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Stochastic Differential Equations
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Abstract—In recent years, curve evolution, applied to a single
contour or to the level sets of an image via partial differential equa-
tions, has emerged as an important tool in image processing and
computer vision. Curve evolution techniques have been utilized in
problems such as image smoothing, segmentation, and shape anal-
ysis. We give a local stochastic interpretation of the basic curve
smoothing equation, the so called geometric heat equation, and
show that this evolution amounts to a tangential diffusion move-
ment of the particles along the contour. Moreover, assuming that
a priori information about the shapes of objects in an image is
known, we present modifications of the geometric heat equation de-
signed to preserve certain features in these shapes while removing
noise. We also show how these new flows may be applied to smooth
noisy curves without destroying their larger scale features, in con-
trast to the original geometric heat flow which tends to circularize
any closed curve.

Index Terms—Geometric image and shape flows, stochastic dif-
ferential equations, nonlinear filtering, shape analysis.

I. INTRODUCTION

I N RECENT YEARS, curve evolution has emerged as an im-
portant application of partial differential equations (PDEs)

in image processing, computer vision, and computer graphics.
Curve evolution techniques have been applied not only to in-
dividual curves, for applications such as edge-detection, skele-
tonization, and shape analysis, but have also been considered
for their simultaneous action on the level sets of an image in
a number of geometrically based anisotropic smoothing algo-
rithms. Osher and Sethian [1], [2] extended this latter perspec-
tive to the treatment of individual curves through a set of al-
gorithms, known as level set methods, which enable the im-
plementation of curve and surface evolution on a fixed grid.
These techniques have aided a number of researchers in pushing
the application of curve evolution to new limits by providing a
simple framework for treating certain types of singularities such
as shocks and topological transitions [1], [3].

Much of the research in curve evolution theory has centered
around the so called geometric heat equation [4] in which a
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curve is evolved along the normal direction in proportion to
its signed curvature. This flow is well known for its smoothing
properties [5]–[7] and the fact that it corresponds to the gradient
evolution for arclength (thereby earning the namecurve short-
ening flow). Because curvature is a purely geometric quantity
(invariant to rotation and translation), curvature-based motion
gives rise to a Euclidean invariant scale space [8]–[10], allowing
one to trace features in a curve from finer to coarser scales as
the evolution proceeds. An affine invariant scale space can be
obtained from a related curvature flow which depends upon the
cube root of the curvature (see [8], [11], [12]).

When applied to the level sets of an image, these flows have a
powerful denoising effect when run for a short amount of time.
If run for too long, however, even large scale features will be de-
stroyed. The reason stems from the fact that as the geometric heat
flow shrinks any closed curve, the curve becomes more and more
circular (elliptical in the case of the affine flow) and will even-
tually collapse into a single point [4]. It is therefore not always
possible to preserve desired features in the shapes of objects (cor-
ners for example) if too much evolution is required to remove a
significant level of noise. Furthermore, it is not well understood
how these curvature-based filters are affected by different noise
distributions and when this sort of problem may occur.

To the best of our knowledge, and aside from [13], [14], non-
linear diffusion in the previous literature was discussed from
a purely deterministic perspective. In this paper we provide a
stochastic formulation of the geometric heat equation and use
the resulting insights to develop a new class of curvature-based
flows and anisotropic diffusion filters which preserve desired
features in the shape of an object. Under these new flows,
evolving curves take the limiting form of a polygon (see [15]
for evolutions of polygons related to the geometric and affine
geometric heat flows, and [16] for evolutions of polygons glob-
ally through an electric field concept). The resulting diffusion
models may therefore be applied for much longer periods of
time without distorting the shapes of polygonal objects in the
image, thereby mitigating the tradeoff between noise removal
and shape distortion.

Polygonal structures are ubiquitous in images of man-made
objects (buildings, roads, vehicles, etc.), which contain many
straight lines, often oriented in particular directions (e.g., hori-
zontal and vertical), that come together to form sharp corners.
The ability to preserve such distinctive features is not only de-
sirable when filtering an image which contains these types of
shapes, but is also important when applying low level smoothing
to an extracted shape since such features constitute important
and powerful cues for recognizing objects in higher level vision
algorithms. We will present both applications in this paper. From
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a dual perspective to our contour-based approach to shape rep-
resentation, skeletonization approaches may also allow shape
analysis without displacement of corners [7], [17]–[21].

