
PDRRTs: Integrating Graph-Based and Cell-Based Planning

Ananth Ranganathan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

ananth@cc.gatech.edu

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

skoenig@usc.edu

Abstract— Motion-planning problems can be solved by
discretizing the continuous configuration space, for exam-
ple with graph-based or cell-based techniques. We study
rapidly exploring random trees (RRTs) as an example of
graph-based techniques and the parti-game method as an
example of cell-based techniques. We then propose parti-
game directed RRTs (PDRRTs) as a novel technique that
combines them. PDRRTs are based on the parti-game
method but use RRTs as local controllers rather than the
simplistic controllers used by the parti-game method. Our
experimental results show that PDRRTs plan faster and
solve more motion-planning problems than RRTs and plan
faster and with less memory than the parti-game method.

I. INTRODUCTION

Motion planning [1] involves finding trajectories in
high-dimensional continuous configuration spaces, for
example, by using discrete search methods after dis-
cretizing the configuration spaces. Configuration spaces
can be discretized in different ways, for example with
roadmap or cell-decomposition techniques:

Roadmap techniques [2] [3] [4] [5] determine graphs
that lie in freespace and represent its connectivity.
Systematic techniques are not well suited for high-
dimensional spaces. An example is techniques that con-
struct Voronoi graphs. Consequently, researchers use
sampling techniques. An example is rapidly exploring
random trees (RRTs) [6], a simple but versatile roadmap
technique that builds trees. Sampling techniques are
typically probability-complete, meaning that they find
a trajectory, if one exists, with a probability that ap-
proaches one as their run time increases.

Cell-decomposition techniques [7] [8], on the other
hand, decompose the configuration space into cells.
They are typically systematic and thus resolution-
complete, meaning that they find a trajectory if one
exists within the minimum resolution of the decompo-
sition. Uniform terrain discretizations can prevent one
from finding a plan if they are too coarse-grained and
result in large spaces that cannot be searched efficiently
if they are too fine-grained. Consequently, researchers
use nonuniform terrain discretizations. An example is
the parti-game method [9], a reinforcement-learning
method that starts with a coarse terrain discretization and

refines it during execution by splitting cells only when
and where it is needed (for example, around obstacles).

In this paper, we propose a novel technique that
combines the advantages of RRTs and the parti-game
method. Our parti-game directed RRTs (PDRRTs) are
based on the parti-game method but use RRTs as local
controllers. PDRRTs differ from recent work that studied
hybrids of two different sampling techniques, such as
RRTs and probabilistic roadmaps [10], because they
provide a systematic way of improving the performance
of RRTs. The main insight of this paper is precisely that
the combination of sampling and systematic techniques
can result in very powerful motion-planning techniques.

Depending on their parameters, PDRRTs can behave
like RRTs, the parti-game method, or a hybrid. Our
experimental results show that PDRRTs can plan faster
and solve more motion-planning problems than RRTs
because the parti-game method directs the searches
performed by the RRTs, which allows PDRRTs to solve
more motion-planning problems with small passages.
Our experimental results also show that PDRRTs can
plan faster and with less memory than the parti-game
method because RRTs are more capable controllers than
the simplistic controllers used by the parti-game method,
which allows PDRRTs to split fewer cells than the parti-
game method.

The paper is organized as follows. Section II provides
a brief description of RRTs and the parti-game method.
Section III introduces our PDRRT method. Section IV
presents the experimental setup of our comparison of
PDRRTs, RRTs and the parti-game method, and Sec-
tion V presents our results. Section VI describes several
possible improvements of basic PDRRTs that extend
their applications. Section VII presents related work and
Section VIII presents ideas for future work.

II. BACKGROUND

In this section, we describe both RRTs and the parti-
game method in sufficient detail to be able to describe in
the following section how to combine them. We describe
the parti-game method in greater detail than RRTs
because robotics researchers tend to be less familiar with
it.



