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SUMMARY 

This thesis presents a method for selecting pulpwood and paper 

mill locations which minimizes total product cost under a set of 

forest resource and market demand constraints. Although both economic 

and social factors enter into this location decision, only economic 

factors are included in the mathematical model. 

The three main parts of the thesis are (1) defining the factors 

pertinent to the location decision, (2) mathematically modeling these 

factors, and (3) deriving a solution technique for solving the model. 

Defining the factors provides the groundwork for formulating the model. 

The resulting model is a mixed zero-one integer programming formulation 

which includes both fixed and variable operating costs. Benders' par

titioning and a modified integer programming procedure are presented as 

a solution technique. The research concludes with an example applica

tion of the model and solution technique. 

A 

Total product cost refers to financial expenditures for stump-
age; harvesting; loading; transporting from forest to mill to market; 
fixed cost such as plant construction, equipment, and taxes; and vari
able expenses such as labor, power, and water. 
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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

This thesis presents a method for selecting pulpwood and paper 

mill locations which minimizes total product cost under a set of forest 

resource and market demand constraints. Many economic and social fac

tors enter into such location decisions; however, economic factors are 

of primary interest in this research. 

The economic aspect of the location problem is one significant 

reason for its importance. A $40,000 ,000 ( 1 ) initial fixed cost 

investment in a mill plus an approximate annual transportation cost of 

$1,000,000 emphasizes the importance of the location decision. Because 

there are a variety of economic factors to be considered, an analysis 

raises the question of which costs are fixed and which vary with pro

duction. For example, fixed costs may include plant construction, 

machinery, and taxes. Variable costs, on the other hand, may include 

such factors as transportation, labor, pulpwood resources, water, and 

power. 

The interrelationships of factors and their significance in the 

Total product cost refers to financial expenditures for stump-
age; harvesting; loading; transporting from forest to mill to market; 
fixed cost such as plant construction, equipment, and taxes; and vari
able expenses such as labor, power, and water. 
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total decision is the next question to be considered. For example, 

while water and power are two required factors, they are of less eco

nomic importance than labor and transportation. It should be noted 

that many of the factors are strictly dependent on the particular 

location considered. For example, water, power and labor resources, 

and transportation facilities are tied more to a particular site than 

factors such as the pulpwood resources or the market location. 

Social as well as economic factors require consideration in the 

mill location decision. The image which a company develops within the 

community through its public relations sets the stage for future growth 

and expansion. Some economic factors are independent of any social 

effects while others are strictly dependent on the social environment. 

More specifically, the costs of stumpage, loading, and transportation of 

the raw materials are usually independent of community or city accept

ance since these functions are performed by organizations external to 

the immediate community or city. However, there are many economic 

factors which are directly affected by the community's attitudes toward 

the company. These attitudes may be reflected in such economic factors 

as (1) cost and availability of labor, (2) local and state taxation 

and taxation policies, (3) local or state subsidization, (4) costs for 

water and power, and (5) costs of effluent disposal. These factors 

alone can determine how successfully a plant operates. 

Objective 

The objective of this research is to develop a method for 

analyzing potential pulp and paper mill locations. This objective will 
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be achieved by (1) defining the factors pertinent to the location deci

sion, (2) mathematically modeling these factors, and (3) presenting a 

solution technique for the model. Meeting this objective should provide 

the means for making a more comprehensive analysis of potential plant 

sites. 

Defining the factors pertinent to analyzing mill locations is the 

first step. As the initial step, it provides the groundwork for formu

lating the mathematical model. A list of important factors provides a 

checklist to prevent an oversight of significant costs which should be 

considered. In this research, the economic factors are mathematically 

related so that an optimum feasible solution can be obtained. 

There are advantages of mathematically modeling the problem. 

First, a mathematical model depicts the problem and reduces its com

plexity to a workable form. Second, the model provides a means for 

considering the interrelationships of the factors. Third, a mathe

matical model can be used as a tool to produce valuable quantitative 

information which should give the analyst additional insight into the 

problem. 

The final step to develop a method for analyzing pulp and paper 

mill locations is the presentation of a workable solution technique. 

In solving mathematical models, it should be recognized that the solu

tion technique used (1) limits the size of the problem that can be 

solved, (2) determines the time required for a solution, and (3) deter

mines the optimum state of the solution which can be achieved through 
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the model. These three reasons underlie the importance of investigating 

an appropriate solution technique. 

Review of the General Location Problem 

The general location problem consists of selecting facility loca

tion sites to minimize total cost, subject to a given set of supply and 

demand constraints. Fixed costs are usually associated with each site 

if a facility is opened and variable costs are associated with its 

operations. 

This problem arises in many contexts and may be formulated in 

many ways and solved by different techniques. The location problem is 

normally formulated as a mixed integer programming problem. Solution 

procedures include such methods as integer programming, linear program

ming, and mathematical simulation. 

Baumol and Wolfe ( 2 ) formulate the warehouse location problem 

based on strictly concave cost functions with a fixed initial cost. 

This problem considers the location of the plant as known and fixed with 

known customer demands, factory to warehouse distances and costs, and 

warehouse to customer distances and costs. The formulation is similar 

to the one presented in that both models have (1) capacity limits on 

the facilities to be located, (2) limitations on the resource supply, 

and (3) constraints specifying that all customer demands must be met. 

On the other hand, their formulation differs in that (1) fixed costs 

associated with opening a warehouse are not explicitly considered in 

generating solutions, and (2) all production is required to be trans

ported. 
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The plant location model formulated by M. L. Balinski (3) and 

the one presented in this paper are mixed integer programming models. 

Balinski*s formulation differs in that (1) plant and resource capacities 

are not considered, and (2) the components of market demand constraints 

are expressed as fractions of a particular market demand rather than in 

units of product. However, both mixed integer programming models use 

Benders' partitioning scheme in their solution. 

The mixed integer problem formulated by Manne (M-) considers 

economies of scale in manufacturing. Both his formulation and the one 

appearing in this paper are mixed integer formulations. Furthermore 

both formulations consider manufacturing and finished product transpor

tation costs. There are also differences in formulation. Manne con

siders economies of scale in manufacturing whereas the model formulated 

in this paper utilizes typical pulp and paper mill capacities. How

ever, a graph depicting the economy of scale can be derived by varying 

plant capacities given a set of supply and demand constraints. Second

ly, Manne omits cost variations of raw materials while the model herein 

includes variations in transportation cost as well as raw material cost 

and supply. Thirdly, Manne omits capacity limitations of existing 

facilities which are included in this model. 

Feldman, Lehrer, and Ray have developed a heuristic approach to 

a warehouse location problem (5). In their formulation, they allow the 

economies of scale to affect warehousing costs over the entire range of 

warehouse sizes. Their approach considers only flow of product from 

the warehouse to the market. In structure and economic considerations, 
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it differs to a great extent from the model presented in this thesis, 

whereas Feldman, et al. consider only cost elements related to ware

housing and transportation of finished product, the model presented 

herein includes cost associated with resources, production, and trans

portation. The purpose of their approach is to extend the Kuehn-

Hamburger ( 6 ) results to the case in which the warehousing cost 

function is concave rather than linear plus a fixed cost. Feldman 

et al. point out that the basic difference between the linear and con

cave cases is in the assignment of customers to warehouses that have 

been opened. As an advantage, they claim that their formulation allows 

one to deal with a different concave warehousing cost function for each 

potential warehouse. 

In "A Branch-Bound Algorithm for Plant Location," Efroymson and 

Ray ( "7 ) apply the branch-bound technique developed by Land and Doig 

( 8 ) to Balinski's formulation of the plant location problem. They make 

minor revisions in Balinski's formulation in order to more easily solve 

the numerous linear programming problems. The main advantage of their 

formulation, therefore, is that it reduces the time required to evaluate 

the nodes in the branch-bound technique. 

Spielberg ( 9 ) has considered a plant location problem which he 

solves using a direct-search technique. Similarities to the approach 

presented in this thesis include (1) consideration of one commodity 

plants, (2) consideration of fixed and variable costs, and (3) the sum 

of capacities of potential plants must be greater than or equal to 

total product demand. Points of dissimilarity include (1) the objective 
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function consisting of fixed cost plus a piecewise linear concave func

tion, ( 2 ) quantities transported being expressed as fractions of plant 

demand, and ( 3 ) the omission of purchasing costs, transportation costs, 

and the consideration of the availability of raw materials. Other dif

ferences also arise between the models due to the characteristics of the 

pulp and paper industry. 

Santone and Berlin (10) have developed a simulation model for 

evaluating existing and proposed fire station locations. Mathematically, 

the model is structured around a shortest-path algorithm that calculates 

response time and a weighting function which numerically measures the 

fire hazard of each structure in a delineated area. After numerically 

describing the factors using utility values, which were subjectively 

determined, a network diagram depicting the problem is constructed to 

evaluate the potential locations. 

