible to carry out
all of the remaining steps. Similarly, if this guess is correct but does not fit into
the framework of [10] (i.e., the approach to £ is not along a line), it will again be
impossible to carry out the remaining steps. The remaining steps must be completed

for each of the conjecturéd approaches.

Step 3. We next construct .‘th:e first of three Markov chains related to Q[n] This
chain, &hich we will call the W—chain, is simply a relabelling of Q[n] which ihcorpo-
rates some of our conjectured behavior. We transform Q[n] into an equivalent Markov
chain W = {W([n],n =0, 1,...} with state space S = Z, x Z"! x S, where § is some -
countable set. For each n, W[n] = (ﬁf [n], W[n]) where W[n] € Z", Wi[n] > 0, and
Win] € S. Hence, if z € S, then = = (&,%) with Z; > 0. Let F; = {z € S|, > £}

for £ € Z,. The W-chain shall be constructed such that each component of W is
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expected to diverge along the approach to F, while W, the stable components, are
expected to have a stationary distribution along the approach to F;. The transition

matrix of the W-chain will be denoted by K, and its stationary distribution by 7.

Step 4. The next step is to construct-a Markov chain W, which will be called the
“free process” and is closely related to the W-chain. The construction of the free
process also depends on our guess as to the most likely appfoach to Fy. To construct
the free process, we need the W-chain to have the following Markov additive transition
structure along the large deviation path: There exists a set A such that for z,y € S\A,
°((%,8); (,9) = PW¥+1]=§,Wehn+1]=3|W=[n]=W=[n]=3) .

= Poo(i;; (?j - ja g))a

where for each £,P*(Z,(-,-)) must be a probability measure. More will be said of
this requirehlent within the description of Condition 1 below. The free process has
state space S® = Z" x S and transition kernel K. This chain is free in the sense
that the state space is now enlarged, as the additive components are unconstrained
in R". The edge of the set A will be denoted by A = AN S, and referred to as the -

boundary. Lastly we define F° = {z € S®|z, > £} for L € Z,.

Step 5. We must now ﬁnd a harmonic function h(-) of the form h(z) = of1h(2)
for = (%,%) € Z x § for the free process and then use this function to construct
the “twisted free process” (see Condltlon 5 below). The discussion in Section 2.1 of
[10] provides some solace by showmg that such a function exists under quite general
conditions; however, there is little guidance in finding such a function. Often in

applications, it is possible to make an educated guess for the value of a.

Step 6. Now that we have successfully constructed the required backdrop for our
analysis, the next step is to verify that our processes satisfy technical conditions 1

through 12, as enumerated in [6]. Once these conditions are met, we can then move
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on to specialize the results of [6] and [10] to our particular queueing system. The

conditions that we impose on our constructed Markov chains are as follows:

C.1:

C.2:

C.3:

C.4:

In step 4, we stated the condition that W must be a Markov additive process
with )

K> ((%,); (3,9)) = P°(# (5 - £,9)) (9
where for each &, P*®(Z,(-,-)) is a probability measure. However, it is worthy

to note that the following weaker condition is typically equally sufficient: The

marginal process (W°[n], W*[n]) is a Markov additive process with

P(W[n + 1] — Wn] = &1, W[n + 1] = § | W*®[n))

=P(W[n+ 1] — Wen] = 1, We[n+1] = § | W=[n]). (20)

We let J denote the transition kernel of (W&°[n], W[n]), and K the transi-

tion kernel of W[n]. In most applications, the stronger condition holds.

The transition probabilities of W and W agree between states in the interior,
ie.,

K*®(z,y) = K(z,y) for z and y in ©, (21)

where © = S\ A.

The transition probebilities of W and W agree from states on the boundary

to states in the interior, ie.,

K°°(x y) (x y) for z € A and y in O. (22)
;‘il T
The function A is a positive functlon on 5% of the form h(z) = o'A(2) with

« > 1, and h is harmonic for the free process, i.e., {®h =h.
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C.5: The process W® is the twist (i.e., h-transform) of the free process W*. That
is,

K*(z,y) = K*(z,y)h(y)/h(z). (23)

C.6: The marginal Markov chain {}W® [n],n € Z.}, with transition kernel X has

a stationary probability distribution ¢(-).

C.7: The first coordinate of the drift vector of the stationary version of W* has a
finite, strictly positive drift. That is, 0 < d, < oo where
A= p@EW] | Wl = (0,2)).
- €8
C.8: The twisted free process starting from A has a positive probability of never
hitting A; i.e., P
> w(z)H(z) > 0,
€A .
where H(z) = P{7T° = oo} and 7.° is the first return time to A by W®.

C.9:
> e(@)h(#) < oo.

ze8§
C.10:

S MK, 0) > 0} < oo

€D |
where x is the indicator function, and K (z, ©) is the probability that the free

process jumps into the interior from z.

C.11: Let Yg(g}) ={zeS®E, =,2= g)} For each 7, there is an associated integer
L(9) such that Y,(§)n a= 0 if £ > L(j).
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C.12: Either h is bounded or there must exist a function V : § — [1,00), a finite set

C c S and a constant b < oo such that

> K2(,9)(V(§) - V(@) < ~h(2) +bx{2 € C}, (24)

ges
which is Condition (V3) of [13]. Moreover it must be the case that V(@A) <

0o, where A(z) = w(z)h(z)x{x €A} and A(9) is the marginal measure > AMH, 9)-
Once these conditions have been satisfied, we can then apply Theorems 5-7 of [6]

to obtain asymptotic expressions for the steady state distribution, mean hitting time,

and hitting distribution of our particular network.
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CHAPTER IV

ANALYSIS OF THE JSEW NETWORK

In this chapter, we focus on applying the methodology outlined in Chapter 3 to our
JSEW queueing network. We delay the discussion of the implied asymptotic results =
to Chapter 5.

We expect that the approach to the rare event of interest will depend on the
relationship between the traffic intensity parameters p;, p2, and p. Given the three
types of customer arrivals, it is natural to conjecture that we will have at least two
distinct ways that the system will behave as the number of customers in the system
grows towards some large level £. If p; > max{p., p}, then it is logical to expect
that the server at queue 2 will take all of the discretionary customers and keep its
queue small while the dedicated customers at the other queue will cause the system
to overload. Analogously, héving p2 > max{p1, p} would cause queué 2; to be the
primary cause of the éystem overload:while thé nﬁmbef of customers at queue 1
remained relatively small. These anticii)ated -approaches will be called the unpooled

case.

Suppose, however, that p > max{p;, p>}. In this case, we would expect our system
to exhibit resource pooling. That is, we anticipate that the workload will be spread

over the entire network with both queues growing large as the system overloads. If
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the proportion of discretionary customers is large enough, then we would anticipate
that the expected waiting times of the two queues will remain relatively close to
each other along the approach to our rare event. This case will be called the pooled
case. In the section that follows, the conditions necessary for pooling to occur will be
made rigbrous, and the proofs for our asymptotic results in the pooled case will be

completed. In Section 4.2, we will provide the proof for the unpooled case.

4.1 Pooled Case

For this section, we will complete the steps outlined in Chapter 3 for the case when

p > max{py, p2}- (25)

Note that when u; = py our JSEW network reduces to a system that simply employs
the JSQ policy for the discretionary customers. Since McDonald’s exact asymptotics
methodology has already been applied to this system in [6], this case will not be
considered within our work. To ensure that our problem is nontrivial, we will assume
that Ag > 0. Without loss of generality, we will also assume throughout this section

that Mo > .

Step 1. We })egin with the Markov process associated \vifh the joint queue length
process, (Q1t], @2[t]), as shown in Figure 1. The diagonal line in the figure, hereafter
referred to as the JSEW line, cbrreéﬁoﬁ;is to the set where the expected waiting times
are equal for the two queues. To ensu_ré irreducibility, we assume that p; > 0, for i =
1,2. Our assumption that A+ p < oo ‘i¥nplies that the elements on the diagonal of the
generator are bounded. This assumption permits us to rescale time such that A+ pu =
1. With this rescaling, our system pérémeters can also be conveniently interpreted as
transition probabilities, as shown in Figure 1. As given in Theorem 1, the requirement

of positive recurrence is met by assuming pya.x < 1. After the uniformization, the
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Figure 1: Transition probabilities for the JSEW system.

state of the @-chain at time n is denoted by Q[n] = (Q1[n], Q2[n]),n € Z;. Let Ko
and 7 denote the corresponding transition kernel and stationary probability measure

on Sg. This Markov chain will be referred to as the @-chain.

Step 2. Step 1 of the algorithm is identical for the pooled and unpooled cases. From
there, the methodology and results differ depending on the anticipated system be-
havior as it grows towards having some large number of customers, £. Again, if (25)
holds, then it is natural to conjectvui‘elthat the two servers would pool. In this section
we consider the case when thé differénée between the expected waiting times of 'jché-
two queues remains relatively small ’as the number of customers approaches £ In
other words, we will proceed liljld.e:l‘tlil’e ipresumption that the approach wﬂl be alj(i)ng-

the JSEW line.