A. RRTs

RRTs [6] build a tree in freespace, starting at the start
point. They repeatedly generate a random sample point
and then grow the tree by adding an edge of a given
length from the vertex on the tree that is closest to
the sample point toward the sample point. RRTs can be
biased to grow toward the goal point by returning the
goal point (instead of a random point) as sample point
with small probability. RRTs overcome the problems
of earlier roadmap techniques, such as probabilistic
roadmaps [3], by biasing their search toward unexplored
regions of the freespace. There exist a number of varia-
tions of basic RRTs, for example bi-directional versions,
that try to connect a tree that is grown from the start
point to the goal point with one that is grown in the
opposite direction [11].

B. The Parti-Game Method

The parti-game method [9] discretizes terrain into
rectangular cells of nonuniform size. It starts with an
initial coarse terrain discretization and assumes that it
has a number of local controllers available in each cell,
namely one for each neighboring cell. These controllers
must be provided by the user. The parti-game method
makes the optimistic default assumption that the exe-
cution of each controller from any point in the cell
eventually reaches some point in the neighboring cell
(with a cost that equals the Euclidean distance between
the center of the cells), even though this assumption is
not justified since the parti-game method uses a very
simplistic controller that just aims for the center of
the neighboring cell and can thus, for example, get
stuck in front of obstacles. Once the parti-game method
has selected a controller, it continues to use the same
controller until it either gets blocked by an obstacle or
enters a new cell. It uses a minimax search to determine
which controller to use in each cell to reach the cell that
contains the goal point, under the current assumptions
about the effects of the controllers. It does this by
determining the minimax goal distance of each cell and
assigning it the controller that minimizes its minimax
goal distance.

� If the parti-game method finds a solution, it starts
to execute it until it either reaches the cell that
contains the goal point (it does not need to reach
the goal point itself) or the currently used controller
has an unexpected effect: it either does not leave
the current cell within a given amount of time
or it leaves the current cell but reaches a cell
different from the intended neighboring cell. If the
currently used controller has an unexpected effect,
the parti-game method records the newly observed
effect as a triple and, from now on, assumes that

the the execution of the current controller from
any point in the current cell can also result in
some point in the cell that the current execution
actually resulted in. The observed effects overwrite
the default assumption about the effects. The parti-
game method then uses another minimax search to
again determine which controller to use in each cell
under the current assumptions about the effects of
the controllers, and repeats the process.

� If the parti-game method does not find a solution,
then it assumes that the terrain discretization is too
coarse-grained. It therefore refines the terrain dis-
cretization by splitting all cells that are unsolvable
(that is, have an infinite minimax goal distance),
have a size that is larger than the minimum cell
size, and border solvable cells - to try to make them
solvable. It also splits all cells that are solvable,
have a size that is larger than the minimum cell
size, and border unsolvable cells - to ensure that
neighboring cells have similar sizes. Each cell is
split into two cells perpendicular to its longest axis.
(The axis of the split is chosen randomly for square
cells.) The parti-game method again assumes that it
has a number of local controllers available in each
new cell, namely one for each neighboring cell. It
further makes again the optimistic default assump-
tion that the execution of each controller from any
point in the new cell eventually reaches some point
in the neighboring cell. This assumption makes the
current cell solvable. It then uses another minimax
search to again determine which controller to use in
each cell under the current assumptions about the
effects of the controllers, and repeats the process.

Figure 1 illustrates the behavior of the parti-game
method. The circle marks the location of robot and the
cross marks the goal region. The robot initially moves up
and gets blocked. It then moves right and gets blocked
again (a). At this point, the lower-left cell becomes
unsolvable. The lower-left cell is now an unsolvable cell
that borders solvable cells and the upper-left and lower-
right cells are solvable cells that border an unsolvalble
cell. Thus, these three cells are split. The robot now
moves up and gets blocked immediately. It then moves
right and again gets blocked immediately. Finally, it
moves down (b) and then succeeds in moving to the
goal point (c).

The parti-game method can also be used as a multi-
query planner by maintaining the terrain discretization
between queries. If it repeatedly solves the same motion-
planning problem, for example, then it refines its terrain
discretization over time until it converges to both a
terrain discretization and a trajectory. All future queries
then return this trajectory. Figure 2 shows an example.



(a) (b) (c)

Fig. 1. Example behavior of the parti-game method

Query 1. No. of cells: 574. Trajectory length: 387.

(a)
Query 2. No. of cells: 574. Trajectory length: 62.

(b)
Query 4. No. of cells: 574. Trajectory length: 52.

