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Stochastic Differential Equations
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Abstract—in recent years, curve evolution, applied to a single curve is evolved along the normal direction in proportion to
contour or to the level sets of an image via partial differential equa- jts signed curvature. This flow is well known for its smoothing
tions, has emerged as an important tool in image processing and o 5arties [5]-[7] and the fact that it corresponds to the gradient

computer vision. Curve evolution techniques have been utilized in lution f | th (thereb ing th hort
problems such as image smoothing, segmentation, and shape anal£Volution for arcieng (thereby eamning the naroeve short-

ysis. We give a local stochastic interpretation of the basic curve €Nning flow). Because curvature is a purely geometric quantity
smoothing equation, the so called geometric heat equation, and (invariant to rotation and translation), curvature-based motion
show that this evolution amounts to a tangential diffusion move- gives rise to a Euclidean invariant scale space [8]-[10], allowing
ment of the particles along the contour. Moreover, assuming that one g trace features in a curve from finer to coarser scales as
a priori information about the shapes of objects in an image is th luti ds. An affine i iant | b
known, we present modifications of the geometric heat equation de- e ?Vo ution proceeds. An afline 'nva”ar_] scale space can be
signed to preserve certain features in these shapes while removingobtained from a related curvature flow which depends upon the
noise. We also show how these new flows may be applied to smootrcube root of the curvature (see [8], [11], [12]).

noisy curves without destroying their larger scale features, in con-  \hen applied to the level sets of animage, these flows have a
trast to the original geometric heat flow which tends to circularize powerful denoising effect when run for a short amount of time.
any closed curve. .

If run for too long, however, even large scale features will be de-
stroyed. The reason stems from the fact that as the geometric heat
flow shrinks any closed curve, the curve becomes more and more
circular (elliptical in the case of the affine flow) and will even-

I. INTRODUCTION tually collapse into a single point [4]. It is therefore not always

N RECENT YEARS, curve evolution has emerged as an irhossible to preserve desired features in the shapes of objects (cor-
I portant application of partial differential equations (PDES)'s for example) if too much evolution is required to remove a
in image processing, computer vision, and computer graphié%ﬂ”'f'cam level of noise. Furthermore, it is not well understood
Curve evolution tecr;niques have bee'n applied not only to iRow these curvature-based filters are affected by different noise
dividual curves, for applications such as edge-detection, skefistributions and when this sort of problem may occur.
tonization, and shape analysis, but have also been considerelP the best of our knowledge, and aside from [13], [14], non-
for their simultaneous action on the level sets of an image lifear diffusion in the previous literature was discussed from
a number of geometrically based anisotropic smoothing algd-Purely deterministic perspective. In this paper we provide a
rithms. Osher and Sethian [1], [2] extended this latter perspegochastic formulation of the geometric heat equation and use
tive to the treatment of individual curves through a set of albe resulting insights to develop a new class of curvature-based
gorithms, known as level set methods, which enable the iflows and anisotropic diffusion filters which preserve desired
plementation of curve and surface evolution on a fixed griégatures in the shape of an object. Under these new flows,
These techniques have aided a number of researchers in pusR¥R§ving curves take the limiting form of a polygon (see [15]
the application of curve evolution to new limits by providing 407 evolutions of polygons related to the geometric and affine
simple framework for treating certain types of singularities sudgometric heat flows, and [16] for evolutions of polygons glob-
as shocks and topological transitions [1], [3]. ally through an electric field concept). The resulting diffusion

Much of the research in curve evolution theory has centerBdels may therefore be applied for much longer periods of

around the so called geometric heat equation [4] in whichtigne without distorting the shapes of polygonal objects in the
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a dual perspective to our contour-based approach to shape gepspectively. By subtracting the normal diffusion component

resentation, skeletonization approaches may also allow shapg from the linear heat equation, which diffuses isotropically,

analysis without displacement of corners [7], [17]-[21]. the following anisotropic model, which diffuses along the
In this paper, we develop a new class of curve evolutionspundaries of image features but not across them

which are obtained by a modification of the geometric heat

equation. Given an initial shape in the form of a continuous Ut = Ugg =

)
curve, the class of curve evolution equations we will obtain, de-

form it into a pre-specified final polygonal shape. The problef§ ©btained [9]. We may obtain this same equation in a com-
of deforming an input shape into a different form has been Biétely different and much more geometric manner by speci-
interest in various fields such as computer graphics [22].  fying the evolution of each level curve in the image. Cetie-

The contents of this paper are outlined as follows. In sepote a particular iso-intensity contour which we will deform

tion I, we review some theoretical concepts associated with tA¥er time via the following flow:
curve shortening flow, including its connection to a nonlinear, Ci=Css =N )
directional diffusion equation in which image values diffuse loWheres denotes the arclength parametethe Euclidean cur-

cally only along the directions of its edges. In Section Ill, W(\a/ature, andV the inward unit normal. Equation (3), referred to

prowdr? as};)crlastlcde'quwzlentdequa'ttl)or:j\(vh(ljcr: Iq turg urtlyellf theGeometric Heat EquatiofGHE), is well known for its
New shapejteatre-driven ow described in cetall In section moothing properties. It has been shown by Grayson [4] that

which we also believe could offer a variety of applications ou any closed, embedded curve evolving according to (3) will con-

e e Tecagnon and classfcalon proserme, e Concturyand smoctny s o3 gl pont n i e, be-
9 9 P coming more and more circular along the way. This flow is also

and conclusions in Section V1. referred to as theurve shortening flovgince it corresponds to
the gradient (descent) evolution of the arclength functional. See
[5]-[7] for a more extensive discussion of the many properties
It is known that the low pass Gaussian filter from signal pr@ssociated with this flow. Because the evolution speed is a func-
cessing can be implemented by evolving the intensities of tan of the curvature at each point on a curve, this flow gives