In this paper, we develop a new class of curve evolutions,
which are obtained by a modification of the geometric heat
equation. Given an initial shape in the form of a continuous
curve, the class of curve evolution equations we will obtain, de-
form it into a pre-specified final polygonal shape. The problem
of deforming an input shape into a different form has been of
interest in various fields such as computer graphics [22].

The contents of this paper are outlined as follows. In Sec-
tion II, we review some theoretical concepts associated with the
curve shortening flow, including its connection to a nonlinear,
directional diffusion equation in which image values diffuse lo-
cally only along the directions of its edges. In Section III, we
provide a stochastic equivalent equation which in turn unveils a
new shape/feature-driven flow described in detail in Section IV,
which we also believe could offer a variety of applications out-
side the recognition and classification problems. We conclude
with some illustrating and substantiating examples in Section V,
and conclusions in Section VI.

II. BACKGROUND AND FORMULATION

It is known that the low pass Gaussian filter from signal pro-
cessing can be implemented by evolving the intensities of an
image via the linear heat equation [10],

(1)

where the gradient operator,, and the divergence operator,,
involve only the spatial variables and . The solution to this
equation yields a parameterized family of new images ,
where the image at each time is equivalent to the original
image convolved with a Gaussian filter of
variance . This equivalence gives rise to a natural generaliza-
tion of the low pass filter using nonlinear diffusion.

Nonlinear diffusion has a distinct advantage in image
processing over linear diffusion in that it may be allowed
to handle anisotropies (giving rise to the nameanisotropic
diffusion) in an image. This is particularly important where
salient image features are concerned. For example, when the
preservation of sharp edges is important, it is natural to consider
an anisotropic model which diffuses an image only along the
local direction of its edges. One such approach is to consider
an image as a collection of iso-intensity contours, or
level curves, and to note that at an edge point, the direction
of the edge corresponds to the tangent of the iso-intensity
contour running through that point. Letdenote the direction
normal to the level curve through a given point (the gradient
direction), and let denote the tangent direction. We may write
these directions in terms of the first derivatives of the image as

.
Since these constitute orthogonal directions, we may exploit
the rotational invariance of the Laplacian operator and re-write
the linear heat equation in terms of these two variables:

, where and denote
second-order directional derivatives in the directions ofand

respectively. By subtracting the normal diffusion component
from the linear heat equation, which diffuses isotropically,

the following anisotropic model, which diffuses along the
boundaries of image features but not across them

(2)

is obtained [9]. We may obtain this same equation in a com-
pletely different and much more geometric manner by speci-
fying the evolution of each level curve in the image. Letde-
note a particular iso-intensity contour which we will deform
over time via the following flow:

(3)

where denotes the arclength parameter,the Euclidean cur-
vature, and the inward unit normal. Equation (3), referred to
as theGeometric Heat Equation(GHE), is well known for its
smoothing properties. It has been shown by Grayson [4] that
any closed, embedded curve evolving according to (3) will con-
vexify and smoothly shrink to a single point in finite time, be-
coming more and more circular along the way. This flow is also
referred to as thecurve shortening flowsince it corresponds to
the gradient (descent) evolution of the arclength functional. See
[5]–[7] for a more extensive discussion of the many properties
associated with this flow. Because the evolution speed is a func-
tion of the curvature at each point on a curve, this flow gives
rise to aEuclidean invariantscale space (see [8]–[10]) in which
finer features are removed first, followed by coarser features, as
the curve evolves. A related flow, based upon the affine geom-
etry of the curve, is given by and shares many of
the same properties as the curve shortening flow but gives rise to
a more generalaffine invariantscale space (see [8], [11], [12]).

If we apply the geometric heat flow to every single level curve
in the image we obtain the same anisotropic diffusion equation
that we derived earlier. To see this, note that at timeeach level
curve (where the index distinguishes one level curve from
another) is implicitly described by where
denotes a particular intensity in the image. Let us choose a pa-
rameterization of so that for

and for all . We may then write
. Differentiating this expression with

respect to yields

Note that the inward unit normal and the curvature of each
level curve can be expressed as and

. This allows us to rewrite the above equation
completely in terms of and its derivatives

(4)

giving us a PDE which is identical to (2).
Equation (4) is also referred to as the geometric heat equa-

tion since it comes from applying the previous geometric heat
(3) to each level curve of an image. This double meaning of
the termgeometric heat equationis disambiguated by the con-
text in which the flow is applied (i.e., either to an image or to a
curve). In this paper, we will be interested in both cases and will
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present directional generalizations of the geometric heat flow
which are designed to preserve certain types of features either
in a curve or in an image. We first however, reformulate the geo-
metric heat flow from a stochastic point of view, giving new in-
sights into the nature and behavior of this nonlinear diffusion
model. It was precisely these insights that led us to the general-
izations presented in Section IV.