(c)
Query 6. No. of cells: 574. Trajectory length: 44

(d)

Fig. 2. The behavior of the parti-game method for a sequence of identical motion-planning queries for a zero-link (point) robot in a terrain
of size 100 � 100 with a step size of the local controller of one and a minimum cell size of three.

III. PARTI-GAME DIRECTED RRTS

Fig. 3. Example where PDRRTs find a trajectory to the intended
neighboring cell even if the parti-game method fails

We now describe a novel technique that combines the
advantages of RRTs and the parti-game method. Our
parti-game directed RRTs (PDRRTs) are based on the
parti-game method but use RRTs as local controllers.
PDRRTs can potentially plan faster and solve more
motion-planning problems than RRTs because the parti-
game method directs the searches performed by the
RRTs, which allows PDRRTs to solve more problems
than RRTs in terrain with low ε-goodness [12], where ε
is the minimum fraction of space visible over all points.
An example is terrain with small passages. PDRRTs can

also potentially plan faster and with less memory than
the parti-game method because RRTs are more capable
controllers than the simplistic controllers used by the
parti-game method, which allows PDRRTs to split fewer
cells than the parti-game method. The controllers of the
parti-game method just aim for the center of the intended
neighboring cell and can thus easily get stuck in front
of obstacles even if the neighboring cell can be reached.
This can make the current cell unsolvable and thus result
in the parti-game method splitting cells. Figure 3 shows
an example where the simplistic controllers of the parti-
game method get stuck but RRTs easily find a trajectory
to the intended neighboring cell, namely the upper-right
cell.

PDRRTs use RRTs as local controllers in the follow-
ing way after the parti-game method has determined
which neighboring cell to move to: The start point is
the current point and the goal point is the center of
the desired neighboring cell. We impose a limit on the
number of nodes in the RRT (we use 250) to limit the
search time. In addition, we could impose a bounding
box beyond which the RRT cannot grow although we
did not do this in our experiments. Whenever our RRTs
add a node to the tree that belongs to the intended
neighboring cell, then the search terminates and they
return the trajectory to that node. If the RRTs fail to



find a trajectory to the desired neighboring cell within
the limit on the number of nodes, they could just
return failure, similar to the case when the simplistic
controllers of the parti-game method get stuck in front of
obstacles and thus fail to leave the current cell. However,
we found that we can reduce the run time of PDRRTs
if our RRTs return a trajectory to that node in the tree
that belongs to a different neighboring cell and whose
Euclidean distance to the goal point is minimal, similar
to the case when the simplistic controllers of the parti-
game method leave the current cell but reach a cell
that is different from the intended neighboring cell. Our
RRTs therefore return failure only if all nodes in the
tree belong to the current cell when it reaches the limit
on the number of nodes.

If the limit on the number of nodes is small, then the
RRTs need to strongly bias their search toward the goal
point to have a chance to find a trajectory to it. On the
other hand, if the limit on the number of nodes is large,
then they should not strongly bias their search toward
the goal point to avoid getting stuck in local minima.
We therefore bias our RRTs to grow toward the goal
point by returning the goal point (instead of a random
point) as sample point with the following probabilities
that depend on the limit N on the number of nodes:

P �
�� � Pmax if N � Nmin

Pmax � Pmin
Nmax � Nmin � N � Nmin �
	 Pmin if Nmin � N � Nmax

Pmin if N � Nmax

where Pmax, Pmin, Nmax and Nmin are parameters with
Pmax � Pmin and Nmax � Nmin. We use Pmax � 1 � 00, Pmin �
0 � 05, Nmax � 200 and Nmin � 50. To summarize, the
larger the limit on the number of nodes, the less greedy
and thus smarter the local controllers. Depending on
both this value and the minimum cell size, PDRRTs can
behave like RRTs, the parti-game method, or a hybrid.
PDRRTs behave like RRTs if both parameters have large
values and like the parti-game method if both parameters
have small values. This is an advantage of PDRRTs
because it allows them to behave more like RRTs for
easy motion-planning problems and more like the parti-
game method for harder motion-planning problems.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