Review of the Plant Location Problem 
for the Pulp and Paper Industry 

There is only a small quantity of work published on the plant 

location problem for pulpwood and bulk paper mills. Most of the work 

in mathematical modeling deals only with transportation costs. Other 

work has been done on pulp resources and its effects on mill location. 

The density of pulpwood forests, location of pulpwood, and pulpwood 

resources in relation to the present pulp mill locations have been 

studied, for example, by Arias (1 1 ) . 

Mathematical programming applied to pulpwood and paper mill 

location is scarce. There was no mathematical formulation found which 
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attempted to consider more than transportation costs. For example, 

Bacon utilized linear programming to consider only railroad transporta

tion costs from woodyard to the mill (12). Also, Dix (13) has developed 

a mathematical model for determining minimum transportation cost from 

the forest resource areas to a plant location. 

In general, little attention has been given to non-economic 

location factors in the pulp and paper industry. However, work has been 

done by Ullman (14) who notes the increasing importance of personal con

sideration in the location choice. He discusses climate and amenities 

as attractions to industrialists and the labor they employ. There is 

increasing evidence that these environmental factors are becoming major 

locational determinants (15). 

Scope and Limitations 

This research deals with developing a method for determining the 

optimum location of pulp and paper mills. The analysis can also be used 

to evaluate the economic factors of improving or expanding existing 

facilities. Although the economic factors of locating facilities is of 

primary concern in this study, some social factors are presented. 

Since characteristics of certain factors, such as methods of 

financing or effluent disposal vary from location to location, it is 

necessary to omit such detailed information from the analysis. There

fore, it is virtually impossible to present all questions or bits of 

information relating to each factor. 

The mathematical model developed is comprehensive insofar as it 

takes into account most economic factors encountered in setting up and 



operating a pulp or paper mill. The inclusion of fixed and variable 

costs make it possible for the analyst to consider most expenses 

included in the total cost of the product. Locational factors may be 

deleted from or added to the model with minimum effort required. 

Although the model is designed for locating pulp and paper mills, it 

may be modified to apply to location problems in general. 
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CHAPTER II 

PROCEDURE 

Description of the Approach 

This study approaches the problem of locating pulp and paper mills 

through the formulation of a mixed integer program. Although intangible 

factors such as recreational and educational facilities and community 

attitudes were not included in this model, their importance is not 

denied. The mill location decision should be based upon the optimum 

solution- of the model as well as these intangible factors. A brief 

summary of the factors considered is presented in this chapter with a 

more detailed outline analysis given in Appendix A. 

The model is designed to accommodate economic changes which occur 

in the industry. Future market or product cost trends may be considered 

by manipulating coefficients of the defined variables. Constraint equa

tions may also be added to or deleted from the model to better define a 

particular problem. 

Discussion of the Factors 

This section of the study defines and discusses factors pertinent 

to the location of pulp and paper mills. The discussion of each factor 

is on a general level and does not attempt to present a detailed factor 

analysis. Following is a presentation of pertinent locational factors. 
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Water 

Approximately 38,000 gallons of water per ton of finished product 

are required in the average pulp or paper mill (16). This water is of 

two standards. The higher grade of water required is potable or drink

able water while mill water is that which is used only in the manufac

turing process of pulp and paper. 

The purity of the potable water is analyzed by local or state 

health authorities using criteria published by the American Public Health 

Association. Mill water tests, however, are for a different purpose. 

These tests are run to determine the following characteristics of the 

water: turbidity, color, solids content, hydrogen ion concentration, 

alkalinity, acidity, dissolved oxygen and biochemical oxygen demand, 

oil content, and hardness. Detailed test procedures for these charac

teristics are published by the Standards Committee of the Technical 

Association of the Pulp and Paper Industry (17). 

Utilities 

There are several utilities which need to be considered as sources 

of power. Included are electricity, steam, gas, coal, oil, and wood 

bark (18). Availability, dependability, purchase agreements, and cost 

per unit are important considerations to the pulp or paper mill loca

tional decision. 

Effluent Disposal 

The problem of plant wastes is of particular importance to the 

analyst. He must consider the community's health as well as the 

company's image. Local, state, and federal laws pertaining to the 
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disposal of wastes must be adhered to. The analyst should examine pos

sible connections with a municiple sewage system and investigate various 

means of filtering wastes to prevent water and air pollution. 

The Availability of Raw Materials 

As noted in the literature search, the cost and availability of 

raw materials are essential factors in selecting the mill site. The 

analyst must consider the resource availability, the type of pulpwood, 

and especially the cost of pulpwood. 

Transportation 

Raw materials must enter the mill and finished products must be 

exported. This may be achieved economically through a variety of 

transportation systems. The availability of railroads, water carriers, 

highway vehicles, pipelines (19), and aircraft should be investigated. 

Marketing 

Marketing a product is usually very significant in the successful 

operation of most production facilities. Existing and projected sup

plies must be analyzed to determine the product demand. Various ques

tions must also be answered concerning the proposed mill's competitive 

position. 

Financing 

Financing the construction costs of a given mill is usually one 

of the first steps in the decision to invest in a production plant. An 

analysis of this factor, therefore, occurs in the first planning stages 

when potential sites are selected. The type of financing, either inter

nal (financing from a source within the company) or external (financing 
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from a source outside the company), should normally be decided before 

the selection of potential locations. Because external financing may 

be available only to mills in a given region, potential locations may 

be restricted to that region. However, this restriction may not exist 

if the financing is internal. 

Taxation 

The influence of taxes as a factor affecting pulp and paper mill 

location ranges from 1 to 2 per cent of the operating costs (20). This 

cost becomes a fixed cost of operation regardless of the rate of output. 

The interstate cost differential is usually negligible, whereas the 

intrastate differential is often significant. Therefore, the tax con

sideration is essentially a regional problem (see Appendix B ) . 

Labor 

Knowledge of the socio-economic conditions in the surrounding 

community is critical in evaluating a plant site. The cost of labor in 

the production of pulp and paper is a significant portion of the total 

product cost. This cost may be considered to vary directly with produc

tion when operating within the designed limits of the mill. The output 

per production man-hour has shown an average annual increase of 3.7 per 

cent from 1947 to 1960 due to greater mechanization in the industry (21). 

Community or Living Environments 

The community environment for the plant personnel is becoming an 

increasingly important factor. Due to the intangible nature of an 

"environment," it is difficult to measure its importance. The inter

relationship between this factor and the labor factor is significant. 
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A favorable environment can be a strong attraction for recruiting com

petent employees. Such items as the following should be considered in 

the evaluation of a community: population, population trends, civic 

advantages, schools, domestic housing, climate, and the cost of living. 
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CHAPTER III 

DEVELOPMENT OF THE MODEL 

General Description 

A mixed zero-one integer model is developed to define quanti

tatively those economic factors which should affect the location 

decision for pulp and paper mills. The objective of the mathematical 

model is to minimize total product cost subject to resource and 

requirement constraints. 

Assumptions in the Model 

Specific assumptions underlie the formulation and solution of the 

mixed integer model. The first three assumptions which follow are con

cerned with the entire problem; the remaining five deal with the factors 

included in the model. 

1. A potential supply of pulpwood is equal to or greater than 

the demand for an equivalent amount of product in a delineated area. 

2. A subset of production facilities can produce an amount equal 

to or greater than the calculated demand. 

3. The economic factors can be effectively quantified and inte

grated into a mixed integer programming model. 

4. The location analyst determines the period of time considered 

by the model. He can set the model up, for example, to calculate monthly 

or annual total product costs. 



16 

5. The location analyst can determine a minimum cost coefficient 

for variables in the objective function. For example, if a forest 

resource can be transported to the mill by either rail or truck, the 

analyst would determine the means of minimum cost and calculate the 

respective coefficients. 

6. Each market can be regarded as a discrete point. This is 

usually the case for the market of bulk pulp and paper products where 

the market consists primarily of converting or finishing plants. 

7. Sufficient manpower can be obtained to manufacture the 

product demand. 

8. All variable operating expenses, including labor, are linear 

and can be expressed in dollars per ton of output. 

Formulation of the Model 

The model is composed of five basic sets of constraints plus an 

objective function. The five constraint sets are (1) forest resource, 

(2) plant capacity, (3) market demand, (4) resource input-product out

put, and (5) softwood-hardwood input distribution. These sets describe 

the flow of materials through the network. The objective function 

describes the cost of the product flow through the network. 