Step 3. For our JSEW pooled Caséi‘ the W process has only one component. To have

W diverge along the approach to Fy° we define Win] = Qi[n] + Q2[n]. Hence, we
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have Wn] > £ iff (Q1[n], Q2[n]) € F§°. For the stable component, we define W as
the difference between the expected waiting times of the two queues. Thus we have
Win] = (W[n), W[n]) = (Q:1[n] + Q[n], 'ul_zQ?["] - ,Tll‘Ql[n]) The state space for our
W process is ScSx SE{(”:'*'y’I%_}%)'I z,y €Ly} CZy xR

Note that, given any state in the W process, we can easily recover the correspond-
ing state in the original @) process. Mofeover, it is easy to see that we have achieved
the desired one-to-one correspondence between the two. Note that there are numer-
ous alternative ways that we could have defined the components of W. For example,
we could have assigned W to Q1[n] + Q2[n] and left W to be degenerate. However,
as discussed in [6], our initial choice for W is better in the sense that the higher the
dimension we have in W-, the stronger ﬁhe attained results once all of the conditions

are verified.

Step 4. We now partition the state space S into two parts that we will call the interior -
and the boundary of S, denoted by © and A, respectively. In order to successfully
construct the free process, our partition must satisfy the following Markov additive

property. Given that we are at time n, the transition structure that determines

the next stable component and the change in the additive component from time .

n to n + 1 should depend only on Wi{n]. To obtain our desired Markov additive
structure, we use the transition probability structure of W corresponding to when
both queues are busy. Hence, we deﬁné A= {(z,y) € So | £ = 0 or y = 0}. Figure
2 explicitly illustrates the transition étructure of the W process. The A’s in the
diagram fepresent the states added in the construction of the free process. More
formally, we define A = (Z x 5’) \ S. As shown in Figure 2, our free process is
constructed by using the transition préb@ﬁilities of W corresponding to the states in

- S\ A. By removing A as a drift barrier, we have enlarged the state space to Z x Sand
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Figure 2: The transitions of (a) K* and (b) £* under pooling.

for the free process we use the transition probabilities associated with P* everywhere.

Intuitively our choice of A seems justifiable since, in this case, we expect the
approach to F;° to remain close to the JSEW line and spend little time in A. Of
course, whether our choice of boundary is correct will be determined by whether we

can satisfy all of the remaining technical conditions outlined in the previous chapter.
)

[

Step 5. A harmonic function that wor ‘31s‘h(a:) = p~% where % is the total number

of customers queued. Note that, in tfﬁs bése, a = p7!, and fz(:%) = 1. Using the
transition probabilities of the free prdc‘je:s_sftrlat correspond to a positive difference in

sy ,
the expected waiting times (i.e., above the $-axis), we obtain
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ER(We[1)|We[0] = (£,2)] = (M + A2+ Ap)p~ED + (1 + po)p= D
= p M+ A+ A)pmt + (1 + p2)p]
= h(3,3).

Equality can similarly be shown to hold for the transition probabilities on and below
the Z-axis of the free process. Hence, our choice of a harmonic function is valid since
K°h = h. Using this harmonic function, we then define our twisted free process
W® = {W>®[n],n=0,1,2,...}, where W°[n] = (W>®[n], W®[n]). As in [6] and [10],
we will be using caligraphic letters to correspond to the twisted free process. Recall
that K denotes the transition matrix for the free process. Given the harmonic
function A > 0 for K°°, the transition matrix X of the twisted free process haé

transition probabilities

K®(z,y) = K®(z,y)h(y)/h(z) for z,y € Z x §.

The resulting transition probabilities for the twisted free process are shown in Figure

2.

Step 6. While constructing our Markov chains, some of Conditions 1-12 were already
taken into consideration and hence ha_i(e 1been satisfied beforehand. For example, by
construction, we have already ensured that our free process is a Markov additive pro-
cess with Kw ((Z, £); (§,9)) = P°(Z; (¥ :—::E, 7)), and that the transition probabilities
of W and W agree for jumps betweeil':states in the interior. Hence, C1 and C2
have been met. Condition 3 is also satis_:ﬁe?d since for any z € A and y € ©, we have

K(z,y) = K*®(z,y)- .

In step 5 of the algorithm, our positive harmonic function has already been obtained.
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Hence, C4 has been satisfied. Using this same harmonic function to construct the

twisted free process K*®(z,y) from the free process leads to C5 also being satisfied.

Condition 6 requires that the marginal chain {W*[n],n € Z.}, with transition ker-
nel X has a stationary probablhty dlstrlbutlon ©(:). To verify this, we need to
show that W™ is positive recurrent That is, we need the difference between the
expected waiting times of the two queues to drift towards zero. This translates into

the following conditions for the pooled case. For £ > 0, we obtain

E [v‘vw [+ 1] = Wen] | W[n] = z]
=E W[+ 1] | W) =] -
=D ies IK®(4,5)° —
= ppo(i+ &) + 2E+ L)+ pu (i — L) + 222 - L) —4
=1 [p(u1+u2)+—(,\1+,\2+/\E)] +p+ 103 —p—1(2E) —4
= L(d) _ 1(ebde) |
= 1(2 _ dztdn)

For a drift towards zero, this last equality implies that we must have L < &—E’fﬂ for

the pooled case. Note that p can be rewritten as the following welghted sum:

A Ao+ A
Hi 1+ H2 2 E

| (26)
u1+,u2l11 M1+ pe p2

which is of the form cp; + (1 — C)pagr, Where 0 < ¢ < 1 and pogy = ’\2—:23‘-5 Therefore
it must be the case that ‘Dagx > p > p1, where the second inequality is provided by

our pooled case assumption. Similarly, for £ < 0,
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E [v‘vw[n+ 1] — W] | Wen] = z]
= [A>ln+1]) | W] = 4| -
=D jes IK®(4,5)%° —
= ppai+ L) + BB+ Ly o (i — L)+ 26— L) —i
=1 [P(Hl +p2) + 5 (M + A2 + )\E)] +p+ ;(11:—1’\&) —p— %(%) -

= L(dutde) (%
(/\1+/\a

which gives us the additional condition that i\‘:—l’\ﬂ > %ﬁ Using an argument analo-
gous to the one above, we readily obtain pjgx > p > p;. Hence, given our pooling
assumption, this condition is also satisfied. Thus it is worthy to note that while Con-
dition 6 led to a dichotomy of the pooled case (into strong and weak pooling) when
analyzing the JSQ system in Foley and McDonald [6], such a dichotomy does not
exist in the JSEW case. In Chapter 5, we will say more about the pooling conditions

of both systems as they relate to the qualitative behavior of the networks.

With Condition 6 satisfied we are assured of the existence of a stationary probabil-
ity distribution () for WW®[n]. This distribution is defined on the additive subgroup
{m/p +n/us} for m,n € Z, and can be éobtainejd through fast simulation.

R
.\1;.
! |

The next condition requires that the mean increment of W* has a finite, strictly

posmve drift, d. Observe that for all z E S

_1(/\1 + )\2 + Ag) + p(pr + p2)

ISH
i

= ,u1+ll2 ()\1+)\2+)\E)

;1‘:
R

and recall our assumptlon that p= ’\‘:’\j;;’\ < 1. Thus, we have ensured a positive

40



d and Condition 7 has been satisfied.

Before we consider the remaining conditions, we first make the following observa-
tion. Recall that Y;(9) = {z € §®|%, = {,& = §}. By Lemma 5 in [6], the expected
number of visits to Yo(gj) by W* is ¢(§)/d. Hence, by stationarity, the expected total
number of hits to A is given by > ;.5 »(9) /d = 1/d. Thus, we have the following

theorem.

Theorem 5 The twisted free process has .a finite expected number of hits on A. That
1S,

EZEA

Z X{woo[m]eA}] < 00.

m=0

Note that from the existence of ¢ and the fact that d is strictly positive, the law
of large numbers (LLN) implies that any visit to A will eventually lead to a revisit
to A. Moreover, suppose that for all initial states z € A, W drifts towards A with
probability one. The LLN would therefore imply that the twisted free process hits A
infinitely many times, which contradicts Theorem 5. Hence with positive probability
W wanders away from A without returning to A, and Condition 8 is therefore

satisfied. Condition 9 is also automatic since & =1 and W* is positive recurrent.

When written in terms of the Q-‘chéi‘n coordinate system, Condition 10 translates

to showing that

S mo(z, 0577 + 3 ma(0,4)p™ < o0 e

z>0 ¥>0
Given our continued assumptions that p < 115fand o > py, as a special case of the
following proposition we will obtain (27)?, w}ii_(:h establishes Condition 10 for a large

portion of the parameter space.
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Proposition 5 Let b= Z—f If p > max{py, p2} and %"7‘ > /b, then

> VR rg(s,y) < o (28)

20,520

Note that in proving this proposition, we will have also added the following criterion

for our results in the pooled case:

LT S/ (29)
~Inp

We will say more about the validity of this assumption in Section 5.4.