In order to compare PDRRTs, RRTs and the parti-
game method, we used motion-planning problems for
planar articulated robots [13]. An n-dimensional planar
articulated robot has n revolute joints and operates in
n 	 2-dimensional configuration space (one dimension
for each of the joint angles and two dimensions for
the x and y coordinates of one of the joints). Thus,
when we refer in the following to a 5D motion-planning
problem, we mean one with a three-link robot in planar

terrain. Each link is of the same length and thus the
robots get longer as the number of dimensions increases.
The kinematic constraints were given by a limited
angular range for each joint and the need to avoid
self-collisions. No dynamic constraints were enforced.
The robots operated in different kinds of terrain, shown
in Figure 4. Terrain (a) is a modification of the one
from [14] and requires sudden changes in direction,
especially for higher dimensional cases. Terrain (b) and
(c) are from [15] and have narrow passages. Terrain (d)
is from [16] and somewhat easier than the other ones
but, like the other ones, still has a small ε-goodness.
The goal region of each terrain was specified by ranges
of allowable joint angles and ranges for the x and y
coordinates. To measure the distance between two points
in the configuration space we used the weighted sum
of the squared differences of their n 	 2 coordinates
(“weighted Euclidean distance”). Our weights scaled
the squared difference of each pair of coordinates to
range from zero to one. For example, the weights of
all joint angles were 1 
 � 2π � . We used these particular
motion-planning problems because they allow us to
test the scaling of the various motion-planning methods
with respect to the dimensionality of the configuration
space without changing the basic nature of the motion-
planning problems or losing generality.

Our implementation of RRTs uses the RRTExt
method with uni-directional search [11], similar to [17].
(It cannot use the RRTExt method with bi-directional
search since our motion-planning problems have goal
regions rather than goal points.) It uses kd-trees to
efficiently find the vertex on the tree that is closest to
the sample point [18]. The RRTs were biased to grow
toward the goal point by returning the goal point (instead
of a random point) as sample point with probability 0.05.

Our implementation of the parti-game method uses
kd-trees to find the neighbors of a cell efficiently. It
uses an efficient single-pass method to calculate the
minimax goal distances [19]. The local controllers are
implemented as follows: There are two actions for each
dimension available, which increase or decrease its value
by one step size. The parti-game method selects that
action that reduces the weighted Euclidean distance to
the center of the intended neighboring cell the most. It
then selects this action repeatedly as long as it continues
to reduce the weighted Euclidean distance. It selects a
new action and repeats the process when it no longer
reduces the weighted Euclidean distance. It returns when
the current cell is exited or a given amount of time has
passed. This way of selecting actions resuled in a better
trajectory quality than other action-selection strategies
that we experimented with.

Finally, our implementation of PDRRTs re-used our



Fig. 4. Test terrains (a)-(d)

implementations of RRTs and the parti-game method
whenever possible.

V. EXPERIMENTS AND RESULTS

We evaluate PDRRTs, RRTs and the parti-game
method according to how many motion-planning prob-
lems they can solve and, for the ones that they can
solve, how long it takes and how good the quality of
the resulting trajectory is. We used a step size of two
for the RRTs and a minimum cell size of five for the
parti-game method. Table 8 shows the run times of the
three motion-planning methods in our test terrains (a
dash indicates that at least one of the motion-planning
problems could not be solved within the cut-off time
of 60 CPU minutes), Table 10 shows the lengths of the
resulting trajectories, and Table 9 shows the number of
cells generated by PDRRTs and the parti-game method,
in all cases averaged over all motion-planning problems
that they solved in 20 runs within the cut-off time.

A. Solvability

(a) (b)

Fig. 5. Solvability example: (a) RRTs and (b) PDRRTs

Earlier, we have hypothesized that PDRRTs are able
to solve more motion-planning problems than RRTs.
Indeed PDRRTs solved more motion-planning problems
within the cut-off time than RRTs and the parti-game
method, for example problems with four-link robots in
terrain (c) and, as shown in Figure 5, four-link robots
in terrain (b). For the latter motion-planning problems,
PDRRTs generate 35 cells in 3514.00 seconds before
they find a trajectory. PDRRTs appear to be at least
as good as RRTs and the parti-game method. (Note

Fig. 6. Randomly generated terrain with a four-link robot at the start
location (upper-right corner) and a small square at the goal location
(lower-left corner)