The definitions for the variables used in the model formulation 

are given below: 

Definition of Variables 

S_̂ _. - cords of softwood transported from forest "i" to mill " j . " 

H.. - cords of hardwood transported from forest "i" to mill " j . " 



tons of finished product transported from mill " j " to market "k." 

number of softwood forest resources, 

number of hardwood forest resources, 

number of mill sites to be considered, 

number of markets to be served. 

maximum supply of softwood (measured in cords) transported from 

forest "i" in a given period of time. 

maximum supply of hardwood (measured in cords) transported from 

forest "i" in a given period of time. 

plant capacity in tons of finished product of mill " j . " 

demand of market "k" in tons of finished product, 

tons of finished product per cord of softwood in mill " j . " 

tons of finished product per cord of hardwood in mill " j . " 

per cent of hardwood in total pulpwood resource for plant " j " 

(measured in tons of finished product). 

zero or one variable indicating that mill " j " will not or will 

be built at location " j . " 

fixed cost required to set up mill " j . " 

a summation of stumpage, harvesting, loading, and transportation 

cost per cord of softwood from forest "i" to mill " j . " 

a summation of stumpage, harvesting, loading, and transportation 

cost per cord of hardwood from forest "i" to mill " j . " 

variable operating expenses (including labor) plus transportation 

cost per ton of product produced in mill " j " and transported to 

market "k." 
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Forest Resource Constraints 

Wood required for the manufacturing process is supplied by both 

softwood and hardwood forests. However, it is common to find both soft 

and hard woods mixed in a given forest area. This mixture may range 

from predominantly softwood to predominantly hardwood. A distinction is 

made between the two classes of wood because each has its own cost and 

demand. Specifically, hardwood yields more tons of output per dollar 

cost than softwood (22). This is primarily because hardwood has a lower 

stumpage cost and a greater weight per unit volume. However, due to the 

characteristics of hardwood fibers, its use is normally limited to a 

maximum of 15 per cent of the total wood used. 

The basic relationship for each forest and its output states that 

the summation of all resources shipped from each forest is less than or 

equal to the amount of resources which that forest can produce during a 

given time period. The typical equations for softwood and hardwood 

forests are given below: 

Softwood: 

Y S.. < R. 
j= i 1 ] 1 

The first equation specifically states that the summation of all 

softwoods transported out of forest "i" to "p" mills is less than or 

equal to the amount of "r" cords of softwood which forest "i" can pro

duce in a given time period (for example, one year). 

Hardwood: 

P 

j 
JT 

y H.. < t. 
=i ^ 1 
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The second equation states that the summation of all hardwoods 

transported out of forest "i" to "p" mills is equal to or less than an 

amount of "t" cords of hardwood which forest "i" can produce in a given 

time period. Note that a given resource area may contain both softwood 

and hardwood. 

Mill Capacity Constraints 

Each proposed mill site was assumed to have a given production 

capacity expressed in finished tons of product per time period. Ship

ments of a product are made to any number of the "m" markets. The 

typical equation for this section is: 

m 
y p., < Y.x. 

k=i * ^ : 

In this equation a maximum of "y" tons of finished product from mill " j " 

is being shipped to any number of the "m" markets. The value of "x_." is 

either zero or one. If "x^" is equal to one, there will be product flow 

through the mill. If nx_." is set equal to zero, no product will flow 

through the mill. In analyzing the objective function, it is apparent 

that an "x value of one would initiate the predetermined fixed cost 

associated with mill " j . " 

Market Demand Constraints 

The market for pulpwood and paper products is generally limited 

primarily to conversion and finishing plants. Therefore, any particular 

market "k" may be treated as a point demand. The typical market demand 

equation used in this model is: 
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This equation states that the summation of tons of bulk product 

shipped from all "p" mills to market "k" is equal to or greater than the 

demand for bulk product at market "k." The objective function for mini

mizing total cost prevents an "overshipment" to market "k" since total 

cost increases with added shipments. 

Input-Output Constraints 

The input-output equations set the input flow of pulpwood equal 

to the output flow of product. The input flow in cords is adjusted by 

a coefficient to make it equivalent to the output in tons. The follow

ing is the typical input-output equation and its explanation: 

h s m 
y G.H.. + y E.S.. = y p.. 

]=1 J J i=l J J k=l J 

The equation consists of three components: (1) tons of bulk 

product from hardwood, (2) tons of bulk product from softwood, and 

(3) total tons of product transported from mill " j " during a given time 

period. The hardwood input component is the summation of cords of hard

wood from all hardwood forests multiplied by a conversion factor for 

tons of finished product per cord of hardwood used in mill " j . " In the 

same manner, the softwood input component is the summation of cords of 

softwood from all softwood forests multiplied by a conversion factor for 

tons of finished product per cord of softwood used in mill " j . " The 
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remaining component is the total tons of bulk product transported from 

mill " j " to all markets "k" during a given time. 

Softwood-Hardwood Input Distribution Constraints 

This set of equations defines the maximum per cent of hardwood 

that can be used in a manufacturing process. The following is the 

typical equation describing the per cent of softwood and hardwood used: 

I G.H 
i=l 

< K. 
h 

I G.H i=l 
y E.S.. 

- 1 1 1 1=1 ] 1] 

This equation states that the total amount of hardwood used, 

measured in tons of bulk product, is less than or equal to a per cent 

"K" of the total wood resource input, measured in tons of bulk product. 

As previously cited, the use of hardwood is often favored over the use 

of softwood due to the lower cost per ton of bulk product produced. 

The Objective Function 

The objective of the model is to minimize total product cost 

subject to the given constraints. Many factors which determine the 

cost per unit may be included in the coefficients which precede the 

variables. A set of fixed costs is included in the linear equation to 

account for the fixed cost associated with each potential mill site. 

Three basic cost components compose the cost equation. These components 

are: (1) wood resource cost (delivered to the mill), (2) product cost 

(delivered to the market), and (3) fixed costs associated with the mill. 
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The wood resource cost, including delivery to the mill, is com

posed of two different sets of equations, one for softwood and another 

for hardwood. As previously described, S.. and H.. are the number of 
i] i] 

cords of softwood and hardwood, respectively, transported from forest 

"i" to mill " j . " The cost components a.. and b.. are a summation of 

stumpage, harvesting, loading, and transportation costs per cord from 

forest "i" to mill " j . " By knowing the resource (forest) location, the 

proposed mill location, available labor, transportation facilities, and 

stumpage costs for a particular site, it is possible to calculate the 

minimum a..'s and b..'s for the respective variables. 

The second type of cost which appears in the objective function 

pertains to production and transportation from the mill to the market. 

The cost coefficient c.n is calculated in dollars per ton of bulk 
jk 

product produced in mill " j " and shipped to market "k." This coeffi

cient includes variable operating expenses (such as water and power), 

labor cost, and the minimum transportation cost from mill " j " to 

market "k." All such costs are based on an operating scale as deter

mined by the predetermined capacity of the mill. 

The third type of cost included in the objective function is 

fixed costs associated with the mill. As previously explained, the 
fixed costs "F." for a mill " j " will be included in the function if 3 

mill " j " is selected to be built. If not, the fixed costs for plant 

" j " will equal zero. The fixed costs may include costs of constructing 

the mill, mill equipment, taxation, and other lesser costs which are 

determined once the production capacity is set for the mill. 
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the basic costs named above comprise the economics of the mill 

location decision. cost coefficients, as discussed, must be determined 

for each forest, mill, and market location. the following is a presen

tation of the objective function with the complete constraint set: 

p S p H m P p 
M I N z = y y A..s.. + y y B..h.. + y y c.p.. + y X.F. 

3=1 I=l j j 3=1 1=1 j k=l 3=1 3=1 j j 

subject to 

y S.. < r., for i = 1 to 
• 1 ID 1 

j h.. < T., for i = 1 to h 
, 13 1 J=l 

1 P,v * YA> for j = 1 to 
k=l JK J J 

I p

j k * \ , for k = 1 to m 

m 
j g.h..+ j e.s. . = j p.,, for j = l to p 
• N D ID • N ] I ] I N dk' J ^ 
3 = 1 J j i=l J K=l 

j g.h.. < k 
'-' —1 N —1 I=l D 1: D 

H s 
Y G.H.. + y E.S.. 

• • D • 1 3 ID 
1=3 j j I=l j 

, for j = 1 to p 

s. ., h. ., p., > 0 
ID ID ]k 

x. = 0 or 1 
D 
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CHAPTER IV 

SOLUTION TECHNIQUE 

Introduction 

This chapter describes a technique for solving mixed zero-one 

integer programming problems. The formulated problem falls into this 

category because it has continuous variables describing variable costs 

and zero-one variables describing fixed costs. In the past, linear 

programming has been widely used to solve similar problems having all 

continuous variables, whereas methods of implicit enumeration have been 

used to solve zero-one integer problems. An algorithm to combine these 

techniques is presented in this chapter. 

Restating the Problem 

The algorithm presented to solve the formulated model is based on 

Benders' partitioning procedure (23), Balas' additive algorithm (24), 

and the special structure of the model. In choosing a solution tech

nique for solving a particular location problem, the analyst might 

decide to use only part of the approach presented. 