Remark: Another popular approach to anisotropic diffusion
is based upon models first introduced by Perona and Malik
in [23]. Since then, these models have received a tremendous
amount of attention, as have the models based upon curve
evolution theory. Perona and Malik extended the linear heat
equation by considering diffusion coefficients which vary with
the strength of the gradient at different points of an image. This
leads to PDEs of the form , where

is typically a monotonically decreasing function
which suppresses diffusion where the gradient is high (near an
edge). In general, however, these models are not related to curve
evolution theory and are only intended for images, not curves
(unless the curve has the form of a graph). As such, we will
not attempt to relate the curve evolution models developed in
this paper to Perona-Malik models which represent a different
perspective on the subject of nonlinear diffusion.

III. STOCHASTIC FORMULATION OF A GEOMETRIC HEAT

EQUATION

A. Introduction to Ito Diffusion

The diffusion of a particle is usually well modeled by a Sto-
chastic Differential Equation (SDE) which, in turn, represents
the underlying microscopic process of an evolution of a pixel or
a point. The dynamics of this evolution at a macroscopic level
are captured by a PDE, also referred to as a generator (infini-
tesimal) of the diffusion [13], [14], [24]. Suppose we want to
describe the motion of a small particle suspended in a moving
liquid, subject to random molecular bombardments. If

is the velocity of the fluid at a point and time ,
then a widely used mathematical model for the position of
the particle at time is an SDE of the form

(5)

where is an -dimensional stochastic process,
, and is an -dimensional Brownian motion.

is called thedrift coefficient, and is called thediffusion
coefficient. The first term in this equation corresponds to a non-
random/deterministic motion, whereas the second term models
randomness or noise in the motion.

The solution of such an SDE may be thought of as a mathe-
matical description of the motion of a small particle in a moving
fluid, and such stochastic processes are called (Ito) diffusions
[24]. For many applications, a second order partial differential
operator can be associated to an Ito diffusion given by
(5). The basic connection betweenand is that is the
generator of the process . If , (i.e., it is
continuous with continuous derivatives up to order 2, and has a
compact support), then is given in the form

(6)

In conjunction with this, the so-called Kolmogorov’s backward
equation [24], gives a probabilistic solution to linear partial
differential equations. Kolmogorov’s theorem states that given

, where is the expectation
operator with respect to the probability law of starting at
the point , and defining , then there
exists an operator such that

SDEs and stochastic processes, most commonly the
Brownian motion, have previously been used in curve and
image analysis. Mumford [25] used it to model completion
curves of occluded edges, the so-called elastica. By taking
the curvature function (of arc length) as a Gaussian process,
and the tangent direction on the curve then as a Brownian
motion, he derived the probability of the curves that link
occluded edges. For a more general situation, e.g., curves in

, Mumford used other sorts of stochastic processes such as
an Uhlenbeck process to find the elastica. Williams and Jacobs
[26], later in their “Stochastic Completion Fields” work, define
the same SDE as Mumford’s, for a particle’s position and the
orientation, and through this model of diffusion incorporate the
prior assumption that the maximum likelihood path followed
by a particle between two positions and directions is a curve of
least energy, and solve it by a discrete formulation. Similarly,
a Kalman filter which produces estimates of a system as it
evolves in time and affected by noise, (which is indeed an SDE
written for the system and its observations), was used in [27]
for grouping of contour segments. Our use of SDEs is along
a different line of thought in that our inspiration starts with
a desired effect of a nonlinear filter. Specifically, the theory
of SDEs provides us with a microscopical interpretation of
the well-studied geometric heat equation, and leads to a new
macroscopic description of this equation which in turn is used
to develop a new class of curve evolutions or filters.

B. Stochastic Formulation of the Geometric Heat Equation

Let us denote by the angle between the out-
ward normal to the curve and the-axis at each spa-
tial point . The outward unit normal can
then be expressed as ,
which is re-written in terms of as

. It follows,
. Using

these equations, and defining an operator of the form

(7)

the geometric heat equation (2) can be re-written as

(8)

where is the initial level set function.
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In light of the foregoing development, a natural question
which arises is:given a PDE which governs a curve shortening
flow, can we obtain a corresponding SDE associated with the
underlying diffusion?