Solvability

0

20

40

60

80

100

2D 3D 4D 5D 6D 7D

Environments

P
er

ce
nt

ag
e 

so
lv

ed

RRT

PDRRT

Partigame

Fig. 7. Number of motion-planning problems solved in random
terrain

that we formulated this statement carefully because the
run time of PDRRTs was close to the cut-off time in
some cases where PDRRTs solved all motion-planning
problems but the other methods did not.) To be able
to quantify the advantage of PDRRTs over RRTs more
precisely, we tested all three motion-planning methods
also with zero- to five-link robots in 500 planar terrains
that were obtained by randomly generating and placing
between 8 to 16 rectangular obstacles into an empty
terrain of size 100 by 100, resulting in 2D to 7D motion
planning problems. Figure 6 shows an example. We
changed both the step size and the minimum cell size to
one for this experiment as it makes the largest number of
motion-planning problems solvable. Figure 7 shows that
PDRRTs solve more motion-planning problems within
the cut-off time than RRTs. For example, they solve
20 percent more motion-planning problems than RRTs
for the five-link robots. In comparison to the parti-
game method, PDRRTs seem to possess only marginally



Terrain Parti-Game RRTs PDRRTs
Method

(a) 2D 0.010 0.010 0.010
(a) 3D 0.070 1.410 0.360
(a) 4D 0.790 3.530 0.350
(a) 5D 2623.000 — 172.000
(a) 6D — — 2231.000
(b) 2D 0.980 0.850 0.150
(b) 3D 0.230 7.500 1.900
(b) 4D 105.000 38.000 9.760
(b) 5D 2171.000 — 24.900
(b) 6D — — 3514.000
(c) 2D 0.092 1.240 0.140
(c) 3D 1.370 12.700 0.690
(c) 4D 5.600 71.500 4.120
(c) 5D 2137.000 1483.000 531.000
(c) 6D — — 3263.000
(d) 2D 0.000 0.000 0.000
(d) 3D 0.087 0.140 0.190
(d) 4D 0.183 0.960 0.810
(d) 5D 0.453 1.600 6.610
(d) 6D 26.700 40.300 3.300
(d) 7D 302.000 930.000 172.000

Fig. 8. Run times (in seconds)

Terrain Parti-Game PDRRTs
Method

(a) 2D 41 1
(a) 3D 32 10
(a) 4D 108 18
(b) 2D 574 31
(b) 3D 70 80
(b) 4D 504 276
(c) 2D 103 30
(c) 3D 128 44
(c) 4D 488 80
(d) 2D 26 1
(d) 3D 35 1
(d) 4D 48 6
(d) 5D 568 120
(d) 6D 1648 64
(d) 7D 1936 192

Fig. 9. Cells generated

Terrain Parti-Game Method PDRRTs RRTs Parti-Game Method PDRRTs
(post-processed) (post-processed)

(a) 2D 128.00 121.00 111.95 78.00 119.00
(a) 3D 717.80 497.90 216.22 523.20 409.40
(a) 4D 8307.00 520.30 341.93 4407.65 497.60
(b) 2D 3992.00 735.00 307.00 749.00 287.00
(b) 3D 2287.90 6991.80 505.00 1369.20 505.40
(b) 4D 156889.00 4264.60 763.00 31421.90 1123.90
(c) 2D 2430.00 1106.00 299.00 286.00 302.00
(c) 3D 12941.00 3746.30 504.00 8045.65 606.30
(c) 4D 26460.00 15374.20 744.00 17056.50 7006.50
(d) 2D 272.00 120.00 58.90 222.00 89.00
(d) 3D 499.80 165.60 203.00 349.70 165.00
(d) 4D 833.70 234.00 329.00 403.70 234.00
(d) 5D 917.70 241.60 417.00 514.40 241.00
(d) 6D 3711.00 1879.70 525.00 2221.10 485.60
(d) 7D 12782.10 6727.36 625.00 12037.50 1183.60

Fig. 10. Trajectory lengths

greater solvability. The difference in the case of the five-
link robot is 6 percent which is not significant.