2 2
Uy Upq — 22Uy Uy Uy + U Uy

u2 +u

Il. BACKGROUND AND FORMULATION

imageuo(z, y) via the linear heat equation [10], rise to aEuclidean invarianscale space (see [8]-[10]) in which
finer features are removed first, followed by coarser features, as
u(0,2,y) = uo(z,y), the curve evolves. A related flow, based upon the affine geom-

ui(t,z,y) =V - (Vu(t,z,y)), t>0 (1) etry of the curve, is given by, = x'/3N and shares many of
) ) the same properties as the curve shortening flow but gives rise to
where the gradient operatdr, and the divergence operat®, 5 more generaffine invariantscale space (see [8], [11], [12]).
involve only the spatial variables andy. The solution to this f\ye apply the geometric heat flow to every single level curve
equation yields a parameterized family of new imag@sz, ), in the image we obtain the same anisotropic diffusion equation
where the image at each time> 0 is equivalent to the original 1,4t e derived earlier. To see this, note that at tiraach level
imageu (z, y) = u(0,z,y) convolved with a Gaussian filter of o, yec* (where the index: distinguishes one level curve from
yanancth. This eqw_valencg gives rise to a nat.ural generahzg—nother) is implicitly described by(t,z,y) = u* whereu*
tion of the low pass filter using nonlinear diffusion. denotes a particular intensity in the image. Let us choose a pa-
Nonlinear diffusion has a distinct advantage in imaggmeterization of* so thatC*(t,p) = (X(t,p),V(t,p)) for
processing over linear diffusion in that it may be alloweg € [0,1] and for allt > 0. We may then writeu(t, C*(t, p)) =

to handle anisotropies (giving rise to the nameisotropic u(t, X(t,p), V(t,p)) = u*. Differentiating this expression with
diffusion in an image. This is particularly important Whererespect tat yields

salient image features are concerned. For example, when the
preservation of sharp edges is important, it is natural to consider up +Vu-C = up + Vu- (kN) = 0.
an anisotropic model which diffuses an image only along thdote that the inward unit normal and the curvature of each
local direction of its edges. One such approach is to considevel curve can be expressed Ns= —(Vu/||Vu|) andx =
an imageu(z,y) as a collection of iso-intensity contours, oV - (Vu/||Vul|). This allows us to rewrite the above equation
level curves, and to note that at an edge point, the directioampletely in terms of: and its derivatives
of the edge corresponds to the tangent of the iso-intensity ( Vu ) 1l

U =

2 2
Uy Upg — 22Uy Uy Uy + U Uy

[Vl

contour running through that point. Letdenote the direction u; =V -
normal to the level curve through a given point (the gradient
direction), and lef denote the tangent direction. We may write 4)
these directions in terms of the first derivatives of the image g&/ing us a PDE which is identical to (2).

N = (Ug, Uy)/(VUz? +uy?), & = (—uy, uz)/(V/Uz? + uy?). Equation (4) is also referred to as the geometric heat equa-
Since these constitute orthogonal directions, we may explain since it comes from applying the previous geometric heat
the rotational invariance of the Laplacian operator and re-wrif8) to each level curve of an image This double meaning of
the linear heat equation in terms of these two variabletie termgeometric heat equatiols disambiguated by the con-

u = V- (Vu) = uge + uy,, Whereu,, andug denote textin which the flow is applied (i.e., either to an image or to a
second-order directional derivatives in the directiongy@nd curve). In this paper, we will be interested in both cases and will

u2 +u
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present directional generalizations of the geometric heat fldwconjunction with this, the so-called Kolmogorov’s backward
which are designed to preserve certain types of features eitbquation [24], gives a probabilistic solution to linear partial
in a curve orin an image. We first however, reformulate the gediferential equations. Kolmogorov's theorem states that given
metric heat flow from a stochastic point of view, giving new inX () = (X®(t), X®)(t)), where E*[-] is the expectation
sights into the nature and behavior of this nonlinear diffusiasperator with respect to the probability law Xf(¢) starting at
model. It was precisely these insights that led us to the genetthle pointz, and definingy(¢,z) = E*[f(X(t))], then there

izations presented in Section IV. exists an operatad such that

Remark: Another popular approach to anisotropic diffusion Oy )
is based upon models first introduced by Perona and Malik 9t Ay, £>0, zeR,
in [23]. Since then, these models have received a tremendous ~(0,7) = f(z), =€ RZ

amount of attention, as have the models based upon curve

evolution theory. Perona and Malik extended the linear heatSDES and stochastic processes, most commonly the
equation by considering diffusion coefficients which vary witferownian motion, have previously been used in curve and
the strength of the gradient at different points of an image. THEage analysis. Mumford [25] used it to model completion
leads to PDEs of the form, = V - (g(||Vu|)Vu), where CUrves of occluded_ edges, the so-called elastlcq. By taking
g: R — R is typically a monotonically decreasing functionthe curvature function (of arc length) as a Gaussian process,
which suppresses diffusion where the gradient is high (near@pd the tangent direction on the curve then as a Brownian
edge). In general, however, these models are not related to cyRRSion, he derived the probability of the curves that link
evolution theory and are only intended for images, not curv§cluded edges. For a more general situation, e.g., curves in
(unless the curve has the form of a graph). As such, we whit?, Mumford used other sorts of stochastic processes such as
not attempt to relate the curve evolution models developeddf Uhlenbeck process to find the elastica. Williams and Jacobs
this paper to Perona-Malik models which represent a differd6]. later in their “Stochastic Completion Fields” work, define

perspective on the subject of nonlinear diffusion. the same SDE as Mumford’s, for a particle’s position and the
orientation, and through this model of diffusion incorporate the

. STOCHASTIC FORMULATION OF A GEOMETRIC HEAT prior assumption that the maximum likelihood path followed
EQUATION by a particle between two positions and directions is a curve of