Proof
To establish (28), consider the Lyapunov function V (z,y) = p~V¥**+¥*, We will

calculate KoV (z,vy) — V(z,y) for z,y > 0 and show
- KoV (z,y) — V(z,y) £ —cV(z,y) for z,y large enough

where c is some positive constant. By rescaling V' it follows that in the region z,y > 0

we will have found a function V' such that
KoV'(z,y) — V'(z,y) < —p~ V¥ 1 5(z,y) where s has finite support.
Consequently by Theorem 14.3.7 in Meyn'é_nd'Tweedie [13],

S VE ) < S s@y)mals,) < oo

z>0,4>0 z20,y>0

We will divide the proof into five cases. First we will consider the two cases when at
least one server is idle, and then move on to analyze the system when the expected

waiting times are equal. Lastly, in Cases 4 and 5 we will consider the busy regions
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below and above the JSEW line, respectively.
Case 1. Suppose 0 = z < y. Then

KqV(0,y) = V(0,y) = (M + Ag)p™ VI 4 Xop™WHD 1y p7¢ - puppm @1 — p
= (A +28) (P VI = p )+ o (p7V T = p7Y) o pra(p7VH = p7Y)

=p7? (()\1 +A)(pVIHY — 1) 4 (07! = 1) + pa(p — 1)) :

Note that

p—(\/yz_ﬂ—i—y) —1= p—y(\/w—l) -1

< pryHb/27-1) g = 5=b/2Y) g (30)

For the above inequality, we have used vI+z < 1+ z/2 for x > —1. Hence, for
y large enough, (30) is arbitrarily small. It therefore suffices to show that Ay(p™! —
1) + p2(p— 1) < 0. This follows by noting that for s > 0, the function ¥,(s) = Aos +
pos™ — (A + pg) is strictly convex and has zeros at 1 and p;'. Since 1 < p~* < p3’

in the pooled case, we obtain 1,(p~!) < 0 and thus have completed Case 1.

Case 2. Suppose 0 =y < z.

In a similar fashion to Case 1, we obtain
KV (2,0) = V(2,0) = p™% (M (s = 1) + (ha + Ap) (0™ VT8 _ 1) 4 1y (50— 1))
In this case, note that

p—(\/—bx5+1—\/5:t:) —1= 'p—\(Ez(,/1+1/bx2-1) -1

< p+ﬁz(l+l/2bx2—l) -1

— pé-l/(2z\/5) —-1.

43



Hence, for z large enough, this term is arbitrarily small. Therefore, similar to Case 1,
it suffices to show Ay (p~Y? — 1) + p1(p¥? — 1) < 0. Note that for s > 0, the function
1(8) = Ays + s~ — (M + ) is strictly convex and has zeros at 1 and p;!. Recall
our initial assumption that Il-l’-n% > v/b. Moreover, observe that this is equivalent to

ensuring that p=v% < p7!. Thus, 9 (p“/’_’) < 0 and we have completed Case 2.
Case 3. Suppose 0 < y = #Lfa:

For this case and the two that follow, we find it more convenient to use polar

coordinates. First, define a(f) = vbcos?26 +sin*fd. When @ is obvious, we will
simply denote this function by a. Given z = rcosf and y = rsinf, observe the

following upper bounds.

V(:E + l,y) — p—\/b(:r+l)2+y2 — pv§5r7+2brcose+b | (31)
— p_ar /l+2baco:8+:2b?!

bcos b
< p*m‘(”—arr““m)

_(bcosb b
—ar ( a +2ar)

=p"p
V(.’B,’y + 1) = p—\/bx2+(y+l)2 — p\/a7r2+2rsi§9+l (32)

/ 2sinf 1
= p—ar 1+ azr -’-a!r2
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Viz—-1,y) = p~ V=142 _ VaTr=Zr cos 0 (33)

/ 2bcos@ b
:p ary/1 alr +azr2

bcosf

b
S p_ar(l— alr +2a2r2

= p_arp('b—cgs_g_%;
Vizg,y—1)=p~V bx?+(y—1)? _ p\/a_ﬁ'r?—2rsin 0+1 | (34)

- [1_2sin6 1
= p ary/1 aZr -*‘-4'427'2

sin @

< pmor (-5 +)

where we have repeatedly factored out ar and used v/1+2z <1+z/2forz > —1. In

this manner, to justify the inequality in (33), we needed

b 2bcos
>

- —-1.
a?r? alr

By rewriting this condition as a?r? — 2brcosf + b > 0, it becomes clear that this -

inequality is satisfied for r large enough. The inequality in (34) was obtained in-a

similar manner.

Let 9 = cos™!( \/1“14?1?-'-') denote the angle between the z-axis and the JSEW line. Also,

for notational purposes define o = a(¥J). Using the above upper bounds in the third

"~ case when 0 <y = %x yields
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AL A
KoV (z,9) = V(2,9) = (a + )WV (@ +1,9) + (o + )V @y +1)

+uV(z—1,y) + pV(z,y — 1) — V(z,y)

=P —ar[(/\1+—)p;( tt5er) 4 (Ag + 22 pm (e Har)

<p [P_%b—’ [()\1 + g+ Ap)p e+ (p + ,uz)p%] — 1] .

For the second inequality, we have used our assumption that b > 1 and the

relationship bcos?d = sin4). Since p‘% ¢ 1, it suffices to check that

sind

(M + A2+ Ap)p~ "0 + (1 + p2)p™s" —1 < 0.

Let ¥p(s) = (A + A2 + /\j;)s + (p1 + p2)s™! — 1. Note that v (s) is convex and

sind

has zeros of 1 and p~'. Thus, to obtain ¥p(p™ = ) < 0, it suffices to show that

1< p” 2’ < p~!. But this is trivially true since a(8) > 1, for all 4.

Case 4. Suppose 0 < y < 5%:::

o
After converting to polar coordinates again and using the bounds from Case 3, we

have
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beo sin@

KqV(z,y) = V(z,y) < p™™ [p‘% (/\1/)' & 4+ (Mg + Ap)p e

beoso sin0
+mp e +pgpe — 1.

Similar to Case 3, it is enough to check that the function

bcosé sin6

£0) = (Mp™* % + Qo+ Ap)p ™8 4 1" 4 pp™t) - 1

is always negative for 0 < 8 < 9. First, rewrite f as

_bcosb siné

£0) = (0~ 22) + thaen (0~ 2% (35)

where

(N (.'IJ) =Mz + Nl.’E-l - ()\1 + ,U1)

’(/)2@,\(.'IJ) = (/\2 + /\E):IJ + /LQ.’IJ—I - ()\2 + g + /lg).

We will find functions ¢;(z) and £3(z) which are upper bounds for ¥, (z) and g (z)
over the regions of interest. Then the last step will be to show that the last inequality

in the following holds:

_bcoso _sin@

FO) S li(p™ e )+ La(p = ) =£(0) <0

for 0 < § < 9. To find the upper bounds, note that v;(x) and v (z) are strictly
convex on x > 0 since the second deri;vat:i:v;esi:fare strictly positive. The zeros of ¥, (z)

occur at z =1 and z = py', and the zeroisfoff'gbg@,\(x) occur at & = p1, and z = 1.

Observe that a(0) = v/b, and recall thja'vt iwe are interested in 9, (z) for 0 < 6 < 9.

For the sake of the proof, we would like to bé able to rewrite this region of interest as

bcosd

Pi(z) forz € (p~ "= , p“/E), where we‘hé\:/ez obtained the left and right endpoints by

evaluating p'“_bcz_so' at 0 values of ¥ and 0, respectively. However, writing the region
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of interest as such requires that the function p‘b a  is monotone in #. Note that for

0<6<7/2,

a® =bcos’# + sin®0 > bcos’f — cos’6

bcos?@ — cos?6

=1> 2
a
sin _ (b—1)cos?f sinf
= > 3
a a
sin @

= T—a‘s(b— 1)cos? 6 sinf > 0

Hence, we obtain

d;‘;p--"%“i =p~"blnp [# —a™3(b—1)cos? 6 sin 0] <0, (36)

for 0 < 6 < /2, and our monotonicity requirement is met. Likewise, observe that

d _.siné
26"

=p " Inp [-—a‘s(b —1)cosf sin®f — Co; 9] > 0. (37)

_bcos8

Therefore, we can also rewrite our region of interest for ¥ogr(p™ ¢ ), 0< 60 < 9, as

sinﬂ]

Yoga(z) for x € [1,p™ "

Let ¢;(z) be the line that agrees with 1, (z) at the endpoints of its region of

becosd

interest [p~2™, p=V?]. Similarly, define £5(z) to be the line that agrees with g (z)

at the endpoints of [1, p‘SiZ’g]. By convexity, each line is an upper bound for its
respective function over its region of interest. Recall that 1 < p"/'_’ < pit, where
the second inequality holds by our pooled case assumpﬁon (29). Therefore, we are

assured £1(z) < 0 for z € [p~"2"%, p~V¥] since the endpoints of the region fall between
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the zeros of ¥, (z). Now we consider two subcases.
Subcase 4A. Assume p~a" < Pran-

This is the easier of the two subcases. Note that the left endpoint of the region
of interest [1, p~ =t ] is a zero of 1ogy(z); i.€., £2(1) = Pagr(1) = 0. Hence, the line
£5(z) would be negatlve for z € (1, p~8%) if it is less than or equal to zero at its right
endpoint; i.e, if p~ e < P2gxr- This is true by our subcase assumption. Hence £; < 0

and £» < 0 over their regions of interest, and it follows that £(6) < 0 for 0 < 6 < 9.
Subcase 4B. Assume p~*a" > ppl,.