The mixed zero-one integer problem formulated in Chapter III can 

be stated in matrix notation. Inequality constraints of the problem 

may be written as equality constraints by addition of slack and surplus 

variables. The following is the problem formulated in matrix notation 

with the equality constraints: 
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Maximize F'X + W'U [1] 

subject to 

YX + BU = E 

X,U > 0 

X = 0 or 1 

F = n-̂  component column vector which is the negative of the fixed cost 
associated with each plant; n^ = p for p plants 

X = nj_ component column vector of integer variables 

W = n2 component column vector; represents the negative of the cost 
coefficients of all non-integer variables 

U = n2 component column vector; represents all non-integer variables 

Y = m component column vector; y-j represents the production capacity 
of plant " j " measured in tons of bulk product 

B = mxn2 matrix; represents the non-negative coefficients of the non-
integer variables 

E = m component column vector. 

Now, summing over the market demand constraints gives 

m P m 

k=l ]=1 J k=l 

and summing over the mill capacity constraints gives 

m P p 

I I P.M. * > Y.X,. [3] 
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Thus , 

p m 
I Y.X > I D [4] 

j=l 1 1 k=l R 

Equation [4] is simply a non-negative linear combination of the existing 

equations, and therefore any feasible solution that satisfies the con

straint set of problem [1] also satisfies Equation [4], Conversely, 

given any X vector, say X +
9 satisfying constraint [4], one can obtain a 

feasible solution to the linear programming problem 

Maximize W'U [5] 

subject to 

BU = [E-YX +) 

U > 0 

Proof by Construction 

Definitions of variables are as follows: 

A T = total cords of wood available for use 

Â , = total tons of product available to satisfy market demand 

A = total cords of softwood available for use 

A = total cords of hardwood available for use n 

G = tons of finished product per cord of hardwood 

E = tons of finished product per cord of softwood 

K = per cent of hardwood in total pulpwood resource (measured in tons 
of product) 
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D = demand of market K in tons of product 
K 

H = number of cords of hardwood 

S = number of cords of softwood 

Y_. = capacity of mill j (measured in tons of product) 

The total cords of wood available for use, A T , is 

A T = A g + min H* G (1-K) [6] 

Converting [6] into tons of product gives 

A T = E • A g + min G • A G • - • — 
H' G (1-K) 

[7] 

Recall that assumption (1) in Chapter III states 

1 k k 

Now, re-index the X vector, X + , so that X.. for j=l to r has the 

value one, and X. for j = r + 1 to p has the value zero. 
3 

Step 1 

Consider the capacity of the plant having the lowest index, j = 1, 

and transport the following amount: 

Derivation. Total hardwood used is limited by softwood used. 
This may be stated as follows: 

GH = K(ES+GH) => GH = KES + KGH => H(G-GK) = KES => H = |. . JpL-



2 8 

Maximum{Y^,A^,}. 

Case 1 . < Y . 

Since A^ > I Dk, then Y 1 > I D y 
k k 

Thus, total market demand is satisfied and there exists a feasible solu

tion to [5], since product can be transported from any plant " j " to any 

market "k." Therefore, the proof is completed. 

Case 2. k > Y . 

If Y - I D j then there exists a feasible solution to [5] and the proof 
1 k k 

is completed. 

If Y < I D , then since [4] 7 Y.X. > 7 D , at least x. must 1 k k • : : k k 2 

equal one. Therefore, go to step 2. 

In general, if Equation [4] is not satisfied in step t-1, go to 

step t. 

Step t (General Step) 
t-1 

The unsatisfied demand is D = £ D - £ Y.. The wood resource t k . "j k ] =1 
available to plant "t" is expressed in tons of product as A* = A* -
t-1 t 

I Y.. 
j : 

Case 1 . A_j_ < Y . 
t 

Since A' < Y . A' Z I D, , and 7 Y.X. > 7 D. , then 7 Y.X. > t t T f k . D D r k . , D D m k ] J J k j=l J J 

y D, . Therefore the demand is satisfied and a feasible solution 
k=l k 

exists to [5]. Proof is completed. 

Case 2. k] > Y 
t t t 

Since A + > Y^ and j Y.X. > j D. , IF I Y. > I D. t t • D D ,L k' .L

n 3 • f k D k 3=1 J k 
there exists a 

i r k 
d: 

feasible solution to [5] and the proof is completed. However, if 
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Y Y. < y D. , then since [4] Y Y.X. > 7 D. , at least X.^. must equal 
j=l 3 k j 3 3 k 
one. Therefore, go to step t+1. 

Continue this procedure until either Equation [4j* is satisfied 

or j=r. If Equation [4] is satisfied for some j less than r, stop the 

process since a feasible solution has been found. If Equation [41 is 

not satisfied until " j " equals "r," go to Step r. 

Step r 
r-1 

The unsatisfied demand is D = ) D. - ) Y.. The wood resource, 
k 1=1 J r-1 

expressed in tons of product available to plant "r" is A = A^ - £ 
+ 3 = 1 1 

Since X is the final component of X which has the value one, 
r 

A* £ I D , and £ Y.X. > £ D , then I Y. > £ D . Therefore there exists 
1 k k j 3 3 k k j=l 3 k k 

a possible solution to problem [5j, and the proof is completed. 

Now, consider the problem 

Maximize z [9] 
o 

subject to 

z < F'X + min A k(E-YX +) o 

] k 

X = 0 or 1 

where K is the set of extreme points of the convex polyhedral set 

R = {A|A B > W , A unrestricted}, and A a T-component column vector 

with elements A . 
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THEOREM 1 

If (z ,X ) is an optimal solution to [9], then there exists a o 
A A A A A 

vector Y" such that (x",Y") is optimal to [1] with value F'x" t W'U" = 

z . 
o 

Proof 

Setting X = X in [1] given the linear programming problem 

Maximize W'U + F f X + [10] 

subject to 

BU = (E-YX +) 

U > 0 

Omitting the constant term F'X +, problem [10] may be written as 

Maximize W'U [11] 

subject to 

BU = (E-YX +) 

U > 0 

with dual 

Minimize X r(E-YX +) [12] 

subject to 
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A 'B > w 

It is obvious that A = 0 is a feasible solution to [12] since all 

elements of W < 0 and all dual constraints are of > form. Recall that 

problem [ 1 1 ] also has a feasible solution as proved by construction. 

Therefore, since both [11] and [ 1 2 ] have feasible solutions, they must 

have finite optimum solutions. Let Y be the optimal solution to [ 1 1 ] 

for X + = x ' \ Then, by duality theory W'tf = min A k' (E-YX") . Adding 

* X e 

the constant F 'X to both sides of the above equation gives 

A A V . | A A 

F'x' + W'tf = min A (E-Yx") + F ' x " , 
A e 

and hence 

z = F 'X + W'U 
o 

ft + ft 
Clearly, since y is a feasible solution to [10] for x = x , 

ft ft 
(y ,x ) is a feasible solution to [ 1 ] . To show that it is optimal to 

A A 

[ 1 ] , assume the contrary; i.e., assume (Z Q,X ) is optimal to [ 9 ] , but 
A A A A A A A A 

there exists a solution to [ 1 ] , say (X"",Y"") 9 with F'x"" + W 'u"" > z 
+ ft« 

Clearly for X = X must be an optimal solution to [ 1 0 ] . If not, Y 
_J_ A A A A j . j . 

could not be optimal to [ 1 ] . Thus, for X = x"", z^" = F'x"" + 
V » ftft 

min A (E-YX ) . 
A KeK 

o 
A A 

A unrestricted 
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Now since X is a feasible X vector for [1], it is also feasible 

for [9], and thus a solution can be obtained to [9] with value 
A A A A "i F A A A A A«?g A 

z"" = F'X"" + min X (E-YX°") = F ' X " " + W'LF' > z'\ 
o o 

This contradicts the assumption that ( Z
Q>X ) is the optimal solu-

* 
tion to [9], Thus, given an optimal solution (Z Q,X ) to [9], there 
exists an optimal solution to [1] with value z . 

o 
One may solve problem [1] by first solving problem [9] and then 
* + A 

given X , the optimal X vector for [9], set X = X and solve problem 

[10] for Y'\ Then, (X' ,Y' ) will be the optimal solution to [1]. 

Solution Procedure 

Benders (25) suggests the following iterative scheme for solving 

problem [9]. 

Maximize 

subject to 

z < F'X + min A K ( E - Y X + ) for all X keK o 

X = 0 or 1. 

Step (a) 

Given a subset K' of k, solve the integer programming problem [9] 

replacing k by k ?. If no feasible solution exists then [1] is not 



feasible. Otherwise let the optimal solution be X with value Z Q . 