The nonlinearity of GHE presents a significant challenge to
find a global Ito diffusion which explains the overall microscop-
ical behavior of the system. Our approach here for solving such a
nonlinear problem is, to explore the short-time behavior by lin-
earizing around a known (nominal) solution. The perturbation
equations so obtained will be linear and hence an approximate
solution to the nonlinear problem can be obtained as the nom-
inal value plus the perturbation term. Let us denote by
the solution to (8)

and if we write as

and define the corresponding nominal angle
, we get a linearized version of

the geometric heat equation around a nominal value

(9)

where

(see the Appendix for details of this
derivation).

In light of this, we can proceed to state the following.
Proposition 1: The right hand side of the linear PDE in (9) is

the generator of the following Ito diffusion satisfying the SDE

(10)

Proof: The operator in (9) is first re-written as
(see equation at the bottom of the page). whereis a Hes-
sian operator and is a Hadamard product. The factorization
of leads to

and by identification

Given the functions , and , we come up with a
pair of processes such that the SDE in (10) holds.

Fig. 1. Points of the zero-level set, i.e., initial contour(X (t);Y(t)), at timet,
is shown on the left. Those points whose sample realizations result in an average
value of zero at timet+ �t(u(t+ �t; xxx) = E [u(XXX(t))] = 0) form the new
contour(X (t + �t);Y(t + �t)) (on the right).

In this case, the solution is called a weak solution, as it
does not specify beforehand the explicit representation of the
white noise, i.e., the version of the Brownian motion is
not given in advance.

Both the drift and diffusion coefficient vectors of this SDE
are in the tangent direction of our level curves, which helps us
interpret it as a 1-dimensional Ito diffusion on the instantaneous
tangent direction . A differentiability assump-
tion on

is sufficient for a short-time existence of the linearized PDE
version of the nonlinear geometric heat equation.

Using Kolmogorov’s theorem cited in Section III.A, and as-
suming that and its derivatives are “sufficiently regular”
(Lipschitz properties), starting at each time, the diffusion
in (10) is constructed for each time interval , and may
be used to write a Backward Kolmogorov Equation

as a mean value around each pixel dictated by the motion of
the constructed diffusion process . This equation can also
be written in forward time (since in the small time step, the
approximate constant-coefficient PDE gives rise to a time-ho-
mogeneous diffusion with and to give
way to an averaging process in the tangent direction of a level
curve in the course of a forward evolution [i.e., estimate the new
pixel value at time as a mean value of two neighboring pixel
values on the tangent at time (see Fig. 1)].

This also leads us to infer that locally, we can write a valid
diffusion for each time interval

(11)

where denotes the known tangent vector at time, and
is the known drift coefficient at time, which is

.
Apart from a drift on , i.e.,

(12)
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Fig. 2. Symmetric random walk on the tangent direction, and corresponding
interpolation on square grid.

Fig. 3. Generator of symmetric random walk on the tangent direction
implemented on the level set functionu(x; y). The tangent direction is
estimated directly from the level set set function:� = tan (�u =u ) The
level set function is on a 250� 250 grid,�t = 0:25.

the underlying particle motion can be interpreted as a Brownian
Motion (BM) on a local frame in the direction of the tangent.
Since BM is an averaging process, this SDE explains that the
geometric heat equation smooths iso-intensity contours maxi-
mally. On a discrete lattice Brownian motion is captured by a
random walk with equally likely (i.e., prob. ) displacements
to and . The latters are obtained by a bilinear interpola-
tion around (in and direction and along the tangent, See
Fig. 2).

As a result, we can write such an equation as

(13)

where is the Laplacian operator in a tangent direction.
Summing up, microscopic dynamics of the system captured by
the local diffusion lead to a new macroscopic description
of the scenario, i.e., the random walk obtained in terms of the
macroscopic variable .

For simulation purposes, we use a level set methodology [1],
which in an Eulerian framework has an advantage of naturally
handling topological changes on the level set function. A simu-
lation example where a “” shape is evolved via a generator of
a random walk in a tangent direction, (13), is shown in Fig. 3.

Practical equivalence of GHE and random walk on the tan-
gent direction is tested by several shapes. Another illustrating
simulation is shown in Fig. 4.