B. Run Time

Table 8 shows that PDRRTs seem to be faster than
RRTs and the parti-game method if the dimensionality
of the terrain is sufficiently large. This means, for exam-
ple, that PDRRTs solve more motion-planning problems
than RRTs without being slower.

C. Trajectory Quality

Table 10 shows the lengths of the trajectories of
the three motion-planning methods. RRTs produce the
shortest trajectories, followed by PDRRTs and eventu-
ally the parti-game method. The trajectories of PDRRTs
and the parti-game method can be improved in two
different ways:

� They can be improved with a simple post-
processing step that removes cycles since both
motion-planning methods can move back and forth
while splitting cells. Figure 2, for example, shows
such loops and meanders, whose removal can
greatly improve the trajectory.

� They can also be improved by letting the motion-
planning methods repeatedly solve the same
motion-planning problem. In this case, they refine
the terrain discretization and the trajectory over

time. The quality of the trajectories tends to im-
prove, although the improvement is not monotonic
in time. For example, Figure 11 shows how the
length of the found trajectory changes over time
for a one-link robot in terrain (c). The trajectory
lengths are smaller for PDRRTs than they are for
the parti-game method. (For comparison purposes,
the average trajectory length is 504.00 for RRTs.)
They change no longer after 15 iterations for PDR-
RTs and 40 iterations for the parti-game method
if the trajectories are not post-processed, and after
7 interations for PDRRTs and 23 iterations for
the parti-game method if the trajectories are post-
processed. Thus, they converge earlier for PDRRTs
than for the parti-game method.

The length of the trajectories for a one-link robot
in terrain (c) is 3746.30 for PDRRTs without post-
processing. It can be reduced to 606.30 with post-
processing and to 402.38 by letting PDRRTs repeatedly
solve the same motion-planning problem. It cannot be
reduced much further even if both ways are combined.
In this case, post-processing is faster than letting PDR-
RTs repeatedly solve the same motion-planning problem
and the quality of the resulting trajectory is only slightly
worse.

D. Memory Consumption

In general, it is difficult to compare the memory
consumption of PDRRTs, RRTs, and the parti-game
method since RRTs and the parti-game method use
very different data structures. Table 9 therefore only
shows the number of cells generated by PDRRTs and
the parti-game method. Earlier, we have hypothesized
that PDRRTs generate fewer cells than the parti-game
method. This is indeed the case.

VI. PDRRT EXTENSIONS

Researchers have investigated various improvements
to RRTs and the parti-game method, all of which can
be used in the context of PDRRTs as well. Researchers
have, for example, investigated versions of RRTs that
take repeated steps toward the sample point until an
obstacle is encountered, instead of only a single step
[11]. They have also investigated versions of the parti-
game method that split cells in a different way than
the version used by us [19]. There are other ways how
one can improve PDRRTs. For example, whenever our
RRTs find trajectories to the intended neighboring cells,
one can cache them for later reuse. Whenever our RRTs,
during their search, find trajectories to neighboring cells
that are different from the intended neighboring cells,
one can cache them for later use in situations where
one actually wants to reach these cells. If one caches the
RRTs instead of the trajectories, one can even recover



0

2000

4000

6000

8000

1 6 11 16 21 26 31 36

Iterations

Parti-game PDRRT

(a)

0

2000

4000

6000

8000

1 6 11 16 21

Iterations

Partigame PDRRT

(b)
Fig. 11. Performance profiles (a) without post-processing (b) with post-processing

trajectories to the neighboring cells after cells have been
split. These improvements can potentially reduce the run
time of PDRRTs and are especially important for multi-
query planning. One can also vary the step size of the
RRTs so that they use a small step size if the sizes of
the current and intended neighboring cells are small and
a larger step size if they are large. The idea behind this
suggestion is that small step sizes waste run time in large
cells but are necessary to find trajectories in small cells.
For example, the step size should not be larger than the
cell sizes. A simple heuristic thus is to set the step size
to some fraction of the cell sizes.