In this subcase £»(z) > 0 for z € (1, p“ﬁ), which implies that £>(z) has a positive
slope. Note that £(0) = f(0) = 1,[)1(,0“(5) < 0, and £(9) = f(9) < 0 where the
first inequality follows from Case 1 and the second inequality follows from Case 3.
Hence, if £(0) is ever non-negative, there must exist a local maximum at some point

6o between 0 and 9 with £(6y) > 0. Since 6, is a local méximum,

d _bcosb cos é _sin@ 0

d
£(6o) = (—1551( "o )lo=g, + dﬁe 2(p7 ¢ )o=to
bcos@ siné
=siln(p)rip™ e +s2ln(p)rep™ e
=0

where s; is the slope of the line £;(z), 2 = 1,2, and 73 and 7, are defined as follows.

= p = blnp lsn;@o —a~3(b~— 1) cos? f sin 00] (38)

_sin@

Ta=p e Inp [ ~3(b — 1) cos b sin? fy —

c°20°]. (39)

In (36) and (37), it was shown that 3 < 0 and 7, > 0, respectively. Therefore, it
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follows that

T beosfg , sinfg S
0< ——1p ( e T = ) = —2 .
T2 S1

Since s > 0 by our subcase assumption, we obtain s; > 0. Given that both slopes
are positive, it can also be shown that the second derivative of £() is positive for
0 = 6y. That is,

! d2 —cos d2
gl(eo) = dgzel( a)la 90 + -CEE

- _bcosbg ) sin 6,
=s;lnp [’rf-l-'rgp‘ a ] +sylnp [722+'r4p‘ s ]

&(p™ %) |g=0,

>0

~where 7, and 7, are defined in (38) and (39), and 7; = £7;_2|e=g,, for i = 3,4..But -
this leads to a contradiction since it implies that 6, is a local minimum. Thus, it must

be the case that £(f) and f(6) are strictly negative on the interval 0 < 8 < 9.
Case 5. Suppose 0 < ﬁ—f:v <uy.

For this fifth and final case, by again using the upper bounds (31) - (34), we obtain

KoV (5,9)=V(z,) < p™ [p7%7 (M +Ap)p™ 5% + 2ap™ ™8 + 11" 4 pp™3*) 1]

Thus, analogous to Case 4, it suffices to show that

f(g)E((/\l‘i‘)\E)P_b 59+)\29 T e e ™ )—1<0

for y < 0 < 7/2. First, rewrlte f as i

‘ bcosB

f(0) = ¢1e>‘(: ) + o (o) (40)

where

h16a(7) = (M + Ap)z + s~ = (M + A + )

’l,[)z((l?) = )\2.’17 + /1232_.1 - ()\2 + /12)
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As done in the previous case, we will find functions ¢;(z) and £2(z) which are upper
bounds for ¥, (z) and ,(x) over their respective regions of interest. Then the last

step will be to show that the last inequality in the following holds:

F(0) < (o7 e0) + 6(p~ ") = £(6) < 0

for ¥ < 6 < w/2. Note that P1gx(z) and ¥,(z) are both strictly convex on z > 0.
The zeros of Y1 () occur at z =1 and z = pig,; while the zeros of () occur at
z=p;and z = 1.

Observe that a(m/2) = 1, and recall the notation @ = a(J). Hence, we are

bcos ¥ _sind®

interested in Yy (z) for z € (1,p7 "« ), and ¥y(z) for z € (p~ "= ,p~!). Let £,(z)

be the line that agrees with ¥, (z) at the endpoints of its region of interest, and
similarly, define £>(z) to be the line that agrees with () at the endpoints of its’
region of interest. By convexity, each line is an upper bound for its respective function
over its region of interest. Note that 1 < p‘g < p~! < py!, where the last inequality
holds by our pooled case assumption p > max{p;, po}. Therefore, we are assured
£(z) < 0 for z € (p~"5%, p~1) since the endpoints of the region fall between the zeros

of 9, (z). To complete the proof, we now consider the following two subcases.

Subcase 5A. Assume p~* " < pid,.

Analogous to what was doné‘i'n Subcase 4A, this is the easier of the two subcases
since the region of interest for 1)1y will now fall between the zeros of the function. -

In this case we obtain both ¢, <:0 and £, < 0 over their regions of interest, and it
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follows that £(6) < 0 for ¥ < 0 < w/2. Hence, in this subcase we are done.

. bcosd
Subcase 5A. Assume p™ e > ppa..

Our subcase assumption now implies that £,(z) > 0 for z € (1, p~"¢7); i.e., £1(z)

has a positive slope. Note that £(%) = f(£) = ¥2(p™") < 0, and £(9) = f(¥) <0
where the first inequality follows from Case 2 and the second inequality follows from
Case 3. Hence, if £(8) is ever non-negative, there must exist a local maximum at some

point f between Z and ¢ with £(6) > 0. Since 6 is a local maximum,

d , , _beost o d _sin0\
£'(6o) = @gl(/’ o )|o=g, + 2532(17 a)|o=go
’ bcosOQ . siné

C=smp e Inp+symp™ e Inp

=0

where s; is the slope of (), s2 the slope of Poer(z), and 7, and 7» are defined in
(38) and (39), respectively. Note that this expression for £'(6) is identical to that of
Case 4. Hence, the rest of the proof follows analogously, and we are done.

O

Condition 11 requires that the probability of Fy N A vanishes as £ — oco. Recall
Yi(9) = {z € S®|#% = £,# = §}, and let L(§) = |§| + 1. Therefore, for each
g, Yo(9) N A= 0 if £ > L(§), and Condition 11 is satisfied. Since A is bounded,
Condition 12 is trivial. Thus we have satisfied Conditions 1 - 12. We will discuss the

implied results in Chapter 5.

4.2 Unpooled Case

We now consider the case when p; > max{p, p;}, for i,j € {1,2},7 # j. We begin
with the same continuous-time, discrete state Markov process Q(t) described in step

1 of the pooled case. For this section, we remove our assumption that us > u;.
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Thus, without loss of generaiity, we can instead assume that p; > ps. It is therefore
expected that the second server will take all of the discretionary customers aldng with
its dedicated customers and kéep its own queue small while the dedicated customers
at server 1 cause the system to overload. In other words, our guess is that the most
likely approach to a large number of customers will bounce along the z-axis. This
covers the first two steps of the procedure, and we now move to the third. Note that
whenever it is reasonable we will again keep the same notation used for discussion of

the pooled case.

Step 3. For the unpooled case, both components of W[n] will again be one di-
mensional. Since we expect ()2 to be stable when the system overloads, we define

Win] = (W[n], W[n]) = (Q:[n] + Q2[n], Q2[n]) with state space S = SxS=22.

Before proceeding, we will now divide the proof into two cases that depend on
the relationship between p; and pp. If uy > pp, note that as the stable component
increases from W[n] = 0, the sample path of the free process will always encounter
the JSQ line before reaching the JSEW line. This is identical to the behavior of the
JSQ system considered in [6], and will lead to identical definitions of A and ©. As
é result, the remainder of the proof in this case will be identical to that which is
presented in [6] for the JSQ system. On the other hand, if p; < pp then, as the
stable component increases from ¥ [n] = 0, the sample path of the free process will
encounter the JSEW line before reaching the JSQ line. Consequently, the proof for
this case does not follow directly from the unpooled case in [6], but will be completed

within the remainder of this section.

Step 4. To construct our free process, define the set A = {(Z,2) € Zx Z+ | Z <
(;% + 1)Z + 1}. In words, A includes all states of the W-chain such that the total -

expected waiting time of queue 1 is either less than or equal to that of queue 2, or
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greater than that of queue 2 by at most pl—l Again we define A = A NS, which
in this case translates to A = {(£,%) € A | £ 2 0,2 < £, < (& +1)Z + 1}.
Once the boundary is removed, the resulting transition structure can be thought of
as changing the discretionary customers into customers dedicated to queue 2 and
allowing a negative amount of customers at queue 1. Note that since we do not
expect the region A to come into play during the approach to Fy , removal of A as a

drift barrier to form the free process seems reasonable.

Step 5. Again, we wish to obtain a function h(z) such that K*°h = h. Consider
the function h(z) = p;2~%. Using either of the two transition probability structures
present in the free process, we obtain

—(E+1)+8

ER(WeR)|We[0] = (£,%)] = Mg + T L Qg + Ap + o) pr

= pl%_i(/\lpl_l + p1p1 + A2 + Ap + o)
h(z, %)

Hence, this choice for our harmonic function is valid. Using this function, we then
define our twisted free process W* as shown in (23). Figure 3 shows the resulting

transition probabilities for the twisted free process.

Step 6. Observe that our free process is a Markov additive process where the total
number of customers is the additive process and the queue length at node 2 is the
Markovian component. Therefore Condition 1 is satisfied. Likewise, Conditions 2
and 3 were also already satisfied via our construction of the free process. Conditions
4 and 5 are also satisfied as we have already chosen our harmonic function for the free
process and used it to construct the twisted free process. Note that the effect of the
twist is to reverse the service rate y; and the arrival rate A; of the first queue. On

the surface, this seems promising as it is our hope that a successful twist will lead to
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Figure 3: Transition probabilities of W and W*.

a reversal in the system’s drift direction. This will be checked formally in Condition

7.