Our neglecting the drift led to an unbiased random-walk
on the tangential direction and is validated by the simulation
examples presented above, as the generator of symmetric
random-walk implementation results are in agreement with
the geometric heat equation implementation. Theoretically,
a stronger validation is due to Girsanov theorem (see [24]),
which says that if we change the drift coefficient of a given
Ito process, then the law of this process does not change dra-
matically, indeed, the trajectories of the process (distribution)
change via the measure change on the trajectories. This theorem
involving a change of measure provides us with a means of
changing the mean of the process we obtained in (11),
particularly removing the drift and obtaining the process in
(12), where only the version of the Brownian motion changes.

Fig. 4. Middle row: Generator of symmetric random walk onTTT is shown
to produce similar results with those in Bottom Row: Geometric Heat flow.
The speeds of the two algorithms are different. The level set function is on a
191� 221 grid,�t = 0:25.

This intuitively appealing interpretation of a particle/pixel
motion in the process of a diffusion is shown in the next sec-
tion to be particularly useful and insightful for developing more
general and feature/shape adapted flows.

IV. NEW CLASS OFFLOWS

The insight gained from the tangential Brownian motion on a
curve together with the normal angle , leads to the idea of
constraining the Brownian motion at some specific orientation
angles at each point. A natural modification of the geometric
heat equation, based upon the stochastic framework presented
in Section III, is to construct an SDE weighted by a carefully
chosen functional designed to capture
specific features in an image, and we write locally

Here, again, neglecting the drift motion and concentrating on
pure diffusion, the Brownian motion in the tangent direction is
being further constrained at some specific orientation values,
i.e., at the zeros of the function

(14)

Constraining the diffusion of particles at points with specified
orientations is aimed at extracting desired features of a contour
as it is being smoothed. Such models are generated by the fol-
lowing class of PDEs, which directionally modify the geometric
heat flow (2), and in this sense, generalize it by making the local
generator of the diffusion SDE (14) conceivably arbitrarily se-
lective

(15)

When applied to an image, this flow induces the following curve
evolution on each iso-intensity contour

(16)

A. Well-Posedness of the Generalized Model

Proposition 2: The corresponding PDEs (15) are well-posed.
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Proof: The geometric heat equation which corresponds to
the simplest case of this class with , has
been shown to be well-posed, and its existence and uniqueness
properties may be found in [9], [28], [29]. The operator of the
geometric heat equation is given by

(17)

where

(18)

is the principal part of the operator. The matrix of coefficients
is positive semi-definite with the eigen values 1 and 0. If we

multiply this matrix by a positive function, it remains positive
semi-definite. Such elliptic-parabolic operators satisfy a max-
imum principle (see, for example, [30]). In our case, we multiply
by a nonnegative function which can be made strictly pos-
itive by adding a very small number,

This results in a family of nonlinear parabolic equations each
of which satisfies a strong maximum principle. Our operator is
obtained in the limit as .

B. Polygon Yielding Diffusions

The geometric heat equation is a rotationally invariant flow
which evolves, as mentioned earlier, any shape into a circle [4].
It is the only rotationally invariant shape evolution in Euclidean
space. If we wish to capture more general shapes (triangles,
squares, etc., ) it is only then natural to consider flows which
are not rotationally invariant. Such a class is given by the form
(16) when is chosen to be other than a constant. If we are
particularly interested in polygons, we may consider periodic
functions (whose periodicity is dictated by the desired number
of vertices) such as

(19)

leading to curve evolution equations of the form

or (20)

If we apply (20) to a convex shape, there will be points on
the curve which do not diffuse (corresponding to the zeros of

or ) at equally separated rotations of the unit
normal . As the unit normal moves further and further away
from these angles, the diffusion increases. It hence makes sense
to expect a curve to develop vertices (points of maximal curva-
ture) at these points.

Lemma 1: Theangleofaunitnormaldoesnotchangeatpoints
where the chosen function vanishes. Those points, in turn,
remain fixed for a short-time, and their speed remains at zero.

Proof: Assume that a family of curves , where is
any parameter along the curve, evolves according to the evolu-
tion equation

(21)

The evolution equation for the angle of the unit normal is given
in [5] as

where is the length along the curve

(metric). If we consider the case and
(following the convention used by the authors in [5]), which
corresponds to the form of the deformation we proposed, the
orientation evolution is governed by

(22)

Notice that for those points at which .
We note that in [5], the orientation of a curve is defined as the

angle subtended by the tangent and the-axis, whereas here we
define as the angle subtended by the normal and the-axis.
There is, however, a complete equivalence in so far as the evo-
lution equation of the angle is concerned.