Step (b) 

Now, determine whether or not an optimal solution to [9] has been 

found by solving [11] for the X obtained in Step (a). Let the solution 

vector be X with corresponding solution vector Y to [10], then (X,Y) is 

a feasible solution to [1]. Now z is maximized over a restricted set 
o 

of constraints and if 

z < F'X + W'O 
o 

since 

W'O = min X K [E-YX] 
X KeK 

k - -
condition [9] is met for all X eK and hence (X,Y) is the optimal solu
tion. If, however, Z q > F'X + W'O, an extreme point X has been located 

such that z < F'X + X(E-YX) is violated. Therefore, add X to the set o 

K' and return to Step (a). 

The integer programming problem may be solved using Unger's modi

fication (26) to Geoffrion's implicit enumeration (27). The following 

technique is based on Unger's procedure. 

Letting 
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D = I K 
k k 

the reduced problem [9] may be restated as 

Maximize z [131 
o 

subject to 

P I v i • z < b + ) e x . , 1=1,...,m 
j=l : : 

I y.x. > D 

x, = 0 pr 1 

where m is the number of elements in the set K 1. Any binary vector X 

will be called a solution to [13]. A solution satisfying the constraint 

set 7 y.x. > D will be called a feasible solution, A feasible solution 
• : : 

that maximizes Z q over all feasible solutions for the complete problem 

will be called an optimal feasible solution. Constraints of the form 

P 
i r i z £ b + ) e x . 

will be referred to as objective function constraints since they limit 

the maximum value of Z q but do not affect feasibility. A partial solu

tion S will be an assignment of binary values to a subset of the p 

binary variables. The variables not assigned values by S can take on 

either the value 0 or 1 and are called free. A completion of a partial 
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S solution S is defined as the binary vector X determined by S and an 

assignment of binary values to the free variables. 

As a bookkeeping procedure, the symbol j denotes x_. = 1, and the 

symbol -j denotes x_. = 0. The procedure is: 

Given a partial solution S, 

Step 1 
S. 

Find the best completion X of each objective function con-
P . S. 

i v i i 
stramt independently. Let z. = b + I e x . . 

1 j=l 3 3 

Step 2 
S S k 

Find z, = min z.. Let z = z, and X = X 
K . 1 K 1 

If z < z (the current best feasible solution) S is fathomed. Go to 

Step 3. Otherwise, go to Step 4. 

Step 3 

Locate the rightmost element of S that is not underlined. If 

none exists, terminate. Otherwise, replace it by its complement, under

line it, and delete all underlined elements to its right. Return to 

Step 1. 

Step 4 
S 

Make the completion X on each of the objective function con

straints. Let the value of each constraint under this completion be 
z! and let min zl = z'. I . I l 
Step 5 

Case 1 . z f = z: Here, the best possible completion of S has been 

reached. 

i) If this solution is feasible, S is fathomed. Store the solu

tion, replace z' by z', and backtrack (Step 3). 
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ii) If the solution is not feasible, augment S by a new variable 

so as to drive towards feasibility, Step 6. 

Case 2. z' < z, but z' > z. 

i) If feasible, replace z with z' and store the solution. Aug

ment S by a new variable so as to increase z', Step 7. 

ii) If not feasible, augment S by a new variable so as to drive 

towards feasibility, Step 6. 

Case 3. z' < z and z' < z. 

i) If feasible, augment S by a new variable so as to increase 

z' , Step 7. 

ii) If not feasible, augment S by a new variable so as to drive 

towards feasibility, Step 6. 

Step 6 

S is to be augmented as to drive towards feasibility. It is 
S S 

necessary to consider only those variables in the set T where T is 

defined as follows: 
S . S 

If in X , Xj = 0, j free, j is included in the set T if in the 

ith objective function constraint cT was < 0 and z. + cT > z. If the 
S 

set T is empty, S is fathomed since there is no way to obtain a 

feasible solution, go to Step 3. 

Next, check to see if it is possible to satisfy each of the 

violated constraints. In order to satisfy the feasibility constraint 

S r 

jcT S 
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where V = ^ y_,x_. - D. If the feasibility constraint cannot be satis

fied, S is fathomed. Go to Step 3. In the event S cannot be fathomed, 

augment S by adding j Q , where j Q is the j that makes V + y_. a maximum. 

Set x. = 1 and return to Step 1. 
3 o 

Step 7 

S is to be augmented in order to increase z f . Proceed as follows: 

Find the constraint that limited z to z' (if more than one such 
o 

constraint, arbitrarily select one). To obtain an increase in z f change 
S 

the values assigned by X to at least one of the free variables in this 
S 

objective function constraint, denoted as the kth constraint. If in X , 
k 

x. = 1, j free, and c. < 0, consider setting x. = 0 . Consider this 

change only if z^ - e > z, all i. Note this check need only be made 

for e > 0, since if c. < 0 this condition is met. Each j meeting the 
S+ 

above conditions is included in the set T . If on the other hand in 
S S- k i -

X , x. = 0 , j free, include j in the set T if c, > 0 and z. + c. > z, 
j j i 3 

S S+ S-
all i. Let the set T = T uT . 

S 

If the set T is empty, S is fathomed. Therefore go to Step 3. 

Furthermore, if 

z» , I c k + I c k < 
J £ T S + j € T S -

it is not possible to make z 1 > z and S is fathomed. Therefore, go to 
S 

Step 3. If T is not empty and the above test is passed, select j so 

as to yield a maximum increase in z'. The best possible value that can 

be obtained for z 1 is z. Now, select as j Q that j that gets the result 

as close as possible to z in the sense that 
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I max {(z-(zj_-c^)),0), jeT 

or 

I max {(z-(z!+c7)),0), jeT S-

S+ 
is a minimum. If j^ e T , set x_. = 0 in the augmented partial solu-

S_ 
tion. If i' e T , set x. = 1. Go to Step 1. 0 ] 
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CHAPTER V 

APPLICATION OF THE MODEL 

Introduction 

This chapter presents an example application of the mixed zero-

one integer model to the location of bulk paper mills. All economic 

factors discussed in Chapter II are included in this example. Several 

preliminary decisions must be made before the model can be applied. 

The following are decisions made for presenting this example problem: 

1. There is sufficient mill capacity and pulpwood resource to 

meet market demand. 

2. Minimum resource, production, and transportation cost coef

ficients can be determined. 

3. All costs are expressed as annual costs. 

4. Each of the two markets are finishing mills which are 

treated as discrete points. 

5. There are four forest resources, three potential plant 

sites, and two markets considered in this problem. 

Presentation of Data 

Figure 1 is a network representation of the problem with variable 

costs shown on the arcs. 
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PLANT 1 

PLANT 3 

Figure 1 . Network Representation of the Problem 



The following data present the market demand, production 

capacity, fixed costs, and forest resource for the example problem. 

MARKET DEMAND 

Market 1 140,000 Tons of Product per Year 

Market 2 200,000 Tons of Product per Year 

Total Market Demand 340,000 Tons of Product per Year 

POTENTIAL PRODUCTION CAPACITIES 

Mill 1 180 ,000 Tons of Product per Year 

Mill 2 180 ,000 Tons of Product per Year 

Mill 3 180 ,000 Tons of Product per Year 

Total Capacity 540 ,000 Tons of Product per Year 

FIXED COSTS OF MILLS (Includes Overhead, Taxes, and Amortized 
Construction Costs) 

Mill 1 F = $6,600,000 per Year 

Mill 2 F 2 = 6,900,000 per Year 

Mill 3 F 3 = 7,400,000 per Year 

FOREST RESOURCES 

Softwood Hardwood 
Forest 1 400,000 25,000 Cords per Year 

Forest 2 300,000 60,000 Cords per Year 

Totals 700,000 85,000 Cords per Year 

Conversion Factors: E. = 1/2 for all j 
: 

G. = 1/1.5 for all j. 
1 

Maximum Per Cent of Hardwood That May Be Used in Production: 

K = 0.10 
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Problem Formulation 

The following is the example problem formulated by the model 

Forest Resource Constraints 

Softwood + S 1 2 + S <. 400,000 

S 2 1 + S22 + S 2 3 " 3 0 0 > 0 0 0 

Hardwood + H 1 2 + H < 25,000 

H 2 1 + H22 + H23 ~ 6 0 > 0 0 0 

Mill Capacity Constraints 

Mill 1 

Mill 2 

Mill 3 

Market Demand Constraints 

p , + P 11 12 
p + P n 21 22 
P_ 
31 32 

Market 1 + P 2 1 + P ^ 140,000 

Market 2 P + P 2 2 + P 3 2 £ 200,000 

Input-Output Constraints 

Mill 1 

1 (H_ T + H - . ) + i ( S „ + S r t l ) = P_ + P. 1.5 v 11 "21' 2 v 11 21' 11 12 

Rewritten as 

4 ( H 1 1 + H 2 1 ) + 3(S 1 1 +S ) = 6P + 6 P 1 2 



Mill 2 

4 ( H 1 2 + H 2 2 ) + 3 ( S 1 2 + S 2 2 ) = 6 P 2 1 . 6 P 2 2 

Mill 3 

4 ( H 1 3 + H 2 3 ) + 3 ( S 1 3 + S 2 3 ) = 6 P 3 1 + 6 P 3 2 

Softwood-Hardwood Input Distribution Constraints 

Mill 1 

Hll + H21 S T5" C H 1 1 + H 2 1 + S 1 1 + S 2 1 ] 