. o least energy, and solve it by a discrete formulation. Similarly,
A. Introduction to lto Diffusion a Kalman filter which produces estimates of a system as it

The diffusion of a particle is usually well modeled by a Stoevolves in time and affected by noise, (which is indeed an SDE
chastic Differential Equation (SDE) which, in turn, representaritten for the system and its observations), was used in [27]
the underlying microscopic process of an evolution of a pixel éor grouping of contour segments. Our use of SDEs is along
a point. The dynamics of this evolution at a macroscopic level different line of thought in that our inspiration starts with
are captured by a PDE, also referred to as a generator (infiaidesired effect of a nonlinear filter. Specifically, the theory
tesimal) of the diffusion [13], [14], [24]. Suppose we want t@f SDEs provides us with a microscopical interpretation of
describe the motion of a small particle suspended in a movittge well-studied geometric heat equation, and leads to a new
liquid, subject to random molecular bombardments(4fz) € macroscopic description of this equation which in turn is used
R" is the velocity of the fluid at a point € R™ andtimet € R*, to develop a new class of curve evolutions or filters.
then a widely used mathematical model for the posia) of

the particle at time is an SDE of the form B. Stochastic Formulation of the Geometric Heat Equation
dX (t) = b(t, X (t))dt + o(t, X (t))dB(t) (5) Let us denote byf(¢,z) the angle between the out-
here X (4) | di ional stochasti ward normal to the curve and the-axis at each spa-
whereX(t) is ann-dimensional stochastic _procese_{;f,z) € tial point z = (z,y). The outward unit normalV can
R™*™ andB(t) is anm-dimensional Brownian motior(-, -) - .
. lled thedrift coeffici q . led thedifiusi then be expressed a¥ = (cos(f(¢t,z),siné(t, x)),
IS cate rift coefficient ando(, ) is calle MUSION \vhich is re-written in terms ofu(-) as N(t,z) =
coefficient The first term in this equation corresponds to a non- 5 5
random/deterministic motion, whereas the second term mod@l’s(t7$)7Uy(tvz))/\/uz(tﬁ) +uy(t,z)”. It follows,

randomness or noise in the motion. 0(us (t,3), uy(t,2)) = tan*((uy(t,7))/(us(t,7))). Using
The solution of such an SDE may be thought of as a matHéese equations, and defining an operatesisr of the form
mqtical description of thg motion of a small particle in a r.novi.ng Acupu(t, z) = sin? §(uy(t, z), wy (t,7) g (1, )
fluid, and such stochastic processes are called (Ito) diffusions 94in 0 " :
[24]. For many applications, a second order partial differential — 2sin 0(ua(t, ), uy (1, 7))
operatorA can be associated to an Ito diffusidf(t) given by X €08 0(uq (1, ), uy (1, ) )tay (1, )
(5). The basic connection betweghand X (¢) is thatA is the + co8? O(uy (t, ), uy (t, 7))y, (t,x) (7)
E P

gengrator of Fhe propes’g(t). ”.w(.z) € Go(R), (e, itis the geometric heat equation (2) can be re-written as
continuous with continuous derivatives up to order 2, and has &
compact support), thed is given in the form w(0,%) = uo(x),

o 1 T 8211) ow ut(t,z) = AGHEU(t7$) (8)

Aw =23 (o0"); ®) 5o T Zi:bl(a:) s ©®

2%

whereu,(z) is the initial level set function.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:47 from IEEE Xplore. Restrictions apply.



1408 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 12, DECEMBER 2002

In light of the foregoing development, a natural questio
which arises isgiven a PDE which governs a curve shorteniny
flow, can we obtain a corresponding SDE associated with tI(
underlying diffusion?

The nonlinearity of GHE presents a significant challenge -
find a global Ito diffusion which explains the overall microscop N
ical behavior of the system. Our approach here for solving suc [ Q
nonlinear problem is, to explore the short-time behavior by lit \ \
earizing around a known (nominal) solution. The perturbatic ¢ (4 8t
equations so obtained will be linear and hence an apprOXimaFﬁ 1. Points of the zero-level set, i.e., initial contai(t), Y (¢)), at timet,

solution to the nonlinear problem can be obtained as the no®shown on the left. Those points whose sample realizations result in an average

inal value plus the perturbation term. Let us denotebgt, z)  value of zero at time + &t(u(t + 6t, x) = E=[u(X(t))] = 0) form the new
the solution to (8) contour(X (¢ + &t), Y(¢ + 6t)) (on the right).

n n n
ou” = sin? <tan1 <u—y>> Un, — Sin <2 tan <u—i>) In this case, the solutioX (¢) is called a weak solution, as it

n

Y

e (x(t+[0t ), y( t+31))

ot ug u does not specify beforehand the explicit representation of the
X ull, + cos? <tan1 <“_>) ur, White_ nois_e, i.e., the versioB(¢) of the Brownian motion is
i not given in advance. ]
and if we writeu(t, z) as Both the drift and diffusion coefficient vectors of this SDE
_n are in the tangent direction of our level curves, which helps us
u(t,z) = u"(t,x) + eu(t, ) . i . . e :
] ) ) interpret it as a 1-dimensional Ito diffusion on the instantaneous
and define the corresponding nominal andle(,z) = tangent directiol(u(t), u"(t)). A differentiability assump-
-1 n n H i i z Y
tan™"((uy (t,z))/(u} (t,))), we get a linearized version of tjon on y (1, z)

u(t 4 o0t,x) —u(t,z)  OJu(t,x)

e

the geometric heat equation around a nominal value

0U(t7 Z) ~ AGHEliIlu(t7 :l:) 61;210 ot - ot - AGHEIIHU(t7 z)
ot .y ) is sufficient for a short-time existence of the linearized PDE
= sin”(0" ()t (t, ) — 5in(26" () )ty (£, T) version of the nonlinear geometric heat equation.
+ cos* (0" () )uyy (t, x) + c(x) (—u}) (z)us(t, T) Using Kolmogorov's theorem cited in Section IlI.A, and as-
+ u”(z)uy (t, T)) (9) suming that(t, z) and its derivatives are “sufficiently regular”

h B 1 /A2 (Lipschitz properties), starting at each timéhe diffusionX (¢)
where | (=) . o ( )/((Zf“f () T in (10) is constructed for each time interal 6t, ¢), and may
(uy (2))*)[sin (20" () (uz, () — (@) ~ . be used to write a Backward Kolmogorov Equation
cos(20"(z))2uy, (z)] (see the Appendix for details of this
derivation). u(t — ot,x) = E{u(t, X(t))/X(t — 6t) = =}