VII. RELATED WORK

PDRRTs relate to other research directions in mo-
tion planning. For example, PDRRTs use more sophis-
ticated local controllers than the parti-game method.
The effect of local controllers has been studied in the
motion-planning literature in the context of probabilistic
roadmaps [20], that repeatedly generate random sample
points and then use the local controllers to connect them
to the existing roadmap. Thus, roadmaps call the local
controllers much more frequently than PDRRTs, which
explains why they tend not to use sophisticated and
thus slow local controllers. The caching of results from
previous queries has been studied in the motion-planning
literature in the context of RRTs that maintain the
trees between queries [21], but these rapidly-exploring
random forests need to prune the trees to be efficient.
Thus, PDRRTs have the potential to be faster multi-
query planners than rapidly-exploring random forests.

In this paper, we propose a novel technique that
combines the advantages of RRTs and the parti-game
method. Our parti-game directed RRTs (PDRRTs) are
based on the parti-game method but use RRTs as local
controllers. PDRRTs differ from recent work that studied
hybrids of two different sampling techniques, such as
RRTs and probabilistic roadmaps [10], because they
provide a systematic and deterministic way of improving
the performance of RRTs. The core insight of this paper
is that the combination of sampling and systematic
techniques can result in very powerful motion-planning
techniques.

The motion-planning technique most closely related
to PDRRTs uses RRTs as local controllers for proba-
bilistic roadmaps [10]. Both motion-planning techniques
can be used as single-query and multi-query planners.
Their main difference is that PDRRTs combine a sys-
tematic technique with RRTs (a sampling technique),
whereas the other motion-planning technique combines
another sampling technique with RRTs. Disadvantages
of combining two different sampling techniques are that
the performance of the resulting motion planner is very
sensitive to the choice of parameter values and can
completely degrade in difficult environments, as was
noted in both [10] and [22]. The performance of PDR-
RTs, in contrast, is more robust. It is insensitive to the
exact parameter values and does not completely degrade
in difficult environments because PDRRTs compensate
for the failure of RRTs by making additional calls
to the systematic technique, resulting in smaller cells
and thus additional guidance for the RRTs. Our paper
thus demonstrates that the combination of sampling
and systematic techniques can result in very powerful
motion-planning techniques.

VIII. FUTURE WORK

While PDRRTs solve more motion-planning problems
than RRTs, they remain only probability-complete be-
cause their local controllers can fail to find trajectories
between cells even if they exist. It is future work to make
them resolution-complete. One could, for example, first
use the simplistic (but systematic) controllers of the
parti-game method in every cell and, only if they fail,
then switch to the (sampling-based) RRTs. One could
also use quasi-random number sequences, especially
incremental sequences [23], when generating “random”
sample points to grow the RRTs. This overcomes the
disadvantages of sampling-based methods while main-
taining their strengths. It is also future work to perform
more extensive experiments with PDRRTs, for example,
with different motion-planning problems than the ones
that we used here and for the proposed improvements
of the basic PDRRT method. This is interesting because
the parti-game method has been reported not to work



well for manipulator-trajectory problems [24]. If this is
due to the fact that the simplistic local controllers of
the parti-game method tend not to reach the intended
neighboring cells in the presence of non-holonomic
kinematic or dynamic constraints, then PDRRTs with
their more sophisticated controllers might work well
even for manipulator-trajectory problems. In general, it
is important to understand better when the parti-game
method as well as motion-planning methods based on
the parti-game method, such as PDRRTs, perform well
and when they do not.

IX. CONCLUSIONS

In this paper, we proposed parti-game directed RRTs
(PDRRTs) as a novel technique that combines rapidly
exploring random trees (RRTs), a graph-based dis-
cretization technique, and the parti-game method, a cell-
based discretization technique. PDRRTs are based on
the parti-game method but use RRTs as local con-
trollers rather than the simplistic controllers used by the
parti-game method. Our experimental results show that
PDRRTs plan faster and solve more motion-planning
problems than RRTs and plan faster and with less
memory than the parti-game method. We also described
several possible improvements of basic PDRRTs that
extend their applications, including a version that uses
RRTs with variable step sizes.

ACKNOWLEDGMENTS

We thank Andrew Moore for his support of this work
and Ronald Arkin for his valuable comments. This research
is supported under DARPA’s Mobile Autonomous Robotic
Software Program under contract #DASG60-99-C-0081. The
views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer
Academic Publishers, 1991.