9 H 1 1 + 9 H 2 1 " Sll " S21 £ 0 

Mill 2 

9 H 1 2 . 9 H 2 2 - S 1 2 - S 2 2 S 0 

Mill 3 

9 H13 + 9 H 2 3 - S13 * S23 * ° 

Objective Function 

Min Z = 1 7 S U + 18S 1 2 + 19S 1 3 + 20S 2 1 + 22S 2 2 + 19S 2 3 

+ 1 8 H U + 16H 1 2 + 18H 1 3 + 19H 2 1 + 21H 2 2 + 17H 2 3 

+ 1 4 P n + 17P 1 2 + 13P 2 1 + 11P 2 2 + 15P 3 1 + 16P 3 2 



+ 6,600,000X 1 + 6,900,000X 2 + 7,400,000X 3 

Solution to the Example Problem 

Partitioning the problem is the first step in the solution 

technique. The general form for partitioning the problem is 

Maximize z 
o 

subject to 

z < F'X + min A K (E-YX) 
° v 

A eR 

P m I Y X Z I D 
j=l 1 1 k=l k 

X = 0 or 1 

Consider the example problem [1] in Figure 2. The non-integer 

part of the partitioned problem is the linear programming problem [2] 

shown in Figure 3. The dual to the problem, shown in Figure 3, is 

problem [3] shown in Figure 4. Rewriting the dual to eliminate unre

stricted variables gives problem [4] shown in Figure 5. 

Now the integer part of the original formulation, problem [1], 

is 

Maximize z [ 
o 

Subject to 



S 1 2 S13 S 2 1 S 2 2 S23 H u H12 H13 H 2 1 H 2 2 23 p n P 1 2 P 2 1 P 2 2 P 3 1 P 3 2 xi X 2 X 3 
MAX = -17 -18 -19 -20 -22 -19 -18 -16 -18 -19 -21 -17 -14 -17 -13 -11 -15 -16 " F 2 " F 3 

1 1 1 < 400,000 
1 1 1 < 300,000 

1 1 1 < 25,000 
1 1 1 < 60,000 

1 1 < 180,000X]_ 
1 1 < 180,000X 2 

1 1 < 180,000X 3 

1 1 1 > 140,000 
1 1 1 > 200,000 

3 3 4 4 -6 -6 0 
3 3 4 4 -6 -6 0 

3 3 4 4 -6 -6 = 0 
-1 -1 9 9 < 0 

-1 -1 9 9 < 0 
-1 -1 9 9 < 0 

= FIXED COST OF PLANT J S. . > 0 

F l = 6,600,000 H. . > 0 

F 2 = 6,900,000 P. . > 0 

F 3 = 7,400,000 
j 

= 0 or 1 

Figure 2. Problem 1, Mixed Integer Example Problem 



s u S 1 2 S 1 3 S 2 1 S 2 2 S 2 3 Hll H 1 2 H 1 3 H 2 1 H 2 2 H 2 3 p l l P 1 2 P 2 1 P 2 2 P 3 1 P 3 2 
MAX Z= - 1 7 - 1 8 -19 - 2 0 - 2 2 -19 - 1 8 -16 - 1 8 -19 - 2 1 - 1 7 - 1 4 - 1 7 -13 - 1 1 - 1 3 -16 

1 1 1 < 400,000 

1 1 1 < 300,000 

1 1 1 < 25,000 

1 1 1 < 60,000 

1 1 
< ISCOOOXj^ 

1 1 
< 180,000X 2 

1 1 
< 180,000X 

O 
1 1 1 > 140,000 

1 1 1 > 200,000 

3 3 4 4 -6 -6 = 0 

3 3 4 4 -6 -6 0 

3 3 4 4 -6 -6 - 0 

-1 -1 9 9 < 0 

- 1 -1 9 9 < 0 

-1 -1 9 9 < 0 

S. . > 0 
11 

H. . > 0 
ID 

P. . > 0 
ID 

Figure 3. Problem 2 , Primal Linear Programming Problem 



x l X 2 X 3 X 5 X 6 X7 X8 X 9 X10 x n X 1 2 X13 x w X15 

1 3 -1 > -17 
1 3 -1 > -18 
1 3 -1 -19 

1 3 -1 > -20 
1 3 -1 > -22 
1 3 -1 > -19 

1 4 9 -18 
1 4 9 > -16 
1 4 9 > -18 

1 4 9 > -19 
1 4 9 > -21 
1 4 9 > -17 

1 -1 -6 > -14 

1 -1 -6 > -17 
1 -1 -6 > -13 
1 -1 -6 -11 

1 -1 -6 > -15 
1 -1 -6 > -16 

X. > 0 for 1=1,... ,9 l 
X. Unrestricted for i=10,ll,12 
X. > 0 for i=13,14,15 

Minimize Z = 400,000X 1 + 300,000X 2 + 25,000X 3 + 6 0 , 0 0 0 X 4 

+ 180,000X X + 180,0Q0X X + ISO JOOOX^X^ 
b 1 b 2. I o 

- 140,000X - 200,000X 

Figure 4. Problem 3, Dual Linear Programming Problem 
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X 2 X 3 X 5 X 6 X 7 X 8 X 9 xio x n X12 X 1 3 x i 4 
X15 X16 X 1 7 X 1 8 

-1 -3 3 1 < 17 

-1 -3 3 1 < 18 

-1 -3 3 1 < 19 

-1 -3 3 1 < 20 

-1 -3 3 1 < 22 

-1 -3 3 1 < 19 

-1 -4 4 -9 < 18 

-1 -4 4 -9 < 16 

-1 -4 4 -9 < 18 

-1 -4 4 -9 < 19 

— -1 -4 4 -9 < 21 — 
-1 -4 4 -9 17 

-1 1 6 -6 < 14 

-1 1 6 -6 -4 4 < 17 

-1 1 6 -6 < 13 

-1 1 6 -6 < 11 

-1 1 6 -6 < 15 

-1 1 6 -6 < 16 

X, X > 0; X 10 

X13 " X 1 6 ; A 1 4 

X10 X l l 5 x n 
IT _ ft 

X 1 7 ; X15 " X18 

= X 12 
ft ft ft ft 

X 1 3 ; X12 = X14 " X 1 5 ; 

Minimize Z = 400,000X 1 + 300,000X 2 + 25,000X 3 + eOjOOOX^ 

+ 180,000X CX 1 + 180,000X.X o + 180,000X_X o - 140,000X o - 200,000X^ o l b 2 I o b 9 

Figure 5. Problem 4, Dual Problem with Added Variables 
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z < -6,600,000X, - 6,900,000X. - 7,400 ,000Xo o 1 z o 

I Vi * I \ 
X. = 0 or 1 for all j 
3 

The solution begins with a solution for the dual linear program

ming problem, A\ = 0 for i=l to i=15. 

Step 1-a 

Recall from Chapter IV that A , : L(E-YX) is as follows: 

= (0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0) 400 
300 
25 
60 
180 
180 
180 

-140 
-200 

0 
0 
0 
0 
0 
0 

,000 
,000 
,000 
,000 
,000X-l 
,000X2 

,000X3 

,000 
,000 

= 0 = W'U 1. 

This gives the integer problem 

Maximize z [5] 

subject to 



z < -6,600,OOOX, - 6,900,000X^ - 7,400,000Xo + 0 o 1 2 O 

180.000X + 180,000X2 + 180,000X3 > 340,000 

X. = 0 or 1 
: 

Applying the procedure presented in Chapter IV gives the integer solu 

tion X 1 = [X =1,X =1,X =0] and z 1 = -13,500,000. 
JL 2 O O 

Step 1-b 

With X = x \ the objective function of the dual linear program 

ming problem [4] becomes 

Minimize Z = 400.000X + 300,000X + 25,000X3 + 60 ,000X 

+ 180,000XC(X =1) + 180,000X.(X =1) + 180,000X„(X_=0) b 1 b 2 I O 

- 140,000X. - 200,000X.. 
o y 

Minimizing the equation above with respect to the constraint set of 

problem [4] yields the optimal solution 

x l = 3 X6 = 3.87 x n = = -6.77 

X2 = 0 X 7 = 39.52 X12 = = 0 

X 3 = 5 X8 = 52.52 X13 = = 0.74 

X 
4 

= 0 X9 = 55.52 X l 4 = = 0.13 

X 
5 

= 0 xio = 6.42 X15 = : 0 
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Thus, 

A' 2(E-YX +) 