In light of this, we can proceed to state the following. as a mean value around each pixel dictated by the motion of

Proposition 1: The right hand side of the linear PDE in (9) isthe constructed diffusion proced&t). This equation can also
the generator of the following Ito diffusion satisfying the SDEbe written in forward time (since in the small time sigp the
dX(l)(t) x —up(X(t)) J approximate constant-coefficient PDE gives rise to a time-ho-
(dX(2)(t)> = (X (1)) ( u™ (X (1)) ) ¢ mogeneous diffusioX (¢) with (X (¢)) ande(X(t)) to give
~sin (X (1)) way to an averaging process in the tangent direction of a level
+V2 ( cos 07 (X (£)) ) dB(t). (10) curveinthe course of aforward evolution [i.e., estimate the new
pixel value at timeg: as a mean value of two neighboring pixel
values on the tangent at tinfe— 6t) (see Fig. 1)].
This also leads us to infer that locally, we can write a valid
ffusion for each time intervat — 6t, t)

dX(t) = T (X (1)) ("(X(t))dt + V2dB(t))  (11)

—sin 0™ (X) - P
o(X)=V2 ( cos 0™ (X) > and by identification whereT™ (X (t)) denotes the known tangent vector at timend
—un(X) ) c"(X(t)) is the known drift coefficient at timé, which isc™ =
y

b(X) = c¢(X) ( w(X) (1/ 4/ (um)? + (un)?)[sin(260™) (uf, — ul,) — cos(26™)2u?, ].

T .J .
Given the function$(X (1)), anda (X (t)), we come up with a APart from a drift onT’, i.e., i
pair of processe&X (t), B(t)) such that the SDE in (10) holds. dX (t) = V2T (X (t))dB(t) (12)

Proof: The operatotdgugi, in (9) is first re-written as
(see equation at the bottom of the page). wHdrés a Hes-
sian operator and is a Hadamard product. The factorizatior}ji
of (1/2)oo” leads to

1
Acugnn = b (X) -V + §U(X)G'T(X) oH

=0 () (B) (i ey 08 o

x
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Fig. 3. Generator of symmetric random walk on the tangent directigfig. 4. Middle row: Generator of symmetric random walk Bhis shown
implemented on the level set functiom(x,y). The tangent direction is to produce similar results with those in Bottom Row: Geometric Heat flow.
estimated directly from the level set set functiéf: = tan—!(—u./u,) The = The speeds of the two algorithms are different. The level set function is on a
level set function is on a 250 250 grid,ét = 0.25. 191x 221 grid,é6t = 0.25.

the underlying particle motion can be interpreted as a BrownianThis intuitively appealing interpretation of a particle/pixel
Motion (BM) on a local frame in the direction of the tangentmotion in the process of a diffusion is shown in the next sec-
Since BM is an averaging process, this SDE explains that tten to be particularly useful and insightful for developing more
geometric heat equation smooths iso-intensity contours mageneral and feature/shape adapted flows.

mally. On a discrete lattice Brownian motion is captured by a

random walk with equally likely (i.e., proli,/2) displacements IV. NEw CLASS OF FLows

to uy anduy. The latters are obtained by a bilinear interpola- e insight gained from the tangential Brownian motion on a
tion aroundu (in = andy direction and along the tangent, Seg, e together with the normal anglg, =), leads to the idea of
Fig. 2). ) ) constraining the Brownian motion at some specific orientation
As aresult, we can write such an equation as angles at each poiat A natural modification of the geometric
Ou 1 u; —U  Up —U heat equation, based upon the stochastic framework presented
ot §ATU =Tyt (13) in section 1, is to construct an SDE weighted by a carefully
whereAr is the Laplacian operator in a tangent directiBn chosen functionat(6™), (h(-) € C>°(R™)) designed to capture
Summing up, microscopic dynamics of the system captured #gecific features in an image, and we write locally
the local diffusionX (¢) lead to a new macroscopic descriptioryx(t) =T (X(t))(c"(X(t)h(0™(X(t))) dt
of the scenario, i.e., the random walk obtained in terms of the + ﬁh(Hn(X(t)))dB(t)).

macroscopic variable(t, z). . . _ . .
For simulation purposes, we use a level set methodology [ﬂgre, again, neglecting the drift motion and concentrating on

which in an Eulerian framework has an advantage of naturafiy're diffusion, the Brownian motion in the tangent direction is
handling topological changes on the level set function. A SimB_emg further constrained at some specific orientation values,
lation example where aI™ shape is evolved via a generator of-€- &t the zeros of the(¢") function )

a random walk in a tangent direction, (13), is shown in Fig. 3. dX (t) =~ V2T™ (X ())h(0™(X (t)))dB(t)). (14)
Practical equivalence of GHE and random walk on the tatonstraining the diffusion of particles at points with specified
gent direction is tested by several shapes. Another illustratiggentations is aimed at extracting desired features of a contour
simulation is shown in Fig. 4. as it is being smoothed. Such models are generated by the fol-
Our neglecting the drift led to an unbiased random-walgwing class of PDEs, which directionally modify the geometric
on the tangential direction and is validated by the simulatigfeat flow (2), and in this sense, generalize it by making the local

examples presented above, as the generator of symmediigierator of the diffusion SDE (14) conceivably arbitrarily se-
random-walk implementation results are in agreement wifBctive

the geometric heat equation implementation. Theoretically, Du(t, )
a stronger validation is due to Girsanov theorem (see [24]), 27— h2(€(t7z))u§£(t7z), (15)
which says that if we change the drift coefficient of a given ot

lto process, then the law of this process does not change dféhen applied to animage, this flow induces the following curve
matically, indeed, the trajectories of the process (distributiogyolution on each iso-intensity contotir

change via the measure change on the trajectories. This theorem ac 2

) . ) . — = h*(6)sN. (16)
involving a change of measure provides us with a means of ot
changing the mean of the proceX$¢) we obtained in (11),
particularly removing the drift and obtaining the process i
(12), where only the version of the Brownian motion changes. Proposition 2: The corresponding PDEs (15) are well-posed.