In light of the above development, we can thus state that the
zeros of the function lead to fixed end points of curve seg-
ments. Fixing two end points, say and , we examine the
evolution of curvature, whose general form is given by (in [5])

where is the arc-length parameter along the curve. When sub-
stituting and into this equation, we have

This clearly demonstrates that a regularizing diffusion takes
place, since the multiplicative factor never becomes neg-
ative (which would result in an ill-posed backward diffusion).
In addition, we have the reaction term which is composed of
functions of , and .

We have hence shown that with fixed end points, a particular
curve segment subject to the new evolution equation for the cur-
vature shown above, results in a straight line as a final solution.

Now, we can state a theorem where we put our argument of
convergence to regular polygons.

Theorem 1: A convex curve subject to the evolution
will converge to an -sided, regular polygon whose

vertices will be formed at those vanishing points of the func-
tion .

The proof of this theorem can be completed using the arc-
length evolution equation

where denotes the incremental arclength of. Since the inte-
grandisstrictlypositive,weseethatacurvewillcontinuetoshrink
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Fig. 5. Morphing of a circle into different shapes by the given flows is
demonstrated.

Fig. 6. (a) Initial set of shapes. (b) FlowC = cos (2�)�NNN . (c) FlowC =
sin (2�)�NNN .

until curvature vanishes, that is the curve segment converges to a
straight line between the end pointsand . This, in conjunc-
tion with the above lemma completes the proof of the theorem.1

V. EXPERIMENTAL RESULTS

A. Examples in Polygonization

To substantiate the stated theorem, and to intuitively illustrate
our flows, we next present simulation results. In our experiments
with contours, we use the narrowband implementation of the
level set method developed in [32]. The time step is .
Starting with a circular shape, the flow evolves
it toward a specific polygon, i.e., it produces an-goneshape
depending on the specific function . Several examples on
morphing of a circle into different shapes are shown in Fig. 5.

This is one potential application of the proposed flows in
computer graphics, where the ability to morph a shape into a
known other shape with an efficient algorithm is required for nu-
merous applications. In addition to illustrating the propagation
of the proposed flows in several snapshots, Fig. 5 also provides
a quantitative and an objective means for characterizing the per-
formance of these algorithms in preserving corners. It can be ob-
served that the position of the desired feature locations, i.e., the
orientations at which the vertices of the final polygon are to be
formed, are well preserved. There may inevitably be one-to-two
pixel displacements due to numerical implementation effects,
on account of the finite precision of the computations and the
finite resolution of the grid (which affects almost all image pro-
cessing algorithms).

The flows are also applied to a variety of convex shapes
shown in part (a) of each figure: Figs. 6 and 7. In Fig. 6, the
shapes in part (b) were obtained by using
via the following curve evolution:

(23)

while the shapes in part (c) were obtained using
. In both cases, we expect to obtain four-sided and

regular polygons. The zeros of and the zeros of

1Note added in Proof: We recently found out per Dr. Osher at UCLA that Peng
et al.[31], have also independently proposed flows similar to those described in
this paper, albeit from a totally different perspective, and with a convective trend.

Fig. 7. (a) Initial set of shapes. (b) FlowC = cos (3�)�NNN , which tends
to produce hexagons. (c) FlowC = sin (1:5(� � �=2))�NNN , which tends to
produce triangle-like shapes.

are however 45 degrees out of phase. As such, we see the
evolved shapes in part (b) taking the form of a square, whereas
the evolved shapes in part (c) take the form of a diamond, cor-
responding to a 45 degree rotation of the shapes in part (b). In
Fig. 7, we see the effect of using different periods. The shapes in
part (b) are obtained using , while the shapes
in part (c) are obtained using . In
the first case, we expect 6 vertices, and in the second case we
expect 3 vertices. Our expectations match the results shown in
part (b) and (c), where we observe hexagonal and triangular
shapes, respectively.

These two figures also suggest an important potential applica-
tion of the proposed flows, namely shape recognition. A typical
scenario, would consist of an unknown shape, which is evolved
with one of the polygonizing flows whose parameters are known
a priori. The evolution which subsequently results in the least
change in the input shape reveals the closest shape category the
test shape may belong to.