Condition 6 requires that the marginal chain {W>[n],n € Z,}, with transition
kernel £ has a stationary probability distribution ©(:). Observe that Weln] is

simply an M/M/1 queue with arrival rate A, + Ag and service rate pp. Hence for

positive recurrence we need only show that pegy = A—’;’;\—F < 1. Analogous to what

was done in Section 4.1, we can express p as the following weighted sum:

A Ao+ A
p= mn A U2 2+ Ag (41)

My po i patpe pe

which is of the form ¢p; + (1 — ¢)p2ga, where 0 < ¢ < 1 and pogy = -’\-ﬁ—’\ Using this

expression and our case assumption that p; > p, we readily obtain pgy < p < 1,
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where the second inequality is from our stability assumption. Thus we have

o§) = (1_,\2+AE) <,\2+,\E)*7 (12)

H2 M2

For Condition 7, observe that

S
[

(1= 9(0)] [z + A + 1) = (1 = 2)] + 9(0) [(he + A + ) — pu]

= ,ll,l—/\1>0,

where the last inequality again follows from our stability assumption. As in the pooled -
case, Condition 8 follows from the existence of ¢, the law of large numbers, and the

fact that d is strictly positive.

Condition 9 equates to showing

S p(@)prt < oo O w

ze$

where ¢(%) is as defined in (42). Recall from our proof of Condition 6 that pogy < p1.
Hence, p7 " p2gx < 1, and (43) can be expressed as a geometric series Y o2 o az™, with

|z| < 1. Thus Condition 9 is also satisfied.

We momentarily skip Condition 10 and move to Condition 11. Note that by
defining L(7) = 23+ 2, for a given § and £ > L(g) we are ensured to be in the interior

by definition of A. Hence Condition 11 is satisfied.

For Condition 10 recall that we wish to show

> w(z)h(z)x{K (z,0) > 0} < co. (44)

TEL
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So, given the definition of A, it suffices to show that

ZWW 7'+ 1)$+ 1 $)p ((r+1)2+1) :r ZWQ ry-l—l y)pl (ry+1) < 00
£>0 y>0

where r = ﬁ—; This inequality will be implied by our proof of Condition 12. For
Condition 12, we take advantage of the similarities between the unpooled case of the
JSEW policy, and that of the JSQ policy as analyzed in [6). Recall that for this

condition we need to find a function V' (3) such that

Zicw V(@) - V(2) < ~h(z) +bx{# € C}.

9€8
for some b < oo and finite set C. For the JSQ policy, it is shown in [6] that this
inequality is satisfied by defining C = {0}, and V(9) = p7?/|vaer(p7?)|, Where
Paaa(s) = (Ao + )\E)(s — 1) + po(s™! — 1). Note that K for the JSQ system is
identical to our JSEW marginal twisted free kernel, while h and S are also identi-

cally defined. Hence (24) also holds for the JSEW policy, and we are left to check that

2 V(HA@) < oo,

y>0

or equivalently,

}Z:lf: EE: h(x,y)ﬂWV($7 )'< 0,
>0 y<:l:<7‘y+1 i

o

or equivalently,
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oo rTy+l

ZZp @) o(z, 1) < 0.

y=0 =0

By Proposition 2 of [6], if p < p; < 1 then

co y+1

WA ‘“y)ﬂo(x y) < co.

y=0 z=0

Since 0 < r < 1, this implies both Conditions 10 and 12 for our JSEW policy, and

we are done.
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CHAPTER V

EXACT ASYMPTOTIC RESULTS

In Chapter 4, we applied the methodology outlined in Chapter 3 to our JSEW system. -
Given the completed proofs, we now make the results of [6] and [10] specific to our -
network of interest. In Section 5.1, we begin with a summary of our findings with
respect to the qualitative behavior of the system. We then discuss periodicity in
Section 5.2, and provide our main theorems in the subsequent section. In Section 5.4, -
we discuss the validity of our added assumptions for our proof of the pooled case.
In the final two sections, we continue to compare the JSEW and JSQ policies via

simulation, and also present our results for a variation of the JSQ policy.

5.1 Strongly versus Weakly Pooled

It was revealed within our analysis of the JSEW queueing network that, based on
the system parameters, the network will approach the rare event F} in one of three .
possible ways. If py > max{p,, p}, then we concluded that the number of customers
at queue 2 will form a positive recurrent Markov chain while the dedicated customers -
at the other queue will cause the system to overload. This will lead to an approach -
along the z-axis of Figure 4.1. Similarly, we proved that having p, > max{p;, p} will -
cause queue 2 to be the primary cause of the system -overload, causing the approach .

to F; to bounce along the y-axis. These two scenarios are called the unpooled case
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and are identical for the JSEW and JSQ networks.

When p > max{pl, p2} we were said to be in the pooled case. When analyzing
the JSQ system in [6], the pooled case divided into two subcases in which the net-
work exhibited very different qualitative behaviors. The criterion‘ for this dichotomy
stemmed from satisfying Condition 6 of the methodology. To see how this compares
to the JSEW system, we briefly describe this dichotomy and the derivation of the

necessary conditions.

Recall that Condition 6 requires that the marginal chain W“[n],n € Z4, with
transition kernel £ has a stationary prdbabil_ity distribution. To verify this for the
JSQ system, it needed to be shown that W™ = Q, — Q, was positive recurrent.
The transition structure for W of the JSQ system is similar to that of the JSEW
system given in Figure 2. Using this figure, and noting that transitions of W™ always
have a jump size of 1, observe that for :f: > 0 the vertical drift of W™ is given as
J+ = p(py — po) + p‘l(-/\z — A1 — Ag). For a drift towards zero, this implies that we

must satisfy the following condition for the JSQ pooled case.

Ao > P — p2) + (A2 — A1) (45)

Similarly, for £ < 0, we obtain d_ = p(p1 — p2) + p~ (A2 + Ag — A\1). For a positive

recurrent W, this implies the requirement that

Ag > pP(p2 —m) + (M — Xo) (46)

By rearranging terms, it can be shown that (46) is equivalent to the following in-

equality.
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(A2 + Ag)/p — pu2
>1 47
M/p—pm (47)

Moreover, by our assumption that s > p, the above inequality will hold if

(A2 +AQ)/p—ppa _ p2
> —. 48
, M/p = pia m “48)

Multiplying both sides of (48) by A1/p — pp1, and also adding pu, to each side-of the

inequality yields the following equivalent statement.

'/\2+)\>ﬂ-'

49
He 231 (49)

Using an argument analogous to that which follows (41), it can be shown that (49) is
implied by our pooling assumption (25). Hence, the JSQ strong pooling requirement
(46) is implicitly satisfied by our underlying case assumption. On the other hand, the
first requirement, (45), is not superfluous to our initial pdoling assumption and hence
is indeed an additional requiremeht for an approach to Fy along the JSQ line. When
this condition holds, the system is said to be strongly pooled. If this criterion does
not hold true, then both queues still overload, but the approach to F; could be via a
slope other than 1. This scenario was called the weakly pooled case. We summarize

this JSQ pooling dichotomy in the followihg remark.
Remark 1 Suppose p > max{py, p2}, and assume that po > py. If
Ao > pP(m — p2) + (A2 — A1) (50)

then the JSQ system will strongly pool along the JSQ line. If this inequality does not
hold, then the system will be considered weakly pooled, and the approach to Fy will

remain on or above the JSQ line.
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Recall that during our analysis of the JSEW network in Chapter 5, going through
Condition 6 in a similar fashion led us to the following two conditions for positive
recurrence of W,

P1 < P2aga P2 < P1oa , (51)

However, further inspection of these two inequalities implied the following conclusion.

Remark 2 Given p > max{pi, p2}, both of the inequalities in (51) will be superflu-
ous. Hence, given our pooling assumption, the JSEW queueing network will neces-

sarily strongly pool along the JSEW line.

Thus our JSEW queueing network differs from that of JSQ in that there exists
no dichotomy between strong and weak pooling. In this respect, the JSEW system is
similar to the JSAW network (queueing by actual waiting time) as analyzed in [11]
in that neither exhibits the weak pooling phenomenon. Consequently it can be said
that these two queueing disciplines are inore robust than JSQ since strong pooling is

achieved without additional requirements on the system parameters. The drawback,

of course, is that more information is required for implementing the JSEW policy
since the J SQ poliéy does not retjuire a priori knowledge of the service rates.

5.2 Periodicity

Before stating our main theorems, there are additional technicalities that must be
addressed. We begin by introducing the notion of periodicity as it pertains to our
W process defined in Chapter 4. Recall that for the JSEW strongly pooled case
we defined W such that W® = Q; + Q, and W® = th — L1@Q,. Here the

H1

state space of the marginal Markov chain {WW>[n],n € Z,} is the additive subgroup

62



S = {# + = |m,n € Z}. Define A; = {k| L — % =k, z+y=j}. In what follows,

we will show that for any fixed value of £, having Q; + Q» = £ implies A, N S # 0.
Moreover, in order to ensure the existence of ¢(-) we must also prove that the family

of sets {Aj, 7 € Z} exhibits periodicity. That is, there must exist a p such that

A;=Ajfori=j mod p.