A Well-Posedness of the Generalized Model
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Proof: The geometric heat equation which corresponds fhe evolution equation for the angle of the unit normal is given
the simplest case of this class with(d(t, z)) = 1,Vt,Vz, has in [5] as
been shown to be well-posed, and its existence and uniqueness 00 —1

properties may be found in [9], [28], [29]. The operator of the [Bp — akg]

geometric heat equation is given by ot g
— — 2 2
L[u] = £[u] - Ou _ 0 (17) whereg = [|C,|| = (/&2 + Y2 is the length along the curve
ot (metric). If we consider the case = 0 and8 = —h%(0)x
where (following the convention used by the authors in [5]), which
2 92u corresponds to the form of the deformation we proposed, the
Llu] = Z i Sy Oms orientation evolution is governed by
i B 9 1.,
= sin? Qu,, — 2sin 0 cos Ou,, + cos® fu,, (18) ot ;[(h (0))p]
is the principal part of the operatér The matrix of coefficients = l{2h(g)(h(g))pﬁ + B2 (0)k,}
[a;;] is positive semi-definite with the eigen values 1 and 0. If we g
multiply this matrix by a positive function, it remains positive _ lh(ﬂ){?(h(&)) K+ h(B)k,} (22)
- p pJ-

semi-definite. Such elliptic-parabolic operators satisfy a max-
imum principle (see, for example, [30]). In our case, we multiplidotice that(9¢/0t) = 0 for those points at which(§) = 0. m
by a nonnegative functiol® (6) which can be made strictly pos- We note that in [5], the orientation of a curve is defined as the
itive by adding a very small number,> 0 angle subtended by the tangent and:tkeis, whereas here we
2 defined as the angle subtended by the normal andazttaxis.
[h°(0) + €]Lu > 0. X . :
There is, however, a complete equivalence in so far as the evo-
This results in a family of nonlinear parabolic equations eadirtion equation of the anglé is concerned.
of which satisfies a strong maximum principle. Our operator is In light of the above development, we can thus state that the
obtained in the limit ag — 0. B zeros of the functioh(6) lead to fixed end points of curve seg-
ments. Fixing two end points, say andas, we examine the

B. Polygon Yielding Diffusions evolution of curvature, whose general form is given by (in [5])

The geometric heat equation is a rotationally invariant flow Ok 0%3 Ok 9
which evolves, as mentioned earlier, any shape into a circle [4]. o 952 "% T B
It is the only rotationally invariant shape evolution in Euclideawheres is the arc-length parameter along the curve. When sub-
space. If we wish to capture more general shapes (trianglsitutinga = 0 and3 = —h?(6)« into this equation, we have
squares, etc.,..) itis only then natural to consider flows which % _h2(0 2(0)3
are not rotationally invariant. Such a class is given by the formp; — [h7(0)slss + h7(6)s
(16) whenh(#) is chosen to be other than a constant. If we aréx
particularly interested in polygons, we may consider periodict

functions (whose periodicity is dictated by the desired numbe@_ﬁ _ h2(9)f~tss n h2(9)ﬁ3 + (h2(9))ssf€ + 2(h2(6))ms .
——

[(h2(8))ssks + 2(h2(8))skis + B2(8)k5ss] + h2(6)K°

of vertices) such as ot g
diffusion term reaction term
h(d) = {C_os ((ng)) (19) This clearly demonstrates that a regularizing diffusion takes
Sin (n

place, since the multiplicative factéf (6) never becomes neg-
leading to curve evolution equations of the form ative (which would result in an ill-posed backward diffusion).
ac 9 ac ., In addition, we have the reaction term which is composed of
i cos“(nf)sN or i sin“(nf)xN. (20) functions ofx, x?, ands,.
If we apply (20) to a convex shape, there will be points on We have hence shown that with fixed gnd point_s, a particular
the curve which do not diffuse (corresponding to the zeros Brve seégment subject to the new evolution equation for the cur-
cos(nf) or sin(nf)) at equally separated rotations of the uniyature shown above, results in a straight line as a final solution.
normalN. As the unit normal moves further and further away NOW, We can state a theorem where we put our argument of
from these angles, the diffusion increases. It hence makes seifi/ergence to regular polygons. - _
to expect a curve to develop vertices (points of maximal curva- 1 eorem 1:A convex curveC subject to the evolutiod; =
ture) at these points. h%ﬁ)n{\l will converge to anV/-sided, r.eg'ular pqugon whose
Lemma 1: The angle ofaunitnormal does notchange at pointd Vertices will be formed at those vanishing points of the func-
where the chosen functidr? (6) vanishes. Those points, in turn, 1N h*(6). _ _
remain fixed for a short-time, and their speed remains atzero.  1he proof of this theorem can be completed using the arc-
Proof: Assume that a family of curved(t, p), wherep is 1€ngth évolution equation

any parameter along the curve, evolves according to the evolu- IL(C) _ _ /a2 W2h2(6) ds

tion equation ot Jay
aC whereds denotes the incremental arclengtiCoSince the inte-
o = ot )T+ B(t,p)N. (21)  grandisstrictly positive, we seethatacurve will continue toshrink
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P