Recall that we may also apply these flows to the level sets of
an image in the same manner that the geometric heat equation
may be applied. This gives rise to a family of anisotropic
smoothing filters which, unlike the geometric heat equation,
are not rotationally invariant. This feature can be useful in
smoothing noisy images where corners and edges are priorly
known to have certain orientations. These diffusions are
effected by PDEs of the following form:

(24)

Note that the trigonometric expressions we have considered for
can be written in terms of the first derivatives of, for

example

and

allowingonetoimplementthePDEwithouthavingtocomputethe
orientation of the unit normal to each level curve. Note that these
expressions involve only first order derivatives and therefore do
not alter the quasilinear structure of these second order flows.

The intended application of the proposed flows in this paper,
i.e., the smoothing of structures along the orientation of salient
lines in both curves and images will be illustrated in the next
two subsections, respectively.

B. Examples in Feature-Preservation

Feature-preserving properties as well as polygonal approxi-
mation properties of the proposed flows will be demonstrated in
this section. We illustrate the idea of capturing different polyg-
onal features of shapes by our proposed flows on the following
examples.
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Fig. 8. Each row corresponds to a curve evolution method with differentn,
1st row:C = �NNN , 2nd row:C = sin (2�)�NNN , 3rd row:C = cos (4�)�NNN .

The first example is a “chef” shape with both round and polyg-
onal features as shown in Fig. 8. The geometric heat flow

, evolves these features into circles as shown in the
second row of Fig. 8 for time points . Particu-
larly, at , most parts of the shape turns into incompre-
hensible blob-like structures. In contrast to this, polygonal fea-
tures of the chef like his nose, and tray, are preserved by the flow

, which favors diamond-like struc-
tures (see third row of Fig. 8 for ). Similarly, the
flow , favors octagonal features as
shown on the fourth row of Fig. 8, which is observed at chef’s hat
at all time points . The regularity of these flows is
readily observed through the smoothness of the resulting shapes.
When we view each row from left to right, we observe a progres-
sion fromfiner tocoarserscale.Thescale-spacesproducedbyour
modified flows in the last two rows are visually more pleasing
sincecornersarepreserved,whereas in therowaboveweseethem
smoothed away by the pure geometric heat flow.

The second shape example is a fish which contains some
fine detail structures as well as coarse features (Fig. 9). The
second row shows the result of the geometric heat flow

, which smoothes away not only fine features but
some coarse features as well (the fins for example). The results
of the flow, , are shown in the third
row of Fig. 9. In this case, rectangular features are preserved
for longer periods throughout the evolution. Finally, the flow,

, is depicted in the last row, pre-
serving octagonal features as shown in the nose and the dorsal
fins.

In the third example, we start with a noisy shape at
time shown in Fig. 10. This shape is evolved
with the geometric heat flow ,
the flow ,
the flow , and the flow

, as shown in

Fig. 9. Each row corresponds to a curve evolution method with differentn,
1st row:C = �NNN , 2nd row:C = cos (2�)�NNN , 3rd row:C = sin (4�)�NNN .

Fig. 10. Each row corresponds to a curve evolution method with differentn,
1st row:C = �NNN , 2nd row:C = sin (1:5(� � �=2))�NNN , 3rd row:C =
sin (2�)�NNN , 4th row:C = cos (2:5(�� �=2))�NNN .

Fig. 10. The geometric heat flow at the top row quickly smoothes
corners of the shape out, and at coarser scales, the shape loses
all of its features. The initial shape converges to a circle in spite
of the global feature of the plane being a polygonal shape. This
motivates the application of the geometric heat flow with a

factor, where , and whose weak limiting shape
is a triangle which intuitively matches the coarser form of the
given plane shape. Similarly, for and , different
features of the shape are preserved, and persist over a much
longer time period as can be observed from the column of shapes
at . Note that the geometric heat flow result at the top
quickly washes out any similarity to the actual shape, whereas
the results of the other three flows preserve the global shape as
well as some finer details on the wings, the tail, and the head part.
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Fig. 11. (a) Clean building image, (b) noisy building image, (c) Geometric
heat flowu = u (left-right) t = 10; 20;40, (d) Flowu = cos (2�)u
(left-right) t = 10;20;40.