Suppose z 4y = j, for some z,y € Z. Hence we can express k € A; as

Y _zx _ Y _Jj-y
p2 " B2 #1

= By _p2J 4 29
K1 g2 K2 [ L2 p1

(1 +p2)y—gue

K142
= Mz, ¥
mp2 M’

'Thus for j = 0, k € A is of the form %’:ly, for y € Z. For j = 1 we obtain
A = {%’;ly - ull | v € Z}. Since ul_l < %ﬁl we are ensured that Ay N A; = 0.
Moreover, note that in general A; can be thought of as a shift of Ay by the amount
' —-I%. Accordingly we will use the notation A; = Ag— 7‘% In this manner, it is obvious
‘that in constructing the family of sets {4y, A1, As,...,4j,...}, these sets will remain

disjoint unless 71% is a multiple of ‘2—1*;1’;—2 for some j € Z. We now give a sufficient

condition for this to occur..

Suppose % is rational. Therefore, there exists m,n € Z such that 2 = ﬁ;— + 1.

Multiplying both sides of this equation by ﬁnT’ we equivalently obtain Z‘—l = ;L:fn

Hence,

Am = Ag—2

— patpe,  patpe
- pinz T paps n|y € Z}

= Ao.
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Similarly, we can obtain that Aym4v = Ay mod m, for u,v € Z. Thus if the ratio of
service rates is rational, then we will be ensured the existence of a p such that A; = A4;

for i =35 mod p.

5.3 Main Results

Recall that H(z) is the probability that W, starting at z = (2, £), never visits A.

Also, define
fi= Z [mw (2)p~2H (z) + mw (z)p *H (z)] (52)
zEA
where
A {(f:,f;)EZz|ﬁ:i+:%=00rt:’t—:&=0} if p > max{p1, p2}

{(Z,2)€ZxZy|220,2<Z,T<(E+1)E+1} otherwise.

= M2

(53)

Note that f; is finite by Condition 10 of the methodology. The following theorems give
our results for the pooled case. For Theorems 6 and 7, recall that in the pooled case
W is defined as the difference between the expected waiting times of the two queues.
Lastly, note that for Theorems 6 through 8 we impose the underlying assumption

to > pq as done in the corresponding proofs in Chapter 4.

Theorem 6 Assume py/p2 is rational and p > max{py, po}. If (55) holds, then

mw((£,9)) ~ f1p° %so(@)p x{7 € A¢}

where @, the stationary distribution for W, can be obtained via simulation, d = U=A,

f1 is defined in (52), and p is the periodicity of {A;j, j € Z}.
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Let v denote the stationary overshoot distribution (W*[7°] — £, W[T°]), £ =
0,1,.... For our systems of intefest, note thaf the overshobt will always be zero; i.e.,
W®[T] =€ =0, for all £ € Z,.. Hence, we may instead use the notation v(0, -), and
refer to this as the stationary distribution of W>[T®]. Observe that v is obtainable

by fast simulation since W* drifts to infinity.

Theorem 7 Under the conditions of Theorem 6, as £ — o0,
PAWI[T =5 | Te < Ta} ~ p v(0,9)x{7 € Ac}
for any initial point o.

The following theorem gives an asymptotic expression for the expected hitting time

to Fy for the pooled case.

Theorem 8 If p > max{ps, p2}, then
E,[T7) ~ fip~t as £ — oo,
where o is any initial point in A, and f, is defined in (52).
Finally, in the following theorems we consider the unpooled case. For these theo-

remé, we remove our assumption that us > p;. Consequently, without loss of gener-

ality, we can present our results under the assumption that p; > p,.

Theorem 9 If p < max{p;, p2} = p1 we have:

. 1 _; Ao+ 22\ Mo+ Ag\?
aw((£,9)) ~ fipt = p7? (1— 2 ) ( )
tw (£, 9)) ~ f1p] 5 Pl o o

where fi is defined in (52), and d = py — \,.
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This means that the stationary measure is product-form for large £. The constant

J1 can be obtained by fast simulation since we only need my near the origin.

Theorem 10 If p < max{p1, p2} = p1 then, as £ = oo,
PAWIT] = §| T < T} =7 p7%0(0,8)/ (55 57%0(0,9))

where o is some initial state in A, T, is the return time to o, =T denotes convergence
- in total variation, v(0,-) denotes the stationary distribution of W°°[7;°°], and T,° is

the first tz'm.e the twisted free process first reaches £.

Theorem 11 If p < max{pi, p2} = p1 then
E,Ty ~ prtg7! as £ — oo
where o is any initial point in A, fi and A are defined in (52) and (53), and.

=N ZP;ZV((), z). (54)

z2>20

5.4 Additional Pooled Case Assumption

In Chapter 4, in order to complete the proofs for the JSEW pooled case, we assumed

that

In py K2
Tnp > ,/u . (55)

In doing so, we have obviously reduced the size of the parameter space for which

our strong pooling results hold true. A simulation of randomly generated parameter
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sets suggests that we will be in our pooled case (i:e., have p > max{p;, p»}) close to
65% of the time. In the remaining 35% of the parameter space, we will instead be in
the unpooled scenario, for which the proofs do not require the additional condition
(565). Moreover, for those parameters within the pooled case, (55) holds for approx-
imately 92% of the parameters generated. As a result, we can say that overall the
resulting theorems remain true for approximately 95% of the parameter space, and

hence the required assumption does not seem too onerous.

" Moreover, we suspect that these results indeed hold for the entire parameter space.
Our conjecture is that the use of better upper bounds within the current proof or
a different choice for the Lyapunov function could capture the remaining 5% of the
parameter space. It is our intention to explore this conjecture within our future work,

and to eventually make this additional assumption unnecessary.

5.5 Implementing Our Policies

Part of the novelty of this research is the ability to distinguish between two policies,
namely JSQ and JSEW, in ways that we would otherwise be unable. In Section 5.1, we
discussed the qualitative differences in the behavior of each system as the joint queue
lengths grew large. In addition, in Section 5.3 we gave sub-expohential coefficients for
our exact asymptotic expressions. In traditional large deviation theory, the analogous
results for the JSQ and JSEW systems would lack the sub-exponential coefficients
presented ih Theorems 6 through 11. Consequently, we would be left with only the
rough asymptotics for these two systems, which turn out to be identical. However,
despite the rough asymptotics being the same for the two policies, it is intuitively

clear that JSEW should perform at least as well as JSQ.

Note that if the service rate at each node is known beforehand, then implementing
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Table 1: Simulation examples for exact asymptotics

(Case| @@ | p [ o | P2 | 8 | c |
(1) || 1.026 [ 0.792 | 0.724 | 0.023 | 0.562 | 0.610
(2) | 1.391 |0.787 | 0.162 | 0.695 | 0.343 | 0.373
(3) || 5.352 | 0.353 | 0.2534 | 0.3176 | 0.759 | 2.139
(4) | 33.345 [ 0.941 | 0.404 | 0.028 | 0.081 | 0.921
(5) |[34.148 | 0.821 | 0.072 | 0.207 | 0.136 | 20.537

JSEW over JSQ requires little or no additional work. Otherwise, the advantage of
implementing JSQ instead of JSEW would be that it requires no prior knowledge
of the service rates. Consequently, the cost/beneﬁt of using JSEW over JSQ is not
always obvious, and may differ depending on managerial objectives. As the difference
between the two service rates increases, intuition would suggest that the JSEW policy
should be the more efficient policy. But how much more efficient? And is it enough
to warrant a change in policy? To quantify these differences, using the results in
this thesis, we simulated the twisted free process to estimate the exact asymptotic

coeflicients.

In Table 1, we give examples which illustrate the usefulness of these asymptotic
approximations. Recall that, for the pooled case under either policy, the expected
time to reach £ customers in the system 1s of the form ‘cp“, where ¢ is our exact
asymptotic coefficient. Using the‘isame f)ayameters for both the JSQ and JSEW
systems, we varied the relationship betWeéh’ w1 and pg, and obtained the coefficient c
for each system via fast simulation. In 'I‘abie 1, Cg and Cq denote the approximations
of the exact asymptbtic coefficients for the J SEW and JSQ networks, respectively. For
the first two rows, £he results are essefiﬁf;ea,lly: what we would expect: for pp/p; close
to 1, the coeflicients for the two polici(é%s' fare relatively close to each other, with that

of the JSEW policy being slightly smaller as expected. Likewise, the third row also
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illustrates what we’d expect; an increased difference in the service rates corresponding

to a larger difference between the coefficients. -

On the other hand, rows 4 and 5 show us that the relationship between the ratio of
service rates and the two coefficients is not as straightforward as one may anticipate.
In both cases, pp/p is of the same magnitude (up approximately 30 times larger than
p1). However in Case 4, the JSQ coefficient is approximately 10 times larger than
that of JSEW; whereas Case 5 illustrates the former being over 150 times larger than
the latter. In words, this means that despite having similar service rate ratios, there
is arguably a significant difference in the value of implementing JSEW over JSQ for
these two systems. In Case 4, switching from JSQ to JSEW meant that it would take
the system (on average) 10 times longer to reach £ customers in the queue. Whereas,
switching policies in Case 5 lead to the system taking over 100 times longer to this
rare event, making the switch more advantageous in this scenario. In general, such
information may have engineering significance, and thus may be worthwhile when

managing networks.