OO0 O 88 85
ANO OO0 O o

© (a) M) (©
) ) ) ) Fig. 7. (a) Initial set of shapes. (b) Flo# = cos?(36)xN, which tends
h(0) = sin(1.560) h(0) = sin(26) h(0) = sin(2.50) h(0) = sin(49) 1o produce hexagons. () Flafy = sin2(1.5(6 — x/2))xN, which tends to
Fig. 5. Morphing of a circle into different shapes by the given flows is Produce triangle-like shapes.

demonstrated.
are however 45 degrees out of phase. As such, we see the

D &B D ] <> \> evolved shapes in part (b) taking the form of a square, whereas

the evolved shapes in part (c) take the form of a diamond, cor-

/ E O 0 D (“’\> AN responding to a 45 degree rotation of the shapes in part (b). In
~ (@ (b

N4 . Fig. 7, we see the effect of using different periods. The shapes in
) ©) part (b) are obtained usin@ = cos?(30)xN, while the shapes
Fig. 6. (a) Initial set of shapes. (b) Flaly = cos*(26)xN. (c) FlowC, = part (c) are obtained usirgy = sin2(1.5(6 _ 7r/2))l<aN. In

sin?(20)xkN. . . .
the first case, we expect 6 vertices, and in the second case we

expect 3 vertices. Our expectations match the results shown in
until curvature vanishes, thatis the curve segment converges gt (b) and (c), where we observe hexagonal and triangular
straight line between the end pointsanda,. This, in conjunc- shapes, respectively.
tion with the above lemma Completes the proof ofthe thedrem. These two figures also suggestan important potentia| app”ca_
tion of the proposed flows, namely shape recognition. A typical
V. EXPERIMENTAL RESULTS scenario, would consist of an unknown shape, which is evolved
with one of the polygonizing flows whose parameters are known

a priori. The evolution which subsequently results in the least

To substantiate the state(_j theor_em, and to intuitively illgstraéﬁange in the input shape reveals the closest shape category the
our flows, we next present simulation results. In our experimenjss; shape may belong to.

with contours, we use the narrowband implementation of therecall that we may also apply these flows to the level sets of

level set method developed in [32]. The time steplis= 0.2. 4 image in the same manner that the geometric heat equation

Starting with a circular shape, the flaty = 1*(f)=N evolves ay pe applied. This gives rise to a family of anisotropic

it toward a specific polygon, i.e., it produces afgoneshape gy 5othing filters which, unlike the geometric heat equation,

depending on the specific functidr(#). Several examples on 416 not rotationally invariant. This feature can be useful in

morphing of a circle into different shapes are shown in Fig. Sggothing noisy images where corners and edges are priorly
This is one potential application of the proposed flows iRhown o have certain orientations. These diffusions are

computer graphics, where the ability to morph a shape into.geacted by PDEs of the following form:
known other shape with an efficient algorithm is required for nu-

merous applications. In addition to illustrating the propagation u; = h*(0)V - ( Vu ) |Vl (24)
of the proposed flows in several snapshots, Fig. 5 also provides [Vl

a quantitative and an objective means for characterizing the pdiete that the trigopnometric expressions we have considered for
formance of these algorithms in preserving corners. It can be d8{#) can be written in terms of the first derivatives wf for
served that the position of the desired feature locations, i.e., #¥ample

A. Examples in Polygonization

orientations at which the vertices of the final polygon are to be (u2 _ u2)2 (2upu,)?
formed, are well preserved. There may inevitably be one-to-twocos?(26) = % and sin?(20) = ﬁ
pixel displacements due to numerical implementation effects, (u2 + “y) (u2 + “y)

on account of the finite precision of the computations and tllowingonetoimplementthe PDE withouthavingtocomputethe

finite resolution of the grid (which affects almost all image proerientation of the unit normal to each level curve. Note that these

cessing algorithms). expressions involve only first order derivatives and therefore do
The flows are also applied to a variety of convex shapestalterthe quasilinear structure of these second order flows.

shown in part (a) of each figure: Figs. 6 and 7. In Fig. 6, the The intended application of the proposed flows in this paper,

shapes in part (b) were obtained by usfirdf) = cos? (20) i.e., the smoothing of structures along the orientation of salient

via the following curve evolution: lines in both curves and images will be illustrated in the next

C, = cos®(20)kN (23) two subsections, respectively.

while the shapes in part (c) were obtained usiiigd) = B- Examples in Feature-Preservation

sin? (20). In both cases, we expect to obtain four-sided and Feature-preserving properties as well as polygonal approxi-

regular polygons. The zeros @fs(26) and the zeros ofin(26) mation properties of the proposed flows will be demonstrated in
N _ this section. We illustrate the idea of capturing different polyg-
Note added in Proof: We recently found out per Dr. Osher at UCLA that Pe

“Ghal f f shapes b d fl he followi
et al.[31], have also independently proposed flows similar to those describe al teatures of shapes by our proposed flows on the following
this paper, albeit from a totally different perspective, and with a convective trer@ixamples.
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Fig. 9. Each row corresponds to a curve evolution method with different
Istrow:C; = «N, 2nd row:C; = cos?(260)kN, 3rd row:C; = sin*(40)xN.
Q Q =50 =100 =200 =400
n=4 o,
=40 =80 =160
n=0
Fig. 8. Each row corresponds to a curve evolution method with different
Istrow:C; = kN, 2nd row:C; = sin?(26)xNN, 3rd row:C; = cos?(46)xN. Actual Shape