C. Examples With Grayscale Images

The proposed flows may also be applied to images in a
straightforward fashion. For the case ,
all level sets of the image are driven to rectangles, thereby
enhancing those features in an image. Such features can be
found in contemporary buildings where one example in NCSU,
Centennial Campus is shown in Fig. 11(a). The part of the
building image with an additive Gaussian noise is shown in
Fig. 11(b). The 2nd row shows the results of the geometric heat
flow at . The noisy image at
is smoothed out very quickly at the expense of rounding off
all the corners because the level sets of the image converge to
circles. The 3rd row shows the flow results
at the same time points . Since the diffusion is
constrained in order to drive image level sets to rectangles, the
removal of noise is slower. However, the rectangular features
still nicely appear after noise removal (see the image on the
right), making it worthwhile to slow down the denoising effect
of the geometric heat flow as deemed appropriate.

In Fig. 12, an experiment involving diamond-like shapes in
the image taken from a poster on a wall is shown. In the middle
row, rounding effects on diamond shapes performed by the geo-
metric heat flow are clearly observed during the evolution of
this image. The proposed flow, shown in the bottom row, takes
the form for this particular shape, and partic-
ularly adapted to carrying out a shape-based smoothing which
takes place at the boundaries of the diamonds. The slight blur-
ring effect on the picture at continued application however is
due to the interaction between consecutive level curves.

A photograph taken by pathfinder in mars, shown in Fig. 13,
is argued to be a hexagon-shaped structure on mars’ surface.
The particular flow adapted to this shape is given by

, and the resulting images at the second column of
the figure demonstrate a better smoothing performance at the
boundaries of the hexagon when compared to the images in the
first column processed by the geometric heat equation. From
low scales to very large scales, the hexagon-adapted flow en-
hances and keeps on highlighting the related structure.

Fig. 12. (Top) Diamonds image (Middle row) Geometric heat flowu = u

(Bottom row) Flowu = sin (2�)u .

Fig. 13. (Top) An image from mars pathfinder, (First column) Geometric heat
flow u = u , (Second column) Flowu = cos (3�)u . (Image: Origin
NASA, exposed by and courtesy of N. Coombs & NPAAG 1998).

A noise contaminated Aerial image is shown in Fig. 14(a).
The geometric heat equation (see 2nd row, )
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Fig. 14. Top: Aerial image; 2nd row: geometric heat flowu = u , (left to
right) t = 20; 40;80; 3rd row: flow u = cos (2�)u , (left to right) t =
20;40;80.

sweeps away the shape information of the important details such
as the city on the left bottom, the white bright rectangle on the
right bottom, and the black feature at the top. The three images
resulting from the flow, are quite sharp at the
edges between both low and high contrast fields, therefore more
useful in recognition of details as well as removing noise.

A last example is shown in Fig. 15, where windows and a roof
of a section of a house are seen. On the left column, the results
of the geometric heat flow at times ,
are shown, and on the right those of at similar
time steps. The noise is successfully removed by the geometric
heat equation whose smearing effect on different regions into
one another is also slow, at a cost of a problematic rounding off
of corners. At time for the result on the right bottom,
approximately the same amount of noise as that of geometric
heat equation at is removed, and in addition to that the
corners are still well-preserved.

VI. CONCLUSION

In this paper, we have formulated a local stochastic view
of a nonlinear filtering technique, namely the geometric heat
equation.The theoryofstochasticdifferentialequationsprovides
a microscopic view of a system, and through a local linearization
of the nonlinear geometric heat equation we have provided an
alternative macroscopic view of this equation. We then modified
this macroscopic description to propose new flows that vanish
at pre-defined directions. We showed that these flows, although
rotationally noninvariant, are capable of smoothing along priorly
known orientations of salient lines in both curves and images,
leading to preservation of polygonal structures. In the context
of curve evolutions, curves evolved with the new flows are
morphed into a limiting polygonal shape, this approach may

Fig. 15. Top: House; Left: Geometric heat flowu = u , (top to bottom)t =
40;80;160; Right: Flowu = cos (2�)u , (top to bottom)t = 40;80;160.

hence be relevant to shape-morphing applications in computer
graphics. Another application of these polygonizing flows is in
classification of a shape after its filtering via a certain set of these
flows, and its identification according to the outputs of these
different filters.

APPENDIX

Let us denote by the solution to (8)

and define

If we write as
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(26)

(27)

then satisfies

(25)

Assuming , and are differ-
entiable in their arguments, we can expand
in Taylor series about about

, and about . For no-
tational simplicity, let us denote by
and and

, and and
. If we assume that is small

enough, we can neglect higher order terms and write
a linear approximation as (see the equation at the top
of the page). Defining the corresponding nominal angle

, and re-arranging the
terms of (27), we get the linearized version of the geometric
heat equation around a nominal value

(28)

where
.
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