= (3,0,5,0,0,3.87,39.52,52.52,55.52, 

6.42,-6.77,0,0.74,0.13,0) 400 
300 
25 
60 

180 
180 
180 

-140 
-200 

0 
0 
0 
0 
0 
0 

,000 
,000 
,000 
,000 
.OOOX-l 
,000X2 

,000X3 

,000 
,000 

For X 1 , 

696,780X 2 + 7,112,880X 3 - 17,130,440 

min A ' 2 ( E - Y X + ) = max W'O = -16,433,660 

Since = -13,500,000 i -6,600,000(1) - 6,900,000(1) -16,433,660, 

add the constraint z < -6,600,000X n -6,203,220X o -287,120X Q -17,130,440 
o 1 I 6 

to the integer programming problem. 
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Step 2-a 

The revised integer problem is: 

Maximize z [6] 
o 

subject to 

z < -6,600 ,000Xn - 6 ,900 ,000X o - 7,400 ,000X o + 0 o 1 2 3 

Z q < -6,600,000X 1 - 6,203,220X 2 - 287,120X 3 - 17,130,440 

180,000X 1 + 180,000X 2 + 180,000X 3 > 340,000 

X 1 S X 2 , X 3 = 0 or 1 

Applying the procedure presented in Chapter IV gives the integer solu

tion X 2 = [X =0,X =1,X =1] with z 2 = -23,620,780. 
_L o O 

Step 2-b 

Now using X = [X 1=0,X 2=1,X 3=1] the new dual objective function 

is as follows: 

minimize Z = 400,000X n + 300,000X o + 25,000X. + 60,000X, 
J. 2 o 4 

+ 180,000X C(X =0) + 180,000X_(X o=l) + 180,000X_(X =1) o i. b 2 / o 

- 140,000X o - 200,000X. 



Minimizing the equation above with respect to the constraint set of 

problem [4] yields 

Therefore, 

A l ; -- 0 X 6 : = 5.97 A n = 5.90 

= 0 A 7 : = 0 
X12 = 6.06 

= 5 X 8 = = 51.39 X13 = 0 

\ -= 0 A 9 = = 52.39 A l 4 = 0.29 

X 5 -= 8.89 X 
10 

= 4.75 X15 = 0.81 

1 3 + 
X J(E-YX ) 

is 

(0,0,5,0,8.89 ,5.97,0,51.39 ,52.39 ,4.75,5.90,6.06, 

0,0.29,0.81)( 400 
300 
25 
60 

180 
180 
180 

-140 
-200 

0 
0 
0 
0 
0 
0 

,000 
,000 
,000 
,000 
,000X-l 
,ooox2 

,ooox3 

,000 
,000 

= 1,600,000X + 1,074,000X - 17,547,600 
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For X 2 , min A ' 3 ( E - Y X ) = max W'U = -14,873,600. Since z 2 = -23,620,780 / 

-6,900,000 - 7,400,000 - 14,873,000, add the constraint Z Q < 

5,000,000X 1 - 5,826,000X 2 - 7,400,000X 3 - 17,547,600 to the integer 

programming problem. 

Now, the revised integer programming problem is as follows: 

Maximize z [7] 
o 

Z Q < -6,600,000X 1 - 6,900,000X 2 - 7,400,000X 3 + 0 

Z q < -6,600,000X 1 - 6,203,220X 2 - 287,120X 3 - 17,130,440 

z < -5,000,000X, - 5,826,000X o - 7,400,000X o - 17,547,600 o 3 1 2 3 

180,000X 1 + 180,000X 2 + 180,000X 3 £ 340,000 

X l 9 X ,X 3 = 0 or 1 

Step 3-a 

Solving the integer programming problem [7j" gives the solution 
_3 
X = [X =1,X =1,X_=0] which is the same integer solution as obtained 

J. Z. o 
-3 -1 in Step 1-a. Since X will give the same dual solution as X , it is 

-3 -3 -3 

apparent that Z q = F'X + W'U . Therefore, the optimal solution 

(X,Y) is found. 
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The optimum solution to the problem is to build plants one and 

two having a total annual product cost of $29,933,660. Either solving 

the primal problem [2] using X^=X2=1, Xg=0, o r inspecting the final dual 

tableau will give the following quantities produced and transported: 

11 

12 

13 

21 

22 

23 

11 

l12 

13 

86,452 

313,548 

0 

192,258 

0 

0 

0 

25,000 

0 

21 

22 

'23 

11 

12 

21 

22 

31 

32 

30,968 

9,839 

0 

140,000 

20 ,000 

0 

180,000 

0 

0 
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CHAPTER VI 

DISCUSSION OF RESULTS AND CONCLUSIONS 

The objective of this research was to develop a method for 

analyzing potential pulp and paper mill locations. This objective 

was met by (1) defining the factors pertinent to the location decision, 

(2) mathematically modeling these factors using mixed zero-one integer 

programming, and (3) presenting a solution technique developed by 

Benders. The sample problem presented in Chapter V exemplified the 

solution technique applied to the formulated model. 

Defining the factors pertinent to the location decision served 

as the basis for developing the model. A differentiation was made 

between social and economic factors and the importance of each was 

recognized. Researching the economic factors indicated that the cost 

of labor, transportation, pulpwood resource, and initial investment 

are generally the major economic factors important to plant location. 

A mixed zero-one integer program was used to model the location 

problem. The formulated model did include all economic factors defined 

in Chapter II. The developed model is versatile for it considers both 

fixed and variable costs. It also can easily be modified to include 

additional economic factors which may arise in a particular location 

problem. 
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The solution technique was based on Benders' partitioning 

procedure. Partitioning the problem allowed developed solution 

algorithms to be used. Computerizing Unger's modified Geoffrion tech

nique would make the solution of the integer part of the partitioned 

problem much more convenient as well as more practical for solving 

large problems. Rather than solving alternate integer and linear 

programming problems, as in Benders' procedure, Unger developed another 

type procedure which requires the solution of only one integer and 

multiple linear programming problems (28). This latter procedure merits 

recognition as an alternate solution technique for the formulated 

problem. 

The number of calculations involved in applying the model was 

indicated by the example problem in Chapter V. The need for computer 

facilities is apparent, even for small problems. 

The value of the developed model as a decision tool for plant 

location depends upon the discretion used by the analyst in delineating 

the region to be analyzed, obtaining data, and calculating the miniTnuTn 

cost coefficients. Obtaining the necessary inforination is usually not 

a complicated procedure. However, the large number of factors involved 

requires a thorough, time consuming investigation. 

In summary, the formulated model can minimize the total product 

cost for pulp and bulk paper mills. 
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APPENDIX A 

CHECKLIST OF VARIABLES 

Presented below is an outlined checklist of variables which the 

analyst may consider in the location of pulp and paper mills. The 

checklist is by no means exhaustive and should be supplemented by 

information required for a specific site (29). 

I. WATER 

A. River 

1. Flow—maximum, average, minimum 
2. Analysis for specific use 
3. Riparian rights 

4. Restrictions 

B. Wells 

1, Depth 
2, Diameter size, capacity 
3, Analysis of water for specific use 
4, History of ground water level, source in rocks or sand 

C. Public System 

1. Dependability 
2. Unit cost 
3. Future expansion plans 
4. Adequate capacity for mill growth 
5. Water supply contract 
6. Analysis of water for specific use 

II. UTILITIES 

A. Electricity 

1. Unit cost 
2. Dependability 
3. Future expansion plans 
4. Adequate supply for mill expansion 
5. Purchase agreement 
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II. UTILITIES (Continued) 

B. Steam 

1. Unit cost 
2. Dependability 
3. Future expansion plans 
4. Adequate supply for growth 
5. Purchase agreement 
6. Purchase available 

C. Gas—Natural or L.P. 

1. Unit cost 
2. Dependability 
3. Future expansion plans 
4. Adequate supply for growth 
5. Purchase agreement 

D. Coal 

1. Cost delivered 
2. Qualities 
3. Quantity of supply—maximum and minimum per time period 
4. Time required for delivery 
5. Alternate sources 
6. Purchase agreement 

E. Oil 

1. Cost delivered 
2. Qualities 
3. Quantity of supply—maximum and minimum per time period 
4. Time required for delivery 
5. Alternate sources 
6. Purchase agreement 

F. Wood Bark 

1. Quantity of supply 
2. Incurred savings 

III. EFFLUENT DISPOSAL 

A. Public Disposal 

1. Cost 
2. Capacity for growth 
3. Sample disposal contract 
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III. EFFLUENT DISPOSAL (Continued) 

B. River 

1. Location 
2. Flow—maximum, average, minimum 
3. Required local and state standards 
4. Experience of other industries in area 

C. Air Pollution Requirements 

1. Present local, state, and federal requirements 

2. Future requirements 

IV. AVAILABILITY OF RAW MATERIALS 

A. Wood 
1. Available species and quantities 
2. Possession status of wood limits or grants 

(owned, leased, cutting rights) 
3. Rate of growth to pulpwood size 
4. Weight per green cord (128 cubic feet piled) 
5. Specific gravity 
6. Barking characteristics (easy, medium, or hard) 
7. Delivery distance to plant site 
8. Seasonal delivery? Which months? 
9. Method of delivery (rail, truck, river, barge, boom) 

10. Long-term storage (insects, climate) 
11. Length of logs to be delivered 
12. Maximum and minimum diameter of logs 
13. Cost per delivered cord (various species) 
14. Chipped wood 

a. Cost 
b. Availability 
c. Advantages 

B. Other Raw Materials (Bagasse, Straw, Esparto Grass, 
Old Papers , Etc.) 

1. Type used 
2. Annual quantities available within economic proximity 
3. Cost per unit 
4. Mode of transportation (truck, rail, etc.) 
5. Form in which delivered (bulk, bundled, baled, etc.) 
6. Fiber content per ton 



TRANSPORTATION 

A. Rails 

1 . Costs 
a. Rates on pulpwood per ton mile 
b. Rates on major items to and from major cities 

in areas to be served 
c. Cost of installing service; who pays? 