The firstexample is a “chef’ shape with both round and poly¢ |
onal features as shown in Fig. 8. The geometric heat flpw- -
kN, (n = 0), evolves these features into circles as shown intl | w15
second row of Fig. 8 for time points = 40, 80, 160. Particu- ,
larly, att = 160, most parts of the shape turns into incompre Y EBNe
hensible blob-like structures. In contrast to this, polygonal fe o
tures of the chef like his nose, and tray, are preserved by the fl i
C; = sin®(20)xN, (n = 2), which favors diamond-like struc- 1}
tures (see third row of Fig. 8 far= 40, 80, 160). Similarly, the Y
flow C; = cos?(46)xkN, (n = 4), favors octagonal features as L o
shown onthe fourth row of Fig. 8, whichis observed atchef'sh ./ N,
atall time pointg = 40, 80, 160. The regularity of these flows is 7
readily observed throughthe smoothness of the resulting sha """ A i N
When we view each row from left to right, we observe a progre ' g
sionfromfinerto coarser scale. The scale-spaces produced by
modified flows in the last two rows are visually more pleasin / ‘ ;
since cornersare preserved, whereasinthe rowabove we seet SRR G i G
smoothed away by the pure geometric heat flow. 10. Each row corresponds to a curve evolution method with different

The second shape example is a fish which contains sorirg%mw C, = kN, 2nd row:C; = sin®(1.5(6 — 7/2))xN, 3rd row:C, =
fine detail structures as well as coarse features (Fig. 9). Tde?(26)xN, 4th row:C, = cos?(2.5(6 — /2))xN.
second row shows the result of the geometric heat flpw=
&N, (n = 0), which smoothes away not only fine features bufig. 10. The geometric heat flow at the top row quickly smoothes
some coarse features as well (the fins for example). The resuaitsners of the shape out, and at coarser scales, the shape loses
of the flow, C; = cos?(26)xN, (n = 2), are shown in the third all of its features. The initial shape converges to a circle in spite
row of Fig. 9. In this case, rectangular features are preservathe global feature of the plane being a polygonal shape. This
for longer periods throughout the evolution. Finally, the flownotivates the application of the geometric heat flow with a
C; = sin’(40)xN,(n = 4), is depicted in the last row, pre-sin’(n#) factor, where: = 1.5, and whose weak limiting shape
serving octagonal features as shown in the nose and the doisa triangle which intuitively matches the coarser form of the

Nuisy Shape

fins. given plane shape. Similarly, far = 2 andn = 2.5, different

In the third example, we start with a noisy shape déatures of the shape are preserved, and persist over a much
time ¢t = 0 shown in Fig. 10. This shape is evolvedongertime period as can be observed from the column of shapes
with the geometric heat flol; = «N,(n = 0), att = 400. Note that the geometric heat flow result at the top
the flow C; = sin2(1.5(0 — 7w/2))sN,(n = 1.5), quickly washes out any similarity to the actual shape, whereas
the flow C; = sin?(20)sN,(n = 2), and the flow the results of the other three flows preserve the global shape as
C; = cos?(2.5(0 — ©/2))sN,(n = 2.5), as shown in well as some finer details on the wings, the tail, and the head part.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:47 from IEEE Xplore. Restrictions apply.



UNAL et al. STOCHASTIC DIFFERENTIAL EQUATIONS AND GEOMETRIC FLOWS 1413

BESE
SESESES

=10

Fig. 11. (a) Clean building image, (b) noisy building image, (c) Geometri
heat flowu, = u¢, (left-right) ¢ = 10,20,40, (d) Flowu, = cos?(260)ue,
(left-right) t = 10,20,40.

iI‘E’ig. 12. (Top) Diamonds image (Middle row) Geometric heat flow= w,,¢
(Bottom row) Flowu, = sin?(26)ue.

C. Examples With Grayscale Images

The proposed flows may also be applied to images in
straightforward fashion. For the casé(d) = cos?(26),
all level sets of the image are driven to rectangles, there
enhancing those features in an image. Such features can
found in contemporary buildings where one example in NCSI
Centennial Campus is shown in Fig. 11(a). The part of tt
building image with an additive Gaussian noise is shown |*
Fig. 11(b). The 2nd row shows the results of the geometric he
flow u, = uge att = 10,20, 50. The noisy image at = 0
is smoothed out very quickly at the expense of rounding d
all the corners because the level sets of the image convergs
circles. The 3rd row shows the = cos?(26)uge flow results
at the same time points = 10, 20, 50. Since the diffusion is ‘
constrained in order to drive image level sets to rectangles, § r

/

t=12.5

removal of noise is slower. However, the rectangular featu
still nicely appear after noise removal (see the image on t
right), making it worthwhile to slow down the denoising effec
of the geometric heat flow as deemed appropriate.

In Fig. 12, an experiment involving diamond-like shapes i
the image taken from a poster on a wall is shown. In the midg
row, rounding effects on diamond shapes performed by the g¢.
metric heat flow are clearly observed during the evolution {
this image. The proposed flow, shown in the bottom row, tak
the formu,; = sin”(26)ue, for this particular shape, and partic
ularly adapted to carrying out a shape-based smoothing wh
takes place at the boundaries of the diamonds. The slight bl
ring effect on the picture at continued application however
due to the interaction between consecutive level curves.