[2] M. Overmars and P. Svestka, “A probabilistic learning approach
to motion planning,” in Algorithmic Foundations of Robotics,
The 1994 Workshop on the Algorithmic Foundations of Robotics,
A. K. Peters, Goldberg, Halperin, Latombe, and Wilson, Eds.,
1995.

[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration space,” IEEE Transactions on Robotics and Au-
tomation, vol. 12, no. 4, pp. 566–580, 1996.

[4] Y. W. N. Amato, “A randomized roadmap method for path and
manipulation planning,” in IEEE International Conference on
Robotics and Automation, 1996, pp. 113–120.

[5] W. Henning, F. Hickman, and H. Choset, “Motion planning for
serpentine robots,” in Proceedings of ASCE Space and Robotics,
1998.

[6] S. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept, Iowa State University,
Tech. Rep. TR 98-11, October 1998.

[7] S. Kambhampati and L. Davis, “Multiresolution path planning
for mobile robot,” IEEE Journal of Robotics and Automation,
vol. RA-2, no. 3, pp. 135–145, 1985.

[8] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-based
path-planning algorithm for a mobile robot,” Journal of Robotic
Systems, vol. 7, no. 4, pp. 555–574, 1990.

[9] A. W. Moore, “The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces,” in Ad-
vances in Neural Information Processing Systems, J. D. Cowan,
G. Tesauro, and J. Alspector, Eds., vol. 6. Morgan Kaufmann
Publishers, Inc., 1994, pp. 711–718.

[10] M. Akinc, K. Bekris, B. Chen, A. Ladd, E. Plakue, and
L. Kavraki, “Probabilistic roadmaps of trees for parallel com-
putation of multiple query roadmaps,” in The Eleventh Interna-
tional Symposium on Robotics Research, 2003.

[11] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient
approach to single-query path planning,” in IEEE Intl. Conf. on
Robotics and Automation, 2000, pp. 995–1001.

[12] L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan,
“Randomized query processing in robot motion planning,” in
Proceedings of the 27th Annual ACM Symposium on Theory of
Computing (STOC), 1995, pp. 353–362.

[13] E. Sacks, “Path planning for planar articulated robots using
configuration spaces and compliant motion,” IEEE Transactions
on Robotics and Automation, vol. 19, no. 3, pp. 381–390, 2003.

[14] V. Boor, M. Overmars, and A. van der Stappen, “The gaussian
sampling strategy for probabilistic roadmap planners,” in IEEE
International Conference on Robotics and Automation, vol. 2,
1999, pp. 1018–1023.

[15] J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, “Performance
benchmarks for path planning in high dimensions,” in Proc. 2001
JSME Conf. on Robotics and Mechatronics (ROBOMEC’01),
Takamatsu, Japan, June 2001.

[16] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in
expansive configuration spaces,” International Journal of Com-
putational Geometry and Applications, vol. 9, no. 4/5, pp. 495–
512, 1999.

[17] J. Bruce and M. Veloso, “Real-time randomized path planning
for robot navigation,” in Proceedings of IROS-2002, 2002.

[18] A. W. Moore, “An introductory tutorial on kd-trees,” Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
Technical Report No. 209, Computer Laboratory, University of
Cambridge, 1991.

[19] M. Al-Ansari, “Efficient reinforcement learning in continuous
environments,” Ph.D. dissertation, College of Computer Science,
Northeastern University, 2001.

[20] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for prob-
abilisitc roadmap methods,” in IEEE International Conference
on Robotics and Automation, 1998, pp. 630–637.

[21] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to
motion planning with roadmap management,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, 2002, pp.
3411–3416.

[22] S. LaValle and J. Kuffner, “Rapidly exploring random trees:
Progress and prospects,” in Workshop on the Algorithmic Foun-
dations of Robotics, B. Donald, K. Lynch, and D.Rus, Eds. A.K.
Peters, 2000, pp. 293–308.

[23] S. R. Lindemann and S. M. LaValle, “Incremental low-
discrepancy lattice methods for motion planning,” in IEEE
International Conference on Robotics and Automation, 2003.

[24] M. Eldracher and R. Merklein, “Why the parti-game algorithm
does not work satisfyingly for manipulator trajectory genera-
tion,” Computer Science Department, Technical University Mu-
nich, Tech. Rep., unknown year (unpublished).