5.6 JSQ / SLQ Policy

In this section, we consider a variatien of the JSQ system that includes the addition of
a third discretionary server: that serves: the longest of the two queues We will refer to
a system implementing this policy as a JSQ/SLQ network. As mentloned in Section
2.2, the addition of this third server may change the service rate at either node, but
not the service capacity. That is, at any given time, each queue will still only be
able to serve one customer at a time but may have added resources to do so. In-the
case of a tie, the serv1ce rate of the add1tlonal server will be split equally between the
two nodes. Our consideration of thls pohcy is motivated by the work of Memch and

Serfozo [12] in which they descrlbe a Markovian model with state—dependent arrival
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Figure 4: Transition probabilities for the JSQ/SLQ system.

process, service rates, and holding cost rate; and give conditions under which the

JSQ/SLQ policy is optimal.

Let puy, denote the service rate of this discretionary server, and define p,; = ux_;\-lﬁ’

A1+A2+A0
Hitpetpr

— A2
Ps2 = ¥ir

,and p, = . It turns out that the proof is very similar to what
was presented in Chapter 4 for the JSEW system, with only minor adjustments to
account for the addition of an SLQ server. Most of the adjustments to the proof will
only involve replacing p, p; or pp with the analogous “*” version of the respective
traffic intensity parameter. Accordingly we will simply outline the proof for this

system, highlighting the steps where the two proofs differ, and then give the implied
results for the JSQ/SLQ system.

For the pooled case, we begin with the assumption that p, > max{p.1, p«2}. As

done in previous sections, we will again assume without loss of generality that us > p;.
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In Step 1 of the methodology, the (J-Chain is constructed in the same manner as done
for JSEW in Chapter 4. For Step 2, given that we are in the pooled scenario, we
anticipate an approach to F; along the JSQ line. That is, as in JSQ, we expect the
queue lengths to remain closé to each other, and we proceed accord»ingly. For Step 3,
we define the free brocess as W[n] = (W[n], W[n]) = (Q1[n] + Q2[n], Qz[n] — Q1[n)).
- The state space for our W process is S E,S’XS' ={(z+y, y—z) |z,y >0} CZ, X Z.
For Step 4, we partition the state space exactly as done for the JSEW proof, defining
A = {(z,y) € Sg|z=00ry=0},and A = (Zx S5)\S. For Step 5 of the pooled
case, observe that after replacing p with p*, ‘the same harmonic function used for
JSEW works for the JSQ/SLQ system. We then use this harmonic function to define
the transition structure of the twisted free process W*® = {W>|[n],n =0,1,2,...} in

the usual fashion.

For Step 6, we must check that our three constructed Markov chains satisfy the
12 technical conditions outlined in Chapter 3. In doing so, it turns out that the
first deviation from our JSEW proof does not occur until Condition 6. Recall that
this condition requires W™ to be positive recurrent. For the JSQ/SLQ policy, this
translates to requiring that the difference in the two queue lengths has a drift towards
zero. The vertical drift both above and below the #-axis can be obtained exactly as
done for the JSQ system in Section 5.1. In doing so, above the Z-axis we obtain the

requirement

Ag > Pf(#l —p2—pr) + (A2 = Ay) (56)

and likewise, when Z < 0, we obtain

Ao > p2(pz — 1 — pr) + (A1 — Xa). (57)
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As expected, by setting pz, = 0, these two inequalities reduce to the analogous

conditions (45) and (46) described in Section 5.1 for the JSQ system. Also note that

A
H1+p2

P« > max{p.1, ps2} implies > max{p1, p2}. In Section 5.1, we showed that the

latter inequality, in addition to our assumption us > u,, implies that

A\
Ao > - A1 — A2). 58
Q (#1"‘#2) (2 — m) + (M 2) ( )
This in turn implies (57) since p, < - im. Thus, (57) is redundant to our pooling

condition, and (56) becomes the condition which determines the dichotomy between -
strong and weak pooling in the JSQ/SLQ system.. Given that this condition holds,

we are assured that W is positive recurrent with stationary distribution ¢ given as

follows.
2~ (M2+Ag/2)+p(p1+11/2) o= gt k-1 | :
| T Oa N e(eaFaL) (p-l(xluﬂp(uim))l | ¢(0) if k>0
= P~ (A1+20/2)+p(p2+1/2) p~ \+pp k=1 :
(k) PR fPm e prewry (p-l(xmﬂpwﬁm) »(0) if k<0

( P~ 2420 /2)+p(p1+1/2) + P~ (M+Ao/2)+p(u2+1/2) " 1) -1 k=0
P Ma+20)topztuL)—(p~A2+pm1) ' p~ (Ae+Ag)+p(u1+uL)—(p~  M+ppz) ’

Recall from Chapter 1 that the JSQ/SLQ system is stable iff pn.x < 1. Thus
d = p— X >0, and Condition 7 is satisfied. By substituting p with p,, the proofs
for Cdnditions 8 through 12 become identical to those done for the JSQ system in
[6], and hence for the strongly pooled case we are done. The proof for the weakly
pooled case also follows with only trivial modifications to the JSQ proofs in [6]. In
the same fashion, once we replace p; with p,;, ¢ = 1, 2, and substitute y; with u; 4 g,
1 = 1,2, where applicable, the unpooled case also follows exactly from that of JSQ
in [6]. Accordingly, we now state our results for the JSQ/SLQ system. We begin by

characterizing the qualitative behavior of the system.
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Remark 3 Suppose p, > max{p.1, ps2}, and assume that po > py. If
Ao > P2 — po — pur) + (Do — A1) (59)

then the JSQ/SLQ system will strongly pool along the JSQ line. If this inequality
does not hold, then the system will be considered weakly pooled, and the approach to

Fp will remain on or above the JSQ line.

So given the JSQ policy, we again observe a dichotomy between strong and weak
pooling, similar to that of the JSQ network discussed in Section 5.1. However, the
JSQ/SLQ strong pooling condition (59) is implied by that of the JSQ system, (58),
but the converse is not true. Thus, implementing the SLQ policy within the JSQ
network was not enough to eliminate thé weakly pooled parémeter region, but it did
decrease the size of this region. In this.manner, -adding the discretionary server made

the network more robust, as expected.

We conclude this section with the statements of our quantitative findings for the
JSQ/SLQ network. Define B; = {k|y —z = k,z + y = j for some z,y € Z.}, and
note that {B;, j € Z,} has a periodicity of 2 since the difference and sum of the

queue lengths must be either both negative or both positive. Also define

fo= Z [7rw (z) o~ H(z) + mw (z)p~*H (:1:)] (60)
€A ‘
where
N {(& %) €Z|+&=0o0r F—%& =0} if p, > max{p.1, a2}

{(,2)€ZxZy|Z>0,2<Z,Z<2E+1} otherwise
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Theorem 12 (Strongly Pooled Case)
If max{p.1, pea} < pu <1, and (59) holds, then

(i)
Bo[Te] ~ 505/ (A+ 1) (61)
where o is any initial point in A.
(1)
Pr{Ql(t) + Q2(t) = £,Q2(t) — Q1 (t) = 'k} ~ 2f2§~ pip(k)x{k =£ mod2} (62)
P{Qx(Ty) — Q1(Te) =k | Q[0] = (0,0)} ~ 2p(k)x{k =£ mod 2}.  (63)

where d = p— A, and the densit.y (k) is defined above.

For the weakly pooled case, we expect that Q1[Ty], @2[T¢], and their difference
all become large with £. Hence we let W[n] = (Q1[n] + Q2[n], Q1[n] — Q2[n]) and W
be trivial. As a result, ¢ is a trivial measure, and the asymptotics of the stationary

distribution can be given as follows.

Theorem 13 (Weakly Pooled Case) If max{p.i,ps2} < p« < 1, and (59) does not

hold, then

PAQI) + Q) =0} ~ 24t

where d is the same as in Theorem 12 and fo is given in (60).
For the weakly pooled case, E[T}] is the same as in the strongly pooled case, given in
Theorem 12.

For the results in the unpooled case, we again assume without loss of generality

that queue 1 grows large, while queue 2 remains stable. Accordingly, for the following
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theorem note that the Markov additive process W™ consists of the total number of
customers W™ as the additive process, and the length of queue 2 as the Markovian

component, W,

Theorem 14 ( Unpooled Case) Without;loss of generality, suppose p,; > max(p., ps2)-
Therefore,

(i)
Eo[T) ~ g2 pa ™/ (A + 1)

where

9= f2 ) piv(0,2)

z2>0
1s obtainable by fast simulation.
(ii)
Ja £—k< /\2+/\Q) (/\z+)\Q>k
P, )+ Qa(t) =4,Q:(t) =k} ~ ———— p, 1— :
{@:(2) ".Q2() Q2(t) = k} P o —
(iii)

P{Q2(T2) =k | Q[0] = (0,0)} ~ ¢ p.1*v(0, k),

where ¢ =Y peq pEv(0, k).
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APPENDIX

A THRESHOLD POLICY

In this section, we briefly consider the asymptotic behavior of a two server queuing
system operating under a threshold policy. Note that the proofs for this system are
incomplete. However, the pufpose of this section is to illustrate an example of our
current and future work in the area of exact asymptotics. The threshold system is
also interesting from the standpoint that, thus far it is one of the few examples that
we have come across where the form of the harmonic function (the rough asymptotics,
«, in particular) is not easily guessed and ih fact difficult to give explicitly. How the
methodology works in this case is of interest since for more complicated models one
may be in the same position. For this case, we do manage to give a set of equations

- that the harmonic functions must satisfy, but do not explicitly solve them.