2. Frequency of service 
3. Names of companies serving 

B. Trucks (Common Carriers) 

1 . Rates on major items to and from major cities 
in area to be served 

2. Frequency of service 
3. Time to and from major cities in area to be served 
4. Names of companies serving 

C Airline Service 

1 . Freight rates 
2. Schedules 
3. Distance to ports 

D. Bus Service or Other Commuter Service 

E. Highways 

1 . Number of roads existing to site 
2. Condition of roads 
3. Nearby interstates 

4. Distance to major cities 

F. Water 

1 . Barge 
a. Rates 
b. Schedules 

2. Ship 
a. Rates 
b. Schedules 

3. Wharf or docks existing at site 
G. Pipelines 

1 , Any existing? 
2, Feasibility? 
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VI. MARKETING 

A. Market Demand (Local or Regional Market) 

1. Local or regional market trends 
2. Present production capacity 
3. Sales volume and value of each product 
4. Estimated production of each major product 

B. Competitors for New Products 

1. General information 
a. Names 
b. Location 
c. Present and future output 
d. Production costs 
e. Selling prices 

2. Changes in competition 
a. Expansion 
b. Modernization 
c. New plants 
d. New competing products 

3. Foreign competition 
a. Tariffs 
b. Other laws affecting volume (health, agricultural, 

etc.) 
4. Competitive position 

a. Selling prices 
b. Estimated transportation costs 
c. Maximum competitive selling prices 
d. Competitive advantages of proposed mill 

VII. LABOR 

A. Mobility 

1. Local labor trend 
2. Local population trend 

3. Farm to urban migration 

B. Availability 

1. Union (closed and open shops) 
a. Availability of each skill, trade 
b. Sample labor contracts in area 
c. Average rates 

2. Non-Union 
a. Availability of each skill, trade 
b. Sample labor contracts in area 
c. Wage rates 
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VII. LABOR (Continued) 

3. Education 
a. Level 
b. Abilities 

c. Available training facilities 

VIII. COMMUNITY OR LIVING ENVIRONMENT 

A. Relative Size 

1. City or town 
a. Population trends 
b. Land development trends 

2. Size of surrounding communities 
B. Schools 

1. Graded 
2. Vocational 
3. Universities 

C. Civic Advantages 

1. Synagogues; churches—denominations 

2. Entertainment 

D. Cross Section of Population 

1. Income 
2. Age 
3. Sex 
4. Race 

E. Climate 

1. Temperature—maximum, minimum, median 

2, Rainfall—annual, daily 

F. Housing 

1. Rental 

2. Owned 

G. Cost of Living 

H. Hotel and Motel Facilities 

I. Fire Protection 
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VIII. COMMUNITY OR LIVING ENVIRONMENT (Continued) 

J. Insurance Rates 

K. Water Supply 

L. Local Taxes 
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APPENDIX B 

TAXATION AND INDUSTRIAL LOCATION 

The influence of taxes as a factor affecting industrial location 

ranges from 1 to 5 per cent of the operating costs for different types 

of manufacturing (30). This percentage also varies because of the dif

ferences in tax situations in particular counties and states. There

fore, in considering a particular location, the manufacturer must 

examine not only the current tax stipulations but also the tax program 

projected for the future. 

A tax becomes a fixed cost regardless of rate of output. A 

general property tax has about the same effect as a higher interest 

rate. It penalizes localities where plants and equipment are less 

fully utilized and sharpens the producer's incentive to find a location 

where less capital investment is required per unit of output. Thus, a 

combination of tight restrictions on overtime work, night work, and 

speed-up procedures with a large degree of reliance on general property 

taxes for local revenues can be doubly burdensome to industry. General 

property taxes are likewise a threat to solvency in periods of poor 

business and may contribute to a cumulative weakening of a producer's 

competitive position. 

Between distant states, tax differentials appear to exercise 

little plant location influence. The manufacturer will ordinarily 

select a region on the basis of economic conditions in general, rather 
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than on the tax structure in particular. However, on a regional level, 

the tax factor may be influencial in the decision. It can be used by 

the various communities to compete for the desired industry. Specif

ically, within a state and more particularly within a metropolitan area 

such as Atlanta, significant local property tax rate variations can and 

do become swing factors in plant location decisions. 

Personal Property Tax Influence 

The general property tax as a state and/or local levy appears to 

have the greatest influence on managerial decisions (31). In jurisdic

tions where this tax is levied upon business inventories it is possible 

to discern a clear interrelationship between the property tax costs and 

decisions made by management. The interrelationship exists for large 

national concerns operating in several states where the tax treatment 

accorded such inventories differs sharply. Textile firms operating in 

the two Carolinas, for example, have the opportunity to minimize taxes 

by concentrating inventories in South Carolina, where they are largely 

tax exempt, even though the firms maintain manufacturing facilities in 

both states (32). Good highways and truck transportation permit this 

type of tax minimizing. 

High city property tax rates on inventories encourage erection of 

warehouses outside the city not only by manufacturers but also by mer

chandisers , such as supermarket operators. Even minor differences in 

tax procedure may be used to advantage by business. If one government 

taxes on year-end values while the other applies average values over the 

year, shifting of inventories at strategic times reduces tax liability 
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in the former case. It is not always possible for business to minimize 

taxes by these means. If the product is highly perishable, for example, 

the total inventory carried will be small and the potential tax saving 

available by movement of inventory is hardly worth the trouble. Never

theless, it appears to be a general rule that whenever sizable liabili

ties accrue from property taxes on mobile property such as business 

inventories, alert management takes steps to minimize that liability. 

Influence of Tax Differentials 

In the appraisal of tax considerations, it is the size of the 

tax differential rather than the size of the total tax bill that is 

significant; a fact that sharply limits the value of Federal tax 

deductibility as a "neutralizing" force. 

As pointed out earlier, tax costs vary both between different 

sites in the same state and between states. The intrastate variation is 

largely attributable to the effective general property tax rates at 

alternative sites. On the other hand, interstate variations reflect 

both the types of taxes used by the several states and the bases and 

rates of the taxes. Intrastate variations, however, may be as large, 

if not larger, than tax burden variations between states. 

Individual firms are concerned with the type of taxes levied, 

depending upon the nature of their operation. For example, a firm with 

a large labor force relative to its capital investment is concerned with 

payroll levies, while firms with a large capital investment and a com

paratively small labor force are concerned with the property tax 

burdens. 
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Another similar problem which often concerns management is the 

number of taxes levied and the large amount of paper work required. The 

utilization of electronic data processing has counteracted this problem 

in many cases, however, and this point is therefore demanding less 

attention and consideration by industry's management. 

The Influence of Intrastate and Metropolitan Tax Differentials 

High property tax rates in the central cities appear to be an 

important factor in explaining the movement of industry to suburban 

and non-metropolitan areas. The case for this inference rests on the 

fact that (1) property tax rates are generally lower in suburban areas 

than in the central cities; (2) the presence of industrial tax havens 

in these areas; and (3) the fact that certain cities noted for their 

high property tax rates have had to grant special property tax conces

sions in order to attract new industry. Following is a list of suburban 

property tax rates as a percentage of central city rates for various 

metropolitan areas (33): 

City Per Cent City Per Cent 
Memphis 4 Chicago 76 
San Antonio CO

 Cleveland 83 
Fort Worth 36 Detroit 85 
Omaha 44 Buffalo 86 
Oklahoma City 49 Atlanta 87 
Baltimore 53 Oakland 87 
Cincinnati 54 Toledo 88 
Newark 58 San Diego 90 
Rochester 58 Washington, D. C. 101 
Portland 61 New York City 102 
Denver 64 San Francisco 105 
Philadelphia 64 Saint Louis 109 
Milwaukee 66 Birmingham 117 
Los Angeles 67 Columbus 117 
Louisville 68 Kansas City 119 
Seattle 73 Phoenix 141 
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