A photograph taken by pathfinder in mars, shown in Fig. 1
is argued to be a hexagon-shaped structure on mars’ surfg
The particular flow adapted to this shape is given:hy =
cos? (30)uge, and the resulting images at the second column @ _ _ _ _
the figure demonstrate a better smoothing performance at 151 :(TL?Z)QQ anads Lﬁﬂ‘mm?rgIg\i‘;t'f'id‘zg5(2':('?;)22'{”.”2'?1)1%‘2?”éeritgi‘;heat
boundaries of the hexagon when compared to the images in tAga, exposed by and courtesy of N. Coombs & NPAAG 1998).
first column processed by the geometric heat equation. From
low scales to very large scales, the hexagon-adapted flow enA noise contaminated Aerial image is shown in Fig. 14(a).
hances and keeps on highlighting the related structure. The geometric heat equation (see 2nd rows= 20, 40, 80)

t=50

=90
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Fig. 14. Top: Aerial image; 2nd row: geometric heat flaw = wu,,, (left to
right) ¢ = 20,40,80; 3rd row: flow u, = cos?(26)uge, (left to right)t =
20,40, 80.

sweeps away the shape information of the important details st

as the city on the left bottom, the white bright rectangle on tt

right bottom, and the black feature at the top. The three imag

resulting from theu, = cos?(20)ug, flow, are quite sharp at the

edges between both low and high contrast fields, therefore mi

useful in recognition of details as well as removing noise.
A last example is shown in Fig. 15, where windows and a roor

of a section of a house are seen. On the left column, the res%?%

of the geometric heat flow, = ¢, at timest = 40, 80, 160,

are shown, and on the right those:ef= cos?(26)ug¢ atsimilar hence be relevant to shape-morphing applications in computer

time steps. The noise is successfully removed by the geomegiaphics. Another application of these polygonizing flows is in

heat equation whose smearing effect on different regions intlassification of a shape after its filtering via a certain set of these

one another is also slow, at a cost of a problematic rounding #ffws, and its identification according to the outputs of these

of corners. At timet = 160 for the result on the right bottom, differentfilters.

approximately the same amount of noise as that of geometric

heat equation at = 40 is removed, and in addition to that the APPENDIX

corners are still well-preserved.

15. Top: House; Left: Geometric heat flaw = u.., (top to bottom} =
0,160; Right: Flowu, = cos?(26)u, (top to bottomy = 40, 80, 160.

Let us denote by." (¢, z) the solution to (8)

VI. CONCLUSION aaitn — sin? (tanl (“z)) .

In this paper, we have formulated a local stochastic view Zﬁ un
of a nonlinear filtering technique, namely the geometric heat —sin (2 tan~* < Y )) uy, + cos? ( tan~ (—i)) Uy,
equation. The theory of stochastic differential equations provides U v
amicroscopic view of a system, and through a local linearizatigid define
of the nonlinear geometric heat equation we have provided an f (u ut oy ) — gin <tan _))
alternative macroscopic view of this equation. We then modified v ul Hae:
this macroscopic description to propose new flows that vanish Uy
at pre-defined directions. We showed that these flows, although /2 (s uysug,) = sin (2 tan ™ <@
rotationally noninvariant, are capable of smoothing along priorly un
known orientations of salient lines in both curves and images, fa (ug uy uy ) = cos” (tan_l (—y
leading to preservation of polygonal structures. In the context
of curve evolutions, curves evolved with the new flows art We Write u(t,z) as
morphed into a limiting polygonal shape, this approach may uw(t,x) = u"(t,x) + eu(t, x)
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Oeu n n n

s ~exy - V1 (x]) — exa - Vo (25) + exs - Vs (zF) (26)

2sin (tan_l (Z )) cos (tan_1 (Z’ )) lu . (::;’2 ul,
7 1+( a ) 7
deu ) n n
ot 7 e(ux Uy um) - 281n(tan_1 (Z’)) cos(tan 1 (u)) i = uiuZT
7 7 " (_y) 7
sin? (tarf1 (“iﬁ ))
uI
—1 “; 1 7“; n
2 cos(2 tan (uz )) —1+ 7 >2 (un)? Ugy
—e(Up Uy Ugy) - 2 cos (2 tan~! (Z—y)) % ul Uy,
7 . (u_y) x
sin(2tan™?! Zy))
u; i 1wy 1 —uZ
2 cos(tan (ux )) ( sin (tan (u,; ))) wNT (ar)? uyy
1+ u%)
uy . —1( uy 1 1
+e(ugy uy Uyy)- | 2 cos(tan (u; )) (— sin (tan (u; ))) ST o Uy (27)
1+ u%)
cos? (tan ( o ))

theneu(t, z) satisfies ACKNOWLEDGMENT

Jeu

T J1 (Ul 4 €ug, uy + ey, ul, + €tyy)

- f1 (u Uy s Uy, )
- {f2 (u + €Uy, Uy + €Uy, Uy, + euxy)

— f2 (u uy’ury)} 11

+ f3 (ul} + €Uy, Uy + €Uy, uy, + €ty )

— f3 (ulf, up,up) . (25 2
Assuming fl('7'7')7f2('7'7')! and f3('7'7') are differ-
entiable in their arguments, we can expand(:,-,-) Bl
in  Taylor series about (u},uy,u},), fo(-,-,-) about 4]
(up,uy,uy,), and f3(-,-,-) about (uly,uy,uy,). FOr no-
tational simplicity, let us denote by:1 = (uy, Uy, Uss) [5]
and =7 = (uj,uy,uyp,), T2 = (U, uy,um,) and
& = (ul, uJ,u W)y and 3 = (ug,uy,uy,) and (6]
zy = (u},uy,uy,). If we assume thatu(t,z) is small

enough, we can neglect higher order terms and write[7]
a linear approximation as (see the equation at the top

of the page). Defining the corresponding nominal angle

0" (t,z) = tan™"((up (¢, ))/(u(t,z))), and re-arranging the

terms of (27), we get the linearized version of the geometric[®]
heat equation around a nominal value

ou(t, x) [10]
ot [11]
~ Agurinu(t, ) [12]

= sin® (0" (¢, %) )uze (t, ) — sin(20™ (¢, T))uzy (¢, )
+ cos(0™ (1, 7))y, (1, 7) + ¢ (—ul) (1, 2)u, (1, ) 1)
(o), (t2) (28) 114
wherec = (1)/((uf)? + (u)?)sin(267)(ur, — ult,) —

cos(29”)2u2’y].

The authors appreciate fruitful discussions with Dr. Y. Bao
of VISSTA, NCSU, and Dr. J. P. Fouque, and Dr. K. Ito of the
Mathematics Dept. at NCSU.
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