The Model and Policy

We consider a network consisting of two nodes, each with a single server and an
infinite capacity waiting area. Customers arrive to the network according to a Poisson
process with total rate A > 0. For the threshold model, A can be decomposed into
two customer types. Customers of type 1 always join node 1, and we let A; denote
the corresponding customer arrival rate. - The second customer type operates via a
threshold policy by which customers are routed to the second server’s queue until the
total number at this queue reaches some predetermined threshold value m. Once this
threshold is reached, the overflow customers are then fouted to queue 1 until queue

2 again falls below m customers. Let Ar denote the arrival rate of this discretionary
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customer.

The service times at nodes 1 and 2 are independent and exponentially distributed
with parameters p; and puo, respectively. The total service rate in the network is
denoted by p. We let Q(t) = (@:1(t), Q2(t)) denote the queue lengths at time ¢, and
note that the arrival processes remain mutually independent. If we assume that both
service rates and the arrival rate of the discretionary customer are nonzero then it
follows that Q(-) is an irreducible Markov process on the state space Z, x {0, ..., m}.
Given some large level £, our rare event of interest for this policy will be the event
that we reach any state in the set F, = {(z,y) € Z; x {0,...,m} | z > £}, where z
and y represent the total number of customers in ¢}, and @), respectively. In other
words, we are analyzing large deviations of the total number of customers at queue

1.

There are several variations of this policy. The system is often modelled with
~ only one arrival stream (what we refer to here as the discretionary customer arrivals). -
Our consideration of this policy is motivated by the work of Teh and Ward [16] in -
which they establish necessary and sufficient conditions for which the threshold policy
with no dedicated customers asymptotically exhibits complete resource pooling in the
heavy traffic limit. That is, under the conditions given in [16], the network behaves
like a single server queue with total ar_rivall Ar and service rate p; + pp. For more

details on this policy and related \vbrké, the reader is asked to refer to [16].

For this policy and model, we will seek to prove the following conjectures.

Conjecture 1 If py > Ay + Apby,, then
PAQIY = £.Qa(t) = K} ~ LF0) (64

where all of the components would be defined in an analogous fashion to the results
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given in Chapter 5.

Conjecture 2

E,[T}] ~ fsa® as £ —= oo,

where Ty is the first time that there are £ customers in queue 1, and ¢ is any initial

point of the form (0,y).

Preliminary Analysis of the Threshold Model

Step 1. Again, our initial Markov process is the joint queue length process at the
two queues, as shown in Figure 5. To ensure irreducibility we assume that Ap, y;
and po are all nonzero. Furthermore, our assumption that A + g4 < co implies
that the elements on the diagonal of the generator are bounded. As done before,
rescaling time such that A+ =1 allows us to interpret our system parameters as
transition probabilities. The requirement of positive recurrence is met by assuming
A1 + by Ar < g, where by, is the steady state probability that queue 2 is full. For .
most of our analysis, we will keep the same notation as in Chapter 4. For example,

after uniformization, the state of the discrete-time Markov chain at time n is again
“denoted by Q[n] = (@1[n], Q2[n]),n € Z,, while Kq and 7y denote the transition .

kernel and stationary probability measure of ) on Sg.

Steps 2&3. To have W diverge along the approach to Fy, we define W[n] = Q[n).
Since the Markov chain {Q:[n],n > 0} will have some stationary distribution along
the approach to F, we define the Markovian component W as the queue length at
queue 2. Thus we have Wn] = (W[n), W[n]) = (Q1[n], Q2[n]) where the state space
‘is denoted by S =S x § = Z2.
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Figure 5: Transition probabilities for the Threshold policy

Step 4. We wish to again partition our state space S into the interior @4 and the
boundary A of S such that the transition structure that determines the next stable
coﬁponent and the change in the additive component from time n to n + 1 depends
only on W[n]. That is, given a plot of the W chain similar to Figure 5, the transition
probability structure should not differ along any horizontal line excluding A, which
alsormust be defined. To obtain our desired Markov additive structure, we use thé
transition probabilities of W corresponding to wheh queue 1 is nonempty. Mére
formally, we define A = {(z,y) € So | z = 0), and our free chain is constructed
by using the transition probabilities of W corresponding to the states in S\A. An
illustration of the resulting process would be the equivalent of removing the y-axis
from Figure 5. In doing so, we enlarge the state space to Z x S for the free chain
and our additive component now has no barriers to its drift in either direction. The

states added in this process will be denoted by A = ((Z x ) \ 9).
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Step 5. For a function h to be harmonic for the free process, it must be the case
that K*®h = h, where h is of the form h(z,y) = axﬁy, for (z,y) € S. In this manner,
using the transition structure of the free process, we obtain the following constraints

on h:

¢ _
ugazizy + plaz’lﬁy + Ara®hyy1 + Ma®th, for y = 0,

o*hy = ¢ pp0®hy_y + p10®~hy + Apa®hyy + Ma®Hh, for0<y<m, (65

120" By + 105 h, + (A1 + Ar)omH Ry, for y = m,
\

where h, = A(y) for (z,y) € Z x §, and o > 1. Without loss of generality we can
rescale the harmonic functions such that h(0,0) = 1. In doing so, we can numerically
solve for our harmonic function in the following fashion. Observe that with izo =1,
the first constraint in (65) leads to the following expression for A; dependent only on
o.

Mhi=1-— Mg — plafl -ha-1. (66)

We can then use the remaining constraints to iterate and obtain expressions for

A~

ilg, ...y hin, also dependent on c. In this fashion, by using both the second and third
equations in (65), we obtain two equations dependent on h,, and a which can be

solved simultaneously to finally obtain a.

Alternatively, to solve for our harmonic function, we can also take advantage of
the structure present in our constraints. Multiplying the second constraint of (65) by

a~! and rearranging terms yields the following difference equation,

)\Thy+1 -+ (a_,l + >\1 - 1)hy + /.Lzhy..l =0 (67)

which is known to have solution form h, = cr¥ + (1 —c¢)ro¥, where 7, and r, are roots
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of the binomial equation

Mz + (e + ma™t = 1)z + pp = 0. (68)

Step 6. As done in our JSEW systelﬁ analysis, many of Conditions 1-12 were already
taken into consideration while constructing our three processes and hence have already
been satisfied. For example, by construction,‘ we have already ensured that our free
- process is a Markov additive procéss with Kw((Z, £); (9,9)) = P*(;(§ — %,49)), and
that the transition probabilities of W and W agree for jumps between states in the

interior. Hence, Conditions 1 and 2 have been met.

Condition 3 requires that the transition probabilities of W and W also agree. for
jumps from states on the boundary to states in the interior. This condition is also

satisfied since for any y € © we have

. M+ M for z = (0,m),
K(z,y) = K®(z,y) =

A1 for x = (0,7), 2 < m.

- In step 5 of the algorithm, we have already chosen a positive function h which is
harmonic for the free process. Condition 5 specifies that we use this harmonic function
to construct the twisted free process K*(z,y) from the free process. The resulting

transition probabilities are shown in Figure 6.

~ Condition 6, which requires that the marginal chain W [n],n € Z,, with transition
kernel K has a stationary probability distribution ©(-), is trivial since Q2[n] is finite.

It can be shown that

o(j) = (:—zpz)jfb(O), 0<j<m
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Figure 6: Twisted free process transition probabilities for the Threshold policy
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We momentarily jump ahead and note that, Conditions 8,10 and 11 can be trivially
checked for this system since A is finite. Hence, to complete the analysis of the
threshold policy, Conditions 7, 9, and 12 must be satisfied. However, given that we

have not explicitly solved for the harmonic function, showing that these conditions

hold in general is not straightforward.

Future Work

As mentioned above, three conditions must still be satisfied to complete the analysis
of the threshold policy. Moreover, there is also work to be completed With respect
to choosing a proper harmonic function (Condition 4). More specifically, recall that
the solution form of h, was given to be h, = er¥ + (1 — ¢)ro¥, where 7, and 7 are
roots of the binomial equation given in (68). To ensure that the roots are always
real-valued, we must‘ have (\ja + p1a~! —1)2 > 45, which remains to be shown.

It also remains to be shown that a > 1.

It is also shown in [16] that thé threshold policy with no dedicated customers
is asymptotically optimal in thét ?it exhibits complete resource pooling in the heavy
traffic limit. For any given sét; of paraméters, as the threshold m grows large, we
would expect the system with dedicated customers to exhibit similar behavior. For a
system with a single server queue with total arrival A\; + Az and service rate p; + o,
denote the traffic intensity parémeter by ag!. Asm grows large, we expect that «, the
rough asymptotics for the thr(f,shold network, would converge to . From numerical
examples performed thus far, we have observed that the value of o indeed seemed to

converge to ap, and did so very quickly. Hence as m grows large, not only will our
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system mimic the M/M/1 system described above, but it also appears that the value
of m does not have to be “very large” for such behavior to be observed. This concept

will also be explored more formally in our future research.
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